SQLite

Check-in [1dad2c0a1f]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Enhancements and smoke testing of the new memory allocation subsystem. Have not yet cut it over to the core, though. (CVS 4230)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 1dad2c0a1f00596b13b02ccef664bd2346a677a4
User & Date: drh 2007-08-15 20:41:29.000
Context
2007-08-16
04:30
Half-way through a major refactoring of the memory allocation. I have not even attempted to compile so I am certain there are countless errors. (CVS 4231) (check-in: deb7ecd65f user: drh tags: trunk)
2007-08-15
20:41
Enhancements and smoke testing of the new memory allocation subsystem. Have not yet cut it over to the core, though. (CVS 4230) (check-in: 1dad2c0a1f user: drh tags: trunk)
19:16
Test infrastructure for the new memory subsystem. (CVS 4229) (check-in: 9e50665672 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/mem1.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.  
**
** $Id: mem1.c,v 1.2 2007/08/15 17:07:57 drh Exp $
*/

/*
** This version of the memory allocator is the default.  It is
** used when no other memory allocator is specified using compile-time
** macros.
*/







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.  
**
** $Id: mem1.c,v 1.3 2007/08/15 20:41:29 drh Exp $
*/

/*
** This version of the memory allocator is the default.  It is
** used when no other memory allocator is specified using compile-time
** macros.
*/
33
34
35
36
37
38
39


















40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61


62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
** This initial version is suitable for use in normal multi-threaded
** builds.  We envision that alternative versions will be stored in
** separate source files.  #ifdefs will be used to select the code from
** one of the various memN.c source files for use in any given build.
*/
#include "sqliteInt.h"




















/*
** Mutex to control access to the memory allocation subsystem.
*/
static sqlite3_mutex *memMutex = 0;

/*
** Current allocation and high-water mark.
*/
static sqlite3_uint64 nowUsed = 0;
static sqlite3_uint64 mxUsed = 0;

/*
** The alarm callback and its arguments.  The memMutex lock will
** be held while the callback is running.  Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued.  The alarmBusy variable is set to prevent recursive
** callbacks.
*/
static void (*alarmCallback)(void*, sqlite3_uint64, unsigned) = 0;
static void *alarmArg = 0;
static sqlite3_uint64 alarmThreshold = (((sqlite3_uint64)1)<<63);


static int alarmBusy = 0;


/*
** Return the amount of memory currently checked out.
*/
sqlite3_uint64 sqlite3_memory_used(void){
  sqlite3_uint64 n;
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  n = nowUsed;
  sqlite3_mutex_leave(memMutex);  
  return n;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_uint64 n;
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  n = mxUsed;
  if( resetFlag ){
    mxUsed = nowUsed;
  }
  sqlite3_mutex_leave(memMutex);  
  return n;
}

/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N),
  void *pArg,
  sqlite3_uint64 iThreshold
){
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  alarmCallback = xCallback;
  alarmArg = pArg;
  alarmThreshold = iThreshold;
  sqlite3_mutex_leave(memMutex);
  return SQLITE_OK;
}

/*
** Trigger the alarm 
*/
static void sqlite3MemsysAlarm(unsigned nByte){
  if( alarmCallback==0 || alarmBusy  ) return;
  alarmBusy = 1;
  alarmCallback(alarmArg, nowUsed, nByte);
  alarmBusy = 0;
}

/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(unsigned int nBytes){
  sqlite3_uint64 *p;
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  if( nowUsed+nBytes>=alarmThreshold ){
    sqlite3MemsysAlarm(nBytes);
  }
  p = malloc(nBytes+8);
  if( p==0 ){
    sqlite3MemsysAlarm(nBytes);
    p = malloc(nBytes+8);
  }
  if( p ){
    p[0] = nBytes;
    p++;
    nowUsed += nBytes;
    if( nowUsed>mxUsed ){
      mxUsed = nowUsed;
    }
  }
  sqlite3_mutex_leave(memMutex);
  return (void*)p; 
}

/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
  sqlite3_uint64 *p;
  unsigned nByte;
  if( pPrior==0 ){
    return;
  }
  assert( memMutex!=0 );
  p = pPrior;
  p--;
  nByte = (unsigned int)*p;
  sqlite3_mutex_enter(memMutex, 1);
  nowUsed -= nByte;
  free(p);
  sqlite3_mutex_leave(memMutex);  
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, unsigned int nBytes){
  unsigned nOld;
  sqlite3_uint64 *p;
  if( pPrior==0 ){
    return sqlite3_malloc(nBytes);
  }
  if( nBytes==0 ){
    sqlite3_free(pPrior);
    return;
  }
  p = pPrior;
  p--;
  nOld = (unsigned int)p[0];
  assert( memMutex!=0 );
  sqlite3_mutex_enter(memMutex, 1);
  if( nowUsed+nBytes-nOld>=alarmThreshold ){
    sqlite3MemsysAlarm(nBytes-nOld);
  }
  p = realloc(p, nBytes+8);
  if( p==0 ){
    sqlite3MemsysAlarm(nBytes);
    p = realloc(p, nBytes+8);
  }
  if( p ){
    p[0] = nBytes;
    p++;
    nowUsed += nBytes-nOld;
    if( nowUsed>mxUsed ){
      mxUsed = nowUsed;
    }
  }
  sqlite3_mutex_leave(memMutex);
  return (void*)p;
}

#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
<
|
<
<
<
<
|
>
>
|







|
|

|
|
|










|
|

|
|

|

|











|
|

|
|
|
|
|







|
|
|
|







|
|

|
|










|
|
|


|












|



|
|

|


















|
|
|










|
|
|


|




33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70



71




72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
** This initial version is suitable for use in normal multi-threaded
** builds.  We envision that alternative versions will be stored in
** separate source files.  #ifdefs will be used to select the code from
** one of the various memN.c source files for use in any given build.
*/
#include "sqliteInt.h"

/*
** All of the static variables used by this module are collected
** into a single structure named "mem".  This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
  /*
  ** The alarm callback and its arguments.  The mem.mutex lock will
  ** be held while the callback is running.  Recursive calls into
  ** the memory subsystem are allowed, but no new callbacks will be
  ** issued.  The alarmBusy variable is set to prevent recursive
  ** callbacks.
  */
  sqlite3_uint64 alarmThreshold;
  void (*alarmCallback)(void*, sqlite3_uint64, unsigned);
  void *alarmArg;
  int alarmBusy;
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;
  
  /*
  ** Current allocation and high-water mark.
  */
  sqlite3_uint64 nowUsed;
  sqlite3_uint64 mxUsed;
  
 



} mem = {  /* This variable holds all of the local data */




   ((sqlite3_uint64)1)<<63,    /* alarmThreshold */
   /* Everything else is initialized to zero */
};



/*
** Return the amount of memory currently checked out.
*/
sqlite3_uint64 sqlite3_memory_used(void){
  sqlite3_uint64 n;
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  n = mem.nowUsed;
  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_uint64 n;
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  n = mem.mxUsed;
  if( resetFlag ){
    mem.mxUsed = mem.nowUsed;
  }
  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N),
  void *pArg,
  sqlite3_uint64 iThreshold
){
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  mem.alarmCallback = xCallback;
  mem.alarmArg = pArg;
  mem.alarmThreshold = iThreshold;
  sqlite3_mutex_leave(mem.mutex);
  return SQLITE_OK;
}

/*
** Trigger the alarm 
*/
static void sqlite3MemsysAlarm(unsigned nByte){
  if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
  mem.alarmBusy = 1;
  mem.alarmCallback(mem.alarmArg, mem.nowUsed, nByte);
  mem.alarmBusy = 0;
}

/*
** Allocate nBytes of memory
*/
void *sqlite3_malloc(unsigned int nBytes){
  sqlite3_uint64 *p;
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  if( mem.nowUsed+nBytes>=mem.alarmThreshold ){
    sqlite3MemsysAlarm(nBytes);
  }
  p = malloc(nBytes+8);
  if( p==0 ){
    sqlite3MemsysAlarm(nBytes);
    p = malloc(nBytes+8);
  }
  if( p ){
    p[0] = nBytes;
    p++;
    mem.nowUsed += nBytes;
    if( mem.nowUsed>mem.mxUsed ){
      mem.mxUsed = mem.nowUsed;
    }
  }
  sqlite3_mutex_leave(mem.mutex);
  return (void*)p; 
}

/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
  sqlite3_uint64 *p;
  unsigned nByte;
  if( pPrior==0 ){
    return;
  }
  assert( mem.mutex!=0 );
  p = pPrior;
  p--;
  nByte = (unsigned int)*p;
  sqlite3_mutex_enter(mem.mutex, 1);
  mem.nowUsed -= nByte;
  free(p);
  sqlite3_mutex_leave(mem.mutex);  
}

/*
** Change the size of an existing memory allocation
*/
void *sqlite3_realloc(void *pPrior, unsigned int nBytes){
  unsigned nOld;
  sqlite3_uint64 *p;
  if( pPrior==0 ){
    return sqlite3_malloc(nBytes);
  }
  if( nBytes==0 ){
    sqlite3_free(pPrior);
    return;
  }
  p = pPrior;
  p--;
  nOld = (unsigned int)p[0];
  assert( mem.mutex!=0 );
  sqlite3_mutex_enter(mem.mutex, 1);
  if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){
    sqlite3MemsysAlarm(nBytes-nOld);
  }
  p = realloc(p, nBytes+8);
  if( p==0 ){
    sqlite3MemsysAlarm(nBytes);
    p = realloc(p, nBytes+8);
  }
  if( p ){
    p[0] = nBytes;
    p++;
    mem.nowUsed += nBytes-nOld;
    if( mem.nowUsed>mem.mxUsed ){
      mem.mxUsed = mem.nowUsed;
    }
  }
  sqlite3_mutex_leave(mem.mutex);
  return (void*)p;
}

#endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
Changes to src/mem2.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.  
**
** $Id: mem2.c,v 1.2 2007/08/15 19:16:43 drh Exp $
*/

/*
** This version of the memory allocator is used only if the
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
** is not defined.
*/







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement a memory
** allocation subsystem for use by SQLite.  
**
** $Id: mem2.c,v 1.3 2007/08/15 20:41:29 drh Exp $
*/

/*
** This version of the memory allocator is used only if the
** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION
** is not defined.
*/
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
  extern int backtrace(void**,int);
  extern void backtrace_symbols_fd(void*const*,int,int);
#else
# define backtrace(A,B) 0
# define backtrace_symbols_fd(A,B,C)
#endif


/*
** Mutex to control access to the memory allocation subsystem.
*/
static sqlite3_mutex *memMutex = 0;

/*
** Current allocation and high-water mark.
*/
static sqlite3_uint64 nowUsed = 0;
static sqlite3_uint64 mxUsed = 0;

/*
** The alarm callback and its arguments.  The memMutex lock will
** be held while the callback is running.  Recursive calls into
** the memory subsystem are allowed, but no new callbacks will be
** issued.  The alarmBusy variable is set to prevent recursive
** callbacks.
*/
static void (*alarmCallback)(void*, sqlite3_uint64, unsigned) = 0;
static void *alarmArg = 0;
static sqlite3_uint64 alarmThreshold = (((sqlite3_uint64)1)<<63);
static int alarmBusy = 0;


/*
** Return the amount of memory currently checked out.
*/
sqlite3_uint64 sqlite3_memory_used(void){
  sqlite3_uint64 n;
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  n = nowUsed;
  sqlite3_mutex_leave(memMutex);  
  return n;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_uint64 n;
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  n = mxUsed;
  if( resetFlag ){
    mxUsed = nowUsed;
  }
  sqlite3_mutex_leave(memMutex);  
  return n;
}

/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N),
  void *pArg,
  sqlite3_uint64 iThreshold
){
  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  alarmCallback = xCallback;
  alarmArg = pArg;
  alarmThreshold = iThreshold;
  sqlite3_mutex_leave(memMutex);
  return SQLITE_OK;
}

/*
** Trigger the alarm 
*/
static void sqlite3MemsysAlarm(unsigned nByte){
  if( alarmCallback==0 || alarmBusy  ) return;
  alarmBusy = 1;
  alarmCallback(alarmArg, nowUsed, nByte);
  alarmBusy = 0;
}

/*
** Each memory allocation looks like this:
**
**    ----------------------------------------------------------------
**    |  backtrace pointers |  MemBlockHdr |  allocation |  EndGuard |
**    ----------------------------------------------------------------
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







52
53
54
55
56
57
58























































































59
60
61
62
63
64
65
  extern int backtrace(void**,int);
  extern void backtrace_symbols_fd(void*const*,int,int);
#else
# define backtrace(A,B) 0
# define backtrace_symbols_fd(A,B,C)
#endif
























































































/*
** Each memory allocation looks like this:
**
**    ----------------------------------------------------------------
**    |  backtrace pointers |  MemBlockHdr |  allocation |  EndGuard |
**    ----------------------------------------------------------------
**
167
168
169
170
171
172
173






























174
175
176
177
178
179
180
181
182















































































183
184
185
186
187
188
189
/*
** Guard words
*/
#define FOREGUARD 0x80F5E153
#define REARGUARD 0xE4676B53

/*






























** Head and tail of a linked list of all outstanding allocations
*/
static struct MemBlockHdr *pFirst = 0;
static struct MemBlockHdr *pLast = 0;

/*
** The number of levels of backtrace to save in new allocations.
*/
static int backtraceLevels = 0;
















































































/*
** Given an allocation, find the MemBlockHdr for that allocation.
**
** This routine checks the guards at either end of the allocation and
** if they are incorrect it asserts.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
/*
** Guard words
*/
#define FOREGUARD 0x80F5E153
#define REARGUARD 0xE4676B53

/*
** All of the static variables used by this module are collected
** into a single structure named "mem".  This is to keep the
** static variables organized and to reduce namespace pollution
** when this module is combined with other in the amalgamation.
*/
static struct {
  /*
  ** The alarm callback and its arguments.  The mem.mutex lock will
  ** be held while the callback is running.  Recursive calls into
  ** the memory subsystem are allowed, but no new callbacks will be
  ** issued.  The alarmBusy variable is set to prevent recursive
  ** callbacks.
  */
  sqlite3_uint64 alarmThreshold;
  void (*alarmCallback)(void*, sqlite3_uint64, unsigned);
  void *alarmArg;
  int alarmBusy;
  
  /*
  ** Mutex to control access to the memory allocation subsystem.
  */
  sqlite3_mutex *mutex;
  
  /*
  ** Current allocation and high-water mark.
  */
  sqlite3_uint64 nowUsed;
  sqlite3_uint64 mxUsed;
  
  /*
  ** Head and tail of a linked list of all outstanding allocations
  */
  struct MemBlockHdr *pFirst;
  struct MemBlockHdr *pLast;
  
  /*
  ** The number of levels of backtrace to save in new allocations.
  */
  int nBacktrace;

  /*
  ** These values are used to simulate malloc failures.  When
  ** iFail is 1, simulate a malloc failures and reset the value
  ** to iReset.
  */
  int iFail;    /* Decrement and fail malloc when this is 1 */
  int iReset;   /* When malloc fails set iiFail to this value */
  int iFailCnt; /* Number of failures */
  
  
} mem = {  /* This variable holds all of the local data */
   ((sqlite3_uint64)1)<<63,    /* alarmThreshold */
   /* Everything else is initialized to zero */
};



/*
** Return the amount of memory currently checked out.
*/
sqlite3_uint64 sqlite3_memory_used(void){
  sqlite3_uint64 n;
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  n = mem.nowUsed;
  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){
  sqlite3_uint64 n;
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  n = mem.mxUsed;
  if( resetFlag ){
    mem.mxUsed = mem.nowUsed;
  }
  sqlite3_mutex_leave(mem.mutex);  
  return n;
}

/*
** Change the alarm callback
*/
int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N),
  void *pArg,
  sqlite3_uint64 iThreshold
){
  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  mem.alarmCallback = xCallback;
  mem.alarmArg = pArg;
  mem.alarmThreshold = iThreshold;
  sqlite3_mutex_leave(mem.mutex);
  return SQLITE_OK;
}

/*
** Trigger the alarm 
*/
static void sqlite3MemsysAlarm(unsigned nByte){
  if( mem.alarmCallback==0 || mem.alarmBusy  ) return;
  mem.alarmBusy = 1;
  mem.alarmCallback(mem.alarmArg, mem.nowUsed, nByte);
  mem.alarmBusy = 0;
}

/*
** Given an allocation, find the MemBlockHdr for that allocation.
**
** This routine checks the guards at either end of the allocation and
** if they are incorrect it asserts.
*/
197
198
199
200
201
202
203










204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222









223




224
225
226
227

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
  assert( (p->iSize & 3)==0 );
  pInt = (unsigned int*)pAllocation;
  assert( pInt[p->iSize/sizeof(unsigned int)]==REARGUARD );
  return p;
}

/*










** Allocate nByte of memory
*/
void *sqlite3_malloc(unsigned int nByte){
  struct MemBlockHdr *pHdr;
  void **pBt;
  unsigned int *pInt;
  void *p;
  unsigned int totalSize;

  if( memMutex==0 ){
    memMutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(memMutex, 1);
  if( nowUsed+nByte>=alarmThreshold ){
    sqlite3MemsysAlarm(nByte);
  }
  nByte = (nByte+3)&~3;
  totalSize = nByte + sizeof(*pHdr) + sizeof(unsigned int) +
               backtraceLevels*sizeof(void*);









  p = malloc(totalSize);




  if( p==0 ){
    sqlite3MemsysAlarm(nByte);
    p = malloc(totalSize);
  }

  if( p ){
    pBt = p;
    pHdr = (struct MemBlockHdr*)&pBt[backtraceLevels];
    pHdr->pNext = 0;
    pHdr->pPrev = pLast;
    if( pLast ){
      pLast->pNext = pHdr;
    }else{
      pFirst = pHdr;
    }
    pLast = pHdr;
    pHdr->iForeGuard = FOREGUARD;
    pHdr->nBacktraceSlots = backtraceLevels;
    if( backtraceLevels ){
      void *aAddr[40];
      pHdr->nBacktrace = backtrace(aAddr, backtraceLevels+1)-1;
      memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
    }else{
      pHdr->nBacktrace = 0;
    }
    pHdr->iSize = nByte;
    pInt = (unsigned int *)&pHdr[1];
    pInt[nByte/sizeof(unsigned int)] = REARGUARD;
    memset(pInt, 0x65, nByte);
    nowUsed += nByte;
    if( nowUsed>mxUsed ){
      mxUsed = nowUsed;
    }
    p = (void*)pInt;
  }
  sqlite3_mutex_leave(memMutex);
  return p; 
}

/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
  struct MemBlockHdr *pHdr;
  void **pBt;
  if( pPrior==0 ){
    return;
  }
  assert( memMutex!=0 );
  pHdr = sqlite3MemsysGetHeader(pPrior);
  pBt = (void**)pHdr;
  pBt -= pHdr->nBacktraceSlots;
  sqlite3_mutex_enter(memMutex, 1);
  nowUsed -= pHdr->iSize;
  if( pHdr->pPrev ){
    assert( pHdr->pPrev->pNext==pHdr );
    pHdr->pPrev->pNext = pHdr->pNext;
  }else{
    assert( pFirst==pHdr );
    pFirst = pHdr->pNext;
  }
  if( pHdr->pNext ){
    assert( pHdr->pNext->pPrev==pHdr );
    pHdr->pNext->pPrev = pHdr->pPrev;
  }else{
    assert( pLast==pHdr );
    pLast = pHdr->pPrev;
  }
  memset(pBt, 0x2b, sizeof(void*)*pHdr->nBacktrace + sizeof(*pHdr) +
                    pHdr->iSize + sizeof(unsigned int));
  free(pBt);
  sqlite3_mutex_leave(memMutex);  
}

/*
** Change the size of an existing memory allocation.
**
** For this debugging implementation, we *always* make a copy of the
** allocation into a new place in memory.  In this way, if the 







>
>
>
>
>
>
>
>
>
>
|








|
|

|
|




|
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
|
|
|
>


|

|
|
|

|

|

|
|

|








|
|
|



|












|



|
|




|
|





|
|




|







219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
  assert( (p->iSize & 3)==0 );
  pInt = (unsigned int*)pAllocation;
  assert( pInt[p->iSize/sizeof(unsigned int)]==REARGUARD );
  return p;
}

/*
** This routine is called once the first time a simulated memory
** failure occurs.  The sole purpose of this routine is to provide
** a convenient place to set a debugger breakpoint when debugging
** errors related to malloc() failures.
*/
static void sqlite3MemsysFailed(void){
  mem.iFailCnt = 0;
}

/*
** Allocate nByte bytes of memory.
*/
void *sqlite3_malloc(unsigned int nByte){
  struct MemBlockHdr *pHdr;
  void **pBt;
  unsigned int *pInt;
  void *p;
  unsigned int totalSize;

  if( mem.mutex==0 ){
    mem.mutex = sqlite3_mutex_alloc(1);
  }
  sqlite3_mutex_enter(mem.mutex, 1);
  if( mem.nowUsed+nByte>=mem.alarmThreshold ){
    sqlite3MemsysAlarm(nByte);
  }
  nByte = (nByte+3)&~3;
  totalSize = nByte + sizeof(*pHdr) + sizeof(unsigned int) +
               mem.nBacktrace*sizeof(void*);
  if( mem.iFail>0 ){
    if( mem.iFail==1 ){
      p = 0;
      mem.iFail = mem.iReset;
      if( mem.iFailCnt==0 ){
        sqlite3MemsysFailed();  /* A place to set a breakpoint */
      }
      mem.iFailCnt++;
    }else{
      p = malloc(totalSize);
      mem.iFail--;
    }
  }else{
    p = malloc(totalSize);
    if( p==0 ){
      sqlite3MemsysAlarm(nByte);
      p = malloc(totalSize);
    }
  }
  if( p ){
    pBt = p;
    pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace];
    pHdr->pNext = 0;
    pHdr->pPrev = mem.pLast;
    if( mem.pLast ){
      mem.pLast->pNext = pHdr;
    }else{
      mem.pFirst = pHdr;
    }
    mem.pLast = pHdr;
    pHdr->iForeGuard = FOREGUARD;
    pHdr->nBacktraceSlots = mem.nBacktrace;
    if( mem.nBacktrace ){
      void *aAddr[40];
      pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1;
      memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*));
    }else{
      pHdr->nBacktrace = 0;
    }
    pHdr->iSize = nByte;
    pInt = (unsigned int *)&pHdr[1];
    pInt[nByte/sizeof(unsigned int)] = REARGUARD;
    memset(pInt, 0x65, nByte);
    mem.nowUsed += nByte;
    if( mem.nowUsed>mem.mxUsed ){
      mem.mxUsed = mem.nowUsed;
    }
    p = (void*)pInt;
  }
  sqlite3_mutex_leave(mem.mutex);
  return p; 
}

/*
** Free memory.
*/
void sqlite3_free(void *pPrior){
  struct MemBlockHdr *pHdr;
  void **pBt;
  if( pPrior==0 ){
    return;
  }
  assert( mem.mutex!=0 );
  pHdr = sqlite3MemsysGetHeader(pPrior);
  pBt = (void**)pHdr;
  pBt -= pHdr->nBacktraceSlots;
  sqlite3_mutex_enter(mem.mutex, 1);
  mem.nowUsed -= pHdr->iSize;
  if( pHdr->pPrev ){
    assert( pHdr->pPrev->pNext==pHdr );
    pHdr->pPrev->pNext = pHdr->pNext;
  }else{
    assert( mem.pFirst==pHdr );
    mem.pFirst = pHdr->pNext;
  }
  if( pHdr->pNext ){
    assert( pHdr->pNext->pPrev==pHdr );
    pHdr->pNext->pPrev = pHdr->pPrev;
  }else{
    assert( mem.pLast==pHdr );
    mem.pLast = pHdr->pPrev;
  }
  memset(pBt, 0x2b, sizeof(void*)*pHdr->nBacktrace + sizeof(*pHdr) +
                    pHdr->iSize + sizeof(unsigned int));
  free(pBt);
  sqlite3_mutex_leave(mem.mutex);  
}

/*
** Change the size of an existing memory allocation.
**
** For this debugging implementation, we *always* make a copy of the
** allocation into a new place in memory.  In this way, if the 
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366






















367
** A value of zero turns of backtracing.  The number is always rounded
** up to a multiple of 2.
*/
void sqlite3_memdebug_backtrace(int depth){
  if( depth<0 ){ depth = 0; }
  if( depth>20 ){ depth = 20; }
  depth = (depth+1)&0xfe;
  backtraceLevels = depth;
}

/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
  FILE *out;
  struct MemBlockHdr *pHdr;
  void **pBt;
  out = fopen(zFilename, "w");
  if( out==0 ){
    fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                    zFilename);
    return;
  }
  for(pHdr=pFirst; pHdr; pHdr=pHdr->pNext){
    fprintf(out, "**** %d bytes at %p ****\n", pHdr->iSize, &pHdr[1]);
    if( pHdr->nBacktrace ){
      fflush(out);
      pBt = (void**)pHdr;
      pBt -= pHdr->nBacktraceSlots;
      backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
      fprintf(out, "\n");
    }
  }
  fclose(out);
}























#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */







|
















|












>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
** A value of zero turns of backtracing.  The number is always rounded
** up to a multiple of 2.
*/
void sqlite3_memdebug_backtrace(int depth){
  if( depth<0 ){ depth = 0; }
  if( depth>20 ){ depth = 20; }
  depth = (depth+1)&0xfe;
  mem.nBacktrace = depth;
}

/*
** Open the file indicated and write a log of all unfreed memory 
** allocations into that log.
*/
void sqlite3_memdebug_dump(const char *zFilename){
  FILE *out;
  struct MemBlockHdr *pHdr;
  void **pBt;
  out = fopen(zFilename, "w");
  if( out==0 ){
    fprintf(stderr, "** Unable to output memory debug output log: %s **\n",
                    zFilename);
    return;
  }
  for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){
    fprintf(out, "**** %d bytes at %p ****\n", pHdr->iSize, &pHdr[1]);
    if( pHdr->nBacktrace ){
      fflush(out);
      pBt = (void**)pHdr;
      pBt -= pHdr->nBacktraceSlots;
      backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out));
      fprintf(out, "\n");
    }
  }
  fclose(out);
}

/*
** This routine is used to simulate malloc failures.
**
** After calling this routine, there will be iFail successful
** memory allocations and then a failure.  If iRepeat is true,
** all subsequent memory allocations will fail.  If iRepeat is
** false, only a single allocation will fail.
**
** Each call to this routine overrides the previous.  To disable
** the simulated allocation failure mechanism, set iFail to -1.
**
** This routine returns the number of simulated failures that have
** occurred since the previous call.
*/
int sqlite3_memdebug_fail(int iFail, int iRepeat){
  int n = mem.iFailCnt;
  mem.iFail = iFail+1;
  mem.iReset = iRepeat;
  mem.iFailCnt = 0;
  return n;
}

#endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */
Changes to src/test_malloc.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement test interfaces to the
** memory allocation subsystem.
**
** $Id: test_malloc.c,v 1.1 2007/08/15 19:16:43 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>








|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code used to implement test interfaces to the
** memory allocation subsystem.
**
** $Id: test_malloc.c,v 1.2 2007/08/15 20:41:29 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>

222
223
224
225
226
227
228







































229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

245
246
247
248
249
250
251
    extern void sqlite3_memdebug_dump(const char*);
    sqlite3_memdebug_dump(Tcl_GetString(objv[1]));
  }
#endif
  return TCL_OK;
}









































/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest_malloc_Init(Tcl_Interp *interp){
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_malloc",             test_malloc                   },
     { "sqlite3_realloc",            test_realloc                  },
     { "sqlite3_free",               test_free                     },
     { "sqlite3_memory_used",        test_memory_used              },
     { "sqlite3_memory_highwater",   test_memory_highwater         },
     { "sqlite3_memdebug_backtrace", test_memdebug_backtrace       },
     { "sqlite3_memdebug_dump",      test_memdebug_dump            },

  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
  }
  return TCL_OK;
}







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>







222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    extern void sqlite3_memdebug_dump(const char*);
    sqlite3_memdebug_dump(Tcl_GetString(objv[1]));
  }
#endif
  return TCL_OK;
}


/*
** Usage:    sqlite3_memdebug_fail  COUNTER  REPEAT
**
** Arrange for a simulated malloc() failure after COUNTER successes.
** If REPEAT is 1 then all subsequent malloc()s fail.   If REPEAT is
** 0 then only a single failure occurs.
**
** Each call to this routine overrides the prior counter value.
** This routine returns the number of simulated failures that have
** happened since the previous call to this routine.
**
** To disable simulated failures, use a COUNTER of -1.
*/
static int test_memdebug_fail(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  int iFail;
  int iRepeat;
  int nFail = 0;
  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "COUNTER REPEAT");
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[1], &iFail) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[2], &iRepeat) ) return TCL_ERROR;
#ifdef SQLITE_MEMDEBUG
  {
    extern int sqlite3_memdebug_fail(int,int);
    nFail = sqlite3_memdebug_fail(iFail, iRepeat);
  }
#endif
  Tcl_SetObjResult(interp, Tcl_NewIntObj(nFail));
  return TCL_OK;
}


/*
** Register commands with the TCL interpreter.
*/
int Sqlitetest_malloc_Init(Tcl_Interp *interp){
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_malloc",             test_malloc                   },
     { "sqlite3_realloc",            test_realloc                  },
     { "sqlite3_free",               test_free                     },
     { "sqlite3_memory_used",        test_memory_used              },
     { "sqlite3_memory_highwater",   test_memory_highwater         },
     { "sqlite3_memdebug_backtrace", test_memdebug_backtrace       },
     { "sqlite3_memdebug_dump",      test_memdebug_dump            },
     { "sqlite3_memdebug_fail",      test_memdebug_fail            },
  };
  int i;
  for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
    Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
  }
  return TCL_OK;
}