SQLite

Check-in [110cfd6920]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Merge the latest trunk changes into the sessions branch.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | sessions
Files: files | file ages | folders
SHA1: 110cfd6920cf3011aeaf7e586f8db867bfc69fbb
User & Date: drh 2011-07-22 12:49:27.667
Context
2011-07-26
15:50
Fix a problem causing sqlite3changeset_invert() to effectively drop UPDATE changes. (check-in: bb3e65d972 user: dan tags: sessions)
2011-07-22
12:49
Merge the latest trunk changes into the sessions branch. (check-in: 110cfd6920 user: drh tags: sessions)
11:23
Also add the sqlite3-all.c target to the MSVC makefile. (check-in: 8ce2b74a82 user: drh tags: trunk)
2011-07-18
15:22
Fix the sqlite3session_isempty() method so that it returns, as documented, non-zero when no changes have been recorded by the session object. (check-in: d04e0fd82a user: dan tags: sessions)
Changes
Unified Diff Ignore Whitespace Patch
Changes to Makefile.in.
513
514
515
516
517
518
519



520
521
522
523
524
525
526
	$(TCLSH_CMD) $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new
	mv vdbe.new tsrc/vdbe.c
	touch .target_source

sqlite3.c:	.target_source $(TOP)/tool/mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl




# Rule to build the amalgamation
#
sqlite3.lo:	sqlite3.c
	$(LTCOMPILE) $(TEMP_STORE) -c sqlite3.c

# Rules to build the LEMON compiler generator
#







>
>
>







513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
	$(TCLSH_CMD) $(TOP)/tool/vdbe-compress.tcl <tsrc/vdbe.c >vdbe.new
	mv vdbe.new tsrc/vdbe.c
	touch .target_source

sqlite3.c:	.target_source $(TOP)/tool/mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)/tool/mksqlite3c.tcl

sqlite3-all.c:	sqlite3.c $(TOP)/tool/split-sqlite3c.tcl
	$(TCLSH_CMD) $(TOP)/tool/split-sqlite3c.tcl

# Rule to build the amalgamation
#
sqlite3.lo:	sqlite3.c
	$(LTCOMPILE) $(TEMP_STORE) -c sqlite3.c

# Rules to build the LEMON compiler generator
#
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
	cp $(TOP)/src/parse.y .
	rm -f parse.h
	./lemon$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	mv parse.h parse.h.temp
	$(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h

sqlite3.h:	$(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION
	tclsh $(TOP)/tool/mksqlite3h.tcl $(TOP) >sqlite3.h

keywordhash.h:	$(TOP)/tool/mkkeywordhash.c
	$(BCC) -o mkkeywordhash$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)/tool/mkkeywordhash.c
	./mkkeywordhash$(BEXE) >keywordhash.h










|







784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
	cp $(TOP)/src/parse.y .
	rm -f parse.h
	./lemon$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	mv parse.h parse.h.temp
	$(NAWK) -f $(TOP)/addopcodes.awk parse.h.temp >parse.h

sqlite3.h:	$(TOP)/src/sqlite.h.in $(TOP)/manifest.uuid $(TOP)/VERSION
	$(TCLSH_CMD) $(TOP)/tool/mksqlite3h.tcl $(TOP) >sqlite3.h

keywordhash.h:	$(TOP)/tool/mkkeywordhash.c
	$(BCC) -o mkkeywordhash$(BEXE) $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)/tool/mkkeywordhash.c
	./mkkeywordhash$(BEXE) >keywordhash.h



Changes to Makefile.msc.
39
40
41
42
43
44
45

46



47
48
49



50

51




52
53


54

55

56
57
58
59
60
61
62

# Define -DNDEBUG to compile without debugging (i.e., for production usage)
# Omitting the define will cause extra debugging code to be inserted and
# includes extra comments when "EXPLAIN stmt" is used.
#
TCC = $(TCC) -DNDEBUG


# The library that programs using TCL must link against.



#
LIBTCL = tcl85.lib
TCLINCDIR = c:\tcl\include



TCLLIBDIR = c:\tcl\lib






# This is the command to use for tclsh - normally just "tclsh", but we may
# know the specific version we want to use


#

TCLSH_CMD = tclsh85


# Compiler options needed for programs that use the readline() library.
#
READLINE_FLAGS = -DHAVE_READLINE=0

# The library that programs using readline() must link against.
#







>
|
>
>
>

|

>
>
>

>

>
>
>
>

|
>
>

>

>







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

# Define -DNDEBUG to compile without debugging (i.e., for production usage)
# Omitting the define will cause extra debugging code to be inserted and
# includes extra comments when "EXPLAIN stmt" is used.
#
TCC = $(TCC) -DNDEBUG

# The locations of the Tcl header and library files.  Also, the library that
# non-stubs enabled programs using Tcl must link against.  These variables
# (TCLINCDIR, TCLLIBDIR, and LIBTCL) may be overridden via the environment
# prior to running nmake in order to match the actual installed location and
# version on this machine.
#
!if "$(TCLINCDIR)" == ""
TCLINCDIR = c:\tcl\include
!endif

!if "$(TCLLIBDIR)" == ""
TCLLIBDIR = c:\tcl\lib
!endif

!if "$(LIBTCL)" == ""
LIBTCL = tcl85.lib
!endif

# This is the command to use for tclsh - normally just "tclsh", but we may
# know the specific version we want to use.  This variable (TCLSH_CMD) may be
# overridden via the environment prior to running nmake in order to select a
# specific Tcl shell to use.
#
!if "$(TCLSH_CMD)" == ""
TCLSH_CMD = tclsh85
!endif

# Compiler options needed for programs that use the readline() library.
#
READLINE_FLAGS = -DHAVE_READLINE=0

# The library that programs using readline() must link against.
#
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
# to deduce the binary type based on the object files.
!IF "$(PLATFORM)"!=""
LTLINKOPTS = /MACHINE:$(PLATFORM)
LTLIBOPTS = /MACHINE:$(PLATFORM)
!ENDIF

# nawk compatible awk.
NAWK = .\gawk.exe

# You should not have to change anything below this line
###############################################################################

# Object files for the SQLite library (non-amalgamation).
#
LIBOBJS0 = alter.lo analyze.lo attach.lo auth.lo \







|







130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# to deduce the binary type based on the object files.
!IF "$(PLATFORM)"!=""
LTLINKOPTS = /MACHINE:$(PLATFORM)
LTLIBOPTS = /MACHINE:$(PLATFORM)
!ENDIF

# nawk compatible awk.
NAWK = gawk.exe

# You should not have to change anything below this line
###############################################################################

# Object files for the SQLite library (non-amalgamation).
#
LIBOBJS0 = alter.lo analyze.lo attach.lo auth.lo \
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
  $(TOP)\ext\icu\sqliteicu.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\rtree\sqlite3rtree.h

# This is the default Makefile target.  The objects listed here
# are what get build when you type just "make" with no arguments.
#
all:	libsqlite3.lib sqlite3.exe libtclsqlite3.lib

libsqlite3.lib:	$(LIBOBJ)
	$(LTLIB) $(LTLIBOPTS) /OUT:$@ $(LIBOBJ) $(TLIBS)

libtclsqlite3.lib:	tclsqlite.lo libsqlite3.lib
	$(LTLIB) $(LTLIBOPTS) /LIBPATH:$(TCLLIBDIR) /OUT:$@ tclsqlite.lo libsqlite3.lib $(LIBTCL:tcl=tclstub) $(TLIBS)








|







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
  $(TOP)\ext\icu\sqliteicu.h
EXTHDR = $(EXTHDR) \
  $(TOP)\ext\rtree\sqlite3rtree.h

# This is the default Makefile target.  The objects listed here
# are what get build when you type just "make" with no arguments.
#
all:	dll libsqlite3.lib sqlite3.exe libtclsqlite3.lib

libsqlite3.lib:	$(LIBOBJ)
	$(LTLIB) $(LTLIBOPTS) /OUT:$@ $(LIBOBJ) $(TLIBS)

libtclsqlite3.lib:	tclsqlite.lo libsqlite3.lib
	$(LTLIB) $(LTLIBOPTS) /LIBPATH:$(TCLLIBDIR) /OUT:$@ tclsqlite.lo libsqlite3.lib $(LIBTCL:tcl=tclstub) $(TLIBS)

459
460
461
462
463
464
465
466
467
468
469
470
471



472
473
474
475
476
477
478
# all that automatic generation.
#
.target_source:	$(SRC) $(TOP)\tool\vdbe-compress.tcl
	-rmdir /S/Q tsrc
	-mkdir tsrc
	for %i in ($(SRC)) do copy /Y %i tsrc
	del /Q tsrc\sqlite.h.in tsrc\parse.y
	$(TCLSH_CMD) $(TOP)\tool\vdbe-compress.tcl <tsrc\vdbe.c >vdbe.new
	move vdbe.new tsrc\vdbe.c
	echo > .target_source

sqlite3.c:	.target_source $(TOP)\tool\mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3c.tcl




# Rule to build the amalgamation
#
sqlite3.lo:	sqlite3.c
	$(LTCOMPILE) -c sqlite3.c

# Rules to build the LEMON compiler generator







|





>
>
>







475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# all that automatic generation.
#
.target_source:	$(SRC) $(TOP)\tool\vdbe-compress.tcl
	-rmdir /S/Q tsrc
	-mkdir tsrc
	for %i in ($(SRC)) do copy /Y %i tsrc
	del /Q tsrc\sqlite.h.in tsrc\parse.y
	$(TCLSH_CMD) $(TOP)\tool\vdbe-compress.tcl < tsrc\vdbe.c > vdbe.new
	move vdbe.new tsrc\vdbe.c
	echo > .target_source

sqlite3.c:	.target_source $(TOP)\tool\mksqlite3c.tcl
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3c.tcl

sqlite3-all.c:	sqlite3.c $(TOP)/tool/split-sqlite3c.tcl
	$(TCLSH_CMD) $(TOP)/tool/split-sqlite3c.tcl

# Rule to build the amalgamation
#
sqlite3.lo:	sqlite3.c
	$(LTCOMPILE) -c sqlite3.c

# Rules to build the LEMON compiler generator
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
tclsqlite3.exe:	tclsqlite-shell.lo libsqlite3.lib
	$(LTLINK) tclsqlite-shell.lo \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)\mkopcodec.awk
	$(NAWK) "/#define OP_/ { print }" opcodes.h | sort /+45 | $(NAWK) -f $(TOP)\mkopcodec.awk >opcodes.c

opcodes.h:	parse.h $(TOP)\src\vdbe.c $(TOP)\mkopcodeh.awk
	type parse.h $(TOP)\src\vdbe.c | $(NAWK) -f $(TOP)\mkopcodeh.awk >opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c

parse.c:	$(TOP)\src\parse.y lemon.exe $(TOP)\addopcodes.awk
	del /Q parse.y parse.h parse.h.temp
	copy $(TOP)\src\parse.y .
	.\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	move parse.h parse.h.temp
	$(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp >parse.h

sqlite3.h:	$(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP) >sqlite3.h

mkkeywordhash.exe:	$(TOP)\tool\mkkeywordhash.c
	$(BCC) -Femkkeywordhash.exe $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c

keywordhash.h:	$(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe
	.\mkkeywordhash.exe >keywordhash.h



# Rules to build the extension objects.
#
icu.lo:	$(TOP)\ext\icu\icu.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\icu\icu.c







|


|










|


|





|







735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
tclsqlite3.exe:	tclsqlite-shell.lo libsqlite3.lib
	$(LTLINK) tclsqlite-shell.lo \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) libsqlite3.lib $(LIBTCL)

# Rules to build opcodes.c and opcodes.h
#
opcodes.c:	opcodes.h $(TOP)\mkopcodec.awk
	$(NAWK) "/#define OP_/ { print }" opcodes.h | sort /+45 | $(NAWK) -f $(TOP)\mkopcodec.awk > opcodes.c

opcodes.h:	parse.h $(TOP)\src\vdbe.c $(TOP)\mkopcodeh.awk
	type parse.h $(TOP)\src\vdbe.c | $(NAWK) -f $(TOP)\mkopcodeh.awk > opcodes.h

# Rules to build parse.c and parse.h - the outputs of lemon.
#
parse.h:	parse.c

parse.c:	$(TOP)\src\parse.y lemon.exe $(TOP)\addopcodes.awk
	del /Q parse.y parse.h parse.h.temp
	copy $(TOP)\src\parse.y .
	.\lemon.exe $(OPT_FEATURE_FLAGS) $(OPTS) parse.y
	move parse.h parse.h.temp
	$(NAWK) -f $(TOP)\addopcodes.awk parse.h.temp > parse.h

sqlite3.h:	$(TOP)\src\sqlite.h.in $(TOP)\manifest.uuid $(TOP)\VERSION
	$(TCLSH_CMD) $(TOP)\tool\mksqlite3h.tcl $(TOP) > sqlite3.h

mkkeywordhash.exe:	$(TOP)\tool\mkkeywordhash.c
	$(BCC) -Femkkeywordhash.exe $(OPT_FEATURE_FLAGS) $(OPTS) $(TOP)\tool\mkkeywordhash.c

keywordhash.h:	$(TOP)\tool\mkkeywordhash.c mkkeywordhash.exe
	.\mkkeywordhash.exe > keywordhash.h



# Rules to build the extension objects.
#
icu.lo:	$(TOP)\ext\icu\icu.c $(HDR) $(EXTHDR)
	$(LTCOMPILE) -DSQLITE_CORE -c $(TOP)\ext\icu\icu.c
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
	.\testfixture.exe $(TOP)\test\all.test -soak=1

test:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\veryquick.test

spaceanal_tcl.h:	$(TOP)\tool\spaceanal.tcl
	$(NAWK) -f $(TOP)/tool/tostr.awk \
		$(TOP)\tool\spaceanal.tcl >spaceanal_tcl.h

sqlite3_analyzer.exe:	$(TESTFIXTURE_SRC) spaceanal_tcl.h
	$(LTLINK) -DTCLSH=2 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1 \
		-DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE \
		-DBUILD_sqlite -I$(TCLINCDIR) \
		$(TESTFIXTURE_SRC) \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS)







|







854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
	.\testfixture.exe $(TOP)\test\all.test -soak=1

test:	testfixture.exe sqlite3.exe
	.\testfixture.exe $(TOP)\test\veryquick.test

spaceanal_tcl.h:	$(TOP)\tool\spaceanal.tcl
	$(NAWK) -f $(TOP)/tool/tostr.awk \
		$(TOP)\tool\spaceanal.tcl > spaceanal_tcl.h

sqlite3_analyzer.exe:	$(TESTFIXTURE_SRC) spaceanal_tcl.h
	$(LTLINK) -DTCLSH=2 -DSQLITE_TEST=1 -DSQLITE_CRASH_TEST=1 \
		-DSQLITE_SERVER=1 -DSQLITE_PRIVATE="" -DSQLITE_CORE \
		-DBUILD_sqlite -I$(TCLINCDIR) \
		$(TESTFIXTURE_SRC) \
		/link $(LTLINKOPTS) /LIBPATH:$(TCLLIBDIR) $(LIBTCL) $(TLIBS)
862
863
864
865
866
867
868
869
870
871
872
873
874
875

#
# Windows section
#
dll: sqlite3.dll

sqlite3.def: libsqlite3.lib
	echo EXPORTS >sqlite3.def
	dumpbin /all libsqlite3.lib \
		| $(NAWK) "/ 1 _sqlite3_/ { sub(/^.* _/,\"\");print }" \
		| sort >>sqlite3.def

sqlite3.dll: $(LIBOBJ) sqlite3.def
	link $(LTLINKOPTS) /DLL /DEF:sqlite3.def /OUT:$@ $(LIBOBJ)







|


|



881
882
883
884
885
886
887
888
889
890
891
892
893
894

#
# Windows section
#
dll: sqlite3.dll

sqlite3.def: libsqlite3.lib
	echo EXPORTS > sqlite3.def
	dumpbin /all libsqlite3.lib \
		| $(NAWK) "/ 1 _sqlite3_/ { sub(/^.* _/,\"\");print }" \
		| sort >> sqlite3.def

sqlite3.dll: $(LIBOBJ) sqlite3.def
	link $(LTLINKOPTS) /DLL /DEF:sqlite3.def /OUT:$@ $(LIBOBJ)
Changes to VERSION.
1
3.7.7
|
1
3.7.8
Changes to configure.
1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.7.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##


|







1
2
3
4
5
6
7
8
9
10
#! /bin/sh
# Guess values for system-dependent variables and create Makefiles.
# Generated by GNU Autoconf 2.62 for sqlite 3.7.8.
#
# Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
# 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
# This configure script is free software; the Free Software Foundation
# gives unlimited permission to copy, distribute and modify it.
## --------------------- ##
## M4sh Initialization.  ##
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.7'
PACKAGE_STRING='sqlite 3.7.7'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>







|
|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
MFLAGS=
MAKEFLAGS=
SHELL=${CONFIG_SHELL-/bin/sh}

# Identity of this package.
PACKAGE_NAME='sqlite'
PACKAGE_TARNAME='sqlite'
PACKAGE_VERSION='3.7.8'
PACKAGE_STRING='sqlite 3.7.8'
PACKAGE_BUGREPORT=''

# Factoring default headers for most tests.
ac_includes_default="\
#include <stdio.h>
#ifdef HAVE_SYS_TYPES_H
# include <sys/types.h>
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.7 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.







|







1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
#
# Report the --help message.
#
if test "$ac_init_help" = "long"; then
  # Omit some internal or obsolete options to make the list less imposing.
  # This message is too long to be a string in the A/UX 3.1 sh.
  cat <<_ACEOF
\`configure' configures sqlite 3.7.8 to adapt to many kinds of systems.

Usage: $0 [OPTION]... [VAR=VALUE]...

To assign environment variables (e.g., CC, CFLAGS...), specify them as
VAR=VALUE.  See below for descriptions of some of the useful variables.

Defaults for the options are specified in brackets.
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.7:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]







|







1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
  --build=BUILD     configure for building on BUILD [guessed]
  --host=HOST       cross-compile to build programs to run on HOST [BUILD]
_ACEOF
fi

if test -n "$ac_init_help"; then
  case $ac_init_help in
     short | recursive ) echo "Configuration of sqlite 3.7.8:";;
   esac
  cat <<\_ACEOF

Optional Features:
  --disable-option-checking  ignore unrecognized --enable/--with options
  --disable-FEATURE       do not include FEATURE (same as --enable-FEATURE=no)
  --enable-FEATURE[=ARG]  include FEATURE [ARG=yes]
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.7
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.7, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{







|













|







1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
    cd "$ac_pwd" || { ac_status=$?; break; }
  done
fi

test -n "$ac_init_help" && exit $ac_status
if $ac_init_version; then
  cat <<\_ACEOF
sqlite configure 3.7.8
generated by GNU Autoconf 2.62

Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
This configure script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it.
_ACEOF
  exit
fi
cat >config.log <<_ACEOF
This file contains any messages produced by compilers while
running configure, to aid debugging if configure makes a mistake.

It was created by sqlite $as_me 3.7.8, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  $ $0 $@

_ACEOF
exec 5>>config.log
{
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.7, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@







|







14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040

exec 6>&1

# Save the log message, to keep $[0] and so on meaningful, and to
# report actual input values of CONFIG_FILES etc. instead of their
# values after options handling.
ac_log="
This file was extended by sqlite $as_me 3.7.8, which was
generated by GNU Autoconf 2.62.  Invocation command line was

  CONFIG_FILES    = $CONFIG_FILES
  CONFIG_HEADERS  = $CONFIG_HEADERS
  CONFIG_LINKS    = $CONFIG_LINKS
  CONFIG_COMMANDS = $CONFIG_COMMANDS
  $ $0 $@
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.7
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."








|







14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
$config_commands

Report bugs to <bug-autoconf@gnu.org>."

_ACEOF
cat >>$CONFIG_STATUS <<_ACEOF || ac_write_fail=1
ac_cs_version="\\
sqlite config.status 3.7.8
configured by $0, generated by GNU Autoconf 2.62,
  with options \\"`$as_echo "$ac_configure_args" | sed 's/^ //; s/[\\""\`\$]/\\\\&/g'`\\"

Copyright (C) 2008 Free Software Foundation, Inc.
This config.status script is free software; the Free Software Foundation
gives unlimited permission to copy, distribute and modify it."

Changes to ext/fts3/fts3.c.
308
309
310
311
312
313
314





315
316
317
318
319
320
321

#include "fts3.h"
#ifndef SQLITE_CORE 
# include "sqlite3ext.h"
  SQLITE_EXTENSION_INIT1
#endif






/* 
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
** The number of bytes written is returned.
*/
int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
  unsigned char *q = (unsigned char *) p;







>
>
>
>
>







308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326

#include "fts3.h"
#ifndef SQLITE_CORE 
# include "sqlite3ext.h"
  SQLITE_EXTENSION_INIT1
#endif

static int fts3EvalNext(Fts3Cursor *pCsr);
static int fts3EvalStart(Fts3Cursor *pCsr);
static int fts3TermSegReaderCursor(
    Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **);

/* 
** Write a 64-bit variable-length integer to memory starting at p[0].
** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
** The number of bytes written is returned.
*/
int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
  unsigned char *q = (unsigned char *) p;
816
817
818
819
820
821
822













823
824
825

826
827
828
829
830
831
832
833
834
835
















836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
  for(i=0; i<p->nColumn; i++){
    fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
  }
  sqlite3_free(zFree);
  return zRet;
}














static int fts3GobbleInt(const char **pp, int *pnOut){
  const char *p = *pp;
  int nInt = 0;

  for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
    nInt = nInt * 10 + (p[0] - '0');
  }
  if( p==*pp ) return SQLITE_ERROR;
  *pnOut = nInt;
  *pp = p;
  return SQLITE_OK;
}


















static int fts3PrefixParameter(
  const char *zParam,             /* ABC in prefix=ABC parameter to parse */
  int *pnIndex,                   /* OUT: size of *apIndex[] array */
  struct Fts3Index **apIndex,     /* OUT: Array of indexes for this table */
  struct Fts3Index **apFree       /* OUT: Free this with sqlite3_free() */
){
  struct Fts3Index *aIndex;
  int nIndex = 1;

  if( zParam && zParam[0] ){
    const char *p;
    nIndex++;
    for(p=zParam; *p; p++){
      if( *p==',' ) nIndex++;
    }
  }

  aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
  *apIndex = *apFree = aIndex;
  *pnIndex = nIndex;
  if( !aIndex ){
    return SQLITE_NOMEM;
  }

  memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
  if( zParam ){







>
>
>
>
>
>
>
>
>
>
>
>
>

|
|
>









|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
<

|
|










|







821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
  for(i=0; i<p->nColumn; i++){
    fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
  }
  sqlite3_free(zFree);
  return zRet;
}

/*
** This function interprets the string at (*pp) as a non-negative integer
** value. It reads the integer and sets *pnOut to the value read, then 
** sets *pp to point to the byte immediately following the last byte of
** the integer value.
**
** Only decimal digits ('0'..'9') may be part of an integer value. 
**
** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
** the output value undefined. Otherwise SQLITE_OK is returned.
**
** This function is used when parsing the "prefix=" FTS4 parameter.
*/
static int fts3GobbleInt(const char **pp, int *pnOut){
  const char *p = *pp;            /* Iterator pointer */
  int nInt = 0;                   /* Output value */

  for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
    nInt = nInt * 10 + (p[0] - '0');
  }
  if( p==*pp ) return SQLITE_ERROR;
  *pnOut = nInt;
  *pp = p;
  return SQLITE_OK;
}

/*
** This function is called to allocate an array of Fts3Index structures
** representing the indexes maintained by the current FTS table. FTS tables
** always maintain the main "terms" index, but may also maintain one or
** more "prefix" indexes, depending on the value of the "prefix=" parameter
** (if any) specified as part of the CREATE VIRTUAL TABLE statement.
**
** Argument zParam is passed the value of the "prefix=" option if one was
** specified, or NULL otherwise.
**
** If no error occurs, SQLITE_OK is returned and *apIndex set to point to
** the allocated array. *pnIndex is set to the number of elements in the
** array. If an error does occur, an SQLite error code is returned.
**
** Regardless of whether or not an error is returned, it is the responsibility
** of the caller to call sqlite3_free() on the output array to free it.
*/
static int fts3PrefixParameter(
  const char *zParam,             /* ABC in prefix=ABC parameter to parse */
  int *pnIndex,                   /* OUT: size of *apIndex[] array */
  struct Fts3Index **apIndex      /* OUT: Array of indexes for this table */

){
  struct Fts3Index *aIndex;       /* Allocated array */
  int nIndex = 1;                 /* Number of entries in array */

  if( zParam && zParam[0] ){
    const char *p;
    nIndex++;
    for(p=zParam; *p; p++){
      if( *p==',' ) nIndex++;
    }
  }

  aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
  *apIndex = aIndex;
  *pnIndex = nIndex;
  if( !aIndex ){
    return SQLITE_NOMEM;
  }

  memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
  if( zParam ){
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
  const char **aCol;              /* Array of column names */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  int nIndex;                     /* Size of aIndex[] array */
  struct Fts3Index *aIndex;       /* Array of indexes for this table */
  struct Fts3Index *aFree = 0;    /* Free this before returning */

  /* The results of parsing supported FTS4 key=value options: */
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */
  char *zUncompress = 0;          /* uncompress=? parameter (or NULL) */







|
<







938
939
940
941
942
943
944
945

946
947
948
949
950
951
952
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
  const char **aCol;              /* Array of column names */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  int nIndex;                     /* Size of aIndex[] array */
  struct Fts3Index *aIndex = 0;   /* Array of indexes for this table */


  /* The results of parsing supported FTS4 key=value options: */
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */
  char *zUncompress = 0;          /* uncompress=? parameter (or NULL) */
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

  if( pTokenizer==0 ){
    rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }
  assert( pTokenizer );

  rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex, &aFree);
  if( rc==SQLITE_ERROR ){
    assert( zPrefix );
    *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix);
  }
  if( rc!=SQLITE_OK ) goto fts3_init_out;

  /* Allocate and populate the Fts3Table structure. */







|







1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

  if( pTokenizer==0 ){
    rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
    if( rc!=SQLITE_OK ) goto fts3_init_out;
  }
  assert( pTokenizer );

  rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex);
  if( rc==SQLITE_ERROR ){
    assert( zPrefix );
    *pzErr = sqlite3_mprintf("error parsing prefix parameter: %s", zPrefix);
  }
  if( rc!=SQLITE_OK ) goto fts3_init_out;

  /* Allocate and populate the Fts3Table structure. */
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
  p->nNodeSize = p->nPgsz-35;

  /* Declare the table schema to SQLite. */
  fts3DeclareVtab(&rc, p);

fts3_init_out:
  sqlite3_free(zPrefix);
  sqlite3_free(aFree);
  sqlite3_free(zCompress);
  sqlite3_free(zUncompress);
  sqlite3_free((void *)aCol);
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
    }else if( pTokenizer ){







|







1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
  p->nNodeSize = p->nPgsz-35;

  /* Declare the table schema to SQLite. */
  fts3DeclareVtab(&rc, p);

fts3_init_out:
  sqlite3_free(zPrefix);
  sqlite3_free(aIndex);
  sqlite3_free(zCompress);
  sqlite3_free(zUncompress);
  sqlite3_free((void *)aCol);
  if( rc!=SQLITE_OK ){
    if( p ){
      fts3DisconnectMethod((sqlite3_vtab *)p);
    }else if( pTokenizer ){
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747


1748
1749
1750
1751
1752
1753
1754
  *p++ = POS_END;
  *pp = p;
  *pp1 = p1 + 1;
  *pp2 = p2 + 1;
}

/*
** nToken==1 searches for adjacent positions.
**
** This function is used to merge two position lists into one. When it is
** called, *pp1 and *pp2 must both point to position lists. A position-list is
** the part of a doclist that follows each document id. For example, if a row
** contains:
**
**     'a b c'|'x y z'|'a b b a'
**
** Then the position list for this row for token 'b' would consist of:
**
**     0x02 0x01 0x02 0x03 0x03 0x00
**
** When this function returns, both *pp1 and *pp2 are left pointing to the
** byte following the 0x00 terminator of their respective position lists.
**
** If isSaveLeft is 0, an entry is added to the output position list for 
** each position in *pp2 for which there exists one or more positions in
** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
** when the *pp1 token appears before the *pp2 token, but not more than nToken
** slots before it.


*/
static int fts3PoslistPhraseMerge(
  char **pp,                      /* IN/OUT: Preallocated output buffer */
  int nToken,                     /* Maximum difference in token positions */
  int isSaveLeft,                 /* Save the left position */
  int isExact,                    /* If *pp1 is exactly nTokens before *pp2 */
  char **pp1,                     /* IN/OUT: Left input list */







<
<



















>
>







1753
1754
1755
1756
1757
1758
1759


1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
  *p++ = POS_END;
  *pp = p;
  *pp1 = p1 + 1;
  *pp2 = p2 + 1;
}

/*


** This function is used to merge two position lists into one. When it is
** called, *pp1 and *pp2 must both point to position lists. A position-list is
** the part of a doclist that follows each document id. For example, if a row
** contains:
**
**     'a b c'|'x y z'|'a b b a'
**
** Then the position list for this row for token 'b' would consist of:
**
**     0x02 0x01 0x02 0x03 0x03 0x00
**
** When this function returns, both *pp1 and *pp2 are left pointing to the
** byte following the 0x00 terminator of their respective position lists.
**
** If isSaveLeft is 0, an entry is added to the output position list for 
** each position in *pp2 for which there exists one or more positions in
** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
** when the *pp1 token appears before the *pp2 token, but not more than nToken
** slots before it.
**
** e.g. nToken==1 searches for adjacent positions.
*/
static int fts3PoslistPhraseMerge(
  char **pp,                      /* IN/OUT: Preallocated output buffer */
  int nToken,                     /* Maximum difference in token positions */
  int isSaveLeft,                 /* Save the left position */
  int isExact,                    /* If *pp1 is exactly nTokens before *pp2 */
  char **pp1,                     /* IN/OUT: Left input list */
1907
1908
1909
1910
1911
1912
1913
1914
1915

1916
1917
1918
1919
1920
1921
1922
1923
1924












1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943















1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964










1965














1966
1967
1968
1969
1970
1971
1972
1973
1974
    res = 0;
  }

  return res;
}

/* 
** A pointer to an instance of this structure is used as the context 
** argument to sqlite3Fts3SegReaderIterate()

*/
typedef struct TermSelect TermSelect;
struct TermSelect {
  int isReqPos;
  char *aaOutput[16];             /* Malloc'd output buffer */
  int anOutput[16];               /* Size of output in bytes */
};














static void fts3GetDeltaVarint3(
  char **pp, 
  char *pEnd, 
  int bDescIdx,
  sqlite3_int64 *pVal
){
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    sqlite3_int64 iVal;
    *pp += sqlite3Fts3GetVarint(*pp, &iVal);
    if( bDescIdx ){
      *pVal -= iVal;
    }else{
      *pVal += iVal;
    }
  }
}
















static void fts3PutDeltaVarint3(
  char **pp,                      /* IN/OUT: Output pointer */
  int bDescIdx,                   /* True for descending docids */
  sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
  int *pbFirst,                   /* IN/OUT: True after first int written */
  sqlite3_int64 iVal              /* Write this value to the list */
){
  sqlite3_int64 iWrite;
  if( bDescIdx==0 || *pbFirst==0 ){
    iWrite = iVal - *piPrev;
  }else{
    iWrite = *piPrev - iVal;
  }
  assert( *pbFirst || *piPrev==0 );
  assert( *pbFirst==0 || iWrite>0 );
  *pp += sqlite3Fts3PutVarint(*pp, iWrite);
  *piPrev = iVal;
  *pbFirst = 1;
}

#define COMPARE_DOCID(i1, i2) ((bDescIdx?-1:1) * (i1-i2))

























static int fts3DoclistOrMerge(
  int bDescIdx,                   /* True if arguments are desc */
  char *a1, int n1,               /* First doclist */
  char *a2, int n2,               /* Second doclist */
  char **paOut, int *pnOut        /* OUT: Malloc'd doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;







|
|
>



<
|
|


|
>
>
>
>
>
>
>
>
>
>
>
>

|
|
|
|














>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




















|
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>

|







1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952

1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
    res = 0;
  }

  return res;
}

/* 
** An instance of this function is used to merge together the (potentially
** large number of) doclists for each term that matches a prefix query.
** See function fts3TermSelectMerge() for details.
*/
typedef struct TermSelect TermSelect;
struct TermSelect {

  char *aaOutput[16];             /* Malloc'd output buffers */
  int anOutput[16];               /* Size each output buffer in bytes */
};

/*
** This function is used to read a single varint from a buffer. Parameter
** pEnd points 1 byte past the end of the buffer. When this function is
** called, if *pp points to pEnd or greater, then the end of the buffer
** has been reached. In this case *pp is set to 0 and the function returns.
**
** If *pp does not point to or past pEnd, then a single varint is read
** from *pp. *pp is then set to point 1 byte past the end of the read varint.
**
** If bDescIdx is false, the value read is added to *pVal before returning.
** If it is true, the value read is subtracted from *pVal before this 
** function returns.
*/
static void fts3GetDeltaVarint3(
  char **pp,                      /* IN/OUT: Point to read varint from */
  char *pEnd,                     /* End of buffer */
  int bDescIdx,                   /* True if docids are descending */
  sqlite3_int64 *pVal             /* IN/OUT: Integer value */
){
  if( *pp>=pEnd ){
    *pp = 0;
  }else{
    sqlite3_int64 iVal;
    *pp += sqlite3Fts3GetVarint(*pp, &iVal);
    if( bDescIdx ){
      *pVal -= iVal;
    }else{
      *pVal += iVal;
    }
  }
}

/*
** This function is used to write a single varint to a buffer. The varint
** is written to *pp. Before returning, *pp is set to point 1 byte past the
** end of the value written.
**
** If *pbFirst is zero when this function is called, the value written to
** the buffer is that of parameter iVal. 
**
** If *pbFirst is non-zero when this function is called, then the value 
** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal)
** (if bDescIdx is non-zero).
**
** Before returning, this function always sets *pbFirst to 1 and *piPrev
** to the value of parameter iVal.
*/
static void fts3PutDeltaVarint3(
  char **pp,                      /* IN/OUT: Output pointer */
  int bDescIdx,                   /* True for descending docids */
  sqlite3_int64 *piPrev,          /* IN/OUT: Previous value written to list */
  int *pbFirst,                   /* IN/OUT: True after first int written */
  sqlite3_int64 iVal              /* Write this value to the list */
){
  sqlite3_int64 iWrite;
  if( bDescIdx==0 || *pbFirst==0 ){
    iWrite = iVal - *piPrev;
  }else{
    iWrite = *piPrev - iVal;
  }
  assert( *pbFirst || *piPrev==0 );
  assert( *pbFirst==0 || iWrite>0 );
  *pp += sqlite3Fts3PutVarint(*pp, iWrite);
  *piPrev = iVal;
  *pbFirst = 1;
}


/*
** This macro is used by various functions that merge doclists. The two
** arguments are 64-bit docid values. If the value of the stack variable
** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). 
** Otherwise, (i2-i1).
**
** Using this makes it easier to write code that can merge doclists that are
** sorted in either ascending or descending order.
*/
#define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2))

/*
** This function does an "OR" merge of two doclists (output contains all
** positions contained in either argument doclist). If the docids in the 
** input doclists are sorted in ascending order, parameter bDescDoclist
** should be false. If they are sorted in ascending order, it should be
** passed a non-zero value.
**
** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer
** containing the output doclist and SQLITE_OK is returned. In this case
** *pnOut is set to the number of bytes in the output doclist.
**
** If an error occurs, an SQLite error code is returned. The output values
** are undefined in this case.
*/
static int fts3DoclistOrMerge(
  int bDescDoclist,               /* True if arguments are desc */
  char *a1, int n1,               /* First doclist */
  char *a2, int n2,               /* Second doclist */
  char **paOut, int *pnOut        /* OUT: Malloc'd doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014












2015
2016
2017
2018
2019
2020
2021
2022
2023
  aOut = sqlite3_malloc(n1+n2);
  if( !aOut ) return SQLITE_NOMEM;

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
  while( p1 || p2 ){
    sqlite3_int64 iDiff = COMPARE_DOCID(i1, i2);

    if( p2 && p1 && iDiff==0 ){
      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i1);
      fts3PoslistMerge(&p, &p1, &p2);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }else if( !p2 || (p1 && iDiff<0) ){
      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i1);
      fts3PoslistCopy(&p, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
    }else{
      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }
  }

  *paOut = aOut;
  *pnOut = (p-aOut);
  return SQLITE_OK;
}













static void fts3DoclistPhraseMerge(
  int bDescIdx,                   /* True if arguments are desc */
  int nDist,                      /* Distance from left to right (1=adjacent) */
  char *aLeft, int nLeft,         /* Left doclist */
  char *aRight, int *pnRight      /* IN/OUT: Right/output doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;







|


|

|
|

|

|

|

|








>
>
>
>
>
>
>
>
>
>
>
>

|







2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
  aOut = sqlite3_malloc(n1+n2);
  if( !aOut ) return SQLITE_NOMEM;

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);
  while( p1 || p2 ){
    sqlite3_int64 iDiff = DOCID_CMP(i1, i2);

    if( p2 && p1 && iDiff==0 ){
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
      fts3PoslistMerge(&p, &p1, &p2);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }else if( !p2 || (p1 && iDiff<0) ){
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
      fts3PoslistCopy(&p, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2);
      fts3PoslistCopy(&p, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *paOut = aOut;
  *pnOut = (p-aOut);
  return SQLITE_OK;
}

/*
** This function does a "phrase" merge of two doclists. In a phrase merge,
** the output contains a copy of each position from the right-hand input
** doclist for which there is a position in the left-hand input doclist
** exactly nDist tokens before it.
**
** If the docids in the input doclists are sorted in ascending order,
** parameter bDescDoclist should be false. If they are sorted in ascending 
** order, it should be passed a non-zero value.
**
** The right-hand input doclist is overwritten by this function.
*/
static void fts3DoclistPhraseMerge(
  int bDescDoclist,               /* True if arguments are desc */
  int nDist,                      /* Distance from left to right (1=adjacent) */
  char *aLeft, int nLeft,         /* Left doclist */
  char *aRight, int *pnRight      /* IN/OUT: Right/output doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
  assert( nDist>0 );

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);

  while( p1 && p2 ){
    sqlite3_int64 iDiff = COMPARE_DOCID(i1, i2);
    if( iDiff==0 ){
      char *pSave = p;
      sqlite3_int64 iPrevSave = iPrev;
      int bFirstOutSave = bFirstOut;

      fts3PutDeltaVarint3(&p, bDescIdx, &iPrev, &bFirstOut, i1);
      if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
        p = pSave;
        iPrev = iPrevSave;
        bFirstOut = bFirstOutSave;
      }
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }else if( iDiff<0 ){
      fts3PoslistCopy(0, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescIdx, &i1);
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescIdx, &i2);
    }
  }

  *pnRight = p - aOut;
}


/*
** Merge all doclists in the TermSelect.aaOutput[] array into a single
** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
**
** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
** the responsibility of the caller to free any doclists left in the
** TermSelect.aaOutput[] array.
*/
static int fts3TermSelectMerge(Fts3Table *p, TermSelect *pTS){
  char *aOut = 0;
  int nOut = 0;
  int i;

  /* Loop through the doclists in the aaOutput[] array. Merge them all
  ** into a single doclist.
  */







|





|





|
|


|


|
















|







2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
  assert( nDist>0 );

  p = aOut;
  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);

  while( p1 && p2 ){
    sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
    if( iDiff==0 ){
      char *pSave = p;
      sqlite3_int64 iPrevSave = iPrev;
      int bFirstOutSave = bFirstOut;

      fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1);
      if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){
        p = pSave;
        iPrev = iPrevSave;
        bFirstOut = bFirstOutSave;
      }
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }else if( iDiff<0 ){
      fts3PoslistCopy(0, &p1);
      fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1);
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *pnRight = p - aOut;
}


/*
** Merge all doclists in the TermSelect.aaOutput[] array into a single
** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
**
** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
** the responsibility of the caller to free any doclists left in the
** TermSelect.aaOutput[] array.
*/
static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){
  char *aOut = 0;
  int nOut = 0;
  int i;

  /* Loop through the doclists in the aaOutput[] array. Merge them all
  ** into a single doclist.
  */
2109
2110
2111
2112
2113
2114
2115




2116


2117
2118



2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140

  pTS->aaOutput[0] = aOut;
  pTS->anOutput[0] = nOut;
  return SQLITE_OK;
}

/*




** This function is used as the sqlite3Fts3SegReaderIterate() callback when


** querying the full-text index for a doclist associated with a term or
** term-prefix.



*/
static int fts3TermSelectCb(
  Fts3Table *p,                   /* Virtual table object */
  void *pContext,                 /* Pointer to TermSelect structure */
  char *zTerm,
  int nTerm,
  char *aDoclist,
  int nDoclist
){
  TermSelect *pTS = (TermSelect *)pContext;

  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(zTerm);
  UNUSED_PARAMETER(nTerm);

  if( pTS->aaOutput[0]==0 ){
    /* If this is the first term selected, copy the doclist to the output
    ** buffer using memcpy(). */
    pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);







>
>
>
>
|
>
>
|
|
>
>
>

|
|
|
<
<
|
|

<
<
<
<
<
<







2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227


2228
2229
2230






2231
2232
2233
2234
2235
2236
2237

  pTS->aaOutput[0] = aOut;
  pTS->anOutput[0] = nOut;
  return SQLITE_OK;
}

/*
** Merge the doclist aDoclist/nDoclist into the TermSelect object passed
** as the first argument. The merge is an "OR" merge (see function
** fts3DoclistOrMerge() for details).
**
** This function is called with the doclist for each term that matches
** a queried prefix. It merges all these doclists into one, the doclist
** for the specified prefix. Since there can be a very large number of
** doclists to merge, the merging is done pair-wise using the TermSelect
** object.
**
** This function returns SQLITE_OK if the merge is successful, or an
** SQLite error code (SQLITE_NOMEM) if an error occurs.
*/
static int fts3TermSelectMerge(
  Fts3Table *p,                   /* FTS table handle */
  TermSelect *pTS,                /* TermSelect object to merge into */


  char *aDoclist,                 /* Pointer to doclist */
  int nDoclist                    /* Size of aDoclist in bytes */
){






  if( pTS->aaOutput[0]==0 ){
    /* If this is the first term selected, copy the doclist to the output
    ** buffer using memcpy(). */
    pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2197
2198
2199
2200
2201
2202
2203







2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216

2217
2218
2219
2220
2221
2222
2223
    }
    pCsr->apSegment = apNew;
  }
  pCsr->apSegment[pCsr->nSegment++] = pNew;
  return SQLITE_OK;
}








static int fts3SegReaderCursor(
  Fts3Table *p,                   /* FTS3 table handle */
  int iIndex,                     /* Index to search (from 0 to p->nIndex-1) */
  int iLevel,                     /* Level of segments to scan */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  int isScan,                     /* True to scan from zTerm to EOF */
  Fts3MultiSegReader *pCsr       /* Cursor object to populate */
){
  int rc = SQLITE_OK;
  int rc2;
  sqlite3_stmt *pStmt = 0;


  /* If iLevel is less than 0 and this is not a scan, include a seg-reader 
  ** for the pending-terms. If this is a scan, then this call must be being
  ** made by an fts4aux module, not an FTS table. In this case calling
  ** Fts3SegReaderPending might segfault, as the data structures used by 
  ** fts4aux are not completely populated. So it's easiest to filter these
  ** calls out here.  */







>
>
>
>
>
>
>








|

|
<
|
>







2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318

2319
2320
2321
2322
2323
2324
2325
2326
2327
    }
    pCsr->apSegment = apNew;
  }
  pCsr->apSegment[pCsr->nSegment++] = pNew;
  return SQLITE_OK;
}

/*
** Add seg-reader objects to the Fts3MultiSegReader object passed as the
** 8th argument.
**
** This function returns SQLITE_OK if successful, or an SQLite error code
** otherwise.
*/
static int fts3SegReaderCursor(
  Fts3Table *p,                   /* FTS3 table handle */
  int iIndex,                     /* Index to search (from 0 to p->nIndex-1) */
  int iLevel,                     /* Level of segments to scan */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  int isScan,                     /* True to scan from zTerm to EOF */
  Fts3MultiSegReader *pCsr        /* Cursor object to populate */
){
  int rc = SQLITE_OK;             /* Error code */

  sqlite3_stmt *pStmt = 0;        /* Statement to iterate through segments */
  int rc2;                        /* Result of sqlite3_reset() */

  /* If iLevel is less than 0 and this is not a scan, include a seg-reader 
  ** for the pending-terms. If this is a scan, then this call must be being
  ** made by an fts4aux module, not an FTS table. In this case calling
  ** Fts3SegReaderPending might segfault, as the data structures used by 
  ** fts4aux are not completely populated. So it's easiest to filter these
  ** calls out here.  */
2298
2299
2300
2301
2302
2303
2304






2305
2306
2307
2308
2309
2310
2311
2312
2313
2314












2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
  memset(pCsr, 0, sizeof(Fts3MultiSegReader));

  return fts3SegReaderCursor(
      p, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
  );
}







static int fts3SegReaderCursorAddZero(
  Fts3Table *p,
  const char *zTerm,
  int nTerm,
  Fts3MultiSegReader *pCsr
){
  return fts3SegReaderCursor(p, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr);
}














int sqlite3Fts3TermSegReaderCursor(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  Fts3MultiSegReader **ppSegcsr   /* OUT: Allocated seg-reader cursor */
){
  Fts3MultiSegReader *pSegcsr;   /* Object to allocate and return */
  int rc = SQLITE_NOMEM;          /* Return code */

  pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
  if( pSegcsr ){
    int i;
    int bFound = 0;               /* True once an index has been found */
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;







>
>
>
>
>
>

|
|
|
|




|
>
>
>
>
>
>
>
>
>
>
>
>
|






|







2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
  memset(pCsr, 0, sizeof(Fts3MultiSegReader));

  return fts3SegReaderCursor(
      p, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr
  );
}

/*
** In addition to its current configuration, have the Fts3MultiSegReader
** passed as the 4th argument also scan the doclist for term zTerm/nTerm.
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
*/
static int fts3SegReaderCursorAddZero(
  Fts3Table *p,                   /* FTS virtual table handle */
  const char *zTerm,              /* Term to scan doclist of */
  int nTerm,                      /* Number of bytes in zTerm */
  Fts3MultiSegReader *pCsr        /* Fts3MultiSegReader to modify */
){
  return fts3SegReaderCursor(p, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr);
}

/*
** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or,
** if isPrefix is true, to scan the doclist for all terms for which 
** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write
** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return
** an SQLite error code.
**
** It is the responsibility of the caller to free this object by eventually
** passing it to fts3SegReaderCursorFree() 
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
** Output parameter *ppSegcsr is set to 0 if an error occurs.
*/
static int fts3TermSegReaderCursor(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  Fts3MultiSegReader **ppSegcsr   /* OUT: Allocated seg-reader cursor */
){
  Fts3MultiSegReader *pSegcsr;    /* Object to allocate and return */
  int rc = SQLITE_NOMEM;          /* Return code */

  pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader));
  if( pSegcsr ){
    int i;
    int bFound = 0;               /* True once an index has been found */
    Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2359
2360
2361
2362
2363
2364
2365



2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
    }
  }

  *ppSegcsr = pSegcsr;
  return rc;
}




static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
  sqlite3Fts3SegReaderFinish(pSegcsr);
  sqlite3_free(pSegcsr);
}

/*
** This function retreives the doclist for the specified term (or term
** prefix) from the database. 
**
** The returned doclist may be in one of two formats, depending on the 
** value of parameter isReqPos. If isReqPos is zero, then the doclist is
** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
** is non-zero, then the returned list is in the same format as is stored 
** in the database without the found length specifier at the start of on-disk
** doclists.
*/
static int fts3TermSelect(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3PhraseToken *pTok,          /* Token to query for */
  int iColumn,                    /* Column to query (or -ve for all columns) */
  int isReqPos,                   /* True to include position lists in output */
  int *pnOut,                     /* OUT: Size of buffer at *ppOut */
  char **ppOut                    /* OUT: Malloced result buffer */
){
  int rc;                         /* Return code */
  Fts3MultiSegReader *pSegcsr;   /* Seg-reader cursor for this term */
  TermSelect tsc;                 /* Context object for fts3TermSelectCb() */
  Fts3SegFilter filter;           /* Segment term filter configuration */

  pSegcsr = pTok->pSegcsr;
  memset(&tsc, 0, sizeof(TermSelect));
  tsc.isReqPos = isReqPos;

  filter.flags = FTS3_SEGMENT_IGNORE_EMPTY 
        | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
        | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0)
        | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
  filter.iCol = iColumn;
  filter.zTerm = pTok->z;
  filter.nTerm = pTok->n;

  rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
  while( SQLITE_OK==rc
      && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) 
  ){
    rc = fts3TermSelectCb(p, (void *)&tsc, 
        pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
    );
  }

  if( rc==SQLITE_OK ){
    rc = fts3TermSelectMerge(p, &tsc);
  }
  if( rc==SQLITE_OK ){
    *ppOut = tsc.aaOutput[0];
    *pnOut = tsc.anOutput[0];
  }else{
    int i;
    for(i=0; i<SizeofArray(tsc.aaOutput); i++){







>
>
>







|
<
<
<
<
<
<
<





<




|
|




<

|

<









<
|
<



|







2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498







2499
2500
2501
2502
2503

2504
2505
2506
2507
2508
2509
2510
2511
2512
2513

2514
2515
2516

2517
2518
2519
2520
2521
2522
2523
2524
2525

2526

2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
    }
  }

  *ppSegcsr = pSegcsr;
  return rc;
}

/*
** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor().
*/
static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){
  sqlite3Fts3SegReaderFinish(pSegcsr);
  sqlite3_free(pSegcsr);
}

/*
** This function retreives the doclist for the specified term (or term
** prefix) from the database.







*/
static int fts3TermSelect(
  Fts3Table *p,                   /* Virtual table handle */
  Fts3PhraseToken *pTok,          /* Token to query for */
  int iColumn,                    /* Column to query (or -ve for all columns) */

  int *pnOut,                     /* OUT: Size of buffer at *ppOut */
  char **ppOut                    /* OUT: Malloced result buffer */
){
  int rc;                         /* Return code */
  Fts3MultiSegReader *pSegcsr;    /* Seg-reader cursor for this term */
  TermSelect tsc;                 /* Object for pair-wise doclist merging */
  Fts3SegFilter filter;           /* Segment term filter configuration */

  pSegcsr = pTok->pSegcsr;
  memset(&tsc, 0, sizeof(TermSelect));


  filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS
        | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)

        | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
  filter.iCol = iColumn;
  filter.zTerm = pTok->z;
  filter.nTerm = pTok->n;

  rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
  while( SQLITE_OK==rc
      && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) 
  ){

    rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist);

  }

  if( rc==SQLITE_OK ){
    rc = fts3TermSelectFinishMerge(p, &tsc);
  }
  if( rc==SQLITE_OK ){
    *ppOut = tsc.aaOutput[0];
    *pnOut = tsc.anOutput[0];
  }else{
    int i;
    for(i=0; i<SizeofArray(tsc.aaOutput); i++){
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
** in buffer aList[], size nList bytes.
**
** If the isPoslist argument is true, then it is assumed that the doclist
** contains a position-list following each docid. Otherwise, it is assumed
** that the doclist is simply a list of docids stored as delta encoded 
** varints.
*/
static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
  int nDoc = 0;                   /* Return value */
  if( aList ){
    char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
    char *p = aList;              /* Cursor */
    if( !isPoslist ){
      /* The number of docids in the list is the same as the number of 
      ** varints. In FTS3 a varint consists of a single byte with the 0x80 
      ** bit cleared and zero or more bytes with the 0x80 bit set. So to
      ** count the varints in the buffer, just count the number of bytes
      ** with the 0x80 bit clear.  */
      while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
    }else{
      while( p<aEnd ){
        nDoc++;
        while( (*p++)&0x80 );     /* Skip docid varint */
        fts3PoslistCopy(0, &p);   /* Skip over position list */
      }
    }
  }

  return nDoc;
}

/*







|




<
<
<
<
<
<
<
<
|
|
|
|
<







2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560








2561
2562
2563
2564

2565
2566
2567
2568
2569
2570
2571
** in buffer aList[], size nList bytes.
**
** If the isPoslist argument is true, then it is assumed that the doclist
** contains a position-list following each docid. Otherwise, it is assumed
** that the doclist is simply a list of docids stored as delta encoded 
** varints.
*/
static int fts3DoclistCountDocids(char *aList, int nList){
  int nDoc = 0;                   /* Return value */
  if( aList ){
    char *aEnd = &aList[nList];   /* Pointer to one byte after EOF */
    char *p = aList;              /* Cursor */








    while( p<aEnd ){
      nDoc++;
      while( (*p++)&0x80 );     /* Skip docid varint */
      fts3PoslistCopy(0, &p);   /* Skip over position list */

    }
  }

  return nDoc;
}

/*
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
      pCsr->isEof = 1;
      rc = sqlite3_reset(pCsr->pStmt);
    }else{
      pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
      rc = SQLITE_OK;
    }
  }else{
    rc = sqlite3Fts3EvalNext((Fts3Cursor *)pCursor);
  }
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/*
** This is the xFilter interface for the virtual table.  See







|







2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
      pCsr->isEof = 1;
      rc = sqlite3_reset(pCsr->pStmt);
    }else{
      pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
      rc = SQLITE_OK;
    }
  }else{
    rc = fts3EvalNext((Fts3Cursor *)pCursor);
  }
  assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
  return rc;
}

/*
** This is the xFilter interface for the virtual table.  See
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
      }
      return rc;
    }

    rc = sqlite3Fts3ReadLock(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = sqlite3Fts3EvalStart(pCsr, pCsr->pExpr, 1);

    sqlite3Fts3SegmentsClose(p);
    if( rc!=SQLITE_OK ) return rc;
    pCsr->pNextId = pCsr->aDoclist;
    pCsr->iPrevId = 0;
  }








|







2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
      }
      return rc;
    }

    rc = sqlite3Fts3ReadLock(p);
    if( rc!=SQLITE_OK ) return rc;

    rc = fts3EvalStart(pCsr);

    sqlite3Fts3SegmentsClose(p);
    if( rc!=SQLITE_OK ) return rc;
    pCsr->pNextId = pCsr->aDoclist;
    pCsr->iPrevId = 0;
  }

2967
2968
2969
2970
2971
2972
2973





2974
2975
2976
2977
2978
2979
2980






2981
2982
2983
2984
2985
2986
2987
2988
2989






2990
2991
2992
2993
2994
2995
2996
  fts3DbExec(&rc, db,
    "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
    p->zDb, p->zName, zName
  );
  return rc;
}






static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  UNUSED_PARAMETER(iSavepoint);
  assert( ((Fts3Table *)pVtab)->inTransaction );
  assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
  TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
  return fts3SyncMethod(pVtab);
}






static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  UNUSED_PARAMETER(iSavepoint);
  UNUSED_PARAMETER(pVtab);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint-1 );
  return SQLITE_OK;
}






static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);







>
>
>
>
>







>
>
>
>
>
>









>
>
>
>
>
>







3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
  fts3DbExec(&rc, db,
    "ALTER TABLE %Q.'%q_segdir'   RENAME TO '%q_segdir';",
    p->zDb, p->zName, zName
  );
  return rc;
}

/*
** The xSavepoint() method.
**
** Flush the contents of the pending-terms table to disk.
*/
static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){
  UNUSED_PARAMETER(iSavepoint);
  assert( ((Fts3Table *)pVtab)->inTransaction );
  assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint );
  TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint );
  return fts3SyncMethod(pVtab);
}

/*
** The xRelease() method.
**
** This is a no-op.
*/
static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){
  TESTONLY( Fts3Table *p = (Fts3Table*)pVtab );
  UNUSED_PARAMETER(iSavepoint);
  UNUSED_PARAMETER(pVtab);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint-1 );
  return SQLITE_OK;
}

/*
** The xRollbackTo() method.
**
** Discard the contents of the pending terms table.
*/
static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){
  Fts3Table *p = (Fts3Table*)pVtab;
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197








3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
  assert( rc!=SQLITE_OK );
  if( pHash ){
    sqlite3Fts3HashClear(pHash);
    sqlite3_free(pHash);
  }
  return rc;
}

#if !SQLITE_CORE
int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
#endif


/*
** Allocate an Fts3MultiSegReader for each token in the expression headed
** by pExpr. 
**
** An Fts3SegReader object is a cursor that can seek or scan a range of
** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
** Fts3SegReader objects internally to provide an interface to seek or scan
** within the union of all segments of a b-tree. Hence the name.
**
** If the allocated Fts3MultiSegReader just seeks to a single entry in a
** segment b-tree (if the term is not a prefix or it is a prefix for which
** there exists prefix b-tree of the right length) then it may be traversed
** and merged incrementally. Otherwise, it has to be merged into an in-memory 
** doclist and then traversed.
*/
static void fts3EvalAllocateReaders(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr, 
  int *pnToken,                   /* OUT: Total number of tokens in phrase. */
  int *pnOr,                      /* OUT: Total number of OR nodes in expr. */
  int *pRc
){
  if( pExpr && SQLITE_OK==*pRc ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int i;
      int nToken = pExpr->pPhrase->nToken;
      *pnToken += nToken;
      for(i=0; i<nToken; i++){
        Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
        int rc = sqlite3Fts3TermSegReaderCursor(pCsr, 
            pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
        );
        if( rc!=SQLITE_OK ){
          *pRc = rc;
          return;
        }
      }
      assert( pExpr->pPhrase->iDoclistToken==0 );
      pExpr->pPhrase->iDoclistToken = -1;
    }else{
      *pnOr += (pExpr->eType==FTSQUERY_OR);
      fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
      fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
    }
  }
}









static void fts3EvalPhraseMergeToken(
  Fts3Table *pTab,
  Fts3Phrase *p,
  int iToken,
  char *pList,
  int nList
){
  assert( iToken!=p->iDoclistToken );

  if( pList==0 ){
    sqlite3_free(p->doclist.aAll);
    p->doclist.aAll = 0;
    p->doclist.nAll = 0;







<
<
<
<
<
<
<
<
<
<
<
<

















|
|


|








|

















>
>
>
>
>
>
>
>

|
|
|
|
|







3252
3253
3254
3255
3256
3257
3258












3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
  assert( rc!=SQLITE_OK );
  if( pHash ){
    sqlite3Fts3HashClear(pHash);
    sqlite3_free(pHash);
  }
  return rc;
}













/*
** Allocate an Fts3MultiSegReader for each token in the expression headed
** by pExpr. 
**
** An Fts3SegReader object is a cursor that can seek or scan a range of
** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple
** Fts3SegReader objects internally to provide an interface to seek or scan
** within the union of all segments of a b-tree. Hence the name.
**
** If the allocated Fts3MultiSegReader just seeks to a single entry in a
** segment b-tree (if the term is not a prefix or it is a prefix for which
** there exists prefix b-tree of the right length) then it may be traversed
** and merged incrementally. Otherwise, it has to be merged into an in-memory 
** doclist and then traversed.
*/
static void fts3EvalAllocateReaders(
  Fts3Cursor *pCsr,               /* FTS cursor handle */
  Fts3Expr *pExpr,                /* Allocate readers for this expression */
  int *pnToken,                   /* OUT: Total number of tokens in phrase. */
  int *pnOr,                      /* OUT: Total number of OR nodes in expr. */
  int *pRc                        /* IN/OUT: Error code */
){
  if( pExpr && SQLITE_OK==*pRc ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int i;
      int nToken = pExpr->pPhrase->nToken;
      *pnToken += nToken;
      for(i=0; i<nToken; i++){
        Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
        int rc = fts3TermSegReaderCursor(pCsr, 
            pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr
        );
        if( rc!=SQLITE_OK ){
          *pRc = rc;
          return;
        }
      }
      assert( pExpr->pPhrase->iDoclistToken==0 );
      pExpr->pPhrase->iDoclistToken = -1;
    }else{
      *pnOr += (pExpr->eType==FTSQUERY_OR);
      fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc);
      fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc);
    }
  }
}

/*
** Arguments pList/nList contain the doclist for token iToken of phrase p.
** It is merged into the main doclist stored in p->doclist.aAll/nAll.
**
** This function assumes that pList points to a buffer allocated using
** sqlite3_malloc(). This function takes responsibility for eventually
** freeing the buffer.
*/
static void fts3EvalPhraseMergeToken(
  Fts3Table *pTab,                /* FTS Table pointer */
  Fts3Phrase *p,                  /* Phrase to merge pList/nList into */
  int iToken,                     /* Token pList/nList corresponds to */
  char *pList,                    /* Pointer to doclist */
  int nList                       /* Number of bytes in pList */
){
  assert( iToken!=p->iDoclistToken );

  if( pList==0 ){
    sqlite3_free(p->doclist.aAll);
    p->doclist.aAll = 0;
    p->doclist.nAll = 0;
3245
3246
3247
3248
3249
3250
3251






3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277










3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
    p->doclist.aAll = pRight;
    p->doclist.nAll = nRight;
  }

  if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
}







static int fts3EvalPhraseLoad(
  Fts3Cursor *pCsr, 
  Fts3Phrase *p
){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int iToken;
  int rc = SQLITE_OK;

  for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
    Fts3PhraseToken *pToken = &p->aToken[iToken];
    assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );

    if( pToken->pSegcsr ){
      int nThis = 0;
      char *pThis = 0;
      rc = fts3TermSelect(pTab, pToken, p->iColumn, 1, &nThis, &pThis);
      if( rc==SQLITE_OK ){
        fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
      }
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}











static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
  int iToken;
  int rc = SQLITE_OK;

  int nMaxUndeferred = pPhrase->iDoclistToken;
  char *aPoslist = 0;
  int nPoslist = 0;
  int iPrev = -1;

  assert( pPhrase->doclist.bFreeList==0 );

  for(iToken=0; rc==SQLITE_OK && iToken<pPhrase->nToken; iToken++){
    Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
    Fts3DeferredToken *pDeferred = pToken->pDeferred;








>
>
>
>
>
>

|
|












|










>
>
>
>
>
>
>
>
>
>

|
|
<
<
|
|
|







3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413


3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
    p->doclist.aAll = pRight;
    p->doclist.nAll = nRight;
  }

  if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
}

/*
** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
** does not take deferred tokens into account.
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
*/
static int fts3EvalPhraseLoad(
  Fts3Cursor *pCsr,               /* FTS Cursor handle */
  Fts3Phrase *p                   /* Phrase object */
){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int iToken;
  int rc = SQLITE_OK;

  for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){
    Fts3PhraseToken *pToken = &p->aToken[iToken];
    assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );

    if( pToken->pSegcsr ){
      int nThis = 0;
      char *pThis = 0;
      rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
      if( rc==SQLITE_OK ){
        fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
      }
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}

/*
** This function is called on each phrase after the position lists for
** any deferred tokens have been loaded into memory. It updates the phrases
** current position list to include only those positions that are really
** instances of the phrase (after considering deferred tokens). If this
** means that the phrase does not appear in the current row, doclist.pList
** and doclist.nList are both zeroed.
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
*/
static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){
  int iToken;                     /* Used to iterate through phrase tokens */
  int rc = SQLITE_OK;             /* Return code */


  char *aPoslist = 0;             /* Position list for deferred tokens */
  int nPoslist = 0;               /* Number of bytes in aPoslist */
  int iPrev = -1;                 /* Token number of previous deferred token */

  assert( pPhrase->doclist.bFreeList==0 );

  for(iToken=0; rc==SQLITE_OK && iToken<pPhrase->nToken; iToken++){
    Fts3PhraseToken *pToken = &pPhrase->aToken[iToken];
    Fts3DeferredToken *pDeferred = pToken->pDeferred;

3324
3325
3326
3327
3328
3329
3330

3331
3332
3333
3334
3335
3336
3337
        }
      }
      iPrev = iToken;
    }
  }

  if( iPrev>=0 ){

    if( nMaxUndeferred<0 ){
      pPhrase->doclist.pList = aPoslist;
      pPhrase->doclist.nList = nPoslist;
      pPhrase->doclist.iDocid = pCsr->iPrevId;
      pPhrase->doclist.bFreeList = 1;
    }else{
      int nDistance;







>







3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
        }
      }
      iPrev = iToken;
    }
  }

  if( iPrev>=0 ){
    int nMaxUndeferred = pPhrase->iDoclistToken;
    if( nMaxUndeferred<0 ){
      pPhrase->doclist.pList = aPoslist;
      pPhrase->doclist.nList = nPoslist;
      pPhrase->doclist.iDocid = pCsr->iPrevId;
      pPhrase->doclist.bFreeList = 1;
    }else{
      int nDistance;
3372
3373
3374
3375
3376
3377
3378






3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
}

/*
** This function is called for each Fts3Phrase in a full-text query 
** expression to initialize the mechanism for returning rows. Once this
** function has been called successfully on an Fts3Phrase, it may be
** used with fts3EvalPhraseNext() to iterate through the matching docids.






*/
static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
  int rc;
  Fts3PhraseToken *pFirst = &p->aToken[0];
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;

  if( pCsr->bDesc==pTab->bDescIdx 
   && bOptOk==1 
   && p->nToken==1 
   && pFirst->pSegcsr 







>
>
>
>
>
>


|







3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
}

/*
** This function is called for each Fts3Phrase in a full-text query 
** expression to initialize the mechanism for returning rows. Once this
** function has been called successfully on an Fts3Phrase, it may be
** used with fts3EvalPhraseNext() to iterate through the matching docids.
**
** If parameter bOptOk is true, then the phrase may (or may not) use the
** incremental loading strategy. Otherwise, the entire doclist is loaded into
** memory within this call.
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
*/
static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){
  int rc;                         /* Error code */
  Fts3PhraseToken *pFirst = &p->aToken[0];
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;

  if( pCsr->bDesc==pTab->bDescIdx 
   && bOptOk==1 
   && p->nToken==1 
   && pFirst->pSegcsr 
3402
3403
3404
3405
3406
3407
3408
3409






3410
3411
3412
3413
3414
3415
3416

  assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
  return rc;
}

/*
** This function is used to iterate backwards (from the end to start) 
** through doclists.






*/
void sqlite3Fts3DoclistPrev(
  int bDescIdx,                   /* True if the doclist is desc */
  char *aDoclist,                 /* Pointer to entire doclist */
  int nDoclist,                   /* Length of aDoclist in bytes */
  char **ppIter,                  /* IN/OUT: Iterator pointer */
  sqlite3_int64 *piDocid,         /* IN/OUT: Docid pointer */







|
>
>
>
>
>
>







3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560

  assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr );
  return rc;
}

/*
** This function is used to iterate backwards (from the end to start) 
** through doclists. It is used by this module to iterate through phrase
** doclists in reverse and by the fts3_write.c module to iterate through
** pending-terms lists when writing to databases with "order=desc".
**
** The doclist may be sorted in ascending (parameter bDescIdx==0) or 
** descending (parameter bDescIdx==1) order of docid. Regardless, this
** function iterates from the end of the doclist to the beginning.
*/
void sqlite3Fts3DoclistPrev(
  int bDescIdx,                   /* True if the doclist is desc */
  char *aDoclist,                 /* Pointer to entire doclist */
  int nDoclist,                   /* Length of aDoclist in bytes */
  char **ppIter,                  /* IN/OUT: Iterator pointer */
  sqlite3_int64 *piDocid,         /* IN/OUT: Docid pointer */
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
** SQLITE_OK.
**
** If there is no "next" entry and no error occurs, then *pbEof is set to
** 1 before returning. Otherwise, if no error occurs and the iterator is
** successfully advanced, *pbEof is set to 0.
*/
static int fts3EvalPhraseNext(
  Fts3Cursor *pCsr, 
  Fts3Phrase *p, 
  u8 *pbEof
){
  int rc = SQLITE_OK;
  Fts3Doclist *pDL = &p->doclist;
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;

  if( p->bIncr ){
    assert( p->nToken==1 );







|
|
|







3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
** SQLITE_OK.
**
** If there is no "next" entry and no error occurs, then *pbEof is set to
** 1 before returning. Otherwise, if no error occurs and the iterator is
** successfully advanced, *pbEof is set to 0.
*/
static int fts3EvalPhraseNext(
  Fts3Cursor *pCsr,               /* FTS Cursor handle */
  Fts3Phrase *p,                  /* Phrase object to advance to next docid */
  u8 *pbEof                       /* OUT: Set to 1 if EOF */
){
  int rc = SQLITE_OK;
  Fts3Doclist *pDL = &p->doclist;
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;

  if( p->bIncr ){
    assert( p->nToken==1 );
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
















3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559












3560
3561
3562
3563
3564
3565
3566
3567
3568
3569







3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
      }
      pDL->pList = pIter;
      fts3PoslistCopy(0, &pIter);
      pDL->nList = (pIter - pDL->pList);

      /* pIter now points just past the 0x00 that terminates the position-
      ** list for document pDL->iDocid. However, if this position-list was
      ** edited in place by fts3EvalNearTrim2(), then pIter may not actually
      ** point to the start of the next docid value. The following line deals
      ** with this case by advancing pIter past the zero-padding added by
      ** fts3EvalNearTrim2().  */
      while( pIter<pEnd && *pIter==0 ) pIter++;

      pDL->pNextDocid = pIter;
      assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
      *pbEof = 0;
    }
  }

  return rc;
}

















static void fts3EvalStartReaders(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr, 
  int bOptOk,
  int *pRc
){
  if( pExpr && SQLITE_OK==*pRc ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int i;
      int nToken = pExpr->pPhrase->nToken;
      for(i=0; i<nToken; i++){
        if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
      }
      pExpr->bDeferred = (i==nToken);
      *pRc = fts3EvalPhraseStart(pCsr, bOptOk, pExpr->pPhrase);
    }else{
      fts3EvalStartReaders(pCsr, pExpr->pLeft, bOptOk, pRc);
      fts3EvalStartReaders(pCsr, pExpr->pRight, bOptOk, pRc);
      pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
    }
  }
}













typedef struct Fts3TokenAndCost Fts3TokenAndCost;
struct Fts3TokenAndCost {
  Fts3Phrase *pPhrase;            /* The phrase the token belongs to */
  int iToken;                     /* Position of token in phrase */
  Fts3PhraseToken *pToken;        /* The token itself */
  Fts3Expr *pRoot; 
  int nOvfl;
  int iCol;                       /* The column the token must match */
};








static void fts3EvalTokenCosts(
  Fts3Cursor *pCsr, 
  Fts3Expr *pRoot, 
  Fts3Expr *pExpr, 
  Fts3TokenAndCost **ppTC,
  Fts3Expr ***ppOr,
  int *pRc
){
  if( *pRc==SQLITE_OK && pExpr ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      Fts3Phrase *pPhrase = pExpr->pPhrase;
      int i;
      for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
        Fts3TokenAndCost *pTC = (*ppTC)++;







|


|











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|
|
|


















>
>
>
>
>
>
>
>
>
>
>
>





|
|



>
>
>
>
>
>
>

|
|
|
|
|
|







3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
      }
      pDL->pList = pIter;
      fts3PoslistCopy(0, &pIter);
      pDL->nList = (pIter - pDL->pList);

      /* pIter now points just past the 0x00 that terminates the position-
      ** list for document pDL->iDocid. However, if this position-list was
      ** edited in place by fts3EvalNearTrim(), then pIter may not actually
      ** point to the start of the next docid value. The following line deals
      ** with this case by advancing pIter past the zero-padding added by
      ** fts3EvalNearTrim().  */
      while( pIter<pEnd && *pIter==0 ) pIter++;

      pDL->pNextDocid = pIter;
      assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter );
      *pbEof = 0;
    }
  }

  return rc;
}

/*
**
** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
** Otherwise, fts3EvalPhraseStart() is called on all phrases within the
** expression. Also the Fts3Expr.bDeferred variable is set to true for any
** expressions for which all descendent tokens are deferred.
**
** If parameter bOptOk is zero, then it is guaranteed that the
** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for
** each phrase in the expression (subject to deferred token processing).
** Or, if bOptOk is non-zero, then one or more tokens within the expression
** may be loaded incrementally, meaning doclist.aAll/nAll is not available.
**
** If an error occurs within this function, *pRc is set to an SQLite error
** code before returning.
*/
static void fts3EvalStartReaders(
  Fts3Cursor *pCsr,               /* FTS Cursor handle */
  Fts3Expr *pExpr,                /* Expression to initialize phrases in */
  int bOptOk,                     /* True to enable incremental loading */
  int *pRc                        /* IN/OUT: Error code */
){
  if( pExpr && SQLITE_OK==*pRc ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      int i;
      int nToken = pExpr->pPhrase->nToken;
      for(i=0; i<nToken; i++){
        if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break;
      }
      pExpr->bDeferred = (i==nToken);
      *pRc = fts3EvalPhraseStart(pCsr, bOptOk, pExpr->pPhrase);
    }else{
      fts3EvalStartReaders(pCsr, pExpr->pLeft, bOptOk, pRc);
      fts3EvalStartReaders(pCsr, pExpr->pRight, bOptOk, pRc);
      pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred);
    }
  }
}

/*
** An array of the following structures is assembled as part of the process
** of selecting tokens to defer before the query starts executing (as part
** of the xFilter() method). There is one element in the array for each
** token in the FTS expression.
**
** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong
** to phrases that are connected only by AND and NEAR operators (not OR or
** NOT). When determining tokens to defer, each AND/NEAR cluster is considered
** separately. The root of a tokens AND/NEAR cluster is stored in 
** Fts3TokenAndCost.pRoot.
*/
typedef struct Fts3TokenAndCost Fts3TokenAndCost;
struct Fts3TokenAndCost {
  Fts3Phrase *pPhrase;            /* The phrase the token belongs to */
  int iToken;                     /* Position of token in phrase */
  Fts3PhraseToken *pToken;        /* The token itself */
  Fts3Expr *pRoot;                /* Root of NEAR/AND cluster */
  int nOvfl;                      /* Number of overflow pages to load doclist */
  int iCol;                       /* The column the token must match */
};

/*
** This function is used to populate an allocated Fts3TokenAndCost array.
**
** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
** Otherwise, if an error occurs during execution, *pRc is set to an
** SQLite error code.
*/
static void fts3EvalTokenCosts(
  Fts3Cursor *pCsr,               /* FTS Cursor handle */
  Fts3Expr *pRoot,                /* Root of current AND/NEAR cluster */
  Fts3Expr *pExpr,                /* Expression to consider */
  Fts3TokenAndCost **ppTC,        /* Write new entries to *(*ppTC)++ */
  Fts3Expr ***ppOr,               /* Write new OR root to *(*ppOr)++ */
  int *pRc                        /* IN/OUT: Error code */
){
  if( *pRc==SQLITE_OK && pExpr ){
    if( pExpr->eType==FTSQUERY_PHRASE ){
      Fts3Phrase *pPhrase = pExpr->pPhrase;
      int i;
      for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){
        Fts3TokenAndCost *pTC = (*ppTC)++;
3601
3602
3603
3604
3605
3606
3607











3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
        (*ppOr)++;
      }
      fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
    }
  }
}












static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
     ** of each doclist, has not yet been determined. Read the required 
     ** data from the %_stat table to calculate it.
     **
     ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
     ** varints, where nCol is the number of columns in the FTS3 table.
     ** The first varint is the number of documents currently stored in
     ** the table. The following nCol varints contain the total amount of
     ** data stored in all rows of each column of the table, from left
     ** to right.
     */
    int rc;
    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;







>
>
>
>
>
>
>
>
>
>
>



|
|
|
|
|
|
|
|
|
|







3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
        (*ppOr)++;
      }
      fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc);
    }
  }
}

/*
** Determine the average document (row) size in pages. If successful,
** write this value to *pnPage and return SQLITE_OK. Otherwise, return
** an SQLite error code.
**
** The average document size in pages is calculated by first calculating 
** determining the average size in bytes, B. If B is less than the amount
** of data that will fit on a single leaf page of an intkey table in
** this database, then the average docsize is 1. Otherwise, it is 1 plus
** the number of overflow pages consumed by a record B bytes in size.
*/
static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){
  if( pCsr->nRowAvg==0 ){
    /* The average document size, which is required to calculate the cost
    ** of each doclist, has not yet been determined. Read the required 
    ** data from the %_stat table to calculate it.
    **
    ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 
    ** varints, where nCol is the number of columns in the FTS3 table.
    ** The first varint is the number of documents currently stored in
    ** the table. The following nCol varints contain the total amount of
    ** data stored in all rows of each column of the table, from left
    ** to right.
    */
    int rc;
    Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
    sqlite3_stmt *pStmt;
    sqlite3_int64 nDoc = 0;
    sqlite3_int64 nByte = 0;
    const char *pEnd;
    const char *a;
3648
3649
3650
3651
3652
3653
3654














3655
3656
3657
3658
3659
3660

3661
3662
3663
3664
3665


3666
3667
3668
3669



3670
3671
3672
3673
3674
3675
3676
3677

3678

3679























3680
3681
3682
3683

3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694




3695
3696



3697





3698
3699
3700
3701
3702
3703
3704
3705
3706




3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723












3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787



3788
3789
3790
3791
3792
3793
3794
3795
3796






















3797
3798
3799
3800
3801
3802
3803
3804
3805
    if( rc!=SQLITE_OK ) return rc;
  }

  *pnPage = pCsr->nRowAvg;
  return SQLITE_OK;
}















static int fts3EvalSelectDeferred(
  Fts3Cursor *pCsr,
  Fts3Expr *pRoot,
  Fts3TokenAndCost *aTC,
  int nTC
){

  int nDocSize = 0;
  int nDocEst = 0;
  int rc = SQLITE_OK;
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int ii;



  int nOvfl = 0;
  int nTerm = 0;




  for(ii=0; ii<nTC; ii++){
    if( aTC[ii].pRoot==pRoot ){
      nOvfl += aTC[ii].nOvfl;
      nTerm++;
    }
  }
  if( nOvfl==0 || nTerm<2 ) return SQLITE_OK;


  rc = fts3EvalAverageDocsize(pCsr, &nDocSize);

























  for(ii=0; ii<nTerm && rc==SQLITE_OK; ii++){
    int jj;
    Fts3TokenAndCost *pTC = 0;


    for(jj=0; jj<nTC; jj++){
      if( aTC[jj].pToken && aTC[jj].pRoot==pRoot 
       && (!pTC || aTC[jj].nOvfl<pTC->nOvfl) 
      ){
        pTC = &aTC[jj];
      }
    }
    assert( pTC );

    /* At this point pTC points to the cheapest remaining token. */
    if( ii==0 ){




      if( pTC->nOvfl ){
        nDocEst = (pTC->nOvfl * pTab->nPgsz + pTab->nPgsz) / 10;



      }else{





        Fts3PhraseToken *pToken = pTC->pToken;
        int nList = 0;
        char *pList = 0;
        rc = fts3TermSelect(pTab, pToken, pTC->iCol, 1, &nList, &pList);
        assert( rc==SQLITE_OK || pList==0 );

        if( rc==SQLITE_OK ){
          nDocEst = fts3DoclistCountDocids(1, pList, nList);
          fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList);




        }
      }
    }else{
      if( pTC->nOvfl>=(nDocEst*nDocSize) ){
        Fts3PhraseToken *pToken = pTC->pToken;
        rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
        fts3SegReaderCursorFree(pToken->pSegcsr);
        pToken->pSegcsr = 0;
      }
      nDocEst = 1 + (nDocEst/4);
    }
    pTC->pToken = 0;
  }

  return rc;
}













int sqlite3Fts3EvalStart(Fts3Cursor *pCsr, Fts3Expr *pExpr, int bOptOk){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int rc = SQLITE_OK;
  int nToken = 0;
  int nOr = 0;

  /* Allocate a MultiSegReader for each token in the expression. */
  fts3EvalAllocateReaders(pCsr, pExpr, &nToken, &nOr, &rc);

  /* Call fts3EvalPhraseStart() on all phrases in the expression. TODO:
  ** This call will eventually also be responsible for determining which
  ** tokens are 'deferred' until the document text is loaded into memory.
  **
  ** Each token in each phrase is dealt with using one of the following
  ** three strategies:
  **
  **   1. Entire doclist loaded into memory as part of the
  **      fts3EvalStartReaders() call.
  **
  **   2. Doclist loaded into memory incrementally, as part of each
  **      sqlite3Fts3EvalNext() call.
  **
  **   3. Token doclist is never loaded. Instead, documents are loaded into
  **      memory and scanned for the token as part of the sqlite3Fts3EvalNext()
  **      call. This is known as a "deferred" token.
  */

  /* If bOptOk is true, check if there are any tokens that should be deferred.
  */
  if( rc==SQLITE_OK && bOptOk && nToken>1 && pTab->bHasStat ){
    Fts3TokenAndCost *aTC;
    Fts3Expr **apOr;
    aTC = (Fts3TokenAndCost *)sqlite3_malloc(
        sizeof(Fts3TokenAndCost) * nToken
      + sizeof(Fts3Expr *) * nOr * 2
    );
    apOr = (Fts3Expr **)&aTC[nToken];

    if( !aTC ){
      rc = SQLITE_NOMEM;
    }else{
      int ii;
      Fts3TokenAndCost *pTC = aTC;
      Fts3Expr **ppOr = apOr;

      fts3EvalTokenCosts(pCsr, 0, pExpr, &pTC, &ppOr, &rc);
      nToken = pTC-aTC;
      nOr = ppOr-apOr;

      if( rc==SQLITE_OK ){
        rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
        for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }

      sqlite3_free(aTC);
    }
  }

  fts3EvalStartReaders(pCsr, pExpr, bOptOk, &rc);
  return rc;
}




static void fts3EvalZeroPoslist(Fts3Phrase *pPhrase){
  if( pPhrase->doclist.bFreeList ){
    sqlite3_free(pPhrase->doclist.pList);
  }
  pPhrase->doclist.pList = 0;
  pPhrase->doclist.nList = 0;
  pPhrase->doclist.bFreeList = 0;
}























static int fts3EvalNearTrim2(
  int nNear,
  char *aTmp,                     /* Temporary space to use */
  char **paPoslist,               /* IN/OUT: Position list */
  int *pnToken,                   /* IN/OUT: Tokens in phrase of *paPoslist */
  Fts3Phrase *pPhrase             /* The phrase object to trim the doclist of */
){
  int nParam1 = nNear + pPhrase->nToken;
  int nParam2 = nNear + *pnToken;







>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
|
|
|

>
|
<
|
<
|
>
>

|
|

>
>
>



|


|

>

>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|

>
|
|
|

|




<
|
>
>
>
>
|
<
>
>
>
|
>
>
>
>
>



|

<

|

>
>
>
>


<
<
<
<
<
<
<
<







>
>
>
>
>
>
>
>
>
>
>
>
|






|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
|















|














|



>
>
>
|








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|







3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866

3867

3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926

3927
3928
3929
3930
3931
3932

3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946

3947
3948
3949
3950
3951
3952
3953
3954
3955








3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983

















3984


3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
    if( rc!=SQLITE_OK ) return rc;
  }

  *pnPage = pCsr->nRowAvg;
  return SQLITE_OK;
}

/*
** This function is called to select the tokens (if any) that will be 
** deferred. The array aTC[] has already been populated when this is
** called.
**
** This function is called once for each AND/NEAR cluster in the 
** expression. Each invocation determines which tokens to defer within
** the cluster with root node pRoot. See comments above the definition
** of struct Fts3TokenAndCost for more details.
**
** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken()
** called on each token to defer. Otherwise, an SQLite error code is
** returned.
*/
static int fts3EvalSelectDeferred(
  Fts3Cursor *pCsr,               /* FTS Cursor handle */
  Fts3Expr *pRoot,                /* Consider tokens with this root node */
  Fts3TokenAndCost *aTC,          /* Array of expression tokens and costs */
  int nTC                         /* Number of entries in aTC[] */
){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int nDocSize = 0;               /* Number of pages per doc loaded */

  int rc = SQLITE_OK;             /* Return code */

  int ii;                         /* Iterator variable for various purposes */
  int nOvfl = 0;                  /* Total overflow pages used by doclists */
  int nToken = 0;                 /* Total number of tokens in cluster */

  int nMinEst = 0;                /* The minimum count for any phrase so far. */
  int nLoad4 = 1;                 /* (Phrases that will be loaded)^4. */

  /* Count the tokens in this AND/NEAR cluster. If none of the doclists
  ** associated with the tokens spill onto overflow pages, or if there is
  ** only 1 token, exit early. No tokens to defer in this case. */
  for(ii=0; ii<nTC; ii++){
    if( aTC[ii].pRoot==pRoot ){
      nOvfl += aTC[ii].nOvfl;
      nToken++;
    }
  }
  if( nOvfl==0 || nToken<2 ) return SQLITE_OK;

  /* Obtain the average docsize (in pages). */
  rc = fts3EvalAverageDocsize(pCsr, &nDocSize);
  assert( rc!=SQLITE_OK || nDocSize>0 );


  /* Iterate through all tokens in this AND/NEAR cluster, in ascending order 
  ** of the number of overflow pages that will be loaded by the pager layer 
  ** to retrieve the entire doclist for the token from the full-text index.
  ** Load the doclists for tokens that are either:
  **
  **   a. The cheapest token in the entire query (i.e. the one visited by the
  **      first iteration of this loop), or
  **
  **   b. Part of a multi-token phrase.
  **
  ** After each token doclist is loaded, merge it with the others from the
  ** same phrase and count the number of documents that the merged doclist
  ** contains. Set variable "nMinEst" to the smallest number of documents in 
  ** any phrase doclist for which 1 or more token doclists have been loaded.
  ** Let nOther be the number of other phrases for which it is certain that
  ** one or more tokens will not be deferred.
  **
  ** Then, for each token, defer it if loading the doclist would result in
  ** loading N or more overflow pages into memory, where N is computed as:
  **
  **    (nMinEst + 4^nOther - 1) / (4^nOther)
  */
  for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){
    int iTC;                      /* Used to iterate through aTC[] array. */
    Fts3TokenAndCost *pTC = 0;    /* Set to cheapest remaining token. */

    /* Set pTC to point to the cheapest remaining token. */
    for(iTC=0; iTC<nTC; iTC++){
      if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot 
       && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl) 
      ){
        pTC = &aTC[iTC];
      }
    }
    assert( pTC );


    if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){
      /* The number of overflow pages to load for this (and therefore all
      ** subsequent) tokens is greater than the estimated number of pages 
      ** that will be loaded if all subsequent tokens are deferred.
      */
      Fts3PhraseToken *pToken = pTC->pToken;

      rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol);
      fts3SegReaderCursorFree(pToken->pSegcsr);
      pToken->pSegcsr = 0;
    }else{
      nLoad4 = nLoad4*4;
      if( ii==0 || pTC->pPhrase->nToken>1 ){
        /* Either this is the cheapest token in the entire query, or it is
        ** part of a multi-token phrase. Either way, the entire doclist will
        ** (eventually) be loaded into memory. It may as well be now. */
        Fts3PhraseToken *pToken = pTC->pToken;
        int nList = 0;
        char *pList = 0;
        rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
        assert( rc==SQLITE_OK || pList==0 );

        if( rc==SQLITE_OK ){
          int nCount;
          fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList);
          nCount = fts3DoclistCountDocids(
              pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
          );
          if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
        }
      }








    }
    pTC->pToken = 0;
  }

  return rc;
}

/*
** This function is called from within the xFilter method. It initializes
** the full-text query currently stored in pCsr->pExpr. To iterate through
** the results of a query, the caller does:
**
**    fts3EvalStart(pCsr);
**    while( 1 ){
**      fts3EvalNext(pCsr);
**      if( pCsr->bEof ) break;
**      ... return row pCsr->iPrevId to the caller ...
**    }
*/
static int fts3EvalStart(Fts3Cursor *pCsr){
  Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab;
  int rc = SQLITE_OK;
  int nToken = 0;
  int nOr = 0;

  /* Allocate a MultiSegReader for each token in the expression. */
  fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);


















  /* Determine which, if any, tokens in the expression should be deferred. */


  if( rc==SQLITE_OK && nToken>1 && pTab->bHasStat ){
    Fts3TokenAndCost *aTC;
    Fts3Expr **apOr;
    aTC = (Fts3TokenAndCost *)sqlite3_malloc(
        sizeof(Fts3TokenAndCost) * nToken
      + sizeof(Fts3Expr *) * nOr * 2
    );
    apOr = (Fts3Expr **)&aTC[nToken];

    if( !aTC ){
      rc = SQLITE_NOMEM;
    }else{
      int ii;
      Fts3TokenAndCost *pTC = aTC;
      Fts3Expr **ppOr = apOr;

      fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc);
      nToken = pTC-aTC;
      nOr = ppOr-apOr;

      if( rc==SQLITE_OK ){
        rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken);
        for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }

      sqlite3_free(aTC);
    }
  }

  fts3EvalStartReaders(pCsr, pCsr->pExpr, 1, &rc);
  return rc;
}

/*
** Invalidate the current position list for phrase pPhrase.
*/
static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){
  if( pPhrase->doclist.bFreeList ){
    sqlite3_free(pPhrase->doclist.pList);
  }
  pPhrase->doclist.pList = 0;
  pPhrase->doclist.nList = 0;
  pPhrase->doclist.bFreeList = 0;
}

/*
** This function is called to edit the position list associated with
** the phrase object passed as the fifth argument according to a NEAR
** condition. For example:
**
**     abc NEAR/5 "def ghi"
**
** Parameter nNear is passed the NEAR distance of the expression (5 in
** the example above). When this function is called, *paPoslist points to
** the position list, and *pnToken is the number of phrase tokens in, the
** phrase on the other side of the NEAR operator to pPhrase. For example,
** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to
** the position list associated with phrase "abc".
**
** All positions in the pPhrase position list that are not sufficiently
** close to a position in the *paPoslist position list are removed. If this
** leaves 0 positions, zero is returned. Otherwise, non-zero.
**
** Before returning, *paPoslist is set to point to the position lsit 
** associated with pPhrase. And *pnToken is set to the number of tokens in
** pPhrase.
*/
static int fts3EvalNearTrim(
  int nNear,                      /* NEAR distance. As in "NEAR/nNear". */
  char *aTmp,                     /* Temporary space to use */
  char **paPoslist,               /* IN/OUT: Position list */
  int *pnToken,                   /* IN/OUT: Tokens in phrase of *paPoslist */
  Fts3Phrase *pPhrase             /* The phrase object to trim the doclist of */
){
  int nParam1 = nNear + pPhrase->nToken;
  int nParam2 = nNear + *pnToken;
3823
3824
3825
3826
3827
3828
3829






































































































































































3830
3831
3832
3833
3834
3835
3836
    *paPoslist = pPhrase->doclist.pList;
    *pnToken = pPhrase->nToken;
  }

  return res;
}







































































































































































static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
  int res = 1;

  /* The following block runs if pExpr is the root of a NEAR query.
  ** For example, the query:
  **
  **         "w" NEAR "x" NEAR "y" NEAR "z"







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
    *paPoslist = pPhrase->doclist.pList;
    *pnToken = pPhrase->nToken;
  }

  return res;
}

/*
** This function is a no-op if *pRc is other than SQLITE_OK when it is called.
** Otherwise, it advances the expression passed as the second argument to
** point to the next matching row in the database. Expressions iterate through
** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero,
** or descending if it is non-zero.
**
** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if
** successful, the following variables in pExpr are set:
**
**   Fts3Expr.bEof                (non-zero if EOF - there is no next row)
**   Fts3Expr.iDocid              (valid if bEof==0. The docid of the next row)
**
** If the expression is of type FTSQUERY_PHRASE, and the expression is not
** at EOF, then the following variables are populated with the position list
** for the phrase for the visited row:
**
**   FTs3Expr.pPhrase->doclist.nList        (length of pList in bytes)
**   FTs3Expr.pPhrase->doclist.pList        (pointer to position list)
**
** It says above that this function advances the expression to the next
** matching row. This is usually true, but there are the following exceptions:
**
**   1. Deferred tokens are not taken into account. If a phrase consists
**      entirely of deferred tokens, it is assumed to match every row in
**      the db. In this case the position-list is not populated at all. 
**
**      Or, if a phrase contains one or more deferred tokens and one or
**      more non-deferred tokens, then the expression is advanced to the 
**      next possible match, considering only non-deferred tokens. In other
**      words, if the phrase is "A B C", and "B" is deferred, the expression
**      is advanced to the next row that contains an instance of "A * C", 
**      where "*" may match any single token. The position list in this case
**      is populated as for "A * C" before returning.
**
**   2. NEAR is treated as AND. If the expression is "x NEAR y", it is 
**      advanced to point to the next row that matches "x AND y".
** 
** See fts3EvalTestDeferredAndNear() for details on testing if a row is
** really a match, taking into account deferred tokens and NEAR operators.
*/
static void fts3EvalNextRow(
  Fts3Cursor *pCsr,               /* FTS Cursor handle */
  Fts3Expr *pExpr,                /* Expr. to advance to next matching row */
  int *pRc                        /* IN/OUT: Error code */
){
  if( *pRc==SQLITE_OK ){
    int bDescDoclist = pCsr->bDesc;         /* Used by DOCID_CMP() macro */
    assert( pExpr->bEof==0 );
    pExpr->bStart = 1;

    switch( pExpr->eType ){
      case FTSQUERY_NEAR:
      case FTSQUERY_AND: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
        assert( !pLeft->bDeferred || !pRight->bDeferred );

        if( pLeft->bDeferred ){
          /* LHS is entirely deferred. So we assume it matches every row.
          ** Advance the RHS iterator to find the next row visited. */
          fts3EvalNextRow(pCsr, pRight, pRc);
          pExpr->iDocid = pRight->iDocid;
          pExpr->bEof = pRight->bEof;
        }else if( pRight->bDeferred ){
          /* RHS is entirely deferred. So we assume it matches every row.
          ** Advance the LHS iterator to find the next row visited. */
          fts3EvalNextRow(pCsr, pLeft, pRc);
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = pLeft->bEof;
        }else{
          /* Neither the RHS or LHS are deferred. */
          fts3EvalNextRow(pCsr, pLeft, pRc);
          fts3EvalNextRow(pCsr, pRight, pRc);
          while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
            sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
            if( iDiff==0 ) break;
            if( iDiff<0 ){
              fts3EvalNextRow(pCsr, pLeft, pRc);
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
        }
        break;
      }
  
      case FTSQUERY_OR: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNextRow(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
          fts3EvalNextRow(pCsr, pRight, pRc);
        }else{
          fts3EvalNextRow(pCsr, pLeft, pRc);
          fts3EvalNextRow(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);
        iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
        if( pRight->bEof || (pLeft->bEof==0 &&  iCmp<0) ){
          pExpr->iDocid = pLeft->iDocid;
        }else{
          pExpr->iDocid = pRight->iDocid;
        }

        break;
      }

      case FTSQUERY_NOT: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;

        if( pRight->bStart==0 ){
          fts3EvalNextRow(pCsr, pRight, pRc);
          assert( *pRc!=SQLITE_OK || pRight->bStart );
        }

        fts3EvalNextRow(pCsr, pLeft, pRc);
        if( pLeft->bEof==0 ){
          while( !*pRc 
              && !pRight->bEof 
              && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 
          ){
            fts3EvalNextRow(pCsr, pRight, pRc);
          }
        }
        pExpr->iDocid = pLeft->iDocid;
        pExpr->bEof = pLeft->bEof;
        break;
      }

      default: {
        Fts3Phrase *pPhrase = pExpr->pPhrase;
        fts3EvalInvalidatePoslist(pPhrase);
        *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
        pExpr->iDocid = pPhrase->doclist.iDocid;
        break;
      }
    }
  }
}

/*
** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR
** cluster, then this function returns 1 immediately.
**
** Otherwise, it checks if the current row really does match the NEAR 
** expression, using the data currently stored in the position lists 
** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. 
**
** If the current row is a match, the position list associated with each
** phrase in the NEAR expression is edited in place to contain only those
** phrase instances sufficiently close to their peers to satisfy all NEAR
** constraints. In this case it returns 1. If the NEAR expression does not 
** match the current row, 0 is returned. The position lists may or may not
** be edited if 0 is returned.
*/
static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){
  int res = 1;

  /* The following block runs if pExpr is the root of a NEAR query.
  ** For example, the query:
  **
  **         "w" NEAR "x" NEAR "y" NEAR "z"
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
  **                     |        |
  **                +--NEAR--+   "y"
  **                |        |
  **               "w"      "x"
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 
   && pExpr->bEof==0
   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 







|







4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
  **                     |        |
  **                +--NEAR--+   "y"
  **                |        |
  **               "w"      "x"
  **
  ** The right-hand child of a NEAR node is always a phrase. The 
  ** left-hand child may be either a phrase or a NEAR node. There are
  ** no exceptions to this - it's the way the parser in fts3_expr.c works.
  */
  if( *pRc==SQLITE_OK 
   && pExpr->eType==FTSQUERY_NEAR 
   && pExpr->bEof==0
   && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
  ){
    Fts3Expr *p; 
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
    }else{
      char *aPoslist = p->pPhrase->doclist.pList;
      int nToken = p->pPhrase->nToken;

      for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
        Fts3Phrase *pPhrase = p->pRight->pPhrase;
        int nNear = p->nNear;
        res = fts3EvalNearTrim2(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
  
      aPoslist = pExpr->pRight->pPhrase->doclist.pList;
      nToken = pExpr->pRight->pPhrase->nToken;
      for(p=pExpr->pLeft; p && res; p=p->pLeft){
        int nNear = p->pParent->nNear;
        Fts3Phrase *pPhrase = (
            p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
        );
        res = fts3EvalNearTrim2(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
    }

    sqlite3_free(aTmp);
  }

  return res;
}

/*
** This macro is used by the fts3EvalNext() function. The two arguments are
** 64-bit docid values. If the current query is "ORDER BY docid ASC", then
** the macro returns (i1 - i2). Or if it is "ORDER BY docid DESC", then
** it returns (i2 - i1). This allows the same code to be used for merging
** doclists in ascending or descending order.
*/
#define DOCID_CMP(i1, i2) ((pCsr->bDesc?-1:1) * (i1-i2))

static void fts3EvalNext(
  Fts3Cursor *pCsr, 
  Fts3Expr *pExpr, 
  int *pRc
){
  if( *pRc==SQLITE_OK ){
    assert( pExpr->bEof==0 );
    pExpr->bStart = 1;

    switch( pExpr->eType ){
      case FTSQUERY_NEAR:
      case FTSQUERY_AND: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
        assert( !pLeft->bDeferred || !pRight->bDeferred );
        if( pLeft->bDeferred ){
          fts3EvalNext(pCsr, pRight, pRc);
          pExpr->iDocid = pRight->iDocid;
          pExpr->bEof = pRight->bEof;
        }else if( pRight->bDeferred ){
          fts3EvalNext(pCsr, pLeft, pRc);
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = pLeft->bEof;
        }else{
          fts3EvalNext(pCsr, pLeft, pRc);
          fts3EvalNext(pCsr, pRight, pRc);

          while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){
            sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
            if( iDiff==0 ) break;
            if( iDiff<0 ){
              fts3EvalNext(pCsr, pLeft, pRc);
            }else{
              fts3EvalNext(pCsr, pRight, pRc);
            }
          }

          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
        }
        break;
      }
  
      case FTSQUERY_OR: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
        sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);

        assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid );
        assert( pRight->bStart || pLeft->iDocid==pRight->iDocid );

        if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){
          fts3EvalNext(pCsr, pLeft, pRc);
        }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){
          fts3EvalNext(pCsr, pRight, pRc);
        }else{
          fts3EvalNext(pCsr, pLeft, pRc);
          fts3EvalNext(pCsr, pRight, pRc);
        }

        pExpr->bEof = (pLeft->bEof && pRight->bEof);
        iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid);
        if( pRight->bEof || (pLeft->bEof==0 &&  iCmp<0) ){
          pExpr->iDocid = pLeft->iDocid;
        }else{
          pExpr->iDocid = pRight->iDocid;
        }

        break;
      }

      case FTSQUERY_NOT: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;

        if( pRight->bStart==0 ){
          fts3EvalNext(pCsr, pRight, pRc);
          assert( *pRc!=SQLITE_OK || pRight->bStart );
        }

        fts3EvalNext(pCsr, pLeft, pRc);
        if( pLeft->bEof==0 ){
          while( !*pRc 
              && !pRight->bEof 
              && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 
          ){
            fts3EvalNext(pCsr, pRight, pRc);
          }
        }
        pExpr->iDocid = pLeft->iDocid;
        pExpr->bEof = pLeft->bEof;
        break;
      }

      default: {
        Fts3Phrase *pPhrase = pExpr->pPhrase;
        fts3EvalZeroPoslist(pPhrase);
        *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof);
        pExpr->iDocid = pPhrase->doclist.iDocid;
        break;
      }
    }
  }
}

static int fts3EvalDeferredTest(Fts3Cursor *pCsr, Fts3Expr *pExpr, int *pRc){
  int bHit = 1;
  if( *pRc==SQLITE_OK ){
    switch( pExpr->eType ){
      case FTSQUERY_NEAR:
      case FTSQUERY_AND:
        bHit = (
            fts3EvalDeferredTest(pCsr, pExpr->pLeft, pRc)
         && fts3EvalDeferredTest(pCsr, pExpr->pRight, pRc)
         && fts3EvalNearTest(pExpr, pRc)
        );

        /* If the NEAR expression does not match any rows, zero the doclist for 
        ** all phrases involved in the NEAR. This is because the snippet(),
        ** offsets() and matchinfo() functions are not supposed to recognize 
        ** any instances of phrases that are part of unmatched NEAR queries. 







|









|










|
<
<
|
<
<
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
|
<
<
<
<
|
<
<
|
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
|
<
<
|
<
<
<
|
<
<
<
<
|
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|





|
|







4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322


4323



4324








4325

















4326









4327





4328




4329


4330








4331







4332


4333



4334




4335





4336




















4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
    }else{
      char *aPoslist = p->pPhrase->doclist.pList;
      int nToken = p->pPhrase->nToken;

      for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){
        Fts3Phrase *pPhrase = p->pRight->pPhrase;
        int nNear = p->nNear;
        res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
  
      aPoslist = pExpr->pRight->pPhrase->doclist.pList;
      nToken = pExpr->pRight->pPhrase->nToken;
      for(p=pExpr->pLeft; p && res; p=p->pLeft){
        int nNear = p->pParent->nNear;
        Fts3Phrase *pPhrase = (
            p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase
        );
        res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase);
      }
    }

    sqlite3_free(aTmp);
  }

  return res;
}

/*
** This function is a helper function for fts3EvalTestDeferredAndNear().


** Assuming no error occurs or has occurred, It returns non-zero if the



** expression passed as the second argument matches the row that pCsr 








** currently points to, or zero if it does not.

















**









** If *pRc is not SQLITE_OK when this function is called, it is a no-op.





** If an error occurs during execution of this function, *pRc is set to 




** the appropriate SQLite error code. In this case the returned value is 


** undefined.








*/







static int fts3EvalTestExpr(


  Fts3Cursor *pCsr,               /* FTS cursor handle */



  Fts3Expr *pExpr,                /* Expr to test. May or may not be root. */




  int *pRc                        /* IN/OUT: Error code */





){




















  int bHit = 1;                   /* Return value */
  if( *pRc==SQLITE_OK ){
    switch( pExpr->eType ){
      case FTSQUERY_NEAR:
      case FTSQUERY_AND:
        bHit = (
            fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
         && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
         && fts3EvalNearTest(pExpr, pRc)
        );

        /* If the NEAR expression does not match any rows, zero the doclist for 
        ** all phrases involved in the NEAR. This is because the snippet(),
        ** offsets() and matchinfo() functions are not supposed to recognize 
        ** any instances of phrases that are part of unmatched NEAR queries. 
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092













4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106







4107
4108
4109
4110
4111
4112
4113


4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
        if( bHit==0 
         && pExpr->eType==FTSQUERY_NEAR 
         && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
        ){
          Fts3Expr *p;
          for(p=pExpr; p->pPhrase==0; p=p->pLeft){
            if( p->pRight->iDocid==pCsr->iPrevId ){
              fts3EvalZeroPoslist(p->pRight->pPhrase);
            }
          }
          if( p->iDocid==pCsr->iPrevId ){
            fts3EvalZeroPoslist(p->pPhrase);
          }
        }

        break;

      case FTSQUERY_OR: {
        int bHit1 = fts3EvalDeferredTest(pCsr, pExpr->pLeft, pRc);
        int bHit2 = fts3EvalDeferredTest(pCsr, pExpr->pRight, pRc);
        bHit = bHit1 || bHit2;
        break;
      }

      case FTSQUERY_NOT:
        bHit = (
            fts3EvalDeferredTest(pCsr, pExpr->pLeft, pRc)
         && !fts3EvalDeferredTest(pCsr, pExpr->pRight, pRc)
        );
        break;

      default: {
        if( pCsr->pDeferred 
         && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
        ){
          Fts3Phrase *pPhrase = pExpr->pPhrase;
          assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
          if( pExpr->bDeferred ){
            fts3EvalZeroPoslist(pPhrase);
          }
          *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
          bHit = (pPhrase->doclist.pList!=0);
          pExpr->iDocid = pCsr->iPrevId;
        }else{
          bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
        }
        break;
      }
    }
  }
  return bHit;
}

/*













** Return 1 if both of the following are true:
**
**   1. *pRc is SQLITE_OK when this function returns, and
**
**   2. After scanning the current FTS table row for the deferred tokens,
**      it is determined that the row does not match the query.
**
** Or, if no error occurs and it seems the current row does match the FTS
** query, return 0.
*/
static int fts3EvalLoadDeferred(Fts3Cursor *pCsr, int *pRc){
  int rc = *pRc;
  int bMiss = 0;
  if( rc==SQLITE_OK ){







    if( pCsr->pDeferred ){
      rc = fts3CursorSeek(0, pCsr);
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
      }
    }
    bMiss = (0==fts3EvalDeferredTest(pCsr, pCsr->pExpr, &rc));


    sqlite3Fts3FreeDeferredDoclists(pCsr);
    *pRc = rc;
  }
  return (rc==SQLITE_OK && bMiss);
}

/*
** Advance to the next document that matches the FTS expression in
** Fts3Cursor.pExpr.
*/
int sqlite3Fts3EvalNext(Fts3Cursor *pCsr){
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Expr *pExpr = pCsr->pExpr;
  assert( pCsr->isEof==0 );
  if( pExpr==0 ){
    pCsr->isEof = 1;
  }else{
    do {
      if( pCsr->isRequireSeek==0 ){
        sqlite3_reset(pCsr->pStmt);
      }
      assert( sqlite3_data_count(pCsr->pStmt)==0 );
      fts3EvalNext(pCsr, pExpr, &rc);
      pCsr->isEof = pExpr->bEof;
      pCsr->isRequireSeek = 1;
      pCsr->isMatchinfoNeeded = 1;
      pCsr->iPrevId = pExpr->iDocid;
    }while( pCsr->isEof==0 && fts3EvalLoadDeferred(pCsr, &rc) );
  }
  return rc;
}

/*
** Restart interation for expression pExpr so that the next call to
** sqlite3Fts3EvalNext() visits the first row. Do not allow incremental 
** loading or merging of phrase doclists for this iteration.
**
** If *pRc is other than SQLITE_OK when this function is called, it is
** a no-op. If an error occurs within this function, *pRc is set to an
** SQLite error code before returning.
*/
static void fts3EvalRestart(
  Fts3Cursor *pCsr,
  Fts3Expr *pExpr,
  int *pRc
){
  if( pExpr && *pRc==SQLITE_OK ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;

    if( pPhrase ){
      fts3EvalZeroPoslist(pPhrase);
      if( pPhrase->bIncr ){
        assert( pPhrase->nToken==1 );
        assert( pPhrase->aToken[0].pSegcsr );
        sqlite3Fts3MsrIncrRestart(pPhrase->aToken[0].pSegcsr);
        *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
      }








|



|






|
|






|
|










|















>
>
>
>
>
>
>
>
>
>
>
>
>
|




|




|



>
>
>
>
>
>
>






|
>
>










|











|




|






|















|







4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
        if( bHit==0 
         && pExpr->eType==FTSQUERY_NEAR 
         && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR)
        ){
          Fts3Expr *p;
          for(p=pExpr; p->pPhrase==0; p=p->pLeft){
            if( p->pRight->iDocid==pCsr->iPrevId ){
              fts3EvalInvalidatePoslist(p->pRight->pPhrase);
            }
          }
          if( p->iDocid==pCsr->iPrevId ){
            fts3EvalInvalidatePoslist(p->pPhrase);
          }
        }

        break;

      case FTSQUERY_OR: {
        int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc);
        int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc);
        bHit = bHit1 || bHit2;
        break;
      }

      case FTSQUERY_NOT:
        bHit = (
            fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
         && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
        );
        break;

      default: {
        if( pCsr->pDeferred 
         && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
        ){
          Fts3Phrase *pPhrase = pExpr->pPhrase;
          assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
          if( pExpr->bDeferred ){
            fts3EvalInvalidatePoslist(pPhrase);
          }
          *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
          bHit = (pPhrase->doclist.pList!=0);
          pExpr->iDocid = pCsr->iPrevId;
        }else{
          bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
        }
        break;
      }
    }
  }
  return bHit;
}

/*
** This function is called as the second part of each xNext operation when
** iterating through the results of a full-text query. At this point the
** cursor points to a row that matches the query expression, with the
** following caveats:
**
**   * Up until this point, "NEAR" operators in the expression have been
**     treated as "AND".
**
**   * Deferred tokens have not yet been considered.
**
** If *pRc is not SQLITE_OK when this function is called, it immediately
** returns 0. Otherwise, it tests whether or not after considering NEAR
** operators and deferred tokens the current row is still a match for the
** expression. It returns 1 if both of the following are true:
**
**   1. *pRc is SQLITE_OK when this function returns, and
**
**   2. After scanning the current FTS table row for the deferred tokens,
**      it is determined that the row does *not* match the query.
**
** Or, if no error occurs and it seems the current row does match the FTS
** query, return 0.
*/
static int fts3EvalTestDeferredAndNear(Fts3Cursor *pCsr, int *pRc){
  int rc = *pRc;
  int bMiss = 0;
  if( rc==SQLITE_OK ){

    /* If there are one or more deferred tokens, load the current row into
    ** memory and scan it to determine the position list for each deferred
    ** token. Then, see if this row is really a match, considering deferred
    ** tokens and NEAR operators (neither of which were taken into account
    ** earlier, by fts3EvalNextRow()). 
    */
    if( pCsr->pDeferred ){
      rc = fts3CursorSeek(0, pCsr);
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
      }
    }
    bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc));

    /* Free the position-lists accumulated for each deferred token above. */
    sqlite3Fts3FreeDeferredDoclists(pCsr);
    *pRc = rc;
  }
  return (rc==SQLITE_OK && bMiss);
}

/*
** Advance to the next document that matches the FTS expression in
** Fts3Cursor.pExpr.
*/
static int fts3EvalNext(Fts3Cursor *pCsr){
  int rc = SQLITE_OK;             /* Return Code */
  Fts3Expr *pExpr = pCsr->pExpr;
  assert( pCsr->isEof==0 );
  if( pExpr==0 ){
    pCsr->isEof = 1;
  }else{
    do {
      if( pCsr->isRequireSeek==0 ){
        sqlite3_reset(pCsr->pStmt);
      }
      assert( sqlite3_data_count(pCsr->pStmt)==0 );
      fts3EvalNextRow(pCsr, pExpr, &rc);
      pCsr->isEof = pExpr->bEof;
      pCsr->isRequireSeek = 1;
      pCsr->isMatchinfoNeeded = 1;
      pCsr->iPrevId = pExpr->iDocid;
    }while( pCsr->isEof==0 && fts3EvalTestDeferredAndNear(pCsr, &rc) );
  }
  return rc;
}

/*
** Restart interation for expression pExpr so that the next call to
** fts3EvalNext() visits the first row. Do not allow incremental 
** loading or merging of phrase doclists for this iteration.
**
** If *pRc is other than SQLITE_OK when this function is called, it is
** a no-op. If an error occurs within this function, *pRc is set to an
** SQLite error code before returning.
*/
static void fts3EvalRestart(
  Fts3Cursor *pCsr,
  Fts3Expr *pExpr,
  int *pRc
){
  if( pExpr && *pRc==SQLITE_OK ){
    Fts3Phrase *pPhrase = pExpr->pPhrase;

    if( pPhrase ){
      fts3EvalInvalidatePoslist(pPhrase);
      if( pPhrase->bIncr ){
        assert( pPhrase->nToken==1 );
        assert( pPhrase->aToken[0].pSegcsr );
        sqlite3Fts3MsrIncrRestart(pPhrase->aToken[0].pSegcsr);
        *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
      }

4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294

      do {
        /* Ensure the %_content statement is reset. */
        if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
        assert( sqlite3_data_count(pCsr->pStmt)==0 );

        /* Advance to the next document */
        fts3EvalNext(pCsr, pRoot, &rc);
        pCsr->isEof = pRoot->bEof;
        pCsr->isRequireSeek = 1;
        pCsr->isMatchinfoNeeded = 1;
        pCsr->iPrevId = pRoot->iDocid;
      }while( pCsr->isEof==0 
           && pRoot->eType==FTSQUERY_NEAR 
           && fts3EvalLoadDeferred(pCsr, &rc) 
      );

      if( rc==SQLITE_OK && pCsr->isEof==0 ){
        fts3EvalUpdateCounts(pRoot);
      }
    }








|






|







4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640

      do {
        /* Ensure the %_content statement is reset. */
        if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt);
        assert( sqlite3_data_count(pCsr->pStmt)==0 );

        /* Advance to the next document */
        fts3EvalNextRow(pCsr, pRoot, &rc);
        pCsr->isEof = pRoot->bEof;
        pCsr->isRequireSeek = 1;
        pCsr->isMatchinfoNeeded = 1;
        pCsr->iPrevId = pRoot->iDocid;
      }while( pCsr->isEof==0 
           && pRoot->eType==FTSQUERY_NEAR 
           && fts3EvalTestDeferredAndNear(pCsr, &rc) 
      );

      if( rc==SQLITE_OK && pCsr->isEof==0 ){
        fts3EvalUpdateCounts(pRoot);
      }
    }

4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
      ** order. For this reason, even though it seems more defensive, the 
      ** do loop can not be written:
      **
      **   do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
      */
      fts3EvalRestart(pCsr, pRoot, &rc);
      do {
        fts3EvalNext(pCsr, pRoot, &rc);
        assert( pRoot->bEof==0 );
      }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
      fts3EvalLoadDeferred(pCsr, &rc);
    }
  }
  return rc;
}

/*
** This function is used by the matchinfo() module to query a phrase 







|


|







4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
      ** order. For this reason, even though it seems more defensive, the 
      ** do loop can not be written:
      **
      **   do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK );
      */
      fts3EvalRestart(pCsr, pRoot, &rc);
      do {
        fts3EvalNextRow(pCsr, pRoot, &rc);
        assert( pRoot->bEof==0 );
      }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK );
      fts3EvalTestDeferredAndNear(pCsr, &rc);
    }
  }
  return rc;
}

/*
** This function is used by the matchinfo() module to query a phrase 
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451












4452


**   * the contents of pPhrase->doclist, and
**   * any Fts3MultiSegReader objects held by phrase tokens.
*/
void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
  if( pPhrase ){
    int i;
    sqlite3_free(pPhrase->doclist.aAll);
    fts3EvalZeroPoslist(pPhrase);
    memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
    for(i=0; i<pPhrase->nToken; i++){
      fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
      pPhrase->aToken[i].pSegcsr = 0;
    }
  }
}













#endif









|








>
>
>
>
>
>
>
>
>
>
>
>

>
>
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
**   * the contents of pPhrase->doclist, and
**   * any Fts3MultiSegReader objects held by phrase tokens.
*/
void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){
  if( pPhrase ){
    int i;
    sqlite3_free(pPhrase->doclist.aAll);
    fts3EvalInvalidatePoslist(pPhrase);
    memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist));
    for(i=0; i<pPhrase->nToken; i++){
      fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr);
      pPhrase->aToken[i].pSegcsr = 0;
    }
  }
}

#if !SQLITE_CORE
/*
** Initialize API pointer table, if required.
*/
int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
#endif

#endif
Changes to ext/fts3/fts3Int.h.
23
24
25
26
27
28
29



30




31
32
33
34
35
36
37
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif




#ifdef SQLITE_ENABLE_FTS3




#include "sqlite3.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
** This constant controls how often segments are merged. Once there are
** FTS3_MERGE_COUNT segments of level N, they are merged into a single







>
>
>
|
>
>
>
>







23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
** SQLITE_ENABLE_FTS3 macro.  But to avoid confusion we also all
** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3.
*/
#if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3)
# define SQLITE_ENABLE_FTS3
#endif

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

/* If not building as part of the core, include sqlite3ext.h. */
#ifndef SQLITE_CORE
# include "sqlite3ext.h" 
extern const sqlite3_api_routines *sqlite3_api;
#endif

#include "sqlite3.h"
#include "fts3_tokenizer.h"
#include "fts3_hash.h"

/*
** This constant controls how often segments are merged. Once there are
** FTS3_MERGE_COUNT segments of level N, they are merged into a single
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
  int nAll;                      /* Size of a[] in bytes */
  char *pNextDocid;              /* Pointer to next docid */

  sqlite3_int64 iDocid;          /* Current docid (if pList!=0) */
  int bFreeList;                 /* True if pList should be sqlite3_free()d */
  char *pList;                   /* Pointer to position list following iDocid */
  int nList;                     /* Length of position list */
} doclist;

/*
** A "phrase" is a sequence of one or more tokens that must match in
** sequence.  A single token is the base case and the most common case.
** For a sequence of tokens contained in double-quotes (i.e. "one two three")
** nToken will be the number of tokens in the string.
*/







|







293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
  int nAll;                      /* Size of a[] in bytes */
  char *pNextDocid;              /* Pointer to next docid */

  sqlite3_int64 iDocid;          /* Current docid (if pList!=0) */
  int bFreeList;                 /* True if pList should be sqlite3_free()d */
  char *pList;                   /* Pointer to position list following iDocid */
  int nList;                     /* Length of position list */
};

/*
** A "phrase" is a sequence of one or more tokens that must match in
** sequence.  A single token is the base case and the most common case.
** For a sequence of tokens contained in double-quotes (i.e. "one two three")
** nToken will be the number of tokens in the string.
*/
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

/* fts3_aux.c */
int sqlite3Fts3InitAux(sqlite3 *db);

int sqlite3Fts3TermSegReaderCursor(
  Fts3Cursor *pCsr,               /* Virtual table cursor handle */
  const char *zTerm,              /* Term to query for */
  int nTerm,                      /* Size of zTerm in bytes */
  int isPrefix,                   /* True for a prefix search */
  Fts3MultiSegReader **ppSegcsr   /* OUT: Allocated seg-reader cursor */
);

void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);

int sqlite3Fts3EvalStart(Fts3Cursor *, Fts3Expr *, int);
int sqlite3Fts3EvalNext(Fts3Cursor *pCsr);

int sqlite3Fts3MsrIncrStart(
    Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
int sqlite3Fts3MsrIncrNext(
    Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
char *sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol); 
int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);

int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);

#endif /* SQLITE_ENABLE_FTS3 */
#endif /* _FTSINT_H */







<
<
<
<
<
<
<
<


<
<
<










|

493
494
495
496
497
498
499








500
501



502
503
504
505
506
507
508
509
510
511
512
513
int sqlite3Fts3ExprInitTestInterface(sqlite3 *db);
int sqlite3Fts3InitTerm(sqlite3 *db);
#endif

/* fts3_aux.c */
int sqlite3Fts3InitAux(sqlite3 *db);









void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *);




int sqlite3Fts3MsrIncrStart(
    Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
int sqlite3Fts3MsrIncrNext(
    Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
char *sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol); 
int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);

int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);

#endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */
#endif /* _FTSINT_H */
Changes to ext/fts3/fts3_hash.c.
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <string.h>

#include "sqlite3.h"
#include "fts3_hash.h"

/*
** Malloc and Free functions
*/
static void *fts3HashMalloc(int n){
  void *p = sqlite3_malloc(n);







<







26
27
28
29
30
31
32

33
34
35
36
37
38
39
#include "fts3Int.h"
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <stdlib.h>
#include <string.h>


#include "fts3_hash.h"

/*
** Malloc and Free functions
*/
static void *fts3HashMalloc(int n){
  void *p = sqlite3_malloc(n);
Changes to ext/fts3/fts3_test.c.
14
15
16
17
18
19
20


21
22
23
24
25
26
27
** testing. It contains a Tcl command that can be used to test if a document
** matches an FTS NEAR expression.
*/

#include <tcl.h>
#include <string.h>
#include <assert.h>



/* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */
#include "fts3Int.h"

#define NM_MAX_TOKEN 12

typedef struct NearPhrase NearPhrase;







>
>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
** testing. It contains a Tcl command that can be used to test if a document
** matches an FTS NEAR expression.
*/

#include <tcl.h>
#include <string.h>
#include <assert.h>

#ifdef SQLITE_TEST

/* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */
#include "fts3Int.h"

#define NM_MAX_TOKEN 12

typedef struct NearPhrase NearPhrase;
315
316
317
318
319
320
321

int Sqlitetestfts3_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0);
  Tcl_CreateObjCommand(interp, 
      "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
  );
  return TCL_OK;
}








>
317
318
319
320
321
322
323
324
int Sqlitetestfts3_Init(Tcl_Interp *interp){
  Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0);
  Tcl_CreateObjCommand(interp, 
      "fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
  );
  return TCL_OK;
}
#endif                  /* ifdef SQLITE_TEST */
Changes to ext/fts3/fts3_tokenizer.c.
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/
#include "sqlite3ext.h"
#ifndef SQLITE_CORE
  SQLITE_EXTENSION_INIT1
#endif
#include "fts3Int.h"

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <string.h>

/*
** Implementation of the SQL scalar function for accessing the underlying 







<
<
<
<

<







19
20
21
22
23
24
25




26

27
28
29
30
31
32
33
**
**     * The FTS3 module is being built as an extension
**       (in which case SQLITE_CORE is not defined), or
**
**     * The FTS3 module is being built into the core of
**       SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
*/




#include "fts3Int.h"

#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)

#include <assert.h>
#include <string.h>

/*
** Implementation of the SQL scalar function for accessing the underlying 
Changes to main.mk.
381
382
383
384
385
386
387



388
389
390
391
392
393
394

sqlite3.c:	target_source $(TOP)/tool/mksqlite3c.tcl
	tclsh $(TOP)/tool/mksqlite3c.tcl
	echo '#ifndef USE_SYSTEM_SQLITE' >tclsqlite3.c
	cat sqlite3.c >>tclsqlite3.c
	echo '#endif /* USE_SYSTEM_SQLITE */' >>tclsqlite3.c
	cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c




fts2amal.c:	target_source $(TOP)/ext/fts2/mkfts2amal.tcl
	tclsh $(TOP)/ext/fts2/mkfts2amal.tcl

fts3amal.c:	target_source $(TOP)/ext/fts3/mkfts3amal.tcl
	tclsh $(TOP)/ext/fts3/mkfts3amal.tcl








>
>
>







381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

sqlite3.c:	target_source $(TOP)/tool/mksqlite3c.tcl
	tclsh $(TOP)/tool/mksqlite3c.tcl
	echo '#ifndef USE_SYSTEM_SQLITE' >tclsqlite3.c
	cat sqlite3.c >>tclsqlite3.c
	echo '#endif /* USE_SYSTEM_SQLITE */' >>tclsqlite3.c
	cat $(TOP)/src/tclsqlite.c >>tclsqlite3.c

sqlite3-all.c:	sqlite3.c $(TOP)/tool/split-sqlite3c.tcl
	tclsh $(TOP)/tool/split-sqlite3c.tcl

fts2amal.c:	target_source $(TOP)/ext/fts2/mkfts2amal.tcl
	tclsh $(TOP)/ext/fts2/mkfts2amal.tcl

fts3amal.c:	target_source $(TOP)/ext/fts3/mkfts3amal.tcl
	tclsh $(TOP)/ext/fts3/mkfts3amal.tcl

563
564
565
566
567
568
569







570
571
572
573
574
575
576

TEST_EXTENSION = $(SHPREFIX)testloadext.$(SO)
$(TEST_EXTENSION): $(TOP)/src/test_loadext.c
	$(MKSHLIB) $(TOP)/src/test_loadext.c -o $(TEST_EXTENSION)

extensiontest: testfixture$(EXE) $(TEST_EXTENSION)
	./testfixture$(EXE) $(TOP)/test/loadext.test









# Standard install and cleanup targets
#
install:	sqlite3 libsqlite3.a sqlite3.h
	mv sqlite3 /usr/bin
	mv libsqlite3.a /usr/lib







>
>
>
>
>
>
>







566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586

TEST_EXTENSION = $(SHPREFIX)testloadext.$(SO)
$(TEST_EXTENSION): $(TOP)/src/test_loadext.c
	$(MKSHLIB) $(TOP)/src/test_loadext.c -o $(TEST_EXTENSION)

extensiontest: testfixture$(EXE) $(TEST_EXTENSION)
	./testfixture$(EXE) $(TOP)/test/loadext.test

# This target will fail if the SQLite amalgamation contains any exported
# symbols that do not begin with "sqlite3_". It is run as part of the
# releasetest.tcl script.
#
checksymbols: sqlite3.o
	nm -g --defined-only sqlite3.o | grep -v " sqlite3_" ; test $$? -ne 0


# Standard install and cleanup targets
#
install:	sqlite3 libsqlite3.a sqlite3.h
	mv sqlite3 /usr/bin
	mv libsqlite3.a /usr/lib
Changes to src/build.c.
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
    ** the zStmt variable
    */
    if( pStart ){
      assert( pEnd!=0 );
      /* A named index with an explicit CREATE INDEX statement */
      zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
        onError==OE_None ? "" : " UNIQUE",
        pEnd->z - pName->z + 1,
        pName->z);
    }else{
      /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
      /* zStmt = sqlite3MPrintf(""); */
      zStmt = 0;
    }








|







2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
    ** the zStmt variable
    */
    if( pStart ){
      assert( pEnd!=0 );
      /* A named index with an explicit CREATE INDEX statement */
      zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
        onError==OE_None ? "" : " UNIQUE",
        (int)(pEnd->z - pName->z) + 1,
        pName->z);
    }else{
      /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
      /* zStmt = sqlite3MPrintf(""); */
      zStmt = 0;
    }

Changes to src/date.c.
423
424
425
426
427
428
429

430

431
432
433
434
435
436
437
** routine will always fail.
*/
static int osLocaltime(time_t *t, struct tm *pTm){
  int rc;
#if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \
      && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S)
  struct tm *pX;

  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);

  sqlite3_mutex_enter(mutex);
  pX = localtime(t);
#ifndef SQLITE_OMIT_BUILTIN_TEST
  if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
#endif
  if( pX ) *pTm = *pX;
  sqlite3_mutex_leave(mutex);







>

>







423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
** routine will always fail.
*/
static int osLocaltime(time_t *t, struct tm *pTm){
  int rc;
#if (!defined(HAVE_LOCALTIME_R) || !HAVE_LOCALTIME_R) \
      && (!defined(HAVE_LOCALTIME_S) || !HAVE_LOCALTIME_S)
  struct tm *pX;
#if SQLITE_THREADSAFE>0
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
  sqlite3_mutex_enter(mutex);
  pX = localtime(t);
#ifndef SQLITE_OMIT_BUILTIN_TEST
  if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
#endif
  if( pX ) *pTm = *pX;
  sqlite3_mutex_leave(mutex);
Changes to src/delete.c.
374
375
376
377
378
379
380
381


382
383
384
385
386
387
388
    int iRowSet = ++pParse->nMem;   /* Register for rowset of rows to delete */
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0,WHERE_DUPLICATES_OK);


    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
    sqlite3WhereEnd(pWInfo);







|
>
>







374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
    int iRowSet = ++pParse->nMem;   /* Register for rowset of rows to delete */
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(
        pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK
    );
    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
    sqlite3WhereEnd(pWInfo);
Changes to src/expr.c.
898
899
900
901
902
903
904

905
906
907
908
909
910
911
    Table *pTab;
    pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
    pNewItem->jointype = pOldItem->jointype;
    pNewItem->iCursor = pOldItem->iCursor;
    pNewItem->isPopulated = pOldItem->isPopulated;

    pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
    pNewItem->notIndexed = pOldItem->notIndexed;
    pNewItem->pIndex = pOldItem->pIndex;
    pTab = pNewItem->pTab = pOldItem->pTab;
    if( pTab ){
      pTab->nRef++;
    }







>







898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    Table *pTab;
    pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
    pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
    pNewItem->jointype = pOldItem->jointype;
    pNewItem->iCursor = pOldItem->iCursor;
    pNewItem->isPopulated = pOldItem->isPopulated;
    pNewItem->isCorrelated = pOldItem->isCorrelated;
    pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
    pNewItem->notIndexed = pOldItem->notIndexed;
    pNewItem->pIndex = pOldItem->pIndex;
    pTab = pNewItem->pTab = pOldItem->pTab;
    if( pTab ){
      pTab->nRef++;
    }
Changes to src/fkey.c.
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
  sNameContext.pParse = pParse;
  sqlite3ResolveExprNames(&sNameContext, pWhere);

  /* Create VDBE to loop through the entries in pSrc that match the WHERE
  ** clause. If the constraint is not deferred, throw an exception for
  ** each row found. Otherwise, for deferred constraints, increment the
  ** deferred constraint counter by nIncr for each row selected.  */
  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0);
  if( nIncr>0 && pFKey->isDeferred==0 ){
    sqlite3ParseToplevel(pParse)->mayAbort = 1;
  }
  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  if( pWInfo ){
    sqlite3WhereEnd(pWInfo);
  }







|







556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
  sNameContext.pParse = pParse;
  sqlite3ResolveExprNames(&sNameContext, pWhere);

  /* Create VDBE to loop through the entries in pSrc that match the WHERE
  ** clause. If the constraint is not deferred, throw an exception for
  ** each row found. Otherwise, for deferred constraints, increment the
  ** deferred constraint counter by nIncr for each row selected.  */
  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0);
  if( nIncr>0 && pFKey->isDeferred==0 ){
    sqlite3ParseToplevel(pParse)->mayAbort = 1;
  }
  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  if( pWInfo ){
    sqlite3WhereEnd(pWInfo);
  }
Changes to src/loadext.c.
80
81
82
83
84
85
86


87
88
89
90
91
92
93
# define sqlite3_progress_handler 0
#endif

#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3_create_module 0
# define sqlite3_create_module_v2 0
# define sqlite3_declare_vtab 0


#endif

#ifdef SQLITE_OMIT_SHARED_CACHE
# define sqlite3_enable_shared_cache 0
#endif

#ifdef SQLITE_OMIT_TRACE







>
>







80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# define sqlite3_progress_handler 0
#endif

#ifdef SQLITE_OMIT_VIRTUALTABLE
# define sqlite3_create_module 0
# define sqlite3_create_module_v2 0
# define sqlite3_declare_vtab 0
# define sqlite3_vtab_config 0
# define sqlite3_vtab_on_conflict 0
#endif

#ifdef SQLITE_OMIT_SHARED_CACHE
# define sqlite3_enable_shared_cache 0
#endif

#ifdef SQLITE_OMIT_TRACE
103
104
105
106
107
108
109

110
111
112
113
114
115
116
#ifdef SQLITE_OMIT_INCRBLOB
#define sqlite3_bind_zeroblob  0
#define sqlite3_blob_bytes     0
#define sqlite3_blob_close     0
#define sqlite3_blob_open      0
#define sqlite3_blob_read      0
#define sqlite3_blob_write     0

#endif

/*
** The following structure contains pointers to all SQLite API routines.
** A pointer to this structure is passed into extensions when they are
** loaded so that the extension can make calls back into the SQLite
** library.







>







105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#ifdef SQLITE_OMIT_INCRBLOB
#define sqlite3_bind_zeroblob  0
#define sqlite3_blob_bytes     0
#define sqlite3_blob_close     0
#define sqlite3_blob_open      0
#define sqlite3_blob_read      0
#define sqlite3_blob_write     0
#define sqlite3_blob_reopen    0
#endif

/*
** The following structure contains pointers to all SQLite API routines.
** A pointer to this structure is passed into extensions when they are
** loaded so that the extension can make calls back into the SQLite
** library.
368
369
370
371
372
373
374



375
376
377
378
379
380
381
  sqlite3_wal_checkpoint,
  sqlite3_wal_hook,
#else
  0,
  0,
  0,
#endif



};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.







>
>
>







371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
  sqlite3_wal_checkpoint,
  sqlite3_wal_hook,
#else
  0,
  0,
  0,
#endif
  sqlite3_blob_reopen,
  sqlite3_vtab_config,
  sqlite3_vtab_on_conflict,
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
Changes to src/mem3.c.
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

/*
** Free an outstanding memory allocation.
**
** This function assumes that the necessary mutexes, if any, are
** already held by the caller. Hence "Unsafe".
*/
void memsys3FreeUnsafe(void *pOld){
  Mem3Block *p = (Mem3Block*)pOld;
  int i;
  u32 size, x;
  assert( sqlite3_mutex_held(mem3.mutex) );
  assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
  i = p - mem3.aPool;
  assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );







|







429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

/*
** Free an outstanding memory allocation.
**
** This function assumes that the necessary mutexes, if any, are
** already held by the caller. Hence "Unsafe".
*/
static void memsys3FreeUnsafe(void *pOld){
  Mem3Block *p = (Mem3Block*)pOld;
  int i;
  u32 size, x;
  assert( sqlite3_mutex_held(mem3.mutex) );
  assert( p>mem3.aPool && p<&mem3.aPool[mem3.nPool] );
  i = p - mem3.aPool;
  assert( (mem3.aPool[i-1].u.hdr.size4x&1)==1 );
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
  memsys3Leave();
  return (void*)p; 
}

/*
** Free memory.
*/
void memsys3Free(void *pPrior){
  assert( pPrior );
  memsys3Enter();
  memsys3FreeUnsafe(pPrior);
  memsys3Leave();
}

/*
** Change the size of an existing memory allocation
*/
void *memsys3Realloc(void *pPrior, int nBytes){
  int nOld;
  void *p;
  if( pPrior==0 ){
    return sqlite3_malloc(nBytes);
  }
  if( nBytes<=0 ){
    sqlite3_free(pPrior);







|









|







504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
  memsys3Leave();
  return (void*)p; 
}

/*
** Free memory.
*/
static void memsys3Free(void *pPrior){
  assert( pPrior );
  memsys3Enter();
  memsys3FreeUnsafe(pPrior);
  memsys3Leave();
}

/*
** Change the size of an existing memory allocation
*/
static void *memsys3Realloc(void *pPrior, int nBytes){
  int nOld;
  void *p;
  if( pPrior==0 ){
    return sqlite3_malloc(nBytes);
  }
  if( nBytes<=0 ){
    sqlite3_free(pPrior);
Changes to src/os.c.
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
){
  int rc;
  DO_OS_MALLOC_TEST(0);
  /* 0x87f3f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f3f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
int sqlite3OsAccess(







|







132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
){
  int rc;
  DO_OS_MALLOC_TEST(0);
  /* 0x87f3f is a mask of SQLITE_OPEN_ flags that are valid to be passed
  ** down into the VFS layer.  Some SQLITE_OPEN_ flags (for example,
  ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before
  ** reaching the VFS. */
  rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut);
  assert( rc==SQLITE_OK || pFile->pMethods==0 );
  return rc;
}
int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){
  return pVfs->xDelete(pVfs, zPath, dirSync);
}
int sqlite3OsAccess(
Changes to src/os_unix.c.
673
674
675
676
677
678
679

680

681
682
683
684
685
686
687
  case EIO:
  case EBADF:
  case EINVAL:
  case ENOTCONN:
  case ENODEV:
  case ENXIO:
  case ENOENT:

  case ESTALE:

  case ENOSYS:
    /* these should force the client to close the file and reconnect */
    
  default: 
    return sqliteIOErr;
  }
}







>

>







673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
  case EIO:
  case EBADF:
  case EINVAL:
  case ENOTCONN:
  case ENODEV:
  case ENXIO:
  case ENOENT:
#ifdef ESTALE                     /* ESTALE is not defined on Interix systems */
  case ESTALE:
#endif
  case ENOSYS:
    /* these should force the client to close the file and reconnect */
    
  default: 
    return sqliteIOErr;
  }
}
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
*/
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && p->nRef==0 ){
    int i;
    assert( p->pInode==pFd->pInode );
    if( p->mutex ) sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i++){
      if( p->h>=0 ){
        munmap(p->apRegion[i], p->szRegion);
      }else{
        sqlite3_free(p->apRegion[i]);
      }
    }







|







3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
*/
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && p->nRef==0 ){
    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i++){
      if( p->h>=0 ){
        munmap(p->apRegion[i], p->szRegion);
      }else{
        sqlite3_free(p->apRegion[i]);
      }
    }
Changes to src/os_win.c.
397
398
399
400
401
402
403
















































404
405
406
407
408
409
410
  sqlite3_log(errcode,
      "os_win.c:%d: (%d) %s(%s) - %s",
      iLine, iErrno, zFunc, zPath, zMsg
  );

  return errcode;
}

















































#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
/*
** WindowsCE does not have a localtime() function.  So create a







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
  sqlite3_log(errcode,
      "os_win.c:%d: (%d) %s(%s) - %s",
      iLine, iErrno, zFunc, zPath, zMsg
  );

  return errcode;
}

/*
** The number of times that a ReadFile(), WriteFile(), and DeleteFile()
** will be retried following a locking error - probably caused by 
** antivirus software.  Also the initial delay before the first retry.
** The delay increases linearly with each retry.
*/
#ifndef SQLITE_WIN32_IOERR_RETRY
# define SQLITE_WIN32_IOERR_RETRY 10
#endif
#ifndef SQLITE_WIN32_IOERR_RETRY_DELAY
# define SQLITE_WIN32_IOERR_RETRY_DELAY 25
#endif
static int win32IoerrRetry = SQLITE_WIN32_IOERR_RETRY;
static int win32IoerrRetryDelay = SQLITE_WIN32_IOERR_RETRY_DELAY;

/*
** If a ReadFile() or WriteFile() error occurs, invoke this routine
** to see if it should be retried.  Return TRUE to retry.  Return FALSE
** to give up with an error.
*/
static int retryIoerr(int *pnRetry){
  DWORD e;
  if( *pnRetry>=win32IoerrRetry ){
    return 0;
  }
  e = GetLastError();
  if( e==ERROR_ACCESS_DENIED ||
      e==ERROR_LOCK_VIOLATION ||
      e==ERROR_SHARING_VIOLATION ){
    Sleep(win32IoerrRetryDelay*(1+*pnRetry));
    ++*pnRetry;
    return 1;
  }
  return 0;
}

/*
** Log a I/O error retry episode.
*/
static void logIoerr(int nRetry){
  if( nRetry ){
    sqlite3_log(SQLITE_IOERR, 
      "delayed %dms for lock/sharing conflict",
      win32IoerrRetryDelay*nRetry*(nRetry+1)/2
    );
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
*/
/*
** WindowsCE does not have a localtime() function.  So create a
816
817
818
819
820
821
822

823
824
825
826
827
828
829
830
831

832
833
834

835
836
837
838
839
840
841
  sqlite3_file *id,          /* File to read from */
  void *pBuf,                /* Write content into this buffer */
  int amt,                   /* Number of bytes to read */
  sqlite3_int64 offset       /* Begin reading at this offset */
){
  winFile *pFile = (winFile*)id;  /* file handle */
  DWORD nRead;                    /* Number of bytes actually read from file */


  assert( id!=0 );
  SimulateIOError(return SQLITE_IOERR_READ);
  OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype));

  if( seekWinFile(pFile, offset) ){
    return SQLITE_FULL;
  }
  if( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){

    pFile->lastErrno = GetLastError();
    return winLogError(SQLITE_IOERR_READ, "winRead", pFile->zPath);
  }

  if( nRead<(DWORD)amt ){
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[nRead], 0, amt-nRead);
    return SQLITE_IOERR_SHORT_READ;
  }

  return SQLITE_OK;







>








|
>



>







864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
  sqlite3_file *id,          /* File to read from */
  void *pBuf,                /* Write content into this buffer */
  int amt,                   /* Number of bytes to read */
  sqlite3_int64 offset       /* Begin reading at this offset */
){
  winFile *pFile = (winFile*)id;  /* file handle */
  DWORD nRead;                    /* Number of bytes actually read from file */
  int nRetry = 0;                 /* Number of retrys */

  assert( id!=0 );
  SimulateIOError(return SQLITE_IOERR_READ);
  OSTRACE(("READ %d lock=%d\n", pFile->h, pFile->locktype));

  if( seekWinFile(pFile, offset) ){
    return SQLITE_FULL;
  }
  while( !ReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
    if( retryIoerr(&nRetry) ) continue;
    pFile->lastErrno = GetLastError();
    return winLogError(SQLITE_IOERR_READ, "winRead", pFile->zPath);
  }
  logIoerr(nRetry);
  if( nRead<(DWORD)amt ){
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[nRead], 0, amt-nRead);
    return SQLITE_IOERR_SHORT_READ;
  }

  return SQLITE_OK;
849
850
851
852
853
854
855

856
857
858
859
860
861
862
863
864
865
866
867
868
869

870




871
872
873
874
875
876
877
878
879
880
881
882
883
884
885


886
887
888
889
890
891
892
  sqlite3_file *id,               /* File to write into */
  const void *pBuf,               /* The bytes to be written */
  int amt,                        /* Number of bytes to write */
  sqlite3_int64 offset            /* Offset into the file to begin writing at */
){
  int rc;                         /* True if error has occured, else false */
  winFile *pFile = (winFile*)id;  /* File handle */


  assert( amt>0 );
  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_WRITE);
  SimulateDiskfullError(return SQLITE_FULL);

  OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype));

  rc = seekWinFile(pFile, offset);
  if( rc==0 ){
    u8 *aRem = (u8 *)pBuf;        /* Data yet to be written */
    int nRem = amt;               /* Number of bytes yet to be written */
    DWORD nWrite;                 /* Bytes written by each WriteFile() call */


    while( nRem>0 && WriteFile(pFile->h, aRem, nRem, &nWrite, 0) && nWrite>0 ){




      aRem += nWrite;
      nRem -= nWrite;
    }
    if( nRem>0 ){
      pFile->lastErrno = GetLastError();
      rc = 1;
    }
  }

  if( rc ){
    if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
       || ( pFile->lastErrno==ERROR_DISK_FULL )){
      return SQLITE_FULL;
    }
    return winLogError(SQLITE_IOERR_WRITE, "winWrite", pFile->zPath);


  }
  return SQLITE_OK;
}

/*
** Truncate an open file to a specified size
*/







>














>
|
>
>
>
>















>
>







900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
  sqlite3_file *id,               /* File to write into */
  const void *pBuf,               /* The bytes to be written */
  int amt,                        /* Number of bytes to write */
  sqlite3_int64 offset            /* Offset into the file to begin writing at */
){
  int rc;                         /* True if error has occured, else false */
  winFile *pFile = (winFile*)id;  /* File handle */
  int nRetry = 0;                 /* Number of retries */

  assert( amt>0 );
  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_WRITE);
  SimulateDiskfullError(return SQLITE_FULL);

  OSTRACE(("WRITE %d lock=%d\n", pFile->h, pFile->locktype));

  rc = seekWinFile(pFile, offset);
  if( rc==0 ){
    u8 *aRem = (u8 *)pBuf;        /* Data yet to be written */
    int nRem = amt;               /* Number of bytes yet to be written */
    DWORD nWrite;                 /* Bytes written by each WriteFile() call */

    while( nRem>0 ){
      if( !WriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
        if( retryIoerr(&nRetry) ) continue;
        break;
      }
      if( nWrite<=0 ) break;
      aRem += nWrite;
      nRem -= nWrite;
    }
    if( nRem>0 ){
      pFile->lastErrno = GetLastError();
      rc = 1;
    }
  }

  if( rc ){
    if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
       || ( pFile->lastErrno==ERROR_DISK_FULL )){
      return SQLITE_FULL;
    }
    return winLogError(SQLITE_IOERR_WRITE, "winWrite", pFile->zPath);
  }else{
    logIoerr(nRetry);
  }
  return SQLITE_OK;
}

/*
** Truncate an open file to a specified size
*/
1294
1295
1296
1297
1298
1299
1300














1301
1302
1303
1304
1305
1306
1307
      SimulateIOErrorBenign(1);
      winTruncate(id, sz);
      SimulateIOErrorBenign(0);
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SYNC_OMITTED: {
      return SQLITE_OK;














    }
  }
  return SQLITE_NOTFOUND;
}

/*
** Return the sector size in bytes of the underlying block device for







>
>
>
>
>
>
>
>
>
>
>
>
>
>







1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
      SimulateIOErrorBenign(1);
      winTruncate(id, sz);
      SimulateIOErrorBenign(0);
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SYNC_OMITTED: {
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_WIN32_AV_RETRY: {
      int *a = (int*)pArg;
      if( a[0]>0 ){
        win32IoerrRetry = a[0];
      }else{
        a[0] = win32IoerrRetry;
      }
      if( a[1]>0 ){
        win32IoerrRetryDelay = a[1];
      }else{
        a[1] = win32IoerrRetryDelay;
      }
      return SQLITE_OK;
    }
  }
  return SQLITE_NOTFOUND;
}

/*
** Return the sector size in bytes of the underlying block device for
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338


2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350


2351
2352
2353
2354
2355
2356
2357





2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
** will open a journal file shortly after it is created in order to do
** whatever it does.  While this other process is holding the
** file open, we will be unable to delete it.  To work around this
** problem, we delay 100 milliseconds and try to delete again.  Up
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
** up and returning an error.
*/
#define MX_DELETION_ATTEMPTS 5
static int winDelete(
  sqlite3_vfs *pVfs,          /* Not used on win32 */
  const char *zFilename,      /* Name of file to delete */
  int syncDir                 /* Not used on win32 */
){
  int cnt = 0;
  DWORD rc;
  DWORD error = 0;
  void *zConverted;
  UNUSED_PARAMETER(pVfs);
  UNUSED_PARAMETER(syncDir);

  SimulateIOError(return SQLITE_IOERR_DELETE);
  zConverted = convertUtf8Filename(zFilename);
  if( zConverted==0 ){
    return SQLITE_NOMEM;
  }
  if( isNT() ){
    do{


      DeleteFileW(zConverted);
    }while(   (   ((rc = GetFileAttributesW(zConverted)) != INVALID_FILE_ATTRIBUTES)
               || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
           && (++cnt < MX_DELETION_ATTEMPTS)
           && (Sleep(100), 1) );
/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. 
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
  }else{
    do{


      DeleteFileA(zConverted);
    }while(   (   ((rc = GetFileAttributesA(zConverted)) != INVALID_FILE_ATTRIBUTES)
               || ((error = GetLastError()) == ERROR_ACCESS_DENIED))
           && (++cnt < MX_DELETION_ATTEMPTS)
           && (Sleep(100), 1) );
#endif
  }





  free(zConverted);
  OSTRACE(("DELETE \"%s\" %s\n", zFilename,
       ( (rc==INVALID_FILE_ATTRIBUTES) && (error==ERROR_FILE_NOT_FOUND)) ?
         "ok" : "failed" ));
 
  return (   (rc == INVALID_FILE_ATTRIBUTES) 
          && (error == ERROR_FILE_NOT_FOUND)) ? SQLITE_OK :
                 winLogError(SQLITE_IOERR_DELETE, "winDelete", zFilename);
}

/*
** Check the existance and status of a file.
*/
static int winAccess(
  sqlite3_vfs *pVfs,         /* Not used on win32 */







<






|
<










<
>
>
|
<
|
<
<






<
>
>
|
<
|
<
<


>
>
>
>
>

|
<
<
<
|
<
<







2385
2386
2387
2388
2389
2390
2391

2392
2393
2394
2395
2396
2397
2398

2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

2409
2410
2411

2412


2413
2414
2415
2416
2417
2418

2419
2420
2421

2422


2423
2424
2425
2426
2427
2428
2429
2430
2431



2432


2433
2434
2435
2436
2437
2438
2439
** will open a journal file shortly after it is created in order to do
** whatever it does.  While this other process is holding the
** file open, we will be unable to delete it.  To work around this
** problem, we delay 100 milliseconds and try to delete again.  Up
** to MX_DELETION_ATTEMPTs deletion attempts are run before giving
** up and returning an error.
*/

static int winDelete(
  sqlite3_vfs *pVfs,          /* Not used on win32 */
  const char *zFilename,      /* Name of file to delete */
  int syncDir                 /* Not used on win32 */
){
  int cnt = 0;
  int rc;

  void *zConverted;
  UNUSED_PARAMETER(pVfs);
  UNUSED_PARAMETER(syncDir);

  SimulateIOError(return SQLITE_IOERR_DELETE);
  zConverted = convertUtf8Filename(zFilename);
  if( zConverted==0 ){
    return SQLITE_NOMEM;
  }
  if( isNT() ){

    rc = 1;
    while( GetFileAttributesW(zConverted)!=INVALID_FILE_ATTRIBUTES &&
           (rc = DeleteFileW(zConverted))==0 && retryIoerr(&cnt) ){}

    rc = rc ? SQLITE_OK : SQLITE_ERROR;


/* isNT() is 1 if SQLITE_OS_WINCE==1, so this else is never executed. 
** Since the ASCII version of these Windows API do not exist for WINCE,
** it's important to not reference them for WINCE builds.
*/
#if SQLITE_OS_WINCE==0
  }else{

    rc = 1;
    while( GetFileAttributesA(zConverted)!=INVALID_FILE_ATTRIBUTES &&
           (rc = DeleteFileA(zConverted))==0 && retryIoerr(&cnt) ){}

    rc = rc ? SQLITE_OK : SQLITE_ERROR;


#endif
  }
  if( rc ){
    rc = winLogError(SQLITE_IOERR_DELETE, "winDelete", zFilename);
  }else{
    logIoerr(cnt);
  }
  free(zConverted);
  OSTRACE(("DELETE \"%s\" %s\n", zFilename, (rc ? "failed" : "ok" )));



  return rc;


}

/*
** Check the existance and status of a file.
*/
static int winAccess(
  sqlite3_vfs *pVfs,         /* Not used on win32 */
Changes to src/resolve.c.
992
993
994
995
996
997
998


999








1000
1001
1002
1003




1004
1005
1006
1007
1008
1009
1010
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){


        const char *zSavedContext = pParse->zAuthContext;








        if( pItem->zName ) pParse->zAuthContext = pItem->zName;
        sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
        pParse->zAuthContext = zSavedContext;
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;




      }
    }
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );







>
>

>
>
>
>
>
>
>
>




>
>
>
>







992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */
        int nRef = 0;             /* Refcount for pOuterNC and outer contexts */
        const char *zSavedContext = pParse->zAuthContext;

        /* Count the total number of references to pOuterNC and all of its
        ** parent contexts. After resolving references to expressions in
        ** pItem->pSelect, check if this value has changed. If so, then
        ** SELECT statement pItem->pSelect must be correlated. Set the
        ** pItem->isCorrelated flag if this is the case. */
        for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef;

        if( pItem->zName ) pParse->zAuthContext = pItem->zName;
        sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC);
        pParse->zAuthContext = zSavedContext;
        if( pParse->nErr || db->mallocFailed ) return WRC_Abort;

        for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef;
        assert( pItem->isCorrelated==0 && nRef<=0 );
        pItem->isCorrelated = (nRef!=0);
      }
    }
  
    /* If there are no aggregate functions in the result-set, and no GROUP BY 
    ** expression, do not allow aggregates in any of the other expressions.
    */
    assert( (p->selFlags & SF_Aggregate)==0 );
Changes to src/select.c.
3717
3718
3719
3720
3721
3722
3723

3724
3725
3726
3727
3728
3729
3730
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int isDistinct;        /* True if the DISTINCT keyword is present */
  int distinct;          /* Table to use for the distinct set */
  int rc = 1;            /* Value to return from this function */
  int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */

  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */

#ifndef SQLITE_OMIT_EXPLAIN
  int iRestoreSelectId = pParse->iSelectId;
  pParse->iSelectId = pParse->iNextSelectId++;







>







3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
  ExprList *pOrderBy;    /* The ORDER BY clause.  May be NULL */
  ExprList *pGroupBy;    /* The GROUP BY clause.  May be NULL */
  Expr *pHaving;         /* The HAVING clause.  May be NULL */
  int isDistinct;        /* True if the DISTINCT keyword is present */
  int distinct;          /* Table to use for the distinct set */
  int rc = 1;            /* Value to return from this function */
  int addrSortIndex;     /* Address of an OP_OpenEphemeral instruction */
  int addrDistinctIndex; /* Address of an OP_OpenEphemeral instruction */
  AggInfo sAggInfo;      /* Information used by aggregate queries */
  int iEnd;              /* Address of the end of the query */
  sqlite3 *db;           /* The database connection */

#ifndef SQLITE_OMIT_EXPLAIN
  int iRestoreSelectId = pParse->iSelectId;
  pParse->iSelectId = pParse->iNextSelectId++;
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
























3871
3872
3873
3874
3875
3876
3877
    }
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);
    return rc;
  }
#endif

  /* If possible, rewrite the query to use GROUP BY instead of DISTINCT.
  ** GROUP BY might use an index, DISTINCT never does.
  */
  assert( p->pGroupBy==0 || (p->selFlags & SF_Aggregate)!=0 );
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ){
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    p->selFlags &= ~SF_Distinct;
  }

  /* If there is both a GROUP BY and an ORDER BY clause and they are
  ** identical, then disable the ORDER BY clause since the GROUP BY
  ** will cause elements to come out in the correct order.  This is
  ** an optimization - the correct answer should result regardless.
  ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
  ** to disable this optimization for testing purposes.
  */
  if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
         && (db->flags & SQLITE_GroupByOrder)==0 ){
    pOrderBy = 0;
  }

























  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.







<
<
<
<
<
<
<
<
<
<











>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3844
3845
3846
3847
3848
3849
3850










3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
    }
    rc = multiSelect(pParse, p, pDest);
    explainSetInteger(pParse->iSelectId, iRestoreSelectId);
    return rc;
  }
#endif











  /* If there is both a GROUP BY and an ORDER BY clause and they are
  ** identical, then disable the ORDER BY clause since the GROUP BY
  ** will cause elements to come out in the correct order.  This is
  ** an optimization - the correct answer should result regardless.
  ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER
  ** to disable this optimization for testing purposes.
  */
  if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0
         && (db->flags & SQLITE_GroupByOrder)==0 ){
    pOrderBy = 0;
  }

  /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and 
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(pOrderBy, p->pEList)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    pOrderBy = 0;
  }

  /* If there is an ORDER BY clause, then this sorting
  ** index might end up being unused if the data can be 
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918

3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934


3935


3936
3937






































3938
3939
3940
3941
3942
3943
3944
3945
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);

  /* Open a virtual index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    KeyInfo *pKeyInfo;
    assert( isAgg || pGroupBy );
    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
                        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
  }else{
    distinct = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){

    /* This case is for non-aggregate queries
    ** Begin the database scan
    */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, 0);
    if( pWInfo==0 ) goto select_end;
    if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
      p->addrOpenEphm[2] = -1;
    }



    /* Use the standard inner loop


    */
    assert(!isDistinct);






































    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, -1, pDest,
                    pWInfo->iContinue, pWInfo->iBreak);

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This is the processing for aggregate queries */







<


|
|


|




>
|
|
<
|












>
>
|
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







3915
3916
3917
3918
3919
3920
3921

3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935

3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);

  /* Open a virtual index to use for the distinct set.
  */
  if( p->selFlags & SF_Distinct ){
    KeyInfo *pKeyInfo;

    distinct = pParse->nTab++;
    pKeyInfo = keyInfoFromExprList(pParse, p->pEList);
    addrDistinctIndex = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, distinct, 0, 0,
        (char*)pKeyInfo, P4_KEYINFO_HANDOFF);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
  }else{
    distinct = addrDistinctIndex = -1;
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    ExprList *pDist = (isDistinct ? p->pEList : 0);

    /* Begin the database scan. */

    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
    if( pWInfo==0 ) goto select_end;
    if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex, 1);
      p->addrOpenEphm[2] = -1;
    }

    if( pWInfo->eDistinct ){
      VdbeOp *pOp;                /* No longer required OpenEphemeral instr. */
     
      assert( addrDistinctIndex>0 );
      pOp = sqlite3VdbeGetOp(v, addrDistinctIndex);

      assert( isDistinct );
      assert( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 
           || pWInfo->eDistinct==WHERE_DISTINCT_UNIQUE 
      );
      distinct = -1;
      if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED ){
        int iJump;
        int iExpr;
        int iFlag = ++pParse->nMem;
        int iBase = pParse->nMem+1;
        int iBase2 = iBase + pEList->nExpr;
        pParse->nMem += (pEList->nExpr*2);

        /* Change the OP_OpenEphemeral coded earlier to an OP_Integer. The
        ** OP_Integer initializes the "first row" flag.  */
        pOp->opcode = OP_Integer;
        pOp->p1 = 1;
        pOp->p2 = iFlag;

        sqlite3ExprCodeExprList(pParse, pEList, iBase, 1);
        iJump = sqlite3VdbeCurrentAddr(v) + 1 + pEList->nExpr + 1 + 1;
        sqlite3VdbeAddOp2(v, OP_If, iFlag, iJump-1);
        for(iExpr=0; iExpr<pEList->nExpr; iExpr++){
          CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[iExpr].pExpr);
          sqlite3VdbeAddOp3(v, OP_Ne, iBase+iExpr, iJump, iBase2+iExpr);
          sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
          sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
        }
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iContinue);

        sqlite3VdbeAddOp2(v, OP_Integer, 0, iFlag);
        assert( sqlite3VdbeCurrentAddr(v)==iJump );
        sqlite3VdbeAddOp3(v, OP_Move, iBase, iBase2, pEList->nExpr);
      }else{
        pOp->opcode = OP_Noop;
      }
    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, distinct, pDest,
                    pWInfo->iContinue, pWInfo->iBreak);

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This is the processing for aggregate queries */
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;







|







4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        resetAccumulator(pParse, &sAggInfo);
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, flag);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        if( !pMinMax && flag ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);







|







4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        resetAccumulator(pParse, &sAggInfo);
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        if( !pMinMax && flag ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
Changes to src/shell.c.
2628
2629
2630
2631
2632
2633
2634



2635
2636
2637
2638
2639
2640
2641
  "   -stats               print memory stats before each finalize\n"
  "   -nullvalue 'text'    set text string for NULL values\n"
  "   -version             show SQLite version\n"
  "   -vfs NAME            use NAME as the default VFS\n"
#ifdef SQLITE_ENABLE_VFSTRACE
  "   -vfstrace            enable tracing of all VFS calls\n"
#endif



;
static void usage(int showDetail){
  fprintf(stderr,
      "Usage: %s [OPTIONS] FILENAME [SQL]\n"  
      "FILENAME is the name of an SQLite database. A new database is created\n"
      "if the file does not previously exist.\n", Argv0);
  if( showDetail ){







>
>
>







2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
  "   -stats               print memory stats before each finalize\n"
  "   -nullvalue 'text'    set text string for NULL values\n"
  "   -version             show SQLite version\n"
  "   -vfs NAME            use NAME as the default VFS\n"
#ifdef SQLITE_ENABLE_VFSTRACE
  "   -vfstrace            enable tracing of all VFS calls\n"
#endif
#ifdef SQLITE_ENABLE_MULTIPLEX
  "   -multiplex           enable the multiplexor VFS\n"
#endif
;
static void usage(int showDetail){
  fprintf(stderr,
      "Usage: %s [OPTIONS] FILENAME [SQL]\n"  
      "FILENAME is the name of an SQLite database. A new database is created\n"
      "if the file does not previously exist.\n", Argv0);
  if( showDetail ){
2729
2730
2731
2732
2733
2734
2735





2736
2737
2738
2739
2740
2741
2742
         const char *zOldVfsName,
         int (*xOut)(const char*,void*),
         void *pOutArg,
         int makeDefault
      );
      vfstrace_register("trace",0,(int(*)(const char*,void*))fputs,stderr,1);
#endif





    }else if( strcmp(argv[i],"-vfs")==0 ){
      sqlite3_vfs *pVfs = sqlite3_vfs_find(argv[++i]);
      if( pVfs ){
        sqlite3_vfs_register(pVfs, 1);
      }else{
        fprintf(stderr, "no such VFS: \"%s\"\n", argv[i]);
        exit(1);







>
>
>
>
>







2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
         const char *zOldVfsName,
         int (*xOut)(const char*,void*),
         void *pOutArg,
         int makeDefault
      );
      vfstrace_register("trace",0,(int(*)(const char*,void*))fputs,stderr,1);
#endif
#ifdef SQLITE_ENABLE_MULTIPLEX
    }else if( strcmp(argv[i],"-multiplex")==0 ){
      extern int sqlite3_multiple_initialize(const char*,int);
      sqlite3_multiplex_initialize(0, 1);
#endif
    }else if( strcmp(argv[i],"-vfs")==0 ){
      sqlite3_vfs *pVfs = sqlite3_vfs_find(argv[++i]);
      if( pVfs ){
        sqlite3_vfs_register(pVfs, 1);
      }else{
        fprintf(stderr, "no such VFS: \"%s\"\n", argv[i]);
        exit(1);
2847
2848
2849
2850
2851
2852
2853

2854
2855





2856
2857
2858
2859
2860
2861
2862
      stdin_is_interactive = 1;
    }else if( strcmp(z,"-batch")==0 ){
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
      i++;
    }else if( strcmp(z,"-vfs")==0 ){
      i++;

    }else if( strcmp(z,"-vfstrace")==0 ){
      i++;





    }else if( strcmp(z,"-help")==0 || strcmp(z, "--help")==0 ){
      usage(1);
    }else{
      fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }







>


>
>
>
>
>







2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
      stdin_is_interactive = 1;
    }else if( strcmp(z,"-batch")==0 ){
      stdin_is_interactive = 0;
    }else if( strcmp(z,"-heap")==0 ){
      i++;
    }else if( strcmp(z,"-vfs")==0 ){
      i++;
#ifdef SQLITE_ENABLE_VFSTRACE
    }else if( strcmp(z,"-vfstrace")==0 ){
      i++;
#endif
#ifdef SQLITE_ENABLE_MULTIPLEX
    }else if( strcmp(z,"-multiplex")==0 ){
      i++;
#endif
    }else if( strcmp(z,"-help")==0 || strcmp(z, "--help")==0 ){
      usage(1);
    }else{
      fprintf(stderr,"%s: Error: unknown option: %s\n", Argv0, z);
      fprintf(stderr,"Use -help for a list of options.\n");
      return 1;
    }
Changes to src/sqlite.h.in.
732
733
734
735
736
737
738

















739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
** when the database connection has [PRAGMA synchronous] set to OFF.)^
** Some specialized VFSes need this signal in order to operate correctly
** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most 
** VFSes do not need this signal and should silently ignore this opcode.
** Applications should not call [sqlite3_file_control()] with this
** opcode as doing so may disrupt the operation of the specialized VFSes
** that do require it.  

















*/
#define SQLITE_FCNTL_LOCKSTATE        1
#define SQLITE_GET_LOCKPROXYFILE      2
#define SQLITE_SET_LOCKPROXYFILE      3
#define SQLITE_LAST_ERRNO             4
#define SQLITE_FCNTL_SIZE_HINT        5
#define SQLITE_FCNTL_CHUNK_SIZE       6
#define SQLITE_FCNTL_FILE_POINTER     7
#define SQLITE_FCNTL_SYNC_OMITTED     8


/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









|







732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
** when the database connection has [PRAGMA synchronous] set to OFF.)^
** Some specialized VFSes need this signal in order to operate correctly
** when [PRAGMA synchronous | PRAGMA synchronous=OFF] is set, but most 
** VFSes do not need this signal and should silently ignore this opcode.
** Applications should not call [sqlite3_file_control()] with this
** opcode as doing so may disrupt the operation of the specialized VFSes
** that do require it.  
**
** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
** retry counts and intervals for certain disk I/O operations for the
** windows [VFS] in order to work to provide robustness against
** anti-virus programs.  By default, the windows VFS will retry file read,
** file write, and file delete opertions up to 10 times, with a delay
** of 25 milliseconds before the first retry and with the delay increasing
** by an additional 25 milliseconds with each subsequent retry.  This
** opcode allows those to values (10 retries and 25 milliseconds of delay)
** to be adjusted.  The values are changed for all database connections
** within the same process.  The argument is a pointer to an array of two
** integers where the first integer i the new retry count and the second
** integer is the delay.  If either integer is negative, then the setting
** is not changed but instead the prior value of that setting is written
** into the array entry, allowing the current retry settings to be
** interrogated.  The zDbName parameter is ignored.
** 
*/
#define SQLITE_FCNTL_LOCKSTATE        1
#define SQLITE_GET_LOCKPROXYFILE      2
#define SQLITE_SET_LOCKPROXYFILE      3
#define SQLITE_LAST_ERRNO             4
#define SQLITE_FCNTL_SIZE_HINT        5
#define SQLITE_FCNTL_CHUNK_SIZE       6
#define SQLITE_FCNTL_FILE_POINTER     7
#define SQLITE_FCNTL_SYNC_OMITTED     8
#define SQLITE_FCNTL_WIN32_AV_RETRY   9

/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only
Changes to src/sqlite3ext.h.
208
209
210
211
212
213
214



215
216
217
218
219
220
221
  const char *(*sourceid)(void);
  int (*stmt_status)(sqlite3_stmt*,int,int);
  int (*strnicmp)(const char*,const char*,int);
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);



};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file







>
>
>







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
  const char *(*sourceid)(void);
  int (*stmt_status)(sqlite3_stmt*,int,int);
  int (*strnicmp)(const char*,const char*,int);
  int (*unlock_notify)(sqlite3*,void(*)(void**,int),void*);
  int (*wal_autocheckpoint)(sqlite3*,int);
  int (*wal_checkpoint)(sqlite3*,const char*);
  void *(*wal_hook)(sqlite3*,int(*)(void*,sqlite3*,const char*,int),void*);
  int (*blob_reopen)(sqlite3_blob*,sqlite3_int64);
  int (*vtab_config)(sqlite3*,int op,...);
  int (*vtab_on_conflict)(sqlite3*);
};

/*
** The following macros redefine the API routines so that they are
** redirected throught the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
408
409
410
411
412
413
414



415
416
417
418
419
420
#define sqlite3_sourceid               sqlite3_api->sourceid
#define sqlite3_stmt_status            sqlite3_api->stmt_status
#define sqlite3_strnicmp               sqlite3_api->strnicmp
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook



#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */







>
>
>






411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
#define sqlite3_sourceid               sqlite3_api->sourceid
#define sqlite3_stmt_status            sqlite3_api->stmt_status
#define sqlite3_strnicmp               sqlite3_api->strnicmp
#define sqlite3_unlock_notify          sqlite3_api->unlock_notify
#define sqlite3_wal_autocheckpoint     sqlite3_api->wal_autocheckpoint
#define sqlite3_wal_checkpoint         sqlite3_api->wal_checkpoint
#define sqlite3_wal_hook               sqlite3_api->wal_hook
#define sqlite3_blob_reopen            sqlite3_api->blob_reopen
#define sqlite3_vtab_config            sqlite3_api->vtab_config
#define sqlite3_vtab_on_conflict       sqlite3_api->vtab_on_conflict
#endif /* SQLITE_CORE */

#define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api = 0;
#define SQLITE_EXTENSION_INIT2(v)  sqlite3_api = v;

#endif /* _SQLITE3EXT_H_ */
Changes to src/sqliteInt.h.
960
961
962
963
964
965
966

967
968
969
970
971
972
973
#define SQLITE_ColumnCache    0x02        /* Disable the column cache */
#define SQLITE_IndexSort      0x04        /* Disable indexes for sorting */
#define SQLITE_IndexSearch    0x08        /* Disable indexes for searching */
#define SQLITE_IndexCover     0x10        /* Disable index covering table */
#define SQLITE_GroupByOrder   0x20        /* Disable GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x40        /* Disable factoring out constants */
#define SQLITE_IdxRealAsInt   0x80        /* Store REAL as INT in indices */

#define SQLITE_OptMask        0xff        /* Mask of all disablable opts */

/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/







>







960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
#define SQLITE_ColumnCache    0x02        /* Disable the column cache */
#define SQLITE_IndexSort      0x04        /* Disable indexes for sorting */
#define SQLITE_IndexSearch    0x08        /* Disable indexes for searching */
#define SQLITE_IndexCover     0x10        /* Disable index covering table */
#define SQLITE_GroupByOrder   0x20        /* Disable GROUPBY cover of ORDERBY */
#define SQLITE_FactorOutConst 0x40        /* Disable factoring out constants */
#define SQLITE_IdxRealAsInt   0x80        /* Store REAL as INT in indices */
#define SQLITE_DistinctOpt    0x80        /* DISTINCT using indexes */
#define SQLITE_OptMask        0xff        /* Mask of all disablable opts */

/*
** Possible values for the sqlite.magic field.
** The numbers are obtained at random and have no special meaning, other
** than being distinct from one another.
*/
1851
1852
1853
1854
1855
1856
1857

1858
1859
1860
1861
1862
1863
1864
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */
    u8 isPopulated;   /* Temporary table associated with SELECT is populated */
    u8 jointype;      /* Type of join between this able and the previous */
    u8 notIndexed;    /* True if there is a NOT INDEXED clause */

#ifndef SQLITE_OMIT_EXPLAIN
    u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
#endif
    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */







>







1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */
    u8 isPopulated;   /* Temporary table associated with SELECT is populated */
    u8 jointype;      /* Type of join between this able and the previous */
    u8 notIndexed;    /* True if there is a NOT INDEXED clause */
    u8 isCorrelated;  /* True if sub-query is correlated */
#ifndef SQLITE_OMIT_EXPLAIN
    u8 iSelectId;     /* If pSelect!=0, the id of the sub-select in EQP */
#endif
    int iCursor;      /* The VDBE cursor number used to access this table */
    Expr *pOn;        /* The ON clause of a join */
    IdList *pUsing;   /* The USING clause of a join */
    Bitmask colUsed;  /* Bit N (1<<N) set if column N of pTab is used */
1970
1971
1972
1973
1974
1975
1976

1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987



1988
1989
1990
1991
1992
1993
1994
** into the second half to give some continuity.
*/
struct WhereInfo {
  Parse *pParse;       /* Parsing and code generating context */
  u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
  u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
  u8 untestedTerms;    /* Not all WHERE terms resolved by outer loop */

  SrcList *pTabList;             /* List of tables in the join */
  int iTop;                      /* The very beginning of the WHERE loop */
  int iContinue;                 /* Jump here to continue with next record */
  int iBreak;                    /* Jump here to break out of the loop */
  int nLevel;                    /* Number of nested loop */
  struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
  double savedNQueryLoop;        /* pParse->nQueryLoop outside the WHERE loop */
  double nRowOut;                /* Estimated number of output rows */
  WhereLevel a[1];               /* Information about each nest loop in WHERE */
};




/*
** A NameContext defines a context in which to resolve table and column
** names.  The context consists of a list of tables (the pSrcList) field and
** a list of named expression (pEList).  The named expression list may
** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
** to the table being operated on by INSERT, UPDATE, or DELETE.  The
** pEList corresponds to the result set of a SELECT and is NULL for







>











>
>
>







1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
** into the second half to give some continuity.
*/
struct WhereInfo {
  Parse *pParse;       /* Parsing and code generating context */
  u16 wctrlFlags;      /* Flags originally passed to sqlite3WhereBegin() */
  u8 okOnePass;        /* Ok to use one-pass algorithm for UPDATE or DELETE */
  u8 untestedTerms;    /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;
  SrcList *pTabList;             /* List of tables in the join */
  int iTop;                      /* The very beginning of the WHERE loop */
  int iContinue;                 /* Jump here to continue with next record */
  int iBreak;                    /* Jump here to break out of the loop */
  int nLevel;                    /* Number of nested loop */
  struct WhereClause *pWC;       /* Decomposition of the WHERE clause */
  double savedNQueryLoop;        /* pParse->nQueryLoop outside the WHERE loop */
  double nRowOut;                /* Estimated number of output rows */
  WhereLevel a[1];               /* Information about each nest loop in WHERE */
};

#define WHERE_DISTINCT_UNIQUE 1
#define WHERE_DISTINCT_ORDERED 2

/*
** A NameContext defines a context in which to resolve table and column
** names.  The context consists of a list of tables (the pSrcList) field and
** a list of named expression (pEList).  The named expression list may
** be NULL.  The pSrc corresponds to the FROM clause of a SELECT or
** to the table being operated on by INSERT, UPDATE, or DELETE.  The
** pEList corresponds to the result set of a SELECT and is NULL for
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**, u16);
void sqlite3WhereEnd(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCodeCopy(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);







|







2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
int sqlite3IsReadOnly(Parse*, Table*, int);
void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16);
void sqlite3WhereEnd(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCodeCopy(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
Changes to src/tclsqlite.c.
103
104
105
106
107
108
109





110
111
112
113
114
115
116
};

typedef struct IncrblobChannel IncrblobChannel;

/*
** There is one instance of this structure for each SQLite database
** that has been opened by the SQLite TCL interface.





*/
typedef struct SqliteDb SqliteDb;
struct SqliteDb {
  sqlite3 *db;               /* The "real" database structure. MUST BE FIRST */
  Tcl_Interp *interp;        /* The interpreter used for this database */
  char *zBusy;               /* The busy callback routine */
  char *zCommit;             /* The commit hook callback routine */







>
>
>
>
>







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
};

typedef struct IncrblobChannel IncrblobChannel;

/*
** There is one instance of this structure for each SQLite database
** that has been opened by the SQLite TCL interface.
**
** If this module is built with SQLITE_TEST defined (to create the SQLite
** testfixture executable), then it may be configured to use either
** sqlite3_prepare_v2() or sqlite3_prepare() to prepare SQL statements.
** If SqliteDb.bLegacyPrepare is true, sqlite3_prepare() is used.
*/
typedef struct SqliteDb SqliteDb;
struct SqliteDb {
  sqlite3 *db;               /* The "real" database structure. MUST BE FIRST */
  Tcl_Interp *interp;        /* The interpreter used for this database */
  char *zBusy;               /* The busy callback routine */
  char *zCommit;             /* The commit hook callback routine */
132
133
134
135
136
137
138



139
140
141
142
143
144
145
  SqlPreparedStmt *stmtList; /* List of prepared statements*/
  SqlPreparedStmt *stmtLast; /* Last statement in the list */
  int maxStmt;               /* The next maximum number of stmtList */
  int nStmt;                 /* Number of statements in stmtList */
  IncrblobChannel *pIncrblob;/* Linked list of open incrblob channels */
  int nStep, nSort, nIndex;  /* Statistics for most recent operation */
  int nTransaction;          /* Number of nested [transaction] methods */



};

struct IncrblobChannel {
  sqlite3_blob *pBlob;      /* sqlite3 blob handle */
  SqliteDb *pDb;            /* Associated database connection */
  int iSeek;                /* Current seek offset */
  Tcl_Channel channel;      /* Channel identifier */







>
>
>







137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
  SqlPreparedStmt *stmtList; /* List of prepared statements*/
  SqlPreparedStmt *stmtLast; /* Last statement in the list */
  int maxStmt;               /* The next maximum number of stmtList */
  int nStmt;                 /* Number of statements in stmtList */
  IncrblobChannel *pIncrblob;/* Linked list of open incrblob channels */
  int nStep, nSort, nIndex;  /* Statistics for most recent operation */
  int nTransaction;          /* Number of nested [transaction] methods */
#ifdef SQLITE_TEST
  int bLegacyPrepare;        /* True to use sqlite3_prepare() */
#endif
};

struct IncrblobChannel {
  sqlite3_blob *pBlob;      /* sqlite3 blob handle */
  SqliteDb *pDb;            /* Associated database connection */
  int iSeek;                /* Current seek offset */
  Tcl_Channel channel;      /* Channel identifier */
425
426
427
428
429
430
431













432
433
434
435
436
437

438
439
440
441
442
443
444
445
446

447
448
449
450
451
452
453
  }
  pNew->interp = pDb->interp;
  pNew->pScript = 0;
  pNew->pNext = pDb->pFunc;
  pDb->pFunc = pNew;
  return pNew;
}














/*
** Finalize and free a list of prepared statements
*/
static void flushStmtCache( SqliteDb *pDb ){
  SqlPreparedStmt *pPreStmt;


  while(  pDb->stmtList ){
    sqlite3_finalize( pDb->stmtList->pStmt );
    pPreStmt = pDb->stmtList;
    pDb->stmtList = pDb->stmtList->pNext;
    Tcl_Free( (char*)pPreStmt );
  }
  pDb->nStmt = 0;
  pDb->stmtLast = 0;

}

/*
** TCL calls this procedure when an sqlite3 database command is
** deleted.
*/
static void DbDeleteCmd(void *db){







>
>
>
>
>
>
>
>
>
>
>
>
>




|

>

<
<
|
|
|



>







433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460


461
462
463
464
465
466
467
468
469
470
471
472
473
474
  }
  pNew->interp = pDb->interp;
  pNew->pScript = 0;
  pNew->pNext = pDb->pFunc;
  pDb->pFunc = pNew;
  return pNew;
}

/*
** Free a single SqlPreparedStmt object.
*/
static void dbFreeStmt(SqlPreparedStmt *pStmt){
#ifdef SQLITE_TEST
  if( sqlite3_sql(pStmt->pStmt)==0 ){
    Tcl_Free((char *)pStmt->zSql);
  }
#endif
  sqlite3_finalize(pStmt->pStmt);
  Tcl_Free((char *)pStmt);
}

/*
** Finalize and free a list of prepared statements
*/
static void flushStmtCache(SqliteDb *pDb){
  SqlPreparedStmt *pPreStmt;
  SqlPreparedStmt *pNext;



  for(pPreStmt = pDb->stmtList; pPreStmt; pPreStmt=pNext){
    pNext = pPreStmt->pNext;
    dbFreeStmt(pPreStmt);
  }
  pDb->nStmt = 0;
  pDb->stmtLast = 0;
  pDb->stmtList = 0;
}

/*
** TCL calls this procedure when an sqlite3 database command is
** deleted.
*/
static void DbDeleteCmd(void *db){
1069
1070
1071
1072
1073
1074
1075





















1076
1077
1078
1079
1080
1081
1082
    }
    sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0);
  }
  pDb->disableAuth--;

  return rc;
}






















/*
** Search the cache for a prepared-statement object that implements the
** first SQL statement in the buffer pointed to by parameter zIn. If
** no such prepared-statement can be found, allocate and prepare a new
** one. In either case, bind the current values of the relevant Tcl
** variables to any $var, :var or @var variables in the statement. Before







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
    }
    sqlite3_exec(pDb->db, "ROLLBACK", 0, 0, 0);
  }
  pDb->disableAuth--;

  return rc;
}

/*
** Unless SQLITE_TEST is defined, this function is a simple wrapper around
** sqlite3_prepare_v2(). If SQLITE_TEST is defined, then it uses either
** sqlite3_prepare_v2() or legacy interface sqlite3_prepare(), depending
** on whether or not the [db_use_legacy_prepare] command has been used to 
** configure the connection.
*/
static int dbPrepare(
  SqliteDb *pDb,                  /* Database object */
  const char *zSql,               /* SQL to compile */
  sqlite3_stmt **ppStmt,          /* OUT: Prepared statement */
  const char **pzOut              /* OUT: Pointer to next SQL statement */
){
#ifdef SQLITE_TEST
  if( pDb->bLegacyPrepare ){
    return sqlite3_prepare(pDb->db, zSql, -1, ppStmt, pzOut);
  }
#endif
  return sqlite3_prepare_v2(pDb->db, zSql, -1, ppStmt, pzOut);
}

/*
** Search the cache for a prepared-statement object that implements the
** first SQL statement in the buffer pointed to by parameter zIn. If
** no such prepared-statement can be found, allocate and prepare a new
** one. In either case, bind the current values of the relevant Tcl
** variables to any $var, :var or @var variables in the statement. Before
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
  }
  
  /* If no prepared statement was found. Compile the SQL text. Also allocate
  ** a new SqlPreparedStmt structure.  */
  if( pPreStmt==0 ){
    int nByte;

    if( SQLITE_OK!=sqlite3_prepare_v2(pDb->db, zSql, -1, &pStmt, pzOut) ){
      Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db)));
      return TCL_ERROR;
    }
    if( pStmt==0 ){
      if( SQLITE_OK!=sqlite3_errcode(pDb->db) ){
        /* A compile-time error in the statement. */
        Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db)));







|







1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
  }
  
  /* If no prepared statement was found. Compile the SQL text. Also allocate
  ** a new SqlPreparedStmt structure.  */
  if( pPreStmt==0 ){
    int nByte;

    if( SQLITE_OK!=dbPrepare(pDb, zSql, &pStmt, pzOut) ){
      Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db)));
      return TCL_ERROR;
    }
    if( pStmt==0 ){
      if( SQLITE_OK!=sqlite3_errcode(pDb->db) ){
        /* A compile-time error in the statement. */
        Tcl_SetObjResult(interp, dbTextToObj(sqlite3_errmsg(pDb->db)));
1167
1168
1169
1170
1171
1172
1173








1174
1175
1176
1177
1178
1179
1180
    pPreStmt = (SqlPreparedStmt*)Tcl_Alloc(nByte);
    memset(pPreStmt, 0, nByte);

    pPreStmt->pStmt = pStmt;
    pPreStmt->nSql = (*pzOut - zSql);
    pPreStmt->zSql = sqlite3_sql(pStmt);
    pPreStmt->apParm = (Tcl_Obj **)&pPreStmt[1];








  }
  assert( pPreStmt );
  assert( strlen30(pPreStmt->zSql)==pPreStmt->nSql );
  assert( 0==memcmp(pPreStmt->zSql, zSql, pPreStmt->nSql) );

  /* Bind values to parameters that begin with $ or : */  
  for(i=1; i<=nVar; i++){







>
>
>
>
>
>
>
>







1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
    pPreStmt = (SqlPreparedStmt*)Tcl_Alloc(nByte);
    memset(pPreStmt, 0, nByte);

    pPreStmt->pStmt = pStmt;
    pPreStmt->nSql = (*pzOut - zSql);
    pPreStmt->zSql = sqlite3_sql(pStmt);
    pPreStmt->apParm = (Tcl_Obj **)&pPreStmt[1];
#ifdef SQLITE_TEST
    if( pPreStmt->zSql==0 ){
      char *zCopy = Tcl_Alloc(pPreStmt->nSql + 1);
      memcpy(zCopy, zSql, pPreStmt->nSql);
      zCopy[pPreStmt->nSql] = '\0';
      pPreStmt->zSql = zCopy;
    }
#endif
  }
  assert( pPreStmt );
  assert( strlen30(pPreStmt->zSql)==pPreStmt->nSql );
  assert( 0==memcmp(pPreStmt->zSql, zSql, pPreStmt->nSql) );

  /* Bind values to parameters that begin with $ or : */  
  for(i=1; i<=nVar; i++){
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
  }
  pPreStmt->nParm = iParm;
  *ppPreStmt = pPreStmt;

  return TCL_OK;
}


/*
** Release a statement reference obtained by calling dbPrepareAndBind().
** There should be exactly one call to this function for each call to
** dbPrepareAndBind().
**
** If the discard parameter is non-zero, then the statement is deleted
** immediately. Otherwise it is added to the LRU list and may be returned







<







1270
1271
1272
1273
1274
1275
1276

1277
1278
1279
1280
1281
1282
1283
  }
  pPreStmt->nParm = iParm;
  *ppPreStmt = pPreStmt;

  return TCL_OK;
}


/*
** Release a statement reference obtained by calling dbPrepareAndBind().
** There should be exactly one call to this function for each call to
** dbPrepareAndBind().
**
** If the discard parameter is non-zero, then the statement is deleted
** immediately. Otherwise it is added to the LRU list and may be returned
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

1278
1279
1280
1281
1282
1283
1284
  for(i=0; i<pPreStmt->nParm; i++){
    Tcl_DecrRefCount(pPreStmt->apParm[i]);
  }
  pPreStmt->nParm = 0;

  if( pDb->maxStmt<=0 || discard ){
    /* If the cache is turned off, deallocated the statement */
    sqlite3_finalize(pPreStmt->pStmt);
    Tcl_Free((char *)pPreStmt);
  }else{
    /* Add the prepared statement to the beginning of the cache list. */
    pPreStmt->pNext = pDb->stmtList;
    pPreStmt->pPrev = 0;
    if( pDb->stmtList ){
     pDb->stmtList->pPrev = pPreStmt;
    }
    pDb->stmtList = pPreStmt;
    if( pDb->stmtLast==0 ){
      assert( pDb->nStmt==0 );
      pDb->stmtLast = pPreStmt;
    }else{
      assert( pDb->nStmt>0 );
    }
    pDb->nStmt++;
   
    /* If we have too many statement in cache, remove the surplus from 
    ** the end of the cache list.  */
    while( pDb->nStmt>pDb->maxStmt ){
      sqlite3_finalize(pDb->stmtLast->pStmt);
      pDb->stmtLast = pDb->stmtLast->pPrev;
      Tcl_Free((char*)pDb->stmtLast->pNext);
      pDb->stmtLast->pNext = 0;
      pDb->nStmt--;

    }
  }
}

/*
** Structure used with dbEvalXXX() functions:
**







<
|



















|
|
<


>







1294
1295
1296
1297
1298
1299
1300

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322

1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
  for(i=0; i<pPreStmt->nParm; i++){
    Tcl_DecrRefCount(pPreStmt->apParm[i]);
  }
  pPreStmt->nParm = 0;

  if( pDb->maxStmt<=0 || discard ){
    /* If the cache is turned off, deallocated the statement */

    dbFreeStmt(pPreStmt);
  }else{
    /* Add the prepared statement to the beginning of the cache list. */
    pPreStmt->pNext = pDb->stmtList;
    pPreStmt->pPrev = 0;
    if( pDb->stmtList ){
     pDb->stmtList->pPrev = pPreStmt;
    }
    pDb->stmtList = pPreStmt;
    if( pDb->stmtLast==0 ){
      assert( pDb->nStmt==0 );
      pDb->stmtLast = pPreStmt;
    }else{
      assert( pDb->nStmt>0 );
    }
    pDb->nStmt++;
   
    /* If we have too many statement in cache, remove the surplus from 
    ** the end of the cache list.  */
    while( pDb->nStmt>pDb->maxStmt ){
      SqlPreparedStmt *pLast = pDb->stmtLast;
      pDb->stmtLast = pLast->pPrev;

      pDb->stmtLast->pNext = 0;
      pDb->nStmt--;
      dbFreeStmt(pLast);
    }
  }
}

/*
** Structure used with dbEvalXXX() functions:
**
1403
1404
1405
1406
1407
1408
1409


1410
1411
1412

1413
1414
1415
1416
1417
1418
1419
** A return value of TCL_OK means there is a row of data available. The
** data may be accessed using dbEvalRowInfo() and dbEvalColumnValue(). This
** is analogous to a return of SQLITE_ROW from sqlite3_step(). If TCL_BREAK
** is returned, then the SQL script has finished executing and there are
** no further rows available. This is similar to SQLITE_DONE.
*/
static int dbEvalStep(DbEvalContext *p){


  while( p->zSql[0] || p->pPreStmt ){
    int rc;
    if( p->pPreStmt==0 ){

      rc = dbPrepareAndBind(p->pDb, p->zSql, &p->zSql, &p->pPreStmt);
      if( rc!=TCL_OK ) return rc;
    }else{
      int rcs;
      SqliteDb *pDb = p->pDb;
      SqlPreparedStmt *pPreStmt = p->pPreStmt;
      sqlite3_stmt *pStmt = pPreStmt->pStmt;







>
>



>







1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
** A return value of TCL_OK means there is a row of data available. The
** data may be accessed using dbEvalRowInfo() and dbEvalColumnValue(). This
** is analogous to a return of SQLITE_ROW from sqlite3_step(). If TCL_BREAK
** is returned, then the SQL script has finished executing and there are
** no further rows available. This is similar to SQLITE_DONE.
*/
static int dbEvalStep(DbEvalContext *p){
  const char *zPrevSql = 0;       /* Previous value of p->zSql */

  while( p->zSql[0] || p->pPreStmt ){
    int rc;
    if( p->pPreStmt==0 ){
      zPrevSql = (p->zSql==zPrevSql ? 0 : p->zSql);
      rc = dbPrepareAndBind(p->pDb, p->zSql, &p->zSql, &p->pPreStmt);
      if( rc!=TCL_OK ) return rc;
    }else{
      int rcs;
      SqliteDb *pDb = p->pDb;
      SqlPreparedStmt *pPreStmt = p->pPreStmt;
      sqlite3_stmt *pStmt = pPreStmt->pStmt;
1432
1433
1434
1435
1436
1437
1438
1439
1440












1441
1442
1443
1444
1445
1446
1447
      pDb->nIndex = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_AUTOINDEX,1);
      dbReleaseColumnNames(p);
      p->pPreStmt = 0;

      if( rcs!=SQLITE_OK ){
        /* If a run-time error occurs, report the error and stop reading
        ** the SQL.  */
        Tcl_SetObjResult(pDb->interp, dbTextToObj(sqlite3_errmsg(pDb->db)));
        dbReleaseStmt(pDb, pPreStmt, 1);












        return TCL_ERROR;
      }else{
        dbReleaseStmt(pDb, pPreStmt, 0);
      }
    }
  }








<

>
>
>
>
>
>
>
>
>
>
>
>







1483
1484
1485
1486
1487
1488
1489

1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
      pDb->nIndex = sqlite3_stmt_status(pStmt,SQLITE_STMTSTATUS_AUTOINDEX,1);
      dbReleaseColumnNames(p);
      p->pPreStmt = 0;

      if( rcs!=SQLITE_OK ){
        /* If a run-time error occurs, report the error and stop reading
        ** the SQL.  */

        dbReleaseStmt(pDb, pPreStmt, 1);
#if SQLITE_TEST
        if( p->pDb->bLegacyPrepare && rcs==SQLITE_SCHEMA && zPrevSql ){
          /* If the runtime error was an SQLITE_SCHEMA, and the database
          ** handle is configured to use the legacy sqlite3_prepare() 
          ** interface, retry prepare()/step() on the same SQL statement.
          ** This only happens once. If there is a second SQLITE_SCHEMA
          ** error, the error will be returned to the caller. */
          p->zSql = zPrevSql;
          continue;
        }
#endif
        Tcl_SetObjResult(pDb->interp, dbTextToObj(sqlite3_errmsg(pDb->db)));
        return TCL_ERROR;
      }else{
        dbReleaseStmt(pDb, pPreStmt, 0);
      }
    }
  }

3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
      if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
      if( b ){
        flags |= SQLITE_OPEN_NOMUTEX;
        flags &= ~SQLITE_OPEN_FULLMUTEX;
      }else{
        flags &= ~SQLITE_OPEN_NOMUTEX;
      }
   }else if( strcmp(zArg, "-fullmutex")==0 ){
      int b;
      if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
      if( b ){
        flags |= SQLITE_OPEN_FULLMUTEX;
        flags &= ~SQLITE_OPEN_NOMUTEX;
      }else{
        flags &= ~SQLITE_OPEN_FULLMUTEX;







|







3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
      if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
      if( b ){
        flags |= SQLITE_OPEN_NOMUTEX;
        flags &= ~SQLITE_OPEN_FULLMUTEX;
      }else{
        flags &= ~SQLITE_OPEN_NOMUTEX;
      }
    }else if( strcmp(zArg, "-fullmutex")==0 ){
      int b;
      if( Tcl_GetBooleanFromObj(interp, objv[i+1], &b) ) return TCL_ERROR;
      if( b ){
        flags |= SQLITE_OPEN_FULLMUTEX;
        flags &= ~SQLITE_OPEN_NOMUTEX;
      }else{
        flags &= ~SQLITE_OPEN_FULLMUTEX;
3669
3670
3671
3672
3673
3674
3675






































3676
3677
3678
3679
3680
3681
3682
  if( !slave ){
    return TCL_ERROR;
  }

  init_all(slave);
  return TCL_OK;
}






































#endif

/*
** Configure the interpreter passed as the first argument to have access
** to the commands and linked variables that make up:
**
**   * the [sqlite3] extension itself, 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
  if( !slave ){
    return TCL_ERROR;
  }

  init_all(slave);
  return TCL_OK;
}

/*
** Tclcmd: db_use_legacy_prepare DB BOOLEAN
**
**   The first argument to this command must be a database command created by
**   [sqlite3]. If the second argument is true, then the handle is configured
**   to use the sqlite3_prepare_v2() function to prepare statements. If it
**   is false, sqlite3_prepare().
*/
static int db_use_legacy_prepare_cmd(
  ClientData cd,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  Tcl_CmdInfo cmdInfo;
  SqliteDb *pDb;
  int bPrepare;

  if( objc!=3 ){
    Tcl_WrongNumArgs(interp, 1, objv, "DB BOOLEAN");
    return TCL_ERROR;
  }

  if( !Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){
    Tcl_AppendResult(interp, "no such db: ", Tcl_GetString(objv[1]), (char*)0);
    return TCL_ERROR;
  }
  pDb = (SqliteDb*)cmdInfo.objClientData;
  if( Tcl_GetBooleanFromObj(interp, objv[2], &bPrepare) ){
    return TCL_ERROR;
  }

  pDb->bLegacyPrepare = bPrepare;

  Tcl_ResetResult(interp);
  return TCL_OK;
}
#endif

/*
** Configure the interpreter passed as the first argument to have access
** to the commands and linked variables that make up:
**
**   * the [sqlite3] extension itself, 
3779
3780
3781
3782
3783
3784
3785
3786





3787
3788
3789
3790
3791
3792
3793
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
    TestSession_Init(interp);
#endif
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    Sqlitetestfts3_Init(interp);
#endif

    Tcl_CreateObjCommand(interp,"load_testfixture_extensions",init_all_cmd,0,0);






#ifdef SQLITE_SSE
    Sqlitetestsse_Init(interp);
#endif
  }
#endif
}







|
>
>
>
>
>







3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
#if defined(SQLITE_ENABLE_SESSION) && defined(SQLITE_ENABLE_PREUPDATE_HOOK)
    TestSession_Init(interp);
#endif
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
    Sqlitetestfts3_Init(interp);
#endif

    Tcl_CreateObjCommand(
        interp, "load_testfixture_extensions", init_all_cmd, 0, 0
    );
    Tcl_CreateObjCommand(
        interp, "db_use_legacy_prepare", db_use_legacy_prepare_cmd, 0, 0
    );

#ifdef SQLITE_SSE
    Sqlitetestsse_Init(interp);
#endif
  }
#endif
}
Changes to src/test1.c.
5092
5093
5094
5095
5096
5097
5098

































5099
5100
5101
5102
5103
5104
5105
      return TCL_ERROR;
    }
  }
#endif
  return TCL_OK;  
}



































/*
** tclcmd:   sqlite3_vfs_list
**
**   Return a tcl list containing the names of all registered vfs's.
*/
static int vfs_list(







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
      return TCL_ERROR;
    }
  }
#endif
  return TCL_OK;  
}

/*
** tclcmd:   file_control_win32_av_retry DB  NRETRY  DELAY
**
** This TCL command runs the sqlite3_file_control interface with
** the SQLITE_FCNTL_WIN32_AV_RETRY opcode.
*/
static int file_control_win32_av_retry(
  ClientData clientData, /* Pointer to sqlite3_enable_XXX function */
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int objc,              /* Number of arguments */
  Tcl_Obj *CONST objv[]  /* Command arguments */
){
  sqlite3 *db;
  int rc;
  int a[2];
  char z[100];

  if( objc!=4 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " DB NRETRY DELAY", 0);
    return TCL_ERROR;
  }
  if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ){
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &a[0]) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[3], &a[1]) ) return TCL_ERROR;
  rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_WIN32_AV_RETRY, (void*)a);
  sqlite3_snprintf(sizeof(z), z, "%d %d %d", rc, a[0], a[1]);
  Tcl_AppendResult(interp, z, (char*)0);
  return TCL_OK;  
}


/*
** tclcmd:   sqlite3_vfs_list
**
**   Return a tcl list containing the names of all registered vfs's.
*/
static int vfs_list(
5570
5571
5572
5573
5574
5575
5576
























































































5577
5578
5579
5580
5581
5582
5583
    }
  }

  Tcl_ResetResult(interp);
  return TCL_OK;
}


























































































/*
**      optimization_control DB OPT BOOLEAN
**
** Enable or disable query optimizations using the sqlite3_test_control()
** interface.  Disable if BOOLEAN is false and enable if BOOLEAN is true.
** OPT is the name of the optimization to be disabled.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
    }
  }

  Tcl_ResetResult(interp);
  return TCL_OK;
}

#if SQLITE_OS_WIN
/*
** Information passed from the main thread into the windows file locker
** background thread.
*/
struct win32FileLocker {
  HANDLE h;           /* Handle of the file to be locked */
  int delay1;         /* Delay before locking */
  int delay2;         /* Delay before unlocking */
  int ok;             /* Finished ok */
  int err;            /* True if an error occurs */
};
#endif


#if SQLITE_OS_WIN
/*
** The background thread that does file locking.
*/
static void win32_file_locker(void *pAppData){
  struct win32FileLocker *p = (struct win32FileLocker*)pAppData;
  if( p->delay1 ) Sleep(p->delay1);
  if( LockFile(p->h, 0, 0, 100000000, 0) ){
    Sleep(p->delay2);
    UnlockFile(p->h, 0, 0, 100000000, 0);
    p->ok = 1;
  }else{
    p->err = 1;
  }
  CloseHandle(p->h);
  p->h = 0;
  p->delay1 = 0;
  p->delay2 = 0;
}
#endif

#if SQLITE_OS_WIN
/*
**      lock_win32_file FILENAME DELAY1 DELAY2
**
** Get an exclusive manditory lock on file for DELAY2 milliseconds.
** Wait DELAY1 milliseconds before acquiring the lock.
*/
static int win32_file_lock(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  static struct win32FileLocker x = { 0, 0, 0 };
  const char *zFilename;
  int retry = 0;
  
  if( objc!=4 && objc!=1 ){
    Tcl_WrongNumArgs(interp, 1, objv, "FILENAME DELAY1 DELAY2");
    return TCL_ERROR;
  }
  if( objc==1 ){
    char zBuf[200];
    sqlite3_snprintf(sizeof(zBuf), zBuf, "%d %d %d %d %d",
                     x.ok, x.err, x.delay1, x.delay2, x.h);
    Tcl_AppendResult(interp, zBuf, (char*)0);
    return TCL_OK;
  }
  while( x.h && retry<30 ){
    retry++;
    Sleep(100);
  }
  if( x.h ){
    Tcl_AppendResult(interp, "busy", (char*)0);
    return TCL_ERROR;
  }
  if( Tcl_GetIntFromObj(interp, objv[2], &x.delay1) ) return TCL_ERROR;
  if( Tcl_GetIntFromObj(interp, objv[3], &x.delay2) ) return TCL_ERROR;
  zFilename = Tcl_GetString(objv[1]);
  x.h = CreateFile(zFilename, GENERIC_READ|GENERIC_WRITE,
              FILE_SHARE_READ|FILE_SHARE_WRITE, 0, OPEN_ALWAYS,
              FILE_ATTRIBUTE_NORMAL, 0);
  if( !x.h ){
    Tcl_AppendResult(interp, "cannot open file: ", zFilename, (char*)0);
    return TCL_ERROR;
  }
  _beginthread(win32_file_locker, 0, (void*)&x);
  Sleep(0);
  return TCL_OK;
}
#endif


/*
**      optimization_control DB OPT BOOLEAN
**
** Enable or disable query optimizations using the sqlite3_test_control()
** interface.  Disable if BOOLEAN is false and enable if BOOLEAN is true.
** OPT is the name of the optimization to be disabled.
5750
5751
5752
5753
5754
5755
5756



5757
5758
5759
5760
5761
5762
5763
     { "sqlite3_extended_result_codes", test_extended_result_codes, 0},
     { "sqlite3_limit",                 test_limit,                 0},

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "optimization_control",          optimization_control,0},



     { "tcl_objproc",                   runAsObjProc,       0 },

     /* sqlite3_column_*() API */
     { "sqlite3_column_count",          test_column_count  ,0 },
     { "sqlite3_data_count",            test_data_count    ,0 },
     { "sqlite3_column_type",           test_column_type   ,0 },
     { "sqlite3_column_blob",           test_column_blob   ,0 },







>
>
>







5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
     { "sqlite3_extended_result_codes", test_extended_result_codes, 0},
     { "sqlite3_limit",                 test_limit,                 0},

     { "save_prng_state",               save_prng_state,    0 },
     { "restore_prng_state",            restore_prng_state, 0 },
     { "reset_prng_state",              reset_prng_state,   0 },
     { "optimization_control",          optimization_control,0},
#if SQLITE_OS_WIN
     { "lock_win32_file",               win32_file_lock,    0 },
#endif
     { "tcl_objproc",                   runAsObjProc,       0 },

     /* sqlite3_column_*() API */
     { "sqlite3_column_count",          test_column_count  ,0 },
     { "sqlite3_data_count",            test_data_count    ,0 },
     { "sqlite3_column_type",           test_column_type   ,0 },
     { "sqlite3_column_blob",           test_column_blob   ,0 },
5798
5799
5800
5801
5802
5803
5804
5805

5806
5807
5808
5809
5810
5811
5812
     { "vfs_initfail_test",          vfs_initfail_test,   0   },
     { "vfs_unregister_all",         vfs_unregister_all,  0   },
     { "vfs_reregister_all",         vfs_reregister_all,  0   },
     { "file_control_test",          file_control_test,   0   },
     { "file_control_lasterrno_test", file_control_lasterrno_test,  0   },
     { "file_control_lockproxy_test", file_control_lockproxy_test,  0   },
     { "file_control_chunksize_test", file_control_chunksize_test,  0   },
     { "file_control_sizehint_test", file_control_sizehint_test,  0   },

     { "sqlite3_vfs_list",           vfs_list,     0   },
     { "sqlite3_create_function_v2", test_create_function_v2, 0 },

     /* Functions from os.h */
#ifndef SQLITE_OMIT_UTF16
     { "add_test_collate",        test_collate, 0            },
     { "add_test_collate_needed", test_collate_needed, 0     },







|
>







5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
     { "vfs_initfail_test",          vfs_initfail_test,   0   },
     { "vfs_unregister_all",         vfs_unregister_all,  0   },
     { "vfs_reregister_all",         vfs_reregister_all,  0   },
     { "file_control_test",          file_control_test,   0   },
     { "file_control_lasterrno_test", file_control_lasterrno_test,  0   },
     { "file_control_lockproxy_test", file_control_lockproxy_test,  0   },
     { "file_control_chunksize_test", file_control_chunksize_test,  0   },
     { "file_control_sizehint_test",  file_control_sizehint_test,   0   },
     { "file_control_win32_av_retry", file_control_win32_av_retry,  0   },
     { "sqlite3_vfs_list",           vfs_list,     0   },
     { "sqlite3_create_function_v2", test_create_function_v2, 0 },

     /* Functions from os.h */
#ifndef SQLITE_OMIT_UTF16
     { "add_test_collate",        test_collate, 0            },
     { "add_test_collate_needed", test_collate_needed, 0     },
Changes to src/test_config.c.
579
580
581
582
583
584
585

586
587
588
589
590
591
592
  LINKVAR( MAX_LIKE_PATTERN_LENGTH );
  LINKVAR( MAX_TRIGGER_DEPTH );
  LINKVAR( DEFAULT_TEMP_CACHE_SIZE );
  LINKVAR( DEFAULT_CACHE_SIZE );
  LINKVAR( DEFAULT_PAGE_SIZE );
  LINKVAR( DEFAULT_FILE_FORMAT );
  LINKVAR( MAX_ATTACHED );


  {
    static const int cv_TEMP_STORE = SQLITE_TEMP_STORE;
    Tcl_LinkVar(interp, "TEMP_STORE", (char *)&(cv_TEMP_STORE),
                TCL_LINK_INT | TCL_LINK_READ_ONLY);
  }
}







>







579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
  LINKVAR( MAX_LIKE_PATTERN_LENGTH );
  LINKVAR( MAX_TRIGGER_DEPTH );
  LINKVAR( DEFAULT_TEMP_CACHE_SIZE );
  LINKVAR( DEFAULT_CACHE_SIZE );
  LINKVAR( DEFAULT_PAGE_SIZE );
  LINKVAR( DEFAULT_FILE_FORMAT );
  LINKVAR( MAX_ATTACHED );
  LINKVAR( MAX_DEFAULT_PAGE_SIZE );

  {
    static const int cv_TEMP_STORE = SQLITE_TEMP_STORE;
    Tcl_LinkVar(interp, "TEMP_STORE", (char *)&(cv_TEMP_STORE),
                TCL_LINK_INT | TCL_LINK_READ_ONLY);
  }
}
Changes to src/test_multiplex.c.
41
42
43
44
45
46
47

48
49
50
51
52
53
54
** The multiplex VFS allows databases up to 32 GiB in size.  But it splits
** the files up into 1 GiB pieces, so that they will work even on filesystems
** that do not support large files.
*/
#include "sqlite3.h"
#include <string.h>
#include <assert.h>

#include "test_multiplex.h"

#ifndef SQLITE_CORE
  #define SQLITE_CORE 1  /* Disable the API redefinition in sqlite3ext.h */
#endif
#include "sqlite3ext.h"








>







41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
** The multiplex VFS allows databases up to 32 GiB in size.  But it splits
** the files up into 1 GiB pieces, so that they will work even on filesystems
** that do not support large files.
*/
#include "sqlite3.h"
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include "test_multiplex.h"

#ifndef SQLITE_CORE
  #define SQLITE_CORE 1  /* Disable the API redefinition in sqlite3ext.h */
#endif
#include "sqlite3ext.h"

74
75
76
77
78
79
80

81

82
83
84
85
86

87

88
89
90
91
92
93

94

95
96
97
98
99
100
101
#define sqlite3_mutex_held(X)     ((void)(X),1)
#define sqlite3_mutex_notheld(X)  ((void)(X),1)
#endif /* SQLITE_THREADSAFE==0 */


/************************ Shim Definitions ******************************/


#define SQLITE_MULTIPLEX_VFS_NAME "multiplex"


/* This is the limit on the chunk size.  It may be changed by calling
** the xFileControl() interface.  It will be rounded up to a 
** multiple of MAX_PAGE_SIZE.  We default it here to 1GB.
*/

#define SQLITE_MULTIPLEX_CHUNK_SIZE (MAX_PAGE_SIZE*16384)


/* Default limit on number of chunks.  Care should be taken
** so that values for chunks numbers fit in the SQLITE_MULTIPLEX_EXT_FMT
** format specifier. It may be changed by calling
** the xFileControl() interface.
*/

#define SQLITE_MULTIPLEX_MAX_CHUNKS 32


/* If SQLITE_MULTIPLEX_EXT_OVWR is defined, the 
** last SQLITE_MULTIPLEX_EXT_SZ characters of the 
** filename will be overwritten, otherwise, the 
** multiplex extension is simply appended to the filename.
** Ex.  (undefined) test.db -> test.db01
**      (defined)   test.db -> test.01







>
|
>



|

>
|
>






>
|
>







75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#define sqlite3_mutex_held(X)     ((void)(X),1)
#define sqlite3_mutex_notheld(X)  ((void)(X),1)
#endif /* SQLITE_THREADSAFE==0 */


/************************ Shim Definitions ******************************/

#ifndef SQLITE_MULTIPLEX_VFS_NAME
# define SQLITE_MULTIPLEX_VFS_NAME "multiplex"
#endif

/* This is the limit on the chunk size.  It may be changed by calling
** the xFileControl() interface.  It will be rounded up to a 
** multiple of MAX_PAGE_SIZE.  We default it here to 2GiB less 64KiB.
*/
#ifndef SQLITE_MULTIPLEX_CHUNK_SIZE
# define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112
#endif

/* Default limit on number of chunks.  Care should be taken
** so that values for chunks numbers fit in the SQLITE_MULTIPLEX_EXT_FMT
** format specifier. It may be changed by calling
** the xFileControl() interface.
*/
#ifndef SQLITE_MULTIPLEX_MAX_CHUNKS
# define SQLITE_MULTIPLEX_MAX_CHUNKS 32
#endif

/* If SQLITE_MULTIPLEX_EXT_OVWR is defined, the 
** last SQLITE_MULTIPLEX_EXT_SZ characters of the 
** filename will be overwritten, otherwise, the 
** multiplex extension is simply appended to the filename.
** Ex.  (undefined) test.db -> test.db01
**      (defined)   test.db -> test.01
115
116
117
118
119
120
121



122
123
124
125
126
127
128
129
130
131
132
133
134
135
** makeup a single SQLite DB file.  This allows the size of the DB
** to exceed the limits imposed by the file system.
**
** There is an instance of the following object for each defined multiplex
** group.
*/
struct multiplexGroup {



  sqlite3_file **pReal;            /* Handles to each chunk */
  char *bOpen;                     /* array of bools - 0 if chunk not opened */
  char *zName;                     /* Base filename of this group */
  int nName;                       /* Length of base filename */
  int flags;                       /* Flags used for original opening */
  int nChunkSize;                  /* Chunk size used for this group */
  int nMaxChunks;                  /* Max number of chunks for this group */
  int bEnabled;                    /* TRUE to use Multiplex VFS for this file */
  multiplexGroup *pNext, *pPrev;   /* Doubly linked list of all group objects */
};

/*
** An instance of the following object represents each open connection
** to a file that is multiplex'ed.  This object is a 







>
>
>
|
|



|
<







122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
** makeup a single SQLite DB file.  This allows the size of the DB
** to exceed the limits imposed by the file system.
**
** There is an instance of the following object for each defined multiplex
** group.
*/
struct multiplexGroup {
  struct multiplexReal {           /* For each chunk */
    sqlite3_file *p;                  /* Handle for the chunk */
    char *z;                          /* Name of this chunk */
  } *aReal;                        /* list of all chunks */
  int nReal;                       /* Number of chunks */
  char *zName;                     /* Base filename of this group */
  int nName;                       /* Length of base filename */
  int flags;                       /* Flags used for original opening */
  unsigned int szChunk;            /* Chunk size used for this group */

  int bEnabled;                    /* TRUE to use Multiplex VFS for this file */
  multiplexGroup *pNext, *pPrev;   /* Doubly linked list of all group objects */
};

/*
** An instance of the following object represents each open connection
** to a file that is multiplex'ed.  This object is a 
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
  ** shim, the following mutex must be held.
  */
  sqlite3_mutex *pMutex;

  /* List of multiplexGroup objects.
  */
  multiplexGroup *pGroups;

  /* Storage for temp file names.  Allocated during 
  ** initialization to the max pathname of the underlying VFS.
  */
  char *zName;

} gMultiplex;

/************************* Utility Routines *********************************/
/*
** Acquire and release the mutex used to serialize access to the
** list of multiplexGroups.
*/







<
<
<
<
<
<







189
190
191
192
193
194
195






196
197
198
199
200
201
202
  ** shim, the following mutex must be held.
  */
  sqlite3_mutex *pMutex;

  /* List of multiplexGroup objects.
  */
  multiplexGroup *pGroups;






} gMultiplex;

/************************* Utility Routines *********************************/
/*
** Acquire and release the mutex used to serialize access to the
** list of multiplexGroups.
*/
261
262
263
264
265
266
267

268
269
270
271
272
273
274
275
276
277
278
279
280
281



































282
283
284
285
286





287
288
289
290
291
292
293
294
295
296
297
298


299
300

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    j = multiplexStrlen30(zBuf);
    if( (j + 8 + 1 + 3 + 1) <= nBuf ){
      /* Make 3 attempts to generate a unique name. */
      do {
        attempts++;
        sqlite3_randomness(8, &zBuf[j]);
        for(i=0; i<8; i++){

          zBuf[j+i] = (char)zChars[ ((unsigned char)zBuf[j+i])%(sizeof(zChars)-1) ];
        }
        memcpy(&zBuf[j+i], ".tmp", 5);
        rc = pOrigVfs->xAccess(pOrigVfs, zBuf, SQLITE_ACCESS_EXISTS, &exists);
      } while ( (rc==SQLITE_OK) && exists && (attempts<3) );
      if( rc==SQLITE_OK && exists ){
        rc = SQLITE_ERROR;
      }
    }
  }

  return rc;
}




































/* Translate an sqlite3_file* that is really a multiplexGroup* into
** the sqlite3_file* for the underlying original VFS.
*/
static sqlite3_file *multiplexSubOpen(multiplexConn *pConn, int iChunk, int *rc, int *pOutFlags){
  multiplexGroup *pGroup = pConn->pGroup;





  sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;        /* Real VFS */
  if( iChunk<pGroup->nMaxChunks ){
    sqlite3_file *pSubOpen = pGroup->pReal[iChunk];    /* Real file descriptor */
    if( !pGroup->bOpen[iChunk] ){
      memcpy(gMultiplex.zName, pGroup->zName, pGroup->nName+1);
      if( iChunk ){
#ifdef SQLITE_MULTIPLEX_EXT_OVWR
        sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, gMultiplex.zName+pGroup->nName-SQLITE_MULTIPLEX_EXT_SZ, SQLITE_MULTIPLEX_EXT_FMT, iChunk);
#else
        sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, gMultiplex.zName+pGroup->nName, SQLITE_MULTIPLEX_EXT_FMT, iChunk);
#endif
      }


      *rc = pOrigVfs->xOpen(pOrigVfs, gMultiplex.zName, pSubOpen, pGroup->flags, pOutFlags);
      if( *rc==SQLITE_OK ){

        pGroup->bOpen[iChunk] = -1;
        return pSubOpen;
      }
      return NULL;
    }
    *rc = SQLITE_OK;
    return pSubOpen;
  }
  *rc = SQLITE_FULL;
  return NULL;
}

/*
** This is the implementation of the multiplex_control() SQL function.
*/
static void multiplexControlFunc(
  sqlite3_context *context,







>
|













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
|
>
>
>
>
>

|
|
|
<
|
|
<
|
<
<
|
>
>
|
|
>
|
|
|
<
|
<
|
<
<
<







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

335
336

337


338
339
340
341
342
343
344
345
346

347

348



349
350
351
352
353
354
355
    j = multiplexStrlen30(zBuf);
    if( (j + 8 + 1 + 3 + 1) <= nBuf ){
      /* Make 3 attempts to generate a unique name. */
      do {
        attempts++;
        sqlite3_randomness(8, &zBuf[j]);
        for(i=0; i<8; i++){
          unsigned char uc = (unsigned char)zBuf[j+i];
          zBuf[j+i] = (char)zChars[uc%(sizeof(zChars)-1)];
        }
        memcpy(&zBuf[j+i], ".tmp", 5);
        rc = pOrigVfs->xAccess(pOrigVfs, zBuf, SQLITE_ACCESS_EXISTS, &exists);
      } while ( (rc==SQLITE_OK) && exists && (attempts<3) );
      if( rc==SQLITE_OK && exists ){
        rc = SQLITE_ERROR;
      }
    }
  }

  return rc;
}

/* Compute the filename for the iChunk-th chunk
*/
static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){
  if( iChunk>=pGroup->nReal ){
    struct multiplexReal *p;
    p = sqlite3_realloc(pGroup->aReal, (iChunk+1)*sizeof(*p));
    if( p==0 ){
      return SQLITE_NOMEM;
    }
    memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal));
    pGroup->aReal = p;
    pGroup->nReal = iChunk+1;
  }
  if( pGroup->aReal[iChunk].z==0 ){
    char *z;
    int n = pGroup->nName;
    pGroup->aReal[iChunk].z = z = sqlite3_malloc( n+3 );
    if( z==0 ){
      return SQLITE_NOMEM;
    }
    memcpy(z, pGroup->zName, n+1);
    if( iChunk>0 ){
#ifdef SQLITE_ENABLE_8_3_NAMES
      if( n>3 && z[n-3]=='.' ){
        n--;
      }else if( n>4 && z[n-4]=='.' ){
        n -= 2;
      }
#endif
      sqlite3_snprintf(3,&z[n],"%02d",iChunk);
    }
  }
  return SQLITE_OK;
}

/* Translate an sqlite3_file* that is really a multiplexGroup* into
** the sqlite3_file* for the underlying original VFS.
*/
static sqlite3_file *multiplexSubOpen(
  multiplexGroup *pGroup,
  int iChunk,
  int *rc,
  int *pOutFlags
){
  sqlite3_file *pSubOpen = 0;
  sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;        /* Real VFS */
  *rc = multiplexSubFilename(pGroup, iChunk);
  if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){
    pSubOpen = sqlite3_malloc( pOrigVfs->szOsFile );

    if( pSubOpen==0 ){
      *rc = SQLITE_NOMEM;

      return 0;


    }
    pGroup->aReal[iChunk].p = pSubOpen;
    *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen,
                          pGroup->flags, pOutFlags);
    if( *rc!=SQLITE_OK ){
      sqlite3_free(pSubOpen);
      pGroup->aReal[iChunk].p = 0;
      return 0;
    }

  }

  return pSubOpen;



}

/*
** This is the implementation of the multiplex_control() SQL function.
*/
static void multiplexControlFunc(
  sqlite3_context *context,
361
362
363
364
365
366
367






























368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394

395
396
397
398
399
400
401
402
403
404
405
406
407




408
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

441
442


443
444
445
446
447

448


449



450
451
452
453
454


455

456
457
458
459

460

461
462















463
464


465
466
467
468
469
470
471
472
473
474

475
476
477
478

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
  const sqlite3_api_routines *pApi
){
  int rc;
  rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 
      0, multiplexControlFunc, 0, 0);
  return rc;
}































/************************* VFS Method Wrappers *****************************/

/*
** This is the xOpen method used for the "multiplex" VFS.
**
** Most of the work is done by the underlying original VFS.  This method
** simply links the new file into the appropriate multiplex group if it is a
** file that needs to be tracked.
*/
static int multiplexOpen(
  sqlite3_vfs *pVfs,         /* The multiplex VFS */
  const char *zName,         /* Name of file to be opened */
  sqlite3_file *pConn,       /* Fill in this file descriptor */
  int flags,                 /* Flags to control the opening */
  int *pOutFlags             /* Flags showing results of opening */
){
  int rc = SQLITE_OK;                            /* Result code */
  multiplexConn *pMultiplexOpen;                 /* The new multiplex file descriptor */
  multiplexGroup *pGroup;                        /* Corresponding multiplexGroup object */
  sqlite3_file *pSubOpen;                        /* Real file descriptor */
  sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */
  int nName;
  int i;
  int sz;


  UNUSED_PARAMETER(pVfs);


  /* We need to create a group structure and manage
  ** access to this group of files.
  */
  multiplexEnter();
  pMultiplexOpen = (multiplexConn*)pConn;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use.  This will be handled by the
  ** original xOpen method.  We just need to allocate space for
  ** it.
  */
  if( !zName ){




    rc = multiplexGetTempname(pOrigVfs, pOrigVfs->mxPathname, gMultiplex.zName);
    zName = gMultiplex.zName;

  }

  if( rc==SQLITE_OK ){
    /* allocate space for group */
    nName = multiplexStrlen30(zName);
    sz = sizeof(multiplexGroup)                                /* multiplexGroup */
       + (sizeof(sqlite3_file *)*SQLITE_MULTIPLEX_MAX_CHUNKS)  /* pReal[] */
       + (pOrigVfs->szOsFile*SQLITE_MULTIPLEX_MAX_CHUNKS)      /* *pReal */
       + SQLITE_MULTIPLEX_MAX_CHUNKS                           /* bOpen[] */
       + nName + 1;                                            /* zName */
#ifndef SQLITE_MULTIPLEX_EXT_OVWR
    sz += SQLITE_MULTIPLEX_EXT_SZ;
    assert(nName+SQLITE_MULTIPLEX_EXT_SZ < pOrigVfs->mxPathname);
#else
    assert(nName >= SQLITE_MULTIPLEX_EXT_SZ);
    assert(nName < pOrigVfs->mxPathname);
#endif
    pGroup = sqlite3_malloc( sz );
    if( pGroup==0 ){
      rc=SQLITE_NOMEM;
    }
  }

  if( rc==SQLITE_OK ){
    /* assign pointers to extra space allocated */
    char *p = (char *)&pGroup[1];
    pMultiplexOpen->pGroup = pGroup;
    memset(pGroup, 0, sz);
    pGroup->bEnabled = -1;
    pGroup->nChunkSize = SQLITE_MULTIPLEX_CHUNK_SIZE;
    pGroup->nMaxChunks = SQLITE_MULTIPLEX_MAX_CHUNKS;

    pGroup->pReal = (sqlite3_file **)p;
    p += (sizeof(sqlite3_file *)*pGroup->nMaxChunks);


    for(i=0; i<pGroup->nMaxChunks; i++){
      pGroup->pReal[i] = (sqlite3_file *)p;
      p += pOrigVfs->szOsFile;
    }
    /* bOpen[] vals should all be zero from memset above */

    pGroup->bOpen = p;


    p += pGroup->nMaxChunks;



    pGroup->zName = p;
    /* save off base filename, name length, and original open flags  */
    memcpy(pGroup->zName, zName, nName+1);
    pGroup->nName = nName;
    pGroup->flags = flags;


    pSubOpen = multiplexSubOpen(pMultiplexOpen, 0, &rc, pOutFlags);

    if( pSubOpen ){
      /* if this file is already larger than chunk size, disable 
      ** the multiplex feature.
      */

      sqlite3_int64 sz;

      int rc2 = pSubOpen->pMethods->xFileSize(pSubOpen, &sz);
      if( (rc2==SQLITE_OK) && (sz>pGroup->nChunkSize) ){















        pGroup->bEnabled = 0;
      }


      if( pSubOpen->pMethods->iVersion==1 ){
        pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV1;
      }else{
        pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV2;
      }
      /* place this group at the head of our list */
      pGroup->pNext = gMultiplex.pGroups;
      if( gMultiplex.pGroups ) gMultiplex.pGroups->pPrev = pGroup;
      gMultiplex.pGroups = pGroup;
    }else{

      sqlite3_free(pGroup);
    }
  }
  multiplexLeave();

  return rc;
}

/*
** This is the xDelete method used for the "multiplex" VFS.
** It attempts to delete the filename specified, as well
** as additional files with the SQLITE_MULTIPLEX_EXT_FMT extension.
*/
static int multiplexDelete(
  sqlite3_vfs *pVfs,         /* The multiplex VFS */
  const char *zName,         /* Name of file to delete */
  int syncDir
){
  sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */
  int rc = SQLITE_OK;
  int nName = multiplexStrlen30(zName);
  int i;

  UNUSED_PARAMETER(pVfs);

  multiplexEnter();
  memcpy(gMultiplex.zName, zName, nName+1);
  for(i=0; i<SQLITE_MULTIPLEX_MAX_CHUNKS; i++){
    int rc2;
    int exists = 0;
    if( i ){
#ifdef SQLITE_MULTIPLEX_EXT_OVWR
        sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, 
            gMultiplex.zName+nName-SQLITE_MULTIPLEX_EXT_SZ, 
            SQLITE_MULTIPLEX_EXT_FMT, i);
#else
        sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, 
            gMultiplex.zName+nName, 
            SQLITE_MULTIPLEX_EXT_FMT, i);
#endif
    }
    rc2 = pOrigVfs->xAccess(pOrigVfs, gMultiplex.zName, 
        SQLITE_ACCESS_EXISTS, &exists);
    if( rc2==SQLITE_OK && exists ){
      /* if it exists, delete it */
      rc2 = pOrigVfs->xDelete(pOrigVfs, gMultiplex.zName, syncDir);
      if( rc2!=SQLITE_OK ) rc = rc2;
    }else{
      /* stop at first "gap" */
      break;
    }
  }
  multiplexLeave();
  return rc;
}

static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){
  return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d);
}
static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){
  return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















|
|
|
|


<

>


>













>
>
>
>
|
<
>





|
<
<
<
|
<
<
<
<
<
<
<


|









|
|
>
|
|
>
>
|
|
<
|
<
>
|
>
>
|
>
>
>





>
>
|
>

<
<
<
>

>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>










>




>





|
<







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<







399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

482
483
484
485
486
487
488



489







490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

511

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529



530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575

576
577
578
579
580
581
582


























583








584
585
586
587
588
589
590
  const sqlite3_api_routines *pApi
){
  int rc;
  rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 
      0, multiplexControlFunc, 0, 0);
  return rc;
}

/*
** Close a single sub-file in the connection group.
*/
static void multiplexSubClose(
  multiplexGroup *pGroup,
  int iChunk,
  sqlite3_vfs *pOrigVfs
){
  sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p;
  if( pSubOpen ){
    if( pOrigVfs ) pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0);
    pSubOpen->pMethods->xClose(pSubOpen);
    sqlite3_free(pGroup->aReal[iChunk].p);
  }
  sqlite3_free(pGroup->aReal[iChunk].z);
  memset(&pGroup->aReal[iChunk], 0, sizeof(pGroup->aReal[iChunk]));
}

/*
** Deallocate memory held by a multiplexGroup
*/
static void multiplexFreeComponents(multiplexGroup *pGroup){
  int i;
  for(i=0; i<pGroup->nReal; i++){ multiplexSubClose(pGroup, i, 0); }
  sqlite3_free(pGroup->aReal);
  pGroup->aReal = 0;
  pGroup->nReal = 0;
}


/************************* VFS Method Wrappers *****************************/

/*
** This is the xOpen method used for the "multiplex" VFS.
**
** Most of the work is done by the underlying original VFS.  This method
** simply links the new file into the appropriate multiplex group if it is a
** file that needs to be tracked.
*/
static int multiplexOpen(
  sqlite3_vfs *pVfs,         /* The multiplex VFS */
  const char *zName,         /* Name of file to be opened */
  sqlite3_file *pConn,       /* Fill in this file descriptor */
  int flags,                 /* Flags to control the opening */
  int *pOutFlags             /* Flags showing results of opening */
){
  int rc = SQLITE_OK;                  /* Result code */
  multiplexConn *pMultiplexOpen;       /* The new multiplex file descriptor */
  multiplexGroup *pGroup;              /* Corresponding multiplexGroup object */
  sqlite3_file *pSubOpen = 0;                    /* Real file descriptor */
  sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */
  int nName;

  int sz;
  char *zToFree = 0;

  UNUSED_PARAMETER(pVfs);
  memset(pConn, 0, pVfs->szOsFile);

  /* We need to create a group structure and manage
  ** access to this group of files.
  */
  multiplexEnter();
  pMultiplexOpen = (multiplexConn*)pConn;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use.  This will be handled by the
  ** original xOpen method.  We just need to allocate space for
  ** it.
  */
  if( !zName ){
    zName = zToFree = sqlite3_malloc( pOrigVfs->mxPathname + 10 );
    if( zName==0 ){
      rc = SQLITE_NOMEM;
    }else{
      rc = multiplexGetTempname(pOrigVfs, pOrigVfs->mxPathname, zToFree);

    }
  }

  if( rc==SQLITE_OK ){
    /* allocate space for group */
    nName = multiplexStrlen30(zName);
    sz = sizeof(multiplexGroup)                             /* multiplexGroup */



       + nName + 1;                                         /* zName */







    pGroup = sqlite3_malloc( sz );
    if( pGroup==0 ){
      rc = SQLITE_NOMEM;
    }
  }

  if( rc==SQLITE_OK ){
    /* assign pointers to extra space allocated */
    char *p = (char *)&pGroup[1];
    pMultiplexOpen->pGroup = pGroup;
    memset(pGroup, 0, sz);
    pGroup->bEnabled = -1;
    pGroup->szChunk = SQLITE_MULTIPLEX_CHUNK_SIZE;
    if( flags & SQLITE_OPEN_URI ){
      const char *zChunkSize;
      zChunkSize = sqlite3_uri_parameter(zName, "chunksize");
      if( zChunkSize ){
        unsigned int n = 0;
        int i;
        for(i=0; zChunkSize[i]>='0' && zChunkSize[i]<='9'; i++){
          n = n*10 + zChunkSize[i] - '0';

        }

        if( n>0 ){
          pGroup->szChunk = (n+0xffff)&~0xffff;
        }else{
          /* A zero or negative chunksize disabled the multiplexor */
          pGroup->bEnabled = 0;
        }
      }
    }
    pGroup->zName = p;
    /* save off base filename, name length, and original open flags  */
    memcpy(pGroup->zName, zName, nName+1);
    pGroup->nName = nName;
    pGroup->flags = flags;
    rc = multiplexSubFilename(pGroup, 1);
    if( rc==SQLITE_OK ){
      pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags);
    }
    if( pSubOpen ){



      int exists, rc2, rc3;
      sqlite3_int64 sz;

      rc2 = pSubOpen->pMethods->xFileSize(pSubOpen, &sz);
      if( rc2==SQLITE_OK ){
        /* If the first overflow file exists and if the size of the main file
        ** is different from the chunk size, that means the chunk size is set
        ** set incorrectly.  So fix it.
        **
        ** Or, if the first overflow file does not exist and the main file is
        ** larger than the chunk size, that means the chunk size is too small.
        ** But we have no way of determining the intended chunk size, so 
        ** just disable the multiplexor all togethre.
        */
        rc3 = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z,
            SQLITE_ACCESS_EXISTS, &exists);
        if( rc3==SQLITE_OK && exists && sz==(sz&0xffff0000) && sz>0
            && sz!=pGroup->szChunk ){
          pGroup->szChunk = sz;
        }else if( rc3==SQLITE_OK && !exists && sz>pGroup->szChunk ){
          pGroup->bEnabled = 0;
        }
      }

      if( pSubOpen->pMethods->iVersion==1 ){
        pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV1;
      }else{
        pMultiplexOpen->base.pMethods = &gMultiplex.sIoMethodsV2;
      }
      /* place this group at the head of our list */
      pGroup->pNext = gMultiplex.pGroups;
      if( gMultiplex.pGroups ) gMultiplex.pGroups->pPrev = pGroup;
      gMultiplex.pGroups = pGroup;
    }else{
      multiplexFreeComponents(pGroup);
      sqlite3_free(pGroup);
    }
  }
  multiplexLeave();
  sqlite3_free(zToFree);
  return rc;
}

/*
** This is the xDelete method used for the "multiplex" VFS.
** It attempts to delete the filename specified.

*/
static int multiplexDelete(
  sqlite3_vfs *pVfs,         /* The multiplex VFS */
  const char *zName,         /* Name of file to delete */
  int syncDir
){
  sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */


























  return pOrigVfs->xDelete(pOrigVfs, zName, syncDir);








}

static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){
  return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d);
}
static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){
  return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d);
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
** The group structure for this file is unlinked from 
** our list of groups and freed.
*/
static int multiplexClose(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  int i;
  multiplexEnter();
  /* close any open handles */
  for(i=0; i<pGroup->nMaxChunks; i++){
    if( pGroup->bOpen[i] ){
      sqlite3_file *pSubOpen = pGroup->pReal[i];
      int rc2 = pSubOpen->pMethods->xClose(pSubOpen);
      if( rc2!=SQLITE_OK ) rc = rc2;
      pGroup->bOpen[i] = 0;
    }
  }
  /* remove from linked list */
  if( pGroup->pNext ) pGroup->pNext->pPrev = pGroup->pPrev;
  if( pGroup->pPrev ){
    pGroup->pPrev->pNext = pGroup->pNext;
  }else{
    gMultiplex.pGroups = pGroup->pNext;
  }







<

<
<
|
<
<
<
<
<
<







624
625
626
627
628
629
630

631


632






633
634
635
636
637
638
639
** The group structure for this file is unlinked from 
** our list of groups and freed.
*/
static int multiplexClose(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;

  multiplexEnter();


  multiplexFreeComponents(pGroup);






  /* remove from linked list */
  if( pGroup->pNext ) pGroup->pNext->pPrev = pGroup->pPrev;
  if( pGroup->pPrev ){
    pGroup->pPrev->pNext = pGroup->pNext;
  }else{
    gMultiplex.pGroups = pGroup->pNext;
  }
606
607
608
609
610
611
612
613



614

615
616
617
618
619
620
621
622
623

624
625
626
627
628
629
630
  sqlite3_int64 iOfst
){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);



    rc = ( !pSubOpen ) ? SQLITE_IOERR_READ : pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst);

  }else{
    while( iAmt > 0 ){
      int i = (int)(iOfst / pGroup->nChunkSize);
      sqlite3_file *pSubOpen = multiplexSubOpen(p, i, &rc, NULL);
      if( pSubOpen ){
        int extra = ((int)(iOfst % pGroup->nChunkSize) + iAmt) - pGroup->nChunkSize;
        if( extra<0 ) extra = 0;
        iAmt -= extra;
        rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst % pGroup->nChunkSize);

        if( rc!=SQLITE_OK ) break;
        pBuf = (char *)pBuf + iAmt;
        iOfst += iAmt;
        iAmt = extra;
      }else{
        rc = SQLITE_IOERR_READ;
        break;







|
>
>
>
|
>


|
|

|


|
>







653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
  sqlite3_int64 iOfst
){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL);
    if( pSubOpen==0 ){
      rc = SQLITE_IOERR_READ;
    }else{
      rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst);
    }
  }else{
    while( iAmt > 0 ){
      int i = (int)(iOfst / pGroup->szChunk);
      sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL);
      if( pSubOpen ){
        int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk;
        if( extra<0 ) extra = 0;
        iAmt -= extra;
        rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt,
                                       iOfst % pGroup->szChunk);
        if( rc!=SQLITE_OK ) break;
        pBuf = (char *)pBuf + iAmt;
        iOfst += iAmt;
        iAmt = extra;
      }else{
        rc = SQLITE_IOERR_READ;
        break;
646
647
648
649
650
651
652
653



654

655
656
657
658
659
660

661
662
663

664
665
666
667
668
669
670
  sqlite3_int64 iOfst
){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);



    rc = ( !pSubOpen ) ? SQLITE_IOERR_WRITE : pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst);

  }else{
    while( iAmt > 0 ){
      int i = (int)(iOfst / pGroup->nChunkSize);
      sqlite3_file *pSubOpen = multiplexSubOpen(p, i, &rc, NULL);
      if( pSubOpen ){
        int extra = ((int)(iOfst % pGroup->nChunkSize) + iAmt) - pGroup->nChunkSize;

        if( extra<0 ) extra = 0;
        iAmt -= extra;
        rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst % pGroup->nChunkSize);

        if( rc!=SQLITE_OK ) break;
        pBuf = (char *)pBuf + iAmt;
        iOfst += iAmt;
        iAmt = extra;
      }else{
        rc = SQLITE_IOERR_WRITE;
        break;







|
>
>
>
|
>


|
|

|
>


|
>







698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
  sqlite3_int64 iOfst
){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL);
    if( pSubOpen==0 ){
      rc = SQLITE_IOERR_WRITE;
    }else{
      rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst);
    }
  }else{
    while( iAmt > 0 ){
      int i = (int)(iOfst / pGroup->szChunk);
      sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL);
      if( pSubOpen ){
        int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) -
                    pGroup->szChunk;
        if( extra<0 ) extra = 0;
        iAmt -= extra;
        rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt,
                                        iOfst % pGroup->szChunk);
        if( rc!=SQLITE_OK ) break;
        pBuf = (char *)pBuf + iAmt;
        iOfst += iAmt;
        iAmt = extra;
      }else{
        rc = SQLITE_IOERR_WRITE;
        break;
681
682
683
684
685
686
687
688



689

690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760



761

762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
*/
static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);



    rc = ( !pSubOpen ) ? SQLITE_IOERR_TRUNCATE : pSubOpen->pMethods->xTruncate(pSubOpen, size);

  }else{
    int rc2;
    int i;
    sqlite3_file *pSubOpen;
    sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */
    memcpy(gMultiplex.zName, pGroup->zName, pGroup->nName+1);
    /* delete the chunks above the truncate limit */
    for(i=(int)(size / pGroup->nChunkSize)+1; i<pGroup->nMaxChunks; i++){
      /* close any open chunks before deleting them */
      if( pGroup->bOpen[i] ){
        pSubOpen = pGroup->pReal[i];
        rc2 = pSubOpen->pMethods->xClose(pSubOpen);
        if( rc2!=SQLITE_OK ) rc = SQLITE_IOERR_TRUNCATE;
        pGroup->bOpen[i] = 0;
      }
#ifdef SQLITE_MULTIPLEX_EXT_OVWR
      sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, 
          gMultiplex.zName+pGroup->nName-SQLITE_MULTIPLEX_EXT_SZ, 
          SQLITE_MULTIPLEX_EXT_FMT, i);
#else
      sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, 
          gMultiplex.zName+pGroup->nName, 
          SQLITE_MULTIPLEX_EXT_FMT, i);
#endif
      rc2 = pOrigVfs->xDelete(pOrigVfs, gMultiplex.zName, 0);
      if( rc2!=SQLITE_OK ) rc = SQLITE_IOERR_TRUNCATE;
    }
    pSubOpen = multiplexSubOpen(p, (int)(size / pGroup->nChunkSize), &rc2, NULL);
    if( pSubOpen ){
      rc2 = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->nChunkSize);
      if( rc2!=SQLITE_OK ) rc = rc2;
    }else{
      rc = SQLITE_IOERR_TRUNCATE;
    }
  }
  multiplexLeave();
  return rc;
}

/* Pass xSync requests through to the original VFS without change
*/
static int multiplexSync(sqlite3_file *pConn, int flags){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  int i;
  multiplexEnter();
  for(i=0; i<pGroup->nMaxChunks; i++){
    /* if we don't have it open, we don't need to sync it */
    if( pGroup->bOpen[i] ){
      sqlite3_file *pSubOpen = pGroup->pReal[i];

      int rc2 = pSubOpen->pMethods->xSync(pSubOpen, flags);
      if( rc2!=SQLITE_OK ) rc = rc2;
    }
  }
  multiplexLeave();
  return rc;
}

/* Pass xFileSize requests through to the original VFS.
** Aggregate the size of all the chunks before returning.
*/
static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  int rc2;
  int i;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);



    rc = ( !pSubOpen ) ? SQLITE_IOERR_FSTAT : pSubOpen->pMethods->xFileSize(pSubOpen, pSize);

  }else{

    *pSize = 0;
    for(i=0; i<pGroup->nMaxChunks; i++){
      sqlite3_file *pSubOpen = NULL;
      /* if not opened already, check to see if the chunk exists */
      if( pGroup->bOpen[i] ){
        pSubOpen = pGroup->pReal[i];
      }else{
        sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */
        int exists = 0;
        memcpy(gMultiplex.zName, pGroup->zName, pGroup->nName+1);
        if( i ){
#ifdef SQLITE_MULTIPLEX_EXT_OVWR
          sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, 
              gMultiplex.zName+pGroup->nName-SQLITE_MULTIPLEX_EXT_SZ, 
              SQLITE_MULTIPLEX_EXT_FMT, i);
#else
          sqlite3_snprintf(SQLITE_MULTIPLEX_EXT_SZ+1, 
              gMultiplex.zName+pGroup->nName, 
              SQLITE_MULTIPLEX_EXT_FMT, i);
#endif
        }
        rc2 = pOrigVfs->xAccess(pOrigVfs, gMultiplex.zName, 
            SQLITE_ACCESS_EXISTS, &exists);
        if( rc2==SQLITE_OK && exists){
          /* if it exists, open it */
          pSubOpen = multiplexSubOpen(p, i, &rc, NULL);
        }else{
          /* stop at first "gap" */
          break;
        }
      }
      if( pSubOpen ){
        sqlite3_int64 sz;
        rc2 = pSubOpen->pMethods->xFileSize(pSubOpen, &sz);
        if( rc2!=SQLITE_OK ){
          rc = rc2;
        }else{
          if( sz>pGroup->nChunkSize ){
            rc = SQLITE_IOERR_FSTAT;
          }
          *pSize += sz;
        }
      }else{
        break;
      }
    }
  }
  multiplexLeave();
  return rc;
}

/* Pass xLock requests through to the original VFS unchanged.
*/
static int multiplexLock(sqlite3_file *pConn, int lock){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xLock(pSubOpen, lock);
  }
  return SQLITE_BUSY;
}

/* Pass xUnlock requests through to the original VFS unchanged.
*/
static int multiplexUnlock(sqlite3_file *pConn, int lock){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xUnlock(pSubOpen, lock);
  }
  return SQLITE_IOERR_UNLOCK;
}

/* Pass xCheckReservedLock requests through to the original VFS unchanged.
*/
static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut);
  }
  return SQLITE_IOERR_CHECKRESERVEDLOCK;
}

/* Pass xFileControl requests through to the original VFS unchanged,







|
>
>
>
|
>





<

|
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<

|

|

















|
<
<
|
>



















|
>
>
>
|
>

>

|
|
<
<
<
<
<
|
|
|
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
|
|
|
<







|


















|











|











|







739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756

757
758













759




760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781


782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813





814
815
816










817
818
819
820
821
822
823
824

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
*/
static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL);
    if( pSubOpen==0 ){
      rc = SQLITE_IOERR_TRUNCATE;
    }else{
      rc = pSubOpen->pMethods->xTruncate(pSubOpen, size);
    }
  }else{
    int rc2;
    int i;
    sqlite3_file *pSubOpen;
    sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;   /* Real VFS */

    /* delete the chunks above the truncate limit */
    for(i=(int)(size / pGroup->szChunk)+1; i<pGroup->nReal; i++){













      multiplexSubClose(pGroup, i, pOrigVfs);




    }
    pSubOpen = multiplexSubOpen(pGroup, (int)(size/pGroup->szChunk), &rc2,0);
    if( pSubOpen ){
      rc2 = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->szChunk);
      if( rc2!=SQLITE_OK ) rc = rc2;
    }else{
      rc = SQLITE_IOERR_TRUNCATE;
    }
  }
  multiplexLeave();
  return rc;
}

/* Pass xSync requests through to the original VFS without change
*/
static int multiplexSync(sqlite3_file *pConn, int flags){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  int i;
  multiplexEnter();
  for(i=0; i<pGroup->nReal; i++){


    sqlite3_file *pSubOpen = pGroup->aReal[i].p;
    if( pSubOpen ){
      int rc2 = pSubOpen->pMethods->xSync(pSubOpen, flags);
      if( rc2!=SQLITE_OK ) rc = rc2;
    }
  }
  multiplexLeave();
  return rc;
}

/* Pass xFileSize requests through to the original VFS.
** Aggregate the size of all the chunks before returning.
*/
static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){
  multiplexConn *p = (multiplexConn*)pConn;
  multiplexGroup *pGroup = p->pGroup;
  int rc = SQLITE_OK;
  int rc2;
  int i;
  multiplexEnter();
  if( !pGroup->bEnabled ){
    sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL);
    if( pSubOpen==0 ){
      rc = SQLITE_IOERR_FSTAT;
    }else{
      rc = pSubOpen->pMethods->xFileSize(pSubOpen, pSize);
    }
  }else{
    sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs;
    *pSize = 0;
    for(i=0; 1; i++){
      sqlite3_file *pSubOpen = 0;





      int exists = 0;
      rc = multiplexSubFilename(pGroup, i);
      if( rc ) break;










      rc2 = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[i].z,
          SQLITE_ACCESS_EXISTS, &exists);
      if( rc2==SQLITE_OK && exists){
        /* if it exists, open it */
        pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL);
      }else{
        /* stop at first "gap" */
        break;

      }
      if( pSubOpen ){
        sqlite3_int64 sz;
        rc2 = pSubOpen->pMethods->xFileSize(pSubOpen, &sz);
        if( rc2!=SQLITE_OK ){
          rc = rc2;
        }else{
          if( sz>pGroup->szChunk ){
            rc = SQLITE_IOERR_FSTAT;
          }
          *pSize += sz;
        }
      }else{
        break;
      }
    }
  }
  multiplexLeave();
  return rc;
}

/* Pass xLock requests through to the original VFS unchanged.
*/
static int multiplexLock(sqlite3_file *pConn, int lock){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xLock(pSubOpen, lock);
  }
  return SQLITE_BUSY;
}

/* Pass xUnlock requests through to the original VFS unchanged.
*/
static int multiplexUnlock(sqlite3_file *pConn, int lock){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xUnlock(pSubOpen, lock);
  }
  return SQLITE_IOERR_UNLOCK;
}

/* Pass xCheckReservedLock requests through to the original VFS unchanged.
*/
static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut);
  }
  return SQLITE_IOERR_CHECKRESERVEDLOCK;
}

/* Pass xFileControl requests through to the original VFS unchanged,
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
        int bEnabled = *(int *)pArg;
        pGroup->bEnabled = bEnabled;
        rc = SQLITE_OK;
      }
      break;
    case MULTIPLEX_CTRL_SET_CHUNK_SIZE:
      if( pArg ) {
        int nChunkSize = *(int *)pArg;
        if( nChunkSize<1 ){
          rc = SQLITE_MISUSE;
        }else{
          /* Round up to nearest multiple of MAX_PAGE_SIZE. */
          nChunkSize = (nChunkSize + (MAX_PAGE_SIZE-1));
          nChunkSize &= ~(MAX_PAGE_SIZE-1);
          pGroup->nChunkSize = nChunkSize;
          rc = SQLITE_OK;
        }
      }
      break;
    case MULTIPLEX_CTRL_SET_MAX_CHUNKS:
      if( pArg ) {
        int nMaxChunks = *(int *)pArg;
        if(( nMaxChunks<1 ) || ( nMaxChunks>SQLITE_MULTIPLEX_MAX_CHUNKS )){
          rc = SQLITE_MISUSE;
        }else{
          pGroup->nMaxChunks = nMaxChunks;
          rc = SQLITE_OK;
        }
      }
      break;
    case SQLITE_FCNTL_SIZE_HINT:
    case SQLITE_FCNTL_CHUNK_SIZE:
      /* no-op these */
      rc = SQLITE_OK;
      break;
    default:
      pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
      if( pSubOpen ){
        rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg);
      }
      break;
  }
  return rc;
}

/* Pass xSectorSize requests through to the original VFS unchanged.
*/
static int multiplexSectorSize(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xSectorSize(pSubOpen);
  }
  return DEFAULT_SECTOR_SIZE;
}

/* Pass xDeviceCharacteristics requests through to the original VFS unchanged.
*/
static int multiplexDeviceCharacteristics(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen);
  }
  return 0;
}

/* Pass xShmMap requests through to the original VFS unchanged.
*/
static int multiplexShmMap(
  sqlite3_file *pConn,            /* Handle open on database file */
  int iRegion,                    /* Region to retrieve */
  int szRegion,                   /* Size of regions */
  int bExtend,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend, pp);
  }
  return SQLITE_IOERR;
}

/* Pass xShmLock requests through to the original VFS unchanged.
*/
static int multiplexShmLock(
  sqlite3_file *pConn,       /* Database file holding the shared memory */
  int ofst,                  /* First lock to acquire or release */
  int n,                     /* Number of locks to acquire or release */
  int flags                  /* What to do with the lock */
){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags);
  }
  return SQLITE_BUSY;
}

/* Pass xShmBarrier requests through to the original VFS unchanged.
*/
static void multiplexShmBarrier(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    pSubOpen->pMethods->xShmBarrier(pSubOpen);
  }
}

/* Pass xShmUnmap requests through to the original VFS unchanged.
*/
static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag);
  }
  return SQLITE_OK;
}

/************************** Public Interfaces *****************************/







|
|



|
|
|





<
<
<
<
<
<
|
<
<







|













|











|

















|

|














|











|










|







895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914






915


916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
        int bEnabled = *(int *)pArg;
        pGroup->bEnabled = bEnabled;
        rc = SQLITE_OK;
      }
      break;
    case MULTIPLEX_CTRL_SET_CHUNK_SIZE:
      if( pArg ) {
        unsigned int szChunk = *(unsigned*)pArg;
        if( szChunk<1 ){
          rc = SQLITE_MISUSE;
        }else{
          /* Round up to nearest multiple of MAX_PAGE_SIZE. */
          szChunk = (szChunk + (MAX_PAGE_SIZE-1));
          szChunk &= ~(MAX_PAGE_SIZE-1);
          pGroup->szChunk = szChunk;
          rc = SQLITE_OK;
        }
      }
      break;
    case MULTIPLEX_CTRL_SET_MAX_CHUNKS:






      rc = SQLITE_OK;


      break;
    case SQLITE_FCNTL_SIZE_HINT:
    case SQLITE_FCNTL_CHUNK_SIZE:
      /* no-op these */
      rc = SQLITE_OK;
      break;
    default:
      pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL);
      if( pSubOpen ){
        rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg);
      }
      break;
  }
  return rc;
}

/* Pass xSectorSize requests through to the original VFS unchanged.
*/
static int multiplexSectorSize(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xSectorSize(pSubOpen);
  }
  return DEFAULT_SECTOR_SIZE;
}

/* Pass xDeviceCharacteristics requests through to the original VFS unchanged.
*/
static int multiplexDeviceCharacteristics(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen);
  }
  return 0;
}

/* Pass xShmMap requests through to the original VFS unchanged.
*/
static int multiplexShmMap(
  sqlite3_file *pConn,            /* Handle open on database file */
  int iRegion,                    /* Region to retrieve */
  int szRegion,                   /* Size of regions */
  int bExtend,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend,pp);
  }
  return SQLITE_IOERR;
}

/* Pass xShmLock requests through to the original VFS unchanged.
*/
static int multiplexShmLock(
  sqlite3_file *pConn,       /* Database file holding the shared memory */
  int ofst,                  /* First lock to acquire or release */
  int n,                     /* Number of locks to acquire or release */
  int flags                  /* What to do with the lock */
){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags);
  }
  return SQLITE_BUSY;
}

/* Pass xShmBarrier requests through to the original VFS unchanged.
*/
static void multiplexShmBarrier(sqlite3_file *pConn){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    pSubOpen->pMethods->xShmBarrier(pSubOpen);
  }
}

/* Pass xShmUnmap requests through to the original VFS unchanged.
*/
static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){
  multiplexConn *p = (multiplexConn*)pConn;
  int rc;
  sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL);
  if( pSubOpen ){
    return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag);
  }
  return SQLITE_OK;
}

/************************** Public Interfaces *****************************/
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
  pOrigVfs = sqlite3_vfs_find(zOrigVfsName);
  if( pOrigVfs==0 ) return SQLITE_ERROR;
  assert( pOrigVfs!=&gMultiplex.sThisVfs );
  gMultiplex.pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
  if( !gMultiplex.pMutex ){
    return SQLITE_NOMEM;
  }
  gMultiplex.zName = sqlite3_malloc(pOrigVfs->mxPathname);
  if( !gMultiplex.zName ){
    sqlite3_mutex_free(gMultiplex.pMutex);
    return SQLITE_NOMEM;
  }
  gMultiplex.pGroups = NULL;
  gMultiplex.isInitialized = 1;
  gMultiplex.pOrigVfs = pOrigVfs;
  gMultiplex.sThisVfs = *pOrigVfs;
  gMultiplex.sThisVfs.szOsFile += sizeof(multiplexConn);
  gMultiplex.sThisVfs.zName = SQLITE_MULTIPLEX_VFS_NAME;
  gMultiplex.sThisVfs.xOpen = multiplexOpen;







<
<
<
<
<







1030
1031
1032
1033
1034
1035
1036





1037
1038
1039
1040
1041
1042
1043
  pOrigVfs = sqlite3_vfs_find(zOrigVfsName);
  if( pOrigVfs==0 ) return SQLITE_ERROR;
  assert( pOrigVfs!=&gMultiplex.sThisVfs );
  gMultiplex.pMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
  if( !gMultiplex.pMutex ){
    return SQLITE_NOMEM;
  }





  gMultiplex.pGroups = NULL;
  gMultiplex.isInitialized = 1;
  gMultiplex.pOrigVfs = pOrigVfs;
  gMultiplex.sThisVfs = *pOrigVfs;
  gMultiplex.sThisVfs.szOsFile += sizeof(multiplexConn);
  gMultiplex.sThisVfs.zName = SQLITE_MULTIPLEX_VFS_NAME;
  gMultiplex.sThisVfs.xOpen = multiplexOpen;
1043
1044
1045
1046
1047
1048
1049
1050

1051
1052
1053
1054
1055
1056
1057
  gMultiplex.sIoMethodsV1.xSync = multiplexSync;
  gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize;
  gMultiplex.sIoMethodsV1.xLock = multiplexLock;
  gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock;
  gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock;
  gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl;
  gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize;
  gMultiplex.sIoMethodsV1.xDeviceCharacteristics = multiplexDeviceCharacteristics;

  gMultiplex.sIoMethodsV2 = gMultiplex.sIoMethodsV1;
  gMultiplex.sIoMethodsV2.iVersion = 2;
  gMultiplex.sIoMethodsV2.xShmMap = multiplexShmMap;
  gMultiplex.sIoMethodsV2.xShmLock = multiplexShmLock;
  gMultiplex.sIoMethodsV2.xShmBarrier = multiplexShmBarrier;
  gMultiplex.sIoMethodsV2.xShmUnmap = multiplexShmUnmap;
  sqlite3_vfs_register(&gMultiplex.sThisVfs, makeDefault);







|
>







1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
  gMultiplex.sIoMethodsV1.xSync = multiplexSync;
  gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize;
  gMultiplex.sIoMethodsV1.xLock = multiplexLock;
  gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock;
  gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock;
  gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl;
  gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize;
  gMultiplex.sIoMethodsV1.xDeviceCharacteristics =
                                            multiplexDeviceCharacteristics;
  gMultiplex.sIoMethodsV2 = gMultiplex.sIoMethodsV1;
  gMultiplex.sIoMethodsV2.iVersion = 2;
  gMultiplex.sIoMethodsV2.xShmMap = multiplexShmMap;
  gMultiplex.sIoMethodsV2.xShmLock = multiplexShmLock;
  gMultiplex.sIoMethodsV2.xShmBarrier = multiplexShmBarrier;
  gMultiplex.sIoMethodsV2.xShmUnmap = multiplexShmUnmap;
  sqlite3_vfs_register(&gMultiplex.sThisVfs, makeDefault);
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
** THIS ROUTINE IS NOT THREADSAFE.  Call this routine exactly once while
** shutting down in order to free all remaining multiplex groups.
*/
int sqlite3_multiplex_shutdown(void){
  if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE;
  if( gMultiplex.pGroups ) return SQLITE_MISUSE;
  gMultiplex.isInitialized = 0;
  sqlite3_free(gMultiplex.zName);
  sqlite3_mutex_free(gMultiplex.pMutex);
  sqlite3_vfs_unregister(&gMultiplex.sThisVfs);
  memset(&gMultiplex, 0, sizeof(gMultiplex));
  return SQLITE_OK;
}

/***************************** Test Code ***********************************/







<







1090
1091
1092
1093
1094
1095
1096

1097
1098
1099
1100
1101
1102
1103
** THIS ROUTINE IS NOT THREADSAFE.  Call this routine exactly once while
** shutting down in order to free all remaining multiplex groups.
*/
int sqlite3_multiplex_shutdown(void){
  if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE;
  if( gMultiplex.pGroups ) return SQLITE_MISUSE;
  gMultiplex.isInitialized = 0;

  sqlite3_mutex_free(gMultiplex.pMutex);
  sqlite3_vfs_unregister(&gMultiplex.sThisVfs);
  memset(&gMultiplex, 0, sizeof(gMultiplex));
  return SQLITE_OK;
}

/***************************** Test Code ***********************************/
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
          Tcl_NewStringObj(pGroup->zName, -1));
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->nName));
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->flags));

    /* count number of chunks with open handles */
    for(i=0; i<pGroup->nMaxChunks; i++){
      if( pGroup->bOpen[i] ) nChunks++;
    }
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(nChunks));

    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->nChunkSize));
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->nMaxChunks));

    Tcl_ListObjAppendElement(interp, pResult, pGroupTerm);
  }
  multiplexLeave();
  Tcl_SetObjResult(interp, pResult);
  return TCL_OK;
}







|
|





|

|







1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
          Tcl_NewStringObj(pGroup->zName, -1));
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->nName));
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->flags));

    /* count number of chunks with open handles */
    for(i=0; i<pGroup->nReal; i++){
      if( pGroup->aReal[i].p!=0 ) nChunks++;
    }
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(nChunks));

    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->szChunk));
    Tcl_ListObjAppendElement(interp, pGroupTerm,
          Tcl_NewIntObj(pGroup->nReal));

    Tcl_ListObjAppendElement(interp, pResult, pGroupTerm);
  }
  multiplexLeave();
  Tcl_SetObjResult(interp, pResult);
  return TCL_OK;
}
Changes to src/trigger.c.
113
114
115
116
117
118
119
















120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
  }else{
    /* Figure out the db that the the trigger will be created in */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ){
      goto trigger_cleanup;
    }
  }

















  /* If the trigger name was unqualified, and the table is a temp table,
  ** then set iDb to 1 to create the trigger in the temporary database.
  ** If sqlite3SrcListLookup() returns 0, indicating the table does not
  ** exist, the error is caught by the block below.
  */
  if( !pTableName || db->mallocFailed ){
    goto trigger_cleanup;
  }
  pTab = sqlite3SrcListLookup(pParse, pTableName);
  if( db->init.busy==0 && pName2->n==0 && pTab
        && pTab->pSchema==db->aDb[1].pSchema ){
    iDb = 1;
  }

  /* Ensure the table name matches database name and that the table exists */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<
<
<







113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141



142
143
144
145
146
147
148
  }else{
    /* Figure out the db that the the trigger will be created in */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ){
      goto trigger_cleanup;
    }
  }
  if( !pTableName || db->mallocFailed ){
    goto trigger_cleanup;
  }

  /* A long-standing parser bug is that this syntax was allowed:
  **
  **    CREATE TRIGGER attached.demo AFTER INSERT ON attached.tab ....
  **                                                 ^^^^^^^^
  **
  ** To maintain backwards compatibility, ignore the database
  ** name on pTableName if we are reparsing our of SQLITE_MASTER.
  */
  if( db->init.busy && iDb!=1 ){
    sqlite3DbFree(db, pTableName->a[0].zDatabase);
    pTableName->a[0].zDatabase = 0;
  }

  /* If the trigger name was unqualified, and the table is a temp table,
  ** then set iDb to 1 to create the trigger in the temporary database.
  ** If sqlite3SrcListLookup() returns 0, indicating the table does not
  ** exist, the error is caught by the block below.
  */



  pTab = sqlite3SrcListLookup(pParse, pTableName);
  if( db->init.busy==0 && pName2->n==0 && pTab
        && pTab->pSchema==db->aDb[1].pSchema ){
    iDb = 1;
  }

  /* Ensure the table name matches database name and that the table exists */
Changes to src/update.c.
307
308
309
310
311
312
313
314


315
316
317
318
319
320
321
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto update_cleanup;
  }

  /* Begin the database scan
  */
  sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
  pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere,0, WHERE_ONEPASS_DESIRED);


  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = pWInfo->okOnePass;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
  if( !okOnePass ){







|
>
>







307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
  if( sqlite3ResolveExprNames(&sNC, pWhere) ){
    goto update_cleanup;
  }

  /* Begin the database scan
  */
  sqlite3VdbeAddOp2(v, OP_Null, 0, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = pWInfo->okOnePass;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
  if( !okOnePass ){
Changes to src/util.c.
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156



1157
1158
1159
1160
1161
1162
1163
1164

1165
1166
1167


1168
1169
1170
1171
1172
1173
1174
  if( x>=0 ) return x;
  if( x==(int)0x80000000 ) return 0x7fffffff;
  return -x;
}

#ifdef SQLITE_ENABLE_8_3_NAMES
/*
** If SQLITE_ENABLE_8_3_NAME is set at compile-time and if the database
** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
** three characters, then shorten the suffix on z[] to be the last three
** characters of the original suffix.



**
** Examples:
**
**     test.db-journal    =>   test.nal
**     test.db-wal        =>   test.wal
**     test.db-shm        =>   test.shm
*/
void sqlite3FileSuffix3(const char *zBaseFilename, char *z){

  const char *zOk;
  zOk = sqlite3_uri_parameter(zBaseFilename, "8_3_names");
  if( zOk && sqlite3GetBoolean(zOk) ){


    int i, sz;
    sz = sqlite3Strlen30(z);
    for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
    if( z[i]=='.' && ALWAYS(sz>i+4) ) memcpy(&z[i+1], &z[sz-3], 4);
  }
}
#endif







|




>
>
>








>


|
>
>







1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
  if( x>=0 ) return x;
  if( x==(int)0x80000000 ) return 0x7fffffff;
  return -x;
}

#ifdef SQLITE_ENABLE_8_3_NAMES
/*
** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
** three characters, then shorten the suffix on z[] to be the last three
** characters of the original suffix.
**
** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
** do the suffix shortening regardless of URI parameter.
**
** Examples:
**
**     test.db-journal    =>   test.nal
**     test.db-wal        =>   test.wal
**     test.db-shm        =>   test.shm
*/
void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
#if SQLITE_ENABLE_8_3_NAMES<2
  const char *zOk;
  zOk = sqlite3_uri_parameter(zBaseFilename, "8_3_names");
  if( zOk && sqlite3GetBoolean(zOk) )
#endif
  {
    int i, sz;
    sz = sqlite3Strlen30(z);
    for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
    if( z[i]=='.' && ALWAYS(sz>i+4) ) memcpy(&z[i+1], &z[sz-3], 4);
  }
}
#endif
Changes to src/vdbe.c.
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
    ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an BLOB_INTKEY table).
    */
    if( pOp->p4.pKeyInfo ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 
                                (KeyInfo*)pOp->p4.z, pCx->pCursor);
        pCx->pKeyInfo = pOp->p4.pKeyInfo;
        pCx->pKeyInfo->enc = ENC(p->db);
      }







|







3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
    ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
    ** opening it. If a transient table is required, just use the
    ** automatically created table with root-page 1 (an BLOB_INTKEY table).
    */
    if( pOp->p4.pKeyInfo ){
      int pgno;
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, 
                                (KeyInfo*)pOp->p4.z, pCx->pCursor);
        pCx->pKeyInfo = pOp->p4.pKeyInfo;
        pCx->pKeyInfo->enc = ENC(p->db);
      }
Changes to src/vdbeapi.c.
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  }
  db = v->db;
  sqlite3_mutex_enter(db->mutex);
  while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
         && cnt++ < SQLITE_MAX_SCHEMA_RETRY
         && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
    sqlite3_reset(pStmt);
    v->expired = 0;
  }
  if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
    /* This case occurs after failing to recompile an sql statement. 
    ** The error message from the SQL compiler has already been loaded 
    ** into the database handle. This block copies the error message 
    ** from the database handle into the statement and sets the statement
    ** program counter to 0 to ensure that when the statement is 







|







484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
  }
  db = v->db;
  sqlite3_mutex_enter(db->mutex);
  while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
         && cnt++ < SQLITE_MAX_SCHEMA_RETRY
         && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
    sqlite3_reset(pStmt);
    assert( v->expired==0 );
  }
  if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
    /* This case occurs after failing to recompile an sql statement. 
    ** The error message from the SQL compiler has already been loaded 
    ** into the database handle. This block copies the error message 
    ** from the database handle into the statement and sets the statement
    ** program counter to 0 to ensure that when the statement is 
Changes to src/vdbeaux.c.
1502
1503
1504
1505
1506
1507
1508

1509
1510
1511
1512
1513
1514
1515
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );


  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **







>







1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **
Changes to src/where.c.
249
250
251
252
253
254
255

256
257
258
259
260
261
262
#define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
#define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
#define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
#define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
#define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */


/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  Parse *pParse,           /* The parsing context */







>







249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
#define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
#define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
#define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
#define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
#define WHERE_DISTINCT     0x40000000  /* Correct order for DISTINCT */

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  Parse *pParse,           /* The parsing context */
1393
1394
1395
1396
1397
1398
1399




























































































































































1400
1401
1402
1403
1404
1405
1406
    if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
      return 1;
    }
  }
  return 0;
}






























































































































































/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
    if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
      return 1;
    }
  }
  return 0;
}

/*
** This function searches the expression list passed as the second argument
** for an expression of type TK_COLUMN that refers to the same column and
** uses the same collation sequence as the iCol'th column of index pIdx.
** Argument iBase is the cursor number used for the table that pIdx refers
** to.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */
  ExprList *pList,                /* Expression list to search */
  int iBase,                      /* Cursor for table associated with pIdx */
  Index *pIdx,                    /* Index to match column of */
  int iCol                        /* Column of index to match */
){
  int i;
  const char *zColl = pIdx->azColl[iCol];

  for(i=0; i<pList->nExpr; i++){
    Expr *p = pList->a[i].pExpr;
    if( p->op==TK_COLUMN
     && p->iColumn==pIdx->aiColumn[iCol]
     && p->iTable==iBase
    ){
      CollSeq *pColl = sqlite3ExprCollSeq(pParse, p);
      if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
        return i;
      }
    }
  }

  return -1;
}

/*
** This routine determines if pIdx can be used to assist in processing a
** DISTINCT qualifier. In other words, it tests whether or not using this
** index for the outer loop guarantees that rows with equal values for
** all expressions in the pDistinct list are delivered grouped together.
**
** For example, the query 
**
**   SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
**
** can benefit from any index on columns "b" and "c".
*/
static int isDistinctIndex(
  Parse *pParse,                  /* Parsing context */
  WhereClause *pWC,               /* The WHERE clause */
  Index *pIdx,                    /* The index being considered */
  int base,                       /* Cursor number for the table pIdx is on */
  ExprList *pDistinct,            /* The DISTINCT expressions */
  int nEqCol                      /* Number of index columns with == */
){
  Bitmask mask = 0;               /* Mask of unaccounted for pDistinct exprs */
  int i;                          /* Iterator variable */

  if( pIdx->zName==0 || pDistinct==0 || pDistinct->nExpr>=BMS ) return 0;
  testcase( pDistinct->nExpr==BMS-1 );

  /* Loop through all the expressions in the distinct list. If any of them
  ** are not simple column references, return early. Otherwise, test if the
  ** WHERE clause contains a "col=X" clause. If it does, the expression
  ** can be ignored. If it does not, and the column does not belong to the
  ** same table as index pIdx, return early. Finally, if there is no
  ** matching "col=X" expression and the column is on the same table as pIdx,
  ** set the corresponding bit in variable mask.
  */
  for(i=0; i<pDistinct->nExpr; i++){
    WhereTerm *pTerm;
    Expr *p = pDistinct->a[i].pExpr;
    if( p->op!=TK_COLUMN ) return 0;
    pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
    if( pTerm ){
      Expr *pX = pTerm->pExpr;
      CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
      CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
      if( p1==p2 ) continue;
    }
    if( p->iTable!=base ) return 0;
    mask |= (((Bitmask)1) << i);
  }

  for(i=nEqCol; mask && i<pIdx->nColumn; i++){
    int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
    if( iExpr<0 ) break;
    mask &= ~(((Bitmask)1) << iExpr);
  }

  return (mask==0);
}


/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant. A DISTINCT list is redundant if the database contains a
** UNIQUE index that guarantees that the result of the query will be distinct
** anyway.
*/
static int isDistinctRedundant(
  Parse *pParse,
  SrcList *pTabList,
  WhereClause *pWC,
  ExprList *pDistinct
){
  Table *pTab;
  Index *pIdx;
  int i;                          
  int iBase;

  /* If there is more than one table or sub-select in the FROM clause of
  ** this query, then it will not be possible to show that the DISTINCT 
  ** clause is redundant. */
  if( pTabList->nSrc!=1 ) return 0;
  iBase = pTabList->a[0].iCursor;
  pTab = pTabList->a[0].pTab;

  /* If any of the expressions is an IPK column on table iBase, then return 
  ** true. Note: The (p->iTable==iBase) part of this test may be false if the
  ** current SELECT is a correlated sub-query.
  */
  for(i=0; i<pDistinct->nExpr; i++){
    Expr *p = pDistinct->a[i].pExpr;
    if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
  }

  /* Loop through all indices on the table, checking each to see if it makes
  ** the DISTINCT qualifier redundant. It does so if:
  **
  **   1. The index is itself UNIQUE, and
  **
  **   2. All of the columns in the index are either part of the pDistinct
  **      list, or else the WHERE clause contains a term of the form "col=X",
  **      where X is a constant value. The collation sequences of the
  **      comparison and select-list expressions must match those of the index.
  */
  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    if( pIdx->onError==OE_None ) continue;
    for(i=0; i<pIdx->nColumn; i++){
      int iCol = pIdx->aiColumn[i];
      if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) 
       && 0>findIndexCol(pParse, pDistinct, iBase, pIdx, i)
      ){
        break;
      }
    }
    if( i==pIdx->nColumn ){
      /* This index implies that the DISTINCT qualifier is redundant. */
      return 1;
    }
  }

  return 0;
}

/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
** ORDER BY clause, this routine returns 0.
**
** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
1429
1430
1431
1432
1433
1434
1435
1436



1437
1438
1439
1440
1441
1442
1443
){
  int i, j;                       /* Loop counters */
  int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
  int nTerm;                      /* Number of ORDER BY terms */
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  assert( pOrderBy!=0 );



  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestBtreeIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );







|
>
>
>







1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
){
  int i, j;                       /* Loop counters */
  int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
  int nTerm;                      /* Number of ORDER BY terms */
  struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
  sqlite3 *db = pParse->db;

  if( !pOrderBy ) return 0;
  if( wsFlags & WHERE_COLUMN_IN ) return 0;
  if( pIdx->bUnordered ) return 0;

  nTerm = pOrderBy->nExpr;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestBtreeIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );
1742
1743
1744
1745
1746
1747
1748




1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759




1760
1761
1762
1763
1764
1765
1766
  double nTableRow;           /* Rows in the input table */
  double logN;                /* log(nTableRow) */
  double costTempIdx;         /* per-query cost of the transient index */
  WhereTerm *pTerm;           /* A single term of the WHERE clause */
  WhereTerm *pWCEnd;          /* End of pWC->a[] */
  Table *pTable;              /* Table tht might be indexed */





  if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
    /* Automatic indices are disabled at run-time */
    return;
  }
  if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
    /* We already have some kind of index in use for this query. */
    return;
  }
  if( pSrc->notIndexed ){
    /* The NOT INDEXED clause appears in the SQL. */
    return;




  }

  assert( pParse->nQueryLoop >= (double)1 );
  pTable = pSrc->pTab;
  nTableRow = pTable->nRowEst;
  logN = estLog(nTableRow);
  costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);







>
>
>
>











>
>
>
>







1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
  double nTableRow;           /* Rows in the input table */
  double logN;                /* log(nTableRow) */
  double costTempIdx;         /* per-query cost of the transient index */
  WhereTerm *pTerm;           /* A single term of the WHERE clause */
  WhereTerm *pWCEnd;          /* End of pWC->a[] */
  Table *pTable;              /* Table tht might be indexed */

  if( pParse->nQueryLoop<=(double)1 ){
    /* There is no point in building an automatic index for a single scan */
    return;
  }
  if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
    /* Automatic indices are disabled at run-time */
    return;
  }
  if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){
    /* We already have some kind of index in use for this query. */
    return;
  }
  if( pSrc->notIndexed ){
    /* The NOT INDEXED clause appears in the SQL. */
    return;
  }
  if( pSrc->isCorrelated ){
    /* The source is a correlated sub-query. No point in indexing it. */
    return;
  }

  assert( pParse->nQueryLoop >= (double)1 );
  pTable = pSrc->pTab;
  nTableRow = pTable->nRowEst;
  logN = estLog(nTableRow);
  costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
2685
2686
2687
2688
2689
2690
2691

2692
2693
2694
2695
2696
2697
2698
static void bestBtreeIndex(
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors not available for indexing */
  Bitmask notValid,           /* Cursors not available for any purpose */
  ExprList *pOrderBy,         /* The ORDER BY clause */

  WhereCost *pCost            /* Lowest cost query plan */
){
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */







>







2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
static void bestBtreeIndex(
  Parse *pParse,              /* The parsing context */
  WhereClause *pWC,           /* The WHERE clause */
  struct SrcList_item *pSrc,  /* The FROM clause term to search */
  Bitmask notReady,           /* Mask of cursors not available for indexing */
  Bitmask notValid,           /* Cursors not available for any purpose */
  ExprList *pOrderBy,         /* The ORDER BY clause */
  ExprList *pDistinct,        /* The select-list if query is DISTINCT */
  WhereCost *pCost            /* Lowest cost query plan */
){
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */
2825
2826
2827
2828
2829
2830
2831
2832

2833
2834
2835
2836
2837
2838
2839
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;                      /* Number of == or IN terms matching index */
    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
    int nInMul = 1;               /* Number of distinct equalities to lookup */
    int estBound = 100;           /* Estimated reduction in search space */
    int nBound = 0;               /* Number of range constraints seen */
    int bSort = 0;                /* True if external sort required */

    int bLookup = 0;              /* True if not a covering index */
    WhereTerm *pTerm;             /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT2
    WhereTerm *pFirstTerm = 0;    /* First term matching the index */
#endif

    /* Determine the values of nEq and nInMul */







|
>







2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int nEq;                      /* Number of == or IN terms matching index */
    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
    int nInMul = 1;               /* Number of distinct equalities to lookup */
    int estBound = 100;           /* Estimated reduction in search space */
    int nBound = 0;               /* Number of range constraints seen */
    int bSort = !!pOrderBy;       /* True if external sort required */
    int bDist = !!pDistinct;      /* True if index cannot help with DISTINCT */
    int bLookup = 0;              /* True if not a covering index */
    WhereTerm *pTerm;             /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT2
    WhereTerm *pFirstTerm = 0;    /* First term matching the index */
#endif

    /* Determine the values of nEq and nInMul */
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901

2902
2903
2904
2905
2906







2907
2908
2909
2910
2911
2912
2913
      }
    }

    /* If there is an ORDER BY clause and the index being considered will
    ** naturally scan rows in the required order, set the appropriate flags
    ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
    ** will scan rows in a different order, set the bSort variable.  */
    if( pOrderBy ){
      if( (wsFlags & WHERE_COLUMN_IN)==0
        && pProbe->bUnordered==0
        && isSortingIndex(pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy,
                          nEq, wsFlags, &rev)
      ){

        wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
        wsFlags |= (rev ? WHERE_REVERSE : 0);
      }else{
        bSort = 1;
      }







    }

    /* If currently calculating the cost of using an index (not the IPK
    ** index), determine if all required column data may be obtained without 
    ** using the main table (i.e. if the index is a covering
    ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
    ** wsFlags. Otherwise, set the bLookup variable to true.  */







|
<
<
|
<
|
>
|
|
<
<
|
>
>
>
>
>
>
>







3059
3060
3061
3062
3063
3064
3065
3066


3067

3068
3069
3070
3071


3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
      }
    }

    /* If there is an ORDER BY clause and the index being considered will
    ** naturally scan rows in the required order, set the appropriate flags
    ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
    ** will scan rows in a different order, set the bSort variable.  */
    if( isSortingIndex(


          pParse, pWC->pMaskSet, pProbe, iCur, pOrderBy, nEq, wsFlags, &rev)

    ){
      bSort = 0;
      wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY;
      wsFlags |= (rev ? WHERE_REVERSE : 0);


    }

    /* If there is a DISTINCT qualifier and this index will scan rows in
    ** order of the DISTINCT expressions, clear bDist and set the appropriate
    ** flags in wsFlags. */
    if( isDistinctIndex(pParse, pWC, pProbe, iCur, pDistinct, nEq) ){
      bDist = 0;
      wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
    }

    /* If currently calculating the cost of using an index (not the IPK
    ** index), determine if all required column data may be obtained without 
    ** using the main table (i.e. if the index is a covering
    ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
    ** wsFlags. Otherwise, set the bLookup variable to true.  */
2934
2935
2936
2937
2938
2939
2940
2941

2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = (int)(nRow / aiRowEst[nEq]);
    }

#ifdef SQLITE_ENABLE_STAT2
    /* If the constraint is of the form x=VALUE and histogram

    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 ){
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }







|
>




|







3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
    nRow = (double)(aiRowEst[nEq] * nInMul);
    if( bInEst && nRow*2>aiRowEst[0] ){
      nRow = aiRowEst[0]/2;
      nInMul = (int)(nRow / aiRowEst[nEq]);
    }

#ifdef SQLITE_ENABLE_STAT2
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( nRow>(double)1 && nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator==WO_EQ );
        testcase( pFirstTerm->eOperator==WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &nRow);
      }else if( pFirstTerm->eOperator==WO_IN && bInEst==0 ){
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &nRow);
      }
3016
3017
3018
3019
3020
3021
3022



3023
3024
3025
3026
3027
3028
3029
    ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
    ** sorted and C is a factor between 1.95 and 4.3.  We will split the
    ** difference and select C of 3.0.
    */
    if( bSort ){
      cost += nRow*estLog(nRow)*3;
    }




    /**** Cost of using this index has now been computed ****/

    /* If there are additional constraints on this table that cannot
    ** be used with the current index, but which might lower the number
    ** of output rows, adjust the nRow value accordingly.  This only 
    ** matters if the current index is the least costly, so do not bother







>
>
>







3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
    ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
    ** sorted and C is a factor between 1.95 and 4.3.  We will split the
    ** difference and select C of 3.0.
    */
    if( bSort ){
      cost += nRow*estLog(nRow)*3;
    }
    if( bDist ){
      cost += nRow*estLog(nRow)*3;
    }

    /**** Cost of using this index has now been computed ****/

    /* If there are additional constraints on this table that cannot
    ** be used with the current index, but which might lower the number
    ** of output rows, adjust the nRow value accordingly.  This only 
    ** matters if the current index is the least costly, so do not bother
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
    if( p->needToFreeIdxStr ){
      sqlite3_free(p->idxStr);
    }
    sqlite3DbFree(pParse->db, p);
  }else
#endif
  {
    bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, pCost);
  }
}

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.







|







3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
    if( p->needToFreeIdxStr ){
      sqlite3_free(p->idxStr);
    }
    sqlite3DbFree(pParse->db, p);
  }else
#endif
  {
    bestBtreeIndex(pParse, pWC, pSrc, notReady, notValid, pOrderBy, 0, pCost);
  }
}

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0,
                        WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
        if( pSubWInfo ){
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){







|







4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
        WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, 0,
                        WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);
        if( pSubWInfo ){
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
4364
4365
4366
4367
4368
4369
4370

4371
4372
4373
4374
4375
4376
4377
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */

  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
){
  int i;                     /* Loop counter */
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */







>







4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
** output order, then the *ppOrderBy is unchanged.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
){
  int i;                     /* Loop counter */
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4423
4424
4425
4426
4427
4428
4429




4430
4431
4432
4433
4434
4435
4436
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = (WhereMaskSet*)&pWC[1];





  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(pMaskSet);
  whereClauseInit(pWC, pParse, pMaskSet);
  sqlite3ExprCodeConstants(pParse, pWhere);







>
>
>
>







4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = (WhereMaskSet*)&pWC[1];

  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
  if( db->flags & SQLITE_DistinctOpt ) pDistinct = 0;

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(pMaskSet);
  whereClauseInit(pWC, pParse, pMaskSet);
  sqlite3ExprCodeConstants(pParse, pWhere);
4490
4491
4492
4493
4494
4495
4496









4497
4498
4499
4500
4501
4502
4503
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  exprAnalyzeAll(pTabList, pWC);
  if( db->mallocFailed ){
    goto whereBeginError;
  }










  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:
  **
  **   pWInfo->a[].pIdx      The index to use for this level of the loop.
  **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx







>
>
>
>
>
>
>
>
>







4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  exprAnalyzeAll(pTabList, pWC);
  if( db->mallocFailed ){
    goto whereBeginError;
  }

  /* Check if the DISTINCT qualifier, if there is one, is redundant. 
  ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
  ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
  */
  if( pDistinct && isDistinctRedundant(pParse, pTabList, pWC, pDistinct) ){
    pDistinct = 0;
    pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
  }

  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:
  **
  **   pWInfo->a[].pIdx      The index to use for this level of the loop.
  **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
4574
4575
4576
4577
4578
4579
4580

4581
4582
4583
4584
4585
4586
4587
4588
4589
4590

4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
    notIndexed = 0;
    for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
      Bitmask mask;             /* Mask of tables not yet ready */
      for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
        int doNotReorder;    /* True if this table should not be reordered */
        WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */

  
        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, pTabItem->iCursor);
        if( (m & notReady)==0 ){
          if( j==iFrom ) iFrom++;
          continue;
        }
        mask = (isOptimal ? m : notReady);
        pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);

        if( pTabItem->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
                    j, isOptimal));
        assert( pTabItem->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pTabItem->pTab) ){
          sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                           &sCost, pp);
        }else 
#endif
        {
          bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                         &sCost);
        }
        assert( isOptimal || (sCost.used&notReady)==0 );

        /* If an INDEXED BY clause is present, then the plan must use that
        ** index if it uses any index at all */
        assert( pTabItem->pIndex==0 
                  || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0







>










>














|







4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
    notIndexed = 0;
    for(isOptimal=(iFrom<nTabList-1); isOptimal>=0 && bestJ<0; isOptimal--){
      Bitmask mask;             /* Mask of tables not yet ready */
      for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){
        int doNotReorder;    /* True if this table should not be reordered */
        WhereCost sCost;     /* Cost information from best[Virtual]Index() */
        ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
        ExprList *pDist;     /* DISTINCT clause for index to optimize */
  
        doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
        if( j!=iFrom && doNotReorder ) break;
        m = getMask(pMaskSet, pTabItem->iCursor);
        if( (m & notReady)==0 ){
          if( j==iFrom ) iFrom++;
          continue;
        }
        mask = (isOptimal ? m : notReady);
        pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
        pDist = (i==0 ? pDistinct : 0);
        if( pTabItem->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
                    j, isOptimal));
        assert( pTabItem->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pTabItem->pTab) ){
          sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
                           &sCost, pp);
        }else 
#endif
        {
          bestBtreeIndex(pParse, pWC, pTabItem, mask, notReady, pOrderBy,
              pDist, &sCost);
        }
        assert( isOptimal || (sCost.used&notReady)==0 );

        /* If an INDEXED BY clause is present, then the plan must use that
        ** index if it uses any index at all */
        assert( pTabItem->pIndex==0 
                  || (sCost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
4658
4659
4660
4661
4662
4663
4664




4665
4666
4667
4668
4669
4670
4671
    assert( bestJ>=0 );
    assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    WHERETRACE(("*** Optimizer selects table %d for loop %d"
                " with cost=%g and nRow=%g\n",
                bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
    if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
      *ppOrderBy = 0;




    }
    andFlags &= bestPlan.plan.wsFlags;
    pLevel->plan = bestPlan.plan;
    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
      pLevel->iIdxCur = pParse->nTab++;







>
>
>
>







4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
    assert( bestJ>=0 );
    assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    WHERETRACE(("*** Optimizer selects table %d for loop %d"
                " with cost=%g and nRow=%g\n",
                bestJ, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow));
    if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
      *ppOrderBy = 0;
    }
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }
    andFlags &= bestPlan.plan.wsFlags;
    pLevel->plan = bestPlan.plan;
    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
      pLevel->iIdxCur = pParse->nTab++;
Changes to test/all.test.
34
35
36
37
38
39
40

41
42
43
44
45
46
47
run_test_suite journaltest 
run_test_suite inmemory_journal
run_test_suite pcache0 
run_test_suite pcache10 
run_test_suite pcache50 
run_test_suite pcache90 
run_test_suite pcache100


if {$::tcl_platform(platform)=="unix"} {
  ifcapable !default_autovacuum {
    run_test_suite autovacuum_crash
  }
}








>







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
run_test_suite journaltest 
run_test_suite inmemory_journal
run_test_suite pcache0 
run_test_suite pcache10 
run_test_suite pcache50 
run_test_suite pcache90 
run_test_suite pcache100
run_test_suite prepare

if {$::tcl_platform(platform)=="unix"} {
  ifcapable !default_autovacuum {
    run_test_suite autovacuum_crash
  }
}

Changes to test/alter2.test.
133
134
135
136
137
138
139

140
141
142
143
144
145
146
  execsql {
    SELECT sum(a), c FROM abc GROUP BY c;
  }
} {8 {} 1 10}
do_test alter2-1.9 {
  # ALTER TABLE abc ADD COLUMN d;
  alter_table abc {CREATE TABLE abc(a, b, c, d);}

  execsql { SELECT * FROM abc; }
  execsql {
    UPDATE abc SET d = 11 WHERE c IS NULL AND a<4;
    SELECT * FROM abc;
  }
} {1 2 10 {} 3 4 {} 11 5 6 {} {}}
do_test alter2-1.10 {







>







133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
  execsql {
    SELECT sum(a), c FROM abc GROUP BY c;
  }
} {8 {} 1 10}
do_test alter2-1.9 {
  # ALTER TABLE abc ADD COLUMN d;
  alter_table abc {CREATE TABLE abc(a, b, c, d);}
  if {[permutation] == "prepare"} { db cache flush }
  execsql { SELECT * FROM abc; }
  execsql {
    UPDATE abc SET d = 11 WHERE c IS NULL AND a<4;
    SELECT * FROM abc;
  }
} {1 2 10 {} 3 4 {} 11 5 6 {} {}}
do_test alter2-1.10 {
Changes to test/autoindex1.test.
243
244
245
246
247
248
249










250
251
  1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)}
}











finish_test







>
>
>
>
>
>
>
>
>
>


243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
  1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5 (~100000 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}


finish_test
Changes to test/collate5.test.
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    INSERT INTO collate5t1 VALUES('N', NULL);
  } 
} {}
do_test collate5-1.1 {
  execsql {
    SELECT DISTINCT a FROM collate5t1;
  }
} {A B N}
do_test collate5-1.2 {
  execsql {
    SELECT DISTINCT b FROM collate5t1;
  }
} {{} Apple apple banana}
do_test collate5-1.3 {
  execsql {
    SELECT DISTINCT a, b FROM collate5t1;
  }
} {A Apple a apple B banana N {}}

# Ticket #3376
#
do_test collate5-1.11 {
  execsql {
    CREATE TABLE tkt3376(a COLLATE nocase PRIMARY KEY);
    INSERT INTO tkt3376 VALUES('abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz');







|




|




|







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    INSERT INTO collate5t1 VALUES('N', NULL);
  } 
} {}
do_test collate5-1.1 {
  execsql {
    SELECT DISTINCT a FROM collate5t1;
  }
} {a b n}
do_test collate5-1.2 {
  execsql {
    SELECT DISTINCT b FROM collate5t1;
  }
} {apple Apple banana {}}
do_test collate5-1.3 {
  execsql {
    SELECT DISTINCT a, b FROM collate5t1;
  }
} {a apple A Apple b banana n {}}

# Ticket #3376
#
do_test collate5-1.11 {
  execsql {
    CREATE TABLE tkt3376(a COLLATE nocase PRIMARY KEY);
    INSERT INTO tkt3376 VALUES('abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz');
Added test/distinct.test.












































































































































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# 2011 July 1
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is the DISTINCT modifier.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set testprefix distinct


proc is_distinct_noop {sql} {
  set sql1 $sql
  set sql2 [string map {DISTINCT ""} $sql]

  set program1 [list]
  set program2 [list]
  db eval "EXPLAIN $sql1" {
    if {$opcode != "Noop"} { lappend program1 $opcode }
  }
  db eval "EXPLAIN $sql2" {
    if {$opcode != "Noop"} { lappend program2 $opcode }
  }

  return [expr {$program1==$program2}]
}

proc do_distinct_noop_test {tn sql} {
  uplevel [list do_test $tn [list is_distinct_noop $sql] 1]
}
proc do_distinct_not_noop_test {tn sql} {
  uplevel [list do_test $tn [list is_distinct_noop $sql] 0]
}

proc do_temptables_test {tn sql temptables} {
  uplevel [list do_test $tn [subst -novar {
    set ret ""
    db eval "EXPLAIN [set sql]" {
      if {$opcode == "OpenEphemeral"} { 
        if {$p5 != "10" && $p5!="00"} { error "p5 = $p5" }
        if {$p5 == "10"} {
          lappend ret hash
        } else {
          lappend ret btree
        }
      }
    }
    set ret
  }] $temptables]
}


#-------------------------------------------------------------------------
# The following tests - distinct-1.* - check that the planner correctly 
# detects cases where a UNIQUE index means that a DISTINCT clause is 
# redundant. Currently the planner only detects such cases when there
# is a single table in the FROM clause.
#
do_execsql_test 1.0 {
  CREATE TABLE t1(a, b, c, d);
  CREATE UNIQUE INDEX i1 ON t1(b, c);
  CREATE UNIQUE INDEX i2 ON t1(d COLLATE nocase);

  CREATE TABLE t2(x INTEGER PRIMARY KEY, y);

  CREATE TABLE t3(c1 PRIMARY KEY, c2);
  CREATE INDEX i3 ON t3(c2);
}
foreach {tn noop sql} {

  1   1   "SELECT DISTINCT b, c FROM t1"
  2   1   "SELECT DISTINCT c FROM t1 WHERE b = ?"
  3   1   "SELECT DISTINCT rowid FROM t1"
  4   1   "SELECT DISTINCT rowid, a FROM t1"
  5   1   "SELECT DISTINCT x FROM t2"
  6   1   "SELECT DISTINCT * FROM t2"
  7   1   "SELECT DISTINCT * FROM (SELECT * FROM t2)"

  8   1   "SELECT DISTINCT * FROM t1"

  8   0   "SELECT DISTINCT a, b FROM t1"

  9   0   "SELECT DISTINCT c FROM t1 WHERE b IN (1,2)"
  10  0   "SELECT DISTINCT c FROM t1"
  11  0   "SELECT DISTINCT b FROM t1"

  12  0   "SELECT DISTINCT a, d FROM t1"
  13  0   "SELECT DISTINCT a, b, c COLLATE nocase FROM t1"
  14  1   "SELECT DISTINCT a, d COLLATE nocase FROM t1"
  15  0   "SELECT DISTINCT a, d COLLATE binary FROM t1"
  16  1   "SELECT DISTINCT a, b, c COLLATE binary FROM t1"

  16  0   "SELECT DISTINCT t1.rowid FROM t1, t2"
  17  0   { /* Technically, it would be possible to detect that DISTINCT
            ** is a no-op in cases like the following. But SQLite does not
            ** do so. */
            SELECT DISTINCT t1.rowid FROM t1, t2 WHERE t1.rowid=t2.rowid }

  18  1   "SELECT DISTINCT c1, c2 FROM t3"
  19  1   "SELECT DISTINCT c1 FROM t3"
  20  1   "SELECT DISTINCT * FROM t3"
  21  0   "SELECT DISTINCT c2 FROM t3"

  22  0   "SELECT DISTINCT * FROM (SELECT 1, 2, 3 UNION SELECT 4, 5, 6)"
  23  1   "SELECT DISTINCT rowid FROM (SELECT 1, 2, 3 UNION SELECT 4, 5, 6)"

  24  0   "SELECT DISTINCT rowid/2 FROM t1"
  25  1   "SELECT DISTINCT rowid/2, rowid FROM t1"
  26  1   "SELECT DISTINCT rowid/2, b FROM t1 WHERE c = ?"
} {
  if {$noop} {
    do_distinct_noop_test 1.$tn $sql
  } else {
    do_distinct_not_noop_test 1.$tn $sql
  }
}

#-------------------------------------------------------------------------
# The following tests - distinct-2.* - test cases where an index is
# used to deliver results in order of the DISTINCT expressions. 
#
drop_all_tables
do_execsql_test 2.0 {
  CREATE TABLE t1(a, b, c);

  CREATE INDEX i1 ON t1(a, b);
  CREATE INDEX i2 ON t1(b COLLATE nocase, c COLLATE nocase);

  INSERT INTO t1 VALUES('a', 'b', 'c');
  INSERT INTO t1 VALUES('A', 'B', 'C');
  INSERT INTO t1 VALUES('a', 'b', 'c');
  INSERT INTO t1 VALUES('A', 'B', 'C');
}

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {a b c A B C}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1"                                          {hash}  {b B}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {B}
} {
  do_execsql_test    2.$tn.1 "SELECT DISTINCT $sql" $res
  do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables
}

do_execsql_test 2.A {
  SELECT (SELECT DISTINCT o.a FROM t1 AS i) FROM t1 AS o;
} {a A a A}




finish_test
Changes to test/e_select.test.
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
do_select_tests e_select-5 {
  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}

  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}

  4.1 "SELECT DISTINCT x FROM h2" {four one three two}
  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {four one}
} 

# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
# rows, two NULL values are considered to be equal.
#
do_select_tests e_select-5.5 {
  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
}

# EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
# sequence to compare text values with apply.
#
do_select_tests e_select-5.6 {
  1  "SELECT DISTINCT b FROM h1"                  {I IV four i iv one}
  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {four i iv one}
  3  "SELECT DISTINCT x FROM h2"                  {four one three two}
  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
    Four One Three Two four one three two
  }
}

#-------------------------------------------------------------------------
# The following tests - e_select-7.* - test that statements made to do
# with compound SELECT statements are correct.
#







|
|













|
|
|

|







1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
do_select_tests e_select-5 {
  3.1 "SELECT ALL x FROM h2" {One Two Three Four one two three four}
  3.2 "SELECT ALL x FROM h1, h2 ON (x=b)" {One one Four four}

  3.1 "SELECT x FROM h2" {One Two Three Four one two three four}
  3.2 "SELECT x FROM h1, h2 ON (x=b)" {One one Four four}

  4.1 "SELECT DISTINCT x FROM h2" {One Two Three Four}
  4.2 "SELECT DISTINCT x FROM h1, h2 ON (x=b)" {One Four}
} 

# EVIDENCE-OF: R-02054-15343 For the purposes of detecting duplicate
# rows, two NULL values are considered to be equal.
#
do_select_tests e_select-5.5 {
  1  "SELECT DISTINCT d FROM h3" {{} 2 2,3 2,4 3}
}

# EVIDENCE-OF: R-58359-52112 The normal rules for selecting a collation
# sequence to compare text values with apply.
#
do_select_tests e_select-5.6 {
  1  "SELECT DISTINCT b FROM h1"                  {one I i four IV iv}
  2  "SELECT DISTINCT b COLLATE nocase FROM h1"   {one I four IV}
  3  "SELECT DISTINCT x FROM h2"                  {One Two Three Four}
  4  "SELECT DISTINCT x COLLATE binary FROM h2"   {
    One Two Three Four one two three four
  }
}

#-------------------------------------------------------------------------
# The following tests - e_select-7.* - test that statements made to do
# with compound SELECT statements are correct.
#
Changes to test/exists.test.
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      sql1 { DROP INDEX IF EXISTS aux.i2 }
      sql2 { SELECT name FROM aux.sqlite_master WHERE type = 'index' }
    } {}
    do_test 3.$tn.2.2 {
      sql1 { DROP INDEX IF EXISTS i2 }
      sql2 { CREATE INDEX aux.i2 ON t2(x) }
      sql1 { DROP INDEX IF EXISTS i2 }
      sql2 { SELECT name FROM aux.sqlite_master WHERE type = 'index' }
    } {}

    # VIEW objects.
    #
    do_test 3.$tn.3.1 {
      sql1 { DROP VIEW IF EXISTS aux.v1 }
      sql2 { CREATE VIEW aux.v1 AS SELECT * FROM t2 }







|







155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
      sql1 { DROP INDEX IF EXISTS aux.i2 }
      sql2 { SELECT name FROM aux.sqlite_master WHERE type = 'index' }
    } {}
    do_test 3.$tn.2.2 {
      sql1 { DROP INDEX IF EXISTS i2 }
      sql2 { CREATE INDEX aux.i2 ON t2(x) }
      sql1 { DROP INDEX IF EXISTS i2 }
      sql2 { SELECT * FROM aux.sqlite_master WHERE type = 'index' }
    } {}

    # VIEW objects.
    #
    do_test 3.$tn.3.1 {
      sql1 { DROP VIEW IF EXISTS aux.v1 }
      sql2 { CREATE VIEW aux.v1 AS SELECT * FROM t2 }
Changes to test/fts3auto.test.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118

119
120
121
122
123
124
125

  do_execsql_test $tn$title.4 "
    SELECT docid, mit(matchinfo($tbl, 'x')) FROM $tbl 
    WHERE $tbl MATCH '$match' ORDER BY docid ASC
  " $matchinfo_asc
}

#    fts3_make_deferrable TABLE TOKEN
#
proc fts3_make_deferrable {tbl token} {

  set stmt [sqlite3_prepare db "SELECT * FROM $tbl" -1 dummy]
  set name [sqlite3_column_name $stmt 0]
  sqlite3_finalize $stmt


  set nRow [db one "SELECT count(*) FROM $tbl"]

  set pgsz [db one "PRAGMA page_size"]
  execsql BEGIN
  for {set i 0} {$i < ($nRow * $pgsz * 1.2)/100} {incr i} {
    set doc [string repeat "$token " 100]
    execsql "INSERT INTO $tbl ($name) VALUES(\$doc)"
  }
  execsql "INSERT INTO $tbl ($name) VALUES('aaaaaaa ${token}aaaaa')"







|

|





>
|
>







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

  do_execsql_test $tn$title.4 "
    SELECT docid, mit(matchinfo($tbl, 'x')) FROM $tbl 
    WHERE $tbl MATCH '$match' ORDER BY docid ASC
  " $matchinfo_asc
}

#    fts3_make_deferrable TABLE TOKEN ?NROW?
#
proc fts3_make_deferrable {tbl token {nRow 0}} {

  set stmt [sqlite3_prepare db "SELECT * FROM $tbl" -1 dummy]
  set name [sqlite3_column_name $stmt 0]
  sqlite3_finalize $stmt

  if {$nRow==0} {
    set nRow [db one "SELECT count(*) FROM $tbl"]
  }
  set pgsz [db one "PRAGMA page_size"]
  execsql BEGIN
  for {set i 0} {$i < ($nRow * $pgsz * 1.2)/100} {incr i} {
    set doc [string repeat "$token " 100]
    execsql "INSERT INTO $tbl ($name) VALUES(\$doc)"
  }
  execsql "INSERT INTO $tbl ($name) VALUES('aaaaaaa ${token}aaaaa')"
648
649
650
651
652
653
654
655












































656
657
658
  do_fts3query_test 6.$tn.2 t1 {b:G AND c:I}
  do_fts3query_test 6.$tn.3 t1 {b:G NEAR c:I}
  do_fts3query_test 6.$tn.4 t1 {a:C OR b:G OR c:K OR d:C}
  do_fts3query_test 6.$tn.5 t1 {a:G OR b:G}

  catchsql { COMMIT }
}













































set sqlite_fts3_enable_parentheses $sfep
finish_test









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
  do_fts3query_test 6.$tn.2 t1 {b:G AND c:I}
  do_fts3query_test 6.$tn.3 t1 {b:G NEAR c:I}
  do_fts3query_test 6.$tn.4 t1 {a:C OR b:G OR c:K OR d:C}
  do_fts3query_test 6.$tn.5 t1 {a:G OR b:G}

  catchsql { COMMIT }
}

foreach {tn create} {
  1    "fts4(x)"
  2    "fts4(x, order=DESC)"
} {
  execsql [subst {
    DROP TABLE IF EXISTS t1;
    CREATE VIRTUAL TABLE t1 USING $create;
  }]

  foreach {x} {
    "F E N O T K X V A X I E X A P G Q V H U"
    "R V A E T C V Q N I E L O N U G J K L U"
    "U Y I G W M V F J L X I D C H F P J Q B"
    "S G D Z X R P G S S Y B K A S G A I L L"
    "L S I C H T Z S R Q P R N K J X L F M J"
    "C C C D P X B Z C M A D A C X S B T X V"
    "W Y J M D R G V R K B X S A W R I T N C"
    "P K L W T M S P O Y Y V V O E H Q A I R"
    "C D Y I C Z F H J C O Y A Q F L S B D K"
    "P G S C Y C Y V I M B D S Z D D Y W I E"
    "Z K Z U E E S F Y X T U A L W O U J C Q"
    "P A T Z S W L P L Q V Y Y I P W U X S S"
    "I U I H U O F Z F R H R F T N D X A G M"
    "N A B M S H K X S O Y D T X S B R Y H Z"
    "L U D A S K I L S V Z J P U B E B Y H M"
  } {
    execsql { INSERT INTO t1 VALUES($x) }
  }

  # Add extra documents to the database such that token "B" will be considered
  # deferrable if considering the other tokens means that 2 or fewer documents
  # will be loaded into memory.
  #
  fts3_make_deferrable t1 B 2

  # B is not deferred in either of the first two tests below, since filtering
  # on "M" or "D" returns 10 documents or so. But filtering on "M * D" only
  # returns 2, so B is deferred in this case.
  #
  do_fts3query_test 7.$tn.1             t1 {"M B"}
  do_fts3query_test 7.$tn.2             t1 {"B D"}
  do_fts3query_test 7.$tn.3 -deferred B t1 {"M B D"}
}

set sqlite_fts3_enable_parentheses $sfep
finish_test

Changes to test/func3.test.
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
# with functions created using sqlite3_create_function_v2() is 
# correctly invoked.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl



do_test func3-1.1 {
  set destroyed 0
  proc destroy {} { set ::destroyed 1 }
  sqlite3_create_function_v2 db f2 -1 any -func f2 -destroy destroy
  set destroyed
} 0
do_test func3-1.2 {
  sqlite3_create_function_v2 db f2 -1 utf8 -func f2
  set destroyed
} 0
do_test func3-1.3 {
  sqlite3_create_function_v2 db f2 -1 utf16le -func f2
  set destroyed
} 0
do_test func3-1.4 {
  sqlite3_create_function_v2 db f2 -1 utf16be -func f2
  set destroyed
} 1


do_test func3-2.1 {
  set destroyed 0
  proc destroy {} { set ::destroyed 1 }
  sqlite3_create_function_v2 db f3 -1 utf8 -func f3 -destroy destroy
  set destroyed
} 0







>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# with functions created using sqlite3_create_function_v2() is 
# correctly invoked.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl


ifcapable utf16 {
  do_test func3-1.1 {
    set destroyed 0
    proc destroy {} { set ::destroyed 1 }
    sqlite3_create_function_v2 db f2 -1 any -func f2 -destroy destroy
    set destroyed
  } 0
  do_test func3-1.2 {
    sqlite3_create_function_v2 db f2 -1 utf8 -func f2
    set destroyed
  } 0
  do_test func3-1.3 {
    sqlite3_create_function_v2 db f2 -1 utf16le -func f2
    set destroyed
  } 0
  do_test func3-1.4 {
    sqlite3_create_function_v2 db f2 -1 utf16be -func f2
    set destroyed
  } 1
}

do_test func3-2.1 {
  set destroyed 0
  proc destroy {} { set ::destroyed 1 }
  sqlite3_create_function_v2 db f3 -1 utf8 -func f3 -destroy destroy
  set destroyed
} 0
Changes to test/fuzzer1.test.
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
do_test fuzzer1-2.3 {
  execsql {
    SELECT DISTINCT streetname.n FROM f2, streetname
     WHERE f2.word MATCH 'tayle'
       AND f2.distance<=200
       AND streetname.n>=f2.word AND streetname.n<=(f2.word || x'F7BFBFBF')
  }
} {steelewood tallia tallu talwyn taymouth thelema trailer {tyler finley}}


finish_test







|



1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
do_test fuzzer1-2.3 {
  execsql {
    SELECT DISTINCT streetname.n FROM f2, streetname
     WHERE f2.word MATCH 'tayle'
       AND f2.distance<=200
       AND streetname.n>=f2.word AND streetname.n<=(f2.word || x'F7BFBFBF')
  }
} {{tyler finley} trailer taymouth steelewood tallia tallu talwyn thelema}


finish_test
Changes to test/incrblob_err.test.
31
32
33
34
35
36
37

38
39
40
41
42
43
44
  set bytes [file size [info script]]
  execsql {
    CREATE TABLE blobs(k, v BLOB);
    INSERT INTO blobs VALUES(1, zeroblob($::bytes));
  }
} -tclbody {
  set ::blob [db incrblob blobs v 1]

  set rc [catch {puts -nonewline $::blob $::data}]
  if {$rc} { error "out of memory" }
} 

do_malloc_test 2 -tclprep {
  execsql {
    CREATE TABLE blobs(k, v BLOB);







>







31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
  set bytes [file size [info script]]
  execsql {
    CREATE TABLE blobs(k, v BLOB);
    INSERT INTO blobs VALUES(1, zeroblob($::bytes));
  }
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  fconfigure $::blob -translation binary
  set rc [catch {puts -nonewline $::blob $::data}]
  if {$rc} { error "out of memory" }
} 

do_malloc_test 2 -tclprep {
  execsql {
    CREATE TABLE blobs(k, v BLOB);
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98

99
100
101
102
103
104
105
  } elseif {$::r ne $::data} {
    error "Bad data read..."
  }
  set rc [catch {close $::blob}]
  if {$rc} { 
    error "out of memory" 
  }
} 


do_ioerr_test incrblob_err-4 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, $::data);
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  read $::blob
}

do_ioerr_test incrblob_err-5 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, zeroblob(length(CAST($::data AS BLOB))));
} -tclbody {
  set ::blob [db incrblob blobs v 1]

  puts -nonewline $::blob $::data
  close $::blob
}

do_ioerr_test incrblob_err-6 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, $::data || $::data || $::data);
} -tclbody {
  set ::blob [db incrblob blobs v 1]

  seek $::blob -20 end
  puts -nonewline $::blob "12345678900987654321"
  close $::blob
}

do_ioerr_test incrblob_err-7 -cksum 1 -sqlprep {
  PRAGMA auto_vacuum = 1;







|
<














>









>







68
69
70
71
72
73
74
75

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  } elseif {$::r ne $::data} {
    error "Bad data read..."
  }
  set rc [catch {close $::blob}]
  if {$rc} { 
    error "out of memory" 
  }
}


do_ioerr_test incrblob_err-4 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, $::data);
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  read $::blob
}

do_ioerr_test incrblob_err-5 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, zeroblob(length(CAST($::data AS BLOB))));
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  fconfigure $::blob -translation binary
  puts -nonewline $::blob $::data
  close $::blob
}

do_ioerr_test incrblob_err-6 -cksum 1 -sqlprep {
  CREATE TABLE blobs(k, v BLOB);
  INSERT INTO blobs VALUES(1, $::data || $::data || $::data);
} -tclbody {
  set ::blob [db incrblob blobs v 1]
  fconfigure $::blob -translation binary
  seek $::blob -20 end
  puts -nonewline $::blob "12345678900987654321"
  close $::blob
}

do_ioerr_test incrblob_err-7 -cksum 1 -sqlprep {
  PRAGMA auto_vacuum = 1;
Changes to test/insert4.test.
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#
do_test insert4-2.4.1 {
  execsql {
    DELETE FROM t3;
    INSERT INTO t3 SELECT DISTINCT * FROM t2;
    SELECT * FROM t3;
  }
} {1 9 9 1}
xferopt_test insert4-2.4.2 0
do_test insert4-2.4.3 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 SELECT DISTINCT * FROM t2;
  }
} {1 {constraint failed}}







|







108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
#
do_test insert4-2.4.1 {
  execsql {
    DELETE FROM t3;
    INSERT INTO t3 SELECT DISTINCT * FROM t2;
    SELECT * FROM t3;
  }
} {9 1 1 9}
xferopt_test insert4-2.4.2 0
do_test insert4-2.4.3 {
  catchsql {
    DELETE FROM t1;
    INSERT INTO t1 SELECT DISTINCT * FROM t2;
  }
} {1 {constraint failed}}
Changes to test/like.test.
66
67
68
69
70
71
72




73
74
75
76
77
78
79
80
81
82
83
84
85
} {ABC abc}
do_test like-1.4 {
  execsql {
    SELECT x FROM t1 WHERE x LIKE 'aBc' ORDER BY 1;
  }
} {ABC abc}
do_test like-1.5.1 {




  execsql {
    PRAGMA case_sensitive_like=on;
    SELECT x FROM t1 WHERE x LIKE 'abc' ORDER BY 1;
  }
} {abc}
do_test like-1.5.2 {
  execsql {
    PRAGMA case_sensitive_like; -- no argument; does not change setting
    SELECT x FROM t1 WHERE x LIKE 'abc' ORDER BY 1;
  }
} {abc}
do_test like-1.6 {
  execsql {







>
>
>
>

<



|







66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
} {ABC abc}
do_test like-1.4 {
  execsql {
    SELECT x FROM t1 WHERE x LIKE 'aBc' ORDER BY 1;
  }
} {ABC abc}
do_test like-1.5.1 {
  # Use sqlite3_exec() to verify fix for ticket [25ee81271091] 2011-06-26
  sqlite3_exec db {PRAGMA case_sensitive_like=on}
} {0 {}}
do_test like-1.5.2 {
  execsql {

    SELECT x FROM t1 WHERE x LIKE 'abc' ORDER BY 1;
  }
} {abc}
do_test like-1.5.3 {
  execsql {
    PRAGMA case_sensitive_like; -- no argument; does not change setting
    SELECT x FROM t1 WHERE x LIKE 'abc' ORDER BY 1;
  }
} {abc}
do_test like-1.6 {
  execsql {
Changes to test/misc5.test.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
          )    
          WHERE artist <> '' 
        )  
       )       
      )  
      ORDER BY LOWER(artist) ASC;
    }
  } {one}
}

# Ticket #1370.  Do not overwrite small files (less than 1024 bytes)
# when trying to open them as a database.
#
if {[permutation] == ""} {
  do_test misc5-4.1 {







|







501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
          )    
          WHERE artist <> '' 
        )  
       )       
      )  
      ORDER BY LOWER(artist) ASC;
    }
  } {two}
}

# Ticket #1370.  Do not overwrite small files (less than 1024 bytes)
# when trying to open them as a database.
#
if {[permutation] == ""} {
  do_test misc5-4.1 {
Changes to test/multiplex.test.
45
46
47
48
49
50
51

52
53
54
55
56
57
58
  list $msg
}

# This attempts to delete the base file and 
# and files with the chunk extension.
proc multiplex_delete {name} {
  global g_max_chunks

  for {set i 0} {$i<$g_max_chunks} {incr i} {
    forcedelete [multiplex_name $name $i]
    forcedelete [multiplex_name $name-journal $i]
    forcedelete [multiplex_name $name-wal $i]
  }
}








>







45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
  list $msg
}

# This attempts to delete the base file and 
# and files with the chunk extension.
proc multiplex_delete {name} {
  global g_max_chunks
  forcedelete $name
  for {set i 0} {$i<$g_max_chunks} {incr i} {
    forcedelete [multiplex_name $name $i]
    forcedelete [multiplex_name $name-journal $i]
    forcedelete [multiplex_name $name-wal $i]
  }
}

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
do_test multiplex-1.7 { sqlite3_multiplex_initialize "" 1 }        {SQLITE_OK}
do_test multiplex-1.8 { sqlite3_multiplex_shutdown }               {SQLITE_OK}


do_test multiplex-1.9.1  { sqlite3_multiplex_initialize "" 1 }     {SQLITE_OK}
do_test multiplex-1.9.2  { sqlite3 db test.db }                    {}
do_test multiplex-1.9.3  { multiplex_set db main 32768 16 }        {SQLITE_OK}
do_test multiplex-1.9.4  { multiplex_set db main 32768 -1 }        {SQLITE_MISUSE}
do_test multiplex-1.9.5  { multiplex_set db main -1 16 }           {SQLITE_MISUSE}
do_test multiplex-1.9.6  { multiplex_set db main 31 16 }           {SQLITE_OK}
do_test multiplex-1.9.7  { multiplex_set db main 32768 100 }       {SQLITE_MISUSE}
do_test multiplex-1.9.8  { multiplex_set db main 1073741824 1 }    {SQLITE_OK}
do_test multiplex-1.9.9  { db close }                              {}
do_test multiplex-1.9.10 { sqlite3_multiplex_shutdown }            {SQLITE_OK}

do_test multiplex-1.10.1  { sqlite3_multiplex_initialize "" 1 }                                  {SQLITE_OK}
do_test multiplex-1.10.2  { sqlite3 db test.db }                                                 {}
do_test multiplex-1.10.3  { lindex [ catchsql { SELECT multiplex_control(2, 32768); } ] 0 }      {0}
do_test multiplex-1.10.4  { lindex [ catchsql { SELECT multiplex_control(3, -1); } ] 0 }         {1}
do_test multiplex-1.10.5  { lindex [ catchsql { SELECT multiplex_control(2, -1); } ] 0 }         {1}
do_test multiplex-1.10.6  { lindex [ catchsql { SELECT multiplex_control(2, 31); } ] 0 }         {0}
do_test multiplex-1.10.7  { lindex [ catchsql { SELECT multiplex_control(3, 100); } ] 0 }        {1}
do_test multiplex-1.10.8  { lindex [ catchsql { SELECT multiplex_control(2, 1073741824); } ] 0 } {0}
do_test multiplex-1.10.9  { db close }                                                           {}
do_test multiplex-1.10.10 { sqlite3_multiplex_shutdown }                                         {SQLITE_OK}

do_test multiplex-1.11.1  { sqlite3_multiplex_initialize "" 1 }               {SQLITE_OK}
do_test multiplex-1.11.2  { sqlite3 db test.db }                              {}
do_test multiplex-1.11.3  { sqlite3_multiplex_control db main enable 0  }     {SQLITE_OK}







|
<

|







|
<

|







75
76
77
78
79
80
81
82

83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
do_test multiplex-1.7 { sqlite3_multiplex_initialize "" 1 }        {SQLITE_OK}
do_test multiplex-1.8 { sqlite3_multiplex_shutdown }               {SQLITE_OK}


do_test multiplex-1.9.1  { sqlite3_multiplex_initialize "" 1 }     {SQLITE_OK}
do_test multiplex-1.9.2  { sqlite3 db test.db }                    {}
do_test multiplex-1.9.3  { multiplex_set db main 32768 16 }        {SQLITE_OK}
do_test multiplex-1.9.4  { multiplex_set db main 32768 -1 }        {SQLITE_OK}

do_test multiplex-1.9.6  { multiplex_set db main 31 16 }           {SQLITE_OK}
do_test multiplex-1.9.7  { multiplex_set db main 32768 100 }       {SQLITE_OK}
do_test multiplex-1.9.8  { multiplex_set db main 1073741824 1 }    {SQLITE_OK}
do_test multiplex-1.9.9  { db close }                              {}
do_test multiplex-1.9.10 { sqlite3_multiplex_shutdown }            {SQLITE_OK}

do_test multiplex-1.10.1  { sqlite3_multiplex_initialize "" 1 }                                  {SQLITE_OK}
do_test multiplex-1.10.2  { sqlite3 db test.db }                                                 {}
do_test multiplex-1.10.3  { lindex [ catchsql { SELECT multiplex_control(2, 32768); } ] 0 }      {0}
do_test multiplex-1.10.4  { lindex [ catchsql { SELECT multiplex_control(3, -1); } ] 0 }         {0}

do_test multiplex-1.10.6  { lindex [ catchsql { SELECT multiplex_control(2, 31); } ] 0 }         {0}
do_test multiplex-1.10.7  { lindex [ catchsql { SELECT multiplex_control(3, 100); } ] 0 }        {0}
do_test multiplex-1.10.8  { lindex [ catchsql { SELECT multiplex_control(2, 1073741824); } ] 0 } {0}
do_test multiplex-1.10.9  { db close }                                                           {}
do_test multiplex-1.10.10 { sqlite3_multiplex_shutdown }                                         {SQLITE_OK}

do_test multiplex-1.11.1  { sqlite3_multiplex_initialize "" 1 }               {SQLITE_OK}
do_test multiplex-1.11.2  { sqlite3 db test.db }                              {}
do_test multiplex-1.11.3  { sqlite3_multiplex_control db main enable 0  }     {SQLITE_OK}
142
143
144
145
146
147
148

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#
#   multiplex-2.7.*: Disable/enable tests.
#

sqlite3_multiplex_initialize "" 1
multiplex_set db main 32768 16


do_test multiplex-2.1.2 {
  sqlite3 db test.db
  execsql {
    PRAGMA page_size=1024;
    PRAGMA auto_vacuum=OFF;
    PRAGMA journal_mode=DELETE;
  }
  execsql {
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, randomblob(1100));
    INSERT INTO t1 VALUES(2, randomblob(1100));
  }
} {}
do_test multiplex-2.1.3 { file size [multiplex_name test.db 0] } {4096}
do_test multiplex-2.1.4 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}

do_test multiplex-2.2.1 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}
do_test multiplex-2.2.3 { file size [multiplex_name test.db 0] } {6144}

do_test multiplex-2.3.1 {
  sqlite3 db2 test2.db
  db2 close
} {}


do_test multiplex-2.4.1 {
  sqlite3_multiplex_shutdown
} {SQLITE_MISUSE}
do_test multiplex-2.4.2 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}
do_test multiplex-2.4.4 { file size [multiplex_name test.db 0] } {7168}
do_test multiplex-2.4.99 {
  db close
  sqlite3_multiplex_shutdown
} {SQLITE_OK}


do_test multiplex-2.5.1 {
  multiplex_delete test.db
  sqlite3_multiplex_initialize "" 1
  sqlite3 db test.db
  multiplex_set db main 4096 16
} {SQLITE_OK}

do_test multiplex-2.5.2 {
  execsql {
    PRAGMA page_size = 1024;
    PRAGMA journal_mode = delete;







>

|











|







|


|










|







|

|







141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#
#   multiplex-2.7.*: Disable/enable tests.
#

sqlite3_multiplex_initialize "" 1
multiplex_set db main 32768 16

file delete -force test.x
do_test multiplex-2.1.2 {
  sqlite3 db test.x
  execsql {
    PRAGMA page_size=1024;
    PRAGMA auto_vacuum=OFF;
    PRAGMA journal_mode=DELETE;
  }
  execsql {
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, randomblob(1100));
    INSERT INTO t1 VALUES(2, randomblob(1100));
  }
} {}
do_test multiplex-2.1.3 { file size [multiplex_name test.x 0] } {4096}
do_test multiplex-2.1.4 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}

do_test multiplex-2.2.1 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}
do_test multiplex-2.2.3 { file size [multiplex_name test.x 0] } {6144}

do_test multiplex-2.3.1 {
  sqlite3 db2 test2.x
  db2 close
} {}


do_test multiplex-2.4.1 {
  sqlite3_multiplex_shutdown
} {SQLITE_MISUSE}
do_test multiplex-2.4.2 {
  execsql { INSERT INTO t1 VALUES(3, randomblob(1100)) }
} {}
do_test multiplex-2.4.4 { file size [multiplex_name test.x 0] } {7168}
do_test multiplex-2.4.99 {
  db close
  sqlite3_multiplex_shutdown
} {SQLITE_OK}


do_test multiplex-2.5.1 {
  multiplex_delete test.x
  sqlite3_multiplex_initialize "" 1
  sqlite3 db test.x
  multiplex_set db main 4096 16
} {SQLITE_OK}

do_test multiplex-2.5.2 {
  execsql {
    PRAGMA page_size = 1024;
    PRAGMA journal_mode = delete;
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  db eval {SELECT a,length(b) FROM t1 WHERE a=2}
} {2 4000}

do_test multiplex-2.5.8 {
  db eval {SELECT a,length(b) FROM t1 WHERE a=4}
} {4 4000}

do_test multiplex-2.5.9 { file size [multiplex_name test.db 0] } [list $g_chunk_size]
do_test multiplex-2.5.10 { file size [multiplex_name test.db 1] } [list $g_chunk_size]

do_test multiplex-2.5.99 {
  db close
  sqlite3_multiplex_shutdown
} {SQLITE_OK}









|
|







232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
  db eval {SELECT a,length(b) FROM t1 WHERE a=2}
} {2 4000}

do_test multiplex-2.5.8 {
  db eval {SELECT a,length(b) FROM t1 WHERE a=4}
} {4 4000}

do_test multiplex-2.5.9 { file size [multiplex_name test.x 0] } [list $g_chunk_size]
do_test multiplex-2.5.10 { file size [multiplex_name test.x 1] } [list $g_chunk_size]

do_test multiplex-2.5.99 {
  db close
  sqlite3_multiplex_shutdown
} {SQLITE_OK}


519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577

578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
do_faultsim_test multiplex-5.5 -prep {
  catch { sqlite3_multiplex_shutdown }
} -body {
  sqlite3_multiplex_initialize "" 1
  multiplex_set db main 32768 16
}

# test that mismatch filesize is detected
#
# Do not run this test if $::G(perm:presql) is set. If it is set, then the
# expected IO error will occur within the Tcl [sqlite3] wrapper, not within
# the first SQL statement executed below. This breaks the test case.
#
if {0==[info exists ::G(perm:presql)] || $::G(perm:presql) == ""} {
  set all_journal_modes {delete persist truncate memory off}
  foreach jmode $all_journal_modes {
    do_test multiplex-5.6.1.$jmode {
      sqlite3_multiplex_shutdown
      multiplex_delete test.db
      sqlite3 db test.db
      db eval {
        PRAGMA page_size = 1024;
        PRAGMA auto_vacuum = off;
      }
      db eval "PRAGMA journal_mode = $jmode;"
    } $jmode
    do_test multiplex-5.6.2.$jmode {
      execsql {
        CREATE TABLE t1(a, b);
        INSERT INTO t1 VALUES(1, randomblob(15000));
        INSERT INTO t1 VALUES(2, randomblob(15000));
        INSERT INTO t1 VALUES(3, randomblob(15000));
        INSERT INTO t1 VALUES(4, randomblob(15000));
        INSERT INTO t1 VALUES(5, randomblob(15000));
      }
      db close
      sqlite3_multiplex_initialize "" 1
      sqlite3 db test.db
      multiplex_set db main 4096 16
    } {SQLITE_OK}
    do_test multiplex-5.6.3.$jmode {
      catchsql {
        INSERT INTO t1 VALUES(6, randomblob(15000));
      }
    } {1 {disk I/O error}}
    do_test multiplex-5.6.4.$jmode {
      db close
    } {}
  }
}

#-------------------------------------------------------------------------
# Test that you can vacuum a multiplex'ed DB.  

ifcapable vacuum {

sqlite3_multiplex_shutdown
do_test multiplex-6.0.0 {
  multiplex_delete test.db

  sqlite3_multiplex_initialize "" 1
  sqlite3 db test.db
  multiplex_set db main 4096 16
} {SQLITE_OK}

do_test multiplex-6.1.0 {
  execsql {
    PRAGMA page_size=1024;
    PRAGMA journal_mode=DELETE;
    PRAGMA auto_vacuum=OFF;
  }
  execsql {
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, randomblob($g_chunk_size));
    INSERT INTO t1 VALUES(2, randomblob($g_chunk_size));
  }
} {}
do_test multiplex-6.2.1 { file size [multiplex_name test.db 0] } [list $g_chunk_size]
do_test multiplex-6.2.2 { file size [multiplex_name test.db 1] } [list $g_chunk_size]

do_test multiplex-6.3.0 {
  execsql { VACUUM }
} {}

do_test multiplex-6.99 {
  db close
  multiplex_delete test.db
  sqlite3_multiplex_shutdown
} {SQLITE_OK}

}


catch { sqlite3_multiplex_shutdown }
finish_test







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








>

|















|
|







|








519
520
521
522
523
524
525












































526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
do_faultsim_test multiplex-5.5 -prep {
  catch { sqlite3_multiplex_shutdown }
} -body {
  sqlite3_multiplex_initialize "" 1
  multiplex_set db main 32768 16
}













































#-------------------------------------------------------------------------
# Test that you can vacuum a multiplex'ed DB.  

ifcapable vacuum {

sqlite3_multiplex_shutdown
do_test multiplex-6.0.0 {
  multiplex_delete test.db
  multiplex_delete test.x
  sqlite3_multiplex_initialize "" 1
  sqlite3 db test.x
  multiplex_set db main 4096 16
} {SQLITE_OK}

do_test multiplex-6.1.0 {
  execsql {
    PRAGMA page_size=1024;
    PRAGMA journal_mode=DELETE;
    PRAGMA auto_vacuum=OFF;
  }
  execsql {
    CREATE TABLE t1(a, b);
    INSERT INTO t1 VALUES(1, randomblob($g_chunk_size));
    INSERT INTO t1 VALUES(2, randomblob($g_chunk_size));
  }
} {}
do_test multiplex-6.2.1 { file size [multiplex_name test.x 0] } [list $g_chunk_size]
do_test multiplex-6.2.2 { file size [multiplex_name test.x 1] } [list $g_chunk_size]

do_test multiplex-6.3.0 {
  execsql { VACUUM }
} {}

do_test multiplex-6.99 {
  db close
  multiplex_delete test.x
  sqlite3_multiplex_shutdown
} {SQLITE_OK}

}


catch { sqlite3_multiplex_shutdown }
finish_test
Changes to test/permutations.test.
778
779
780
781
782
783
784









785
786
787
788
789
790
791
  where6.test where7.test where8.test where9.test
  whereA.test whereB.test wherelimit.test
  select1.test select2.test select3.test select4.test select5.test
  select7.test select8.test selectA.test selectC.test
} -dbconfig {
  optimization_control $::dbhandle all 0
}










# End of tests
#############################################################################

# run_tests NAME OPTIONS
#
# where available options are:  







>
>
>
>
>
>
>
>
>







778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
  where6.test where7.test where8.test where9.test
  whereA.test whereB.test wherelimit.test
  select1.test select2.test select3.test select4.test select5.test
  select7.test select8.test selectA.test selectC.test
} -dbconfig {
  optimization_control $::dbhandle all 0
}

test_suite "prepare" -description {
  Run tests with the db connection using sqlite3_prepare() instead of _v2().
} -dbconfig {
  db_use_legacy_prepare $::dbhandle 1
  #$::dbhandle cache size 0
} -files [
  test_set $allquicktests -exclude *malloc* *ioerr* *fault*
]

# End of tests
#############################################################################

# run_tests NAME OPTIONS
#
# where available options are:  
Changes to test/releasetest.tcl.
151
152
153
154
155
156
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

179
180
181
182
183
184
185
    -DSQLITE_ENABLE_OVERSIZE_CELL_CHECK=1
    -DSQLITE_MAX_ATTACHED=62
  }
}

array set ::Platforms {
  Linux-x86_64 {

    "Secure-Delete"           test
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Update-Delete-Limit"     test
    "Debug-One"               test
    "Extra-Robustness"        test
    "Device-Two"              test
    "Ftrapv"                  test
    "Default"                 "threadtest test"
    "Device-One"              fulltest
  }
  Linux-i686 {
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Device-One"              test
    "Device-Two"              test
    "Default"                 "threadtest fulltest"
  }
  Darwin-i386 {
    "Locking-Style"           test
    "OS-X"                    "threadtest fulltest"
  }
}


# End of configuration section.
#########################################################################
#########################################################################

foreach {key value} [array get ::Platforms] {
  foreach {v t} $value {







>



<

















>







151
152
153
154
155
156
157
158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    -DSQLITE_ENABLE_OVERSIZE_CELL_CHECK=1
    -DSQLITE_MAX_ATTACHED=62
  }
}

array set ::Platforms {
  Linux-x86_64 {
    "Debug-One"               "checksymbols test"
    "Secure-Delete"           test
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Update-Delete-Limit"     test

    "Extra-Robustness"        test
    "Device-Two"              test
    "Ftrapv"                  test
    "Default"                 "threadtest test"
    "Device-One"              fulltest
  }
  Linux-i686 {
    "Unlock-Notify"           "QUICKTEST_INCLUDE=notify2.test test"
    "Device-One"              test
    "Device-Two"              test
    "Default"                 "threadtest fulltest"
  }
  Darwin-i386 {
    "Locking-Style"           test
    "OS-X"                    "threadtest fulltest"
  }
}


# End of configuration section.
#########################################################################
#########################################################################

foreach {key value} [array get ::Platforms] {
  foreach {v t} $value {
Changes to test/selectB.test.
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

  do_test selectB-$ii.19 {
    execsql {
      SELECT * FROM (
        SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2
      )
    }
  } {0 1 0 1}

  do_test selectB-$ii.20 {
    execsql {
      SELECT DISTINCT * FROM (
        SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2
      )
    }







|







351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

  do_test selectB-$ii.19 {
    execsql {
      SELECT * FROM (
        SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2
      )
    }
  } {0 1 1 0}

  do_test selectB-$ii.20 {
    execsql {
      SELECT DISTINCT * FROM (
        SELECT DISTINCT (a/10) FROM t1 UNION ALL SELECT DISTINCT(d%2) FROM t2
      )
    }
Changes to test/sqllimits1.test.
315
316
317
318
319
320
321

322
323
324
325

326
327
328
329

330
331
332
333

334
335
336
337
338
339
340
} {SQLITE_TOOBIG}
do_test sqllimits1-5.14.4 {
  set np1 [expr {$SQLITE_LIMIT_LENGTH + 1}]
  set ::str1 [string repeat A $np1]
  catch {sqlite3_bind_text $::STMT 1 $::str1 -1} res
  set res
} {SQLITE_TOOBIG}

do_test sqllimits1-5.14.5 {
  catch {sqlite3_bind_text16 $::STMT 1 $::str1 -1} res
  set res
} {SQLITE_TOOBIG}

do_test sqllimits1-5.14.6 {
  catch {sqlite3_bind_text $::STMT 1 $::str1 $np1} res
  set res
} {SQLITE_TOOBIG}

do_test sqllimits1-5.14.7 {
  catch {sqlite3_bind_text16 $::STMT 1 $::str1 $np1} res
  set res
} {SQLITE_TOOBIG}

do_test sqllimits1-5.14.8 {
  set n [expr {$np1-1}]
  catch {sqlite3_bind_text $::STMT 1 $::str1 $n} res
  set res
} {}
do_test sqllimits1-5.14.9 {
  catch {sqlite3_bind_text16 $::STMT 1 $::str1 $n} res







>
|
|
|
|
>




>
|
|
|
|
>







315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
} {SQLITE_TOOBIG}
do_test sqllimits1-5.14.4 {
  set np1 [expr {$SQLITE_LIMIT_LENGTH + 1}]
  set ::str1 [string repeat A $np1]
  catch {sqlite3_bind_text $::STMT 1 $::str1 -1} res
  set res
} {SQLITE_TOOBIG}
ifcapable utf16 {
  do_test sqllimits1-5.14.5 {
    catch {sqlite3_bind_text16 $::STMT 1 $::str1 -1} res
    set res
  } {SQLITE_TOOBIG}
}
do_test sqllimits1-5.14.6 {
  catch {sqlite3_bind_text $::STMT 1 $::str1 $np1} res
  set res
} {SQLITE_TOOBIG}
ifcapable utf16 {
  do_test sqllimits1-5.14.7 {
    catch {sqlite3_bind_text16 $::STMT 1 $::str1 $np1} res
    set res
  } {SQLITE_TOOBIG}
}
do_test sqllimits1-5.14.8 {
  set n [expr {$np1-1}]
  catch {sqlite3_bind_text $::STMT 1 $::str1 $n} res
  set res
} {}
do_test sqllimits1-5.14.9 {
  catch {sqlite3_bind_text16 $::STMT 1 $::str1 $n} res
Changes to test/temptable.test.
288
289
290
291
292
293
294

295
296
297
298
299
300
301
# but the permanent index should still be accessible and should still
# be updated when its corresponding table changes.
#
do_test temptable-5.1 {
  execsql {
    CREATE TEMP TABLE mask(a,b,c)
  } db2

  execsql {
    CREATE INDEX mask ON t2(x);
    SELECT * FROM t2;
  }
} {3 4}
#do_test temptable-5.2 {
#  catchsql {







>







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
# but the permanent index should still be accessible and should still
# be updated when its corresponding table changes.
#
do_test temptable-5.1 {
  execsql {
    CREATE TEMP TABLE mask(a,b,c)
  } db2
  if {[permutation]=="prepare"} { db2 cache flush }
  execsql {
    CREATE INDEX mask ON t2(x);
    SELECT * FROM t2;
  }
} {3 4}
#do_test temptable-5.2 {
#  catchsql {
Added test/tkt-54844eea3f.test.






































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# 2011 July 8
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing that bug [54844eea3f] has been fixed.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set ::testprefix tkt-54844eea3f

do_test 1.0 {
  execsql {
    CREATE TABLE t1(a INTEGER PRIMARY KEY);
    INSERT INTO t1 VALUES(1);
    INSERT INTO t1 VALUES(4);

    CREATE TABLE t2(b INTEGER PRIMARY KEY);
    INSERT INTO t2 VALUES(1);
    INSERT INTO t2 VALUES(2);
    INSERT INTO t2 SELECT b+2 FROM t2;
    INSERT INTO t2 SELECT b+4 FROM t2;
    INSERT INTO t2 SELECT b+8 FROM t2;
    INSERT INTO t2 SELECT b+16 FROM t2;

    CREATE TABLE t3(c INTEGER PRIMARY KEY);
    INSERT INTO t3 VALUES(1);
    INSERT INTO t3 VALUES(2);
    INSERT INTO t3 VALUES(3);
  }
} {}

do_test 1.1 {
  execsql {
    SELECT 'test-2', t3.c, (
          SELECT count(*) 
          FROM t1 JOIN (SELECT DISTINCT t3.c AS p FROM t2) AS x ON t1.a=x.p
    )
    FROM t3;
  }
} {test-2 1 1 test-2 2 0 test-2 3 0}

do_test 1.2 {
  execsql {
    CREATE TABLE t4(a, b, c);
    INSERT INTO t4 VALUES('a', 1, 'one');
    INSERT INTO t4 VALUES('a', 2, 'two');
    INSERT INTO t4 VALUES('b', 1, 'three');
    INSERT INTO t4 VALUES('b', 2, 'four');
    SELECT ( 
      SELECT c FROM (
        SELECT * FROM t4 WHERE a=out.a ORDER BY b LIMIT 10 OFFSET 1
      ) WHERE b=out.b
    ) FROM t4 AS out;
  }
} {{} two {} four}


finish_test
Changes to test/triggerD.test.
10
11
12
13
14
15
16






17
18
19
20
21
22
23
#***********************************************************************
#
# Verify that when columns named "rowid", "oid", and "_rowid_" appear
# in a table as ordinary columns (not as the INTEGER PRIMARY KEY) then
# the use of these columns in triggers will refer to the column and not
# to the actual ROWID.  Ticket [34d2ae1c6d08b5271ba5e5592936d4a1d913ffe3]
#







set testdir [file dirname $argv0]
source $testdir/tester.tcl
ifcapable {!trigger} {
  finish_test
  return
}







>
>
>
>
>
>







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#***********************************************************************
#
# Verify that when columns named "rowid", "oid", and "_rowid_" appear
# in a table as ordinary columns (not as the INTEGER PRIMARY KEY) then
# the use of these columns in triggers will refer to the column and not
# to the actual ROWID.  Ticket [34d2ae1c6d08b5271ba5e5592936d4a1d913ffe3]
#
# Also, verify that triggers created like this:
#
#    CREATE TRIGGER attached.trig AFTER INSERT ON attached.tab ...
#
# can be reparsed as a main database.  Ticket [d6ddba6706353915ceedc56b4e3]
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
ifcapable {!trigger} {
  finish_test
  return
}
166
167
168
169
170
171
172
173







































174
    END;
    INSERT INTO main.t300 VALUES(3);
    INSERT INTO temp.t300 VALUES(4);
    SELECT * FROM t301;
  }
} {10003 20004}









































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    END;
    INSERT INTO main.t300 VALUES(3);
    INSERT INTO temp.t300 VALUES(4);
    SELECT * FROM t301;
  }
} {10003 20004}


#############################################################################
# 
# Ticket [d6ddba6706353915ceedc56b4e3e72ecb4d77ba4]
#
# The following syntax really should not be allowed:
#
#    CREATE TRIGGER xyz.trig BEFORE UPDATE ON xyz.tab BEGIN ...
#
# But a long-standing bug does allow it.  And the "xyz.tab" slips into
# the sqlite_master table.  We cannot fix the bug simply by disallowing
# "xyz.tab" since that could break legacy applications.  We have to 
# fix the system so that the "xyz." on "xyz.tab" is ignored.
# Verify that this is the case.
#
do_test triggerD-4.1 {
  db close
  file delete -force test.db test2.db
  sqlite3 db test.db
  db eval {
    CREATE TABLE t1(x);
    ATTACH 'test2.db' AS db2;
    CREATE TABLE db2.t2(y);
    CREATE TABLE db2.log(z);
    CREATE TRIGGER db2.trig AFTER INSERT ON db2.t2 BEGIN
      INSERT INTO log(z) VALUES(new.y);
    END;
    INSERT INTO t2 VALUES(123);
    SELECT * FROM log;
  }
} {123}
do_test triggerD-4.2 {
  sqlite3 db2 test2.db
  db2 eval {
    INSERT INTO t2 VALUES(234);
    SELECT * FROM log;
  }
} {123 234}
db2 close

finish_test
Changes to test/wal3.test.
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
#
# This test case verifies that if an exclusive lock cannot be obtained
# on any aReadMark[] slot (because there are already several readers),
# the client takes a shared-lock on a slot without modifying the value
# and continues.
#
set nConn 50
if { [string match *BSD $tcl_platform(os)] } { set nConn 35 }
do_test wal3-9.0 {
  file delete -force test.db test.db-journal test.db wal
  sqlite3 db test.db
  execsql {
    PRAGMA page_size = 1024;
    PRAGMA journal_mode = WAL;
    CREATE TABLE whoami(x);







|







703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
#
# This test case verifies that if an exclusive lock cannot be obtained
# on any aReadMark[] slot (because there are already several readers),
# the client takes a shared-lock on a slot without modifying the value
# and continues.
#
set nConn 50
if { [string match *BSD $tcl_platform(os)] } { set nConn 25 }
do_test wal3-9.0 {
  file delete -force test.db test.db-journal test.db wal
  sqlite3 db test.db
  execsql {
    PRAGMA page_size = 1024;
    PRAGMA journal_mode = WAL;
    CREATE TABLE whoami(x);
780
781
782
783
784
785
786
787

  do_test wal3-10.$tn.2 {
    sql2 {PRAGMA integrity_check}
  } {ok}
}

finish_test








<
780
781
782
783
784
785
786


  do_test wal3-10.$tn.2 {
    sql2 {PRAGMA integrity_check}
  } {ok}
}

finish_test

Changes to test/wal6.test.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
	    CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
	    INSERT INTO t1 VALUES(1,2);
	    SELECT * FROM t1;
	  }
	} {1 2}

# Under Windows, you'll get an error trying to delete
# a file this is already opened.  For now, make sure 
# we get that error, then close the first connection
# so the other tests work.
if {$tcl_platform(platform)=="windows"} {
  if {$jmode=="persist" || $jmode=="truncate"} {
	  do_test wal6-1.2.$jmode.win {
	    sqlite3 db2 test.db
	    catchsql {
		    PRAGMA journal_mode=WAL;
	    } db2
	  } {1 {disk I/O error}}
  	db2 close
	  db close
  }
}

	do_test wal6-1.2.$jmode {
	  sqlite3 db2 test.db
	  execsql {
		PRAGMA journal_mode=WAL;







|
<



<
<
<
<
<
<
<
|







39
40
41
42
43
44
45
46

47
48
49







50
51
52
53
54
55
56
57
	    CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
	    INSERT INTO t1 VALUES(1,2);
	    SELECT * FROM t1;
	  }
	} {1 2}

# Under Windows, you'll get an error trying to delete
# a file this is already opened.  Close the first connection

# so the other tests work.
if {$tcl_platform(platform)=="windows"} {
  if {$jmode=="persist" || $jmode=="truncate"} {







    db close
  }
}

	do_test wal6-1.2.$jmode {
	  sqlite3 db2 test.db
	  execsql {
		PRAGMA journal_mode=WAL;
83
84
85
86
87
88
89
90
	db close
	db2 close
  forcedelete test.db

}

finish_test








<
75
76
77
78
79
80
81

	db close
	db2 close
  forcedelete test.db

}

finish_test

Added test/win32lock.test.
























































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# 2011 July 11
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is recovery from transient manditory locks
# that sometimes appear on database files due to anti-virus software.
#

if {$tcl_platform(platform)!="windows"} return

set testdir [file dirname $argv0]
source $testdir/tester.tcl

set testprefix win32lock

db close
sqlite3_shutdown
test_sqlite3_log xLog
proc xLog {error_code msg} {
  lappend ::log $msg 
}
sqlite3 db test.db

do_test win32lock-1.1 {
  db eval {
    PRAGMA cache_size=10;
    CREATE TABLE t1(x,y);
    INSERT INTO t1 VALUES(1,randomblob(100000));
    INSERT INTO t1 VALUES(2,randomblob(50000));
    INSERT INTO t1 VALUES(3,randomblob(25000));
    INSERT INTO t1 VALUES(4,randomblob(12500));
    SELECT x, length(y) FROM t1 ORDER BY rowid;
  }
} {1 100000 2 50000 3 25000 4 12500}

unset -nocomplain delay1 rc msg
set delay1 50
set rc 0
set old_pending_byte [sqlite3_test_control_pending_byte 0x40000000]
while {1} {
  sqlite3_sleep 10
  lock_win32_file test.db 0 $::delay1
  set rc [catch {db eval {SELECT x, length(y) FROM t1 ORDER BY rowid}} msg]
  if {$rc} {
    do_test win32lock-1.2-$delay1-fin {
       set ::msg
    } {disk I/O error}
    break
  } else {
    do_test win32lock-1.2-$delay1 {
       set ::msg
    } {1 100000 2 50000 3 25000 4 12500}
    if {$::log!=""} {
      do_test win32lock-1.2-$delay1-log1 {
        regsub {\d+} $::log # x
        set x
      } {{delayed #ms for lock/sharing conflict}}
    }
    incr delay1 50
  }
  set ::log {}
}

do_test win32lock-2.0 {
  file_control_win32_av_retry db -1 -1
} {0 10 25}
do_test win32lock-2.1 {
  file_control_win32_av_retry db 1 1
} {0 1 1}

set delay1 50
while {1} {
  sqlite3_sleep 10
  lock_win32_file test.db 0 $::delay1
  set rc [catch {db eval {SELECT x, length(y) FROM t1 ORDER BY rowid}} msg]
  if {$rc} {
    do_test win32lock-2.2-$delay1-fin {
       set ::msg
    } {disk I/O error}
    break
  } else {
    do_test win32lock-2.2-$delay1 {
       set ::msg
    } {1 100000 2 50000 3 25000 4 12500}
    if {$::log!=""} {
      do_test win32lock-2.2-$delay1-log1 {
        regsub {\d+} $::log # x
        set x
      } {{delayed #ms for lock/sharing conflict}}
    }
    incr delay1 50
  }
  set ::log {}
}

file_control_win32_av_retry db 10 25
sqlite3_test_control_pending_byte $old_pending_byte
sqlite3_shutdown
test_sqlite3_log 
sqlite3_initialize
finish_test
Changes to tool/symbols.sh.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
echo '****** Exported symbols from a build including RTREE, FTS4 & ICU ******'
gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
  -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_ENABLE_ICU \
  sqlite3.c
nm sqlite3.o | grep ' T ' | sort -k 3

echo '****** Surplus symbols from a build including RTREE, FTS4 & ICU ******'
nm sqlite3.o | grep ' T ' | grep -v ' sqlite3_'

echo '****** Dependencies of the core. No extensions. No OS interface *******'
gcc -c -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_OS_OTHER -DSQLITE_THREADSAFE=0 \
  sqlite3.c







|


|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
echo '****** Exported symbols from a build including RTREE, FTS4 & ICU ******'
gcc -c -DSQLITE_ENABLE_FTS3 -DSQLITE_ENABLE_RTREE \
  -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_ENABLE_ICU \
  sqlite3.c
nm sqlite3.o | grep ' [TD] ' | sort -k 3

echo '****** Surplus symbols from a build including RTREE, FTS4 & ICU ******'
nm sqlite3.o | grep ' [TD] ' | grep -v ' .*sqlite3_'

echo '****** Dependencies of the core. No extensions. No OS interface *******'
gcc -c -DSQLITE_ENABLE_MEMORY_MANAGEMENT -DSQLITE_ENABLE_STAT2 \
  -DSQLITE_ENABLE_MEMSYS5 -DSQLITE_ENABLE_UNLOCK_NOTIFY \
  -DSQLITE_ENABLE_COLUMN_METADATA -DSQLITE_ENABLE_ATOMIC_WRITE \
  -DSQLITE_OS_OTHER -DSQLITE_THREADSAFE=0 \
  sqlite3.c
Changes to tool/warnings.sh.
1
2
3
4
5
6
7
8
9
10




11
12
13
14
#/bin/sh
#
# Run this script in a directory with a working makefile to check for 
# compiler warnings in SQLite.
#
make sqlite3.c
echo '********** No optimizations.  Includes FTS4 and RTREE *********'
gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c




echo '********** Optimized -O3.  Includes FTS4 and RTREE *********'
gcc -O3 -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c










>
>
>
>
|



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#/bin/sh
#
# Run this script in a directory with a working makefile to check for 
# compiler warnings in SQLite.
#
make sqlite3.c
echo '********** No optimizations.  Includes FTS4 and RTREE *********'
gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c
echo '********** No optimizations. ENABLE_STAT2. THREADSAFE=0 *******'
gcc -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DSQLITE_ENABLE_STAT2 -DSQLITE_THREADSAFE=0 \
      sqlite3.c
echo '********** Optimized -O3.  Includes FTS4 and RTREE ************'
gcc -O3 -c -Wshadow -Wall -Wextra -pedantic-errors -Wno-long-long -std=c89 \
      -ansi -DHAVE_STDINT_H -DSQLITE_ENABLE_FTS4 -DSQLITE_ENABLE_RTREE \
      sqlite3.c