Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add the ability to use an index even if the left-most columns of the index are unconstrainted, provided that the left-most columns have few distinct values. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | skip-scan |
Files: | files | file ages | folders |
SHA1: |
27dd5993d1ae5625eb94bf406421eb39 |
User & Date: | drh 2013-11-13 12:27:25.442 |
Context
2013-11-13
| ||
15:32 | Add test cases for skip-scan. Enhance "do_test" so that if the expected result is of the form "/*..*/" or "~/*..*/" it treats the expected result as a glob pattern rather than as a regular expression. Fix a bug in ANALYZE result loading associated with WITHOUT ROWID tables. (check-in: d3e6e9b2a7 user: drh tags: skip-scan) | |
12:27 | Add the ability to use an index even if the left-most columns of the index are unconstrainted, provided that the left-most columns have few distinct values. (check-in: 27dd5993d1 user: drh tags: skip-scan) | |
08:55 | Avoid an unnecessary OP_IfNull while doing an indexed search. (check-in: 5196000930 user: drh tags: trunk) | |
Changes
Changes to src/where.c.
︙ | ︙ | |||
2418 2419 2420 2421 2422 2423 2424 | } disableTerm(pLevel, pTerm); return iReg; } /* ** Generate code that will evaluate all == and IN constraints for an | | > > > > > | | | > | 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 | } disableTerm(pLevel, pTerm); return iReg; } /* ** Generate code that will evaluate all == and IN constraints for an ** index scan. ** ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 ** The index has as many as three equality constraints, but in this ** example, the third "c" value is an inequality. So only two ** constraints are coded. This routine will generate code to evaluate ** a==5 and b IN (1,2,3). The current values for a and b will be stored ** in consecutive registers and the index of the first register is returned. ** ** In the example above nEq==2. But this subroutine works for any value ** of nEq including 0. If nEq==0, this routine is nearly a no-op. ** The only thing it does is allocate the pLevel->iMem memory cell and ** compute the affinity string. ** ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that ** occurs after the nEq quality constraints. ** ** This routine allocates a range of nEq+nExtraReg memory cells and returns ** the index of the first memory cell in that range. The code that ** calls this routine will use that memory range to store keys for ** start and termination conditions of the loop. ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated |
︙ | ︙ | |||
2462 2463 2464 2465 2466 2467 2468 | static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ | | > > > > > > > > > > > > > > > > | | | 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 | static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ int bRev, /* Reverse the order of IN operators */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ u16 nEq; /* The number of == or IN constraints to code */ u16 nSkip; /* Number of left-most columns to skip */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ WhereTerm *pTerm; /* A single constraint term */ WhereLoop *pLoop; /* The WhereLoop object */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ pLoop = pLevel->pWLoop; assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); nEq = pLoop->u.btree.nEq; nSkip = pLoop->u.btree.nSkip; pIdx = pLoop->u.btree.pIndex; assert( pIdx!=0 ); /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLoop->u.btree.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); if( !zAff ){ pParse->db->mallocFailed = 1; } if( nSkip ){ int iIdxCur = pLevel->iIdxCur; sqlite3VdbeAddOp2(v, (bRev?OP_Last:OP_Rewind), iIdxCur, pLevel->addrNxt); pLevel->addrSkip = sqlite3VdbeCurrentAddr(v); pLevel->opSkip = bRev ? OP_SeekLt : OP_SeekGt; pLevel->p3Skip = regBase; pLevel->p4Skip = nSkip; for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); assert( pIdx->aiColumn[j]>=0 ); VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); } } /* Evaluate the equality constraints */ assert( zAff==0 || (int)strlen(zAff)>=nEq ); for(j=nSkip; j<nEq; j++){ int r1; pTerm = pLoop->aLTerm[j]; assert( pTerm!=0 ); /* The following testcase is true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); |
︙ | ︙ | |||
2571 2572 2573 2574 2575 2576 2577 | ** ** The returned pointer points to memory obtained from sqlite3DbMalloc(). ** It is the responsibility of the caller to free the buffer when it is ** no longer required. */ static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; | | > > | > > > > > > | 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 | ** ** The returned pointer points to memory obtained from sqlite3DbMalloc(). ** It is the responsibility of the caller to free the buffer when it is ** no longer required. */ static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){ Index *pIndex = pLoop->u.btree.pIndex; u16 nEq = pLoop->u.btree.nEq; u16 nSkip = pLoop->u.btree.nSkip; int i, j; Column *aCol = pTab->aCol; i16 *aiColumn = pIndex->aiColumn; StrAccum txt; if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ return 0; } sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); txt.db = db; sqlite3StrAccumAppend(&txt, " (", 2); for(i=0; i<nEq; i++){ char *z = (i==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[i]].zName; if( i>=nSkip ){ explainAppendTerm(&txt, i, z, "="); }else{ if( i ) sqlite3StrAccumAppend(&txt, " AND ", 5); sqlite3StrAccumAppend(&txt, "ANY(", 4); sqlite3StrAccumAppend(&txt, z, -1); sqlite3StrAccumAppend(&txt, ")", 1); } } j = i; if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ char *z = (j==pIndex->nKeyCol ) ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(&txt, i++, z, ">"); } |
︙ | ︙ | |||
2948 2949 2950 2951 2952 2953 2954 | OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; | | > | > | < | 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 | OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ u16 nSkip = pLoop->u.btree.nSkip; /* Number of left index terms to skip */ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ int regBase; /* Base register holding constraint values */ int r1; /* Temp register */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char *zEndAff; /* Affinity for end of range constraint */ pIdx = pLoop->u.btree.pIndex; iIdxCur = pLevel->iIdxCur; assert( nEq>=nSkip ); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 && (pWInfo->bOBSat!=0) && (pIdx->nKeyCol>nEq) ){ assert( nSkip==0 ); isMinQuery = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ |
︙ | ︙ | |||
3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 | */ if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ /* WHERETRACE 0x100 */ int i; Vdbe *v = pWInfo->pParse->pVdbe; sqlite3ExplainBegin(v); for(i=0; i<p->nLTerm; i++){ WhereTerm *pTerm = p->aLTerm[i]; sqlite3ExplainPrintf(v, " (%d) #%-2d ", i+1, (int)(pTerm-pWC->a)); sqlite3ExplainPush(v); whereExplainTerm(v, pTerm); sqlite3ExplainPop(v); sqlite3ExplainNL(v); } sqlite3ExplainFinish(v); | > | 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 | */ if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ /* WHERETRACE 0x100 */ int i; Vdbe *v = pWInfo->pParse->pVdbe; sqlite3ExplainBegin(v); for(i=0; i<p->nLTerm; i++){ WhereTerm *pTerm = p->aLTerm[i]; if( pTerm==0 ) continue; sqlite3ExplainPrintf(v, " (%d) #%-2d ", i+1, (int)(pTerm-pWC->a)); sqlite3ExplainPush(v); whereExplainTerm(v, pTerm); sqlite3ExplainPop(v); sqlite3ExplainNL(v); } sqlite3ExplainFinish(v); |
︙ | ︙ | |||
3844 3845 3846 3847 3848 3849 3850 | sqlite3 *db = pParse->db; /* Database connection malloc context */ WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ | | > | 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 | sqlite3 *db = pParse->db; /* Database connection malloc context */ WhereLoop *pNew; /* Template WhereLoop under construction */ WhereTerm *pTerm; /* A WhereTerm under consideration */ int opMask; /* Valid operators for constraints */ WhereScan scan; /* Iterator for WHERE terms */ Bitmask saved_prereq; /* Original value of pNew->prereq */ u16 saved_nLTerm; /* Original value of pNew->nLTerm */ u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ u16 saved_nSkip; /* Original value of pNew->u.btree.nSkip */ u32 saved_wsFlags; /* Original value of pNew->wsFlags */ LogEst saved_nOut; /* Original value of pNew->nOut */ int iCol; /* Index of the column in the table */ int rc = SQLITE_OK; /* Return code */ LogEst nRowEst; /* Estimated index selectivity */ LogEst rLogSize; /* Logarithm of table size */ WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ |
︙ | ︙ | |||
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 | }else{ iCol = -1; nRowEst = 0; } pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, opMask, pProbe); saved_nEq = pNew->u.btree.nEq; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; rLogSize = estLog(sqlite3LogEst(pProbe->aiRowEst[0])); for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ int nIn = 0; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 int nRecValid = pBuilder->nRecValid; #endif if( (pTerm->eOperator==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) | > > > > > > > > > > > > | 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 | }else{ iCol = -1; nRowEst = 0; } pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, opMask, pProbe); saved_nEq = pNew->u.btree.nEq; saved_nSkip = pNew->u.btree.nSkip; saved_nLTerm = pNew->nLTerm; saved_wsFlags = pNew->wsFlags; saved_prereq = pNew->prereq; saved_nOut = pNew->nOut; pNew->rSetup = 0; rLogSize = estLog(sqlite3LogEst(pProbe->aiRowEst[0])); if( pTerm==0 && saved_nEq==saved_nSkip && saved_nEq+1<pProbe->nKeyCol && pProbe->aiRowEst[saved_nEq+1]>50 ){ pNew->u.btree.nEq++; pNew->u.btree.nSkip++; pNew->aLTerm[pNew->nLTerm++] = 0; pNew->wsFlags |= WHERE_SKIP_SCAN; whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul); } for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ int nIn = 0; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 int nRecValid = pBuilder->nRecValid; #endif if( (pTerm->eOperator==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) |
︙ | ︙ | |||
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 | pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; pNew->wsFlags = saved_wsFlags; pNew->nOut = saved_nOut; pNew->nLTerm = saved_nLTerm; return rc; } /* | > | 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 | pNew->nOut = saved_nOut; #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 pBuilder->nRecValid = nRecValid; #endif } pNew->prereq = saved_prereq; pNew->u.btree.nEq = saved_nEq; pNew->u.btree.nSkip = saved_nSkip; pNew->wsFlags = saved_wsFlags; pNew->nOut = saved_nOut; pNew->nLTerm = saved_nLTerm; return rc; } /* |
︙ | ︙ | |||
4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 | /* Generate auto-index WhereLoops */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ if( pTerm->prereqRight & pNew->maskSelf ) continue; if( termCanDriveIndex(pTerm, pSrc, 0) ){ pNew->u.btree.nEq = 1; pNew->u.btree.pIndex = 0; pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; /* TUNING: One-time cost for computing the automatic index is ** approximately 7*N*log2(N) where N is the number of rows in ** the table being indexed. */ pNew->rSetup = rLogSize + rSize + 28; assert( 28==sqlite3LogEst(7) ); | > | 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 | /* Generate auto-index WhereLoops */ WhereTerm *pTerm; WhereTerm *pWCEnd = pWC->a + pWC->nTerm; for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ if( pTerm->prereqRight & pNew->maskSelf ) continue; if( termCanDriveIndex(pTerm, pSrc, 0) ){ pNew->u.btree.nEq = 1; pNew->u.btree.nSkip = 0; pNew->u.btree.pIndex = 0; pNew->nLTerm = 1; pNew->aLTerm[0] = pTerm; /* TUNING: One-time cost for computing the automatic index is ** approximately 7*N*log2(N) where N is the number of rows in ** the table being indexed. */ pNew->rSetup = rLogSize + rSize + 28; assert( 28==sqlite3LogEst(7) ); |
︙ | ︙ | |||
4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 | */ for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pNew->iTab, pWC, pProbe->pPartIdxWhere) ){ continue; /* Partial index inappropriate for this query */ } pNew->u.btree.nEq = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; pNew->rSetup = 0; pNew->prereq = mExtra; pNew->nOut = rSize; pNew->u.btree.pIndex = pProbe; b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); | > | 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 | */ for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ if( pProbe->pPartIdxWhere!=0 && !whereUsablePartialIndex(pNew->iTab, pWC, pProbe->pPartIdxWhere) ){ continue; /* Partial index inappropriate for this query */ } pNew->u.btree.nEq = 0; pNew->u.btree.nSkip = 0; pNew->nLTerm = 0; pNew->iSortIdx = 0; pNew->rSetup = 0; pNew->prereq = mExtra; pNew->nOut = rSize; pNew->u.btree.pIndex = pProbe; b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); |
︙ | ︙ | |||
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 | rev = revSet = 0; distinctColumns = 0; for(j=0; j<nColumn; j++){ u8 bOnce; /* True to run the ORDER BY search loop */ /* Skip over == and IS NULL terms */ if( j<pLoop->u.btree.nEq && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 ){ if( i & WO_ISNULL ){ testcase( isOrderDistinct ); isOrderDistinct = 0; } continue; | > | 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 | rev = revSet = 0; distinctColumns = 0; for(j=0; j<nColumn; j++){ u8 bOnce; /* True to run the ORDER BY search loop */ /* Skip over == and IS NULL terms */ if( j<pLoop->u.btree.nEq && pLoop->u.btree.nSkip==0 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 ){ if( i & WO_ISNULL ){ testcase( isOrderDistinct ); isOrderDistinct = 0; } continue; |
︙ | ︙ | |||
5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 | pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->zIndex ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); if( pTerm ){ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ | > | 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 | pTab = pItem->pTab; if( IsVirtual(pTab) ) return 0; if( pItem->zIndex ) return 0; iCur = pItem->iCursor; pWC = &pWInfo->sWC; pLoop = pBuilder->pNew; pLoop->wsFlags = 0; pLoop->u.btree.nSkip = 0; pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); if( pTerm ){ pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; pLoop->aLTerm[0] = pTerm; pLoop->nLTerm = 1; pLoop->u.btree.nEq = 1; /* TUNING: Cost of a rowid lookup is 10 */ |
︙ | ︙ | |||
5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 | sqlite3 *db = pParse->db; /* Generate loop termination code. */ VdbeNoopComment((v, "End WHERE-core")); sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); sqlite3VdbeChangeP5(v, pLevel->p5); } if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } sqlite3DbFree(db, pLevel->u.in.aInLoop); } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); | > | > > > > | > > | 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 | sqlite3 *db = pParse->db; /* Generate loop termination code. */ VdbeNoopComment((v, "End WHERE-core")); sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ int addr; pLevel = &pWInfo->a[i]; pLoop = pLevel->pWLoop; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); sqlite3VdbeChangeP5(v, pLevel->p5); } if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } sqlite3DbFree(db, pLevel->u.in.aInLoop); } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->addrSkip ){ addr = sqlite3VdbeAddOp4Int(v, pLevel->opSkip, pLevel->iIdxCur, 0, pLevel->p3Skip, pLevel->p4Skip); sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); sqlite3VdbeJumpHere(v, pLevel->addrSkip-1); sqlite3VdbeJumpHere(v, addr); } if( pLevel->iLeftJoin ){ addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); } if( pLoop->wsFlags & WHERE_INDEXED ){ |
︙ | ︙ |
Changes to src/whereInt.h.
︙ | ︙ | |||
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | */ struct WhereLevel { int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to ends the loop */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ | > > > > | 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | */ struct WhereLevel { int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrSkip; /* Jump here for next iteration of skip-scan */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ int addrBody; /* Beginning of the body of this loop */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ u8 opSkip; /* Opcode to terminate the skip-scan */ int p1, p2; /* Operands of the opcode used to ends the loop */ int p3Skip; /* P3 operand for the skip-scan terminator */ u16 p4Skip; /* P4 operand for the skip-scan terminator */ union { /* Information that depends on pWLoop->wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ |
︙ | ︙ | |||
451 452 453 454 455 456 457 | #define WHERE_IPK 0x00000100 /* x is the INTEGER PRIMARY KEY */ #define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */ #define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */ #define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */ #define WHERE_ONEROW 0x00001000 /* Selects no more than one row */ #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ | > | 455 456 457 458 459 460 461 462 | #define WHERE_IPK 0x00000100 /* x is the INTEGER PRIMARY KEY */ #define WHERE_INDEXED 0x00000200 /* WhereLoop.u.btree.pIndex is valid */ #define WHERE_VIRTUALTABLE 0x00000400 /* WhereLoop.u.vtab is valid */ #define WHERE_IN_ABLE 0x00000800 /* Able to support an IN operator */ #define WHERE_ONEROW 0x00001000 /* Selects no more than one row */ #define WHERE_MULTI_OR 0x00002000 /* OR using multiple indices */ #define WHERE_AUTO_INDEX 0x00004000 /* Uses an ephemeral index */ #define WHERE_SKIP_SCAN 0x00008000 /* Uses the skip-scan algorithm */ |