SQLite

Check-in [2d0c458e01]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge latest trunk changes into this branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | schemalint
Files: files | file ages | folders
SHA3-256: 2d0c458e013cb2d02fbeabed8dabd66f55141aac194611f0e599b3c95af1964f
User & Date: dan 2017-04-15 15:47:19.800
Context
2017-04-15
16:52
Fix problems with handling constraints on the rowid column in sqlite3expert.c. (check-in: 2e6308798a user: dan tags: schemalint)
15:47
Merge latest trunk changes into this branch. (check-in: 2d0c458e01 user: dan tags: schemalint)
14:30
Add header comment for sqlite3_vtab_collation(). (check-in: d238694ca4 user: dan tags: schemalint)
11:53
In the skip-ahead-distinct optimization, fix a bug in the logic that determines when to invoke the optimization based on sqlite_stat1 statistics. (check-in: 89f9e4363a user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.msc.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
USE_AMALGAMATION = 1
!ENDIF
# <</mark>>

# Set this non-0 to enable full warnings (-W4, etc) when compiling.
#
!IFNDEF USE_FULLWARN
USE_FULLWARN = 0
!ENDIF

# Set this non-0 to enable treating warnings as errors (-WX, etc) when
# compiling.
#
!IFNDEF USE_FATAL_WARN
USE_FATAL_WARN = 0







|







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
USE_AMALGAMATION = 1
!ENDIF
# <</mark>>

# Set this non-0 to enable full warnings (-W4, etc) when compiling.
#
!IFNDEF USE_FULLWARN
USE_FULLWARN = 1
!ENDIF

# Set this non-0 to enable treating warnings as errors (-WX, etc) when
# compiling.
#
!IFNDEF USE_FATAL_WARN
USE_FATAL_WARN = 0
Changes to ext/misc/json1.c.
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
  jsonParseReset(&x);
}

/* This is the RFC 7396 MergePatch algorithm.
*/
static JsonNode *jsonMergePatch(
  JsonParse *pParse,   /* The JSON parser that contains the TARGET */
  int iTarget,         /* Node of the TARGET in pParse */
  JsonNode *pPatch     /* The PATCH */
){
  u32 i, j;
  u32 iRoot;
  JsonNode *pTarget;
  if( pPatch->eType!=JSON_OBJECT ){
    return pPatch;







|







1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
  jsonParseReset(&x);
}

/* This is the RFC 7396 MergePatch algorithm.
*/
static JsonNode *jsonMergePatch(
  JsonParse *pParse,   /* The JSON parser that contains the TARGET */
  u32 iTarget,         /* Node of the TARGET in pParse */
  JsonNode *pPatch     /* The PATCH */
){
  u32 i, j;
  u32 iRoot;
  JsonNode *pTarget;
  if( pPatch->eType!=JSON_OBJECT ){
    return pPatch;
Changes to ext/rbu/rbu.c.
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  char zBuf[200];                 /* Buffer for printf() */
  char *zErrmsg;                  /* Error message, if any */
  sqlite3rbu *pRbu;               /* RBU handle */
  int nStep = 0;                  /* Maximum number of step() calls */
  int bVacuum = 0;
  int rc;
  sqlite3_int64 nProgress = 0;
  int nArg = argc-2;

  if( argc<3 ) usage(argv[0]);
  for(i=1; i<nArg; i++){
    const char *zArg = argv[i];
    int nArg = strlen(zArg);
    if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){
      bVacuum = 1;
    }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){
      i++;
      nStep = atoi(argv[i]);







|


|







78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  char zBuf[200];                 /* Buffer for printf() */
  char *zErrmsg;                  /* Error message, if any */
  sqlite3rbu *pRbu;               /* RBU handle */
  int nStep = 0;                  /* Maximum number of step() calls */
  int bVacuum = 0;
  int rc;
  sqlite3_int64 nProgress = 0;
  int nArgc = argc-2;

  if( argc<3 ) usage(argv[0]);
  for(i=1; i<nArgc; i++){
    const char *zArg = argv[i];
    int nArg = strlen(zArg);
    if( nArg>1 && nArg<=8 && 0==memcmp(zArg, "-vacuum", nArg) ){
      bVacuum = 1;
    }else if( nArg>1 && nArg<=5 && 0==memcmp(zArg, "-step", nArg) && i<nArg-1 ){
      i++;
      nStep = atoi(argv[i]);
Changes to src/expr.c.
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
  ynVar x;

  if( pExpr==0 ) return;
  assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  assert( n==sqlite3Strlen30(z) );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){







|







952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
  ynVar x;

  if( pExpr==0 ) return;
  assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
  z = pExpr->u.zToken;
  assert( z!=0 );
  assert( z[0]!=0 );
  assert( n==(u32)sqlite3Strlen30(z) );
  if( z[1]==0 ){
    /* Wildcard of the form "?".  Assign the next variable number */
    assert( z[0]=='?' );
    x = (ynVar)(++pParse->nVar);
  }else{
    int doAdd = 0;
    if( z[0]=='?' ){
Changes to src/select.c.
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );







|







1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && pColExpr->pTab!=0 ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
3140
3141
3142
3143
3144
3145
3146













3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182

3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)













/* Forward Declarations */
static void substExprList(Parse*, ExprList*, int, ExprList*);
static void substSelect(Parse*, Select *, int, ExprList*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine makes the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  Parse *pParse,      /* Report errors here */
  Expr *pExpr,        /* Expr in which substitution occurs */
  int iTable,         /* Table to be substituted */
  ExprList *pEList    /* Substitute expressions */
){
  sqlite3 *db = pParse->db;
  if( pExpr==0 ) return 0;
  if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      Expr *pCopy = pEList->a[pExpr->iColumn].pExpr;
      assert( pEList!=0 && pExpr->iColumn<pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pParse, pCopy);
      }else{

        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( pNew && (pExpr->flags & EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          pNew->flags |= EP_FromJoin;
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;
      }
    }
  }else{
    pExpr->pLeft = substExpr(pParse, pExpr->pLeft, iTable, pEList);
    pExpr->pRight = substExpr(pParse, pExpr->pRight, iTable, pEList);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(pParse, pExpr->x.pSelect, iTable, pEList, 1);
    }else{
      substExprList(pParse, pExpr->x.pList, iTable, pEList);
    }
  }
  return pExpr;
}
static void substExprList(
  Parse *pParse,       /* Report errors here */
  ExprList *pList,     /* List to scan and in which to make substitutes */
  int iTable,          /* Table to be substituted */
  ExprList *pEList     /* Substitute values */
){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pParse, pList->a[i].pExpr, iTable, pEList);
  }
}
static void substSelect(
  Parse *pParse,       /* Report errors here */
  Select *p,           /* SELECT statement in which to make substitutions */
  int iTable,          /* Table to be replaced */
  ExprList *pEList,    /* Substitute values */
  int doPrior          /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pParse, p->pEList, iTable, pEList);
    substExprList(pParse, p->pGroupBy, iTable, pEList);
    substExprList(pParse, p->pOrderBy, iTable, pEList);
    p->pHaving = substExpr(pParse, p->pHaving, iTable, pEList);
    p->pWhere = substExpr(pParse, p->pWhere, iTable, pEList);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pParse, pItem->pSelect, iTable, pEList, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pParse, pItem->u1.pFuncArg, iTable, pEList);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)







>
>
>
>
>
>
>
>
>
>
>
>
>

|
|















|
|
<
<

<

|




|
|


|

>










|
|

|

|





|
|
<
<




|



|
|
<
<
|






|
|
|
|
|



|

|







3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179


3180

3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216


3217
3218
3219
3220
3221
3222
3223
3224
3225
3226


3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)

/* An instance of the SubstContext object describes an substitution edit
** to be performed on a parse tree.
**
** All references to columns in table iTable are to be replaced by corresponding
** expressions in pEList.
*/
typedef struct SubstContext {
  Parse *pParse;            /* The parsing context */
  int iTable;               /* Replace references to this table */
  ExprList *pEList;         /* Replacement expressions */
} SubstContext;

/* Forward Declarations */
static void substExprList(SubstContext*, ExprList*);
static void substSelect(SubstContext*, Select*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
** This routine is part of the flattening procedure.  A subquery
** whose result set is defined by pEList appears as entry in the
** FROM clause of a SELECT such that the VDBE cursor assigned to that
** FORM clause entry is iTable.  This routine makes the necessary 
** changes to pExpr so that it refers directly to the source table
** of the subquery rather the result set of the subquery.
*/
static Expr *substExpr(
  SubstContext *pSubst,  /* Description of the substitution */
  Expr *pExpr            /* Expr in which substitution occurs */


){

  if( pExpr==0 ) return 0;
  if( pExpr->op==TK_COLUMN && pExpr->iTable==pSubst->iTable ){
    if( pExpr->iColumn<0 ){
      pExpr->op = TK_NULL;
    }else{
      Expr *pNew;
      Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
      assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
      assert( pExpr->pLeft==0 && pExpr->pRight==0 );
      if( sqlite3ExprIsVector(pCopy) ){
        sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
      }else{
        sqlite3 *db = pSubst->pParse->db;
        pNew = sqlite3ExprDup(db, pCopy, 0);
        if( pNew && (pExpr->flags & EP_FromJoin) ){
          pNew->iRightJoinTable = pExpr->iRightJoinTable;
          pNew->flags |= EP_FromJoin;
        }
        sqlite3ExprDelete(db, pExpr);
        pExpr = pNew;
      }
    }
  }else{
    pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
    pExpr->pRight = substExpr(pSubst, pExpr->pRight);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(pSubst, pExpr->x.pSelect, 1);
    }else{
      substExprList(pSubst, pExpr->x.pList);
    }
  }
  return pExpr;
}
static void substExprList(
  SubstContext *pSubst, /* Description of the substitution */
  ExprList *pList       /* List to scan and in which to make substitutes */


){
  int i;
  if( pList==0 ) return;
  for(i=0; i<pList->nExpr; i++){
    pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
  }
}
static void substSelect(
  SubstContext *pSubst, /* Description of the substitution */
  Select *p,            /* SELECT statement in which to make substitutions */


  int doPrior           /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(pSubst, p->pEList);
    substExprList(pSubst, p->pGroupBy);
    substExprList(pSubst, p->pOrderBy);
    p->pHaving = substExpr(pSubst, p->pHaving);
    p->pWhere = substExpr(pSubst, p->pWhere);
    pSrc = p->pSrc;
    assert( pSrc!=0 );
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(pSubst, pItem->pSelect, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(pSubst, pItem->u1.pFuncArg);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3756
3757
3758
3759
3760
3761
3762




3763
3764
3765
3766
3767
3768
3769
3770
      );
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
    }
    if( db->mallocFailed==0 ){




      substSelect(pParse, pParent, iParent, pSub->pEList, 0);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  







>
>
>
>
|







3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
      );
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = sqlite3ExprAnd(db, pWhere, pParent->pWhere);
    }
    if( db->mallocFailed==0 ){
      SubstContext x;
      x.pParse = pParse;
      x.iTable = iParent;
      x.pEList = pSub->pEList;
      substSelect(&x, pParent, 0);
    }
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  
3859
3860
3861
3862
3863
3864
3865

3866



3867
3868
3869
3870
3871
3872
3873
3874
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
    pWhere = pWhere->pLeft;
  }
  if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    while( pSubq ){

      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);



      pNew = substExpr(pParse, pNew, iCursor, pSubq->pEList);
      pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */







>

>
>
>
|







3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
    nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, iCursor);
    pWhere = pWhere->pLeft;
  }
  if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */
  if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
    nChng++;
    while( pSubq ){
      SubstContext x;
      pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
      x.pParse = pParse;
      x.iTable = iCursor;
      x.pEList = pSubq->pEList;
      pNew = substExpr(&x, pNew);
      pSubq->pWhere = sqlite3ExprAnd(pParse->db, pSubq->pWhere, pNew);
      pSubq = pSubq->pPrior;
    }
  }
  return nChng;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
Changes to src/treeview.c.
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248




249

250
251
252
253
254
255
256

/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[30];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){




    sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);

  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);







|







>
>
>
>
|
>







234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

/*
** Generate a human-readable explanation of an expression tree.
*/
void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){
  const char *zBinOp = 0;   /* Binary operator */
  const char *zUniOp = 0;   /* Unary operator */
  char zFlgs[60];
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( pExpr==0 ){
    sqlite3TreeViewLine(pView, "nil");
    sqlite3TreeViewPop(pView);
    return;
  }
  if( pExpr->flags ){
    if( ExprHasProperty(pExpr, EP_FromJoin) ){
      sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x iRJT=%d",
                       pExpr->flags, pExpr->iRightJoinTable);
    }else{
      sqlite3_snprintf(sizeof(zFlgs),zFlgs,"  flags=0x%x",pExpr->flags);
    }
  }else{
    zFlgs[0] = 0;
  }
  switch( pExpr->op ){
    case TK_AGG_COLUMN: {
      sqlite3TreeViewLine(pView, "AGG{%d:%d}%s",
            pExpr->iTable, pExpr->iColumn, zFlgs);
Changes to src/where.c.
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**







|







3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate sort operation.  Return N:
** 
**   N>0:   N terms of the ORDER BY clause are satisfied
**   N==0:  No terms of the ORDER BY clause are satisfied
**   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.   
**
3567
3568
3569
3570
3571
3572
3573


3574
3575
3576
3577
3578
3579
3580
      if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
    }else{
      pLoop = pLast;
    }
    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
      if( pLoop->u.vtab.isOrdered ) obSat = obDone;
      break;


    }
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.







>
>







3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
      if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
    }else{
      pLoop = pLast;
    }
    if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
      if( pLoop->u.vtab.isOrdered ) obSat = obDone;
      break;
    }else{
      pLoop->u.btree.nIdxCol = 0;
    }
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.
3712
3713
3714
3715
3716
3717
3718

3719
3720
3721
3722
3723
3724
3725
            }
          }
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }

          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){







>







3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
            }
          }
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          pLoop->u.btree.nIdxCol = j+1;
          isMatch = 1;
          break;
        }
        if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
          /* Make sure the sort order is compatible in an ORDER BY clause.
          ** Sort order is irrelevant for a GROUP BY clause. */
          if( revSet ){
4793
4794
4795
4796
4797
4798
4799

4800
4801
4802
4803
4804
4805
4806
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0

        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
        {
          u64 colUsed = 0;







>







4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
         && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
        {
          u64 colUsed = 0;
4881
4882
4883
4884
4885
4886
4887
4888
4889

























4890
4891
4892
4893
4894
4895





4896
4897
4898
4899
4900
4901
4902
  */
  VdbeModuleComment((v, "End WHERE-core"));
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    int addr;
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){

























      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
      sqlite3VdbeChangeP5(v, pLevel->p5);
      VdbeCoverage(v);
      VdbeCoverageIf(v, pLevel->op==OP_Next);
      VdbeCoverageIf(v, pLevel->op==OP_Prev);
      VdbeCoverageIf(v, pLevel->op==OP_VNext);





    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);







<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






>
>
>
>
>







4885
4886
4887
4888
4889
4890
4891

4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
  */
  VdbeModuleComment((v, "End WHERE-core"));
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    int addr;
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;

    if( pLevel->op!=OP_Noop ){
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      int addrSeek = 0;
      Index *pIdx;
      int n;
      if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
       && (pLoop->wsFlags & WHERE_INDEXED)!=0
       && (pIdx = pLoop->u.btree.pIndex)->hasStat1
       && (n = pLoop->u.btree.nIdxCol)>0
       && pIdx->aiRowLogEst[n]>=36
      ){
        int r1 = pParse->nMem+1;
        int j, op;
        for(j=0; j<n; j++){
          sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
        }
        pParse->nMem += n+1;
        op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
        addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
        VdbeCoverageIf(v, op==OP_SeekLT);
        VdbeCoverageIf(v, op==OP_SeekGT);
        sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
      }
#endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
      /* The common case: Advance to the next row */
      sqlite3VdbeResolveLabel(v, pLevel->addrCont);
      sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
      sqlite3VdbeChangeP5(v, pLevel->p5);
      VdbeCoverage(v);
      VdbeCoverageIf(v, pLevel->op==OP_Next);
      VdbeCoverageIf(v, pLevel->op==OP_Prev);
      VdbeCoverageIf(v, pLevel->op==OP_VNext);
#ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
      if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
#endif
    }else{
      sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
Changes to src/whereInt.h.
120
121
122
123
124
125
126

127
128
129
130
131
132
133
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */

      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */







>







120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nBtm;              /* Size of BTM vector */
      u16 nTop;              /* Size of TOP vector */
      u16 nIdxCol;           /* Index column used for ORDER BY */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
Added test/distinct2.test.














































































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# 2016-04-15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is DISTINCT queries using the skip-ahead 
# optimization.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set testprefix distinct2

do_execsql_test 100 {
  CREATE TABLE t1(x INTEGER PRIMARY KEY);
  INSERT INTO t1 VALUES(0),(1),(2);
  CREATE TABLE t2 AS
     SELECT DISTINCT a.x AS aa, b.x AS bb
      FROM t1 a, t1 b;
  SELECT *, '|' FROM t2 ORDER BY aa, bb;
} {0 0 | 0 1 | 0 2 | 1 0 | 1 1 | 1 2 | 2 0 | 2 1 | 2 2 |}
do_execsql_test 110 {
  DROP TABLE t2;
  CREATE TABLE t2 AS
     SELECT DISTINCT a.x AS aa, b.x AS bb
       FROM t1 a, t1 b
      WHERE a.x IN t1 AND b.x IN t1;
  SELECT *, '|' FROM t2 ORDER BY aa, bb;
} {0 0 | 0 1 | 0 2 | 1 0 | 1 1 | 1 2 | 2 0 | 2 1 | 2 2 |}
do_execsql_test 120 {
  CREATE TABLE t102 (i0 TEXT UNIQUE NOT NULL);
  INSERT INTO t102 VALUES ('0'),('1'),('2');
  DROP TABLE t2;
  CREATE TABLE t2 AS
    SELECT DISTINCT * 
    FROM t102 AS t0 
    JOIN t102 AS t4 ON (t2.i0 IN t102)
    NATURAL JOIN t102 AS t3
    JOIN t102 AS t1 ON (t0.i0 IN t102)
    JOIN t102 AS t2 ON (t2.i0=+t0.i0 OR (t0.i0<>500 AND t2.i0=t1.i0));
  SELECT *, '|' FROM t2 ORDER BY 1, 2, 3, 4, 5;
} {0 0 0 0 | 0 0 1 0 | 0 0 1 1 | 0 0 2 0 | 0 0 2 2 | 0 1 0 0 | 0 1 1 0 | 0 1 1 1 | 0 1 2 0 | 0 1 2 2 | 0 2 0 0 | 0 2 1 0 | 0 2 1 1 | 0 2 2 0 | 0 2 2 2 | 1 0 0 0 | 1 0 0 1 | 1 0 1 1 | 1 0 2 1 | 1 0 2 2 | 1 1 0 0 | 1 1 0 1 | 1 1 1 1 | 1 1 2 1 | 1 1 2 2 | 1 2 0 0 | 1 2 0 1 | 1 2 1 1 | 1 2 2 1 | 1 2 2 2 | 2 0 0 0 | 2 0 0 2 | 2 0 1 1 | 2 0 1 2 | 2 0 2 2 | 2 1 0 0 | 2 1 0 2 | 2 1 1 1 | 2 1 1 2 | 2 1 2 2 | 2 2 0 0 | 2 2 0 2 | 2 2 1 1 | 2 2 1 2 | 2 2 2 2 |}

do_execsql_test 400 {
  CREATE TABLE t4(a,b,c,d,e,f,g,h,i,j);
  INSERT INTO t4 VALUES(0,1,2,3,4,5,6,7,8,9);
  INSERT INTO t4 SELECT * FROM t4;
  INSERT INTO t4 SELECT * FROM t4;
  CREATE INDEX t4x ON t4(c,d,e);
  SELECT DISTINCT a,b,c FROM t4 WHERE a=0 AND b=1;
} {0 1 2}
do_execsql_test 410 {
  SELECT DISTINCT a,b,c,d FROM t4 WHERE a=0 AND b=1;
} {0 1 2 3}
do_execsql_test 411 {
  SELECT DISTINCT d,a,b,c FROM t4 WHERE a=0 AND b=1;
} {3 0 1 2}
do_execsql_test 420 {
  SELECT DISTINCT a,b,c,d,e FROM t4 WHERE a=0 AND b=1;
} {0 1 2 3 4}
do_execsql_test 430 {
  SELECT DISTINCT a,b,c,d,e,f FROM t4 WHERE a=0 AND b=1;
} {0 1 2 3 4 5}

do_execsql_test 500 {
  CREATE TABLE t5(a INT, b INT);
  CREATE UNIQUE INDEX t5x ON t5(a+b);
  INSERT INTO t5(a,b) VALUES(0,0),(1,0),(1,1),(0,3);
  CREATE TEMP TABLE out AS SELECT DISTINCT a+b FROM t5;
  SELECT * FROM out ORDER BY 1;
} {0 1 2 3}

do_execsql_test 600 {
  CREATE TABLE t6a(x INTEGER PRIMARY KEY);
  INSERT INTO t6a VALUES(1);
  CREATE TABLE t6b(y INTEGER PRIMARY KEY);
  INSERT INTO t6b VALUES(2),(3);
  SELECT DISTINCT x, x FROM t6a, t6b;
} {1 1}

do_execsql_test 700 {
  CREATE TABLE t7(a, b, c);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE (i+1)<200
  )
  INSERT INTO t7 SELECT i/100, i/50, i FROM s;
}
do_execsql_test 710 {
  SELECT DISTINCT a, b FROM t7;
} {
  0 0    0 1
  1 2    1 3
}
do_execsql_test 720 {
  SELECT DISTINCT a, b+1 FROM t7;
} {
  0 1    0 2
  1 3    1 4
}
do_execsql_test 730 {
  CREATE INDEX i7 ON t7(a, b+1);
  ANALYZE;
  SELECT DISTINCT a, b+1 FROM t7;
} {
  0 1    0 2
  1 3    1 4
}

do_execsql_test 800 {
  CREATE TABLE t8(a, b, c);
  WITH s(i) AS (
    SELECT 1 UNION ALL SELECT i+1 FROM s WHERE (i+1)<100
  )
  INSERT INTO t8 SELECT i/40, i/20, i/40 FROM s;
}

do_execsql_test 820 {
  SELECT DISTINCT a, b, c FROM t8;
} {
  0 0 0    0 1 0
  1 2 1    1 3 1
  2 4 2
}

do_execsql_test 820 {
  SELECT DISTINCT a, b, c FROM t8 WHERE b=3;
} {1 3 1}

do_execsql_test 830 {
  CREATE INDEX i8 ON t8(a, c);
  ANALYZE;
  SELECT DISTINCT a, b, c FROM t8 WHERE b=3;
} {1 3 1}

do_execsql_test 900 {
  CREATE TABLE t9(v);
  INSERT INTO t9 VALUES 
    ('abcd'), ('Abcd'), ('aBcd'), ('ABcd'), ('abCd'), ('AbCd'), ('aBCd'), 
    ('ABCd'), ('abcD'), ('AbcD'), ('aBcD'), ('ABcD'), ('abCD'), ('AbCD'), 
    ('aBCD'), ('ABCD'),
    ('wxyz'), ('Wxyz'), ('wXyz'), ('WXyz'), ('wxYz'), ('WxYz'), ('wXYz'), 
    ('WXYz'), ('wxyZ'), ('WxyZ'), ('wXyZ'), ('WXyZ'), ('wxYZ'), ('WxYZ'), 
    ('wXYZ'), ('WXYZ');
}

do_execsql_test 910 {
  SELECT DISTINCT v COLLATE NOCASE, v FROM t9 ORDER BY +v;
} {
  ABCD ABCD ABCd ABCd ABcD ABcD ABcd ABcd AbCD
  AbCD AbCd AbCd AbcD AbcD Abcd Abcd
  WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ
  WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz
  aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD
  abCD abCd abCd abcD abcD abcd abcd
  wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ
  wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz
}

do_execsql_test 920 {
  CREATE INDEX i9 ON t9(v COLLATE NOCASE, v);
  ANALYZE;

  SELECT DISTINCT v COLLATE NOCASE, v FROM t9 ORDER BY +v;
} {
  ABCD ABCD ABCd ABCd ABcD ABcD ABcd ABcd AbCD
  AbCD AbCd AbCd AbcD AbcD Abcd Abcd
  WXYZ WXYZ WXYz WXYz WXyZ WXyZ WXyz WXyz WxYZ
  WxYZ WxYz WxYz WxyZ WxyZ Wxyz Wxyz
  aBCD aBCD aBCd aBCd aBcD aBcD aBcd aBcd abCD
  abCD abCd abCd abcD abcD abcd abcd
  wXYZ wXYZ wXYz wXYz wXyZ wXyZ wXyz wXyz wxYZ
  wxYZ wxYz wxYz wxyZ wxyZ wxyz wxyz
}


finish_test
Changes to tool/fuzzershell.c.
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
static void StrAppend(Str *p, const char *z){
  sqlite3_uint64 n = strlen(z);
  if( p->n + n >= p->nAlloc ){
    char *zNew;
    sqlite3_uint64 nNew;
    if( p->oomErr ) return;
    nNew = p->nAlloc*2 + 100 + n;
    zNew = sqlite3_realloc(p->z, nNew);
    if( zNew==0 ){
      sqlite3_free(p->z);
      memset(p, 0, sizeof(*p));
      p->oomErr = 1;
      return;
    }
    p->z = zNew;
    p->nAlloc = nNew;
  }
  memcpy(p->z + p->n, z, n);
  p->n += n;
  p->z[p->n] = 0;
}

/* Return the current string content */
static char *StrStr(Str *p){
 return p->z;







|









|







246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
static void StrAppend(Str *p, const char *z){
  sqlite3_uint64 n = strlen(z);
  if( p->n + n >= p->nAlloc ){
    char *zNew;
    sqlite3_uint64 nNew;
    if( p->oomErr ) return;
    nNew = p->nAlloc*2 + 100 + n;
    zNew = sqlite3_realloc(p->z, (int)nNew);
    if( zNew==0 ){
      sqlite3_free(p->z);
      memset(p, 0, sizeof(*p));
      p->oomErr = 1;
      return;
    }
    p->z = zNew;
    p->nAlloc = nNew;
  }
  memcpy(p->z + p->n, z, (size_t)n);
  p->n += n;
  p->z[p->n] = 0;
}

/* Return the current string content */
static char *StrStr(Str *p){
 return p->z;
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

        /* If using an input database file and that database contains a table
        ** named "autoexec" with a column "sql", then replace the input SQL
        ** with the concatenated text of the autoexec table.  In this way,
        ** if the database file is the input being fuzzed, the SQL text is
        ** fuzzed at the same time. */
        if( sqlite3_table_column_metadata(db,0,"autoexec","sql",0,0,0,0,0)==0 ){
          sqlite3_stmt *pStmt;
          rc = sqlite3_prepare_v2(db, "SELECT sql FROM autoexec", -1, &pStmt, 0);
          if( rc==SQLITE_OK ){
            while( sqlite3_step(pStmt)==SQLITE_ROW ){
              StrAppend(&sql, (const char*)sqlite3_column_text(pStmt, 0));
              StrAppend(&sql, "\n");
            }
          }
          sqlite3_finalize(pStmt);
          zSql = StrStr(&sql);
        }

        g.bOomEnable = 1;
        if( verboseFlag ){
          zErrMsg = 0;
          rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg);







|
|

|
|



|







1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134

        /* If using an input database file and that database contains a table
        ** named "autoexec" with a column "sql", then replace the input SQL
        ** with the concatenated text of the autoexec table.  In this way,
        ** if the database file is the input being fuzzed, the SQL text is
        ** fuzzed at the same time. */
        if( sqlite3_table_column_metadata(db,0,"autoexec","sql",0,0,0,0,0)==0 ){
          sqlite3_stmt *pStmt2;
          rc = sqlite3_prepare_v2(db,"SELECT sql FROM autoexec",-1,&pStmt2,0);
          if( rc==SQLITE_OK ){
            while( sqlite3_step(pStmt2)==SQLITE_ROW ){
              StrAppend(&sql, (const char*)sqlite3_column_text(pStmt2, 0));
              StrAppend(&sql, "\n");
            }
          }
          sqlite3_finalize(pStmt2);
          zSql = StrStr(&sql);
        }

        g.bOomEnable = 1;
        if( verboseFlag ){
          zErrMsg = 0;
          rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg);
Changes to tool/lemon.c.
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
struct lemon;
struct action;

static struct action *Action_new(void);
static struct action *Action_sort(struct action *);

/********** From the file "build.h" ************************************/
void FindRulePrecedences();
void FindFirstSets();
void FindStates();
void FindLinks();
void FindFollowSets();
void FindActions();

/********* From the file "configlist.h" *********************************/
void Configlist_init(void);
struct config *Configlist_add(struct rule *, int);
struct config *Configlist_addbasis(struct rule *, int);
void Configlist_closure(struct lemon *);
void Configlist_sort(void);







|
|
|
|
|
|







164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
struct lemon;
struct action;

static struct action *Action_new(void);
static struct action *Action_sort(struct action *);

/********** From the file "build.h" ************************************/
void FindRulePrecedences(struct lemon*);
void FindFirstSets(struct lemon*);
void FindStates(struct lemon*);
void FindLinks(struct lemon*);
void FindFollowSets(struct lemon*);
void FindActions(struct lemon*);

/********* From the file "configlist.h" *********************************/
void Configlist_init(void);
struct config *Configlist_add(struct rule *, int);
struct config *Configlist_addbasis(struct rule *, int);
void Configlist_closure(struct lemon *);
void Configlist_sort(void);
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/* Routines to manage the state table */

int Configcmp(const char *, const char *);
struct state *State_new(void);
void State_init(void);
int State_insert(struct state *, struct config *);
struct state *State_find(struct config *);
struct state **State_arrayof(/*  */);

/* Routines used for efficiency in Configlist_add */

void Configtable_init(void);
int Configtable_insert(struct config *);
struct config *Configtable_find(struct config *);
void Configtable_clear(int(*)(struct config *));







|







453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/* Routines to manage the state table */

int Configcmp(const char *, const char *);
struct state *State_new(void);
void State_init(void);
int State_insert(struct state *, struct config *);
struct state *State_find(struct config *);
struct state **State_arrayof(void);

/* Routines used for efficiency in Configlist_add */

void Configtable_init(void);
int Configtable_insert(struct config *);
struct config *Configtable_find(struct config *);
void Configtable_clear(int(*)(struct config *));
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
** value is then added to this initial offset to get an index X into the
** yy_action array. If the aAction[X].lookahead equals the value of the
** of the lookahead input, then the value of the action_number output is
** aAction[X].action.  If the lookaheads do not match then the
** default action for the state_number is returned.
**
** All actions associated with a single state_number are first entered
** into aLookahead[] using multiple calls to acttab_action().  Then the 
** actions for that single state_number are placed into the aAction[] 
** array with a single call to acttab_insert().  The acttab_insert() call
** also resets the aLookahead[] array in preparation for the next
** state number.
*/
struct lookahead_action {
  int lookahead;             /* Value of the lookahead token */
  int action;                /* Action to take on the given lookahead */







|
|







557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
** value is then added to this initial offset to get an index X into the
** yy_action array. If the aAction[X].lookahead equals the value of the
** of the lookahead input, then the value of the action_number output is
** aAction[X].action.  If the lookaheads do not match then the
** default action for the state_number is returned.
**
** All actions associated with a single state_number are first entered
** into aLookahead[] using multiple calls to acttab_action().  Then the
** actions for that single state_number are placed into the aAction[]
** array with a single call to acttab_insert().  The acttab_insert() call
** also resets the aLookahead[] array in preparation for the next
** state number.
*/
struct lookahead_action {
  int lookahead;             /* Value of the lookahead token */
  int action;                /* Action to take on the given lookahead */
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    fprintf(stderr,"Unable to allocate memory for a new acttab.");
    exit(1);
  }
  memset(p, 0, sizeof(*p));
  return p;
}

/* Add a new action to the current transaction set.  
**
** This routine is called once for each lookahead for a particular
** state.
*/
void acttab_action(acttab *p, int lookahead, int action){
  if( p->nLookahead>=p->nLookaheadAlloc ){
    p->nLookaheadAlloc += 25;







|







608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
    fprintf(stderr,"Unable to allocate memory for a new acttab.");
    exit(1);
  }
  memset(p, 0, sizeof(*p));
  return p;
}

/* Add a new action to the current transaction set.
**
** This routine is called once for each lookahead for a particular
** state.
*/
void acttab_action(acttab *p, int lookahead, int action){
  if( p->nLookahead>=p->nLookaheadAlloc ){
    p->nLookaheadAlloc += 25;
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    }
    for(i=oldAlloc; i<p->nActionAlloc; i++){
      p->aAction[i].lookahead = -1;
      p->aAction[i].action = -1;
    }
  }

  /* Scan the existing action table looking for an offset that is a 
  ** duplicate of the current transaction set.  Fall out of the loop
  ** if and when the duplicate is found.
  **
  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  */
  for(i=p->nAction-1; i>=0; i--){
    if( p->aAction[i].lookahead==p->mnLookahead ){







|







670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
    }
    for(i=oldAlloc; i<p->nActionAlloc; i++){
      p->aAction[i].lookahead = -1;
      p->aAction[i].action = -1;
    }
  }

  /* Scan the existing action table looking for an offset that is a
  ** duplicate of the current transaction set.  Fall out of the loop
  ** if and when the duplicate is found.
  **
  ** i is the index in p->aAction[] where p->mnLookahead is inserted.
  */
  for(i=p->nAction-1; i>=0; i--){
    if( p->aAction[i].lookahead==p->mnLookahead ){
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/

/* Find a precedence symbol of every rule in the grammar.
** 
** Those rules which have a precedence symbol coded in the input
** grammar using the "[symbol]" construct will already have the
** rp->precsym field filled.  Other rules take as their precedence
** symbol the first RHS symbol with a defined precedence.  If there
** are not RHS symbols with a defined precedence, the precedence
** symbol field is left blank.
*/







|







748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
/********************** From the file "build.c" *****************************/
/*
** Routines to construction the finite state machine for the LEMON
** parser generator.
*/

/* Find a precedence symbol of every rule in the grammar.
**
** Those rules which have a precedence symbol coded in the input
** grammar using the "[symbol]" construct will already have the
** rp->precsym field filled.  Other rules take as their precedence
** symbol the first RHS symbol with a defined precedence.  If there
** are not RHS symbols with a defined precedence, the precedence
** symbol field is left blank.
*/
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
  int change;

  for(i=0; i<lemp->nstate; i++){
    for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
      cfp->status = INCOMPLETE;
    }
  }
  
  do{
    progress = 0;
    for(i=0; i<lemp->nstate; i++){
      for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
        if( cfp->status==COMPLETE ) continue;
        for(plp=cfp->fplp; plp; plp=plp->next){
          change = SetUnion(plp->cfp->fws,cfp->fws);







|







1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
  int change;

  for(i=0; i<lemp->nstate; i++){
    for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
      cfp->status = INCOMPLETE;
    }
  }

  do{
    progress = 0;
    for(i=0; i<lemp->nstate; i++){
      for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
        if( cfp->status==COMPLETE ) continue;
        for(plp=cfp->fplp; plp; plp=plp->next){
          change = SetUnion(plp->cfp->fws,cfp->fws);
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
{
  int i,j;
  struct config *cfp;
  struct state *stp;
  struct symbol *sp;
  struct rule *rp;

  /* Add all of the reduce actions 
  ** A reduce action is added for each element of the followset of
  ** a configuration which has its dot at the extreme right.
  */
  for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
    stp = lemp->sorted[i];
    for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
      if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */







|







1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
{
  int i,j;
  struct config *cfp;
  struct state *stp;
  struct symbol *sp;
  struct rule *rp;

  /* Add all of the reduce actions
  ** A reduce action is added for each element of the followset of
  ** a configuration which has its dot at the extreme right.
  */
  for(i=0; i<lemp->nstate; i++){   /* Loop over all states */
    stp = lemp->sorted[i];
    for(cfp=stp->cfp; cfp; cfp=cfp->next){  /* Loop over all configurations */
      if( cfp->rp->nrhs==cfp->dot ){        /* Is dot at extreme right? */
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
      errcnt++;
    }else if( spx->prec>spy->prec ){
      apy->type = RD_RESOLVED;
    }else if( spx->prec<spy->prec ){
      apx->type = RD_RESOLVED;
    }
  }else{
    assert( 
      apx->type==SH_RESOLVED ||
      apx->type==RD_RESOLVED ||
      apx->type==SSCONFLICT ||
      apx->type==SRCONFLICT ||
      apx->type==RRCONFLICT ||
      apy->type==SH_RESOLVED ||
      apy->type==RD_RESOLVED ||







|







1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
      errcnt++;
    }else if( spx->prec>spy->prec ){
      apy->type = RD_RESOLVED;
    }else if( spx->prec<spy->prec ){
      apx->type = RD_RESOLVED;
    }
  }else{
    assert(
      apx->type==SH_RESOLVED ||
      apx->type==RD_RESOLVED ||
      apx->type==SSCONFLICT ||
      apx->type==SRCONFLICT ||
      apx->type==RRCONFLICT ||
      apy->type==SH_RESOLVED ||
      apy->type==RD_RESOLVED ||
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
static struct config *freelist = 0;      /* List of free configurations */
static struct config *current = 0;       /* Top of list of configurations */
static struct config **currentend = 0;   /* Last on list of configs */
static struct config *basis = 0;         /* Top of list of basis configs */
static struct config **basisend = 0;     /* End of list of basis configs */

/* Return a pointer to a new configuration */
PRIVATE struct config *newconfig(){
  struct config *newcfg;
  if( freelist==0 ){
    int i;
    int amt = 3;
    freelist = (struct config *)calloc( amt, sizeof(struct config) );
    if( freelist==0 ){
      fprintf(stderr,"Unable to allocate memory for a new configuration.");







|







1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
static struct config *freelist = 0;      /* List of free configurations */
static struct config *current = 0;       /* Top of list of configurations */
static struct config **currentend = 0;   /* Last on list of configs */
static struct config *basis = 0;         /* Top of list of basis configs */
static struct config **basisend = 0;     /* End of list of basis configs */

/* Return a pointer to a new configuration */
PRIVATE struct config *newconfig(void){
  struct config *newcfg;
  if( freelist==0 ){
    int i;
    int amt = 3;
    freelist = (struct config *)calloc( amt, sizeof(struct config) );
    if( freelist==0 ){
      fprintf(stderr,"Unable to allocate memory for a new configuration.");
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
PRIVATE void deleteconfig(struct config *old)
{
  old->next = freelist;
  freelist = old;
}

/* Initialized the configuration list builder */
void Configlist_init(){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_init();
  return;
}

/* Initialized the configuration list builder */
void Configlist_reset(){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_clear(0);
  return;
}







|









|







1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
PRIVATE void deleteconfig(struct config *old)
{
  old->next = freelist;
  freelist = old;
}

/* Initialized the configuration list builder */
void Configlist_init(void){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_init();
  return;
}

/* Initialized the configuration list builder */
void Configlist_reset(void){
  current = 0;
  currentend = &current;
  basis = 0;
  basisend = &basis;
  Configtable_clear(0);
  return;
}
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
      }
    }
  }
  return;
}

/* Sort the configuration list */
void Configlist_sort(){
  current = (struct config*)msort((char*)current,(char**)&(current->next),
                                  Configcmp);
  currentend = 0;
  return;
}

/* Sort the basis configuration list */
void Configlist_sortbasis(){
  basis = (struct config*)msort((char*)current,(char**)&(current->bp),
                                Configcmp);
  basisend = 0;
  return;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_return(){
  struct config *old;
  old = current;
  current = 0;
  currentend = 0;
  return old;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_basis(){
  struct config *old;
  old = basis;
  basis = 0;
  basisend = 0;
  return old;
}








|







|








|









|







1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
      }
    }
  }
  return;
}

/* Sort the configuration list */
void Configlist_sort(void){
  current = (struct config*)msort((char*)current,(char**)&(current->next),
                                  Configcmp);
  currentend = 0;
  return;
}

/* Sort the basis configuration list */
void Configlist_sortbasis(void){
  basis = (struct config*)msort((char*)current,(char**)&(current->bp),
                                Configcmp);
  basisend = 0;
  return;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_return(void){
  struct config *old;
  old = current;
  current = 0;
  currentend = 0;
  return old;
}

/* Return a pointer to the head of the configuration list and
** reset the list */
struct config *Configlist_basis(void){
  struct config *old;
  old = basis;
  basis = 0;
  basisend = 0;
  return old;
}

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
/*
** Main program file for the LEMON parser generator.
*/

/* Report an out-of-memory condition and abort.  This function
** is used mostly by the "MemoryCheck" macro in struct.h
*/
void memory_error(){
  fprintf(stderr,"Out of memory.  Aborting...\n");
  exit(1);
}

static int nDefine = 0;      /* Number of -D options on the command line */
static char **azDefine = 0;  /* Name of the -D macros */








|







1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
/*
** Main program file for the LEMON parser generator.
*/

/* Report an out-of-memory condition and abort.  This function
** is used mostly by the "MemoryCheck" macro in struct.h
*/
void memory_error(void){
  fprintf(stderr,"Out of memory.  Aborting...\n");
  exit(1);
}

static int nDefine = 0;      /* Number of -D options on the command line */
static char **azDefine = 0;  /* Name of the -D macros */

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
  int exitcode;
  struct lemon lem;
  struct rule *rp;

  OptInit(argv,options,stderr);
  if( version ){
     printf("Lemon version 1.0\n");
     exit(0); 
  }
  if( OptNArgs()!=1 ){
    fprintf(stderr,"Exactly one filename argument is required.\n");
    exit(1);
  }
  memset(&lem, 0, sizeof(lem));
  lem.errorcnt = 0;







|







1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
  int exitcode;
  struct lemon lem;
  struct rule *rp;

  OptInit(argv,options,stderr);
  if( version ){
     printf("Lemon version 1.0\n");
     exit(0);
  }
  if( OptNArgs()!=1 ){
    fprintf(stderr,"Exactly one filename argument is required.\n");
    exit(1);
  }
  memset(&lem, 0, sizeof(lem));
  lem.errorcnt = 0;
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
    fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
    OptPrint();
    exit(1);
  }
  return 0;
}

int OptNArgs(){
  int cnt = 0;
  int dashdash = 0;
  int i;
  if( argv!=0 && argv[0]!=0 ){
    for(i=1; argv[i]; i++){
      if( dashdash || !ISOPT(argv[i]) ) cnt++;
      if( strcmp(argv[i],"--")==0 ) dashdash = 1;







|







2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
    fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
    OptPrint();
    exit(1);
  }
  return 0;
}

int OptNArgs(void){
  int cnt = 0;
  int dashdash = 0;
  int i;
  if( argv!=0 && argv[0]!=0 ){
    for(i=1; argv[i]; i++){
      if( dashdash || !ISOPT(argv[i]) ) cnt++;
      if( strcmp(argv[i],"--")==0 ) dashdash = 1;
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
void OptErr(int n)
{
  int i;
  i = argindex(n);
  if( i>=0 ) errline(i,0,errstream);
}

void OptPrint(){
  int i;
  int max, len;
  max = 0;
  for(i=0; op[i].label; i++){
    len = lemonStrlen(op[i].label) + 1;
    switch( op[i].type ){
      case OPT_FLAG:







|







2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
void OptErr(int n)
{
  int i;
  i = argindex(n);
  if( i>=0 ) errline(i,0,errstream);
}

void OptPrint(void){
  int i;
  int max, len;
  max = 0;
  for(i=0; op[i].label; i++){
    len = lemonStrlen(op[i].label) + 1;
    switch( op[i].type ){
      case OPT_FLAG:
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
        psp->errorcnt++;
        psp->state = RESYNC_AFTER_RULE_ERROR;
      }
      break;
    case IN_RHS:
      if( x[0]=='.' ){
        struct rule *rp;
        rp = (struct rule *)calloc( sizeof(struct rule) + 
             sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
        if( rp==0 ){
          ErrorMsg(psp->filename,psp->tokenlineno,
            "Can't allocate enough memory for this rule.");
          psp->errorcnt++;
          psp->prevrule = 0;
        }else{







|







2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
        psp->errorcnt++;
        psp->state = RESYNC_AFTER_RULE_ERROR;
      }
      break;
    case IN_RHS:
      if( x[0]=='.' ){
        struct rule *rp;
        rp = (struct rule *)calloc( sizeof(struct rule) +
             sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
        if( rp==0 ){
          ErrorMsg(psp->filename,psp->tokenlineno,
            "Can't allocate enough memory for this rule.");
          psp->errorcnt++;
          psp->prevrule = 0;
        }else{
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
/*
** Routines processing configuration follow-set propagation links
** in the LEMON parser generator.
*/
static struct plink *plink_freelist = 0;

/* Allocate a new plink */
struct plink *Plink_new(){
  struct plink *newlink;

  if( plink_freelist==0 ){
    int i;
    int amt = 100;
    plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
    if( plink_freelist==0 ){







|







2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
/*
** Routines processing configuration follow-set propagation links
** in the LEMON parser generator.
*/
static struct plink *plink_freelist = 0;

/* Allocate a new plink */
struct plink *Plink_new(void){
  struct plink *newlink;

  if( plink_freelist==0 ){
    int i;
    int amt = 100;
    plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
    if( plink_freelist==0 ){
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
    lemp->errorcnt++;
    return 0;
  }
  return fp;
}

/* Duplicate the input file without comments and without actions 
** on rules */
void Reprint(struct lemon *lemp)
{
  struct rule *rp;
  struct symbol *sp;
  int i, j, maxlen, len, ncolumns, skip;
  printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);







|







2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
    fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
    lemp->errorcnt++;
    return 0;
  }
  return fp;
}

/* Duplicate the input file without comments and without actions
** on rules */
void Reprint(struct lemon *lemp)
{
  struct rule *rp;
  struct symbol *sp;
  int i, j, maxlen, len, ncolumns, skip;
  printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
      break;
    case SRCONFLICT:
    case RRCONFLICT:
      fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.rp->iRule);
      break;
    case SSCONFLICT:
      fprintf(fp,"%*s shift        %-7d ** Parsing conflict **", 
        indent,ap->sp->name,ap->x.stp->statenum);
      break;
    case SH_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
                indent,ap->sp->name,ap->x.stp->statenum);
      }else{







|







3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
      break;
    case SRCONFLICT:
    case RRCONFLICT:
      fprintf(fp,"%*s reduce       %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.rp->iRule);
      break;
    case SSCONFLICT:
      fprintf(fp,"%*s shift        %-7d ** Parsing conflict **",
        indent,ap->sp->name,ap->x.stp->statenum);
      break;
    case SH_RESOLVED:
      if( showPrecedenceConflict ){
        fprintf(fp,"%*s shift        %-7d -- dropped by precedence",
                indent,ap->sp->name,ap->x.stp->statenum);
      }else{
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
    str++;
  }
  if( str[-1]!='\n' ){
    putc('\n',out);
    (*lineno)++;
  }
  if (!lemp->nolinenosflag) {
    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
  }
  return;
}

/*
** The following routine emits code for the destructor for the
** symbol sp







|







3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
    str++;
  }
  if( str[-1]!='\n' ){
    putc('\n',out);
    (*lineno)++;
  }
  if (!lemp->nolinenosflag) {
    (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
  }
  return;
}

/*
** The following routine emits code for the destructor for the
** symbol sp
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
     cp++;
     continue;
   }
   if( *cp=='\n' ) (*lineno)++;
   fputc(*cp,out);
 }
 fprintf(out,"\n"); (*lineno)++;
 if (!lemp->nolinenosflag) { 
   (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); 
 }
 fprintf(out,"}\n"); (*lineno)++;
 return;
}

/*
** Return TRUE (non-zero) if the given symbol has a destructor.







|
|







3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
     cp++;
     continue;
   }
   if( *cp=='\n' ) (*lineno)++;
   fputc(*cp,out);
 }
 fprintf(out,"\n"); (*lineno)++;
 if (!lemp->nolinenosflag) {
   (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
 }
 fprintf(out,"}\n"); (*lineno)++;
 return;
}

/*
** Return TRUE (non-zero) if the given symbol has a destructor.
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
      rp->noCode = 0;
    }
  }else if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so 
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
      ErrorMsg(lemp->filename,rp->ruleline,
        "%s(%s) and %s(%s) share the same label but have "
        "different datatypes.",
        rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
      lemp->errorcnt++;
    }    
  }else{
    lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
                  rp->lhsalias, rp->rhsalias[0]);
    zSkip = strstr(rp->code, zOvwrt);
    if( zSkip!=0 ){
      /* The code contains a special comment that indicates that it is safe
      ** for the LHS label to overwrite left-most RHS label. */







|










|







3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
      rp->codePrefix = Strsafe(append_str(0,0,0,0));
      rp->noCode = 0;
    }
  }else if( rp->lhsalias==0 ){
    /* There is no LHS value symbol. */
    lhsdirect = 1;
  }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
    /* The LHS symbol and the left-most RHS symbol are the same, so
    ** direct writing is allowed */
    lhsdirect = 1;
    lhsused = 1;
    used[0] = 1;
    if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
      ErrorMsg(lemp->filename,rp->ruleline,
        "%s(%s) and %s(%s) share the same label but have "
        "different datatypes.",
        rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
      lemp->errorcnt++;
    }
  }else{
    lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
                  rp->lhsalias, rp->rhsalias[0]);
    zSkip = strstr(rp->code, zOvwrt);
    if( zSkip!=0 ){
      /* The code contains a special comment that indicates that it is safe
      ** for the LHS label to overwrite left-most RHS label. */
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
    rp->codeSuffix = Strsafe(cp);
    rp->noCode = 0;
  }

  return rc;
}

/* 
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
  FILE *out,
  struct rule *rp,
  struct lemon *lemp,







|







3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
    rp->codeSuffix = Strsafe(cp);
    rp->noCode = 0;
  }

  return rc;
}

/*
** Generate code which executes when the rule "rp" is reduced.  Write
** the code to "out".  Make sure lineno stays up-to-date.
*/
PRIVATE void emit_code(
  FILE *out,
  struct rule *rp,
  struct lemon *lemp,
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
  /* Output the yy_shift_ofst[] table */
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++;
  fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n", 
       minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
       lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iTknOfst;







|







4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
  /* Output the yy_shift_ofst[] table */
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", lemp->nactiontab); lineno++;
  fprintf(out, "#define YY_SHIFT_COUNT    (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_SHIFT_MIN      (%d)\n", mnTknOfst); lineno++;
  fprintf(out, "#define YY_SHIFT_MAX      (%d)\n", mxTknOfst); lineno++;
  fprintf(out, "static const %s yy_shift_ofst[] = {\n",
       minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
       lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iTknOfst;
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n", 
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iNtOfst;
    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;







|







4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
  /* Output the yy_reduce_ofst[] table */
  fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
  n = lemp->nxstate;
  while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
  fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
  fprintf(out, "#define YY_REDUCE_MIN   (%d)\n", mnNtOfst); lineno++;
  fprintf(out, "#define YY_REDUCE_MAX   (%d)\n", mxNtOfst); lineno++;
  fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
          minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
  lemp->tablesize += n*sz;
  for(i=j=0; i<n; i++){
    int ofst;
    stp = lemp->sorted[i];
    ofst = stp->iNtOfst;
    if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
    fprintf(out," /* %3d */ \"", i);
    writeRuleText(out, rp);
    fprintf(out,"\",\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes every time a symbol is popped from
  ** the stack while processing errors or while destroying the parser. 
  ** (In other words, generate the %destructor actions)
  */
  if( lemp->tokendest ){
    int once = 1;
    for(i=0; i<lemp->nsymbol; i++){
      struct symbol *sp = lemp->symbols[i];
      if( sp==0 || sp->type!=TERMINAL ) continue;







|







4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
    fprintf(out," /* %3d */ \"", i);
    writeRuleText(out, rp);
    fprintf(out,"\",\n"); lineno++;
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes every time a symbol is popped from
  ** the stack while processing errors or while destroying the parser.
  ** (In other words, generate the %destructor actions)
  */
  if( lemp->tokendest ){
    int once = 1;
    for(i=0; i<lemp->nsymbol; i++){
      struct symbol *sp = lemp->symbols[i];
      if( sp==0 || sp->type!=TERMINAL ) continue;
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes whenever the parser stack overflows */
  tplt_print(out,lemp,lemp->overflow,&lineno);
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of rule information 
  **
  ** Note: This code depends on the fact that rules are number
  ** sequentually beginning with 0.
  */
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
  }







|







4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
  }
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate code which executes whenever the parser stack overflows */
  tplt_print(out,lemp,lemp->overflow,&lineno);
  tplt_xfer(lemp->name,in,out,&lineno);

  /* Generate the table of rule information
  **
  ** Note: This code depends on the fact that rules are number
  ** sequentually beginning with 0.
  */
  for(rp=lemp->rule; rp; rp=rp->next){
    fprintf(out,"  { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
  }
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
    }
  }
  out = file_open(lemp,".h","wb");
  if( out ){
    for(i=1; i<lemp->nterminal; i++){
      fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
    }
    fclose(out);  
  }
  return;
}

/* Reduce the size of the action tables, if possible, by making use
** of defaults.
**







|







4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
    }
  }
  out = file_open(lemp,".h","wb");
  if( out ){
    for(i=1; i<lemp->nterminal; i++){
      fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
    }
    fclose(out);
  }
  return;
}

/* Reduce the size of the action tables, if possible, by making use
** of defaults.
**
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
        if( rp2==rp ) n++;
      }
      if( n>nbest ){
        nbest = n;
        rbest = rp;
      }
    }
 
    /* Do not make a default if the number of rules to default
    ** is not at least 1 or if the wildcard token is a possible
    ** lookahead.
    */
    if( nbest<1 || usesWildcard ) continue;









|







4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
        if( rp2==rp ) n++;
      }
      if( n>nbest ){
        nbest = n;
        rbest = rp;
      }
    }

    /* Do not make a default if the number of rules to default
    ** is not at least 1 or if the wildcard token is a possible
    ** lookahead.
    */
    if( nbest<1 || usesWildcard ) continue;


4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
/* Set the set size */
void SetSize(int n)
{
  size = n+1;
}

/* Allocate a new set */
char *SetNew(){
  char *s;
  s = (char*)calloc( size, 1);
  if( s==0 ){
    extern void memory_error();
    memory_error();
  }
  return s;







|







4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
/* Set the set size */
void SetSize(int n)
{
  size = n+1;
}

/* Allocate a new set */
char *SetNew(void){
  char *s;
  s = (char*)calloc( size, 1);
  if( s==0 ){
    extern void memory_error();
    memory_error();
  }
  return s;
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
  struct s_x1node **from;  /* Previous link */
} x1node;

/* There is only one instance of the array, which is the following */
static struct s_x1 *x1a;

/* Allocate a new associative array */
void Strsafe_init(){
  if( x1a ) return;
  x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
  if( x1a ){
    x1a->size = 1024;
    x1a->count = 0;
    x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
    if( x1a->tbl==0 ){







|







4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
  struct s_x1node **from;  /* Previous link */
} x1node;

/* There is only one instance of the array, which is the following */
static struct s_x1 *x1a;

/* Allocate a new associative array */
void Strsafe_init(void){
  if( x1a ) return;
  x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
  if( x1a ){
    x1a->size = 1024;
    x1a->count = 0;
    x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
    if( x1a->tbl==0 ){
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
  struct s_x2node **from;  /* Previous link */
} x2node;

/* There is only one instance of the array, which is the following */
static struct s_x2 *x2a;

/* Allocate a new associative array */
void Symbol_init(){
  if( x2a ) return;
  x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
  if( x2a ){
    x2a->size = 128;
    x2a->count = 0;
    x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
    if( x2a->tbl==0 ){







|







4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
  struct s_x2node **from;  /* Previous link */
} x2node;

/* There is only one instance of the array, which is the following */
static struct s_x2 *x2a;

/* Allocate a new associative array */
void Symbol_init(void){
  if( x2a ) return;
  x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
  if( x2a ){
    x2a->size = 128;
    x2a->count = 0;
    x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
    if( x2a->tbl==0 ){
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
  struct s_x3node **from;  /* Previous link */
} x3node;

/* There is only one instance of the array, which is the following */
static struct s_x3 *x3a;

/* Allocate a new associative array */
void State_init(){
  if( x3a ) return;
  x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
  if( x3a ){
    x3a->size = 128;
    x3a->count = 0;
    x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
    if( x3a->tbl==0 ){







|







5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
  struct s_x3node **from;  /* Previous link */
} x3node;

/* There is only one instance of the array, which is the following */
static struct s_x3 *x3a;

/* Allocate a new associative array */
void State_init(void){
  if( x3a ) return;
  x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
  if( x3a ){
    x3a->size = 128;
    x3a->count = 0;
    x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
    if( x3a->tbl==0 ){
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
  }
  return np ? np->data : 0;
}

/* Return an array of pointers to all data in the table.
** The array is obtained from malloc.  Return NULL if memory allocation
** problems, or if the array is empty. */
struct state **State_arrayof()
{
  struct state **array;
  int i,arrSize;
  if( x3a==0 ) return 0;
  arrSize = x3a->count;
  array = (struct state **)calloc(arrSize, sizeof(struct state *));
  if( array ){







|







5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
  }
  return np ? np->data : 0;
}

/* Return an array of pointers to all data in the table.
** The array is obtained from malloc.  Return NULL if memory allocation
** problems, or if the array is empty. */
struct state **State_arrayof(void)
{
  struct state **array;
  int i,arrSize;
  if( x3a==0 ) return 0;
  arrSize = x3a->count;
  array = (struct state **)calloc(arrSize, sizeof(struct state *));
  if( array ){
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
  struct s_x4node **from;  /* Previous link */
} x4node;

/* There is only one instance of the array, which is the following */
static struct s_x4 *x4a;

/* Allocate a new associative array */
void Configtable_init(){
  if( x4a ) return;
  x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
  if( x4a ){
    x4a->size = 64;
    x4a->count = 0;
    x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
    if( x4a->tbl==0 ){







|







5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
  struct s_x4node **from;  /* Previous link */
} x4node;

/* There is only one instance of the array, which is the following */
static struct s_x4 *x4a;

/* Allocate a new associative array */
void Configtable_init(void){
  if( x4a ) return;
  x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
  if( x4a ){
    x4a->size = 64;
    x4a->count = 0;
    x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
    if( x4a->tbl==0 ){