SQLite

Check-in [17039ec3ff]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Rewrite the aggregate handling logic so that it runs in O(1) space. This is the first cut at the code. Many regression tests fail. (CVS 2662)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 17039ec3ff4396862beedf4a8af89654b2140f58
User & Date: drh 2005-09-07 21:22:46.000
Context
2005-09-07
22:09
Bug fixes in aggregate processing. Fewer tests fail. (CVS 2663) (check-in: c3ac58592f user: drh tags: trunk)
21:22
Rewrite the aggregate handling logic so that it runs in O(1) space. This is the first cut at the code. Many regression tests fail. (CVS 2662) (check-in: 17039ec3ff user: drh tags: trunk)
2005-09-06
21:40
Changes to reduce the amount of stack space required. (CVS 2661) (check-in: b86bd70f30 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/build.c.
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.344 2005/08/31 13:13:31 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.







|







18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
**     CREATE INDEX
**     DROP INDEX
**     creating ID lists
**     BEGIN TRANSACTION
**     COMMIT
**     ROLLBACK
**
** $Id: build.c,v 1.345 2005/09/07 21:22:46 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** This routine is called when a new SQL statement is beginning to
** be parsed.  Initialize the pParse structure as needed.
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

  /* Get the VDBE program ready for execution
  */
  if( v && pParse->nErr==0 ){
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
                         pParse->nTab+3, pParse->nMaxDepth+1, pParse->explain);
    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else if( pParse->rc==SQLITE_OK ){
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;







|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

  /* Get the VDBE program ready for execution
  */
  if( v && pParse->nErr==0 ){
    FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
    sqlite3VdbeTrace(v, trace);
    sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem+3,
                         pParse->nTab+3, pParse->explain);
    pParse->rc = SQLITE_DONE;
    pParse->colNamesSet = 0;
  }else if( pParse->rc==SQLITE_OK ){
    pParse->rc = SQLITE_ERROR;
  }
  pParse->nTab = 0;
  pParse->nMem = 0;
2464
2465
2466
2467
2468
2469
2470







































2471
2472
2473
2474
2475
2476
2477
2478

2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
    destroyRootPage(pParse, pIndex->tnum, iDb);
    sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
  }

exit_drop_index:
  sqlite3SrcListDelete(pName);
}








































/*
** Append a new element to the given IdList.  Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){

  if( pList==0 ){
    pList = sqliteMalloc( sizeof(IdList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 0;
  }
  if( pList->nId>=pList->nAlloc ){
    struct IdList_item *a;
    pList->nAlloc = pList->nAlloc*2 + 5;
    a = sqliteRealloc(pList->a, pList->nAlloc*sizeof(pList->a[0]) );
    if( a==0 ){
      sqlite3IdListDelete(pList);
      return 0;
    }
    pList->a = a;
  }
  memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
  pList->a[pList->nId].zName = sqlite3NameFromToken(pToken);
  pList->nId++;
  return pList;
}

/*
** Delete an IdList.
*/
void sqlite3IdListDelete(IdList *pList){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








>





<
<
<
|
|
|
|
|
<
<
<
|
<







2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523



2524
2525
2526
2527
2528



2529

2530
2531
2532
2533
2534
2535
2536
    destroyRootPage(pParse, pIndex->tnum, iDb);
    sqlite3VdbeOp3(v, OP_DropIndex, iDb, 0, pIndex->zName, 0);
  }

exit_drop_index:
  sqlite3SrcListDelete(pName);
}

/*
** ppArray points into a structure where there is an array pointer
** followed by two integers. The first integer is the
** number of elements in the structure array.  The second integer
** is the number of allocated slots in the array.
**
** In other words, the structure looks something like this:
**
**        struct Example1 {
**          struct subElem *aEntry;
**          int nEntry;
**          int nAlloc;
**        }
**
** The pnEntry parameter points to the equivalent of Example1.nEntry.
**
** This routine allocates a new slot in the array, zeros it out,
** and returns its index.  If malloc fails a negative number is returned.
**
** szEntry is the sizeof of a single array entry.  initSize is the 
** number of array entries allocated on the initial allocation.
*/
int sqlite3ArrayAllocate(void **ppArray, int szEntry, int initSize){
  char *p;
  int *an = (int*)&ppArray[1];
  if( an[0]>=an[1] ){
    void *pNew;
    an[1] = an[1]*2 + initSize;
    pNew = sqliteRealloc(*ppArray, an[1]*szEntry);
    if( pNew==0 ){
      return -1;
    }
    *ppArray = pNew;
  }
  p = *ppArray;
  memset(&p[an[0]*szEntry], 0, szEntry);
  return an[0]++;
}

/*
** Append a new element to the given IdList.  Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
IdList *sqlite3IdListAppend(IdList *pList, Token *pToken){
  int i;
  if( pList==0 ){
    pList = sqliteMalloc( sizeof(IdList) );
    if( pList==0 ) return 0;
    pList->nAlloc = 0;
  }



  i = sqlite3ArrayAllocate((void**)&pList->a, sizeof(pList->a[0]), 5);
  if( i<0 ){
    sqlite3IdListDelete(pList);
    return 0;
  }



  pList->a[i].zName = sqlite3NameFromToken(pToken);

  return pList;
}

/*
** Delete an IdList.
*/
void sqlite3IdListDelete(IdList *pList){
Changes to src/expr.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.224 2005/09/05 20:06:49 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.225 2005/09/07 21:22:46 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>

/*
** Return the 'affinity' of the expression pExpr if any.
**
691
692
693
694
695
696
697

698
699
700
701
702
703
704
    case TK_FUNCTION:
      if( *((int*)pArg)==2 ) return 0;
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_DOT:
    case TK_AGG_FUNCTION:

#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:
#endif
      *((int*)pArg) = 0;
      return 2;
    case TK_IN:







>







691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    case TK_FUNCTION:
      if( *((int*)pArg)==2 ) return 0;
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_DOT:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
    case TK_EXISTS:
#endif
      *((int*)pArg) = 0;
      return 2;
    case TK_IN:
1226
1227
1228
1229
1230
1231
1232

1233


1234
1235
1236





1237
1238
1239
1240
1241
1242
1243
** If the expression contains aggregate functions then set the EP_Agg
** property on the expression.
*/
int sqlite3ExprResolveNames(
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){

  if( pExpr==0 ) return 0;


  walkExprTree(pExpr, nameResolverStep, pNC);
  if( pNC->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);





  }
  return ExprHasProperty(pExpr, EP_Error);
}

/*
** A pointer instance of this structure is used to pass information
** through walkExprTree into codeSubqueryStep().







>

>
>



>
>
>
>
>







1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
** If the expression contains aggregate functions then set the EP_Agg
** property on the expression.
*/
int sqlite3ExprResolveNames(
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  Expr *pExpr             /* The expression to be analyzed. */
){
  int savedHasAgg;
  if( pExpr==0 ) return 0;
  savedHasAgg = pNC->hasAgg;
  pNC->hasAgg = 0;
  walkExprTree(pExpr, nameResolverStep, pNC);
  if( pNC->nErr>0 ){
    ExprSetProperty(pExpr, EP_Error);
  }
  if( pNC->hasAgg ){
    ExprSetProperty(pExpr, EP_Agg);
  }else if( savedHasAgg ){
    pNC->hasAgg = 1;
  }
  return ExprHasProperty(pExpr, EP_Error);
}

/*
** A pointer instance of this structure is used to pass information
** through walkExprTree into codeSubqueryStep().
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
    sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
    testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
    assert( testAddr>0 );
    sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, mem, 1);
  }

  if( pExpr->pSelect ){
    sqlite3VdbeAddOp(v, OP_AggContextPush, 0, 0);
  }

  switch( pExpr->op ){
    case TK_IN: {
      char affinity;
      KeyInfo keyInfo;
      int addr;        /* Address of OP_OpenVirtual instruction */

      affinity = sqlite3ExprAffinity(pExpr->pLeft);







<
<
<
<







1292
1293
1294
1295
1296
1297
1298




1299
1300
1301
1302
1303
1304
1305
    sqlite3VdbeAddOp(v, OP_MemLoad, mem, 0);
    testAddr = sqlite3VdbeAddOp(v, OP_If, 0, 0);
    assert( testAddr>0 );
    sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, mem, 1);
  }





  switch( pExpr->op ){
    case TK_IN: {
      char affinity;
      KeyInfo keyInfo;
      int addr;        /* Address of OP_OpenVirtual instruction */

      affinity = sqlite3ExprAffinity(pExpr->pLeft);
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
                          sqlite3Expr(TK_INTEGER, 0, 0, &one), 0);
      }
      sqlite3Select(pParse, pSel, sop, pExpr->iColumn, 0, 0, 0, 0);
      break;
    }
  }

  if( pExpr->pSelect ){
    sqlite3VdbeAddOp(v, OP_AggContextPop, 0, 0);
  }
  if( testAddr ){
    sqlite3VdbeChangeP2(v, testAddr, sqlite3VdbeCurrentAddr(v));
  }
  return;
}
#endif /* SQLITE_OMIT_SUBQUERY */








<
<
<







1404
1405
1406
1407
1408
1409
1410



1411
1412
1413
1414
1415
1416
1417
                          sqlite3Expr(TK_INTEGER, 0, 0, &one), 0);
      }
      sqlite3Select(pParse, pSel, sop, pExpr->iColumn, 0, 0, 0, 0);
      break;
    }
  }




  if( testAddr ){
    sqlite3VdbeChangeP2(v, testAddr, sqlite3VdbeCurrentAddr(v));
  }
  return;
}
#endif /* SQLITE_OMIT_SUBQUERY */

1444
1445
1446
1447
1448
1449
1450
1451

1452

1453









1454
1455
1456
1457
1458
1459
1460
1461
  if( v==0 ) return;
  if( pExpr==0 ){
    sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    return;
  }
  op = pExpr->op;
  switch( op ){
    case TK_COLUMN: {

      if( !pParse->fillAgg && pExpr->iAgg>=0 ){

        sqlite3VdbeAddOp(v, OP_AggGet, pExpr->iAggCtx, pExpr->iAgg);









      }else if( pExpr->iColumn>=0 ){
        sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
        sqlite3ColumnDefault(v, pExpr->pTab, pExpr->iColumn);
      }else{
        sqlite3VdbeAddOp(v, OP_Rowid, pExpr->iTable, 0);
      }
      break;
    }







|
>
|
>
|
>
>
>
>
>
>
>
>
>
|







1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
  if( v==0 ) return;
  if( pExpr==0 ){
    sqlite3VdbeAddOp(v, OP_Null, 0, 0);
    return;
  }
  op = pExpr->op;
  switch( op ){
    case TK_AGG_COLUMN: {
      AggInfo *pAggInfo = pExpr->pAggInfo;
      struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
      if( !pAggInfo->directMode ){
        sqlite3VdbeAddOp(v, OP_MemLoad, pCol->iMem, 0);
        break;
      }else if( pAggInfo->useSortingIdx ){
        sqlite3VdbeAddOp(v, OP_Column, pAggInfo->sortingIdx,
                              pCol->iSorterColumn);
        break;
      }
      /* Otherwise, fall thru into the TK_COLUMN case */
    }
    case TK_COLUMN: {
      if( pExpr->iColumn>=0 ){
        sqlite3VdbeAddOp(v, OP_Column, pExpr->iTable, pExpr->iColumn);
        sqlite3ColumnDefault(v, pExpr->pTab, pExpr->iColumn);
      }else{
        sqlite3VdbeAddOp(v, OP_Rowid, pExpr->iTable, 0);
      }
      break;
    }
1596
1597
1598
1599
1600
1601
1602

1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
      sqlite3ExprCode(pParse, pExpr->pLeft);
      dest = sqlite3VdbeCurrentAddr(v) + 2;
      sqlite3VdbeAddOp(v, op, 1, dest);
      sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
      break;
    }
    case TK_AGG_FUNCTION: {

      sqlite3VdbeAddOp(v, OP_AggGet, 0, pExpr->iAgg);
      break;
    }
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;
      int nExpr = pList ? pList->nExpr : 0;
      FuncDef *pDef;
      int nId;
      const char *zId;
      int p2 = 0;
      int i;
      u8 enc = pParse->db->enc;
      CollSeq *pColl = 0;
      zId = pExpr->token.z;
      nId = pExpr->token.n;
      pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
      assert( pDef!=0 );
      nExpr = sqlite3ExprCodeExprList(pParse, pList);
      for(i=0; i<nExpr && i<32; i++){
        if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
          p2 |= (1<<i);
        }
        if( pDef->needCollSeq && !pColl ){
          pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
        }
      }
      if( pDef->needCollSeq ){
        if( !pColl ) pColl = pParse->db->pDfltColl; 
        sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
      }
      sqlite3VdbeOp3(v, OP_Function, nExpr, p2, (char*)pDef, P3_FUNCDEF);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      sqlite3CodeSubselect(pParse, pExpr);
      sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);







>
|









|










|









|







1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
      sqlite3ExprCode(pParse, pExpr->pLeft);
      dest = sqlite3VdbeCurrentAddr(v) + 2;
      sqlite3VdbeAddOp(v, op, 1, dest);
      sqlite3VdbeAddOp(v, OP_AddImm, -1, 0);
      break;
    }
    case TK_AGG_FUNCTION: {
      AggInfo *pInfo = pExpr->pAggInfo;
      sqlite3VdbeAddOp(v, OP_MemLoad, pInfo->aFunc[pExpr->iAgg].iMem, 0);
      break;
    }
    case TK_CONST_FUNC:
    case TK_FUNCTION: {
      ExprList *pList = pExpr->pList;
      int nExpr = pList ? pList->nExpr : 0;
      FuncDef *pDef;
      int nId;
      const char *zId;
      int constMask = 0;
      int i;
      u8 enc = pParse->db->enc;
      CollSeq *pColl = 0;
      zId = pExpr->token.z;
      nId = pExpr->token.n;
      pDef = sqlite3FindFunction(pParse->db, zId, nId, nExpr, enc, 0);
      assert( pDef!=0 );
      nExpr = sqlite3ExprCodeExprList(pParse, pList);
      for(i=0; i<nExpr && i<32; i++){
        if( sqlite3ExprIsConstant(pList->a[i].pExpr) ){
          constMask |= (1<<i);
        }
        if( pDef->needCollSeq && !pColl ){
          pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
        }
      }
      if( pDef->needCollSeq ){
        if( !pColl ) pColl = pParse->db->pDfltColl; 
        sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
      }
      sqlite3VdbeOp3(v, OP_Function, constMask, nExpr, (char*)pDef, P3_FUNCDEF);
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_EXISTS:
    case TK_SELECT: {
      sqlite3CodeSubselect(pParse, pExpr);
      sqlite3VdbeAddOp(v, OP_MemLoad, pExpr->iColumn, 0);
2043
2044
2045
2046
2047
2048
2049

2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062

2063
2064










2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080


2081
2082
2083




2084

2085






2086
2087
2088
2089
2090
2091
2092
2093
2094




2095
2096
2097

2098

2099

2100




2101











2102

2103
2104
2105


2106
2107
2108
2109


2110



2111
2112
2113
2114
2115
2116
2117
2118


2119
2120
2121
2122
2123
2124

2125
2126
2127
2128



2129

2130
2131
2132
2133





2134
2135
2136
2137
2138
2139
2140
    if( pB->token.z==0 ) return 0;
    if( pB->token.n!=pA->token.n ) return 0;
    if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
  }
  return 1;
}


/*
** Add a new element to the pParse->aAgg[] array and return its index.
** The new element is initialized to zero.  The calling function is
** expected to fill it in.
*/
static int appendAggInfo(Parse *pParse){
  if( (pParse->nAgg & 0x7)==0 ){
    int amt = pParse->nAgg + 8;
    AggExpr *aAgg = sqliteRealloc(pParse->aAgg, amt*sizeof(pParse->aAgg[0]));
    if( aAgg==0 ){
      return -1;
    }
    pParse->aAgg = aAgg;

  }
  memset(&pParse->aAgg[pParse->nAgg], 0, sizeof(pParse->aAgg[0]));










  return pParse->nAgg++;
}

/*
** This is an xFunc for walkExprTree() used to implement 
** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
** for additional information.
**
** This routine analyzes the aggregate function at pExpr.
*/
static int analyzeAggregate(void *pArg, Expr *pExpr){
  int i;
  AggExpr *pAgg;
  NameContext *pNC = (NameContext *)pArg;
  Parse *pParse = pNC->pParse;
  SrcList *pSrcList = pNC->pSrcList;



  switch( pExpr->op ){
    case TK_COLUMN: {




      for(i=0; pSrcList && i<pSrcList->nSrc; i++){

        if( pExpr->iTable==pSrcList->a[i].iCursor ){






          pAgg = pParse->aAgg;
          for(i=0; i<pParse->nAgg; i++, pAgg++){
            Expr *pE;
            if( pAgg->isAgg ) continue;
            pE = pAgg->pExpr;
            if( pE->iTable==pExpr->iTable && pE->iColumn==pExpr->iColumn ){
              break;
            }
          }




          if( i>=pParse->nAgg ){
            i = appendAggInfo(pParse);
            if( i<0 ) return 1;

            pAgg = &pParse->aAgg[i];

            pAgg->isAgg = 0;

            pAgg->pExpr = pExpr;




          }











          pExpr->iAgg = i;

          pExpr->iAggCtx = pNC->nDepth;
          return 1;
        }


      }
      return 1;
    }
    case TK_AGG_FUNCTION: {


      if( pNC->nDepth==0 ){



        pAgg = pParse->aAgg;
        for(i=0; i<pParse->nAgg; i++, pAgg++){
          if( !pAgg->isAgg ) continue;
          if( sqlite3ExprCompare(pAgg->pExpr, pExpr) ){
            break;
          }
        }
        if( i>=pParse->nAgg ){


          u8 enc = pParse->db->enc;
          i = appendAggInfo(pParse);
          if( i<0 ) return 1;
          pAgg = &pParse->aAgg[i];
          pAgg->isAgg = 1;
          pAgg->pExpr = pExpr;

          pAgg->pFunc = sqlite3FindFunction(pParse->db,
               pExpr->token.z, pExpr->token.n,
               pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
        }



        pExpr->iAgg = i;

        return 1;
      }
    }
  }





  if( pExpr->pSelect ){
    pNC->nDepth++;
    walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
    pNC->nDepth--;
  }
  return 0;
}







>

|
|
<

|
<
|
|
|
|
|
<
>
|
|
>
>
>
>
>
>
>
>
>
>
|
|










<



>
>



>
>
>
>
|
>
|
>
>
>
>
>
>
|
|
|
<
<
|
|
|
|
>
>
>
>
|
|
|
>
|
>
|
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
>
|
|
<
>
>




>
>

>
>
>
|
|
<
|



|
>
>

|
|
|
<
|
>
|
|
|
|
>
>
>

>




>
>
>
>
>







2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067

2068
2069

2070
2071
2072
2073
2074

2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099

2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123


2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160

2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174

2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185

2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
    if( pB->token.z==0 ) return 0;
    if( pB->token.n!=pA->token.n ) return 0;
    if( sqlite3StrNICmp(pA->token.z, pB->token.z, pB->token.n)!=0 ) return 0;
  }
  return 1;
}


/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.

*/
static int addAggInfoColumn(AggInfo *pInfo){

  int i;
  i = sqlite3ArrayAllocate((void**)&pInfo->aCol, sizeof(pInfo->aCol[0]), 3);
  if( i<0 ){
    return -1;
  }

  return i;
}    

/*
** Add a new element to the pAggInfo->aFunc[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoFunc(AggInfo *pInfo){
  int i;
  i = sqlite3ArrayAllocate((void**)&pInfo->aFunc, sizeof(pInfo->aFunc[0]), 2);
  if( i<0 ){
    return -1;
  }
  return i;
}    

/*
** This is an xFunc for walkExprTree() used to implement 
** sqlite3ExprAnalyzeAggregates().  See sqlite3ExprAnalyzeAggregates
** for additional information.
**
** This routine analyzes the aggregate function at pExpr.
*/
static int analyzeAggregate(void *pArg, Expr *pExpr){
  int i;

  NameContext *pNC = (NameContext *)pArg;
  Parse *pParse = pNC->pParse;
  SrcList *pSrcList = pNC->pSrcList;
  AggInfo *pAggInfo = pNC->pAggInfo;
  

  switch( pExpr->op ){
    case TK_COLUMN: {
      /* Check to see if the column is in one of the tables in the FROM
      ** clause of the aggregate query */
      if( pSrcList ){
        struct SrcList_item *pItem = pSrcList->a;
        for(i=0; i<pSrcList->nSrc; i++, pItem++){
          struct AggInfo_col *pCol;
          if( pExpr->iTable==pItem->iCursor ){
            /* If we reach this point, it means that pExpr refers to a table
            ** that is in the FROM clause of the aggregate query.  
            **
            ** Make an entry for the column in pAggInfo->aCol[] if there
            ** is not an entry there already.
            */
            pCol = pAggInfo->aCol;
            for(i=0; i<pAggInfo->nColumn; i++, pCol++){
              if( pCol->iTable==pExpr->iTable &&


                  pCol->iColumn==pExpr->iColumn ){
                break;
              }
            }
            if( i>=pAggInfo->nColumn && (i = addAggInfoColumn(pAggInfo))>=0 ){
              pCol = &pAggInfo->aCol[i];
              pCol->iTable = pExpr->iTable;
              pCol->iColumn = pExpr->iColumn;
              pCol->iMem = pParse->nMem++;
              pCol->iSorterColumn = -1;
              if( pAggInfo->pGroupBy ){
                int j, n;
                ExprList *pGB = pAggInfo->pGroupBy;
                struct ExprList_item *pTerm = pGB->a;
                n = pGB->nExpr;
                for(j=0; j<n; j++, pTerm++){
                  Expr *pE = pTerm->pExpr;
                  if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
                      pE->iColumn==pExpr->iColumn ){
                    pCol->iSorterColumn = j;
                    break;
                  }
                }
              }
              if( pCol->iSorterColumn<0 ){
                pCol->iSorterColumn = pAggInfo->nSortingColumn++;
              }
            }
            /* There is now an entry for pExpr in pAggInfo->aCol[] (either
            ** because it was there before or because we just created it).
            ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
            ** pAggInfo->aCol[] entry.
            */
            pExpr->pAggInfo = pAggInfo;
            pExpr->op = TK_AGG_COLUMN;
            pExpr->iAgg = i;
            break;

          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return 1;
    }
    case TK_AGG_FUNCTION: {
      /* The pNC->nDepth==0 test causes aggregate functions in subqueries
      ** to be ignored */
      if( pNC->nDepth==0 ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){

          if( sqlite3ExprCompare(pItem->pExpr, pExpr) ){
            break;
          }
        }
        if( i>=pAggInfo->nFunc ){
          /* pExpr is original.  Make a new entry in pAggInfo->aFunc[]
          */
          u8 enc = pParse->db->enc;
          i = addAggInfoFunc(pAggInfo);
          if( i>=0 ){
            pItem = &pAggInfo->aFunc[i];

            pItem->pExpr = pExpr;
            pItem->iMem = pParse->nMem++;
            pItem->pFunc = sqlite3FindFunction(pParse->db,
                   pExpr->token.z, pExpr->token.n,
                   pExpr->pList ? pExpr->pList->nExpr : 0, enc, 0);
          }
        }
        /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
        */
        pExpr->iAgg = i;
        pExpr->pAggInfo = pAggInfo;
        return 1;
      }
    }
  }

  /* Recursively walk subqueries looking for TK_COLUMN nodes that need
  ** to be changed to TK_AGG_COLUMN.  But increment nDepth so that
  ** TK_AGG_FUNCTION nodes in subqueries will be unchanged.
  */
  if( pExpr->pSelect ){
    pNC->nDepth++;
    walkSelectExpr(pExpr->pSelect, analyzeAggregate, pNC);
    pNC->nDepth--;
  }
  return 0;
}
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.300 2005/08/29 23:00:04 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** The following constant value is used by the SQLITE_BIGENDIAN and







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.301 2005/09/07 21:22:46 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** The following constant value is used by the SQLITE_BIGENDIAN and
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
*/
int sqlite3_reset(sqlite3_stmt *pStmt){
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    rc = sqlite3VdbeReset((Vdbe*)pStmt);
    sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0, 0, 0, 0);
  }
  return rc;
}

/*
** Register a new collation sequence with the database handle db.
*/







|







871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
*/
int sqlite3_reset(sqlite3_stmt *pStmt){
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    rc = sqlite3VdbeReset((Vdbe*)pStmt);
    sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0, 0, 0);
  }
  return rc;
}

/*
** Register a new collation sequence with the database handle db.
*/
Changes to src/parse.y.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.175 2005/07/08 12:13:05 drh Exp $
*/

// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_

// The type of the data attached to each token is Token.  This is also the
// default type for non-terminals.







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** This file contains SQLite's grammar for SQL.  Process this file
** using the lemon parser generator to generate C code that runs
** the parser.  Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.176 2005/09/07 21:22:46 drh Exp $
*/

// All token codes are small integers with #defines that begin with "TK_"
%token_prefix TK_

// The type of the data attached to each token is Token.  This is also the
// default type for non-terminals.
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
} // end %include

// These are extra tokens used by the lexer but never seen by the
// parser.  We put them in a rule so that the parser generator will
// add them to the parse.h output file.
//
%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
          COLUMN AGG_FUNCTION CONST_FUNC.

// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
ecmd ::= SEMI.







|







89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
} // end %include

// These are extra tokens used by the lexer but never seen by the
// parser.  We put them in a rule so that the parser generator will
// add them to the parse.h output file.
//
%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
          COLUMN AGG_FUNCTION AGG_COLUMN CONST_FUNC.

// Input is a single SQL command
input ::= cmdlist.
cmdlist ::= cmdlist ecmd.
cmdlist ::= ecmd.
cmdx ::= cmd.           { sqlite3FinishCoding(pParse); }
ecmd ::= SEMI.
Changes to src/select.c.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.260 2005/09/05 20:06:49 drh Exp $
*/
#include "sqliteInt.h"


/*
** Allocate a new Select structure and return a pointer to that
** structure.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the parser
** to handle SELECT statements in SQLite.
**
** $Id: select.c,v 1.261 2005/09/07 21:22:47 drh Exp $
*/
#include "sqliteInt.h"


/*
** Allocate a new Select structure and return a pointer to that
** structure.
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
static void codeLimiter(
  Vdbe *v,          /* Generate code into this VM */
  Select *p,        /* The SELECT statement being coded */
  int iContinue,    /* Jump here to skip the current record */
  int iBreak,       /* Jump here to end the loop */
  int nPop          /* Number of times to pop stack when jumping */
){
  if( p->iOffset>=0 ){
    int addr = sqlite3VdbeCurrentAddr(v) + 3;
    if( nPop>0 ) addr++;
    sqlite3VdbeAddOp(v, OP_MemIncr, p->iOffset, 0);
    sqlite3VdbeAddOp(v, OP_IfMemPos, p->iOffset, addr);
    if( nPop>0 ){
      sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
    }
    sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "# skip OFFSET records"));
  }
  if( p->iLimit>=0 ){
    sqlite3VdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
    VdbeComment((v, "# exit when LIMIT reached"));
  }
}

/*
** This routine generates the code for the inside of the inner loop







|










|







342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
static void codeLimiter(
  Vdbe *v,          /* Generate code into this VM */
  Select *p,        /* The SELECT statement being coded */
  int iContinue,    /* Jump here to skip the current record */
  int iBreak,       /* Jump here to end the loop */
  int nPop          /* Number of times to pop stack when jumping */
){
  if( p->iOffset>=0 && iContinue!=0 ){
    int addr = sqlite3VdbeCurrentAddr(v) + 3;
    if( nPop>0 ) addr++;
    sqlite3VdbeAddOp(v, OP_MemIncr, p->iOffset, 0);
    sqlite3VdbeAddOp(v, OP_IfMemPos, p->iOffset, addr);
    if( nPop>0 ){
      sqlite3VdbeAddOp(v, OP_Pop, nPop, 0);
    }
    sqlite3VdbeAddOp(v, OP_Goto, 0, iContinue);
    VdbeComment((v, "# skip OFFSET records"));
  }
  if( p->iLimit>=0 && iBreak!=0 ){
    sqlite3VdbeAddOp(v, OP_MemIncr, p->iLimit, iBreak);
    VdbeComment((v, "# exit when LIMIT reached"));
  }
}

/*
** This routine generates the code for the inside of the inner loop
431
432
433
434
435
436
437
438
439
440
441

442
443

444

445
446
447
448
449
450
451
    sqlite3VdbeAddOp(v, OP_IdxInsert, distinct, 0);
    if( pOrderBy==0 ){
      codeLimiter(v, p, iContinue, iBreak, nColumn);
    }
  }

  switch( eDest ){
#ifndef SQLITE_OMIT_COMPOUND_SELECT
    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */

    case SRT_Union: {
      sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);

      sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);

      sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.







<



>


>
|
>







431
432
433
434
435
436
437

438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    sqlite3VdbeAddOp(v, OP_IdxInsert, distinct, 0);
    if( pOrderBy==0 ){
      codeLimiter(v, p, iContinue, iBreak, nColumn);
    }
  }

  switch( eDest ){

    /* In this mode, write each query result to the key of the temporary
    ** table iParm.
    */
#ifndef SQLITE_OMIT_COMPOUND_SELECT
    case SRT_Union: {
      sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, NULL_ALWAYS_DISTINCT);
      if( aff ){
        sqlite3VdbeChangeP3(v, -1, aff, P3_STATIC);
      }
      sqlite3VdbeAddOp(v, OP_IdxInsert, iParm, 0);
      break;
    }

    /* Construct a record from the query result, but instead of
    ** saving that record, use it as a key to delete elements from
    ** the temporary table iParm.
1345
1346
1347
1348
1349
1350
1351














1352
1353
1354
1355
1356
1357
1358
    pOrderBy->iTab = pParse->nTab++;
    addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenVirtual,
                            pOrderBy->iTab, pOrderBy->nExpr+1);
    assert( p->addrOpenVirt[2] == -1 );
    p->addrOpenVirt[2] = addr;
  }
}















#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
** the result set for the compound-select statement "p".  Return NULL if
** the column has no default collating sequence.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>







1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
    pOrderBy->iTab = pParse->nTab++;
    addr = sqlite3VdbeAddOp(pParse->pVdbe, OP_OpenVirtual,
                            pOrderBy->iTab, pOrderBy->nExpr+1);
    assert( p->addrOpenVirt[2] == -1 );
    p->addrOpenVirt[2] = addr;
  }
}

/*
** The opcode at addr is an OP_OpenVirtual that created a sorting
** index tha we ended up not needing.  This routine changes that
** opcode to OP_Noop.
*/
static void uncreateSortingIndex(Parse *pParse, int addr){
  Vdbe *v = pParse->pVdbe;
  VdbeOp *pOp = sqlite3VdbeGetOp(v, addr);
  sqlite3VdbeChangeP3(v, addr, 0, 0);
  pOp->opcode = OP_Noop;
  pOp->p1 = 0;
  pOp->p2 = 0;
}

#ifndef SQLITE_OMIT_COMPOUND_SELECT
/*
** Return the appropriate collating sequence for the iCol-th column of
** the result set for the compound-select statement "p".  Return NULL if
** the column has no default collating sequence.
**
2272
2273
2274
2275
2276
2277
2278

2279
2280
2281
2282
2283
2284
2285
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* The outer name context. May be NULL. */
){
  ExprList *pEList;          /* Result set. */
  int i;                     /* For-loop variable used in multiple places */
  NameContext sNC;           /* Local name-context */


  /* If this routine has run before, return immediately. */
  if( p->isResolved ){
    assert( !pOuterNC );
    return SQLITE_OK;
  }
  p->isResolved = 1;







>







2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
  Parse *pParse,         /* The parser context */
  Select *p,             /* The SELECT statement being coded. */
  NameContext *pOuterNC  /* The outer name context. May be NULL. */
){
  ExprList *pEList;          /* Result set. */
  int i;                     /* For-loop variable used in multiple places */
  NameContext sNC;           /* Local name-context */
  ExprList *pGroupBy;        /* The group by clause */

  /* If this routine has run before, return immediately. */
  if( p->isResolved ){
    assert( !pOuterNC );
    return SQLITE_OK;
  }
  p->isResolved = 1;
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347

2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376














2377
2378
2379
2380
2381
2382
2383
2384

2385


2386
2387

2388





2389
2390


2391

2392



2393
2394
2395









2396



2397
2398
2399




2400





2401


2402
2403






2404
2405
2406
2407
2408
2409
2410

2411









2412



2413
2414
2415

2416
2417
2418
2419
2420
2421
2422
  /* Set up the local name-context to pass to ExprResolveNames() to
  ** resolve the expression-list.
  */
  sNC.allowAgg = 1;
  sNC.pSrcList = p->pSrc;
  sNC.pNext = pOuterNC;

  /* NameContext.nDepth stores the depth of recursion for this query. For
  ** an outer query (e.g. SELECT * FROM sqlite_master) this is 1. For
  ** a subquery it is 2. For a subquery of a subquery, 3. And so on. 
  ** Parse.nMaxDepth is the maximum depth for any subquery resolved so
  ** far. This is used to determine the number of aggregate contexts
  ** required at runtime.
  */
  sNC.nDepth = (pOuterNC?pOuterNC->nDepth+1:1);
  if( sNC.nDepth>pParse->nMaxDepth ){
    pParse->nMaxDepth = sNC.nDepth;
  }

  /* Resolve names in the result set. */
  pEList = p->pEList;
  if( !pEList ) return SQLITE_ERROR;
  for(i=0; i<pEList->nExpr; i++){
    Expr *pX = pEList->a[i].pExpr;
    if( sqlite3ExprResolveNames(&sNC, pX) ){
      return SQLITE_ERROR;
    }
  }

  /* If there are no aggregate functions in the result-set, and no GROUP BY 
  ** expression, do not allow aggregates in any of the other expressions.
  */
  assert( !p->isAgg );

  if( p->pGroupBy || sNC.hasAgg ){
    p->isAgg = 1;
  }else{
    sNC.allowAgg = 0;
  }

  /* If a HAVING clause is present, then there must be a GROUP BY clause.
  */
  if( p->pHaving && !p->pGroupBy ){
    sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
    return SQLITE_ERROR;
  }

  /* Add the expression list to the name-context before parsing the
  ** other expressions in the SELECT statement. This is so that
  ** expressions in the WHERE clause (etc.) can refer to expressions by
  ** aliases in the result set.
  **
  ** Minor point: If this is the case, then the expression will be
  ** re-evaluated for each reference to it.
  */
  sNC.pEList = p->pEList;
  if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
      sqlite3ExprResolveNames(&sNC, p->pHaving) ||
      processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
      processOrderGroupBy(&sNC, p->pGroupBy, "GROUP")
  ){
    return SQLITE_ERROR;
  }















  return SQLITE_OK;
}

/*
** An instance of the following struct is used by sqlite3Select()
** to save aggregate related information from the Parse object
** at the start of each call and to restore it at the end. See

** saveAggregateInfo() and restoreAggregateInfo().


*/ 
struct AggregateInfo {

  int nAgg;





  AggExpr *aAgg;
};


typedef struct AggregateInfo AggregateInfo;





/* 
** Copy aggregate related information from the Parse structure
** into the AggregateInfo structure. Zero the aggregate related









** values in the Parse struct.



*/
static void saveAggregateInfo(Parse *pParse, AggregateInfo *pInfo){
  pInfo->aAgg = pParse->aAgg;




  pInfo->nAgg = pParse->nAgg;





  pParse->aAgg = 0;


  pParse->nAgg = 0;
}







/*
** Copy aggregate related information from the AggregateInfo struct
** back into the Parse structure. The aggregate related information
** currently stored in the Parse structure is deleted.
*/
static void restoreAggregateInfo(Parse *pParse, AggregateInfo *pInfo){

  sqliteFree(pParse->aAgg);









  pParse->aAgg = pInfo->aAgg;



  pParse->nAgg = pInfo->nAgg;
}
  

/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** value of eDest and iParm.
**
**     eDest Value       Result







<
<
<
<
<
<
<
<
<
<
<
<














>
|







|
















|



>
>
>
>
>
>
>
>
>
>
>
>
>
>





<
|
<
>
|
>
>
|
|
>
|
>
>
>
>
>
|
<
>
>
|
>
|
>
>
>
|
|
|
>
>
>
>
>
>
>
>
>
|
>
>
>

|
|
>
>
>
>
|
>
>
>
>
>
|
>
>
|
|
>
>
>
>
>
>
|
<
<
<
<
<
<
>
|
>
>
>
>
>
>
>
>
>
|
>
>
>
|

|
>







2332
2333
2334
2335
2336
2337
2338












2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401

2402

2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416

2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465






2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
  /* Set up the local name-context to pass to ExprResolveNames() to
  ** resolve the expression-list.
  */
  sNC.allowAgg = 1;
  sNC.pSrcList = p->pSrc;
  sNC.pNext = pOuterNC;













  /* Resolve names in the result set. */
  pEList = p->pEList;
  if( !pEList ) return SQLITE_ERROR;
  for(i=0; i<pEList->nExpr; i++){
    Expr *pX = pEList->a[i].pExpr;
    if( sqlite3ExprResolveNames(&sNC, pX) ){
      return SQLITE_ERROR;
    }
  }

  /* If there are no aggregate functions in the result-set, and no GROUP BY 
  ** expression, do not allow aggregates in any of the other expressions.
  */
  assert( !p->isAgg );
  pGroupBy = p->pGroupBy;
  if( pGroupBy || sNC.hasAgg ){
    p->isAgg = 1;
  }else{
    sNC.allowAgg = 0;
  }

  /* If a HAVING clause is present, then there must be a GROUP BY clause.
  */
  if( p->pHaving && !pGroupBy ){
    sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING");
    return SQLITE_ERROR;
  }

  /* Add the expression list to the name-context before parsing the
  ** other expressions in the SELECT statement. This is so that
  ** expressions in the WHERE clause (etc.) can refer to expressions by
  ** aliases in the result set.
  **
  ** Minor point: If this is the case, then the expression will be
  ** re-evaluated for each reference to it.
  */
  sNC.pEList = p->pEList;
  if( sqlite3ExprResolveNames(&sNC, p->pWhere) ||
      sqlite3ExprResolveNames(&sNC, p->pHaving) ||
      processOrderGroupBy(&sNC, p->pOrderBy, "ORDER") ||
      processOrderGroupBy(&sNC, pGroupBy, "GROUP")
  ){
    return SQLITE_ERROR;
  }

  /* Make sure the GROUP BY clause does not contain aggregate functions.
  */
  if( pGroupBy ){
    struct ExprList_item *pItem;
  
    for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){
      if( ExprHasProperty(pItem->pExpr, EP_Agg) ){
        sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in "
            "the GROUP BY clause");
        return SQLITE_ERROR;
      }
    }
  }

  return SQLITE_OK;
}

/*

** Reset the aggregate accumulator.

**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This
** routine simply stores NULLs in all of those memory cells.
*/
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  int addr;
  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
    return;
  }
  sqlite3VdbeAddOp(v, OP_Null, 0, 0);
  for(i=0; i<pAggInfo->nColumn; i++){

    addr = sqlite3VdbeAddOp(v, OP_MemStore, pAggInfo->aCol[i].iMem, 0);
  }
  for(i=0; i<pAggInfo->nFunc; i++){
    addr = sqlite3VdbeAddOp(v, OP_MemStore, pAggInfo->aFunc[i].iMem, 0);
  }
  sqlite3VdbeChangeP2(v, addr, 1);
}

/*
** Invoke the OP_AggFinalize opcode for every aggregate function
** in the AggInfo structure.
*/
static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    sqlite3VdbeAddOp(v, OP_AggFinal, pF->iMem, 0);
  }
}

/*
** Update the accumulator memory cells for an aggregate based on
** the current cursor position.
*/
static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pF;
  struct AggInfo_col *pC;
  Expr fauxExpr;

  pAggInfo->directMode = 1;
  for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
    int nArg;
    ExprList *pList = pF->pExpr->pList;
    if( pList ){
      nArg = pList->nExpr;
      sqlite3ExprCodeExprList(pParse, pList);
    }else{
      nArg = 0;
    }
    if( pF->pFunc->needCollSeq ){
      CollSeq *pColl = 0;
      struct ExprList_item *pItem;
      int j;
      for(j=0, pItem=pList->a; !pColl && j<pList->nExpr; j++, pItem++){
        pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      }






      if( !pColl ){
        pColl = pParse->db->pDfltColl;
      }
      sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
    }
    sqlite3VdbeOp3(v, OP_AggStep, pF->iMem, nArg, (void*)pF->pFunc, P3_FUNCDEF);
  }
  memset(&fauxExpr, 0, sizeof(fauxExpr));
  fauxExpr.op = TK_AGG_COLUMN;
  fauxExpr.pAggInfo = pAggInfo;
  for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
    fauxExpr.iAgg = i;
    sqlite3ExprCode(pParse, &fauxExpr);
    sqlite3VdbeAddOp(v, OP_MemStore, pC->iMem, 1);
  }
  pAggInfo->directMode = 0;
}


/*
** Generate code for the given SELECT statement.
**
** The results are distributed in various ways depending on the
** value of eDest and iParm.
**
**     eDest Value       Result
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494

2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512

2513
2514
2515
2516
2517
2518
2519
  int eDest,             /* How to dispose of the results */
  int iParm,             /* A parameter used by the eDest disposal method */
  Select *pParent,       /* Another SELECT for which this is a sub-query */
  int parentTab,         /* Index in pParent->pSrc of this query */
  int *pParentAgg,       /* True if pParent uses aggregate functions */
  char *aff              /* If eDest is SRT_Union, the affinity string */
){
  int i;
  WhereInfo *pWInfo;
  Vdbe *v;
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int isDistinct;        /* True if the DISTINCT keyword is present */
  int distinct;          /* Table to use for the distinct set */
  int rc = 1;            /* Value to return from this function */
  AggregateInfo sAggInfo;

  if( sqlite3_malloc_failed || pParse->nErr || p==0 ) return 1;
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;


#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    if( p->pRightmost==0 ){
      Select *pLoop;
      for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
        pLoop->pRightmost = p;
      }
    }
    return multiSelect(pParse, p, eDest, iParm, aff);
  }
#endif

  saveAggregateInfo(pParse, &sAggInfo);
  pOrderBy = p->pOrderBy;
  if( eDest==SRT_Union || eDest==SRT_Except || eDest==SRT_Discard ){

    p->pOrderBy = 0;
  }
  if( sqlite3SelectResolve(pParse, p, 0) ){
    goto select_end;
  }
  p->pOrderBy = pOrderBy;








|
|
|










|



>















<

<
>







2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579

2580

2581
2582
2583
2584
2585
2586
2587
2588
  int eDest,             /* How to dispose of the results */
  int iParm,             /* A parameter used by the eDest disposal method */
  Select *pParent,       /* Another SELECT for which this is a sub-query */
  int parentTab,         /* Index in pParent->pSrc of this query */
  int *pParentAgg,       /* True if pParent uses aggregate functions */
  char *aff              /* If eDest is SRT_Union, the affinity string */
){
  int i, j;              /* Loop counters */
  WhereInfo *pWInfo;     /* Return from sqlite3WhereBegin() */
  Vdbe *v;               /* The virtual machine under construction */
  int isAgg;             /* True for select lists like "count(*)" */
  ExprList *pEList;      /* List of columns to extract. */
  SrcList *pTabList;     /* List of tables to select from */
  Expr *pWhere;          /* The WHERE clause.  May be NULL */
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int isDistinct;        /* True if the DISTINCT keyword is present */
  int distinct;          /* Table to use for the distinct set */
  int rc = 1;            /* Value to return from this function */
  AggInfo sAggInfo;      /* Information used by aggregate queries */

  if( sqlite3_malloc_failed || pParse->nErr || p==0 ) return 1;
  if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
  memset(&sAggInfo, 0, sizeof(sAggInfo));

#ifndef SQLITE_OMIT_COMPOUND_SELECT
  /* If there is are a sequence of queries, do the earlier ones first.
  */
  if( p->pPrior ){
    if( p->pRightmost==0 ){
      Select *pLoop;
      for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
        pLoop->pRightmost = p;
      }
    }
    return multiSelect(pParse, p, eDest, iParm, aff);
  }
#endif


  pOrderBy = p->pOrderBy;

  if( IgnorableOrderby(eDest) ){
    p->pOrderBy = 0;
  }
  if( sqlite3SelectResolve(pParse, p, 0) ){
    goto select_end;
  }
  p->pOrderBy = pOrderBy;

2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578

2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
       "a SELECT that is part of an expression");
    goto select_end;
  }
#endif

  /* ORDER BY is ignored for some destinations.
  */
  switch( eDest ){
    case SRT_Union:
    case SRT_Except:
    case SRT_Discard:
      pOrderBy = 0;
      break;
    default:
      break;
  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;

  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  /* Generate code for all sub-queries in the FROM clause
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; i<pTabList->nSrc; i++){
    const char *zSavedAuthContext = 0;
    int needRestoreContext;


    if( pTabList->a[i].pSelect==0 ) continue;
    if( pTabList->a[i].zName!=0 ){
      zSavedAuthContext = pParse->zAuthContext;
      pParse->zAuthContext = pTabList->a[i].zName;
      needRestoreContext = 1;
    }else{
      needRestoreContext = 0;
    }
    sqlite3Select(pParse, pTabList->a[i].pSelect, SRT_TempTable, 
                 pTabList->a[i].iCursor, p, i, &isAgg, 0);
    if( needRestoreContext ){
      pParse->zAuthContext = zSavedAuthContext;
    }
    pTabList = p->pSrc;
    pWhere = p->pWhere;
    if( eDest!=SRT_Union && eDest!=SRT_Except && eDest!=SRT_Discard ){
      pOrderBy = p->pOrderBy;
    }
    pGroupBy = p->pGroupBy;
    pHaving = p->pHaving;
    isDistinct = p->isDistinct;
  }
#endif







|
<
<
<
|
<
<
<




















>

|
|

|




|
|





|







2613
2614
2615
2616
2617
2618
2619
2620



2621



2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
       "a SELECT that is part of an expression");
    goto select_end;
  }
#endif

  /* ORDER BY is ignored for some destinations.
  */
  if( IgnorableOrderby(eDest) ){



    pOrderBy = 0;



  }

  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;

  /* Identify column names if we will be using them in a callback.  This
  ** step is skipped if the output is going to some other destination.
  */
  if( eDest==SRT_Callback ){
    generateColumnNames(pParse, pTabList, pEList);
  }

  /* Generate code for all sub-queries in the FROM clause
  */
#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
  for(i=0; i<pTabList->nSrc; i++){
    const char *zSavedAuthContext = 0;
    int needRestoreContext;
    struct SrcList_item *pItem = &pTabList->a[i];

    if( pItem->pSelect==0 ) continue;
    if( pItem->zName!=0 ){
      zSavedAuthContext = pParse->zAuthContext;
      pParse->zAuthContext = pItem->zName;
      needRestoreContext = 1;
    }else{
      needRestoreContext = 0;
    }
    sqlite3Select(pParse, pItem->pSelect, SRT_TempTable, 
                 pItem->iCursor, p, i, &isAgg, 0);
    if( needRestoreContext ){
      pParse->zAuthContext = zSavedAuthContext;
    }
    pTabList = p->pSrc;
    pWhere = p->pWhere;
    if( !IgnorableOrderby(eDest) ){
      pOrderBy = p->pOrderBy;
    }
    pGroupBy = p->pGroupBy;
    pHaving = p->pHaving;
    isDistinct = p->isDistinct;
  }
#endif
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723



2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742

2743

2744
2745
2746


2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759






2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790


2791





2792

2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805

2806
2807













































2808































2809




























2810




2811





















































































2812
2813
2814
2815
2816
2817
2818

  /* If the output is destined for a temporary table, open that table.
  */
  if( eDest==SRT_TempTable ){
    sqlite3VdbeAddOp(v, OP_OpenVirtual, iParm, pEList->nExpr);
  }

  /* Do an analysis of aggregate expressions.
  */
  if( isAgg || pGroupBy ){
    NameContext sNC;
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;

    assert( pParse->nAgg==0 );
    isAgg = 1;
    if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
      goto select_end;
    }
    if( sqlite3ExprAnalyzeAggList(&sNC, pGroupBy) ){
      goto select_end;
    }
    if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
      goto select_end;
    }
    if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
      goto select_end;
    }
  }

  /* Reset the aggregator
  */
  if( isAgg ){
    int addr = sqlite3VdbeAddOp(v, OP_AggReset, (pGroupBy?0:1), pParse->nAgg);
    for(i=0; i<pParse->nAgg; i++){
      FuncDef *pFunc;
      if( (pFunc = pParse->aAgg[i].pFunc)!=0 && pFunc->xFinalize!=0 ){
        int nExpr = 0;
#ifdef SQLITE_SSE
        Expr *pAggExpr = pParse->aAgg[i].pExpr;
        if( pAggExpr && pAggExpr->pList ){
          nExpr = pAggExpr->pList->nExpr;
        }
#endif
        sqlite3VdbeOp3(v, OP_AggInit, nExpr, i, (char*)pFunc, P3_FUNCDEF);
      }
    }
    if( pGroupBy ){
      KeyInfo *pKey = keyInfoFromExprList(pParse, pGroupBy);
      if( 0==pKey ){
        goto select_end;
      }
      sqlite3VdbeChangeP3(v, addr, (char *)pKey, P3_KEYINFO_HANDOFF);
    }
  }

  /* Initialize the memory cell to NULL for SRT_Mem or 0 for SRT_Exists
  */
  if( eDest==SRT_Mem || eDest==SRT_Exists ){
    sqlite3VdbeAddOp(v, eDest==SRT_Mem ? OP_Null : OP_Integer, 0, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
  }

  /* Open a virtual index to use for the distinct set.
  */
  if( isDistinct ){
    KeyInfo *pKeyInfo;
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    sqlite3VdbeOp3(v, OP_OpenVirtual, distinct, 0, 
                        (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
  }else{
    distinct = -1;
  }




  /* Begin the database scan
  */
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,
                             pGroupBy ? 0 : &pOrderBy);
  if( pWInfo==0 ) goto select_end;

  /* Use the standard inner loop if we are not dealing with
  ** aggregates
  */
  if( !isAgg ){
    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
                    iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
       goto select_end;
    }
  }

  /* If we are dealing with aggregates, then do the special aggregate
  ** processing.  
  */

  else{

    AggExpr *pAgg;
    int lbl1 = 0;
    pParse->fillAgg = 1;


    if( pGroupBy ){
      sqlite3ExprCodeExprList(pParse, pGroupBy);
      /* No affinity string is attached to the following OP_MakeRecord 
      ** because we do not need to do any coercion of datatypes. */
      sqlite3VdbeAddOp(v, OP_MakeRecord, pGroupBy->nExpr, 0);
      lbl1 = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeAddOp(v, OP_AggFocus, 0, lbl1);
    }
    for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
      if( pAgg->isAgg ) continue;
      sqlite3ExprCode(pParse, pAgg->pExpr);
      sqlite3VdbeAddOp(v, OP_AggSet, 0, i);
    }






    pParse->fillAgg = 0;
    if( lbl1<0 ){
      sqlite3VdbeResolveLabel(v, lbl1);
    }
    for(i=0, pAgg=pParse->aAgg; i<pParse->nAgg; i++, pAgg++){
      Expr *pE;
      int nExpr;
      FuncDef *pDef;
      if( !pAgg->isAgg ) continue;
      assert( pAgg->pFunc!=0 );
      assert( pAgg->pFunc->xStep!=0 );
      pDef = pAgg->pFunc;
      pE = pAgg->pExpr;
      assert( pE!=0 );
      assert( pE->op==TK_AGG_FUNCTION );
      nExpr = sqlite3ExprCodeExprList(pParse, pE->pList);
      sqlite3VdbeAddOp(v, OP_Integer, i, 0);
      if( pDef->needCollSeq ){
        CollSeq *pColl = 0;
        int j;
        for(j=0; !pColl && j<nExpr; j++){
          pColl = sqlite3ExprCollSeq(pParse, pE->pList->a[j].pExpr);
        }
        if( !pColl ) pColl = pParse->db->pDfltColl;
        sqlite3VdbeOp3(v, OP_CollSeq, 0, 0, (char *)pColl, P3_COLLSEQ);
      }
      sqlite3VdbeOp3(v, OP_AggFunc, 0, nExpr, (char*)pDef, P3_FUNCDEF);
    }
  }

  /* End the database scan loop.


  */





  sqlite3WhereEnd(pWInfo);


  /* If we are processing aggregates, we need to set up a second loop
  ** over all of the aggregate values and process them.
  */
  if( isAgg ){
    int endagg = sqlite3VdbeMakeLabel(v);
    int startagg;
    startagg = sqlite3VdbeAddOp(v, OP_AggNext, 0, endagg);
    if( pHaving ){
      sqlite3ExprIfFalse(pParse, pHaving, startagg, 1);
    }
    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
                    iParm, startagg, endagg, aff) ){

      goto select_end;
    }













































    sqlite3VdbeAddOp(v, OP_Goto, 0, startagg);































    sqlite3VdbeResolveLabel(v, endagg);




























    sqlite3VdbeAddOp(v, OP_Noop, 0, 0);




  }






















































































  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
  }







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















>
>
>
|
|
|
<
|

|
<
|
<




|
|
<
<
|
>
|
>
|
|
|
>
>
|
<
<
|
|
<
<
|
<
<
<
<
|
>
>
>
>
>
>
|
|
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
|
<
<
<
|
<
>
>
|
>
>
>
>
>
|
>
|
<
<
<
<
|
|
<
<
<

<
<
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2712
2713
2714
2715
2716
2717
2718

















































2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744

2745
2746
2747

2748

2749
2750
2751
2752
2753
2754


2755
2756
2757
2758
2759
2760
2761
2762
2763
2764


2765
2766


2767




2768
2769
2770
2771
2772
2773
2774
2775
2776
2777



2778















2779

2780
2781



2782

2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793




2794
2795



2796


2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003

  /* If the output is destined for a temporary table, open that table.
  */
  if( eDest==SRT_TempTable ){
    sqlite3VdbeAddOp(v, OP_OpenVirtual, iParm, pEList->nExpr);
  }



















































  /* Initialize the memory cell to NULL for SRT_Mem or 0 for SRT_Exists
  */
  if( eDest==SRT_Mem || eDest==SRT_Exists ){
    sqlite3VdbeAddOp(v, eDest==SRT_Mem ? OP_Null : OP_Integer, 0, 0);
    sqlite3VdbeAddOp(v, OP_MemStore, iParm, 1);
  }

  /* Open a virtual index to use for the distinct set.
  */
  if( isDistinct ){
    KeyInfo *pKeyInfo;
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    sqlite3VdbeOp3(v, OP_OpenVirtual, distinct, 0, 
                        (char*)pKeyInfo, P3_KEYINFO_HANDOFF);
  }else{
    distinct = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    /* This case is for non-aggregate queries
    ** Begin the database scan
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy);

    if( pWInfo==0 ) goto select_end;

    /* Use the standard inner loop

    */

    if( selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, eDest,
                    iParm, pWInfo->iContinue, pWInfo->iBreak, aff) ){
       goto select_end;
    }

    /* End the database scan loop.


    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This is the processing for aggregate queries */
    NameContext sNC;    /* Name context for processing aggregate information */
    int iAMem;          /* First Mem address for storing current GROUP BY */
    int iBMem;          /* First Mem address for previous GROUP BY */
    int iUseFlag;       /* Mem address holding flag indicating that at least
                        ** one row of the input to the aggregator has been
                        ** processed */


    int iAbortFlag;     /* Mem address which causes query abort if positive */
    int groupBySort;    /* Rows come from source in GROUP BY order */








    /* The following variables hold addresses or labels for parts of the
    ** virtual machine program we are putting together */
    int addrOutputRow;      /* Start of subroutine that outputs a result row */
    int addrSetAbort;       /* Set the abort flag and return */
    int addrInitializeLoop; /* Start of code that initializes the input loop */
    int addrTopOfLoop;      /* Top of the input loop */
    int addrGroupByChange;  /* Code that runs when any GROUP BY term changes */
    int addrProcessRow;     /* Code to process a single input row */
    int addrEnd;            /* End of all processing */



    int addrSortingIdx;     /* The OP_OpenVirtual for the sorting index */

















    addrEnd = sqlite3VdbeMakeLabel(v);




    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in

    ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
    ** SELECT statement.
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    sNC.pSrcList = pTabList;
    sNC.pAggInfo = &sAggInfo;
    sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr+1 : 0;
    if( sqlite3ExprAnalyzeAggList(&sNC, pEList) ){
      goto select_end;
    }




    if( sqlite3ExprAnalyzeAggList(&sNC, pOrderBy) ){
      goto select_end;



    }


    if( pHaving && sqlite3ExprAnalyzeAggregates(&sNC, pHaving) ){
      goto select_end;
    }
    sAggInfo.nAccumulator = sAggInfo.nColumn;
    for(i=0; i<sAggInfo.nFunc; i++){
      if( sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->pList) ){
        goto select_end;
      }
    }

    /* Processing for aggregates with GROUP BY is very different and
    ** much more complex tha aggregates without a GROUP BY.
    */
    if( pGroupBy ){
      KeyInfo *pKeyInfo;  /* Keying information for the group by clause */

      /* Create labels that we will be needing
      */
     
      addrInitializeLoop = sqlite3VdbeMakeLabel(v);
      addrGroupByChange = sqlite3VdbeMakeLabel(v);
      addrProcessRow = sqlite3VdbeMakeLabel(v);

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OpenVirtual instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy);
      addrSortingIdx =
          sqlite3VdbeOp3(v, OP_OpenVirtual, sAggInfo.sortingIdx,
                         sAggInfo.nSortingColumn,
                         (char*)pKeyInfo, P3_KEYINFO_HANDOFF);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = pParse->nMem++;
      iAbortFlag = pParse->nMem++;
      iAMem = pParse->nMem;
      pParse->nMem += pGroupBy->nExpr;
      iBMem = pParse->nMem;
      pParse->nMem += pGroupBy->nExpr;
      sqlite3VdbeAddOp(v, OP_Integer, 0, 0);
      sqlite3VdbeAddOp(v, OP_MemStore, iAbortFlag, 0);
      sqlite3VdbeAddOp(v, OP_MemStore, iUseFlag, 1);
      sqlite3VdbeAddOp(v, OP_Null, 0, 0);
      sqlite3VdbeAddOp(v, OP_MemStore, iAMem, 1);
      sqlite3VdbeAddOp(v, OP_Goto, 0, addrInitializeLoop);

      /* Generate a subroutine that outputs a single row of the result
      ** set.  This subroutine first looks at the iUseFlag.  If iUseFlag
      ** is less than or equal to zero, the subroutine is a no-op.  If
      ** the processing calls for the query to abort, this subroutine
      ** increments the iAbortFlag memory location before returning in
      ** order to signal the caller to abort.
      */
      addrSetAbort = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_MemIncr, iAbortFlag, 0);
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
      addrOutputRow = sqlite3VdbeCurrentAddr(v);
      sqlite3VdbeAddOp(v, OP_IfMemPos, iUseFlag, addrOutputRow+2);
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);
      finalizeAggFunctions(pParse, &sAggInfo);
      if( pHaving ){
        sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, 1);
      }
      rc = selectInnerLoop(pParse, p, p->pEList, 0, 0, pOrderBy,
                           distinct, eDest, iParm, 
                           addrOutputRow+1, addrSetAbort, aff);
      if( rc ){
        goto select_end;
      }
      sqlite3VdbeAddOp(v, OP_Return, 0, 0);

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeResolveLabel(v, addrInitializeLoop);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy);
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenVirtual table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
        ** each row into a sorting index, terminate the first loop,
        ** then loop over the sorting index in order to get the output
        ** in sorted order
        */
        groupBySort = 1;
        sqlite3ExprCodeExprList(pParse, pGroupBy);
        sqlite3VdbeAddOp(v, OP_Sequence, sAggInfo.sortingIdx, 0);
        j = pGroupBy->nExpr+1;
        for(i=0; i<sAggInfo.nColumn; i++){
          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
          if( pCol->iSorterColumn<j ) continue;
          if( pCol->iColumn<0 ){
            sqlite3VdbeAddOp(v, OP_Rowid, pCol->iTable, 0);
          }else{
            sqlite3VdbeAddOp(v, OP_Column, pCol->iTable, pCol->iColumn);
          }
          j++;
        }
        sqlite3VdbeAddOp(v, OP_MakeRecord, j, 0);
        sqlite3VdbeAddOp(v, OP_IdxInsert, sAggInfo.sortingIdx, 0);
        sqlite3WhereEnd(pWInfo);
        sqlite3VdbeAddOp(v, OP_Sort, sAggInfo.sortingIdx, 0);
        sAggInfo.useSortingIdx = 1;
      }

      /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
      ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
      ** Then compare the current GROUP BY terms against the GROUP BY terms
      ** from the previous row currently stored in a0, a1, a2...
      */
      addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
      for(j=0; j<pGroupBy->nExpr; j++){
        if( groupBySort ){
          sqlite3VdbeAddOp(v, OP_Column, sAggInfo.sortingIdx, j);
        }else{
          sAggInfo.directMode = 1;
          sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr);
        }
        sqlite3VdbeAddOp(v, OP_MemStore, iBMem+j, j<pGroupBy->nExpr-1);
      }
      for(j=pGroupBy->nExpr-1; j>=0; j--){
        if( j<pGroupBy->nExpr-1 ){
          sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
        }
        sqlite3VdbeAddOp(v, OP_MemLoad, iAMem+j, 0);
        if( j==0 ){
          sqlite3VdbeAddOp(v, OP_Eq, 0, addrProcessRow);
        }else{
          sqlite3VdbeAddOp(v, OP_Ne, 0x100, addrGroupByChange);
        }
        sqlite3VdbeChangeP3(v, -1, (void*)pKeyInfo->aColl[j], P3_COLLSEQ);
      }

      /* Generate code that runs whenever the GROUP BY changes.
      ** Change in the GROUP BY are detected by the previous code
      ** block.  If there were no changes, this block is skipped.
      **
      ** This code copies current group by terms in b0,b1,b2,...
      ** over to a0,a1,a2.  It then calls the output subroutine
      ** and resets the aggregate accumulator registers in preparation
      ** for the next GROUP BY batch.
      */
      sqlite3VdbeResolveLabel(v, addrGroupByChange);
      for(j=0; j<pGroupBy->nExpr; j++){
        sqlite3VdbeAddOp(v, OP_MemLoad, iBMem+j, 0);
        sqlite3VdbeAddOp(v, OP_MemStore, iAMem+j, 1);
      }
      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
      sqlite3VdbeAddOp(v, OP_IfMemPos, iAbortFlag, addrEnd);
      resetAccumulator(pParse, &sAggInfo);

      /* Update the aggregate accumulators based on the content of
      ** the current row
      */
      sqlite3VdbeResolveLabel(v, addrProcessRow);
      updateAccumulator(pParse, &sAggInfo);
      sqlite3VdbeAddOp(v, OP_MemIncr, iUseFlag, 0);

      /* End of the loop
      */
      if( groupBySort ){
        sqlite3VdbeAddOp(v, OP_Next, sAggInfo.sortingIdx, addrTopOfLoop);
      }else{
        sqlite3WhereEnd(pWInfo);
        uncreateSortingIndex(pParse, addrSortingIdx);
      }

      /* Output the final row of result
      */
      sqlite3VdbeAddOp(v, OP_Gosub, 0, addrOutputRow);
      
    } /* endif pGroupBy */
    else {
      /* This case runs if the aggregate has no GROUP BY clause.  The
      ** processing is much simpler since there is only a single row
      ** of output.
      */
      resetAccumulator(pParse, &sAggInfo);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0);
      updateAccumulator(pParse, &sAggInfo);
      sqlite3WhereEnd(pWInfo);
      finalizeAggFunctions(pParse, &sAggInfo);
      pOrderBy = 0;
      selectInnerLoop(pParse, p, p->pEList, 0, 0, 0, -1, 
                      eDest, iParm, addrEnd, addrEnd, aff);
    }
    sqlite3VdbeResolveLabel(v, addrEnd);
    
  } /* endif aggregate query */

  /* If there is an ORDER BY clause, then we need to sort the results
  ** and send them to the callback one by one.
  */
  if( pOrderBy ){
    generateSortTail(pParse, p, v, pEList->nExpr, eDest, iParm);
  }
2836
2837
2838
2839
2840
2841
2842
2843

2844
2845
  */
  rc = 0;

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:
  restoreAggregateInfo(pParse, &sAggInfo);

  return rc;
}







|
>


3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
  */
  rc = 0;

  /* Control jumps to here if an error is encountered above, or upon
  ** successful coding of the SELECT.
  */
select_end:
  sqliteFree(sAggInfo.aCol);
  sqliteFree(sAggInfo.aFunc);
  return rc;
}
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.407 2005/09/01 03:07:44 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** These #defines should enable >2GB file support on Posix if the
** underlying operating system supports it.  If the OS lacks













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.408 2005/09/07 21:22:47 drh Exp $
*/
#ifndef _SQLITEINT_H_
#define _SQLITEINT_H_

/*
** These #defines should enable >2GB file support on Posix if the
** underlying operating system supports it.  If the OS lacks
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
** an array.
*/
#define ArraySize(X)    (sizeof(X)/sizeof(X[0]))

/*
** Forward references to structures
*/
typedef struct AggExpr AggExpr;
typedef struct AuthContext AuthContext;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct FKey FKey;







|







294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
** an array.
*/
#define ArraySize(X)    (sizeof(X)/sizeof(X[0]))

/*
** Forward references to structures
*/
typedef struct AggInfo AggInfo;
typedef struct AuthContext AuthContext;
typedef struct CollSeq CollSeq;
typedef struct Column Column;
typedef struct Db Db;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct FKey FKey;
784
785
786
787
788
789
790









































791
792
793
794
795
796
797
*/
struct Token {
  const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
  unsigned dyn  : 1;      /* True for malloced memory, false for static */
  unsigned n    : 31;     /* Number of characters in this token */
};










































/*
** Each node of an expression in the parse tree is an instance
** of this structure.
**
** Expr.op is the opcode.  The integer parser token codes are reused
** as opcodes here.  For example, the parser defines TK_GE to be an integer
** code representing the ">=" operator.  This same integer code is reused







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
*/
struct Token {
  const unsigned char *z; /* Text of the token.  Not NULL-terminated! */
  unsigned dyn  : 1;      /* True for malloced memory, false for static */
  unsigned n    : 31;     /* Number of characters in this token */
};

/*
** An instance of this structure contains information needed to generate
** code for a SELECT that contains aggregate functions.
**
** If Expr.op==TK_AGG_COLUMN or TK_AGG_FUNCTION then Expr.pAggInfo is a
** pointer to this structure.  The Expr.iColumn field is the index in
** AggInfo.aCol[] or AggInfo.aFunc[] of information needed to generate
** code for that node.
**
** AggInfo.pGroupBy and AggInfo.aFunc.pExpr point to fields within the
** original Select structure that describes the SELECT statement.  These
** fields do not need to be freed when deallocating the AggInfo structure.
*/
struct AggInfo {
  u8 directMode;          /* Direct rendering mode means take data directly
                          ** from source tables rather than from accumulators */
  u8 useSortingIdx;       /* In direct mode, reference the sorting index rather
                          ** than the source table */
  int sortingIdx;         /* Cursor number of the sorting index */
  ExprList *pGroupBy;     /* The group by clause */
  int nSortingColumn;     /* Number of columns in the sorting index */
  struct AggInfo_col {    /* For each column used in source tables */
    int iTable;              /* Cursor number of the source table */
    int iColumn;             /* Column number within the source table */
    int iSorterColumn;       /* Column number in the sorting index */
    int iMem;                /* Memory location that acts as accumulator */
  } *aCol;
  int nColumn;            /* Number of used entries in aCol[] */
  int nColumnAlloc;       /* Number of slots allocated for aCol[] */
  int nAccumulator;       /* Number of columns that show through to the output.
                          ** Additional columns are used only as parameters to
                          ** aggregate functions */
  struct AggInfo_func {   /* For each aggregate function */
    Expr *pExpr;             /* Expression encoding the function */
    FuncDef *pFunc;          /* The aggregate function implementation */
    int iMem;                /* Memory location that acts as accumulator */
  } *aFunc;
  int nFunc;              /* Number of entries in aFunc[] */
  int nFuncAlloc;         /* Number of slots allocated for aFunc[] */
};

/*
** Each node of an expression in the parse tree is an instance
** of this structure.
**
** Expr.op is the opcode.  The integer parser token codes are reused
** as opcodes here.  For example, the parser defines TK_GE to be an integer
** code representing the ">=" operator.  This same integer code is reused
843
844
845
846
847
848
849

850
851
852
853
854
855
856
857
858
859
  Expr *pLeft, *pRight;  /* Left and right subnodes */
  ExprList *pList;       /* A list of expressions used as function arguments
                         ** or in "<expr> IN (<expr-list)" */
  Token token;           /* An operand token */
  Token span;            /* Complete text of the expression */
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
                         ** iColumn-th field of the iTable-th table. */

  int iAgg;              /* When op==TK_COLUMN and pParse->fillAgg==FALSE, pull
                         ** result from the iAgg-th element of the aggregator */
  int iAggCtx;           /* The value to pass as P1 of OP_AggGet. */
  Select *pSelect;       /* When the expression is a sub-select.  Also the
                         ** right side of "<expr> IN (<select>)" */
  Table *pTab;           /* Table for OP_Column expressions. */
};

/*
** The following are the meanings of bits in the Expr.flags field.







>
|
<
<







884
885
886
887
888
889
890
891
892


893
894
895
896
897
898
899
  Expr *pLeft, *pRight;  /* Left and right subnodes */
  ExprList *pList;       /* A list of expressions used as function arguments
                         ** or in "<expr> IN (<expr-list)" */
  Token token;           /* An operand token */
  Token span;            /* Complete text of the expression */
  int iTable, iColumn;   /* When op==TK_COLUMN, then this expr node means the
                         ** iColumn-th field of the iTable-th table. */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  int iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */


  Select *pSelect;       /* When the expression is a sub-select.  Also the
                         ** right side of "<expr> IN (<select>)" */
  Table *pTab;           /* Table for OP_Column expressions. */
};

/*
** The following are the meanings of bits in the Expr.flags field.
908
909
910
911
912
913
914
915
916
917
918
919
920


921
922
923
924
925
926
927
** column names after a table name in an INSERT statement.  In the statement
**
**     INSERT INTO t(a,b,c) ...
**
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
*/
struct IdList {
  int nId;         /* Number of identifiers on the list */
  int nAlloc;      /* Number of entries allocated for a[] below */
  struct IdList_item {
    char *zName;      /* Name of the identifier */
    int idx;          /* Index in some Table.aCol[] of a column named zName */
  } *a;


};

/*
** The bitmask datatype defined below is used for various optimizations.
*/
typedef unsigned int Bitmask;








<
<




>
>







948
949
950
951
952
953
954


955
956
957
958
959
960
961
962
963
964
965
966
967
** column names after a table name in an INSERT statement.  In the statement
**
**     INSERT INTO t(a,b,c) ...
**
** If "a" is the k-th column of table "t", then IdList.a[0].idx==k.
*/
struct IdList {


  struct IdList_item {
    char *zName;      /* Name of the identifier */
    int idx;          /* Index in some Table.aCol[] of a column named zName */
  } *a;
  int nId;         /* Number of identifiers on the list */
  int nAlloc;      /* Number of entries allocated for a[] below */
};

/*
** The bitmask datatype defined below is used for various optimizations.
*/
typedef unsigned int Bitmask;

1027
1028
1029
1030
1031
1032
1033
1034
1035

1036
1037
1038
1039
1040
1041
1042
struct NameContext {
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 allowAgg;         /* Aggregate functions allowed here */
  u8 hasAgg;
  int nDepth;          /* Depth of subquery recursion. 1 for no recursion */

  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**







|

>







1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
struct NameContext {
  Parse *pParse;       /* The parser */
  SrcList *pSrcList;   /* One or more tables used to resolve names */
  ExprList *pEList;    /* Optional list of named expressions */
  int nRef;            /* Number of names resolved by this context */
  int nErr;            /* Number of errors encountered while resolving names */
  u8 allowAgg;         /* Aggregate functions allowed here */
  u8 hasAgg;           /* True if aggregates are seen */
  int nDepth;          /* Depth of subquery recursion. 1 for no recursion */
  AggInfo *pAggInfo;   /* Information about aggregates at this level */
  NameContext *pNext;  /* Next outer name context.  NULL for outermost */
};

/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
1075
1076
1077
1078
1079
1080
1081







1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenVirt[3];   /* OP_OpenVirtual opcodes related to this select */
};

/*
** The results of a select can be distributed in several ways.
*/







#define SRT_Callback     1  /* Invoke a callback with each row of result */
#define SRT_Mem          2  /* Store result in a memory cell */
#define SRT_Set          3  /* Store result as unique keys in a table */
#define SRT_Union        5  /* Store result as keys in a table */
#define SRT_Except       6  /* Remove result from a UNION table */
#define SRT_Table        7  /* Store result as data with a unique key */
#define SRT_TempTable    8  /* Store result in a trasient table */
#define SRT_Discard      9  /* Do not save the results anywhere */
#define SRT_Sorter      10  /* Store results in the sorter */
#define SRT_Subroutine  11  /* Call a subroutine to handle results */
#define SRT_Exists      12  /* Put 0 or 1 in a memory cell */

/*
** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
** we have to do some additional analysis of expressions.  An instance
** of the following structure holds information about a single subexpression
** somewhere in the SELECT statement.  An array of these structures holds
** all the information we need to generate code for aggregate
** expressions.
**
** Note that when analyzing a SELECT containing aggregates, both
** non-aggregate field variables and aggregate functions are stored
** in the AggExpr array of the Parser structure.
**
** The pExpr field points to an expression that is part of either the
** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
** clause.  The expression will be freed when those clauses are cleaned
** up.  Do not try to delete the expression attached to AggExpr.pExpr.
**
** If AggExpr.pExpr==0, that means the expression is "count(*)".
*/
struct AggExpr {
  int isAgg;        /* if TRUE contains an aggregate function */
  Expr *pExpr;      /* The expression */
  FuncDef *pFunc;   /* Information about the aggregate function */
};

/*
** An SQL parser context.  A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
** The structure is divided into two parts.  When the parser and code
** generate call themselves recursively, the first part of the structure
** is constant but the second part is reset at the beginning and end of
** each recursion.
*/
struct Parse {
  sqlite3 *db;         /* The main database structure */
  int rc;              /* Return code from execution */
  char *zErrMsg;       /* An error message */
  Vdbe *pVdbe;         /* An engine for executing database bytecode */
  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
  u8 nameClash;        /* A permanent table name clashes with temp table name */
  u8 checkSchema;      /* Causes schema cookie check after an error */
  u8 nested;           /* Number of nested calls to the parser/code generator */
  u8 fillAgg;          /* If true, ignore the Expr.iAgg field. Normally false */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  u32 writeMask;       /* Start a write transaction on these databases */
  u32 cookieMask;      /* Bitmask of schema verified databases */
  int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */







>
>
>
>
>
>
>
|
|
|
<
<
|

<
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<




















<







1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132


1133
1134

1135
1136
1137

























1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

1158
1159
1160
1161
1162
1163
1164
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenVirt[3];   /* OP_OpenVirtual opcodes related to this select */
};

/*
** The results of a select can be distributed in several ways.
*/
#define SRT_Union        1  /* Store result as keys in an index */
#define SRT_Except       2  /* Remove result from a UNION index */
#define SRT_Discard      3  /* Do not save the results anywhere */

/* The ORDER BY clause is ignored for all of the above */
#define IgnorableOrderby(X) (X<=SRT_Discard)

#define SRT_Callback     4  /* Invoke a callback with each row of result */
#define SRT_Mem          5  /* Store result in a memory cell */
#define SRT_Set          6  /* Store non-null results as keys in an index */


#define SRT_Table        7  /* Store result as data and add automatic rowid */
#define SRT_TempTable    8  /* Store result in a trasient table */

#define SRT_Sorter       9  /* Store results in the sorter NOT USED */
#define SRT_Subroutine  10  /* Call a subroutine to handle results */
#define SRT_Exists      11  /* Put 0 or 1 in a memory cell */


























/*
** An SQL parser context.  A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
**
** The structure is divided into two parts.  When the parser and code
** generate call themselves recursively, the first part of the structure
** is constant but the second part is reset at the beginning and end of
** each recursion.
*/
struct Parse {
  sqlite3 *db;         /* The main database structure */
  int rc;              /* Return code from execution */
  char *zErrMsg;       /* An error message */
  Vdbe *pVdbe;         /* An engine for executing database bytecode */
  u8 colNamesSet;      /* TRUE after OP_ColumnName has been issued to pVdbe */
  u8 nameClash;        /* A permanent table name clashes with temp table name */
  u8 checkSchema;      /* Causes schema cookie check after an error */
  u8 nested;           /* Number of nested calls to the parser/code generator */

  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  u32 writeMask;       /* Start a write transaction on these databases */
  u32 cookieMask;      /* Bitmask of schema verified databases */
  int cookieGoto;      /* Address of OP_Goto to cookie verifier subroutine */
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
  Token sLastToken;    /* The last token parsed */
  const char *zSql;    /* All SQL text */
  const char *zTail;   /* All SQL text past the last semicolon parsed */
  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  TriggerStack *trigStack;  /* Trigger actions being coded */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */
  int nAgg;            /* Number of aggregate expressions */
  AggExpr *aAgg;       /* An array of aggregate expressions */
  int nMaxDepth;       /* Maximum depth of subquery recursion */
};

/*
** An instance of the following structure can be declared on a stack and used
** to save the Parse.zAuthContext value so that it can be restored later.
*/
struct AuthContext {







<
<
<







1177
1178
1179
1180
1181
1182
1183



1184
1185
1186
1187
1188
1189
1190
  Token sLastToken;    /* The last token parsed */
  const char *zSql;    /* All SQL text */
  const char *zTail;   /* All SQL text past the last semicolon parsed */
  Table *pNewTable;    /* A table being constructed by CREATE TABLE */
  Trigger *pNewTrigger;     /* Trigger under construct by a CREATE TRIGGER */
  TriggerStack *trigStack;  /* Trigger actions being coded */
  const char *zAuthContext; /* The 6th parameter to db->xAuth callbacks */



};

/*
** An instance of the following structure can be declared on a stack and used
** to save the Parse.zAuthContext value so that it can be restored later.
*/
struct AuthContext {
1417
1418
1419
1420
1421
1422
1423

1424
1425
1426
1427
1428
1429
1430
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif

void sqlite3DropTable(Parse*, SrcList*, int);
void sqlite3DeleteTable(sqlite3*, Table*);
void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);

IdList *sqlite3IdListAppend(IdList*, Token*);
int sqlite3IdListIndex(IdList*,const char*);
SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*);
void sqlite3SrcListAddAlias(SrcList*, Token*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(IdList*);
void sqlite3SrcListDelete(SrcList*);







>







1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
#else
# define sqlite3ViewGetColumnNames(A,B) 0
#endif

void sqlite3DropTable(Parse*, SrcList*, int);
void sqlite3DeleteTable(sqlite3*, Table*);
void sqlite3Insert(Parse*, SrcList*, ExprList*, Select*, IdList*, int);
int sqlite3ArrayAllocate(void**,int,int);
IdList *sqlite3IdListAppend(IdList*, Token*);
int sqlite3IdListIndex(IdList*,const char*);
SrcList *sqlite3SrcListAppend(SrcList*, Token*, Token*);
void sqlite3SrcListAddAlias(SrcList*, Token*);
void sqlite3SrcListAssignCursors(Parse*, SrcList*);
void sqlite3IdListDelete(IdList*);
void sqlite3SrcListDelete(SrcList*);
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.481 2005/09/06 20:36:49 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.482 2005/09/07 21:22:47 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  else if( flags & MEM_Str ){
    pMem->type = SQLITE_TEXT;
  }else{
    pMem->type = SQLITE_BLOB;
  }
}

/*
** Insert a new aggregate element and make it the element that
** has focus.
**
** Return 0 on success and 1 if memory is exhausted.
*/
static int AggInsert(Agg *p, char *zKey, int nKey){
  AggElem *pElem;
  int i;
  int rc;
  pElem = sqliteMalloc( sizeof(AggElem) + nKey +
                        (p->nMem-1)*sizeof(pElem->aMem[0]) );
  if( pElem==0 ) return SQLITE_NOMEM;
  pElem->zKey = (char*)&pElem->aMem[p->nMem];
  memcpy(pElem->zKey, zKey, nKey);
  pElem->nKey = nKey;

  if( p->pCsr ){
    rc = sqlite3BtreeInsert(p->pCsr, zKey, nKey, &pElem, sizeof(AggElem*));
    if( rc!=SQLITE_OK ){
      sqliteFree(pElem);
      return rc;
    }
  }

  for(i=0; i<p->nMem; i++){
    pElem->aMem[i].flags = MEM_Null;
  }
  p->pCurrent = pElem;
  return 0;
}

/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







156
157
158
159
160
161
162
































163
164
165
166
167
168
169
  else if( flags & MEM_Str ){
    pMem->type = SQLITE_TEXT;
  }else{
    pMem->type = SQLITE_BLOB;
  }
}

































/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
  assert( pOp->p3type==P3_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P1 arguments taken from the stack.  Pop all
** arguments from the stack and push back the result.
**
** P2 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P2 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggFunc
*/
case OP_Function: {
  int i;
  Mem *pArg;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n = pOp->p1;

  n = pOp->p1;
  apVal = p->apArg;
  assert( apVal || n==0 );

  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){
    apVal[i] = pArg;
    storeTypeInfo(pArg, db->enc);







|


|

|




|






|

<







1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120

1121
1122
1123
1124
1125
1126
1127
  assert( pOp->p3type==P3_COLLSEQ );
  break;
}

/* Opcode: Function P1 P2 P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P2 arguments taken from the stack.  Pop all
** arguments from the stack and push back the result.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the 
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggStep and AggFinal
*/
case OP_Function: {
  int i;
  Mem *pArg;
  sqlite3_context ctx;
  sqlite3_value **apVal;
  int n = pOp->p2;


  apVal = p->apArg;
  assert( apVal || n==0 );

  pArg = &pTos[1-n];
  for(i=0; i<n; i++, pArg++){
    apVal[i] = pArg;
    storeTypeInfo(pArg, db->enc);
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
  if( sqlite3_malloc_failed ) goto no_mem;
  popStack(&pTos, n);

  /* If any auxilary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p2);
    pOp->p3 = (char *)ctx.pVdbeFunc;
    pOp->p3type = P3_VDBEFUNC;
  }

  /* Copy the result of the function to the top of the stack */
  sqlite3VdbeChangeEncoding(&ctx.s, db->enc);
  pTos++;







|







1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
  if( sqlite3_malloc_failed ) goto no_mem;
  popStack(&pTos, n);

  /* If any auxilary data functions have been called by this user function,
  ** immediately call the destructor for any non-static values.
  */
  if( ctx.pVdbeFunc ){
    sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
    pOp->p3 = (char *)ctx.pVdbeFunc;
    pOp->p3type = P3_VDBEFUNC;
  }

  /* Copy the result of the function to the top of the stack */
  sqlite3VdbeChangeEncoding(&ctx.s, db->enc);
  pTos++;
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
    pTos++;
    pTos->i = v;
    pTos->flags = MEM_Int;
  }
  break;
}

#ifndef SQLITE_OMIT_SUBQUERY
/* Opcode: AggContextPush * * * 
**
** Save the state of the current aggregator. It is restored an 
** AggContextPop opcode.
** 
*/
case OP_AggContextPush: {        /* no-push */
  p->pAgg++;
  assert( p->pAgg<&p->apAgg[p->nAgg] );
  break;
}

/* Opcode: AggContextPop * * *
**
** Restore the aggregator to the state it was in when AggContextPush
** was last called. Any data in the current aggregator is deleted.
*/
case OP_AggContextPop: {        /* no-push */
  p->pAgg--;
  assert( p->pAgg>=p->apAgg );
  break;
}
#endif

#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







3991
3992
3993
3994
3995
3996
3997

























3998
3999
4000
4001
4002
4003
4004
    pTos++;
    pTos->i = v;
    pTos->flags = MEM_Int;
  }
  break;
}


























#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: ContextPush * * * 
**
** Save the current Vdbe context such that it can be restored by a ContextPop
** opcode. The context stores the last insert row id, the last statement change
** count, and the current statement change count.
*/
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252

4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280

4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
  assert( pMem->flags==MEM_Int );
  if( pMem->i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: AggReset P1 P2 P3
**
** Reset the current aggregator context so that it no longer contains any 
** data. Future aggregator elements will contain P2 values each and be sorted
** using the KeyInfo structure pointed to by P3.
**
** If P1 is non-zero, then only a single aggregator row is available (i.e.
** there is no GROUP BY expression). In this case it is illegal to invoke
** OP_AggFocus.
*/
case OP_AggReset: {        /* no-push */
  assert( !pOp->p3 || pOp->p3type==P3_KEYINFO );
  if( pOp->p1 ){
    rc = sqlite3VdbeAggReset(0, p->pAgg, (KeyInfo *)pOp->p3);
    p->pAgg->nMem = pOp->p2;    /* Agg.nMem is used by AggInsert() */
    rc = AggInsert(p->pAgg, 0, 0);
  }else{
    rc = sqlite3VdbeAggReset(db, p->pAgg, (KeyInfo *)pOp->p3);
    p->pAgg->nMem = pOp->p2;
  }
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }
  p->pAgg->apFunc = sqliteMalloc( p->pAgg->nMem*sizeof(p->pAgg->apFunc[0]) );
  if( p->pAgg->apFunc==0 ) goto no_mem;
  break;
}

/* Opcode: AggInit P1 P2 P3
**
** Initialize the function parameters for an aggregate function.
** The aggregate will operate out of aggregate column P2.
** P3 is a pointer to the FuncDef structure for the function.
**
** The P1 argument is not used by this opcode. However if the SSE
** extension is compiled in, P1 is set to the number of arguments that
** will be passed to the aggregate function, if any. This is used
** by SSE to select the correct function when (de)serializing statements.
*/
case OP_AggInit: {        /* no-push */
  int i = pOp->p2;
  assert( i>=0 && i<p->pAgg->nMem );
  p->pAgg->apFunc[i] = (FuncDef*)pOp->p3;
  break;
}

/* Opcode: AggFunc * P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.

**
** The top of the stack must be an integer which is the index of
** the aggregate column that corresponds to this aggregate function.
** Ideally, this index would be another parameter, but there are
** no free parameters left.  The integer is popped from the stack.
*/
case OP_AggFunc: {        /* no-push */
  int n = pOp->p2;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;

  assert( n>=0 );
  assert( pTos->flags==MEM_Int );
  pRec = &pTos[-n];
  assert( pRec>=p->aStack );

  apVal = p->apArg;
  assert( apVal || n==0 );

  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, db->enc);
  }
  i = pTos->i;
  assert( i>=0 && i<p->pAgg->nMem );
  ctx.pFunc = (FuncDef*)pOp->p3;

  ctx.pMem = pMem = &p->pAgg->pCurrent->aMem[i];
  pMem->n++;
  ctx.isError = 0;
  ctx.pColl = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);
  popStack(&pTos, n+1);
  if( ctx.isError ){
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: AggFocus * P2 *
**
** Pop the top of the stack and use that as an aggregator key.  If
** an aggregator with that same key already exists, then make the
** aggregator the current aggregator and jump to P2.  If no aggregator
** with the given key exists, create one and make it current but
** do not jump.
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggFocus: {        /* no-push */
  char *zKey;
  int nKey;
  int res;
  assert( pTos>=p->aStack );
  Stringify(pTos, db->enc);
  zKey = pTos->z;
  nKey = pTos->n;
  assert( p->pAgg->pBtree );
  assert( p->pAgg->pCsr );
  rc = sqlite3BtreeMoveto(p->pAgg->pCsr, zKey, nKey, &res);
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }
  if( res==0 ){
    rc = sqlite3BtreeData(p->pAgg->pCsr, 0, sizeof(AggElem*),
        (char *)&p->pAgg->pCurrent);
    pc = pOp->p2 - 1;
  }else{
    rc = AggInsert(p->pAgg, zKey, nKey);
  }
  if( rc!=SQLITE_OK ){
    goto abort_due_to_error;
  }
  Release(pTos);
  pTos--;
  break; 
}

/* Opcode: AggSet * P2 *
**
** Move the top of the stack into the P2-th field of the current
** aggregate.  String values are duplicated into new memory.
*/
case OP_AggSet: {        /* no-push */
  AggElem *pFocus;
  int i = pOp->p2;
  pFocus = p->pAgg->pCurrent;
  assert( pTos>=p->aStack );
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && i<p->pAgg->nMem );
  rc = sqlite3VdbeMemMove(&pFocus->aMem[i], pTos);
  pTos--;
  break;
}

/* Opcode: AggGet P1 P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
** of the current aggregate.  Strings are not duplicated so
** string values will be ephemeral.
**
** If P1 is zero, then the value is pulled out of the current aggregate
** in the current aggregate context. If P1 is greater than zero, then
** the value is taken from the P1th outer aggregate context. (i.e. if
** P1==1 then read from the aggregate context that will be restored
** by the next OP_AggContextPop opcode).
*/
case OP_AggGet: {
  AggElem *pFocus;
  int i = pOp->p2;
  Agg *pAgg = &p->pAgg[-pOp->p1];
  assert( pAgg>=p->apAgg );
  pFocus = pAgg->pCurrent;
  if( pFocus==0 ){
    int res;
    if( sqlite3_malloc_failed ) goto no_mem;
    rc = sqlite3BtreeFirst(pAgg->pCsr, &res);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    if( res!=0 ){
      rc = AggInsert(pAgg, "", 1);
      pFocus = pAgg->pCurrent;
    }else{
      rc = sqlite3BtreeData(pAgg->pCsr, 0, 4, (char *)&pFocus);
    }
  }
  assert( i>=0 && i<pAgg->nMem );
  pTos++;
  sqlite3VdbeMemShallowCopy(pTos, &pFocus->aMem[i], MEM_Ephem);
  if( pTos->flags&MEM_Str ){
    sqlite3VdbeChangeEncoding(pTos, db->enc);
  }
  break;
}

/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate.  The prior
** aggregate is deleted.  If all aggregate values have been consumed,
** jump to P2.
**
** The order of aggregator opcodes is important.  The order is:
** AggReset AggFocus AggNext.  In other words, you must execute
** AggReset first, then zero or more AggFocus operations, then
** zero or more AggNext operations.  You must not execute an AggFocus
** in between an AggNext and an AggReset.
*/
case OP_AggNext: {        /* no-push */
  int res;
  assert( rc==SQLITE_OK );
  CHECK_FOR_INTERRUPT;
  if( p->pAgg->searching==0 ){
    p->pAgg->searching = 1;
    if( p->pAgg->pCsr ){
      rc = sqlite3BtreeFirst(p->pAgg->pCsr, &res);
    }else{
      res = 0;
    }
  }else{
    if( p->pAgg->pCsr ){
      rc = sqlite3BtreeNext(p->pAgg->pCsr, &res);
    }else{
      res = 1;
    }
  }
  if( rc!=SQLITE_OK ) goto abort_due_to_error;
  if( res!=0 ){
    pc = pOp->p2 - 1;
  }else{
    int i;
    Mem *aMem;

    if( p->pAgg->pCsr ){
      rc = sqlite3BtreeData(p->pAgg->pCsr, 0, sizeof(AggElem*),
          (char *)&p->pAgg->pCurrent);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
    }
    aMem = p->pAgg->pCurrent->aMem;
    for(i=0; i<p->pAgg->nMem; i++){
      FuncDef *pFunc = p->pAgg->apFunc[i];
      Mem *pMem = &aMem[i];
      sqlite3VdbeMemFinalize(pMem, pFunc);
    }
  }
  break;
}

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|



|
>

<
<
<
|

|







<
|

<


<




<
<

>
|










|






|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<

|
|
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
<



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







4137
4138
4139
4140
4141
4142
4143














































4144
4145
4146
4147
4148
4149
4150



4151
4152
4153
4154
4155
4156
4157
4158
4159
4160

4161
4162

4163
4164

4165
4166
4167
4168


4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190








































4191
















4192











4193
4194
4195


4196

















4197

4198

4199
4200
4201



















































4202
4203
4204
4205
4206
4207
4208
  assert( pMem->flags==MEM_Int );
  if( pMem->i>0 ){
     pc = pOp->p2 - 1;
  }
  break;
}















































/* Opcode: AggStep P1 P2 P3
**
** Execute the step function for an aggregate.  The
** function has P2 arguments.  P3 is a pointer to the FuncDef
** structure that specifies the function.  Use memory location
** P1 as the accumulator.
**



** The P2 arguments are popped from the stack.
*/
case OP_AggStep: {        /* no-push */
  int n = pOp->p2;
  int i;
  Mem *pMem, *pRec;
  sqlite3_context ctx;
  sqlite3_value **apVal;

  assert( n>=0 );

  pRec = &pTos[1-n];
  assert( pRec>=p->aStack );

  apVal = p->apArg;
  assert( apVal || n==0 );

  for(i=0; i<n; i++, pRec++){
    apVal[i] = pRec;
    storeTypeInfo(pRec, db->enc);
  }


  ctx.pFunc = (FuncDef*)pOp->p3;
  assert( pOp->p1>=0 && pOp->p1<p->nMem );
  ctx.pMem = pMem = &p->aMem[pOp->p1];
  pMem->n++;
  ctx.isError = 0;
  ctx.pColl = 0;
  if( ctx.pFunc->needCollSeq ){
    assert( pOp>p->aOp );
    assert( pOp[-1].p3type==P3_COLLSEQ );
    assert( pOp[-1].opcode==OP_CollSeq );
    ctx.pColl = (CollSeq *)pOp[-1].p3;
  }
  (ctx.pFunc->xStep)(&ctx, n, apVal);
  popStack(&pTos, n);
  if( ctx.isError ){
    rc = SQLITE_ERROR;
  }
  break;
}

/* Opcode: AggFinal P1 * *
**








































** Execute the finalizer function for an aggregate.  P1 is
















** the memory location that is the accumulator for the aggregate.











*/
case OP_AggFinal: {        /* no-push */
  Mem *pMem;


  assert( pOp->p1>=0 && pOp->p1<p->nMem );

















  pMem = &p->aMem[pOp->p1];

  sqlite3VdbeMemFinalize(pMem);

  break;
}





















































/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
** a transaction.
*/
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.97 2005/08/19 01:07:16 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.98 2005/09/07 21:22:47 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
void sqlite3VdbeTrace(Vdbe*,FILE*);
int sqlite3VdbeReset(Vdbe*);
int sqliteVdbeSetVariables(Vdbe*,int,const char**);
void sqlite3VdbeSetNumCols(Vdbe*,int);







|







104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
int sqlite3VdbeAddOpList(Vdbe*, int nOp, VdbeOpList const *aOp);
void sqlite3VdbeChangeP1(Vdbe*, int addr, int P1);
void sqlite3VdbeChangeP2(Vdbe*, int addr, int P2);
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int,int,int);
int sqlite3VdbeFinalize(Vdbe*);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
void sqlite3VdbeTrace(Vdbe*,FILE*);
int sqlite3VdbeReset(Vdbe*);
int sqliteVdbeSetVariables(Vdbe*,int,const char**);
void sqlite3VdbeSetNumCols(Vdbe*,int);
Changes to src/vdbeInt.h.
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
  VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
  Mem s;                /* The return value is stored here */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  u8 isError;           /* Set to true for an error */
  CollSeq *pColl;       /* Collating sequence */
};

/*
** An Agg structure describes an Aggregator.  Each Agg consists of
** zero or more Aggregator elements (AggElem).  Each AggElem contains
** a key and one or more values.  The values are used in processing
** aggregate functions in a SELECT.  The key is used to implement
** the GROUP BY clause of a select.
*/
typedef struct Agg Agg;
typedef struct AggElem AggElem;
struct Agg {
  int nMem;            /* Number of values stored in each AggElem */
  AggElem *pCurrent;   /* The AggElem currently in focus */
  FuncDef **apFunc;    /* Information about aggregate functions */
  Btree *pBtree;       /* The tmp. btree used to group elements, if required. */
  BtCursor *pCsr;      /* Read/write cursor to the table in pBtree */
  int nTab;            /* Root page of the table in pBtree */
  u8 searching;        /* True between the first AggNext and AggReset */
};
struct AggElem {
  char *zKey;          /* The key to this AggElem */
  int nKey;            /* Number of bytes in the key, including '\0' at end */
  Mem aMem[1];         /* The values for this AggElem */
};

/*
** A Set structure is used for quick testing to see if a value
** is part of a small set.  Sets are used to implement code like
** this:
**            x.y IN ('hi','hoo','hum')
*/
typedef struct Set Set;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







197
198
199
200
201
202
203
























204
205
206
207
208
209
210
  VdbeFunc *pVdbeFunc;  /* Auxilary data, if created. */
  Mem s;                /* The return value is stored here */
  Mem *pMem;            /* Memory cell used to store aggregate context */
  u8 isError;           /* Set to true for an error */
  CollSeq *pColl;       /* Collating sequence */
};

























/*
** A Set structure is used for quick testing to see if a value
** is part of a small set.  Sets are used to implement code like
** this:
**            x.y IN ('hi','hoo','hum')
*/
typedef struct Set Set;
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
  int nVar;           /* Number of entries in aVar[] */
  Mem *aVar;          /* Values for the OP_Variable opcode. */
  char **azVar;       /* Name of variables */
  int okVar;          /* True if azVar[] has been initialized */
  int magic;              /* Magic number for sanity checking */
  int nMem;               /* Number of memory locations currently allocated */
  Mem *aMem;              /* The memory locations */
  int nAgg;               /* Number of elements in apAgg */
  Agg *apAgg;             /* Array of aggregate contexts */
  Agg *pAgg;              /* Current aggregate context */
  int nCallback;          /* Number of callbacks invoked so far */
  Fifo sFifo;             /* A list of ROWIDs */
  int contextStackTop;    /* Index of top element in the context stack */
  int contextStackDepth;  /* The size of the "context" stack */
  Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */







<
<
<







281
282
283
284
285
286
287



288
289
290
291
292
293
294
  int nVar;           /* Number of entries in aVar[] */
  Mem *aVar;          /* Values for the OP_Variable opcode. */
  char **azVar;       /* Name of variables */
  int okVar;          /* True if azVar[] has been initialized */
  int magic;              /* Magic number for sanity checking */
  int nMem;               /* Number of memory locations currently allocated */
  Mem *aMem;              /* The memory locations */



  int nCallback;          /* Number of callbacks invoked so far */
  Fifo sFifo;             /* A list of ROWIDs */
  int contextStackTop;    /* Index of top element in the context stack */
  int contextStackDepth;  /* The size of the "context" stack */
  Context *contextStack;  /* Stack used by opcodes ContextPush & ContextPop*/
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
#define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */

/*
** Function prototypes
*/
void sqlite3VdbeFreeCursor(Cursor*);
int sqlite3VdbeAggReset(sqlite3*, Agg *, KeyInfo *);
void sqliteVdbePopStack(Vdbe*,int);
int sqlite3VdbeCursorMoveto(Cursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
#ifdef SQLITE_DEBUG
void sqlite3VdbePrintSql(Vdbe*);







<







318
319
320
321
322
323
324

325
326
327
328
329
330
331
#define VDBE_MAGIC_HALT     0x519c2973    /* VDBE has completed execution */
#define VDBE_MAGIC_DEAD     0xb606c3c8    /* The VDBE has been deallocated */

/*
** Function prototypes
*/
void sqlite3VdbeFreeCursor(Cursor*);

void sqliteVdbePopStack(Vdbe*,int);
int sqlite3VdbeCursorMoveto(Cursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
#ifdef SQLITE_DEBUG
void sqlite3VdbePrintSql(Vdbe*);
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
int sqlite3VdbeMemStringify(Mem*, int);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemFinalize(Mem*, FuncDef*);
#ifndef NDEBUG
void sqlite3VdbeMemSanity(Mem*, u8);
int sqlite3VdbeOpcodeNoPush(u8);
#endif
int sqlite3VdbeMemTranslate(Mem*, u8);
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
int sqlite3VdbeMemHandleBom(Mem *pMem);
void sqlite3VdbeFifoInit(Fifo*);
int sqlite3VdbeFifoPush(Fifo*, i64);
int sqlite3VdbeFifoPop(Fifo*, i64*);
void sqlite3VdbeFifoClear(Fifo*);







|











359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
int sqlite3VdbeMemStringify(Mem*, int);
i64 sqlite3VdbeIntValue(Mem*);
int sqlite3VdbeMemIntegerify(Mem*);
double sqlite3VdbeRealValue(Mem*);
int sqlite3VdbeMemRealify(Mem*);
int sqlite3VdbeMemFromBtree(BtCursor*,int,int,int,Mem*);
void sqlite3VdbeMemRelease(Mem *p);
void sqlite3VdbeMemFinalize(Mem*);
#ifndef NDEBUG
void sqlite3VdbeMemSanity(Mem*, u8);
int sqlite3VdbeOpcodeNoPush(u8);
#endif
int sqlite3VdbeMemTranslate(Mem*, u8);
void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf, int nBuf);
int sqlite3VdbeMemHandleBom(Mem *pMem);
void sqlite3VdbeFifoInit(Fifo*);
int sqlite3VdbeFifoPush(Fifo*, i64);
int sqlite3VdbeFifoPop(Fifo*, i64*);
void sqlite3VdbeFifoClear(Fifo*);
Changes to src/vdbeaux.c.
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
** Loop through the program looking for P2 values that are negative.
** Each such value is a label.  Resolve the label by setting the P2
** value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P1 argument 
** to an OP_Function or P2 to an OP_AggFunc opcode. This is used by 
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
**
** The integer *pMaxStack is set to the maximum number of vdbe stack
** entries that static analysis reveals this program might need.
**
** This routine also does the following optimization:  It scans for
** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for







|
|







211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
/*
** Loop through the program looking for P2 values that are negative.
** Each such value is a label.  Resolve the label by setting the P2
** value to its correct non-zero value.
**
** This routine is called once after all opcodes have been inserted.
**
** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument 
** to an OP_Function or OP_AggStep opcode. This is used by 
** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
**
** The integer *pMaxStack is set to the maximum number of vdbe stack
** entries that static analysis reveals this program might need.
**
** This routine also does the following optimization:  It scans for
** Halt instructions where P1==SQLITE_CONSTRAINT or P2==OE_Abort or for
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
  Op *pOp;
  int *aLabel = p->aLabel;
  int doesStatementRollback = 0;
  int hasStatementBegin = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;

    /* Todo: Maybe OP_AggFunc should change to use P1 in the same
     * way as OP_Function. 
     */
    if( opcode==OP_Function ){
      if( pOp->p1>nMaxArgs ) nMaxArgs = pOp->p1;
    }else if( opcode==OP_AggFunc ){
      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
    }else if( opcode==OP_Halt ){
      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
        doesStatementRollback = 1;
      }
    }else if( opcode==OP_IdxInsert ){
      if( pOp->p2 ){







<
<
<
|
<
<







235
236
237
238
239
240
241



242


243
244
245
246
247
248
249
  Op *pOp;
  int *aLabel = p->aLabel;
  int doesStatementRollback = 0;
  int hasStatementBegin = 0;
  for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
    u8 opcode = pOp->opcode;




    if( opcode==OP_Function || opcode==OP_AggStep ){


      if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
    }else if( opcode==OP_Halt ){
      if( pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort ){
        doesStatementRollback = 1;
      }
    }else if( opcode==OP_IdxInsert ){
      if( pOp->p2 ){
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
** VDBE_MAGIC_RUN.
*/
void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int nMem,                      /* Number of memory cells to allocate */
  int nCursor,                   /* Number of cursors to allocate */
  int nAgg,                      /* Number of aggregate contexts required */
  int isExplain                  /* True if the EXPLAIN keywords is present */
){
  int n;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );








<







654
655
656
657
658
659
660

661
662
663
664
665
666
667
** VDBE_MAGIC_RUN.
*/
void sqlite3VdbeMakeReady(
  Vdbe *p,                       /* The VDBE */
  int nVar,                      /* Number of '?' see in the SQL statement */
  int nMem,                      /* Number of memory cells to allocate */
  int nCursor,                   /* Number of cursors to allocate */

  int isExplain                  /* True if the EXPLAIN keywords is present */
){
  int n;

  assert( p!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
    p->aStack = sqliteMalloc(
        nStack*sizeof(p->aStack[0])    /* aStack */
      + nArg*sizeof(Mem*)              /* apArg */
      + nVar*sizeof(Mem)               /* aVar */
      + nVar*sizeof(char*)             /* azVar */
      + nMem*sizeof(Mem)               /* aMem */
      + nCursor*sizeof(Cursor*)        /* apCsr */
      + nAgg*sizeof(Agg)               /* Aggregate contexts */
    );
    if( !sqlite3_malloc_failed ){
      p->aMem = &p->aStack[nStack];
      p->nMem = nMem;
      p->aVar = &p->aMem[nMem];
      p->nVar = nVar;
      p->okVar = 0;
      p->apArg = (Mem**)&p->aVar[nVar];
      p->azVar = (char**)&p->apArg[nArg];
      p->apCsr = (Cursor**)&p->azVar[nVar];
      if( nAgg>0 ){
        p->nAgg = nAgg;
        p->apAgg = (Agg*)&p->apCsr[nCursor];
      }
      p->nCursor = nCursor;
      for(n=0; n<nVar; n++){
        p->aVar[n].flags = MEM_Null;
      }
    }
  }
  p->pAgg = p->apAgg;
  for(n=0; n<p->nMem; n++){
    p->aMem[n].flags = MEM_Null;
  }

#ifdef SQLITE_DEBUG
  if( (p->db->flags & SQLITE_VdbeListing)!=0
    || sqlite3OsFileExists("vdbe_explain")







<










<
<
<
<






<







696
697
698
699
700
701
702

703
704
705
706
707
708
709
710
711
712




713
714
715
716
717
718

719
720
721
722
723
724
725
    p->aStack = sqliteMalloc(
        nStack*sizeof(p->aStack[0])    /* aStack */
      + nArg*sizeof(Mem*)              /* apArg */
      + nVar*sizeof(Mem)               /* aVar */
      + nVar*sizeof(char*)             /* azVar */
      + nMem*sizeof(Mem)               /* aMem */
      + nCursor*sizeof(Cursor*)        /* apCsr */

    );
    if( !sqlite3_malloc_failed ){
      p->aMem = &p->aStack[nStack];
      p->nMem = nMem;
      p->aVar = &p->aMem[nMem];
      p->nVar = nVar;
      p->okVar = 0;
      p->apArg = (Mem**)&p->aVar[nVar];
      p->azVar = (char**)&p->apArg[nArg];
      p->apCsr = (Cursor**)&p->azVar[nVar];




      p->nCursor = nCursor;
      for(n=0; n<nVar; n++){
        p->aVar[n].flags = MEM_Null;
      }
    }
  }

  for(n=0; n<p->nMem; n++){
    p->aMem[n].flags = MEM_Null;
  }

#ifdef SQLITE_DEBUG
  if( (p->db->flags & SQLITE_VdbeListing)!=0
    || sqlite3OsFileExists("vdbe_explain")
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
      p->aOp[i].cnt = 0;
      p->aOp[i].cycles = 0;
    }
  }
#endif
}

/*
** Free all resources allociated with AggElem pElem, an element of
** aggregate pAgg.
*/
static void freeAggElem(AggElem *pElem, Agg *pAgg){
  int i;
  for(i=0; i<pAgg->nMem; i++){
    Mem *pMem = &pElem->aMem[i];
    if( pAgg->apFunc && pAgg->apFunc[i] && (pMem->flags & MEM_Agg)!=0 ){
      sqlite3VdbeMemFinalize(pMem, pAgg->apFunc[i]);
    }
    sqlite3VdbeMemRelease(pMem);

  }
  sqliteFree(pElem);
}

/*
** Reset an Agg structure.  Delete all its contents.
**
** For installable aggregate functions, if the step function has been
** called, make sure the finalizer function has also been called.  The
** finalizer might need to free memory that was allocated as part of its
** private context.  If the finalizer has not been called yet, call it
** now.
**
** If db is NULL, then this is being called from sqliteVdbeReset(). In
** this case clean up all references to the temp-table used for
** aggregates (if it was ever opened).
**
** If db is not NULL, then this is being called from with an OP_AggReset
** opcode. Open the temp-table, if it has not already been opened and
** delete the contents of the table used for aggregate information, ready
** for the next round of aggregate processing.
*/
int sqlite3VdbeAggReset(sqlite3 *db, Agg *pAgg, KeyInfo *pKeyInfo){
  int rc = 0;
  BtCursor *pCsr;

  if( !pAgg ) return SQLITE_OK;
  pCsr = pAgg->pCsr;
  assert( (pCsr && pAgg->nTab>0) || (!pCsr && pAgg->nTab==0)
         || sqlite3_malloc_failed );

  /* If pCsr is not NULL, then the table used for aggregate information
  ** is open. Loop through it and free the AggElem* structure pointed at
  ** by each entry. If the finalizer has not been called for an AggElem,
  ** do that too. Finally, clear the btree table itself.
  */
  if( pCsr ){
    int res;
    assert( pAgg->pBtree );
    assert( pAgg->nTab>0 );

    rc=sqlite3BtreeFirst(pCsr, &res);
    while( res==0 && rc==SQLITE_OK ){
      AggElem *pElem;
      rc = sqlite3BtreeData(pCsr, 0, sizeof(AggElem*), (char *)&pElem);
      if( rc!=SQLITE_OK ){
        return rc;
      }
      assert( pAgg->apFunc!=0 );
      freeAggElem(pElem, pAgg);
      rc=sqlite3BtreeNext(pCsr, &res);
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }

    sqlite3BtreeCloseCursor(pCsr);
    sqlite3BtreeClearTable(pAgg->pBtree, pAgg->nTab);
  }else{ 
    /* The cursor may not be open because the aggregator was never used,
    ** or it could be that it was used but there was no GROUP BY clause.
    */
    if( pAgg->pCurrent ){
      freeAggElem(pAgg->pCurrent, pAgg);
    }
  }

  /* If db is not NULL and we have not yet and we have not yet opened
  ** the temporary btree then do so and create the table to store aggregate
  ** information.
  **
  ** If db is NULL, then close the temporary btree if it is open.
  */
  if( db ){
    if( !pAgg->pBtree ){
      assert( pAgg->nTab==0 );
#ifndef SQLITE_OMIT_MEMORYDB
      rc = sqlite3BtreeFactory(db, ":memory:", 0, TEMP_PAGES, &pAgg->pBtree);
#else
      rc = sqlite3BtreeFactory(db, 0, 0, TEMP_PAGES, &pAgg->pBtree);
#endif
      if( rc!=SQLITE_OK ) return rc;
      sqlite3BtreeBeginTrans(pAgg->pBtree, 1);
      rc = sqlite3BtreeCreateTable(pAgg->pBtree, &pAgg->nTab, 0);
      if( rc!=SQLITE_OK ) return rc;
    }
    assert( pAgg->nTab!=0 );

    rc = sqlite3BtreeCursor(pAgg->pBtree, pAgg->nTab, 1,
        sqlite3VdbeRecordCompare, pKeyInfo, &pAgg->pCsr);
    if( rc!=SQLITE_OK ) return rc;
  }else{
    if( pAgg->pBtree ){
      sqlite3BtreeClose(pAgg->pBtree);
      pAgg->pBtree = 0;
      pAgg->nTab = 0;
    }
    pAgg->pCsr = 0;
  }

  if( pAgg->apFunc ){ 
    sqliteFree(pAgg->apFunc);
    pAgg->apFunc = 0;
  }
  pAgg->pCurrent = 0;
  pAgg->nMem = 0;
  pAgg->searching = 0;
  return SQLITE_OK;
}

/*
** Close a cursor and release all the resources that cursor happens
** to hold.
*/
void sqlite3VdbeFreeCursor(Cursor *pCx){
  if( pCx==0 ){
    return;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







752
753
754
755
756
757
758



























































































































759
760
761
762
763
764
765
      p->aOp[i].cnt = 0;
      p->aOp[i].cycles = 0;
    }
  }
#endif
}




























































































































/*
** Close a cursor and release all the resources that cursor happens
** to hold.
*/
void sqlite3VdbeFreeCursor(Cursor *pCx){
  if( pCx==0 ){
    return;
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
  sqlite3VdbeFifoClear(&p->sFifo);
  if( p->contextStack ){
    for(i=0; i<p->contextStackTop; i++){
      sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
    }
    sqliteFree(p->contextStack);
  }
  for(i=0; i<p->nAgg; i++){
    sqlite3VdbeAggReset(0, &p->apAgg[i], 0);
  }
  p->contextStack = 0;
  p->contextStackDepth = 0;
  p->contextStackTop = 0;
  sqliteFree(p->zErrMsg);
  p->zErrMsg = 0;
}








<
<
<







805
806
807
808
809
810
811



812
813
814
815
816
817
818
  sqlite3VdbeFifoClear(&p->sFifo);
  if( p->contextStack ){
    for(i=0; i<p->contextStackTop; i++){
      sqlite3VdbeFifoClear(&p->contextStack[i].sFifo);
    }
    sqliteFree(p->contextStack);
  }



  p->contextStack = 0;
  p->contextStackDepth = 0;
  p->contextStackTop = 0;
  sqliteFree(p->zErrMsg);
  p->zErrMsg = 0;
}

Changes to src/vdbemem.c.
188
189
190
191
192
193
194
195


196
197
198
199
200
201
202
203
204
205
206
207
208

209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
}

/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function.  The
** result of the aggregate is stored back into pMem.
*/
void sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){


  if( pFunc && pFunc->xFinalize ){
    sqlite3_context ctx;
    ctx.s.flags = MEM_Null;
    ctx.s.z = pMem->zShort;
    ctx.pMem = pMem;
    ctx.pFunc = pFunc;
    pFunc->xFinalize(&ctx);
    if( pMem->z && pMem->z!=pMem->zShort ){
      sqliteFree( pMem->z );
    }
    *pMem = ctx.s;
    if( pMem->flags & MEM_Short ){
      pMem->z = pMem->zShort;

    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  if( p->flags & (MEM_Dyn|MEM_Agg) ){
    if( p->xDel ){
      if( p->flags & MEM_Agg ){
        sqlite3VdbeMemFinalize(p, (FuncDef*)&p->i);
        assert( (p->flags & MEM_Agg)==0 );
        sqlite3VdbeMemRelease(p);
      }else{
        p->xDel((void *)p->z);
      }
    }else{
      sqliteFree(p->z);







|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
>













|







188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
}

/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function.  The
** result of the aggregate is stored back into pMem.
*/
void sqlite3VdbeMemFinalize(Mem *pMem){
  if( pMem->flags & MEM_Agg ){
    FuncDef *pFunc = *(FuncDef**)&pMem->i;
    if( pFunc && pFunc->xFinalize ){
      sqlite3_context ctx;
      ctx.s.flags = MEM_Null;
      ctx.s.z = pMem->zShort;
      ctx.pMem = pMem;
      ctx.pFunc = pFunc;
      pFunc->xFinalize(&ctx);
      if( pMem->z && pMem->z!=pMem->zShort ){
        sqliteFree( pMem->z );
      }
      *pMem = ctx.s;
      if( pMem->flags & MEM_Short ){
        pMem->z = pMem->zShort;
      }
    }
  }
}

/*
** Release any memory held by the Mem. This may leave the Mem in an
** inconsistent state, for example with (Mem.z==0) and
** (Mem.type==SQLITE_TEXT).
*/
void sqlite3VdbeMemRelease(Mem *p){
  if( p->flags & (MEM_Dyn|MEM_Agg) ){
    if( p->xDel ){
      if( p->flags & MEM_Agg ){
        sqlite3VdbeMemFinalize(p);
        assert( (p->flags & MEM_Agg)==0 );
        sqlite3VdbeMemRelease(p);
      }else{
        p->xDel((void *)p->z);
      }
    }else{
      sqliteFree(p->z);
Changes to test/misc4.test.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests for miscellanous features that were
# left out of other test files.
#
# $Id: misc4.test,v 1.16 2005/03/29 03:11:00 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Prepare a statement that will create a temporary table.  Then do
# a rollback.  Then try to execute the prepared statement.
#







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file implements tests for miscellanous features that were
# left out of other test files.
#
# $Id: misc4.test,v 1.17 2005/09/07 21:22:47 drh Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Prepare a statement that will create a temporary table.  Then do
# a rollback.  Then try to execute the prepared statement.
#
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  execsql { 
    CREATE TABLE Table1(ID integer primary key, Value TEXT);
    INSERT INTO Table1 VALUES(1, 'x');
    CREATE TABLE Table2(ID integer NOT NULL, Value TEXT);
    INSERT INTO Table2 VALUES(1, 'z');
    INSERT INTO Table2 VALUES (1, 'a');
    SELECT ID, Value FROM Table1
       UNION SELECT ID, max(Value) FROM Table2 GROUP BY 1,2
    ORDER BY 1, 2;
  }
} {{} {} 1 x 1 z}
} ;# ifcapable compound

# Ticket #1047.  Make sure column types are preserved in subqueries.
#







|







92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
  execsql { 
    CREATE TABLE Table1(ID integer primary key, Value TEXT);
    INSERT INTO Table1 VALUES(1, 'x');
    CREATE TABLE Table2(ID integer NOT NULL, Value TEXT);
    INSERT INTO Table2 VALUES(1, 'z');
    INSERT INTO Table2 VALUES (1, 'a');
    SELECT ID, Value FROM Table1
       UNION SELECT ID, max(Value) FROM Table2 GROUP BY 1
    ORDER BY 1, 2;
  }
} {{} {} 1 x 1 z}
} ;# ifcapable compound

# Ticket #1047.  Make sure column types are preserved in subqueries.
#
173
174
175
176
177
178
179
180
do_test misc4-6.2 {
  execsql {
    SELECT a FROM abc LEFT JOIN def ON (abc.a=def.d);
  }
} {1}

finish_test








<
173
174
175
176
177
178
179

do_test misc4-6.2 {
  execsql {
    SELECT a FROM abc LEFT JOIN def ON (abc.a=def.d);
  }
} {1}

finish_test