Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Enhancements and smoke testing of the new memory allocation subsystem. Have not yet cut it over to the core, though. (CVS 4230) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
1dad2c0a1f00596b13b02ccef664bd23 |
User & Date: | drh 2007-08-15 20:41:29.000 |
Context
2007-08-16
| ||
04:30 | Half-way through a major refactoring of the memory allocation. I have not even attempted to compile so I am certain there are countless errors. (CVS 4231) (check-in: deb7ecd65f user: drh tags: trunk) | |
2007-08-15
| ||
20:41 | Enhancements and smoke testing of the new memory allocation subsystem. Have not yet cut it over to the core, though. (CVS 4230) (check-in: 1dad2c0a1f user: drh tags: trunk) | |
19:16 | Test infrastructure for the new memory subsystem. (CVS 4229) (check-in: 9e50665672 user: drh tags: trunk) | |
Changes
Changes to src/mem1.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** $Id: mem1.c,v 1.3 2007/08/15 20:41:29 drh Exp $ */ /* ** This version of the memory allocator is the default. It is ** used when no other memory allocator is specified using compile-time ** macros. */ |
︙ | ︙ | |||
33 34 35 36 37 38 39 | ** This initial version is suitable for use in normal multi-threaded ** builds. We envision that alternative versions will be stored in ** separate source files. #ifdefs will be used to select the code from ** one of the various memN.c source files for use in any given build. */ #include "sqliteInt.h" | > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | < < < | < < < < | > > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 | ** This initial version is suitable for use in normal multi-threaded ** builds. We envision that alternative versions will be stored in ** separate source files. #ifdefs will be used to select the code from ** one of the various memN.c source files for use in any given build. */ #include "sqliteInt.h" /* ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* ** The alarm callback and its arguments. The mem.mutex lock will ** be held while the callback is running. Recursive calls into ** the memory subsystem are allowed, but no new callbacks will be ** issued. The alarmBusy variable is set to prevent recursive ** callbacks. */ sqlite3_uint64 alarmThreshold; void (*alarmCallback)(void*, sqlite3_uint64, unsigned); void *alarmArg; int alarmBusy; /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Current allocation and high-water mark. */ sqlite3_uint64 nowUsed; sqlite3_uint64 mxUsed; } mem = { /* This variable holds all of the local data */ ((sqlite3_uint64)1)<<63, /* alarmThreshold */ /* Everything else is initialized to zero */ }; /* ** Return the amount of memory currently checked out. */ sqlite3_uint64 sqlite3_memory_used(void){ sqlite3_uint64 n; if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); n = mem.nowUsed; sqlite3_mutex_leave(mem.mutex); return n; } /* ** Return the maximum amount of memory that has ever been ** checked out since either the beginning of this process ** or since the most recent reset. */ sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){ sqlite3_uint64 n; if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); n = mem.mxUsed; if( resetFlag ){ mem.mxUsed = mem.nowUsed; } sqlite3_mutex_leave(mem.mutex); return n; } /* ** Change the alarm callback */ int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N), void *pArg, sqlite3_uint64 iThreshold ){ if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); mem.alarmCallback = xCallback; mem.alarmArg = pArg; mem.alarmThreshold = iThreshold; sqlite3_mutex_leave(mem.mutex); return SQLITE_OK; } /* ** Trigger the alarm */ static void sqlite3MemsysAlarm(unsigned nByte){ if( mem.alarmCallback==0 || mem.alarmBusy ) return; mem.alarmBusy = 1; mem.alarmCallback(mem.alarmArg, mem.nowUsed, nByte); mem.alarmBusy = 0; } /* ** Allocate nBytes of memory */ void *sqlite3_malloc(unsigned int nBytes){ sqlite3_uint64 *p; if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); if( mem.nowUsed+nBytes>=mem.alarmThreshold ){ sqlite3MemsysAlarm(nBytes); } p = malloc(nBytes+8); if( p==0 ){ sqlite3MemsysAlarm(nBytes); p = malloc(nBytes+8); } if( p ){ p[0] = nBytes; p++; mem.nowUsed += nBytes; if( mem.nowUsed>mem.mxUsed ){ mem.mxUsed = mem.nowUsed; } } sqlite3_mutex_leave(mem.mutex); return (void*)p; } /* ** Free memory. */ void sqlite3_free(void *pPrior){ sqlite3_uint64 *p; unsigned nByte; if( pPrior==0 ){ return; } assert( mem.mutex!=0 ); p = pPrior; p--; nByte = (unsigned int)*p; sqlite3_mutex_enter(mem.mutex, 1); mem.nowUsed -= nByte; free(p); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation */ void *sqlite3_realloc(void *pPrior, unsigned int nBytes){ unsigned nOld; sqlite3_uint64 *p; if( pPrior==0 ){ return sqlite3_malloc(nBytes); } if( nBytes==0 ){ sqlite3_free(pPrior); return; } p = pPrior; p--; nOld = (unsigned int)p[0]; assert( mem.mutex!=0 ); sqlite3_mutex_enter(mem.mutex, 1); if( mem.nowUsed+nBytes-nOld>=mem.alarmThreshold ){ sqlite3MemsysAlarm(nBytes-nOld); } p = realloc(p, nBytes+8); if( p==0 ){ sqlite3MemsysAlarm(nBytes); p = realloc(p, nBytes+8); } if( p ){ p[0] = nBytes; p++; mem.nowUsed += nBytes-nOld; if( mem.nowUsed>mem.mxUsed ){ mem.mxUsed = mem.nowUsed; } } sqlite3_mutex_leave(mem.mutex); return (void*)p; } #endif /* !SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */ |
Changes to src/mem2.c.
︙ | ︙ | |||
8 9 10 11 12 13 14 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** | | | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the C functions that implement a memory ** allocation subsystem for use by SQLite. ** ** $Id: mem2.c,v 1.3 2007/08/15 20:41:29 drh Exp $ */ /* ** This version of the memory allocator is used only if the ** SQLITE_MEMDEBUG macro is defined and SQLITE_OMIT_MEMORY_ALLOCATION ** is not defined. */ |
︙ | ︙ | |||
52 53 54 55 56 57 58 | extern int backtrace(void**,int); extern void backtrace_symbols_fd(void*const*,int,int); #else # define backtrace(A,B) 0 # define backtrace_symbols_fd(A,B,C) #endif | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | extern int backtrace(void**,int); extern void backtrace_symbols_fd(void*const*,int,int); #else # define backtrace(A,B) 0 # define backtrace_symbols_fd(A,B,C) #endif /* ** Each memory allocation looks like this: ** ** ---------------------------------------------------------------- ** | backtrace pointers | MemBlockHdr | allocation | EndGuard | ** ---------------------------------------------------------------- ** |
︙ | ︙ | |||
167 168 169 170 171 172 173 | /* ** Guard words */ #define FOREGUARD 0x80F5E153 #define REARGUARD 0xE4676B53 /* | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | /* ** Guard words */ #define FOREGUARD 0x80F5E153 #define REARGUARD 0xE4676B53 /* ** All of the static variables used by this module are collected ** into a single structure named "mem". This is to keep the ** static variables organized and to reduce namespace pollution ** when this module is combined with other in the amalgamation. */ static struct { /* ** The alarm callback and its arguments. The mem.mutex lock will ** be held while the callback is running. Recursive calls into ** the memory subsystem are allowed, but no new callbacks will be ** issued. The alarmBusy variable is set to prevent recursive ** callbacks. */ sqlite3_uint64 alarmThreshold; void (*alarmCallback)(void*, sqlite3_uint64, unsigned); void *alarmArg; int alarmBusy; /* ** Mutex to control access to the memory allocation subsystem. */ sqlite3_mutex *mutex; /* ** Current allocation and high-water mark. */ sqlite3_uint64 nowUsed; sqlite3_uint64 mxUsed; /* ** Head and tail of a linked list of all outstanding allocations */ struct MemBlockHdr *pFirst; struct MemBlockHdr *pLast; /* ** The number of levels of backtrace to save in new allocations. */ int nBacktrace; /* ** These values are used to simulate malloc failures. When ** iFail is 1, simulate a malloc failures and reset the value ** to iReset. */ int iFail; /* Decrement and fail malloc when this is 1 */ int iReset; /* When malloc fails set iiFail to this value */ int iFailCnt; /* Number of failures */ } mem = { /* This variable holds all of the local data */ ((sqlite3_uint64)1)<<63, /* alarmThreshold */ /* Everything else is initialized to zero */ }; /* ** Return the amount of memory currently checked out. */ sqlite3_uint64 sqlite3_memory_used(void){ sqlite3_uint64 n; if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); n = mem.nowUsed; sqlite3_mutex_leave(mem.mutex); return n; } /* ** Return the maximum amount of memory that has ever been ** checked out since either the beginning of this process ** or since the most recent reset. */ sqlite3_uint64 sqlite3_memory_highwater(int resetFlag){ sqlite3_uint64 n; if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); n = mem.mxUsed; if( resetFlag ){ mem.mxUsed = mem.nowUsed; } sqlite3_mutex_leave(mem.mutex); return n; } /* ** Change the alarm callback */ int sqlite3_memory_alarm( void(*xCallback)(void *pArg, sqlite3_uint64 used, unsigned int N), void *pArg, sqlite3_uint64 iThreshold ){ if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); mem.alarmCallback = xCallback; mem.alarmArg = pArg; mem.alarmThreshold = iThreshold; sqlite3_mutex_leave(mem.mutex); return SQLITE_OK; } /* ** Trigger the alarm */ static void sqlite3MemsysAlarm(unsigned nByte){ if( mem.alarmCallback==0 || mem.alarmBusy ) return; mem.alarmBusy = 1; mem.alarmCallback(mem.alarmArg, mem.nowUsed, nByte); mem.alarmBusy = 0; } /* ** Given an allocation, find the MemBlockHdr for that allocation. ** ** This routine checks the guards at either end of the allocation and ** if they are incorrect it asserts. */ |
︙ | ︙ | |||
197 198 199 200 201 202 203 | assert( (p->iSize & 3)==0 ); pInt = (unsigned int*)pAllocation; assert( pInt[p->iSize/sizeof(unsigned int)]==REARGUARD ); return p; } /* | > > > > > > > > > > | | | | | | > > > > > > > > > | > > > > | | | | > | | | | | | | | | | | | | | | | | | | | | | 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | assert( (p->iSize & 3)==0 ); pInt = (unsigned int*)pAllocation; assert( pInt[p->iSize/sizeof(unsigned int)]==REARGUARD ); return p; } /* ** This routine is called once the first time a simulated memory ** failure occurs. The sole purpose of this routine is to provide ** a convenient place to set a debugger breakpoint when debugging ** errors related to malloc() failures. */ static void sqlite3MemsysFailed(void){ mem.iFailCnt = 0; } /* ** Allocate nByte bytes of memory. */ void *sqlite3_malloc(unsigned int nByte){ struct MemBlockHdr *pHdr; void **pBt; unsigned int *pInt; void *p; unsigned int totalSize; if( mem.mutex==0 ){ mem.mutex = sqlite3_mutex_alloc(1); } sqlite3_mutex_enter(mem.mutex, 1); if( mem.nowUsed+nByte>=mem.alarmThreshold ){ sqlite3MemsysAlarm(nByte); } nByte = (nByte+3)&~3; totalSize = nByte + sizeof(*pHdr) + sizeof(unsigned int) + mem.nBacktrace*sizeof(void*); if( mem.iFail>0 ){ if( mem.iFail==1 ){ p = 0; mem.iFail = mem.iReset; if( mem.iFailCnt==0 ){ sqlite3MemsysFailed(); /* A place to set a breakpoint */ } mem.iFailCnt++; }else{ p = malloc(totalSize); mem.iFail--; } }else{ p = malloc(totalSize); if( p==0 ){ sqlite3MemsysAlarm(nByte); p = malloc(totalSize); } } if( p ){ pBt = p; pHdr = (struct MemBlockHdr*)&pBt[mem.nBacktrace]; pHdr->pNext = 0; pHdr->pPrev = mem.pLast; if( mem.pLast ){ mem.pLast->pNext = pHdr; }else{ mem.pFirst = pHdr; } mem.pLast = pHdr; pHdr->iForeGuard = FOREGUARD; pHdr->nBacktraceSlots = mem.nBacktrace; if( mem.nBacktrace ){ void *aAddr[40]; pHdr->nBacktrace = backtrace(aAddr, mem.nBacktrace+1)-1; memcpy(pBt, &aAddr[1], pHdr->nBacktrace*sizeof(void*)); }else{ pHdr->nBacktrace = 0; } pHdr->iSize = nByte; pInt = (unsigned int *)&pHdr[1]; pInt[nByte/sizeof(unsigned int)] = REARGUARD; memset(pInt, 0x65, nByte); mem.nowUsed += nByte; if( mem.nowUsed>mem.mxUsed ){ mem.mxUsed = mem.nowUsed; } p = (void*)pInt; } sqlite3_mutex_leave(mem.mutex); return p; } /* ** Free memory. */ void sqlite3_free(void *pPrior){ struct MemBlockHdr *pHdr; void **pBt; if( pPrior==0 ){ return; } assert( mem.mutex!=0 ); pHdr = sqlite3MemsysGetHeader(pPrior); pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; sqlite3_mutex_enter(mem.mutex, 1); mem.nowUsed -= pHdr->iSize; if( pHdr->pPrev ){ assert( pHdr->pPrev->pNext==pHdr ); pHdr->pPrev->pNext = pHdr->pNext; }else{ assert( mem.pFirst==pHdr ); mem.pFirst = pHdr->pNext; } if( pHdr->pNext ){ assert( pHdr->pNext->pPrev==pHdr ); pHdr->pNext->pPrev = pHdr->pPrev; }else{ assert( mem.pLast==pHdr ); mem.pLast = pHdr->pPrev; } memset(pBt, 0x2b, sizeof(void*)*pHdr->nBacktrace + sizeof(*pHdr) + pHdr->iSize + sizeof(unsigned int)); free(pBt); sqlite3_mutex_leave(mem.mutex); } /* ** Change the size of an existing memory allocation. ** ** For this debugging implementation, we *always* make a copy of the ** allocation into a new place in memory. In this way, if the |
︙ | ︙ | |||
330 331 332 333 334 335 336 | ** A value of zero turns of backtracing. The number is always rounded ** up to a multiple of 2. */ void sqlite3_memdebug_backtrace(int depth){ if( depth<0 ){ depth = 0; } if( depth>20 ){ depth = 20; } depth = (depth+1)&0xfe; | | | > > > > > > > > > > > > > > > > > > > > > > | 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 | ** A value of zero turns of backtracing. The number is always rounded ** up to a multiple of 2. */ void sqlite3_memdebug_backtrace(int depth){ if( depth<0 ){ depth = 0; } if( depth>20 ){ depth = 20; } depth = (depth+1)&0xfe; mem.nBacktrace = depth; } /* ** Open the file indicated and write a log of all unfreed memory ** allocations into that log. */ void sqlite3_memdebug_dump(const char *zFilename){ FILE *out; struct MemBlockHdr *pHdr; void **pBt; out = fopen(zFilename, "w"); if( out==0 ){ fprintf(stderr, "** Unable to output memory debug output log: %s **\n", zFilename); return; } for(pHdr=mem.pFirst; pHdr; pHdr=pHdr->pNext){ fprintf(out, "**** %d bytes at %p ****\n", pHdr->iSize, &pHdr[1]); if( pHdr->nBacktrace ){ fflush(out); pBt = (void**)pHdr; pBt -= pHdr->nBacktraceSlots; backtrace_symbols_fd(pBt, pHdr->nBacktrace, fileno(out)); fprintf(out, "\n"); } } fclose(out); } /* ** This routine is used to simulate malloc failures. ** ** After calling this routine, there will be iFail successful ** memory allocations and then a failure. If iRepeat is true, ** all subsequent memory allocations will fail. If iRepeat is ** false, only a single allocation will fail. ** ** Each call to this routine overrides the previous. To disable ** the simulated allocation failure mechanism, set iFail to -1. ** ** This routine returns the number of simulated failures that have ** occurred since the previous call. */ int sqlite3_memdebug_fail(int iFail, int iRepeat){ int n = mem.iFailCnt; mem.iFail = iFail+1; mem.iReset = iRepeat; mem.iFailCnt = 0; return n; } #endif /* SQLITE_MEMDEBUG && !SQLITE_OMIT_MEMORY_ALLOCATION */ |
Changes to src/test_malloc.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement test interfaces to the ** memory allocation subsystem. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code used to implement test interfaces to the ** memory allocation subsystem. ** ** $Id: test_malloc.c,v 1.2 2007/08/15 20:41:29 drh Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include <stdlib.h> #include <string.h> #include <assert.h> |
︙ | ︙ | |||
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | extern void sqlite3_memdebug_dump(const char*); sqlite3_memdebug_dump(Tcl_GetString(objv[1])); } #endif return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest_malloc_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aObjCmd[] = { { "sqlite3_malloc", test_malloc }, { "sqlite3_realloc", test_realloc }, { "sqlite3_free", test_free }, { "sqlite3_memory_used", test_memory_used }, { "sqlite3_memory_highwater", test_memory_highwater }, { "sqlite3_memdebug_backtrace", test_memdebug_backtrace }, { "sqlite3_memdebug_dump", test_memdebug_dump }, }; int i; for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); } return TCL_OK; } | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 | extern void sqlite3_memdebug_dump(const char*); sqlite3_memdebug_dump(Tcl_GetString(objv[1])); } #endif return TCL_OK; } /* ** Usage: sqlite3_memdebug_fail COUNTER REPEAT ** ** Arrange for a simulated malloc() failure after COUNTER successes. ** If REPEAT is 1 then all subsequent malloc()s fail. If REPEAT is ** 0 then only a single failure occurs. ** ** Each call to this routine overrides the prior counter value. ** This routine returns the number of simulated failures that have ** happened since the previous call to this routine. ** ** To disable simulated failures, use a COUNTER of -1. */ static int test_memdebug_fail( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int iFail; int iRepeat; int nFail = 0; if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "COUNTER REPEAT"); return TCL_ERROR; } if( Tcl_GetIntFromObj(interp, objv[1], &iFail) ) return TCL_ERROR; if( Tcl_GetIntFromObj(interp, objv[2], &iRepeat) ) return TCL_ERROR; #ifdef SQLITE_MEMDEBUG { extern int sqlite3_memdebug_fail(int,int); nFail = sqlite3_memdebug_fail(iFail, iRepeat); } #endif Tcl_SetObjResult(interp, Tcl_NewIntObj(nFail)); return TCL_OK; } /* ** Register commands with the TCL interpreter. */ int Sqlitetest_malloc_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aObjCmd[] = { { "sqlite3_malloc", test_malloc }, { "sqlite3_realloc", test_realloc }, { "sqlite3_free", test_free }, { "sqlite3_memory_used", test_memory_used }, { "sqlite3_memory_highwater", test_memory_highwater }, { "sqlite3_memdebug_backtrace", test_memdebug_backtrace }, { "sqlite3_memdebug_dump", test_memdebug_dump }, { "sqlite3_memdebug_fail", test_memdebug_fail }, }; int i; for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0); } return TCL_OK; } |