SQLite

Check-in [20a73ec0b2]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update comments in the R-Tree module in preparation for some big changes. Add an "rtree" performance test to speedtest1.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | rtree-enhancements
Files: files | file ages | folders
SHA1: 20a73ec0b2f56609a4504052e198e32803d30207
User & Date: drh 2014-04-11 16:14:54.092
Context
2014-04-11
17:41
Add the --verify option to speedtest1. Add verification test cases to the "rtree" testset and a case that uses a custom geometry callback. (check-in: 9d485c4207 user: drh tags: rtree-enhancements)
16:14
Update comments in the R-Tree module in preparation for some big changes. Add an "rtree" performance test to speedtest1. (check-in: 20a73ec0b2 user: drh tags: rtree-enhancements)
2014-04-03
16:35
Merge all recent changes from trunk, including the fix for the OP_SCopy-vs-OP_Copy problem. (check-in: 9515c8344a user: drh tags: sessions)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/rtree/rtree.c.
106
107
108
109
110
111
112

113
114
115
116
117
118
119
#include <string.h>
#include <assert.h>

#ifndef SQLITE_AMALGAMATION
#include "sqlite3rtree.h"
typedef sqlite3_int64 i64;
typedef unsigned char u8;

typedef unsigned int u32;
#endif

/*  The following macro is used to suppress compiler warnings.
*/
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(x) (void)(x)







>







106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#include <string.h>
#include <assert.h>

#ifndef SQLITE_AMALGAMATION
#include "sqlite3rtree.h"
typedef sqlite3_int64 i64;
typedef unsigned char u8;
typedef unsigned short u16;
typedef unsigned int u32;
#endif

/*  The following macro is used to suppress compiler warnings.
*/
#ifndef UNUSED_PARAMETER
# define UNUSED_PARAMETER(x) (void)(x)
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
#define RTREE_MAX_DIMENSIONS 5

/* Size of hash table Rtree.aHash. This hash table is not expected to
** ever contain very many entries, so a fixed number of buckets is 
** used.
*/
#define HASHSIZE 128

/* The xBestIndex method of this virtual table requires an estimate of
** the number of rows in the virtual table to calculate the costs of
** various strategies. If possible, this estimate is loaded from the
** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
** Otherwise, if no sqlite_stat1 entry is available, use 
** RTREE_DEFAULT_ROWEST.
*/
#define RTREE_DEFAULT_ROWEST 1048576
#define RTREE_MIN_ROWEST         100

/* 
** An rtree virtual-table object.
*/
struct Rtree {
  sqlite3_vtab base;
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  int nDim;                   /* Number of dimensions */

  int nBytesPerCell;          /* Bytes consumed per cell */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 
  RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
  int nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).







|















|


|
>
|



<







132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

164
165
166
167
168
169
170
/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
#define RTREE_MAX_DIMENSIONS 5

/* Size of hash table Rtree.aHash. This hash table is not expected to
** ever contain very many entries, so a fixed number of buckets is 
** used.
*/
#define HASHSIZE 97

/* The xBestIndex method of this virtual table requires an estimate of
** the number of rows in the virtual table to calculate the costs of
** various strategies. If possible, this estimate is loaded from the
** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum).
** Otherwise, if no sqlite_stat1 entry is available, use 
** RTREE_DEFAULT_ROWEST.
*/
#define RTREE_DEFAULT_ROWEST 1048576
#define RTREE_MIN_ROWEST         100

/* 
** An rtree virtual-table object.
*/
struct Rtree {
  sqlite3_vtab base;          /* Base class.  Must be first */
  sqlite3 *db;                /* Host database connection */
  int iNodeSize;              /* Size in bytes of each node in the node table */
  u8 nDim;                    /* Number of dimensions */
  u8 eCoordType;              /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */
  u8 nBytesPerCell;           /* Bytes consumed per cell */
  int iDepth;                 /* Current depth of the r-tree structure */
  char *zDb;                  /* Name of database containing r-tree table */
  char *zName;                /* Name of r-tree table */ 

  int nBusy;                  /* Current number of users of this structure */
  i64 nRowEst;                /* Estimated number of rows in this table */

  /* List of nodes removed during a CondenseTree operation. List is
  ** linked together via the pointer normally used for hash chains -
  ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree 
  ** headed by the node (leaf nodes have RtreeNode.iNode==0).
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  sqlite3_stmt *pDeleteRowid;

  /* Statements to read/write/delete a record from xxx_parent */
  sqlite3_stmt *pReadParent;
  sqlite3_stmt *pWriteParent;
  sqlite3_stmt *pDeleteParent;

  int eCoordType;
};

/* Possible values for eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1

/*
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
** only deal with integer coordinates.  No floating point operations
** will be done.







|


|







183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
  sqlite3_stmt *pDeleteRowid;

  /* Statements to read/write/delete a record from xxx_parent */
  sqlite3_stmt *pReadParent;
  sqlite3_stmt *pWriteParent;
  sqlite3_stmt *pDeleteParent;

  RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ 
};

/* Possible values for Rtree.eCoordType: */
#define RTREE_COORD_REAL32 0
#define RTREE_COORD_INT32  1

/*
** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will
** only deal with integer coordinates.  No floating point operations
** will be done.
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242




243
244
245
246
247
248
249
250
251
252
*/
#define RTREE_MAX_DEPTH 40

/* 
** An rtree cursor object.
*/
struct RtreeCursor {
  sqlite3_vtab_cursor base;
  RtreeNode *pNode;                 /* Node cursor is currently pointing at */
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};





union RtreeCoord {
  RtreeValue f;
  int i;
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a RtreeDValue (double or int64). This macro assumes that local
** variable pRtree points to the Rtree structure associated with the
** RtreeCoord.







|







>
>
>
>

|
|







229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
*/
#define RTREE_MAX_DEPTH 40

/* 
** An rtree cursor object.
*/
struct RtreeCursor {
  sqlite3_vtab_cursor base;         /* Base class.  Must be first */
  RtreeNode *pNode;                 /* Node cursor is currently pointing at */
  int iCell;                        /* Index of current cell in pNode */
  int iStrategy;                    /* Copy of idxNum search parameter */
  int nConstraint;                  /* Number of entries in aConstraint */
  RtreeConstraint *aConstraint;     /* Search constraints. */
};

/*
** A coordinate can be either a floating point number or a integer.  All
** coordinates within a single R-Tree are always of the same time.
*/
union RtreeCoord {
  RtreeValue f;      /* Floating point value */
  int i;             /* Integer value */
};

/*
** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
** formatted as a RtreeDValue (double or int64). This macro assumes that local
** variable pRtree points to the Rtree structure associated with the
** RtreeCoord.
280
281
282
283
284
285
286
287
288
289
290
291
292
293


294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
#define RTREE_GT    0x45
#define RTREE_MATCH 0x46

/* 
** An rtree structure node.
*/
struct RtreeNode {
  RtreeNode *pParent;               /* Parent node */
  i64 iNode;
  int nRef;
  int isDirty;
  u8 *zData;
  RtreeNode *pNext;                 /* Next node in this hash chain */
};


#define NCELL(pNode) readInt16(&(pNode)->zData[2])

/* 
** Structure to store a deserialized rtree record.
*/
struct RtreeCell {
  i64 iRowid;
  RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
};


/*
** Value for the first field of every RtreeMatchArg object. The MATCH
** operator tests that the first field of a blob operand matches this
** value to avoid operating on invalid blobs (which could cause a segfault).







|
|
|
|
|
|

>
>



|


|
|







285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#define RTREE_GT    0x45
#define RTREE_MATCH 0x46

/* 
** An rtree structure node.
*/
struct RtreeNode {
  RtreeNode *pParent;          /* Parent node */
  i64 iNode;                   /* The node number */
  int nRef;                    /* Number of references to this node */
  int isDirty;                 /* True if the node needs to be written to disk */
  u8 *zData;                   /* Content of the node, as should be on disk */
  RtreeNode *pNext;            /* Next node in this hash collision chain */
};

/* Return the number of cells in a node  */
#define NCELL(pNode) readInt16(&(pNode)->zData[2])

/* 
** A single cell from a node, deserialized
*/
struct RtreeCell {
  i64 iRowid;                                 /* Node or entry ID */
  RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];  /* Bounding box coordinates */
};


/*
** Value for the first field of every RtreeMatchArg object. The MATCH
** operator tests that the first field of a blob operand matches this
** value to avoid operating on invalid blobs (which could cause a segfault).
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
}

/*
** Given a node number iNode, return the corresponding key to use
** in the Rtree.aHash table.
*/
static int nodeHash(i64 iNode){
  return (
    (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ 
    (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
  ) % HASHSIZE;
}

/*
** Search the node hash table for node iNode. If found, return a pointer
** to it. Otherwise, return 0.
*/
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){







<
<
<
|







429
430
431
432
433
434
435



436
437
438
439
440
441
442
443
}

/*
** Given a node number iNode, return the corresponding key to use
** in the Rtree.aHash table.
*/
static int nodeHash(i64 iNode){



  return iNode % HASHSIZE;
}

/*
** Search the node hash table for node iNode. If found, return a pointer
** to it. Otherwise, return 0.
*/
static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
  }
  return pNode;
}

/*
** Obtain a reference to an r-tree node.
*/
static int
nodeAcquire(
  Rtree *pRtree,             /* R-tree structure */
  i64 iNode,                 /* Node number to load */
  RtreeNode *pParent,        /* Either the parent node or NULL */
  RtreeNode **ppNode         /* OUT: Acquired node */
){
  int rc;
  int rc2 = SQLITE_OK;







|
<







489
490
491
492
493
494
495
496

497
498
499
500
501
502
503
  }
  return pNode;
}

/*
** Obtain a reference to an r-tree node.
*/
static int nodeAcquire(

  Rtree *pRtree,             /* R-tree structure */
  i64 iNode,                 /* Node number to load */
  RtreeNode *pParent,        /* Either the parent node or NULL */
  RtreeNode **ppNode         /* OUT: Acquired node */
){
  int rc;
  int rc2 = SQLITE_OK;
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
  return rc;
}

/*
** Overwrite cell iCell of node pNode with the contents of pCell.
*/
static void nodeOverwriteCell(
  Rtree *pRtree, 
  RtreeNode *pNode,  
  RtreeCell *pCell, 
  int iCell
){
  int ii;
  u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  p += writeInt64(p, pCell->iRowid);
  for(ii=0; ii<(pRtree->nDim*2); ii++){
    p += writeCoord(p, &pCell->aCoord[ii]);
  }
  pNode->isDirty = 1;
}

/*
** Remove cell the cell with index iCell from node pNode.
*/
static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
  u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  u8 *pSrc = &pDst[pRtree->nBytesPerCell];
  int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
  memmove(pDst, pSrc, nByte);
  writeInt16(&pNode->zData[2], NCELL(pNode)-1);
  pNode->isDirty = 1;
}

/*
** Insert the contents of cell pCell into node pNode. If the insert
** is successful, return SQLITE_OK.
**
** If there is not enough free space in pNode, return SQLITE_FULL.
*/
static int
nodeInsertCell(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  RtreeCell *pCell 
){
  int nCell;                    /* Current number of cells in pNode */
  int nMaxCell;                 /* Maximum number of cells for pNode */

  nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
  nCell = NCELL(pNode);

  assert( nCell<=nMaxCell );
  if( nCell<nMaxCell ){
    nodeOverwriteCell(pRtree, pNode, pCell, nCell);
    writeInt16(&pNode->zData[2], nCell+1);
    pNode->isDirty = 1;
  }

  return (nCell==nMaxCell);
}

/*
** If the node is dirty, write it out to the database.
*/
static int
nodeWrite(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode->isDirty ){
    sqlite3_stmt *p = pRtree->pWriteNode;
    if( pNode->iNode ){
      sqlite3_bind_int64(p, 1, pNode->iNode);
    }else{
      sqlite3_bind_null(p, 1);







|
|
|
|











|
















|
<
|
|
|




















<
|







578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640

641
642
643
644
645
646
647
648
  return rc;
}

/*
** Overwrite cell iCell of node pNode with the contents of pCell.
*/
static void nodeOverwriteCell(
  Rtree *pRtree,             /* The overall R-Tree */
  RtreeNode *pNode,          /* The node into which the cell is to be written */
  RtreeCell *pCell,          /* The cell to write */
  int iCell                  /* Index into pNode into which pCell is written */
){
  int ii;
  u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  p += writeInt64(p, pCell->iRowid);
  for(ii=0; ii<(pRtree->nDim*2); ii++){
    p += writeCoord(p, &pCell->aCoord[ii]);
  }
  pNode->isDirty = 1;
}

/*
** Remove the cell with index iCell from node pNode.
*/
static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
  u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
  u8 *pSrc = &pDst[pRtree->nBytesPerCell];
  int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
  memmove(pDst, pSrc, nByte);
  writeInt16(&pNode->zData[2], NCELL(pNode)-1);
  pNode->isDirty = 1;
}

/*
** Insert the contents of cell pCell into node pNode. If the insert
** is successful, return SQLITE_OK.
**
** If there is not enough free space in pNode, return SQLITE_FULL.
*/
static int nodeInsertCell(

  Rtree *pRtree,                /* The overall R-Tree */
  RtreeNode *pNode,             /* Write new cell into this node */
  RtreeCell *pCell              /* The cell to be inserted */
){
  int nCell;                    /* Current number of cells in pNode */
  int nMaxCell;                 /* Maximum number of cells for pNode */

  nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
  nCell = NCELL(pNode);

  assert( nCell<=nMaxCell );
  if( nCell<nMaxCell ){
    nodeOverwriteCell(pRtree, pNode, pCell, nCell);
    writeInt16(&pNode->zData[2], nCell+1);
    pNode->isDirty = 1;
  }

  return (nCell==nMaxCell);
}

/*
** If the node is dirty, write it out to the database.
*/

static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode->isDirty ){
    sqlite3_stmt *p = pRtree->pWriteNode;
    if( pNode->iNode ){
      sqlite3_bind_int64(p, 1, pNode->iNode);
    }else{
      sqlite3_bind_null(p, 1);
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
  return rc;
}

/*
** Release a reference to a node. If the node is dirty and the reference
** count drops to zero, the node data is written to the database.
*/
static int
nodeRelease(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode ){
    assert( pNode->nRef>0 );
    pNode->nRef--;
    if( pNode->nRef==0 ){
      if( pNode->iNode==1 ){
        pRtree->iDepth = -1;







<
|







659
660
661
662
663
664
665

666
667
668
669
670
671
672
673
  return rc;
}

/*
** Release a reference to a node. If the node is dirty and the reference
** count drops to zero, the node data is written to the database.
*/

static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){
  int rc = SQLITE_OK;
  if( pNode ){
    assert( pNode->nRef>0 );
    pNode->nRef--;
    if( pNode->nRef==0 ){
      if( pNode->iNode==1 ){
        pRtree->iDepth = -1;
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

/*
** Return the 64-bit integer value associated with cell iCell of
** node pNode. If pNode is a leaf node, this is a rowid. If it is
** an internal node, then the 64-bit integer is a child page number.
*/
static i64 nodeGetRowid(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  int iCell
){
  assert( iCell<NCELL(pNode) );
  return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
}

/*
** Return coordinate iCoord from cell iCell in node pNode.
*/
static void nodeGetCoord(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  int iCell,
  int iCoord,
  RtreeCoord *pCoord           /* Space to write result to */
){
  readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
}

/*
** Deserialize cell iCell of node pNode. Populate the structure pointed
** to by pCell with the results.
*/
static void nodeGetCell(
  Rtree *pRtree, 
  RtreeNode *pNode, 
  int iCell,
  RtreeCell *pCell
){
  int ii;
  pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
  for(ii=0; ii<pRtree->nDim*2; ii++){
    nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
  }
}







|
|
|









|
|
|
|
|









|
|
|
|







687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

/*
** Return the 64-bit integer value associated with cell iCell of
** node pNode. If pNode is a leaf node, this is a rowid. If it is
** an internal node, then the 64-bit integer is a child page number.
*/
static i64 nodeGetRowid(
  Rtree *pRtree,       /* The overall R-Tree */
  RtreeNode *pNode,    /* The node from which to extract the ID */
  int iCell            /* The cell index from which to extract the ID */
){
  assert( iCell<NCELL(pNode) );
  return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
}

/*
** Return coordinate iCoord from cell iCell in node pNode.
*/
static void nodeGetCoord(
  Rtree *pRtree,               /* The overall R-Tree */
  RtreeNode *pNode,            /* The node from which to extract a coordinate */
  int iCell,                   /* The index of the cell within the node */
  int iCoord,                  /* Which coordinate to extract */
  RtreeCoord *pCoord           /* OUT: Space to write result to */
){
  readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
}

/*
** Deserialize cell iCell of node pNode. Populate the structure pointed
** to by pCell with the results.
*/
static void nodeGetCell(
  Rtree *pRtree,               /* The overall R-Tree */
  RtreeNode *pNode,            /* The node containing the cell to be read */
  int iCell,                   /* Index of the cell within the node */
  RtreeCell *pCell             /* OUT: Write the cell contents here */
){
  int ii;
  pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
  for(ii=0; ii<pRtree->nDim*2; ii++){
    nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
  }
}
Changes to test/speedtest1.c.
926
927
928
929
930
931
932




























































































933
934
935
936
937
938
939
    ");",
    nElem, nElem
  );
  speedtest1_run();
  speedtest1_end_test();

}





























































































/*
** A testset used for debugging speedtest1 itself.
*/
void testset_debug1(void){
  unsigned i, n;
  unsigned x1, x2;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
    ");",
    nElem, nElem
  );
  speedtest1_run();
  speedtest1_end_test();

}

/* Generate two numbers between 1 and mx.  The first number is less than
** the second.  Usually the numbers are near each other but can sometimes
** be far apart.
*/
static void twoCoords(
  unsigned mx,                      /* Range of 1..mx */
  unsigned *pX0, unsigned *pX1      /* OUT: write results here */
){
  unsigned d, x0, x1, span;

  span = mx/100 + 1;
  if( speedtest1_random()%3==0 ) span *= 3;
  if( speedtest1_random()%17==0 ) span = mx - 5;
  d = speedtest1_random()%span + 1;
  x0 = speedtest1_random()%(mx-d) + 1;
  x1 = x0 + d;
  *pX0 = x0;
  *pX1 = x1;
}

/*
** A testset for the R-Tree virtual table
*/
void testset_rtree(void){
  unsigned i, n;
  unsigned mxCoord;
  unsigned x0, x1, y0, y1, z0, z1;

  mxCoord = g.szTest*600;
  n = g.szTest*100;
  speedtest1_begin_test(100, "%d INSERTs into an r-tree", n);
  speedtest1_exec("BEGIN");
  speedtest1_exec("CREATE VIRTUAL TABLE rt1 USING rtree(id,x0,x1,y0,y1,z0,z1)");
  speedtest1_prepare("INSERT INTO rt1(id,x0,x1,y0,y1,z0,z1)"
                     "VALUES(?1,?2,?3,?4,?5,?6,?7)");
  for(i=1; i<=n; i++){
    twoCoords(mxCoord, &x0, &x1);
    twoCoords(mxCoord, &y0, &y1);
    twoCoords(mxCoord, &z0, &z1);
    sqlite3_bind_int(g.pStmt, 1, i);
    sqlite3_bind_int(g.pStmt, 2, x0);
    sqlite3_bind_int(g.pStmt, 3, x1);
    sqlite3_bind_int(g.pStmt, 4, y0);
    sqlite3_bind_int(g.pStmt, 5, y1);
    sqlite3_bind_int(g.pStmt, 6, z0);
    sqlite3_bind_int(g.pStmt, 7, z1);
    speedtest1_run();
  }
  speedtest1_exec("COMMIT");
  speedtest1_end_test();

  n = g.szTest*20;
  speedtest1_begin_test(110, "%d one-dimensional intersect slice queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE x0>=?1 AND x1<=?2");
  for(i=0; i<mxCoord; i+=(mxCoord/n)){
    sqlite3_bind_int(g.pStmt, 1, i);
    sqlite3_bind_int(g.pStmt, 2, i+mxCoord/n);
    speedtest1_run();
  }
  speedtest1_end_test();

  n = g.szTest*20;
  speedtest1_begin_test(120, "%d one-dimensional overlap slice queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE y1>=?1 AND y0<=?2");
  for(i=0; i<mxCoord; i+=(mxCoord/n)){
    sqlite3_bind_int(g.pStmt, 1, i);
    sqlite3_bind_int(g.pStmt, 2, i+mxCoord/n);
    speedtest1_run();
  }
  speedtest1_end_test();

  n = g.szTest*80;
  speedtest1_begin_test(130, "%d three-dimensional intersect box queries", n);
  speedtest1_prepare("SELECT count(*) FROM rt1 WHERE x1>=?1 AND x0<=?2"
                     " AND y1>=?1 AND y0<=?2 AND z1>=?1 AND z0<=?2");
  for(i=0; i<mxCoord; i+=(mxCoord/n)){
    sqlite3_bind_int(g.pStmt, 1, i);
    sqlite3_bind_int(g.pStmt, 2, i+mxCoord/n);
    speedtest1_run();
  }
  speedtest1_end_test();

  n = g.szTest*100;
  speedtest1_begin_test(140, "%d rowid queries", n);
  speedtest1_prepare("SELECT * FROM rt1 WHERE id=?1");
  for(i=1; i<=n; i++){
    sqlite3_bind_int(g.pStmt, 1, i);
    speedtest1_run();
  }
  speedtest1_end_test();
}

/*
** A testset used for debugging speedtest1 itself.
*/
void testset_debug1(void){
  unsigned i, n;
  unsigned x1, x2;
1137
1138
1139
1140
1141
1142
1143


1144
1145

1146
1147
1148
1149
1150
1151
1152
  if( g.bExplain ) printf(".explain\n.echo on\n");
  if( strcmp(zTSet,"main")==0 ){
    testset_main();
  }else if( strcmp(zTSet,"debug1")==0 ){
    testset_debug1();
  }else if( strcmp(zTSet,"cte")==0 ){
    testset_cte();


  }else{
    fatal_error("unknown testset: \"%s\"\n", zTSet);

  }
  speedtest1_final();

  /* Database connection statistics printed after both prepared statements
  ** have been finalized */
#if SQLITE_VERSION_NUMBER>=3007009
  if( showStats ){







>
>

|
>







1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
  if( g.bExplain ) printf(".explain\n.echo on\n");
  if( strcmp(zTSet,"main")==0 ){
    testset_main();
  }else if( strcmp(zTSet,"debug1")==0 ){
    testset_debug1();
  }else if( strcmp(zTSet,"cte")==0 ){
    testset_cte();
  }else if( strcmp(zTSet,"rtree")==0 ){
    testset_rtree();
  }else{
    fatal_error("unknown testset: \"%s\"\nChoices: main debug1 cte rtree\n",
                 zTSet);
  }
  speedtest1_final();

  /* Database connection statistics printed after both prepared statements
  ** have been finalized */
#if SQLITE_VERSION_NUMBER>=3007009
  if( showStats ){