SQLite

Check-in [1c9c70fec3]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Add missing comments and fix compiler warnings in new FTS3/4 code. Other minor fixes too.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | experimental
Files: files | file ages | folders
SHA1: 1c9c70fec3c88319f7b2efe5316694a6ce0ab1a5
User & Date: dan 2010-10-22 16:44:39.000
Context
2010-10-22
19:03
Add new test file fts3defer2.test. (check-in: 5a4d5bfcae user: dan tags: experimental)
16:44
Add missing comments and fix compiler warnings in new FTS3/4 code. Other minor fixes too. (check-in: 1c9c70fec3 user: dan tags: experimental)
2010-10-21
15:49
Merge trunk changes into experimental branch. (check-in: fd1e5cade0 user: dan tags: experimental)
Changes
Unified Diff Ignore Whitespace Patch
Changes to ext/fts3/fts3.c.
966
967
968
969
970
971
972
973














974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993



994
995
996
997
998
999
1000
1001
1002
1003

1004
1005
1006
1007
1008
1009
1010
      return rc;
    }
  }else{
    return SQLITE_OK;
  }
}
















static int fts3ScanInteriorNode(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piFirst,         /* OUT: Selected child node */
  sqlite3_int64 *piLast           /* OUT: Selected child node */
){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  int nAlloc = 0;                 /* Size of allocated buffer */

  int isFirstTerm = 1;          /* True when processing first term on page */
  int dummy;
  sqlite3_int64 iChild;         /* Block id of child node to descend to */
  int nBlock;                   /* Size of child node in bytes */




  zCsr += sqlite3Fts3GetVarint32(zCsr, &dummy);
  zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
  
  while( zCsr<zEnd && (piFirst || piLast) ){
    int cmp;                    /* memcmp() result */
    int nSuffix;                /* Size of term suffix */
    int nPrefix = 0;            /* Size of term prefix */
    int nBuffer;                /* Total term size */
  
    /* Load the next term on the node into zBuffer */

    if( !isFirstTerm ){
      zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>














<
|
<
|
<

>
>
>
|



|
|
|
|

|
>







966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001

1002

1003

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
      return rc;
    }
  }else{
    return SQLITE_OK;
  }
}

/*
** This function is used to process a single interior node when searching
** a b-tree for a term or term prefix. The node data is passed to this 
** function via the zNode/nNode parameters. The term to search for is
** passed in zTerm/nTerm.
**
** If piFirst is not NULL, then this function sets *piFirst to the blockid
** of the child node that heads the sub-tree that may contain the term.
**
** If piLast is not NULL, then *piLast is set to the right-most child node
** that heads a sub-tree that may contain a term for which zTerm/nTerm is
** a prefix.
**
** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
*/
static int fts3ScanInteriorNode(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piFirst,         /* OUT: Selected child node */
  sqlite3_int64 *piLast           /* OUT: Selected child node */
){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  int nAlloc = 0;                 /* Size of allocated buffer */

  int isFirstTerm = 1;            /* True when processing first term on page */

  sqlite3_int64 iChild;           /* Block id of child node to descend to */


  /* Skip over the 'height' varint that occurs at the start of every 
  ** interior node. Then load the blockid of the left-child of the b-tree
  ** node into variable iChild.  */
  zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
  zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
  
  while( zCsr<zEnd && (piFirst || piLast) ){
    int cmp;                      /* memcmp() result */
    int nSuffix;                  /* Size of term suffix */
    int nPrefix = 0;              /* Size of term prefix */
    int nBuffer;                  /* Total term size */
  
    /* Load the next term on the node into zBuffer. Use realloc() to expand
    ** the size of zBuffer if required.  */
    if( !isFirstTerm ){
      zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060





1061
1062

1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080


1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

1094

1095
1096
1097
1098
1099
1100

1101
1102
1103
1104
1105
1106
1107

  sqlite3_free(zBuffer);
  return rc;
}


/*
** The buffer pointed to by argument zNode (size nNode bytes) contains the
** root node of a b-tree segment. The segment is guaranteed to be at least
** one level high (i.e. the root node is not also a leaf). If successful,
** this function locates the leaf node of the segment that may contain the 
** term specified by arguments zTerm and nTerm and writes its block number 
** to *piLeaf.





**
** It is possible that the returned leaf node does not contain the specified

** term. However, if the segment does contain said term, it is stored on
** the identified leaf node. Because this function only inspects interior
** segment nodes (and never loads leaf nodes into memory), it is not possible
** to be sure.
**
** If an error occurs, an error code other than SQLITE_OK is returned.
*/ 
static int fts3SelectLeaf(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piLeaf,          /* Selected leaf node */
  sqlite3_int64 *piLeaf2          /* Selected leaf node */
){
  int rc;                         /* Return code */
  int iHeight;                    /* Height of this node in tree */



  sqlite3Fts3GetVarint32(zNode, &iHeight);
  rc = fts3ScanInteriorNode(p, zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
  
  if( rc==SQLITE_OK && iHeight>1 ){
    const char *zBlob;
    int nBlob;

    if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
      rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
      if( rc==SQLITE_OK ){
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
      }

      piLeaf = 0;

    }

    rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
    if( rc==SQLITE_OK ){
      rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
    }

  }

  return rc;
}

/*
** This function is used to create delta-encoded serialized lists of FTS3 







|
|
|
|
|
|
>
>
>
>
>

|
>
|
|
|
<














>
>





|
|






>

>






>







1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132

  sqlite3_free(zBuffer);
  return rc;
}


/*
** The buffer pointed to by argument zNode (size nNode bytes) contains an
** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
** contains a term. This function searches the sub-tree headed by the zNode
** node for the range of leaf nodes that may contain the specified term
** or terms for which the specified term is a prefix.
**
** If piLeaf is not NULL, then *piLeaf is set to the blockid of the 
** left-most leaf node in the tree that may contain the specified term.
** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
** right-most leaf node that may contain a term for which the specified
** term is a prefix.
**
** It is possible that the range of returned leaf nodes does not contain 
** the specified term or any terms for which it is a prefix. However, if the 
** segment does contain any such terms, they are stored within the identified
** range. Because this function only inspects interior segment nodes (and
** never loads leaf nodes into memory), it is not possible to be sure.

**
** If an error occurs, an error code other than SQLITE_OK is returned.
*/ 
static int fts3SelectLeaf(
  Fts3Table *p,                   /* Virtual table handle */
  const char *zTerm,              /* Term to select leaves for */
  int nTerm,                      /* Size of term zTerm in bytes */
  const char *zNode,              /* Buffer containing segment interior node */
  int nNode,                      /* Size of buffer at zNode */
  sqlite3_int64 *piLeaf,          /* Selected leaf node */
  sqlite3_int64 *piLeaf2          /* Selected leaf node */
){
  int rc;                         /* Return code */
  int iHeight;                    /* Height of this node in tree */

  assert( piLeaf || piLeaf2 );

  sqlite3Fts3GetVarint32(zNode, &iHeight);
  rc = fts3ScanInteriorNode(p, zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
  
  if( rc==SQLITE_OK && iHeight>1 ){
    char *zBlob = 0;              /* Blob read from %_segments table */
    int nBlob;                    /* Size of zBlob in bytes */

    if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
      rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
      if( rc==SQLITE_OK ){
        rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
      }
      sqlite3_free(zBlob);
      piLeaf = 0;
      zBlob = 0;
    }

    rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
    if( rc==SQLITE_OK ){
      rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
    }
    sqlite3_free(zBlob);
  }

  return rc;
}

/*
** This function is used to create delta-encoded serialized lists of FTS3 
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980

1981
1982
1983
1984
1985
1986
1987
    if( sqlite3_column_int64(pStmt, 1)==0 ){
      /* The entire segment is stored on the root node (which must be a
      ** leaf). Do not bother inspecting any data in this case, just
      ** create a Fts3SegReader to scan the single leaf. 
      */
      rc = sqlite3Fts3SegReaderNew(p, iAge, 0, 0, 0, zRoot, nRoot, &pNew);
    }else{
      int rc2;                    /* Return value of sqlite3Fts3ReadBlock() */
      sqlite3_int64 i1;           /* First leaf that may contain zTerm */
      sqlite3_int64 i2;           /* Last leaf that may contain zTerm */
      rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1, (isPrefix?&i2:0));
      if( isPrefix==0 ) i2 = i1;
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew);
      }

      /* The following call to ReadBlock() serves to reset the SQL statement
      ** used to retrieve blocks of data from the %_segments table. If it is
      ** not reset here, then it may remain classified as an active statement 
      ** by SQLite, which may lead to "DROP TABLE" or "DETACH" commands 
      ** failing.
      */ 
      rc2 = sqlite3Fts3ReadBlock(p, 0, 0, 0);
      if( rc==SQLITE_OK ){
        rc = rc2;
      }
    }
    iAge++;

    /* If a new Fts3SegReader was allocated, add it to the array. */
    assert( pNew!=0 || rc!=SQLITE_OK );
    if( rc==SQLITE_OK ){
      rc = fts3SegReaderArrayAdd(&pArray, pNew);
    }else{
      sqlite3Fts3SegReaderFree(p, pNew);
    }
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3SegReaderCost(pCsr, pNew, &pArray->nCost);
    }

  }

  if( rc==SQLITE_DONE ){
    rc = sqlite3_reset(pStmt);
  }else{
    sqlite3_reset(pStmt);
  }







<

|





|
<
<
<
<
<
<
<
|
<
|
<
<
<

<


<
<




>







1967
1968
1969
1970
1971
1972
1973

1974
1975
1976
1977
1978
1979
1980
1981







1982

1983



1984

1985
1986


1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
    if( sqlite3_column_int64(pStmt, 1)==0 ){
      /* The entire segment is stored on the root node (which must be a
      ** leaf). Do not bother inspecting any data in this case, just
      ** create a Fts3SegReader to scan the single leaf. 
      */
      rc = sqlite3Fts3SegReaderNew(p, iAge, 0, 0, 0, zRoot, nRoot, &pNew);
    }else{

      sqlite3_int64 i1;           /* First leaf that may contain zTerm */
      sqlite3_int64 i2;           /* Final leaf that may contain zTerm */
      rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &i1, (isPrefix?&i2:0));
      if( isPrefix==0 ) i2 = i1;
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts3SegReaderNew(p, iAge, i1, i2, 0, 0, 0, &pNew);
      }
    }







    assert( (pNew==0)==(rc!=SQLITE_OK) );





    /* If a new Fts3SegReader was allocated, add it to the array. */

    if( rc==SQLITE_OK ){
      rc = fts3SegReaderArrayAdd(&pArray, pNew);


    }
    if( rc==SQLITE_OK ){
      rc = sqlite3Fts3SegReaderCost(pCsr, pNew, &pArray->nCost);
    }
    iAge++;
  }

  if( rc==SQLITE_DONE ){
    rc = sqlite3_reset(pStmt);
  }else{
    sqlite3_reset(pStmt);
  }
2105
2106
2107
2108
2109
2110
2111







2112



2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
        }
      }
    }
  }
  return rc;
}








static void fts3DoclistStripPositions(char *aList, int *pnList){



  if( aList ){
    char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
    char *p = aList;              /* Input cursor */
    char *pOut = aList;           /* Output cursor */
    sqlite3_int64 iPrev = 0;
  
    while( p<aEnd ){
      sqlite3_int64 delta;
      p += sqlite3Fts3GetVarint(p, &delta);
      fts3PoslistCopy(0, &p);
      pOut += sqlite3Fts3PutVarint(pOut, delta);
    }







>
>
>
>
>
>
>
|
>
>
>




<







2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137

2138
2139
2140
2141
2142
2143
2144
        }
      }
    }
  }
  return rc;
}

/*
** This function removes the position information from a doclist. When
** called, buffer aList (size *pnList bytes) contains a doclist that includes
** position information. This function removes the position information so
** that aList contains only docids, and adjusts *pnList to reflect the new
** (possibly reduced) size of the doclist.
*/
static void fts3DoclistStripPositions(
  char *aList,                    /* IN/OUT: Buffer containing doclist */
  int *pnList                     /* IN/OUT: Size of doclist in bytes */
){
  if( aList ){
    char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
    char *p = aList;              /* Input cursor */
    char *pOut = aList;           /* Output cursor */

  
    while( p<aEnd ){
      sqlite3_int64 delta;
      p += sqlite3Fts3GetVarint(p, &delta);
      fts3PoslistCopy(0, &p);
      pOut += sqlite3Fts3PutVarint(pOut, delta);
    }
2270
2271
2272
2273
2274
2275
2276








2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310










2311
2312





2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
    *pnOut = nOut;
  }else{
    sqlite3_free(pOut);
  }
  return rc;
}









static int fts3NearMerge(
  int mergetype,                  /* MERGE_POS_NEAR or MERGE_NEAR */
  int nNear,                      /* Parameter to NEAR operator */
  int nTokenLeft,                 /* Number of tokens in LHS phrase arg */
  char *aLeft,                    /* Doclist for LHS (incl. positions) */
  int nLeft,                      /* Size of LHS doclist in bytes */
  int nTokenRight,                /* As nTokenLeft */
  char *aRight,                   /* As aLeft */
  int nRight,                     /* As nRight */
  char **paOut,                   /* OUT: Results of merge (malloced) */
  int *pnOut                      /* OUT: Sized of output buffer */
){
  char *aOut;
  int rc;

  assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );

  aOut = sqlite3_malloc(nLeft+nRight+1);
  if( aOut==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, 
      aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
    );
    if( rc!=SQLITE_OK ){
      sqlite3_free(aOut);
      aOut = 0;
    }
  }

  *paOut = aOut;
  return rc;
}











int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
  int rc;





  if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
    sqlite3_free(pLeft->aDoclist);
    sqlite3_free(pRight->aDoclist);
    pRight->aDoclist = 0;
    pLeft->aDoclist = 0;
    rc = SQLITE_OK;
  }else{
    char *aOut;
    int nOut;

    rc = fts3NearMerge(MERGE_POS_NEAR, nNear, 
        pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
        pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
        &aOut, &nOut
    );
    if( rc!=SQLITE_OK ) return rc;







>
>
>
>
>
>
>
>












|
|




















>
>
>
>
>
>
>
>
>
>

|
>
>
>
>
>







|
|







2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
    *pnOut = nOut;
  }else{
    sqlite3_free(pOut);
  }
  return rc;
}

/*
** This function merges two doclists according to the requirements of a
** NEAR operator.
**
** Both input doclists must include position information. The output doclist 
** includes position information if the first argument to this function
** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
*/
static int fts3NearMerge(
  int mergetype,                  /* MERGE_POS_NEAR or MERGE_NEAR */
  int nNear,                      /* Parameter to NEAR operator */
  int nTokenLeft,                 /* Number of tokens in LHS phrase arg */
  char *aLeft,                    /* Doclist for LHS (incl. positions) */
  int nLeft,                      /* Size of LHS doclist in bytes */
  int nTokenRight,                /* As nTokenLeft */
  char *aRight,                   /* As aLeft */
  int nRight,                     /* As nRight */
  char **paOut,                   /* OUT: Results of merge (malloced) */
  int *pnOut                      /* OUT: Sized of output buffer */
){
  char *aOut;                     /* Buffer to write output doclist to */
  int rc;                         /* Return code */

  assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );

  aOut = sqlite3_malloc(nLeft+nRight+1);
  if( aOut==0 ){
    rc = SQLITE_NOMEM;
  }else{
    rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, 
      aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
    );
    if( rc!=SQLITE_OK ){
      sqlite3_free(aOut);
      aOut = 0;
    }
  }

  *paOut = aOut;
  return rc;
}

/*
** This function is used as part of the processing for the snippet() and
** offsets() functions.
**
** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
** have their respective doclists (including position information) loaded
** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
** each doclist that are not within nNear tokens of a corresponding entry
** in the other doclist.
*/
int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
  int rc;                         /* Return code */

  assert( pLeft->eType==FTSQUERY_PHRASE );
  assert( pRight->eType==FTSQUERY_PHRASE );
  assert( pLeft->isLoaded && pRight->isLoaded );

  if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
    sqlite3_free(pLeft->aDoclist);
    sqlite3_free(pRight->aDoclist);
    pRight->aDoclist = 0;
    pLeft->aDoclist = 0;
    rc = SQLITE_OK;
  }else{
    char *aOut;                   /* Buffer in which to assemble new doclist */
    int nOut;                     /* Size of buffer aOut in bytes */

    rc = fts3NearMerge(MERGE_POS_NEAR, nNear, 
        pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
        pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
        &aOut, &nOut
    );
    if( rc!=SQLITE_OK ) return rc;
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352

2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414





2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430













































2431
2432
2433
2434


































2435
2436
2437
2438
2439
2440
2441
    sqlite3_free(pLeft->aDoclist);
    pLeft->aDoclist = aOut;
    pLeft->nDoclist = nOut;
  }
  return rc;
}

typedef struct ExprAndCost ExprAndCost;
struct ExprAndCost {
  Fts3Expr *pExpr;
  int nCost;
};

int fts3ExprCost(Fts3Expr *pExpr){
  int nCost;                      /* Return value */

  if( pExpr->eType==FTSQUERY_PHRASE ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;
    nCost = 0;
    for(ii=0; ii<pPhrase->nToken; ii++){
      nCost += pPhrase->aToken[ii].pArray->nCost;
    }
  }else{
    nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
  }
  return nCost;
}

static void fts3ExprAssignCosts(
  Fts3Expr *pExpr,                /* Expression to create seg-readers for */
  ExprAndCost **ppExprCost        /* OUT: Write to *ppExprCost */
){
  if( pExpr->eType==FTSQUERY_AND ){
    fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
    fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
  }else{
    (*ppExprCost)->pExpr = pExpr;
    (*ppExprCost)->nCost = fts3ExprCost(pExpr);;
    (*ppExprCost)++;
  }
}

static int fts3ExprAllocateSegReaders(
  Fts3Cursor *pCsr,               /* FTS3 table */
  Fts3Expr *pExpr,                /* Expression to create seg-readers for */
  int *pnExpr                     /* OUT: Number of AND'd expressions */
){
  int rc = SQLITE_OK;             /* Return code */

  if( pCsr->doDeferred ) return SQLITE_OK;
  if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
    (*pnExpr)++;
    pnExpr = 0;
  }

  if( pExpr->eType==FTSQUERY_PHRASE ){
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;

    for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
      Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
      if( pTok->pArray==0 ){
        rc = fts3TermSegReaderArray(
            pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pArray
        );
      }
    }
  }else{ 
    rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
    if( rc==SQLITE_OK ){
      rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
    }
  }
  return rc;
}






static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
  if( pExpr ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    if( pPhrase ){
      int kk;
      for(kk=0; kk<pPhrase->nToken; kk++){
        fts3SegReaderArrayFree(pPhrase->aToken[kk].pArray);
        pPhrase->aToken[kk].pArray = 0;
      }
    }
    fts3ExprFreeSegReaders(pExpr->pLeft);
    fts3ExprFreeSegReaders(pExpr->pRight);
  }
}

/*













































** Evaluate the full-text expression pExpr against fts3 table pTab. Store
** the resulting doclist in *paOut and *pnOut.  This routine mallocs for
** the space needed to store the output.  The caller is responsible for
** freeing the space when it has finished.


































*/
static int fts3EvalExpr(
  Fts3Cursor *p,                  /* Virtual table cursor handle */
  Fts3Expr *pExpr,                /* Parsed fts3 expression */
  char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
  int *pnOut,                     /* OUT: Size of buffer at *paOut */
  int isReqPos                    /* Require positions in output buffer */







<
<
<
<
<

<
<
>
|
|
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
|














<




















>
>
>
>
>
















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2381
2382
2383
2384
2385
2386
2387





2388


2389
2390
2391










2392













2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407

2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
    sqlite3_free(pLeft->aDoclist);
    pLeft->aDoclist = aOut;
    pLeft->nDoclist = nOut;
  }
  return rc;
}









/*
** Allocate an Fts3SegReaderArray for each token in the expression pExpr. 
** The allocated objects are stored in the Fts3PhraseToken.pArray member










** variables of each token structure.













*/
static int fts3ExprAllocateSegReaders(
  Fts3Cursor *pCsr,               /* FTS3 table */
  Fts3Expr *pExpr,                /* Expression to create seg-readers for */
  int *pnExpr                     /* OUT: Number of AND'd expressions */
){
  int rc = SQLITE_OK;             /* Return code */

  if( pCsr->doDeferred ) return SQLITE_OK;
  if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
    (*pnExpr)++;
    pnExpr = 0;
  }

  if( pExpr->eType==FTSQUERY_PHRASE ){

    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;

    for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
      Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
      if( pTok->pArray==0 ){
        rc = fts3TermSegReaderArray(
            pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pArray
        );
      }
    }
  }else{ 
    rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
    if( rc==SQLITE_OK ){
      rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
    }
  }
  return rc;
}

/*
** Free the Fts3SegReaderArray objects associated with each token in the
** expression pExpr. In other words, this function frees the resources
** allocated by fts3ExprAllocateSegReaders().
*/
static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
  if( pExpr ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    if( pPhrase ){
      int kk;
      for(kk=0; kk<pPhrase->nToken; kk++){
        fts3SegReaderArrayFree(pPhrase->aToken[kk].pArray);
        pPhrase->aToken[kk].pArray = 0;
      }
    }
    fts3ExprFreeSegReaders(pExpr->pLeft);
    fts3ExprFreeSegReaders(pExpr->pRight);
  }
}

/*
** Return the sum of the costs of all tokens in the expression pExpr. This
** function must be called after Fts3SegReaderArrays have been allocated
** for all tokens using fts3ExprAllocateSegReaders().
*/
int fts3ExprCost(Fts3Expr *pExpr){
  int nCost;                      /* Return value */
  if( pExpr->eType==FTSQUERY_PHRASE ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;
    int ii;
    nCost = 0;
    for(ii=0; ii<pPhrase->nToken; ii++){
      nCost += pPhrase->aToken[ii].pArray->nCost;
    }
  }else{
    nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
  }
  return nCost;
}

/*
** The following is a helper function (and type) for fts3EvalExpr(). It
** must be called after Fts3SegReaders have been allocated for every token
** in the expression. See the context it is called from in fts3EvalExpr()
** for further explanation.
*/
typedef struct ExprAndCost ExprAndCost;
struct ExprAndCost {
  Fts3Expr *pExpr;
  int nCost;
};
static void fts3ExprAssignCosts(
  Fts3Expr *pExpr,                /* Expression to create seg-readers for */
  ExprAndCost **ppExprCost        /* OUT: Write to *ppExprCost */
){
  if( pExpr->eType==FTSQUERY_AND ){
    fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
    fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
  }else{
    (*ppExprCost)->pExpr = pExpr;
    (*ppExprCost)->nCost = fts3ExprCost(pExpr);;
    (*ppExprCost)++;
  }
}

/*
** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
** the resulting doclist in *paOut and *pnOut. This routine mallocs for
** the space needed to store the output. The caller is responsible for
** freeing the space when it has finished.
**
** This function is called in two distinct contexts:
**
**   * From within the virtual table xFilter() method. In this case, the
**     output doclist contains entries for all rows in the table, based on
**     data read from the full-text index.
**
**     In this case, if the query expression contains one or more tokens that 
**     are very common, then the returned doclist may contain a superset of 
**     the documents that actually match the expression.
**
**   * From within the virtual table xNext() method. This call is only made
**     if the call from within xFilter() found that there were very common 
**     tokens in the query expression and did return a superset of the 
**     matching documents. In this case the returned doclist contains only
**     entries that correspond to the current row of the table. Instead of
**     reading the data for each token from the full-text index, the data is
**     already available in-memory in the Fts3PhraseToken.pDeferred structures.
**     See fts3EvalDeferred() for how it gets there.
**
** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
** required) Fts3Cursor.doDeferred==1.
**
** If the SQLite invokes the snippet(), offsets() or matchinfo() function
** as part of a SELECT on an FTS3 table, this function is called on each
** individual phrase expression in the query. If there were very common tokens
** found in the xFilter() call, then this function is called once for phrase
** for each row visited, and the returned doclist contains entries for the
** current row only. Otherwise, if there were no very common tokens, then this
** function is called once only for each phrase in the query and the returned
** doclist contains entries for all rows of the table.
**
** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
** result of a snippet(), offsets() or matchinfo() invocation.
*/
static int fts3EvalExpr(
  Fts3Cursor *p,                  /* Virtual table cursor handle */
  Fts3Expr *pExpr,                /* Parsed fts3 expression */
  char **paOut,                   /* OUT: Pointer to malloc'd result buffer */
  int *pnOut,                     /* OUT: Size of buffer at *paOut */
  int isReqPos                    /* Require positions in output buffer */
2592
2593
2594
2595
2596
2597
2598




2599










2600
2601



2602
2603
2604
2605
2606
2607
2608
    }
  }

  return rc;
}

/*




**










*/
static int fts3EvalDeferred(Fts3Cursor *pCsr, int *pbRes){



  int rc = SQLITE_OK;
  if( pCsr->pDeferred==0 ){
    *pbRes = 1;
  }else{
    rc = fts3CursorSeek(0, pCsr);
    if( rc==SQLITE_OK ){
      sqlite3Fts3FreeDeferredDoclists(pCsr);







>
>
>
>

>
>
>
>
>
>
>
>
>
>

|
>
>
>







2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
    }
  }

  return rc;
}

/*
** This function is called from within xNext() for each row visited by
** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
** was able to determine the exact set of matching rows, this function sets
** *pbRes to true and returns SQLITE_IO immediately.
**
** Otherwise, if evaluating the query expression within xFilter() returned a
** superset of the matching documents instead of an exact set (this happens
** when the query includes very common tokens and it is deemed too expensive to
** load their doclists from disk), this function tests if the current row
** really does match the FTS3 query.
**
** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
** is returned and *pbRes is set to true if the current row matches the
** FTS3 query (and should be included in the results returned to SQLite), or
** false otherwise.
*/
static int fts3EvalDeferred(
  Fts3Cursor *pCsr,               /* FTS3 cursor pointing at row to test */
  int *pbRes                      /* OUT: Set to true if row is a match */
){
  int rc = SQLITE_OK;
  if( pCsr->pDeferred==0 ){
    *pbRes = 1;
  }else{
    rc = fts3CursorSeek(0, pCsr);
    if( rc==SQLITE_OK ){
      sqlite3Fts3FreeDeferredDoclists(pCsr);
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
** in the %_content table.
**
** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index.  The
** column on the left-hand side of the MATCH operator is column
** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed.  argv[0] is the right-hand
** side of the MATCH operator.
*/
/* TODO(shess) Upgrade the cursor initialization and destruction to
** account for fts3FilterMethod() being called multiple times on the
** same cursor. The current solution is very fragile. Apply fix to
** fts3 as appropriate.
*/
static int fts3FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){







<
<
<
<
<







2787
2788
2789
2790
2791
2792
2793





2794
2795
2796
2797
2798
2799
2800
** in the %_content table.
**
** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index.  The
** column on the left-hand side of the MATCH operator is column
** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed.  argv[0] is the right-hand
** side of the MATCH operator.
*/





static int fts3FilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
2781
2782
2783
2784
2785
2786
2787





2788
2789
2790
2791
2792
2793
2794
** rowid should be written to *pRowid.
*/
static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  if( pCsr->aDoclist ){
    *pRowid = pCsr->iPrevId;
  }else{





    *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
  }
  return SQLITE_OK;
}

/* 
** This is the xColumn method, called by SQLite to request a value from







>
>
>
>
>







2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
** rowid should be written to *pRowid.
*/
static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
  Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
  if( pCsr->aDoclist ){
    *pRowid = pCsr->iPrevId;
  }else{
    /* This branch runs if the query is implemented using a full-table scan
    ** (not using the full-text index). In this case grab the rowid from the
    ** SELECT statement.
    */
    assert( pCsr->isRequireSeek==0 );
    *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
  }
  return SQLITE_OK;
}

/* 
** This is the xColumn method, called by SQLite to request a value from
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224

3225

3226
3227
3228
3229
3230
3231
3232
static void hashDestroy(void *p){
  Fts3Hash *pHash = (Fts3Hash *)p;
  sqlite3Fts3HashClear(pHash);
  sqlite3_free(pHash);
}

/*
** The fts3 built-in tokenizers - "simple" and "porter" - are implemented
** in files fts3_tokenizer1.c and fts3_porter.c respectively. The following
** two forward declarations are for functions declared in these files
** used to retrieve the respective implementations.
**
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
** to by the argument to point to the "simple" tokenizer implementation.
** Function ...PorterTokenizerModule() sets *pModule to point to the
** porter tokenizer/stemmer implementation.
*/
void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);

void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);


/*
** Initialise the fts3 extension. If this extension is built as part
** of the sqlite library, then this function is called directly by
** SQLite. If fts3 is built as a dynamically loadable extension, this
** function is called by the sqlite3_extension_init() entry point.
*/







|
|
|
|



<
|



>

>







3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333

3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
static void hashDestroy(void *p){
  Fts3Hash *pHash = (Fts3Hash *)p;
  sqlite3Fts3HashClear(pHash);
  sqlite3_free(pHash);
}

/*
** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are 
** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
** respectively. The following three forward declarations are for functions
** declared in these files used to retrieve the respective implementations.
**
** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
** to by the argument to point to the "simple" tokenizer implementation.

** And so on.
*/
void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
#ifdef SQLITE_ENABLE_ICU
void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
#endif

/*
** Initialise the fts3 extension. If this extension is built as part
** of the sqlite library, then this function is called directly by
** SQLite. If fts3 is built as a dynamically loadable extension, this
** function is called by the sqlite3_extension_init() entry point.
*/
Changes to ext/fts3/fts3Int.h.
118
119
120
121
122
123
124
125
126
127
128
129
130
131


132
133
134
135
136
137
138
  int nColumn;                    /* number of named columns in virtual table */
  char **azColumn;                /* column names.  malloced */
  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[25];

  char *zSegmentsTbl;             /* Name of %_segments table */
  int nPgsz;                      /* Page size for host database */
  int nNodeSize;                  /* Soft limit for node size */
  u8 bHasContent;                 /* True if %_content table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */


  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */

  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently







|

<
<



>
>







118
119
120
121
122
123
124
125
126


127
128
129
130
131
132
133
134
135
136
137
138
  int nColumn;                    /* number of named columns in virtual table */
  char **azColumn;                /* column names.  malloced */
  sqlite3_tokenizer *pTokenizer;  /* tokenizer for inserts and queries */

  /* Precompiled statements used by the implementation. Each of these 
  ** statements is run and reset within a single virtual table API call. 
  */
  sqlite3_stmt *aStmt[24];



  int nNodeSize;                  /* Soft limit for node size */
  u8 bHasContent;                 /* True if %_content table exists */
  u8 bHasDocsize;                 /* True if %_docsize table exists */
  int nPgsz;                      /* Page size for host database */
  char *zSegmentsTbl;             /* Name of %_segments table */
  sqlite3_blob *pSegments;        /* Blob handle open on %_segments table */

  /* The following hash table is used to buffer pending index updates during
  ** transactions. Variable nPendingData estimates the memory size of the 
  ** pending data, including hash table overhead, but not malloc overhead. 
  ** When nPendingData exceeds nMaxPendingData, the buffer is flushed 
  ** automatically. Variable iPrevDocid is the docid of the most recently
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
  Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
  sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
  char *pNextId;                  /* Pointer into the body of aDoclist */
  char *aDoclist;                 /* List of docids for full-text queries */
  int nDoclist;                   /* Size of buffer at aDoclist */
  int isMatchinfoNeeded;          /* True when aMatchinfo[] needs filling in */
  u32 *aMatchinfo;                /* Information about most recent match */

  int doDeferred;
  int nRowAvg;                    /* Average size of database rows, in pages */
};

/*
** The Fts3Cursor.eSearch member is always set to one of the following.
** Actualy, Fts3Cursor.eSearch can be greater than or equal to







<







159
160
161
162
163
164
165

166
167
168
169
170
171
172
  Fts3DeferredToken *pDeferred;   /* Deferred search tokens, if any */
  sqlite3_int64 iPrevId;          /* Previous id read from aDoclist */
  char *pNextId;                  /* Pointer into the body of aDoclist */
  char *aDoclist;                 /* List of docids for full-text queries */
  int nDoclist;                   /* Size of buffer at aDoclist */
  int isMatchinfoNeeded;          /* True when aMatchinfo[] needs filling in */
  u32 *aMatchinfo;                /* Information about most recent match */

  int doDeferred;
  int nRowAvg;                    /* Average size of database rows, in pages */
};

/*
** The Fts3Cursor.eSearch member is always set to one of the following.
** Actualy, Fts3Cursor.eSearch can be greater than or equal to
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

/*
** A "phrase" is a sequence of one or more tokens that must match in
** sequence.  A single token is the base case and the most common case.
** For a sequence of tokens contained in double-quotes (i.e. "one two three")
** nToken will be the number of tokens in the string.
*/

struct Fts3PhraseToken {
  char *z;                        /* Text of the token */
  int n;                          /* Number of bytes in buffer z */
  int isPrefix;                   /* True if token ends with a "*" character */
  Fts3SegReaderArray *pArray;
  Fts3DeferredToken *pDeferred;
};

struct Fts3Phrase {
  int nToken;                /* Number of tokens in the phrase */
  int iColumn;               /* Index of column this phrase must match */
  int isNot;                 /* Phrase prefixed by unary not (-) operator */
  Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */







<




|
|







188
189
190
191
192
193
194

195
196
197
198
199
200
201
202
203
204
205
206
207

/*
** A "phrase" is a sequence of one or more tokens that must match in
** sequence.  A single token is the base case and the most common case.
** For a sequence of tokens contained in double-quotes (i.e. "one two three")
** nToken will be the number of tokens in the string.
*/

struct Fts3PhraseToken {
  char *z;                        /* Text of the token */
  int n;                          /* Number of bytes in buffer z */
  int isPrefix;                   /* True if token ends with a "*" character */
  Fts3SegReaderArray *pArray;     /* Segment-reader for this token */
  Fts3DeferredToken *pDeferred;   /* Deferred token object for this token */
};

struct Fts3Phrase {
  int nToken;                /* Number of tokens in the phrase */
  int iColumn;               /* Index of column this phrase must match */
  int isNot;                 /* Phrase prefixed by unary not (-) operator */
  Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284
285
286
287
288
289
290
#define FTSQUERY_NEAR   1
#define FTSQUERY_NOT    2
#define FTSQUERY_AND    3
#define FTSQUERY_OR     4
#define FTSQUERY_PHRASE 5


/* fts3_init.c */
int sqlite3Fts3DeleteVtab(int, sqlite3_vtab *);
int sqlite3Fts3InitVtab(int, sqlite3*, void*, int, const char*const*, 
                        sqlite3_vtab **, char **);

/* fts3_write.c */
int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
int sqlite3Fts3PendingTermsFlush(Fts3Table *);
void sqlite3Fts3PendingTermsClear(Fts3Table *);
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(Fts3Table *,int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**);
void sqlite3Fts3SegReaderFree(Fts3Table *, Fts3SegReader *);
int sqlite3Fts3SegReaderIterate(
  Fts3Table *, Fts3SegReader **, int, Fts3SegFilter *,
  int (*)(Fts3Table *, void *, char *, int, char *, int),  void *
);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char const**, int*);
int sqlite3Fts3AllSegdirs(Fts3Table*, sqlite3_stmt **);
int sqlite3Fts3MatchinfoDocsizeLocal(Fts3Cursor*, u32*);
int sqlite3Fts3MatchinfoDocsizeGlobal(Fts3Cursor*, u32*);
int sqlite3Fts3ReadLock(Fts3Table *);


void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *);








<
<
<
<
<













|




>







252
253
254
255
256
257
258





259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#define FTSQUERY_NEAR   1
#define FTSQUERY_NOT    2
#define FTSQUERY_AND    3
#define FTSQUERY_OR     4
#define FTSQUERY_PHRASE 5







/* fts3_write.c */
int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*);
int sqlite3Fts3PendingTermsFlush(Fts3Table *);
void sqlite3Fts3PendingTermsClear(Fts3Table *);
int sqlite3Fts3Optimize(Fts3Table *);
int sqlite3Fts3SegReaderNew(Fts3Table *,int, sqlite3_int64,
  sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**);
int sqlite3Fts3SegReaderPending(Fts3Table*,const char*,int,int,Fts3SegReader**);
void sqlite3Fts3SegReaderFree(Fts3Table *, Fts3SegReader *);
int sqlite3Fts3SegReaderIterate(
  Fts3Table *, Fts3SegReader **, int, Fts3SegFilter *,
  int (*)(Fts3Table *, void *, char *, int, char *, int),  void *
);
int sqlite3Fts3SegReaderCost(Fts3Cursor *, Fts3SegReader *, int *);
int sqlite3Fts3AllSegdirs(Fts3Table*, sqlite3_stmt **);
int sqlite3Fts3MatchinfoDocsizeLocal(Fts3Cursor*, u32*);
int sqlite3Fts3MatchinfoDocsizeGlobal(Fts3Cursor*, u32*);
int sqlite3Fts3ReadLock(Fts3Table *);
int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*);

void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
char *sqlite3Fts3DeferredDoclist(Fts3DeferredToken *, int *);

Changes to ext/fts3/fts3_write.c.
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95
96
97
98
99
100
101
struct Fts3SegReader {
  int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */

  sqlite3_int64 iStartBlock;      /* Rowid of first leaf block to traverse */
  sqlite3_int64 iLeafEndBlock;    /* Rowid of final leaf block to traverse */
  sqlite3_int64 iEndBlock;        /* Rowid of final block in segment (or 0) */
  sqlite3_int64 iCurrentBlock;    /* Current leaf block (or 0) */
  sqlite3_blob *pBlob;            /* Blob open on iStartBlock */

  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */
  Fts3HashElem **ppNextElem;

  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
  char *zTerm;                    /* Pointer to current term */

  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used to iterate through the current doclist */
  char *pOffsetList;
  sqlite3_int64 iDocid;
};







<



<









>







74
75
76
77
78
79
80

81
82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
struct Fts3SegReader {
  int iIdx;                       /* Index within level, or 0x7FFFFFFF for PT */

  sqlite3_int64 iStartBlock;      /* Rowid of first leaf block to traverse */
  sqlite3_int64 iLeafEndBlock;    /* Rowid of final leaf block to traverse */
  sqlite3_int64 iEndBlock;        /* Rowid of final block in segment (or 0) */
  sqlite3_int64 iCurrentBlock;    /* Current leaf block (or 0) */


  char *aNode;                    /* Pointer to node data (or NULL) */
  int nNode;                      /* Size of buffer at aNode (or 0) */

  Fts3HashElem **ppNextElem;

  /* Variables set by fts3SegReaderNext(). These may be read directly
  ** by the caller. They are valid from the time SegmentReaderNew() returns
  ** until SegmentReaderNext() returns something other than SQLITE_OK
  ** (i.e. SQLITE_DONE).
  */
  int nTerm;                      /* Number of bytes in current term */
  char *zTerm;                    /* Pointer to current term */
  int nTermAlloc;                 /* Allocated size of zTerm buffer */
  char *aDoclist;                 /* Pointer to doclist of current entry */
  int nDoclist;                   /* Size of doclist in current entry */

  /* The following variables are used to iterate through the current doclist */
  char *pOffsetList;
  sqlite3_int64 iDocid;
};
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#define SQL_SELECT_LEVEL              12
#define SQL_SELECT_ALL_LEVEL          13
#define SQL_SELECT_LEVEL_COUNT        14
#define SQL_SELECT_SEGDIR_COUNT_MAX   15
#define SQL_DELETE_SEGDIR_BY_LEVEL    16
#define SQL_DELETE_SEGMENTS_RANGE     17
#define SQL_CONTENT_INSERT            18
#define SQL_GET_BLOCK                 19
#define SQL_DELETE_DOCSIZE            20
#define SQL_REPLACE_DOCSIZE           21
#define SQL_SELECT_DOCSIZE            22
#define SQL_SELECT_DOCTOTAL           23
#define SQL_REPLACE_DOCTOTAL          24

/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**







<
|
|
|
|
|







165
166
167
168
169
170
171

172
173
174
175
176
177
178
179
180
181
182
183
#define SQL_SELECT_LEVEL              12
#define SQL_SELECT_ALL_LEVEL          13
#define SQL_SELECT_LEVEL_COUNT        14
#define SQL_SELECT_SEGDIR_COUNT_MAX   15
#define SQL_DELETE_SEGDIR_BY_LEVEL    16
#define SQL_DELETE_SEGMENTS_RANGE     17
#define SQL_CONTENT_INSERT            18

#define SQL_DELETE_DOCSIZE            19
#define SQL_REPLACE_DOCSIZE           20
#define SQL_SELECT_DOCSIZE            21
#define SQL_SELECT_DOCTOTAL           22
#define SQL_REPLACE_DOCTOTAL          23

/*
** This function is used to obtain an SQLite prepared statement handle
** for the statement identified by the second argument. If successful,
** *pp is set to the requested statement handle and SQLITE_OK returned.
** Otherwise, an SQLite error code is returned and *pp is set to 0.
**
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

/* 14 */  "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */  "SELECT count(*), max(level) FROM %Q.'%q_segdir'",

/* 16 */  "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */  "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */  "INSERT INTO %Q.'%q_content' VALUES(%z)",
/* 19 */  "SELECT block FROM %Q.'%q_segments' WHERE blockid = ?",
/* 20 */  "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 21 */  "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 22 */  "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 23 */  "SELECT value FROM %Q.'%q_stat' WHERE id=0",
/* 24 */  "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
  };
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt;

  assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
  assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
  







<
|
|
|
|
|







214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232

/* 14 */  "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
/* 15 */  "SELECT count(*), max(level) FROM %Q.'%q_segdir'",

/* 16 */  "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
/* 17 */  "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
/* 18 */  "INSERT INTO %Q.'%q_content' VALUES(%z)",

/* 19 */  "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
/* 20 */  "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
/* 21 */  "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
/* 22 */  "SELECT value FROM %Q.'%q_stat' WHERE id=0",
/* 23 */  "REPLACE INTO %Q.'%q_stat' VALUES(0,?)",
  };
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt;

  assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
  assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
  
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
  }
  *pRC = rc;
}


/*
** Read a single block from the %_segments table. If the specified block
** does not exist, return SQLITE_CORRUPT. If some other error (malloc, IO 
** etc.) occurs, return the appropriate SQLite error code.
**
** Otherwise, if successful, set *pzBlock to point to a buffer containing
** the block read from the database, and *pnBlock to the size of the read
** block in bytes.
**
** WARNING: The returned buffer is only valid until the next call to 
** sqlite3Fts3ReadBlock().
*/
int sqlite3Fts3ReadBlock(
  Fts3Table *p,
  sqlite3_int64 iBlock,
  char const **pzBlock,
  int *pnBlock
){
  sqlite3_stmt *pStmt;
  int rc = fts3SqlStmt(p, SQL_GET_BLOCK, &pStmt, 0);
  if( rc!=SQLITE_OK ) return rc;
  sqlite3_reset(pStmt);

  if( pzBlock ){
    sqlite3_bind_int64(pStmt, 1, iBlock);
    rc = sqlite3_step(pStmt); 
    if( rc!=SQLITE_ROW ){
      return (rc==SQLITE_DONE ? SQLITE_CORRUPT : rc);
    }
  
    *pnBlock = sqlite3_column_bytes(pStmt, 0);
    *pzBlock = (char *)sqlite3_column_blob(pStmt, 0);
    if( sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
      return SQLITE_CORRUPT;
    }
  }
  return SQLITE_OK;
}

/*
** This function ensures that the caller has obtained a shared-cache
** table-lock on the %_content table. This is required before reading
** data from the fts3 table. If this lock is not acquired first, then
** the caller may end up holding read-locks on the %_segments and %_segdir
** tables, but no read-lock on the %_content table. If this happens 
** a second connection will be able to write to the fts3 table, but







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







293
294
295
296
297
298
299







































300
301
302
303
304
305
306
    sqlite3_step(pStmt);
    rc = sqlite3_reset(pStmt);
  }
  *pRC = rc;
}









































/*
** This function ensures that the caller has obtained a shared-cache
** table-lock on the %_content table. This is required before reading
** data from the fts3 table. If this lock is not acquired first, then
** the caller may end up holding read-locks on the %_segments and %_segdir
** tables, but no read-lock on the %_content table. If this happens 
** a second connection will be able to write to the fts3 table, but
591
592
593
594
595
596
597



598
599
600
601
602
603
604
    int rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}




void sqlite3Fts3PendingTermsClear(Fts3Table *p){
  Fts3HashElem *pElem;
  for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
    sqlite3_free(fts3HashData(pElem));
  }
  fts3HashClear(&p->pendingTerms);
  p->nPendingData = 0;







>
>
>







549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
    int rc = sqlite3Fts3PendingTermsFlush(p);
    if( rc!=SQLITE_OK ) return rc;
  }
  p->iPrevDocid = iDocid;
  return SQLITE_OK;
}

/*
** Discard the contents of the pending-terms hash table. 
*/
void sqlite3Fts3PendingTermsClear(Fts3Table *p){
  Fts3HashElem *pElem;
  for(pElem=fts3HashFirst(&p->pendingTerms); pElem; pElem=fts3HashNext(pElem)){
    sqlite3_free(fts3HashData(pElem));
  }
  fts3HashClear(&p->pendingTerms);
  p->nPendingData = 0;
803
804
805
806
807
808
809






















810
811
812
813
814
815
816
817
818



819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
  return rc;
}

/*
** The %_segments table is declared as follows:
**
**   CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)






















*/
static int fts3SegmentsBlob(
  Fts3Table *p,
  sqlite3_int64 iSegment,
  char **paBlob,
  int *pnBlob
){
  int rc;




  if( p->pSegments ){
    rc = sqlite3_blob_reopen(p->pSegments, iSegment);
  }else{
    if( 0==p->zSegmentsTbl ){
      p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
      if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
    }
    rc = sqlite3_blob_open(
       p->db, p->zDb, p->zSegmentsTbl, "block", iSegment, 0, &p->pSegments
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|
|
|
|

|

>
>
>

|






|







764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
  return rc;
}

/*
** The %_segments table is declared as follows:
**
**   CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
**
** This function reads data from a single row of the %_segments table. The
** specific row is identified by the iBlockid parameter. If paBlob is not
** NULL, then a buffer is allocated using sqlite3_malloc() and populated
** with the contents of the blob stored in the "block" column of the 
** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
** to the size of the blob in bytes before returning.
**
** If an error occurs, or the table does not contain the specified row,
** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
** paBlob is non-NULL, then it is the responsibility of the caller to
** eventually free the returned buffer.
**
** This function may leave an open sqlite3_blob* handle in the
** Fts3Table.pSegments variable. This handle is reused by subsequent calls
** to this function. The handle may be closed by calling the
** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
** performance improvement, but the blob handle should always be closed
** before control is returned to the user (to prevent a lock being held
** on the database file for longer than necessary). Thus, any virtual table
** method (xFilter etc.) that may directly or indirectly call this function
** must call sqlite3Fts3SegmentsClose() before returning.
*/
int sqlite3Fts3ReadBlock(
  Fts3Table *p,                   /* FTS3 table handle */
  sqlite3_int64 iBlockid,         /* Access the row with blockid=$iBlockid */
  char **paBlob,                  /* OUT: Blob data in malloc'd buffer */
  int *pnBlob                     /* OUT: Size of blob data */
){
  int rc;                         /* Return code */

  /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
  assert( pnBlob);

  if( p->pSegments ){
    rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
  }else{
    if( 0==p->zSegmentsTbl ){
      p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
      if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
    }
    rc = sqlite3_blob_open(
       p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
    );
  }

  if( rc==SQLITE_OK ){
    int nByte = sqlite3_blob_bytes(p->pSegments);
    if( paBlob ){
      char *aByte = sqlite3_malloc(nByte);
845
846
847
848
849
850
851




852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
    }
    *pnBlob = nByte;
  }

  return rc;
}





void sqlite3Fts3SegmentsClose(Fts3Table *p){
  sqlite3_blob_close(p->pSegments);
  p->pSegments = 0;
}


/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){
  char *pNext;                    /* Cursor variable */
  int nPrefix;                    /* Number of bytes in term prefix */
  int nSuffix;                    /* Number of bytes in term suffix */

  if( !pReader->aDoclist ){
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
    sqlite3_blob *pBlob;
    int rc;

    if( fts3SegReaderIsPending(pReader) ){
      Fts3HashElem *pElem = *(pReader->ppNextElem);
      if( pElem==0 ){
        pReader->aNode = 0;
      }else{
        PendingList *pList = (PendingList *)fts3HashData(pElem);







>
>
>
>




<


















<
|







831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865
866
867
868
869
870
871
    }
    *pnBlob = nByte;
  }

  return rc;
}

/*
** Close the blob handle at p->pSegments, if it is open. See comments above
** the sqlite3Fts3ReadBlock() function for details.
*/
void sqlite3Fts3SegmentsClose(Fts3Table *p){
  sqlite3_blob_close(p->pSegments);
  p->pSegments = 0;
}


/*
** Move the iterator passed as the first argument to the next term in the
** segment. If successful, SQLITE_OK is returned. If there is no next term,
** SQLITE_DONE. Otherwise, an SQLite error code.
*/
static int fts3SegReaderNext(Fts3Table *p, Fts3SegReader *pReader){
  char *pNext;                    /* Cursor variable */
  int nPrefix;                    /* Number of bytes in term prefix */
  int nSuffix;                    /* Number of bytes in term suffix */

  if( !pReader->aDoclist ){
    pNext = pReader->aNode;
  }else{
    pNext = &pReader->aDoclist[pReader->nDoclist];
  }

  if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){

    int rc;                       /* Return code from Fts3ReadBlock() */

    if( fts3SegReaderIsPending(pReader) ){
      Fts3HashElem *pElem = *(pReader->ppNextElem);
      if( pElem==0 ){
        pReader->aNode = 0;
      }else{
        PendingList *pList = (PendingList *)fts3HashData(pElem);
894
895
896
897
898
899
900

901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);
    }
    pReader->aNode = 0;

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */

    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = fts3SegmentsBlob(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode
    );

    if( rc!=SQLITE_OK ){
      return rc;
    }
    pNext = pReader->aNode;
  }
  
  pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
  pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);

  if( nPrefix+nSuffix>pReader->nTermAlloc ){







>




|


<
|
<
<







882
883
884
885
886
887
888
889
890
891
892
893
894
895
896

897


898
899
900
901
902
903
904
    if( !fts3SegReaderIsRootOnly(pReader) ){
      sqlite3_free(pReader->aNode);
    }
    pReader->aNode = 0;

    /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf 
    ** blocks have already been traversed.  */
    assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
    if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
      return SQLITE_OK;
    }

    rc = sqlite3Fts3ReadBlock(
        p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode
    );

    if( rc!=SQLITE_OK ) return rc;


    pNext = pReader->aNode;
  }
  
  pNext += sqlite3Fts3GetVarint32(pNext, &nPrefix);
  pNext += sqlite3Fts3GetVarint32(pNext, &nSuffix);

  if( nPrefix+nSuffix>pReader->nTermAlloc ){
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
  Fts3Cursor *pCsr,               /* FTS3 cursor handle */
  Fts3SegReader *pReader,         /* Segment-reader handle */
  int *pnCost                     /* IN/OUT: Number of bytes read */
){
  Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
  int rc = SQLITE_OK;             /* Return code */
  int nCost = 0;                  /* Cost in bytes to return */
  sqlite3_int64 iLeaf;            /* Used to iterate through required leaves */
  int pgsz = p->nPgsz;            /* Database page size */

  /* If this seg-reader is reading the pending-terms table, or if all data
  ** for the segment is stored on the root page of the b-tree, then the cost
  ** is zero. In this case all required data is already in main memory.
  */
  if( p->bHasDocsize 







<







993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
  Fts3Cursor *pCsr,               /* FTS3 cursor handle */
  Fts3SegReader *pReader,         /* Segment-reader handle */
  int *pnCost                     /* IN/OUT: Number of bytes read */
){
  Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
  int rc = SQLITE_OK;             /* Return code */
  int nCost = 0;                  /* Cost in bytes to return */

  int pgsz = p->nPgsz;            /* Database page size */

  /* If this seg-reader is reading the pending-terms table, or if all data
  ** for the segment is stored on the root page of the b-tree, then the cost
  ** is zero. In this case all required data is already in main memory.
  */
  if( p->bHasDocsize 
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
    }

    /* Assume that a blob flows over onto overflow pages if it is larger
    ** than (pgsz-35) bytes in size (the file-format documentation
    ** confirms this).
    */
    for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){
      rc = fts3SegmentsBlob(p, iBlock, 0, &nBlob);
      if( rc!=SQLITE_OK ) break;
      if( (nBlob+35)>pgsz ){
        int nOvfl = (nBlob + 34)/pgsz;
        nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
      }
    }
  }







|







1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
    }

    /* Assume that a blob flows over onto overflow pages if it is larger
    ** than (pgsz-35) bytes in size (the file-format documentation
    ** confirms this).
    */
    for(iBlock=pReader->iStartBlock; iBlock<=pReader->iLeafEndBlock; iBlock++){
      rc = sqlite3Fts3ReadBlock(p, iBlock, 0, &nBlob);
      if( rc!=SQLITE_OK ) break;
      if( (nBlob+35)>pgsz ){
        int nOvfl = (nBlob + 34)/pgsz;
        nCost += ((nOvfl + pCsr->nRowAvg - 1)/pCsr->nRowAvg);
      }
    }
  }
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
    pReader->nNode = nRoot;
    memcpy(pReader->aNode, zRoot, nRoot);
  }else{
    pReader->iCurrentBlock = iStartLeaf-1;
  }
  rc = fts3SegReaderNext(p, pReader);

 finished:
  if( rc==SQLITE_OK ){
    *ppReader = pReader;
  }else{
    sqlite3Fts3SegReaderFree(p, pReader);
  }
  return rc;
}







<







1115
1116
1117
1118
1119
1120
1121

1122
1123
1124
1125
1126
1127
1128
    pReader->nNode = nRoot;
    memcpy(pReader->aNode, zRoot, nRoot);
  }else{
    pReader->iCurrentBlock = iStartLeaf-1;
  }
  rc = fts3SegReaderNext(p, pReader);


  if( rc==SQLITE_OK ){
    *ppReader = pReader;
  }else{
    sqlite3Fts3SegReaderFree(p, pReader);
  }
  return rc;
}
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
}

/*
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
** (according to memcmp) than the previous term.
*/
static int fts3NodeAddTerm(
  Fts3Table *p,               /* Virtual table handle */
  SegmentNode **ppTree,           /* IN/OUT: SegmentNode handle */ 
  int isCopyTerm,                 /* True if zTerm/nTerm is transient */
  const char *zTerm,              /* Pointer to buffer containing term */
  int nTerm                       /* Size of term in bytes */
){
  SegmentNode *pTree = *ppTree;
  int rc;







|







1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
}

/*
** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
** (according to memcmp) than the previous term.
*/
static int fts3NodeAddTerm(
  Fts3Table *p,                   /* Virtual table handle */
  SegmentNode **ppTree,           /* IN/OUT: SegmentNode handle */ 
  int isCopyTerm,                 /* True if zTerm/nTerm is transient */
  const char *zTerm,              /* Pointer to buffer containing term */
  int nTerm                       /* Size of term in bytes */
){
  SegmentNode *pTree = *ppTree;
  int rc;
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, 
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
  int i;                          /* Iterator variable */
  int rc;                         /* Return code */
  int iIdx;                       /* Index of new segment */
  int iNewLevel;                  /* Level to create new segment at */
  sqlite3_stmt *pStmt = 0;
  SegmentWriter *pWriter = 0;
  int nSegment = 0;               /* Number of segments being merged */
  Fts3SegReader **apSegment = 0;  /* Array of Segment iterators */
  Fts3SegReader *pPending = 0;    /* Iterator for pending-terms */
  Fts3SegFilter filter;           /* Segment term filter condition */








|







2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, 
** an SQLite error code is returned.
*/
static int fts3SegmentMerge(Fts3Table *p, int iLevel){
  int i;                          /* Iterator variable */
  int rc;                         /* Return code */
  int iIdx;                       /* Index of new segment */
  int iNewLevel = 0;              /* Level to create new segment at */
  sqlite3_stmt *pStmt = 0;
  SegmentWriter *pWriter = 0;
  int nSegment = 0;               /* Number of segments being merged */
  Fts3SegReader **apSegment = 0;  /* Array of Segment iterators */
  Fts3SegReader *pPending = 0;    /* Iterator for pending-terms */
  Fts3SegFilter filter;           /* Segment term filter condition */

2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
    sqlite3_tokenizer *pT = p->pTokenizer;
    sqlite3_tokenizer_module const *pModule = pT->pModule;
   
    assert( pCsr->isRequireSeek==0 );
    iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
  
    for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
      const char *zText = sqlite3_column_text(pCsr->pStmt, i+1);
      sqlite3_tokenizer_cursor *pTC = 0;
  
      rc = pModule->xOpen(pT, zText, -1, &pTC);
      while( rc==SQLITE_OK ){
        char const *zToken;       /* Buffer containing token */
        int nToken;               /* Number of bytes in token */
        int iDum1, iDum2;         /* Dummy variables */







|







2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
    sqlite3_tokenizer *pT = p->pTokenizer;
    sqlite3_tokenizer_module const *pModule = pT->pModule;
   
    assert( pCsr->isRequireSeek==0 );
    iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
  
    for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
      const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
      sqlite3_tokenizer_cursor *pTC = 0;
  
      rc = pModule->xOpen(pT, zText, -1, &pTC);
      while( rc==SQLITE_OK ){
        char const *zToken;       /* Buffer containing token */
        int nToken;               /* Number of bytes in token */
        int iDum1, iDum2;         /* Dummy variables */
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*p->nColumn*2 );
  if( aSzIns==0 ) return SQLITE_NOMEM;
  aSzDel = &aSzIns[p->nColumn];
  memset(aSzIns, 0, sizeof(aSzIns[0])*p->nColumn*2);

  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    int isEmpty;
    rc = fts3IsEmpty(p, apVal, &isEmpty);
    if( rc==SQLITE_OK ){
      if( isEmpty ){
        /* Deleting this row means the whole table is empty. In this case
        ** delete the contents of all three tables and throw away any
        ** data in the pendingTerms hash table.
        */







|







2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
  aSzIns = sqlite3_malloc( sizeof(aSzIns[0])*p->nColumn*2 );
  if( aSzIns==0 ) return SQLITE_NOMEM;
  aSzDel = &aSzIns[p->nColumn];
  memset(aSzIns, 0, sizeof(aSzIns[0])*p->nColumn*2);

  /* If this is a DELETE or UPDATE operation, remove the old record. */
  if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
    int isEmpty = 0;
    rc = fts3IsEmpty(p, apVal, &isEmpty);
    if( rc==SQLITE_OK ){
      if( isEmpty ){
        /* Deleting this row means the whole table is empty. In this case
        ** delete the contents of all three tables and throw away any
        ** data in the pendingTerms hash table.
        */
Changes to test/fts3cov.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# 2009 December 03
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# The tests in this file are structural coverage tests. They are designed
# to complement the tests in fts3rnd.test and fts3doc.test. Between them,
# the three files should provide full coverage of the fts3 extension code.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#








|
<
<







1
2
3
4
5
6
7
8
9


10
11
12
13
14
15
16
# 2009 December 03
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
#
# The tests in this file are structural coverage tests for FTS3.


#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# If this build does not include FTS3, skip the tests in this file.
#
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
do_test fts3cov-2.2 {
  set root [db one {SELECT root FROM t1_segdir}]
  read_fts3varint [string range $root 1 end] left_child
  execsql { DELETE FROM t1_segments WHERE blockid = $left_child }
} {}
do_error_test fts3cov-2.3 {
  SELECT * FROM t1 WHERE t1 MATCH 'c*'
} {database disk image is malformed}

# Test the "replaced with NULL" case:
do_test fts3cov-2.4 {
  execsql { INSERT INTO t1_segments VALUES($left_child, NULL) }
} {}
do_error_test fts3cov-2.5 {
  SELECT * FROM t1 WHERE t1 MATCH 'cloud'
} {database disk image is malformed}

#--------------------------------------------------------------------------
# The following tests are to test the effects of OOM errors while storing
# terms in the pending-hash table. Specifically, while creating doclist
# blobs to store in the table. More specifically, to test OOM errors while
# appending column numbers to doclists. For example, if a doclist consists
# of:







|







|







91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
do_test fts3cov-2.2 {
  set root [db one {SELECT root FROM t1_segdir}]
  read_fts3varint [string range $root 1 end] left_child
  execsql { DELETE FROM t1_segments WHERE blockid = $left_child }
} {}
do_error_test fts3cov-2.3 {
  SELECT * FROM t1 WHERE t1 MATCH 'c*'
} {SQL logic error or missing database}

# Test the "replaced with NULL" case:
do_test fts3cov-2.4 {
  execsql { INSERT INTO t1_segments VALUES($left_child, NULL) }
} {}
do_error_test fts3cov-2.5 {
  SELECT * FROM t1 WHERE t1 MATCH 'cloud'
} {SQL logic error or missing database}

#--------------------------------------------------------------------------
# The following tests are to test the effects of OOM errors while storing
# terms in the pending-hash table. Specifically, while creating doclist
# blobs to store in the table. More specifically, to test OOM errors while
# appending column numbers to doclists. For example, if a doclist consists
# of: