/ Check-in [0fe31f60]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Cut over the next generation query planner. Increase the version number to 3.8.0.
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 0fe31f60cadc5fe5a9d87e110bfaed5fd026cba1
User & Date: drh 2013-06-26 11:43:18
References
2016-10-26
16:05 Ticket [34a57914] Incorrect results with OR terms in the ON clause of a LEFT JOIN status still Open with 6 other changes artifact: 0155188b user: drh
2014-12-04
21:29 New ticket [c5ea8056] Inverted sort order when using DISTINCT and a descending index. artifact: 9fb2d923 user: drh
2014-04-25
14:04 New ticket [388d01d4] Crash on join with a virtual table, DISTINCT, and ORDER BY.. artifact: da138a0b user: drh
2014-04-20
09:34 New ticket [b75a9ca6] ORDER BY ignored if query has identical GROUP BY. artifact: 886cb1c9 user: drh
2014-03-20
11:52 New ticket [e39d0325] Assertion fault on a query containing "x IN (?)". artifact: c3311ddb user: drh
Context
2013-06-26
11:49
Omit tables from the FROM clause of a join if their presence makes no difference in the final output. check-in: 6505e2ab user: drh tags: trunk
11:43
Cut over the next generation query planner. Increase the version number to 3.8.0. check-in: 0fe31f60 user: drh tags: trunk
00:34
Fix an uninitialized variable detected by valgrind. Unclear whether or not this should apply to trunk. Closed-Leaf check-in: 19ab4811 user: drh tags: nextgen-query-plan-exp
2013-06-21
18:36
Remove an unused function declaration from the FTS3 source code. check-in: 096ae1d8 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to VERSION.

1
3.7.17
|
1
3.8.0

Changes to ext/fts3/fts3.c.

1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
  int iLangidCons = -1;           /* Index of langid=x constraint, if present */

  /* By default use a full table scan. This is an expensive option,
  ** so search through the constraints to see if a more efficient 
  ** strategy is possible.
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 500000;
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
    if( pCons->usable==0 ) continue;

    /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
    if( iCons<0 
     && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ 







|







1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
  int iLangidCons = -1;           /* Index of langid=x constraint, if present */

  /* By default use a full table scan. This is an expensive option,
  ** so search through the constraints to see if a more efficient 
  ** strategy is possible.
  */
  pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
  pInfo->estimatedCost = 5000000;
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
    if( pCons->usable==0 ) continue;

    /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
    if( iCons<0 
     && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ 

Changes to ext/misc/closure.c.

822
823
824
825
826
827
828

829
830

831
832
833




834
835
836
837
838
839
840
841

842
843
844
845
846
847
848
849
850
851

852
853
854
855
856
857
858
859

860
861
862
863
864
865
866
...
887
888
889
890
891
892
893

894
895
896
897
898
899
900
901
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;

  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;


  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){




    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;

    }
    if( (iPlan & 0x0000f0)==0
     && pConstraint->iColumn==CLOSURE_COL_DEPTH
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ)
    ){
      iPlan |= idx<<4;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT ) iPlan |= 0x000002;

    }
    if( (iPlan & 0x000f00)==0
     && pConstraint->iColumn==CLOSURE_COL_TABLENAME
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<8;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      pIdxInfo->aConstraintUsage[i].omit = 1;

    }
    if( (iPlan & 0x00f000)==0
     && pConstraint->iColumn==CLOSURE_COL_IDCOLUMN
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<12;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
................................................................................
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = (double)10000;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "approximate_match".
*/







>


>



>
>
>
>








>










>








>







 







>
|







822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
...
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
static int closureBestIndex(
  sqlite3_vtab *pTab,             /* The virtual table */
  sqlite3_index_info *pIdxInfo    /* Information about the query */
){
  int iPlan = 0;
  int i;
  int idx = 1;
  int seenMatch = 0;
  const struct sqlite3_index_constraint *pConstraint;
  closure_vtab *pVtab = (closure_vtab*)pTab;
  double rCost = 10000000.0;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      seenMatch = 1;
    }
    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==CLOSURE_COL_ROOT
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      rCost /= 100.0;
    }
    if( (iPlan & 0x0000f0)==0
     && pConstraint->iColumn==CLOSURE_COL_DEPTH
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ)
    ){
      iPlan |= idx<<4;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT ) iPlan |= 0x000002;
      rCost /= 5.0;
    }
    if( (iPlan & 0x000f00)==0
     && pConstraint->iColumn==CLOSURE_COL_TABLENAME
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<8;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      rCost /= 5.0;
    }
    if( (iPlan & 0x00f000)==0
     && pConstraint->iColumn==CLOSURE_COL_IDCOLUMN
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= idx<<12;
      pIdxInfo->aConstraintUsage[i].argvIndex = ++idx;
................................................................................
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==CLOSURE_COL_ID
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( seenMatch && (iPlan&1)==0 ) rCost *= 1e30;
  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "approximate_match".
*/

Changes to ext/misc/fuzzer.c.

1073
1074
1075
1076
1077
1078
1079

1080


1081
1082




1083
1084
1085
1086
1087
1088
1089
1090

1091
1092
1093
1094
1095
1096
1097
1098

1099
1100
1101
1102
1103
1104
1105
1106

1107
1108
1109
1110
1111
1112
1113
....
1118
1119
1120
1121
1122
1123
1124

1125
1126
1127
1128
1129
1130
1131
1132
** filter.argv[2] if both bit-1 and bit-2 are set.
*/
static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int iPlan = 0;
  int iDistTerm = -1;
  int iRulesetTerm = -1;
  int i;

  const struct sqlite3_index_constraint *pConstraint;


  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){




    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;

    }
    if( (iPlan & 2)==0
     && pConstraint->iColumn==1
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
    ){
      iPlan |= 2;
      iDistTerm = i;

    }
    if( (iPlan & 4)==0
     && pConstraint->iColumn==2
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 4;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      iRulesetTerm = i;

    }
  }
  if( iPlan & 2 ){
    pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
  }
  if( iPlan & 4 ){
    int idx = 1;
................................................................................
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==1
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }

  pIdxInfo->estimatedCost = (double)10000;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "fuzzer".
*/







>

>
>


>
>
>
>








>








>








>







 







>
|







1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
....
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
** filter.argv[2] if both bit-1 and bit-2 are set.
*/
static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int iPlan = 0;
  int iDistTerm = -1;
  int iRulesetTerm = -1;
  int i;
  int seenMatch = 0;
  const struct sqlite3_index_constraint *pConstraint;
  double rCost = 1e12;

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
      seenMatch = 1;
    }
    if( pConstraint->usable==0 ) continue;
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      rCost /= 1e6;
    }
    if( (iPlan & 2)==0
     && pConstraint->iColumn==1
     && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
           || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
    ){
      iPlan |= 2;
      iDistTerm = i;
      rCost /= 10.0;
    }
    if( (iPlan & 4)==0
     && pConstraint->iColumn==2
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 4;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      iRulesetTerm = i;
      rCost /= 10.0;
    }
  }
  if( iPlan & 2 ){
    pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
  }
  if( iPlan & 4 ){
    int idx = 1;
................................................................................
  pIdxInfo->idxNum = iPlan;
  if( pIdxInfo->nOrderBy==1
   && pIdxInfo->aOrderBy[0].iColumn==1
   && pIdxInfo->aOrderBy[0].desc==0
  ){
    pIdxInfo->orderByConsumed = 1;
  }
  if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
  pIdxInfo->estimatedCost = rCost;
   
  return SQLITE_OK;
}

/*
** A virtual table module that implements the "fuzzer".
*/

Changes to ext/rtree/rtree6.test.

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {Ca}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2: (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_eqp_test rtree6.2.4 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:CaEb (~0 rows)} 
  0 1 1 {SCAN TABLE t2 (~100000 rows)}
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2: (~0 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 







|
|





|
|





|
|





|
|





|
|







70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
do_test rtree6-1.5 {
  rtree_strategy {SELECT * FROM t1,t2 WHERE k=+ii AND x1<10}
} {Ca}

do_eqp_test rtree6.2.1 {
  SELECT * FROM t1,t2 WHERE k=+ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.2 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:Ca} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.3 {
  SELECT * FROM t1,t2 WHERE k=ii
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_eqp_test rtree6.2.4 {
  SELECT * FROM t1,t2 WHERE v=10 and x1<10 and x2>10
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:CaEb} 
  0 1 1 {SCAN TABLE t2}
}

do_eqp_test rtree6.2.5 {
  SELECT * FROM t1,t2 WHERE k=ii AND x1<v
} {
  0 0 0 {SCAN TABLE t1 VIRTUAL TABLE INDEX 2:} 
  0 1 1 {SEARCH TABLE t2 USING INTEGER PRIMARY KEY (rowid=?)}
}

do_execsql_test rtree6-3.1 {
  CREATE VIRTUAL TABLE t3 USING rtree(id, x1, x2, y1, y2);
  INSERT INTO t3 VALUES(NULL, 1, 1, 2, 2);
  SELECT * FROM t3 WHERE 
    x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND x1>0.5 AND 

Changes to ext/rtree/rtree8.test.

164
165
166
167
168
169
170
171
    execsql { DELETE FROM t2 WHERE id = $i }
  }
  execsql COMMIT
} {}


finish_test








<
164
165
166
167
168
169
170

    execsql { DELETE FROM t2 WHERE id = $i }
  }
  execsql COMMIT
} {}


finish_test

Changes to main.mk.

589
590
591
592
593
594
595



596
597
598
599
600
601
602

soaktest:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/all.test -soak=1

fulltestonly:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/full.test




test:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/veryquick.test

# The next two rules are used to support the "threadtest" target. Building
# threadtest runs a few thread-safety tests that are implemented in C. This
# target is invoked by the releasetest.tcl script.
# 







>
>
>







589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

soaktest:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/all.test -soak=1

fulltestonly:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/full.test

queryplantest:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/permutations.test queryplanner

test:	testfixture$(EXE) sqlite3$(EXE)
	./testfixture$(EXE) $(TOP)/test/veryquick.test

# The next two rules are used to support the "threadtest" target. Building
# threadtest runs a few thread-safety tests that are implemented in C. This
# target is invoked by the releasetest.tcl script.
# 

Changes to src/backup.c.

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
*************************************************************************
** This file contains the implementation of the sqlite3_backup_XXX() 
** API functions and the related features.
*/
#include "sqliteInt.h"
#include "btreeInt.h"

/* Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** Structure allocated for each backup operation.
*/
struct sqlite3_backup {
  sqlite3* pDestDb;        /* Destination database handle */
  Btree *pDest;            /* Destination b-tree file */
  u32 iDestSchema;         /* Original schema cookie in destination */







<
<
<
<
<
<







11
12
13
14
15
16
17






18
19
20
21
22
23
24
*************************************************************************
** This file contains the implementation of the sqlite3_backup_XXX() 
** API functions and the related features.
*/
#include "sqliteInt.h"
#include "btreeInt.h"







/*
** Structure allocated for each backup operation.
*/
struct sqlite3_backup {
  sqlite3* pDestDb;        /* Destination database handle */
  Btree *pDest;            /* Destination b-tree file */
  u32 iDestSchema;         /* Original schema cookie in destination */

Changes to src/build.c.

2692
2693
2694
2695
2696
2697
2698

2699
2700
2701
2702
2703
2704
2705
....
2750
2751
2752
2753
2754
2755
2756

2757
2758
2759
2760
2761
2762
2763
....
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
  pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;

  pIndex->autoIndex = (u8)(pName==0);
  pIndex->pSchema = db->aDb[iDb].pSchema;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
................................................................................
    }
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
      goto exit_create_index;
    }
    pIndex->azColl[i] = zColl;
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
    pIndex->aSortOrder[i] = (u8)requestedSortOrder;

  }
  sqlite3DefaultRowEst(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
    ** a PRIMARY KEY or UNIQUE clause following the column definitions.
................................................................................
               sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
    if( pNew==0 ){
      assert( db->mallocFailed );
      return pSrc;
    }
    pSrc = pNew;
    nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
    pSrc->nAlloc = (u16)nGot;
  }

  /* Move existing slots that come after the newly inserted slots
  ** out of the way */
  for(i=pSrc->nSrc-1; i>=iStart; i--){
    pSrc->a[i+nExtra] = pSrc->a[i];
  }
  pSrc->nSrc += (i16)nExtra;

  /* Zero the newly allocated slots */
  memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
  for(i=iStart; i<iStart+nExtra; i++){
    pSrc->a[i].iCursor = -1;
  }








>







 







>







 







|







|







2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
....
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
....
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
  pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
  pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
  zExtra = (char *)(&pIndex->zName[nName+1]);
  memcpy(pIndex->zName, zName, nName+1);
  pIndex->pTable = pTab;
  pIndex->nColumn = pList->nExpr;
  pIndex->onError = (u8)onError;
  pIndex->uniqNotNull = onError==OE_Abort;
  pIndex->autoIndex = (u8)(pName==0);
  pIndex->pSchema = db->aDb[iDb].pSchema;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );

  /* Check to see if we should honor DESC requests on index columns
  */
  if( pDb->pSchema->file_format>=4 ){
................................................................................
    }
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
      goto exit_create_index;
    }
    pIndex->azColl[i] = zColl;
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
    pIndex->aSortOrder[i] = (u8)requestedSortOrder;
    if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0;
  }
  sqlite3DefaultRowEst(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
    ** a PRIMARY KEY or UNIQUE clause following the column definitions.
................................................................................
               sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
    if( pNew==0 ){
      assert( db->mallocFailed );
      return pSrc;
    }
    pSrc = pNew;
    nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
    pSrc->nAlloc = (u8)nGot;
  }

  /* Move existing slots that come after the newly inserted slots
  ** out of the way */
  for(i=pSrc->nSrc-1; i>=iStart; i--){
    pSrc->a[i+nExtra] = pSrc->a[i];
  }
  pSrc->nSrc += (i8)nExtra;

  /* Zero the newly allocated slots */
  memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
  for(i=iStart; i<iStart+nExtra; i++){
    pSrc->a[i].iCursor = -1;
  }

Changes to src/expr.c.

916
917
918
919
920
921
922

923
924
925
926
927
928
929
....
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->done = 0;

    pItem->iOrderByCol = pOldItem->iOrderByCol;
    pItem->iAlias = pOldItem->iAlias;
  }
  return pNew;
}

/*
................................................................................
    }
  }

  if( eType==0 ){
    /* Could not found an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    double savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{
      testcase( pParse->nQueryLoop>(double)1 );
      pParse->nQueryLoop = (double)1;
      if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{







>







 







|






|
|







916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
....
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
  for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
    Expr *pOldExpr = pOldItem->pExpr;
    pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
    pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
    pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
    pItem->sortOrder = pOldItem->sortOrder;
    pItem->done = 0;
    pItem->bSpanIsTab = pOldItem->bSpanIsTab;
    pItem->iOrderByCol = pOldItem->iOrderByCol;
    pItem->iAlias = pOldItem->iAlias;
  }
  return pNew;
}

/*
................................................................................
    }
  }

  if( eType==0 ){
    /* Could not found an existing table or index to use as the RHS b-tree.
    ** We will have to generate an ephemeral table to do the job.
    */
    u32 savedNQueryLoop = pParse->nQueryLoop;
    int rMayHaveNull = 0;
    eType = IN_INDEX_EPH;
    if( prNotFound ){
      *prNotFound = rMayHaveNull = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
    }else{
      testcase( pParse->nQueryLoop>0 );
      pParse->nQueryLoop = 0;
      if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
        eType = IN_INDEX_ROWID;
      }
    }
    sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
    pParse->nQueryLoop = savedNQueryLoop;
  }else{

Changes to src/memjournal.c.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This mimimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))

/* Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** The rollback journal is composed of a linked list of these structures.
*/
struct FileChunk {
  FileChunk *pNext;               /* Next chunk in the journal */
  u8 zChunk[JOURNAL_CHUNKSIZE];   /* Content of this chunk */
};







<
<
<
<
<
<







27
28
29
30
31
32
33






34
35
36
37
38
39
40
** The size chosen is a little less than a power of two.  That way,
** the FileChunk object will have a size that almost exactly fills
** a power-of-two allocation.  This mimimizes wasted space in power-of-two
** memory allocators.
*/
#define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*)))







/*
** The rollback journal is composed of a linked list of these structures.
*/
struct FileChunk {
  FileChunk *pNext;               /* Next chunk in the journal */
  u8 zChunk[JOURNAL_CHUNKSIZE];   /* Content of this chunk */
};

Changes to src/os_win.c.

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */

/*
** Macro to find the minimum of two numeric values.
*/
#ifndef MIN
# define MIN(x,y) ((x)<(y)?(x):(y))
#endif

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1) 
#endif








<
<
<
<
<
<
<







80
81
82
83
84
85
86







87
88
89
90
91
92
93

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */








/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1) 
#endif

Changes to src/prepare.c.

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
...
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
      }
    }
  }

  sqlite3VtabUnlockList(db);

  pParse->db = db;
  pParse->nQueryLoop = (double)1;
  if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
    char *zSqlCopy;
    int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
    testcase( nBytes==mxLen );
    testcase( nBytes==mxLen+1 );
    if( nBytes>mxLen ){
      sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
................................................................................
      pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
    }else{
      pParse->zTail = &zSql[nBytes];
    }
  }else{
    sqlite3RunParser(pParse, zSql, &zErrMsg);
  }
  assert( 1==(int)pParse->nQueryLoop );

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
  if( pParse->checkSchema ){
    schemaIsValid(pParse);







|







 







|







588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
...
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
      }
    }
  }

  sqlite3VtabUnlockList(db);

  pParse->db = db;
  pParse->nQueryLoop = 0;  /* Logarithmic, so 0 really means 1 */
  if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){
    char *zSqlCopy;
    int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
    testcase( nBytes==mxLen );
    testcase( nBytes==mxLen+1 );
    if( nBytes>mxLen ){
      sqlite3Error(db, SQLITE_TOOBIG, "statement too long");
................................................................................
      pParse->zTail = &zSql[pParse->zTail-zSqlCopy];
    }else{
      pParse->zTail = &zSql[nBytes];
    }
  }else{
    sqlite3RunParser(pParse, zSql, &zErrMsg);
  }
  assert( 0==pParse->nQueryLoop );

  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK;
  if( pParse->checkSchema ){
    schemaIsValid(pParse);

Changes to src/select.c.

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
....
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
....
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
....
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
....
4263
4264
4265
4266
4267
4268
4269
4270



4271
4272


4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285

4286
4287
4288
4289
4290
4291
4292
....
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
....
4393
4394
4395
4396
4397
4398
4399
4400

4401
4402

4403
4404
4405
4406
4407
4408
4409
....
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
    v = sqlite3GetVdbe(pParse);
    if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
    if( sqlite3ExprIsInteger(p->pLimit, &n) ){
      sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
      VdbeComment((v, "LIMIT counter"));
      if( n==0 ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      }else{
        if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n;
      }
    }else{
      sqlite3ExprCode(pParse, p->pLimit, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
    }
................................................................................
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->nSelectRow += pPrior->nSelectRow;
      if( pPrior->pLimit
       && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
       && p->nSelectRow > (double)nLimit 
      ){
        p->nSelectRow = (double)nLimit;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:
................................................................................
#ifndef SQLITE_OMIT_EXPLAIN
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)",
        pTab->zName, 
        pIdx ? "USING COVERING INDEX " : "",
        pIdx ? pIdx->zName : "",
        pTab->nRowEst
    );
    sqlite3VdbeAddOp4(
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
................................................................................
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
    p->selFlags |= SF_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.
................................................................................
  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0);
    if( pWInfo==0 ) goto select_end;
    if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;



    if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct;
    if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0;



    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex);
      p->addrOpenEphm[2] = -1;
    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
                    pWInfo->iContinue, pWInfo->iBreak);


    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This case when there exist aggregate functions or a GROUP BY clause
    ** or both */
................................................................................

      for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100;
    }else{
      p->nSelectRow = (double)1;
    }

 
    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(v);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
................................................................................

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0);

      if( pWInfo==0 ) goto select_end;
      if( pWInfo->nOBSat==pGroupBy->nExpr ){

        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
................................................................................
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( pWInfo->nOBSat>0 ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
          VdbeComment((v, "%s() by index",
                (flag==WHERE_ORDERBY_MIN?"min":"max")));
        }
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, &sAggInfo);
      }








|
|







 







|

|







 







|

|
|
<







 







|







 







|
>
>
>
|
<
>
>












|
>







 







|

|







 







|
>

<
>







 







|
|







1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
....
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
....
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890

3891
3892
3893
3894
3895
3896
3897
....
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
....
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273

4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
....
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
....
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406

4407
4408
4409
4410
4411
4412
4413
4414
....
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
    v = sqlite3GetVdbe(pParse);
    if( NEVER(v==0) ) return;  /* VDBE should have already been allocated */
    if( sqlite3ExprIsInteger(p->pLimit, &n) ){
      sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
      VdbeComment((v, "LIMIT counter"));
      if( n==0 ){
        sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      }else if( n>=0 && p->nSelectRow>(u64)n ){
        p->nSelectRow = n;
      }
    }else{
      sqlite3ExprCode(pParse, p->pLimit, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak);
    }
................................................................................
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      p->nSelectRow += pPrior->nSelectRow;
      if( pPrior->pLimit
       && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit)
       && nLimit>0 && p->nSelectRow > (u64)nLimit 
      ){
        p->nSelectRow = nLimit;
      }
      if( addr ){
        sqlite3VdbeJumpHere(v, addr);
      }
      break;
    }
    case TK_EXCEPT:
................................................................................
#ifndef SQLITE_OMIT_EXPLAIN
static void explainSimpleCount(
  Parse *pParse,                  /* Parse context */
  Table *pTab,                    /* Table being queried */
  Index *pIdx                     /* Index used to optimize scan, or NULL */
){
  if( pParse->explain==2 ){
    char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s",
        pTab->zName, 
        pIdx ? " USING COVERING INDEX " : "",
        pIdx ? pIdx->zName : ""

    );
    sqlite3VdbeAddOp4(
        pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC
    );
  }
}
#else
................................................................................
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
  if( p->iLimit==0 && addrSortIndex>=0 ){
    sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen;
    p->selFlags |= SF_UseSorter;
  }

  /* Open a virtual index to use for the distinct set.
................................................................................
  if( !isAgg && pGroupBy==0 ){
    /* No aggregate functions and no GROUP BY clause */
    ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0);
    if( pWInfo==0 ) goto select_end;
    if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
      p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
    }
    if( sqlite3WhereIsDistinct(pWInfo) ){
      sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);

    }
    if( pOrderBy && sqlite3WhereIsOrdered(pWInfo) ) pOrderBy = 0;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
    if( addrSortIndex>=0 && pOrderBy==0 ){
      sqlite3VdbeChangeToNoop(v, addrSortIndex);
      p->addrOpenEphm[2] = -1;
    }

    /* Use the standard inner loop. */
    selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest,
                    sqlite3WhereContinueLabel(pWInfo),
                    sqlite3WhereBreakLabel(pWInfo));

    /* End the database scan loop.
    */
    sqlite3WhereEnd(pWInfo);
  }else{
    /* This case when there exist aggregate functions or a GROUP BY clause
    ** or both */
................................................................................

      for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
        pItem->iAlias = 0;
      }
      if( p->nSelectRow>100 ) p->nSelectRow = 100;
    }else{
      p->nSelectRow = 1;
    }

 
    /* Create a label to jump to when we want to abort the query */
    addrEnd = sqlite3VdbeMakeLabel(v);

    /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
................................................................................

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 
                                 WHERE_GROUPBY, 0);
      if( pWInfo==0 ) goto select_end;

      if( sqlite3WhereIsOrdered(pWInfo) ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        groupBySort = 0;
      }else{
        /* Rows are coming out in undetermined order.  We have to push
................................................................................
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        assert( pMinMax==0 || pMinMax->nExpr==1 );
        if( sqlite3WhereIsOrdered(pWInfo) ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3WhereBreakLabel(pWInfo));
          VdbeComment((v, "%s() by index",
                (flag==WHERE_ORDERBY_MIN?"min":"max")));
        }
        sqlite3WhereEnd(pWInfo);
        finalizeAggFunctions(pParse, &sAggInfo);
      }

Changes to src/sqliteInt.h.

391
392
393
394
395
396
397






398
399
400
401
402
403
404
...
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
....
1541
1542
1543
1544
1545
1546
1547

1548
1549
1550
1551
1552
1553
1554
....
1886
1887
1888
1889
1890
1891
1892





1893
1894
1895
1896
1897
1898
1899
....
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
....
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037


2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
....
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
....
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
....
2885
2886
2887
2888
2889
2890
2891






2892
2893
2894
2895
2896
2897
2898
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif







/*
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
................................................................................
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;
typedef struct WherePlan WherePlan;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;

/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"
................................................................................
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */
  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */

#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

................................................................................
typedef u64 Bitmask;

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  ((int)(sizeof(Bitmask)*8))






/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
**
** With the addition of multiple database support, the following structure
** can also be used to describe a particular table such as the table that
................................................................................
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
**
** In the colUsed field, the high-order bit (bit 63) is set if the table
** contains more than 63 columns and the 64-th or later column is used.
*/
struct SrcList {
  i16 nSrc;        /* Number of tables or subqueries in the FROM clause */
  i16 nAlloc;      /* Number of entries allocated in a[] below */
  struct SrcList_item {
    Schema *pSchema;  /* Schema to which this item is fixed */
    char *zDatabase;  /* Name of database holding this table */
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */
................................................................................
#define JT_NATURAL   0x0004    /* True for a "natural" join */
#define JT_LEFT      0x0008    /* Left outer join */
#define JT_RIGHT     0x0010    /* Right outer join */
#define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
#define JT_ERROR     0x0040    /* unknown or unsupported join type */


/*
** A WherePlan object holds information that describes a lookup
** strategy.
**
** This object is intended to be opaque outside of the where.c module.
** It is included here only so that that compiler will know how big it
** is.  None of the fields in this object should be used outside of
** the where.c module.
**
** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true.
** pTerm is only used when wsFlags&WHERE_MULTI_OR is true.  And pVtabIdx
** is only used when wsFlags&WHERE_VIRTUALTABLE is true.  It is never the
** case that more than one of these conditions is true.
*/
struct WherePlan {
  u32 wsFlags;                   /* WHERE_* flags that describe the strategy */
  u16 nEq;                       /* Number of == constraints */
  u16 nOBSat;                    /* Number of ORDER BY terms satisfied */
  double nRow;                   /* Estimated number of rows (for EQP) */
  union {
    Index *pIdx;                   /* Index when WHERE_INDEXED is true */
    struct WhereTerm *pTerm;       /* WHERE clause term for OR-search */
    sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
  } u;
};

/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure.  This structure
** is intended to be private to the where.c module and should not be
** access or modified by other modules.
**
** The pIdxInfo field is used to help pick the best index on a
** virtual table.  The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
** All other information in the i-th WhereLevel object for the i-th table
** after FROM clause ordering.
*/
struct WhereLevel {
  WherePlan plan;       /* query plan for this element of the FROM clause */
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  int iTabCur;          /* The VDBE cursor used to access the table */
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on plan.wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  double rOptCost;      /* "Optimal" cost for this level */

  /* The following field is really not part of the current level.  But
  ** we need a place to cache virtual table index information for each
  ** virtual table in the FROM clause and the WhereLevel structure is
  ** a convenient place since there is one WhereLevel for each FROM clause
  ** element.
  */
  sqlite3_index_info *pIdxInfo;  /* Index info for n-th source table */
};

/*
** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
** and the WhereInfo.wctrlFlags member.
*/
#define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */



/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  u16 nOBSat;               /* Number of ORDER BY terms satisfied by indices */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int nLevel;               /* Number of nested loop */
  struct WhereClause *pWC;  /* Decomposition of the WHERE clause */
  double savedNQueryLoop;   /* pParse->nQueryLoop outside the WHERE loop */
  double nRowOut;           /* Estimated number of output rows */
  WhereLevel a[1];          /* Information about each nest loop in WHERE */
};

/* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */
#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */

/*
** A NameContext defines a context in which to resolve table and column
................................................................................
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
  double nSelectRow;     /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
  Select *pNext;         /* Next select to the left in a compound */
................................................................................
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
  Parse *pToplevel;    /* Parse structure for main program (or NULL) */
  Table *pTriggerTab;  /* Table triggers are being coded for */
  double nQueryLoop;   /* Estimated number of iterations of a query */
  u32 oldmask;         /* Mask of old.* columns referenced */
  u32 newmask;         /* Mask of new.* columns referenced */
  u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
  u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
  u8 disableTriggers;  /* True to disable triggers */

  /* Above is constant between recursions.  Below is reset before and after
................................................................................
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);






int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*, int);
void sqlite3ExprCacheRemove(Parse*, int, int);







>
>
>
>
>
>







 







<

<







 







>







 







>
>
>
>
>







 







|
|







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<













>
>

<
<
|
<
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|







 







|







 







>
>
>
>
>
>







391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
...
722
723
724
725
726
727
728

729

730
731
732
733
734
735
736
....
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
....
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
....
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
....
1955
1956
1957
1958
1959
1960
1961









































































1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977


1978



1979



















1980
1981
1982
1983
1984
1985
1986
....
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
....
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
....
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
#endif

/*
** Macros to compute minimum and maximum of two numbers.
*/
#define MIN(A,B) ((A)<(B)?(A):(B))
#define MAX(A,B) ((A)>(B)?(A):(B))

/*
** Check to see if this machine uses EBCDIC.  (Yes, believe it or
** not, there are still machines out there that use EBCDIC.)
*/
#if 'A' == '\301'
# define SQLITE_EBCDIC 1
#else
................................................................................
typedef struct Trigger Trigger;
typedef struct TriggerPrg TriggerPrg;
typedef struct TriggerStep TriggerStep;
typedef struct UnpackedRecord UnpackedRecord;
typedef struct VTable VTable;
typedef struct VtabCtx VtabCtx;
typedef struct Walker Walker;

typedef struct WhereInfo WhereInfo;


/*
** Defer sourcing vdbe.h and btree.h until after the "u8" and 
** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque
** pointer types (i.e. FuncDef) defined above.
*/
#include "btree.h"
................................................................................
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */
  int tnum;                /* DB Page containing root of this index */
  u16 nColumn;             /* Number of columns in table used by this index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned autoIndex:2;    /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
#ifdef SQLITE_ENABLE_STAT3
  int nSample;             /* Number of elements in aSample[] */
  tRowcnt avgEq;           /* Average nEq value for key values not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
#endif
};

................................................................................
typedef u64 Bitmask;

/*
** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
*/
#define BMS  ((int)(sizeof(Bitmask)*8))

/*
** A bit in a Bitmask
*/
#define MASKBIT(n)   (((Bitmask)1)<<(n))

/*
** The following structure describes the FROM clause of a SELECT statement.
** Each table or subquery in the FROM clause is a separate element of
** the SrcList.a[] array.
**
** With the addition of multiple database support, the following structure
** can also be used to describe a particular table such as the table that
................................................................................
** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each
** jointype expresses the join between the table and the previous table.
**
** In the colUsed field, the high-order bit (bit 63) is set if the table
** contains more than 63 columns and the 64-th or later column is used.
*/
struct SrcList {
  u8 nSrc;        /* Number of tables or subqueries in the FROM clause */
  u8 nAlloc;      /* Number of entries allocated in a[] below */
  struct SrcList_item {
    Schema *pSchema;  /* Schema to which this item is fixed */
    char *zDatabase;  /* Name of database holding this table */
    char *zName;      /* Name of the table */
    char *zAlias;     /* The "B" part of a "A AS B" phrase.  zName is the "A" */
    Table *pTab;      /* An SQL table corresponding to zName */
    Select *pSelect;  /* A SELECT statement used in place of a table name */
................................................................................
#define JT_NATURAL   0x0004    /* True for a "natural" join */
#define JT_LEFT      0x0008    /* Left outer join */
#define JT_RIGHT     0x0010    /* Right outer join */
#define JT_OUTER     0x0020    /* The "OUTER" keyword is present */
#define JT_ERROR     0x0040    /* unknown or unsupported join type */











































































/*
** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin()
** and the WhereInfo.wctrlFlags member.
*/
#define WHERE_ORDERBY_NORMAL   0x0000 /* No-op */
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_AND_ONLY         0x0080 /* Don't use indices for OR terms */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */



/* Allowed return values from sqlite3WhereIsDistinct()



*/



















#define WHERE_DISTINCT_NOOP      0  /* DISTINCT keyword not used */
#define WHERE_DISTINCT_UNIQUE    1  /* No duplicates */
#define WHERE_DISTINCT_ORDERED   2  /* All duplicates are adjacent */
#define WHERE_DISTINCT_UNORDERED 3  /* Duplicates are scattered */

/*
** A NameContext defines a context in which to resolve table and column
................................................................................
*/
struct Select {
  ExprList *pEList;      /* The fields of the result */
  u8 op;                 /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
  u16 selFlags;          /* Various SF_* values */
  int iLimit, iOffset;   /* Memory registers holding LIMIT & OFFSET counters */
  int addrOpenEphm[3];   /* OP_OpenEphem opcodes related to this select */
  u64 nSelectRow;        /* Estimated number of result rows */
  SrcList *pSrc;         /* The FROM clause */
  Expr *pWhere;          /* The WHERE clause */
  ExprList *pGroupBy;    /* The GROUP BY clause */
  Expr *pHaving;         /* The HAVING clause */
  ExprList *pOrderBy;    /* The ORDER BY clause */
  Select *pPrior;        /* Prior select in a compound select statement */
  Select *pNext;         /* Next select to the left in a compound */
................................................................................
  TableLock *aTableLock; /* Required table locks for shared-cache mode */
#endif
  AutoincInfo *pAinc;  /* Information about AUTOINCREMENT counters */

  /* Information used while coding trigger programs. */
  Parse *pToplevel;    /* Parse structure for main program (or NULL) */
  Table *pTriggerTab;  /* Table triggers are being coded for */
  u32 nQueryLoop;      /* Est number of iterations of a query (10*log2(N)) */
  u32 oldmask;         /* Mask of old.* columns referenced */
  u32 newmask;         /* Mask of new.* columns referenced */
  u8 eTriggerOp;       /* TK_UPDATE, TK_INSERT or TK_DELETE */
  u8 eOrconf;          /* Default ON CONFLICT policy for trigger steps */
  u8 disableTriggers;  /* True to disable triggers */

  /* Above is constant between recursions.  Below is reset before and after
................................................................................
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*);
#endif
void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int);
void sqlite3WhereEnd(WhereInfo*);
u64 sqlite3WhereOutputRowCount(WhereInfo*);
int sqlite3WhereIsDistinct(WhereInfo*);
int sqlite3WhereIsOrdered(WhereInfo*);
int sqlite3WhereContinueLabel(WhereInfo*);
int sqlite3WhereBreakLabel(WhereInfo*);
int sqlite3WhereOkOnePass(WhereInfo*);
int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
void sqlite3ExprCodeMove(Parse*, int, int, int);
void sqlite3ExprCacheStore(Parse*, int, int, int);
void sqlite3ExprCachePush(Parse*);
void sqlite3ExprCachePop(Parse*, int);
void sqlite3ExprCacheRemove(Parse*, int, int);

Changes to src/test1.c.

6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
....
6353
6354
6355
6356
6357
6358
6359


6360
6361

6362
6363
6364
6365
6366
6367
6368
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST
  extern char sqlite3_query_plan[];
  static char *query_plan = sqlite3_query_plan;
#ifdef SQLITE_ENABLE_FTS3
  extern int sqlite3_fts3_enable_parentheses;
#endif
#endif

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
................................................................................
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#if SQLITE_OS_WIN
  Tcl_LinkVar(interp, "sqlite_os_type",
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST


  Tcl_LinkVar(interp, "sqlite_query_plan",
      (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);

#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite3WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite3OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL







<
<







 







>
>
|
|
>







6298
6299
6300
6301
6302
6303
6304


6305
6306
6307
6308
6309
6310
6311
....
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
#endif
#ifdef SQLITE_DEBUG
  extern int sqlite3WhereTrace;
  extern int sqlite3OSTrace;
  extern int sqlite3WalTrace;
#endif
#ifdef SQLITE_TEST


#ifdef SQLITE_ENABLE_FTS3
  extern int sqlite3_fts3_enable_parentheses;
#endif
#endif

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
................................................................................
      (char*)&pzNeededCollation, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
#endif
#if SQLITE_OS_WIN
  Tcl_LinkVar(interp, "sqlite_os_type",
      (char*)&sqlite3_os_type, TCL_LINK_INT);
#endif
#ifdef SQLITE_TEST
  {
    static const char *query_plan = "*** OBSOLETE VARIABLE ***";
    Tcl_LinkVar(interp, "sqlite_query_plan",
       (char*)&query_plan, TCL_LINK_STRING|TCL_LINK_READ_ONLY);
  }
#endif
#ifdef SQLITE_DEBUG
  Tcl_LinkVar(interp, "sqlite_where_trace",
      (char*)&sqlite3WhereTrace, TCL_LINK_INT);
  Tcl_LinkVar(interp, "sqlite_os_trace",
      (char*)&sqlite3OSTrace, TCL_LINK_INT);
#ifndef SQLITE_OMIT_WAL

Changes to src/update.c.

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  /* Begin the database scan
  */
  sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = pWInfo->okOnePass;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
  if( !okOnePass ){
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
  }







|







314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
  /* Begin the database scan
  */
  sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = sqlite3WhereOkOnePass(pWInfo);

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
  if( !okOnePass ){
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid);
  }

Changes to src/where.c.

23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40

41













































































































































42
43
44
45
46
47
48
..
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
...
121
122
123
124
125
126
127
















128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
...
198
199
200
201
202
203
204
205
206
207
208
209
210
211


212
213
214

































215

216
217

218
219
220
221
222
223
224
...
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316











317
318
319
320
321
322
323
324
325
326
327
328
...
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
...
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
...
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
...
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
...
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
...
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
...
620
621
622
623
624
625
626




























































































































627
628
629
630
631
632
633
...
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678


679
680
681
682
683
684


685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
...
971
972
973
974
975
976
977
978

979
980
981
982
983
984
985
986
987
988
989
...
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
....
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
....
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
....
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
....
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
....
1222
1223
1224
1225
1226
1227
1228

1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
....
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
....
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
....
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

1692
1693
1694
1695
1696
1697




1698










































1699
1700

1701
1702








1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
....
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
....
1855
1856
1857
1858
1859
1860
1861

1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
....
1966
1967
1968
1969
1970
1971
1972

1973
1974
1975
1976
1977
1978
1979
....
1980
1981
1982
1983
1984
1985
1986

1987
1988
1989
1990
1991
1992
1993
1994

1995
1996
1997
1998
1999
2000
2001


2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042


2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075

2076
2077
2078
2079
2080
2081
2082
....
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106

2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
....
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
....
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
....
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
....
2244
2245
2246
2247
2248
2249
2250

2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
....
2531
2532
2533
2534
2535
2536
2537
2538


2539
2540
2541
2542
2543
2544
2545
2546
2547
....
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
....
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747


2748


2749


2750
2751
2752
2753
2754
2755
2756
....
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
....
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
....
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
....
3809
3810
3811
3812
3813
3814
3815

3816
3817
3818
3819
3820
3821
3822
....
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835

3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853

3854
3855
3856
3857
3858
3859
3860
....
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932

3933
3934
3935
3936
3937
3938
3939
3940




3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
....
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
....
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087


4088


4089
4090
4091
4092

4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105


4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132

4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
....
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165

4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180

4181
4182
4183

4184
4185
4186
4187
4188
4189
4190
4191
4192
....
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242


4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256

4257
4258

4259
4260
4261

4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273


4274
4275
4276
4277
4278

4279
4280

4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293


4294
4295
4296
4297
4298
4299
4300
4301
4302
4303



4304
4305
4306
4307
4308
4309
4310
....
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
....
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
....
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464

4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
....
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
....
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
....
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
....
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
....
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
....
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
....
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
....
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
....
4884
4885
4886
4887
4888
4889
4890


4891
4892
4893
4894
4895
4896
4897
....
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928






































4929
4930
4931





4932








































4933
4934
4935
4936
























4937
4938
4939
4940













































































































































































































































































































































































4941
4942
























































































































































































4943
4944










































































4945























































4946









4947

4948





4949

4950
























































































































































































































































4951
4952








































4953
4954



























































































































































































































































































































4955

4956
4957






4958
4959





























4960

4961
4962





















4963
























































4964
4965
4966
4967
4968
4969
4970
....
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
....
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073

5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
....
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117


5118
5119
5120
5121
5122

5123






5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143







5144
5145
5146
5147
5148
5149
5150
....
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
















5185
5186
5187
5188

5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284





5285
5286
5287
5288










5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321





5322
5323
5324
5325
5326
5327
5328
5329


5330
5331
5332


5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345






5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402


5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415



5416
5417
5418



5419
5420
5421
5422
5423
5424



5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443

5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461

5462
5463
5464
5465
5466
5467
5468
5469

5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483

5484
5485
5486
5487
5488

5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525

5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
....
5620
5621
5622
5623
5624
5625
5626

5627
5628
5629
5630
5631
5632
5633
5634

5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
....
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
....
5678
5679
5680
5681
5682
5683
5684

5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
....
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;
#endif
#if defined(SQLITE_DEBUG) \
    && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))

# define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
#else
# define WHERETRACE(X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;
typedef struct WhereMaskSet WhereMaskSet;
typedef struct WhereOrInfo WhereOrInfo;
typedef struct WhereAndInfo WhereAndInfo;

typedef struct WhereCost WhereCost;














































































































































/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by AND operators,
** usually, or sometimes subexpressions separated by OR.
**
................................................................................
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** The number of terms in a join is limited by the number of bits
** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
** is only able to process joins with 64 or fewer tables.
*/
typedef struct WhereTerm WhereTerm;
struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
................................................................................
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif

















/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
**
** Explanation of pOuter:  For a WHERE clause of the form
**
**           a AND ((b AND c) OR (d AND e)) AND f
**
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  Parse *pParse;           /* The parser context */
  WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */
  u16 wctrlFlags;          /* Might include WHERE_AND_ONLY */
  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)
  WhereTerm aStatic[1];    /* Initial static space for a[] */
#else
  WhereTerm aStatic[8];    /* Initial static space for a[] */
................................................................................
*/
struct WhereMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[BMS];                  /* Cursor assigned to each bit */
};

/*
** A WhereCost object records a lookup strategy and the estimated
** cost of pursuing that strategy.
*/
struct WhereCost {
  WherePlan plan;    /* The lookup strategy */
  double rCost;      /* Overall cost of pursuing this search strategy */
  Bitmask used;      /* Bitmask of cursors used by this plan */


};

/*

































** Bitmasks for the operators that indices are able to exploit.  An

** OR-ed combination of these values can be used when searching for
** terms in the where clause.

*/
#define WO_IN     0x001
#define WO_EQ     0x002
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
................................................................................
#define WO_EQUIV  0x400       /* Of the form A==B, both columns */
#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** Value for wsFlags returned by bestIndex() and stored in
** WhereLevel.wsFlags.  These flags determine which search
** strategies are appropriate.
**
** The least significant 12 bits is reserved as a mask for WO_ values above.
** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
** But if the table is the right table of a left join, WhereLevel.wsFlags
** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
** the "op" parameter to findTerm when we are resolving equality constraints.
** ISNULL constraints will then not be used on the right table of a left
** join.  Tickets #2177 and #2189.
*/
#define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
#define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
#define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
#define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
#define WHERE_NOT_FULLSCAN 0x100f3000  /* Does not do a full table scan */
#define WHERE_IN_ABLE      0x080f1000  /* Able to support an IN operator */
#define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00300000  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00400000  /* Use index only - omit table */
#define WHERE_ORDERED      0x00800000  /* Output will appear in correct order */
#define WHERE_REVERSE      0x01000000  /* Scan in reverse order */
#define WHERE_UNIQUE       0x02000000  /* Selects no more than one row */
#define WHERE_ALL_UNIQUE   0x04000000  /* This and all prior have one row */
#define WHERE_OB_UNIQUE    0x00004000  /* Values in ORDER BY columns are 
                                       ** different for every output row */
#define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
#define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
#define WHERE_TEMP_INDEX   0x20000000  /* Uses an ephemeral index */
#define WHERE_DISTINCT     0x40000000  /* Correct order for DISTINCT */
#define WHERE_COVER_SCAN   0x80000000  /* Full scan of a covering index */

/*
** This module contains many separate subroutines that work together to
** find the best indices to use for accessing a particular table in a query.
** An instance of the following structure holds context information about the
** index search so that it can be more easily passed between the various
** routines.
*/
typedef struct WhereBestIdx WhereBestIdx;
struct WhereBestIdx {
  Parse *pParse;                  /* Parser context */
  WhereClause *pWC;               /* The WHERE clause */
  struct SrcList_item *pSrc;      /* The FROM clause term to search */
  Bitmask notReady;               /* Mask of cursors not available */
  Bitmask notValid;               /* Cursors not available for any purpose */
  ExprList *pOrderBy;             /* The ORDER BY clause */
  ExprList *pDistinct;            /* The select-list if query is DISTINCT */
  sqlite3_index_info **ppIdxInfo; /* Index information passed to xBestIndex */
  int i, n;                       /* Which loop is being coded; # of loops */
  WhereLevel *aLevel;             /* Info about outer loops */
  WhereCost cost;                 /* Lowest cost query plan */
};

/*
** Return TRUE if the probe cost is less than the baseline cost
*/
static int compareCost(const WhereCost *pProbe, const WhereCost *pBaseline){
  if( pProbe->rCost<pBaseline->rCost ) return 1;
  if( pProbe->rCost>pBaseline->rCost ) return 0;
  if( pProbe->plan.nOBSat>pBaseline->plan.nOBSat ) return 1;
  if( pProbe->plan.nRow<pBaseline->plan.nRow ) return 1;
  return 0;
}

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  Parse *pParse,           /* The parsing context */
  WhereMaskSet *pMaskSet,  /* Mapping from table cursor numbers to bitmasks */
  u16 wctrlFlags           /* Might include WHERE_AND_ONLY */
){
  pWC->pParse = pParse;
  pWC->pMaskSet = pMaskSet;











  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;
  pWC->wctrlFlags = wctrlFlags;
}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*
** Deallocate all memory associated with a WhereOrInfo object.
................................................................................
/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of whereClauseInit().
*/
static void whereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  sqlite3 *db = pWC->pParse->db;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->wtFlags & TERM_DYNAMIC ){
      sqlite3ExprDelete(db, a->pExpr);
    }
    if( a->wtFlags & TERM_ORINFO ){
      whereOrInfoDelete(db, a->u.pOrInfo);
    }else if( a->wtFlags & TERM_ANDINFO ){
................................................................................
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;
................................................................................
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
** the WhereClause.a[] array.  The slot[] array grows as needed to contain
** all terms of the WHERE clause.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
  pWC->op = (u8)op;
  if( pExpr==0 ) return;
  if( pExpr->op!=op ){
    whereClauseInsert(pWC, pExpr, 0);
  }else{
    whereSplit(pWC, pExpr->pLeft, op);
    whereSplit(pWC, pExpr->pRight, op);
  }
}

/*
** Initialize an expression mask set (a WhereMaskSet object)
*/
#define initMaskSet(P)  memset(P, 0, sizeof(*P))

/*
** Return the bitmask for the given cursor number.  Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
  int i;
  assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
  for(i=0; i<pMaskSet->n; i++){
    if( pMaskSet->ix[i]==iCursor ){
      return ((Bitmask)1)<<i;
    }
  }
  return 0;
}

/*
** Create a new mask for cursor iCursor.
................................................................................
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** This routine walks (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.
**
** In order for this routine to work, the calling function must have
** previously invoked sqlite3ResolveExprNames() on the expression.  See
** the header comment on that routine for additional information.
** The sqlite3ResolveExprNames() routines looks for column names and
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
** the VDBE cursor number of the table.  This routine just has to
** translate the cursor numbers into bitmask values and OR all
** the bitmasks together.
*/
static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
................................................................................
  }
  return mask;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", and "IN".
**
** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
** of one of the following forms: column = expression column > expression
** column >= expression column < expression column <= expression
** expression = column expression > column expression >= column
** expression < column expression <= column column IN
** (expression-list) column IN (subquery) column IS NULL
................................................................................
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Commute a comparison operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If left/right precedence rules come into play when determining the
** collating
** side of the comparison, it remains associated with the same side after
** the commutation. So "Y collate NOCASE op X" becomes 
** "X op Y". This is because any collation sequence on
** the left hand side of a comparison overrides any collation sequence 
** attached to the right. For the same reason the EP_Collate flag
** is not commuted.
*/
static void exprCommute(Parse *pParse, Expr *pExpr){
  u16 expRight = (pExpr->pRight->flags & EP_Collate);
  u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
................................................................................
  assert( op!=TK_EQ || c==WO_EQ );
  assert( op!=TK_LT || c==WO_LT );
  assert( op!=TK_LE || c==WO_LE );
  assert( op!=TK_GT || c==WO_GT );
  assert( op!=TK_GE || c==WO_GE );
  return c;
}





























































































































/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
**
................................................................................
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pTerm;            /* Term being examined as possible result */
  WhereTerm *pResult = 0;      /* The answer to return */
  WhereClause *pWCOrig = pWC;  /* Original pWC value */
  int j, k;                    /* Loop counters */
  Expr *pX;                /* Pointer to an expression */
  Parse *pParse;           /* Parsing context */
  int iOrigCol = iColumn;  /* Original value of iColumn */
  int nEquiv = 2;          /* Number of entires in aEquiv[] */
  int iEquiv = 2;          /* Number of entries of aEquiv[] processed so far */
  int aEquiv[22];          /* iCur,iColumn and up to 10 other equivalents */

  assert( iCur>=0 );
  aEquiv[0] = iCur;
  aEquiv[1] = iColumn;
  for(;;){
    for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){
      for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
        if( pTerm->leftCursor==iCur
          && pTerm->u.leftColumn==iColumn
        ){


          if( (pTerm->prereqRight & notReady)==0
           && (pTerm->eOperator & op & WO_ALL)!=0
          ){
            if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){
              CollSeq *pColl;
              char idxaff;


      
              pX = pTerm->pExpr;
              pParse = pWC->pParse;
              idxaff = pIdx->pTable->aCol[iOrigCol].affinity;
              if( !sqlite3IndexAffinityOk(pX, idxaff) ){
                continue;
              }
      
              /* Figure out the collation sequence required from an index for
              ** it to be useful for optimising expression pX. Store this
              ** value in variable pColl.
              */
              assert(pX->pLeft);
              pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight);
              if( pColl==0 ) pColl = pParse->db->pDfltColl;
      
              for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){
                if( NEVER(j>=pIdx->nColumn) ) return 0;
              }
              if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){
                continue;
              }
            }
            if( pTerm->prereqRight==0 && (pTerm->eOperator&WO_EQ)!=0 ){
              pResult = pTerm;
              goto findTerm_success;
            }else if( pResult==0 ){
              pResult = pTerm;
            }

          }
          if( (pTerm->eOperator & WO_EQUIV)!=0
           && nEquiv<ArraySize(aEquiv)
          ){
            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
            assert( pX->op==TK_COLUMN );
            for(j=0; j<nEquiv; j+=2){
              if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break;
            }
            if( j==nEquiv ){
              aEquiv[j] = pX->iTable;
              aEquiv[j+1] = pX->iColumn;
              nEquiv += 2;
            }
          }
        }
      }
    }
    if( iEquiv>=nEquiv ) break;
    iCur = aEquiv[iEquiv++];
    iColumn = aEquiv[iEquiv++];
  }
findTerm_success:
  return pResult;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  
**
**
*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */
  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){
................................................................................
** zero.  This term is not useful for search.
*/
static void exprAnalyzeOrTerm(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the complete WHERE clause */
  int idxTerm               /* Index of the OR-term to be analyzed */
){
  Parse *pParse = pWC->pParse;            /* Parser context */

  sqlite3 *db = pParse->db;               /* Database connection */
  WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
  Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
  WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
  int i;                                  /* Loop counters */
  WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
  WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
  WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
  Bitmask chngToIN;         /* Tables that might satisfy case 1 */
  Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */

................................................................................
  */
  assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
  assert( pExpr->op==TK_OR );
  pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
  if( pOrInfo==0 ) return;
  pTerm->wtFlags |= TERM_ORINFO;
  pOrWc = &pOrInfo->wc;
  whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags);
  whereSplit(pOrWc, pExpr, TK_OR);
  exprAnalyzeAll(pSrc, pOrWc);
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
................................................................................
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags);
        whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        exprAnalyzeAll(pSrc, pAndWC);
        pAndWC->pOuter = pWC;
        testcase( db->mallocFailed );
        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= getMask(pMaskSet, pAndTerm->leftCursor);
            }
          }
        }
        indexable &= b;
      }
    }else if( pOrTerm->wtFlags & TERM_COPIED ){
      /* Skip this term for now.  We revisit it when we process the
      ** corresponding TERM_VIRTUAL term */
    }else{
      Bitmask b;
      b = getMask(pMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(pMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
................................................................................
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceeded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
................................................................................
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==getMask(pMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
................................................................................

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
      pDup = sqlite3ExprDup(db, pLeft, 0);
      pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;
................................................................................
** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){

  WhereTerm *pTerm;                /* The term to be analyzed */
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* LIKE/GLOB distinguishes case */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWC->pParse;     /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = pWC->pMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
................................................................................
  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

/*
** This function searches the expression list passed as the second argument
** for an expression of type TK_COLUMN that refers to the same column and
** uses the same collation sequence as the iCol'th column of index pIdx.
** Argument iBase is the cursor number used for the table that pIdx refers
** to.
**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */
  ExprList *pList,                /* Expression list to search */
................................................................................
        return i;
      }
    }
  }

  return -1;
}

/*
** This routine determines if pIdx can be used to assist in processing a
** DISTINCT qualifier. In other words, it tests whether or not using this
** index for the outer loop guarantees that rows with equal values for
** all expressions in the pDistinct list are delivered grouped together.
**
** For example, the query 
**
**   SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
**
** can benefit from any index on columns "b" and "c".
*/
static int isDistinctIndex(
  Parse *pParse,                  /* Parsing context */
  WhereClause *pWC,               /* The WHERE clause */
  Index *pIdx,                    /* The index being considered */
  int base,                       /* Cursor number for the table pIdx is on */
  ExprList *pDistinct,            /* The DISTINCT expressions */
  int nEqCol                      /* Number of index columns with == */
){
  Bitmask mask = 0;               /* Mask of unaccounted for pDistinct exprs */
  int i;                          /* Iterator variable */

  assert( pDistinct!=0 );
  if( pIdx->zName==0 || pDistinct->nExpr>=BMS ) return 0;
  testcase( pDistinct->nExpr==BMS-1 );

  /* Loop through all the expressions in the distinct list. If any of them
  ** are not simple column references, return early. Otherwise, test if the
  ** WHERE clause contains a "col=X" clause. If it does, the expression
  ** can be ignored. If it does not, and the column does not belong to the
  ** same table as index pIdx, return early. Finally, if there is no
  ** matching "col=X" expression and the column is on the same table as pIdx,
  ** set the corresponding bit in variable mask.
  */
  for(i=0; i<pDistinct->nExpr; i++){
    WhereTerm *pTerm;
    Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
    if( p->op!=TK_COLUMN ) return 0;
    pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0);
    if( pTerm ){
      Expr *pX = pTerm->pExpr;
      CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
      CollSeq *p2 = sqlite3ExprCollSeq(pParse, p);
      if( p1==p2 ) continue;
    }
    if( p->iTable!=base ) return 0;
    mask |= (((Bitmask)1) << i);
  }

  for(i=nEqCol; mask && i<pIdx->nColumn; i++){
    int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i);
    if( iExpr<0 ) break;
    mask &= ~(((Bitmask)1) << iExpr);
  }

  return (mask==0);
}


/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant. A DISTINCT list is redundant if the database contains a
** UNIQUE index that guarantees that the result of the query will be distinct
** anyway.

*/
static int isDistinctRedundant(
  Parse *pParse,
  SrcList *pTabList,
  WhereClause *pWC,
  ExprList *pDistinct
){
  Table *pTab;
  Index *pIdx;
  int i;                          
  int iBase;

  /* If there is more than one table or sub-select in the FROM clause of
................................................................................
      return 1;
    }
  }

  return 0;
}

/*
** Prepare a crude estimate of the logarithm of the input value.
** The results need not be exact.  This is only used for estimating
** the total cost of performing operations with O(logN) or O(NlogN)
** complexity.  Because N is just a guess, it is no great tragedy if
** logN is a little off.
*/

static double estLog(double N){
  double logN = 1;
  double x = 10;
  while( N>x ){
    logN += 1;
    x *= 10;




  }










































  return logN;
}


/*








** Two routines for printing the content of an sqlite3_index_info
** structure.  Used for testing and debugging only.  If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
  int i;
  if( !sqlite3WhereTrace ) return;
  for(i=0; i<p->nConstraint; i++){
    sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
       i,
       p->aConstraint[i].iColumn,
................................................................................
  sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
}
#else
#define TRACE_IDX_INPUTS(A)
#define TRACE_IDX_OUTPUTS(A)
#endif

/* 
** Required because bestIndex() is called by bestOrClauseIndex() 
*/
static void bestIndex(WhereBestIdx*);

/*
** This routine attempts to find an scanning strategy that can be used 
** to optimize an 'OR' expression that is part of a WHERE clause. 
**
** The table associated with FROM clause term pSrc may be either a
** regular B-Tree table or a virtual table.
*/
static void bestOrClauseIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  WhereClause *pWC = p->pWC;           /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  const int iCur = pSrc->iCursor;      /* The cursor of the table  */
  const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
  WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
  WhereTerm *pTerm;                    /* A single term of the WHERE clause */

  /* The OR-clause optimization is disallowed if the INDEXED BY or
  ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
  if( pSrc->notIndexed || pSrc->pIndex!=0 ){
    return;
  }
  if( pWC->wctrlFlags & WHERE_AND_ONLY ){
    return;
  }

  /* Search the WHERE clause terms for a usable WO_OR term. */
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0
     && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      int flags = WHERE_MULTI_OR;
      double rTotal = 0;
      double nRow = 0;
      Bitmask used = 0;
      WhereBestIdx sBOI;

      sBOI = *p;
      sBOI.pOrderBy = 0;
      sBOI.pDistinct = 0;
      sBOI.ppIdxInfo = 0;
      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 
          (pOrTerm - pOrWC->a), (pTerm - pWC->a)
        ));
        if( (pOrTerm->eOperator& WO_AND)!=0 ){
          sBOI.pWC = &pOrTerm->u.pAndInfo->wc;
          bestIndex(&sBOI);
        }else if( pOrTerm->leftCursor==iCur ){
          WhereClause tempWC;
          tempWC.pParse = pWC->pParse;
          tempWC.pMaskSet = pWC->pMaskSet;
          tempWC.pOuter = pWC;
          tempWC.op = TK_AND;
          tempWC.a = pOrTerm;
          tempWC.wctrlFlags = 0;
          tempWC.nTerm = 1;
          sBOI.pWC = &tempWC;
          bestIndex(&sBOI);
        }else{
          continue;
        }
        rTotal += sBOI.cost.rCost;
        nRow += sBOI.cost.plan.nRow;
        used |= sBOI.cost.used;
        if( rTotal>=p->cost.rCost ) break;
      }

      /* If there is an ORDER BY clause, increase the scan cost to account 
      ** for the cost of the sort. */
      if( p->pOrderBy!=0 ){
        WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
                    rTotal, rTotal+nRow*estLog(nRow)));
        rTotal += nRow*estLog(nRow);
      }

      /* If the cost of scanning using this OR term for optimization is
      ** less than the current cost stored in pCost, replace the contents
      ** of pCost. */
      WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
      if( rTotal<p->cost.rCost ){
        p->cost.rCost = rTotal;
        p->cost.used = used;
        p->cost.plan.nRow = nRow;
        p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
        p->cost.plan.wsFlags = flags;
        p->cost.plan.u.pTerm = pTerm;
      }
    }
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */
}

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
................................................................................
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;

  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** If the query plan for pSrc specified in pCost is a full table scan
** and indexing is allows (if there is no NOT INDEXED clause) and it
** possible to construct a transient index that would perform better
** than a full table scan even when the cost of constructing the index
** is taken into account, then alter the query plan to use the
** transient index.
*/
static void bestAutomaticIndex(WhereBestIdx *p){
  Parse *pParse = p->pParse;            /* The parsing context */
  WhereClause *pWC = p->pWC;            /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc;  /* The FROM clause term to search */
  double nTableRow;                     /* Rows in the input table */
  double logN;                          /* log(nTableRow) */
  double costTempIdx;         /* per-query cost of the transient index */
  WhereTerm *pTerm;           /* A single term of the WHERE clause */
  WhereTerm *pWCEnd;          /* End of pWC->a[] */
  Table *pTable;              /* Table tht might be indexed */

  if( pParse->nQueryLoop<=(double)1 ){
    /* There is no point in building an automatic index for a single scan */
    return;
  }
  if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){
    /* Automatic indices are disabled at run-time */
    return;
  }
  if( (p->cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0
   && (p->cost.plan.wsFlags & WHERE_COVER_SCAN)==0
  ){
    /* We already have some kind of index in use for this query. */
    return;
  }
  if( pSrc->viaCoroutine ){
    /* Cannot index a co-routine */
    return;
  }
  if( pSrc->notIndexed ){
    /* The NOT INDEXED clause appears in the SQL. */
    return;
  }
  if( pSrc->isCorrelated ){
    /* The source is a correlated sub-query. No point in indexing it. */
    return;
  }

  assert( pParse->nQueryLoop >= (double)1 );
  pTable = pSrc->pTab;
  nTableRow = pTable->nRowEst;
  logN = estLog(nTableRow);
  costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1);
  if( costTempIdx>=p->cost.rCost ){
    /* The cost of creating the transient table would be greater than
    ** doing the full table scan */
    return;
  }

  /* Search for any equality comparison term */
  pWCEnd = &pWC->a[pWC->nTerm];
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, p->notReady) ){
      WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
                    p->cost.rCost, costTempIdx));
      p->cost.rCost = costTempIdx;
      p->cost.plan.nRow = logN + 1;
      p->cost.plan.wsFlags = WHERE_TEMP_INDEX;
      p->cost.used = pTerm->prereqRight;
      break;
    }
  }
}
#else
# define bestAutomaticIndex(A)  /* no-op */
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */


#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Generate code to construct the Index object for an automatic index
** and to set up the WhereLevel object pLevel so that the code generator
** makes use of the automatic index.
*/
................................................................................
  KeyInfo *pKeyinfo;          /* Key information for the index */   
  int addrTop;                /* Top of the index fill loop */
  int regRecord;              /* Register holding an index record */
  int n;                      /* Column counter */
  int i;                      /* Loop counter */
  int mxBitCol;               /* Maximum column in pSrc->colUsed */
  CollSeq *pColl;             /* Collating sequence to on a column */

  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */

  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
................................................................................
  addrInit = sqlite3CodeOnce(pParse);

  /* Count the number of columns that will be added to the index
  ** and used to match WHERE clause constraints */
  nColumn = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];

  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( (idxCols & cMask)==0 ){

        nColumn++;
        idxCols |= cMask;
      }
    }
  }
  assert( nColumn>0 );
  pLevel->plan.nEq = nColumn;



  /* Count the number of additional columns needed to create a
  ** covering index.  A "covering index" is an index that contains all
  ** columns that are needed by the query.  With a covering index, the
  ** original table never needs to be accessed.  Automatic indices must
  ** be a covering index because the index will not be updated if the
  ** original table changes and the index and table cannot both be used
  ** if they go out of sync.
  */
  extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1)));
  mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
  testcase( pTable->nCol==BMS-1 );
  testcase( pTable->nCol==BMS-2 );
  for(i=0; i<mxBitCol; i++){
    if( extraCols & (((Bitmask)1)<<i) ) nColumn++;
  }
  if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
    nColumn += pTable->nCol - BMS + 1;
  }
  pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ;

  /* Construct the Index object to describe this index */
  nByte = sizeof(Index);
  nByte += nColumn*sizeof(int);     /* Index.aiColumn */
  nByte += nColumn*sizeof(char*);   /* Index.azColl */
  nByte += nColumn;                 /* Index.aSortOrder */
  pIdx = sqlite3DbMallocZero(pParse->db, nByte);
  if( pIdx==0 ) return;
  pLevel->plan.u.pIdx = pIdx;
  pIdx->azColl = (char**)&pIdx[1];
  pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
  pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
  pIdx->zName = "auto-index";
  pIdx->nColumn = nColumn;
  pIdx->pTable = pTable;
  n = 0;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol;


      if( (idxCols & cMask)==0 ){
        Expr *pX = pTerm->pExpr;
        idxCols |= cMask;
        pIdx->aiColumn[n] = pTerm->u.leftColumn;
        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
        n++;
      }
    }
  }
  assert( (u32)n==pLevel->plan.nEq );

  /* Add additional columns needed to make the automatic index into
  ** a covering index */
  for(i=0; i<mxBitCol; i++){
    if( extraCols & (((Bitmask)1)<<i) ){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){
    for(i=BMS-1; i<pTable->nCol; i++){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  assert( n==nColumn );

  /* Create the automatic index */
  pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
  assert( pLevel->iIdxCur>=0 );

  sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
                    (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
  regRecord = sqlite3GetTempReg(pParse);
................................................................................

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(WhereBestIdx *p){
  Parse *pParse = p->pParse; 
  WhereClause *pWC = p->pWC;
  struct SrcList_item *pSrc = p->pSrc;
  ExprList *pOrderBy = p->pOrderBy;

  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;

  WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));

  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
................................................................................
  /* Allocate the sqlite3_index_info structure
  */
  pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                           + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                           + sizeof(*pIdxOrderBy)*nOrderBy );
  if( pIdxInfo==0 ){
    sqlite3ErrorMsg(pParse, "out of memory");
    /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
    return 0;
  }

  /* Initialize the structure.  The sqlite3_index_info structure contains
  ** many fields that are declared "const" to prevent xBestIndex from
  ** changing them.  We have to do some funky casting in order to
  ** initialize those fields.
................................................................................

  return pIdxInfo;
}

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info pointer passed
** as the argument.
**
** If an error occurs, pParse is populated with an error message and a
** non-zero value is returned. Otherwise, 0 is returned and the output
** part of the sqlite3_index_info structure is left populated.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
................................................................................
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
  sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
  int i;
  int rc;

  WHERETRACE(("xBestIndex for %s\n", pTab->zName));
  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      pParse->db->mallocFailed = 1;
................................................................................
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);
    }
  }

  return pParse->nErr;
}



/*
** Compute the best index for a virtual table.
**
** The best index is computed by the xBestIndex method of the virtual
** table module.  This routine is really just a wrapper that sets up
** the sqlite3_index_info structure that is used to communicate with
** xBestIndex.
**
** In a join, this routine might be called multiple times for the
** same virtual table.  The sqlite3_index_info structure is created
** and initialized on the first invocation and reused on all subsequent
** invocations.  The sqlite3_index_info structure is also used when
** code is generated to access the virtual table.  The whereInfoDelete() 
** routine takes care of freeing the sqlite3_index_info structure after
** everybody has finished with it.
*/
static void bestVirtualIndex(WhereBestIdx *p){
  Parse *pParse = p->pParse;      /* The parsing context */
  WhereClause *pWC = p->pWC;      /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  Table *pTab = pSrc->pTab;
  sqlite3_index_info *pIdxInfo;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j;
  int nOrderBy;
  int bAllowIN;                   /* Allow IN optimizations */
  double rCost;

  /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 
  ** malloc in allocateIndexInfo() fails and this function returns leaving
  ** wsFlags in an uninitialized state, the caller may behave unpredictably.
  */
  memset(&p->cost, 0, sizeof(p->cost));
  p->cost.plan.wsFlags = WHERE_VIRTUALTABLE;

  /* If the sqlite3_index_info structure has not been previously
  ** allocated and initialized, then allocate and initialize it now.
  */
  pIdxInfo = *p->ppIdxInfo;
  if( pIdxInfo==0 ){
    *p->ppIdxInfo = pIdxInfo = allocateIndexInfo(p);
  }
  if( pIdxInfo==0 ){
    return;
  }

  /* At this point, the sqlite3_index_info structure that pIdxInfo points
  ** to will have been initialized, either during the current invocation or
  ** during some prior invocation.  Now we just have to customize the
  ** details of pIdxInfo for the current invocation and pass it to
  ** xBestIndex.
  */

  /* The module name must be defined. Also, by this point there must
  ** be a pointer to an sqlite3_vtab structure. Otherwise
  ** sqlite3ViewGetColumnNames() would have picked up the error. 
  */
  assert( pTab->azModuleArg && pTab->azModuleArg[0] );
  assert( sqlite3GetVTable(pParse->db, pTab) );

  /* Try once or twice.  On the first attempt, allow IN optimizations.
  ** If an IN optimization is accepted by the virtual table xBestIndex
  ** method, but the  pInfo->aConstrainUsage.omit flag is not set, then
  ** the query will not work because it might allow duplicate rows in
  ** output.  In that case, run the xBestIndex method a second time
  ** without the IN constraints.  Usually this loop only runs once.
  ** The loop will exit using a "break" statement.
  */
  for(bAllowIN=1; 1; bAllowIN--){
    assert( bAllowIN==0 || bAllowIN==1 );

    /* Set the aConstraint[].usable fields and initialize all 
    ** output variables to zero.
    **
    ** aConstraint[].usable is true for constraints where the right-hand
    ** side contains only references to tables to the left of the current
    ** table.  In other words, if the constraint is of the form:
    **
    **           column = expr
    **
    ** and we are evaluating a join, then the constraint on column is 
    ** only valid if all tables referenced in expr occur to the left
    ** of the table containing column.
    **
    ** The aConstraints[] array contains entries for all constraints
    ** on the current table.  That way we only have to compute it once
    ** even though we might try to pick the best index multiple times.
    ** For each attempt at picking an index, the order of tables in the
    ** join might be different so we have to recompute the usable flag
    ** each time.
    */
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pUsage = pIdxInfo->aConstraintUsage;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      j = pIdxCons->iTermOffset;
      pTerm = &pWC->a[j];
      if( (pTerm->prereqRight&p->notReady)==0
       && (bAllowIN || (pTerm->eOperator & WO_IN)==0)
      ){
        pIdxCons->usable = 1;
      }else{
        pIdxCons->usable = 0;
      }
    }
    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
    if( pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
    nOrderBy = pIdxInfo->nOrderBy;
    if( !p->pOrderBy ){
      pIdxInfo->nOrderBy = 0;
    }
  
    if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
      return;
    }
  
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      if( pUsage[i].argvIndex>0 ){
        j = pIdxCons->iTermOffset;
        pTerm = &pWC->a[j];
        p->cost.used |= pTerm->prereqRight;
        if( (pTerm->eOperator & WO_IN)!=0 ){
          if( pUsage[i].omit==0 ){
            /* Do not attempt to use an IN constraint if the virtual table
            ** says that the equivalent EQ constraint cannot be safely omitted.
            ** If we do attempt to use such a constraint, some rows might be
            ** repeated in the output. */
            break;
          }
          /* A virtual table that is constrained by an IN clause may not
          ** consume the ORDER BY clause because (1) the order of IN terms
          ** is not necessarily related to the order of output terms and
          ** (2) Multiple outputs from a single IN value will not merge
          ** together.  */
          pIdxInfo->orderByConsumed = 0;
        }
      }
    }
    if( i>=pIdxInfo->nConstraint ) break;
  }

  /* The orderByConsumed signal is only valid if all outer loops collectively
  ** generate just a single row of output.
  */
  if( pIdxInfo->orderByConsumed ){
    for(i=0; i<p->i; i++){
      if( (p->aLevel[i].plan.wsFlags & WHERE_UNIQUE)==0 ){
        pIdxInfo->orderByConsumed = 0;
      }
    }
  }
  
  /* If there is an ORDER BY clause, and the selected virtual table index
  ** does not satisfy it, increase the cost of the scan accordingly. This
  ** matches the processing for non-virtual tables in bestBtreeIndex().
  */
  rCost = pIdxInfo->estimatedCost;
  if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){
    rCost += estLog(rCost)*rCost;
  }

  /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
  ** inital value of lowestCost in this loop. If it is, then the
  ** (cost<lowestCost) test below will never be true.
  ** 
  ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 
  ** is defined.
  */
  if( (SQLITE_BIG_DBL/((double)2))<rCost ){
    p->cost.rCost = (SQLITE_BIG_DBL/((double)2));
  }else{
    p->cost.rCost = rCost;
  }
  p->cost.plan.u.pVtabIdx = pIdxInfo;
  if( pIdxInfo->orderByConsumed ){
    p->cost.plan.wsFlags |= WHERE_ORDERED;
    p->cost.plan.nOBSat = nOrderBy;
  }else{
    p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0;
  }
  p->cost.plan.nEq = 0;
  pIdxInfo->nOrderBy = nOrderBy;

  /* Try to find a more efficient access pattern by using multiple indexes
  ** to optimize an OR expression within the WHERE clause. 
  */
  bestOrClauseIndex(p);
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
................................................................................
      const u8 *z;
      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl);
        if( pColl==0 ){


          return SQLITE_ERROR;
        }
        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);
................................................................................
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  double *pRangeDiv   /* OUT: Reduce search space by this divisor */
){
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_STAT3

  if( nEq==0 && p->nSample ){
    sqlite3_value *pRangeVal;
................................................................................
      ){
        iUpper = a[0];
        if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK ){
      if( iUpper<=iLower ){
        *pRangeDiv = (double)p->aiRowEst[0];
      }else{
        *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower);
      }
      WHERETRACE(("range scan regions: %u..%u  div=%g\n",
                  (u32)iLower, (u32)iUpper, *pRangeDiv));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );
  *pRangeDiv = (double)1;


  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4;


  if( pUpper ) *pRangeDiv *= (double)4;


  return rc;
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
................................................................................
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  double *pnRow        /* Write the revised row estimate here */
){
  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */

  assert( p->aSample!=0 );
................................................................................
    if( rc ) goto whereEqualScanEst_cancel;
  }else{
    pRhs = sqlite3ValueNew(pParse->db);
  }
  if( pRhs==0 ) return SQLITE_NOTFOUND;
  rc = whereKeyStats(pParse, p, pRhs, 0, a);
  if( rc==SQLITE_OK ){
    WHERETRACE(("equality scan regions: %d\n", (int)a[1]));
    *pnRow = a[1];
  }
whereEqualScanEst_cancel:
  sqlite3ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */
................................................................................
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  double *pnRow        /* Write the revised row estimate here */
){
  int rc = SQLITE_OK;         /* Subfunction return code */
  double nEst;                /* Number of rows for a single term */
  double nRowEst = (double)0; /* New estimate of the number of rows */
  int i;                      /* Loop counter */

  assert( p->aSample!=0 );
  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;
  }
  if( rc==SQLITE_OK ){
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(("IN row estimate: est=%g\n", nRowEst));
  }
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */

/*
** Check to see if column iCol of the table with cursor iTab will appear
** in sorted order according to the current query plan.
**
** Return values:
**
**    0   iCol is not ordered
**    1   iCol has only a single value
**    2   iCol is in ASC order
**    3   iCol is in DESC order
*/
static int isOrderedColumn(
  WhereBestIdx *p,
  int iTab,
  int iCol
){
  int i, j;
  WhereLevel *pLevel = &p->aLevel[p->i-1];
  Index *pIdx;
  u8 sortOrder;
  for(i=p->i-1; i>=0; i--, pLevel--){
    if( pLevel->iTabCur!=iTab ) continue;
    if( (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
      return 1;
    }
    assert( (pLevel->plan.wsFlags & WHERE_ORDERED)!=0 );
    if( (pIdx = pLevel->plan.u.pIdx)!=0 ){
      if( iCol<0 ){
        sortOrder = 0;
        testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
      }else{
        int n = pIdx->nColumn;
        for(j=0; j<n; j++){
          if( iCol==pIdx->aiColumn[j] ) break;
        }
        if( j>=n ) return 0;
        sortOrder = pIdx->aSortOrder[j];
        testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
      }
    }else{
      if( iCol!=(-1) ) return 0;
      sortOrder = 0;
      testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 );
    }
    if( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ){
      assert( sortOrder==0 || sortOrder==1 );
      testcase( sortOrder==1 );
      sortOrder = 1 - sortOrder;
    }
    return sortOrder+2;
  }
  return 0;
}

/*
** This routine decides if pIdx can be used to satisfy the ORDER BY
** clause, either in whole or in part.  The return value is the 
** cumulative number of terms in the ORDER BY clause that are satisfied
** by the index pIdx and other indices in outer loops.
**
** The table being queried has a cursor number of "base".  pIdx is the
** index that is postulated for use to access the table.
**
** The *pbRev value is set to 0 order 1 depending on whether or not
** pIdx should be run in the forward order or in reverse order.
*/
static int isSortingIndex(
  WhereBestIdx *p,    /* Best index search context */
  Index *pIdx,        /* The index we are testing */
  int base,           /* Cursor number for the table to be sorted */
  int *pbRev,         /* Set to 1 for reverse-order scan of pIdx */
  int *pbObUnique     /* ORDER BY column values will different in every row */
){
  int i;                        /* Number of pIdx terms used */
  int j;                        /* Number of ORDER BY terms satisfied */
  int sortOrder = 2;            /* 0: forward.  1: backward.  2: unknown */
  int nTerm;                    /* Number of ORDER BY terms */
  struct ExprList_item *pOBItem;/* A term of the ORDER BY clause */
  Table *pTab = pIdx->pTable;   /* Table that owns index pIdx */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Parse *pParse = p->pParse;    /* Parser context */
  sqlite3 *db = pParse->db;     /* Database connection */
  int nPriorSat;                /* ORDER BY terms satisfied by outer loops */
  int seenRowid = 0;            /* True if an ORDER BY rowid term is seen */
  int uniqueNotNull;            /* pIdx is UNIQUE with all terms are NOT NULL */
  int outerObUnique;            /* Outer loops generate different values in
                                ** every row for the ORDER BY columns */

  if( p->i==0 ){
    nPriorSat = 0;
    outerObUnique = 1;
  }else{
    u32 wsFlags = p->aLevel[p->i-1].plan.wsFlags;
    nPriorSat = p->aLevel[p->i-1].plan.nOBSat;
    if( (wsFlags & WHERE_ORDERED)==0 ){
      /* This loop cannot be ordered unless the next outer loop is
      ** also ordered */
      return nPriorSat;
    }
    if( OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ){
      /* Only look at the outer-most loop if the OrderByIdxJoin
      ** optimization is disabled */
      return nPriorSat;
    }
    testcase( wsFlags & WHERE_OB_UNIQUE );
    testcase( wsFlags & WHERE_ALL_UNIQUE );
    outerObUnique = (wsFlags & (WHERE_OB_UNIQUE|WHERE_ALL_UNIQUE))!=0;
  }
  pOrderBy = p->pOrderBy;
  assert( pOrderBy!=0 );
  if( pIdx->bUnordered ){
    /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot
    ** be used for sorting */
    return nPriorSat;
  }
  nTerm = pOrderBy->nExpr;
  uniqueNotNull = pIdx->onError!=OE_None;
  assert( nTerm>0 );

  /* Argument pIdx must either point to a 'real' named index structure, 
  ** or an index structure allocated on the stack by bestBtreeIndex() to
  ** represent the rowid index that is part of every table.  */
  assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) );

  /* Match terms of the ORDER BY clause against columns of
  ** the index.
  **
  ** Note that indices have pIdx->nColumn regular columns plus
  ** one additional column containing the rowid.  The rowid column
  ** of the index is also allowed to match against the ORDER BY
  ** clause.
  */
  j = nPriorSat;
  for(i=0,pOBItem=&pOrderBy->a[j]; j<nTerm && i<=pIdx->nColumn; i++){
    Expr *pOBExpr;          /* The expression of the ORDER BY pOBItem */
    CollSeq *pColl;         /* The collating sequence of pOBExpr */
    int termSortOrder;      /* Sort order for this term */
    int iColumn;            /* The i-th column of the index.  -1 for rowid */
    int iSortOrder;         /* 1 for DESC, 0 for ASC on the i-th index term */
    int isEq;               /* Subject to an == or IS NULL constraint */
    int isMatch;            /* ORDER BY term matches the index term */
    const char *zColl;      /* Name of collating sequence for i-th index term */
    WhereTerm *pConstraint; /* A constraint in the WHERE clause */

    /* If the next term of the ORDER BY clause refers to anything other than
    ** a column in the "base" table, then this index will not be of any
    ** further use in handling the ORDER BY. */
    pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr);
    if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){
      break;
    }

    /* Find column number and collating sequence for the next entry
    ** in the index */
    if( pIdx->zName && i<pIdx->nColumn ){
      iColumn = pIdx->aiColumn[i];
      if( iColumn==pIdx->pTable->iPKey ){
        iColumn = -1;
      }
      iSortOrder = pIdx->aSortOrder[i];
      zColl = pIdx->azColl[i];
      assert( zColl!=0 );
    }else{
      iColumn = -1;
      iSortOrder = 0;
      zColl = 0;
    }

    /* Check to see if the column number and collating sequence of the
    ** index match the column number and collating sequence of the ORDER BY
    ** clause entry.  Set isMatch to 1 if they both match. */
    if( pOBExpr->iColumn==iColumn ){
      if( zColl ){
        pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr);
        if( !pColl ) pColl = db->pDfltColl;
        isMatch = sqlite3StrICmp(pColl->zName, zColl)==0;
      }else{
        isMatch = 1;
      }
    }else{
      isMatch = 0;
    }

    /* termSortOrder is 0 or 1 for whether or not the access loop should
    ** run forward or backwards (respectively) in order to satisfy this 
    ** term of the ORDER BY clause. */
    assert( pOBItem->sortOrder==0 || pOBItem->sortOrder==1 );
    assert( iSortOrder==0 || iSortOrder==1 );
    termSortOrder = iSortOrder ^ pOBItem->sortOrder;

    /* If X is the column in the index and ORDER BY clause, check to see
    ** if there are any X= or X IS NULL constraints in the WHERE clause. */
    pConstraint = findTerm(p->pWC, base, iColumn, p->notReady,
                           WO_EQ|WO_ISNULL|WO_IN, pIdx);
    if( pConstraint==0 ){
      isEq = 0;
    }else if( (pConstraint->eOperator & WO_IN)!=0 ){
      isEq = 0;
    }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){
      uniqueNotNull = 0;
      isEq = 1;  /* "X IS NULL" means X has only a single value */
    }else if( pConstraint->prereqRight==0 ){
      isEq = 1;  /* Constraint "X=constant" means X has only a single value */
    }else{
      Expr *pRight = pConstraint->pExpr->pRight;
      if( pRight->op==TK_COLUMN ){
        WHERETRACE(("       .. isOrderedColumn(tab=%d,col=%d)",
                    pRight->iTable, pRight->iColumn));
        isEq = isOrderedColumn(p, pRight->iTable, pRight->iColumn);
        WHERETRACE((" -> isEq=%d\n", isEq));

        /* If the constraint is of the form X=Y where Y is an ordered value
        ** in an outer loop, then make sure the sort order of Y matches the
        ** sort order required for X. */
        if( isMatch && isEq>=2 && isEq!=pOBItem->sortOrder+2 ){
          testcase( isEq==2 );
          testcase( isEq==3 );
          break;
        }
      }else{
        isEq = 0;  /* "X=expr" places no ordering constraints on X */
      }
    }
    if( !isMatch ){
      if( isEq==0 ){
        break;
      }else{
        continue;
      }
    }else if( isEq!=1 ){
      if( sortOrder==2 ){
        sortOrder = termSortOrder;
      }else if( termSortOrder!=sortOrder ){
        break;
      }
    }
    j++;
    pOBItem++;
    if( iColumn<0 ){
      seenRowid = 1;
      break;
    }else if( pTab->aCol[iColumn].notNull==0 && isEq!=1 ){
      testcase( isEq==0 );
      testcase( isEq==2 );
      testcase( isEq==3 );
      uniqueNotNull = 0;
    }
  }
  if( seenRowid ){
    uniqueNotNull = 1;
  }else if( uniqueNotNull==0 || i<pIdx->nColumn ){
    uniqueNotNull = 0;
  }

  /* If we have not found at least one ORDER BY term that matches the
  ** index, then show no progress. */
  if( pOBItem==&pOrderBy->a[nPriorSat] ) return nPriorSat;

  /* Either the outer queries must generate rows where there are no two
  ** rows with the same values in all ORDER BY columns, or else this
  ** loop must generate just a single row of output.  Example:  Suppose
  ** the outer loops generate A=1 and A=1, and this loop generates B=3
  ** and B=4.  Then without the following test, ORDER BY A,B would 
  ** generate the wrong order output: 1,3 1,4 1,3 1,4
  */
  if( outerObUnique==0 && uniqueNotNull==0 ) return nPriorSat;
  *pbObUnique = uniqueNotNull;

  /* Return the necessary scan order back to the caller */
  *pbRev = sortOrder & 1;

  /* If there was an "ORDER BY rowid" term that matched, or it is only
  ** possible for a single row from this table to match, then skip over
  ** any additional ORDER BY terms dealing with this table.
  */
  if( uniqueNotNull ){
    /* Advance j over additional ORDER BY terms associated with base */
    WhereMaskSet *pMS = p->pWC->pMaskSet;
    Bitmask m = ~getMask(pMS, base);
    while( j<nTerm && (exprTableUsage(pMS, pOrderBy->a[j].pExpr)&m)==0 ){
      j++;
    }
  }
  return j;
}

/*
** Find the best query plan for accessing a particular table.  Write the
** best query plan and its cost into the p->cost.
**
** The lowest cost plan wins.  The cost is an estimate of the amount of
** CPU and disk I/O needed to process the requested result.
** Factors that influence cost include:
**
**    *  The estimated number of rows that will be retrieved.  (The
**       fewer the better.)
**
**    *  Whether or not sorting must occur.
**
**    *  Whether or not there must be separate lookups in the
**       index and in the main table.
**
** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
** the SQL statement, then this function only considers plans using the 
** named index. If no such plan is found, then the returned cost is
** SQLITE_BIG_DBL. If a plan is found that uses the named index, 
** then the cost is calculated in the usual way.
**
** If a NOT INDEXED clause was attached to the table 
** in the SELECT statement, then no indexes are considered. However, the 
** selected plan may still take advantage of the built-in rowid primary key
** index.
*/
static void bestBtreeIndex(WhereBestIdx *p){
  Parse *pParse = p->pParse;  /* The parsing context */
  WhereClause *pWC = p->pWC;  /* The WHERE clause */
  struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */
  int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
  Index *pProbe;              /* An index we are evaluating */
  Index *pIdx;                /* Copy of pProbe, or zero for IPK index */
  int eqTermMask;             /* Current mask of valid equality operators */
  int idxEqTermMask;          /* Index mask of valid equality operators */
  Index sPk;                  /* A fake index object for the primary key */
  tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  int wsFlagMask;             /* Allowed flags in p->cost.plan.wsFlag */
  int nPriorSat;              /* ORDER BY terms satisfied by outer loops */
  int nOrderBy;               /* Number of ORDER BY terms */
  char bSortInit;             /* Initializer for bSort in inner loop */
  char bDistInit;             /* Initializer for bDist in inner loop */


  /* Initialize the cost to a worst-case value */
  memset(&p->cost, 0, sizeof(p->cost));
  p->cost.rCost = SQLITE_BIG_DBL;

  /* If the pSrc table is the right table of a LEFT JOIN then we may not
  ** use an index to satisfy IS NULL constraints on that table.  This is
  ** because columns might end up being NULL if the table does not match -
  ** a circumstance which the index cannot help us discover.  Ticket #2177.
  */
  if( pSrc->jointype & JT_LEFT ){
    idxEqTermMask = WO_EQ|WO_IN;
  }else{
    idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL;
  }

  if( pSrc->pIndex ){
    /* An INDEXED BY clause specifies a particular index to use */
    pIdx = pProbe = pSrc->pIndex;
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }else{
    /* There is no INDEXED BY clause.  Create a fake Index object in local
    ** variable sPk to represent the rowid primary key index.  Make this
    ** fake index the first in a chain of Index objects with all of the real
    ** indices to follow */
    Index *pFirst;                  /* First of real indices on the table */
    memset(&sPk, 0, sizeof(Index));
    sPk.nColumn = 1;
    sPk.aiColumn = &aiColumnPk;
    sPk.aiRowEst = aiRowEstPk;
    sPk.onError = OE_Replace;
    sPk.pTable = pSrc->pTab;
    aiRowEstPk[0] = pSrc->pTab->nRowEst;
    aiRowEstPk[1] = 1;
    pFirst = pSrc->pTab->pIndex;
    if( pSrc->notIndexed==0 ){
      /* The real indices of the table are only considered if the
      ** NOT INDEXED qualifier is omitted from the FROM clause */
      sPk.pNext = pFirst;
    }
    pProbe = &sPk;
    wsFlagMask = ~(
        WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE
    );
    eqTermMask = WO_EQ|WO_IN;
    pIdx = 0;
  }

  nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0;
  if( p->i ){
    nPriorSat = p->aLevel[p->i-1].plan.nOBSat;
    bSortInit = nPriorSat<nOrderBy;
    bDistInit = 0;
  }else{
    nPriorSat = 0;
    bSortInit = nOrderBy>0;
    bDistInit = p->pDistinct!=0;
  }

  /* Loop over all indices looking for the best one to use
  */
  for(; pProbe; pIdx=pProbe=pProbe->pNext){
    const tRowcnt * const aiRowEst = pProbe->aiRowEst;
    WhereCost pc;               /* Cost of using pProbe */
    double log10N = (double)1;  /* base-10 logarithm of nRow (inexact) */

    /* The following variables are populated based on the properties of
    ** index being evaluated. They are then used to determine the expected
    ** cost and number of rows returned.
    **
    **  pc.plan.nEq: 
    **    Number of equality terms that can be implemented using the index.
    **    In other words, the number of initial fields in the index that
    **    are used in == or IN or NOT NULL constraints of the WHERE clause.
    **
    **  nInMul:  
    **    The "in-multiplier". This is an estimate of how many seek operations 
    **    SQLite must perform on the index in question. For example, if the 
    **    WHERE clause is:
    **
    **      WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
    **
    **    SQLite must perform 9 lookups on an index on (a, b), so nInMul is 
    **    set to 9. Given the same schema and either of the following WHERE 
    **    clauses:
    **
    **      WHERE a =  1
    **      WHERE a >= 2
    **
    **    nInMul is set to 1.
    **
    **    If there exists a WHERE term of the form "x IN (SELECT ...)", then 
    **    the sub-select is assumed to return 25 rows for the purposes of 
    **    determining nInMul.
    **
    **  bInEst:  
    **    Set to true if there was at least one "x IN (SELECT ...)" term used 
    **    in determining the value of nInMul.  Note that the RHS of the
    **    IN operator must be a SELECT, not a value list, for this variable
    **    to be true.
    **
    **  rangeDiv:
    **    An estimate of a divisor by which to reduce the search space due
    **    to inequality constraints.  In the absence of sqlite_stat3 ANALYZE
    **    data, a single inequality reduces the search space to 1/4rd its
    **    original size (rangeDiv==4).  Two inequalities reduce the search
    **    space to 1/16th of its original size (rangeDiv==16).
    **
    **  bSort:   
    **    Boolean. True if there is an ORDER BY clause that will require an 
    **    external sort (i.e. scanning the index being evaluated will not 
    **    correctly order records).
    **
    **  bDist:
    **    Boolean. True if there is a DISTINCT clause that will require an 
    **    external btree.
    **
    **  bLookup: 
    **    Boolean. True if a table lookup is required for each index entry
    **    visited.  In other words, true if this is not a covering index.
    **    This is always false for the rowid primary key index of a table.
    **    For other indexes, it is true unless all the columns of the table
    **    used by the SELECT statement are present in the index (such an
    **    index is sometimes described as a covering index).
    **    For example, given the index on (a, b), the second of the following 
    **    two queries requires table b-tree lookups in order to find the value
    **    of column c, but the first does not because columns a and b are
    **    both available in the index.
    **
    **             SELECT a, b    FROM tbl WHERE a = 1;
    **             SELECT a, b, c FROM tbl WHERE a = 1;
    */
    int bInEst = 0;               /* True if "x IN (SELECT...)" seen */
    int nInMul = 1;               /* Number of distinct equalities to lookup */
    double rangeDiv = (double)1;  /* Estimated reduction in search space */
    int nBound = 0;               /* Number of range constraints seen */
    char bSort = bSortInit;       /* True if external sort required */
    char bDist = bDistInit;       /* True if index cannot help with DISTINCT */
    char bLookup = 0;             /* True if not a covering index */
    WhereTerm *pTerm;             /* A single term of the WHERE clause */
#ifdef SQLITE_ENABLE_STAT3
    WhereTerm *pFirstTerm = 0;    /* First term matching the index */
#endif

    WHERETRACE((
      "   %s(%s):\n",
      pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk")
    ));
    memset(&pc, 0, sizeof(pc));
    pc.plan.nOBSat = nPriorSat;

    /* Determine the values of pc.plan.nEq and nInMul */
    for(pc.plan.nEq=0; pc.plan.nEq<pProbe->nColumn; pc.plan.nEq++){
      int j = pProbe->aiColumn[pc.plan.nEq];
      pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx);
      if( pTerm==0 ) break;
      pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ);
      testcase( pTerm->pWC!=pWC );
      if( pTerm->eOperator & WO_IN ){
        Expr *pExpr = pTerm->pExpr;
        pc.plan.wsFlags |= WHERE_COLUMN_IN;
        if( ExprHasProperty(pExpr, EP_xIsSelect) ){
          /* "x IN (SELECT ...)":  Assume the SELECT returns 25 rows */
          nInMul *= 25;
          bInEst = 1;
        }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
          /* "x IN (value, value, ...)" */
          nInMul *= pExpr->x.pList->nExpr;
        }
      }else if( pTerm->eOperator & WO_ISNULL ){
        pc.plan.wsFlags |= WHERE_COLUMN_NULL;
      }
#ifdef SQLITE_ENABLE_STAT3
      if( pc.plan.nEq==0 && pProbe->aSample ) pFirstTerm = pTerm;
#endif
      pc.used |= pTerm->prereqRight;
    }
 
    /* If the index being considered is UNIQUE, and there is an equality 
    ** constraint for all columns in the index, then this search will find
    ** at most a single row. In this case set the WHERE_UNIQUE flag to 
    ** indicate this to the caller.
    **
    ** Otherwise, if the search may find more than one row, test to see if
    ** there is a range constraint on indexed column (pc.plan.nEq+1) that
    ** can be optimized using the index. 
    */
    if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){
      testcase( pc.plan.wsFlags & WHERE_COLUMN_IN );
      testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL );
      if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
        pc.plan.wsFlags |= WHERE_UNIQUE;
        if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
          pc.plan.wsFlags |= WHERE_ALL_UNIQUE;
        }
      }
    }else if( pProbe->bUnordered==0 ){
      int j;
      j = (pc.plan.nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[pc.plan.nEq]);
      if( findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){
        WhereTerm *pTop, *pBtm;
        pTop = findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE, pIdx);
        pBtm = findTerm(pWC, iCur, j, p->notReady, WO_GT|WO_GE, pIdx);
        whereRangeScanEst(pParse, pProbe, pc.plan.nEq, pBtm, pTop, &rangeDiv);
        if( pTop ){
          nBound = 1;
          pc.plan.wsFlags |= WHERE_TOP_LIMIT;
          pc.used |= pTop->prereqRight;
          testcase( pTop->pWC!=pWC );
        }
        if( pBtm ){
          nBound++;
          pc.plan.wsFlags |= WHERE_BTM_LIMIT;
          pc.used |= pBtm->prereqRight;
          testcase( pBtm->pWC!=pWC );
        }
        pc.plan.wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE);
      }
    }

    /* If there is an ORDER BY clause and the index being considered will
    ** naturally scan rows in the required order, set the appropriate flags
    ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but
    ** the index will scan rows in a different order, set the bSort
    ** variable.  */
    if( bSort && (pSrc->jointype & JT_LEFT)==0 ){
      int bRev = 2;
      int bObUnique = 0;
      WHERETRACE(("      --> before isSortIndex: nPriorSat=%d\n",nPriorSat));
      pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev, &bObUnique);
      WHERETRACE(("      --> after  isSortIndex: bRev=%d bObU=%d nOBSat=%d\n",
                  bRev, bObUnique, pc.plan.nOBSat));
      if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){
        pc.plan.wsFlags |= WHERE_ORDERED;
        if( bObUnique ) pc.plan.wsFlags |= WHERE_OB_UNIQUE;
      }
      if( nOrderBy==pc.plan.nOBSat ){
        bSort = 0;
        pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE;
      }
      if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE;
    }

    /* If there is a DISTINCT qualifier and this index will scan rows in
    ** order of the DISTINCT expressions, clear bDist and set the appropriate
    ** flags in pc.plan.wsFlags. */
    if( bDist
     && isDistinctIndex(pParse, pWC, pProbe, iCur, p->pDistinct, pc.plan.nEq)
     && (pc.plan.wsFlags & WHERE_COLUMN_IN)==0
    ){
      bDist = 0;
      pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT;
    }

    /* If currently calculating the cost of using an index (not the IPK
    ** index), determine if all required column data may be obtained without 
    ** using the main table (i.e. if the index is a covering
    ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
    ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true.  */
    if( pIdx ){
      Bitmask m = pSrc->colUsed;
      int j;
      for(j=0; j<pIdx->nColumn; j++){
        int x = pIdx->aiColumn[j];
        if( x<BMS-1 ){
          m &= ~(((Bitmask)1)<<x);
        }
      }
      if( m==0 ){
        pc.plan.wsFlags |= WHERE_IDX_ONLY;
      }else{
        bLookup = 1;
      }
    }

    /*
    ** Estimate the number of rows of output.  For an "x IN (SELECT...)"
    ** constraint, do not let the estimate exceed half the rows in the table.
    */
    pc.plan.nRow = (double)(aiRowEst[pc.plan.nEq] * nInMul);
    if( bInEst && pc.plan.nRow*2>aiRowEst[0] ){
      pc.plan.nRow = aiRowEst[0]/2;
      nInMul = (int)(pc.plan.nRow / aiRowEst[pc.plan.nEq]);
    }

#ifdef SQLITE_ENABLE_STAT3
    /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
    ** and we do not think that values of x are unique and if histogram
    ** data is available for column x, then it might be possible
    ** to get a better estimate on the number of rows based on
    ** VALUE and how common that value is according to the histogram.
    */
    if( pc.plan.nRow>(double)1 && pc.plan.nEq==1
     && pFirstTerm!=0 && aiRowEst[1]>1 ){
      assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 );
      if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){
        testcase( pFirstTerm->eOperator & WO_EQ );
        testcase( pFirstTerm->eOperator & WO_EQUIV );
        testcase( pFirstTerm->eOperator & WO_ISNULL );
        whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight,
                          &pc.plan.nRow);
      }else if( bInEst==0 ){
        assert( pFirstTerm->eOperator & WO_IN );
        whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList,
                       &pc.plan.nRow);
      }
    }
#endif /* SQLITE_ENABLE_STAT3 */

    /* Adjust the number of output rows and downward to reflect rows
    ** that are excluded by range constraints.
    */
    pc.plan.nRow = pc.plan.nRow/rangeDiv;
    if( pc.plan.nRow<1 ) pc.plan.nRow = 1;

    /* Experiments run on real SQLite databases show that the time needed
    ** to do a binary search to locate a row in a table or index is roughly
    ** log10(N) times the time to move from one row to the next row within
    ** a table or index.  The actual times can vary, with the size of
    ** records being an important factor.  Both moves and searches are
    ** slower with larger records, presumably because fewer records fit
    ** on one page and hence more pages have to be fetched.
    **
    ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
    ** not give us data on the relative sizes of table and index records.
    ** So this computation assumes table records are about twice as big
    ** as index records
    */
    if( (pc.plan.wsFlags&~(WHERE_REVERSE|WHERE_ORDERED|WHERE_OB_UNIQUE))
                                                              ==WHERE_IDX_ONLY
     && (pWC->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
     && sqlite3GlobalConfig.bUseCis
     && OptimizationEnabled(pParse->db, SQLITE_CoverIdxScan)
    ){
      /* This index is not useful for indexing, but it is a covering index.
      ** A full-scan of the index might be a little faster than a full-scan
      ** of the table, so give this case a cost slightly less than a table
      ** scan. */
      pc.rCost = aiRowEst[0]*3 + pProbe->nColumn;
      pc.plan.wsFlags |= WHERE_COVER_SCAN|WHERE_COLUMN_RANGE;
    }else if( (pc.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
      /* The cost of a full table scan is a number of move operations equal
      ** to the number of rows in the table.
      **
      ** We add an additional 4x penalty to full table scans.  This causes
      ** the cost function to err on the side of choosing an index over
      ** choosing a full scan.  This 4x full-scan penalty is an arguable
      ** decision and one which we expect to revisit in the future.  But
      ** it seems to be working well enough at the moment.
      */
      pc.rCost = aiRowEst[0]*4;
      pc.plan.wsFlags &= ~WHERE_IDX_ONLY;
      if( pIdx ){
        pc.plan.wsFlags &= ~WHERE_ORDERED;
        pc.plan.nOBSat = nPriorSat;
      }
    }else{
      log10N = estLog(aiRowEst[0]);
      pc.rCost = pc.plan.nRow;
      if( pIdx ){
        if( bLookup ){
          /* For an index lookup followed by a table lookup:
          **    nInMul index searches to find the start of each index range
          **  + nRow steps through the index
          **  + nRow table searches to lookup the table entry using the rowid
          */
          pc.rCost += (nInMul + pc.plan.nRow)*log10N;
        }else{
          /* For a covering index:
          **     nInMul index searches to find the initial entry 
          **   + nRow steps through the index
          */
          pc.rCost += nInMul*log10N;
        }
      }else{
        /* For a rowid primary key lookup:
        **    nInMult table searches to find the initial entry for each range
        **  + nRow steps through the table
        */
        pc.rCost += nInMul*log10N;
      }
    }

    /* Add in the estimated cost of sorting the result.  Actual experimental
    ** measurements of sorting performance in SQLite show that sorting time
    ** adds C*N*log10(N) to the cost, where N is the number of rows to be 
    ** sorted and C is a factor between 1.95 and 4.3.  We will split the
    ** difference and select C of 3.0.
    */
    if( bSort ){
      double m = estLog(pc.plan.nRow*(nOrderBy - pc.plan.nOBSat)/nOrderBy);
      m *= (double)(pc.plan.nOBSat ? 2 : 3);
      pc.rCost += pc.plan.nRow*m;
    }
    if( bDist ){
      pc.rCost += pc.plan.nRow*estLog(pc.plan.nRow)*3;
    }

    /**** Cost of using this index has now been computed ****/

    /* If there are additional constraints on this table that cannot
    ** be used with the current index, but which might lower the number
    ** of output rows, adjust the nRow value accordingly.  This only 
    ** matters if the current index is the least costly, so do not bother
    ** with this step if we already know this index will not be chosen.
    ** Also, never reduce the output row count below 2 using this step.
    **
    ** It is critical that the notValid mask be used here instead of
    ** the notReady mask.  When computing an "optimal" index, the notReady
    ** mask will only have one bit set - the bit for the current table.
    ** The notValid mask, on the other hand, always has all bits set for
    ** tables that are not in outer loops.  If notReady is used here instead
    ** of notValid, then a optimal index that depends on inner joins loops
    ** might be selected even when there exists an optimal index that has
    ** no such dependency.
    */
    if( pc.plan.nRow>2 && pc.rCost<=p->cost.rCost ){
      int k;                       /* Loop counter */
      int nSkipEq = pc.plan.nEq;   /* Number of == constraints to skip */
      int nSkipRange = nBound;     /* Number of < constraints to skip */
      Bitmask thisTab;             /* Bitmap for pSrc */

      thisTab = getMask(pWC->pMaskSet, iCur);
      for(pTerm=pWC->a, k=pWC->nTerm; pc.plan.nRow>2 && k; k--, pTerm++){
        if( pTerm->wtFlags & TERM_VIRTUAL ) continue;
        if( (pTerm->prereqAll & p->notValid)!=thisTab ) continue;
        if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){
          if( nSkipEq ){
            /* Ignore the first pc.plan.nEq equality matches since the index
            ** has already accounted for these */
            nSkipEq--;
          }else{
            /* Assume each additional equality match reduces the result
            ** set size by a factor of 10 */
            pc.plan.nRow /= 10;
          }
        }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){
          if( nSkipRange ){
            /* Ignore the first nSkipRange range constraints since the index
            ** has already accounted for these */
            nSkipRange--;
          }else{
            /* Assume each additional range constraint reduces the result
            ** set size by a factor of 3.  Indexed range constraints reduce
            ** the search space by a larger factor: 4.  We make indexed range
            ** more selective intentionally because of the subjective 
            ** observation that indexed range constraints really are more
            ** selective in practice, on average. */
            pc.plan.nRow /= 3;
          }
        }else if( (pTerm->eOperator & WO_NOOP)==0 ){
          /* Any other expression lowers the output row count by half */
          pc.plan.nRow /= 2;
        }
      }
      if( pc.plan.nRow<2 ) pc.plan.nRow = 2;
    }


    WHERETRACE((
      "      nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n"
      "      notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n"
      "      used=0x%llx nOBSat=%d\n",
      pc.plan.nEq, nInMul, (int)rangeDiv, bSort, bLookup, pc.plan.wsFlags,
      p->notReady, log10N, pc.plan.nRow, pc.rCost, pc.used,
      pc.plan.nOBSat
    ));

    /* If this index is the best we have seen so far, then record this
    ** index and its cost in the p->cost structure.
    */
    if( (!pIdx || pc.plan.wsFlags) && compareCost(&pc, &p->cost) ){
      p->cost = pc;
      p->cost.plan.wsFlags &= wsFlagMask;
      p->cost.plan.u.pIdx = pIdx;
    }

    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;

    /* Reset masks for the next index in the loop */
    wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE);
    eqTermMask = idxEqTermMask;
  }

  /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
  ** is set, then reverse the order that the index will be scanned
  ** in. This is used for application testing, to help find cases
  ** where application behavior depends on the (undefined) order that
  ** SQLite outputs rows in in the absence of an ORDER BY clause.  */
  if( !p->pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){
    p->cost.plan.wsFlags |= WHERE_REVERSE;
  }

  assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 );
  assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 );
  assert( pSrc->pIndex==0 
       || p->cost.plan.u.pIdx==0 
       || p->cost.plan.u.pIdx==pSrc->pIndex 
  );

  WHERETRACE(("   best index is %s cost=%.1f\n",
         p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk",
         p->cost.rCost));
  
  bestOrClauseIndex(p);
  bestAutomaticIndex(p);
  p->cost.plan.wsFlags |= eqTermMask;
}

/*
** Find the query plan for accessing table pSrc->pTab. Write the
** best query plan and its cost into the WhereCost object supplied 
** as the last parameter. This function may calculate the cost of
** both real and virtual table scans.
**
** This function does not take ORDER BY or DISTINCT into account.  Nor
** does it remember the virtual table query plan.  All it does is compute
** the cost while determining if an OR optimization is applicable.  The
** details will be reconsidered later if the optimization is found to be
** applicable.
*/
static void bestIndex(WhereBestIdx *p){
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( IsVirtual(p->pSrc->pTab) ){
    sqlite3_index_info *pIdxInfo = 0;
    p->ppIdxInfo = &pIdxInfo;
    bestVirtualIndex(p);
    assert( pIdxInfo!=0 || p->pParse->db->mallocFailed );
    if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){
      sqlite3_free(pIdxInfo->idxStr);
    }
    sqlite3DbFree(p->pParse->db, pIdxInfo);
  }else
#endif
  {
    bestBtreeIndex(p);
  }
}

/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
................................................................................
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */

  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( iTarget>0 );
................................................................................
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;

    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 

      && pLevel->plan.u.pIdx->aSortOrder[iEq]
    ){
      testcase( iEq==0 );
      testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 );
      testcase( iEq>0 && iEq+1<pLevel->plan.u.pIdx->nColumn );
      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );

    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
................................................................................
** no conversion should be attempted before using a t2.b value as part of
** a key to search the index. Hence the first byte in the returned affinity
** string in this example would be set to SQLITE_AFF_NONE.
*/
static int codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  WhereClause *pWC,     /* The WHERE clause */
  Bitmask notReady,     /* Which parts of FROM have not yet been coded */
  int nExtraReg,        /* Number of extra registers to allocate */
  char **pzAff          /* OUT: Set to point to affinity string */
){
  int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
  Vdbe *v = pParse->pVdbe;      /* The vm under construction */
  Index *pIdx;                  /* The index being used for this loop */
  int iCur = pLevel->iTabCur;   /* The cursor of the table */
  WhereTerm *pTerm;             /* A single constraint term */

  int j;                        /* Loop counter */
  int regBase;                  /* Base register */
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */
  assert( pLevel->plan.wsFlags & WHERE_INDEXED );
  pIdx = pLevel->plan.u.pIdx;





  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLevel->plan.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
    if( pTerm==0 ) break;
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
................................................................................
**
**   "a=? AND b>?"
**
** The returned pointer points to memory obtained from sqlite3DbMalloc().
** It is the responsibility of the caller to free the buffer when it is
** no longer required.
*/
static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){
  WherePlan *pPlan = &pLevel->plan;
  Index *pIndex = pPlan->u.pIdx;
  int nEq = pPlan->nEq;
  int i, j;
  Column *aCol = pTab->aCol;
  int *aiColumn = pIndex->aiColumn;
  StrAccum txt;

  if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){
    explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
  }

  j = i;
  if( pPlan->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
  if( pPlan->wsFlags&WHERE_TOP_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i, z, "<");
  }
  sqlite3StrAccumAppend(&txt, ")", 1);
  return sqlite3StrAccumFinish(&txt);
}

................................................................................
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  if( pParse->explain==2 ){
    u32 flags = pLevel->plan.wsFlags;
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    char *zMsg;                   /* Text to add to EQP output */
    sqlite3_int64 nRow;           /* Expected number of rows visited by scan */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */





    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;

    isSearch = (pLevel->plan.nEq>0)
             || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0

             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
    if( pItem->pSelect ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
    }else{
      zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
    }

    if( pItem->zAlias ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
    }
    if( (flags & WHERE_INDEXED)!=0 ){


      char *zWhere = explainIndexRange(db, pLevel, pItem->pTab);
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 
          ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
          ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
          ((flags & WHERE_TEMP_INDEX)?"":" "),
          ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName),
          zWhere
      );
      sqlite3DbFree(db, zWhere);
    }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);

      if( flags&WHERE_ROWID_EQ ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
      }else if( flags&WHERE_BTM_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
      }else if( flags&WHERE_TOP_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
      }
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
      sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
      zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
                  pVtabIdx->idxNum, pVtabIdx->idxStr);

    }
#endif
    if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){
      testcase( wctrlFlags & WHERE_ORDERBY_MIN );
      nRow = 1;
    }else{
      nRow = (sqlite3_int64)pLevel->plan.nRow;
    }
    zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }
}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */

................................................................................
/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */
  u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
  Bitmask notReady     /* Which tables are currently available */
){
  int j, k;            /* Loop counters */
  int iCur;            /* The VDBE cursor for the table */
  int addrNxt;         /* Where to jump to continue with the next IN case */
  int omitTable;       /* True if we use the index only */
  int bRev;            /* True if we need to scan in reverse order */
  WhereLevel *pLevel;  /* The where level to be coded */

  WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
  WhereTerm *pTerm;               /* A WHERE clause term */
  Parse *pParse;                  /* Parsing context */
  Vdbe *v;                        /* The prepared stmt under constructions */
  struct SrcList_item *pTabItem;  /* FROM clause term being coded */
  int addrBrk;                    /* Jump here to break out of the loop */
  int addrCont;                   /* Jump here to continue with next cycle */
  int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
  int iReleaseReg = 0;      /* Temp register to free before returning */
  Bitmask newNotReady;      /* Return value */

  pParse = pWInfo->pParse;
  v = pParse->pVdbe;
  pWC = pWInfo->pWC;
  pLevel = &pWInfo->a[iLevel];

  pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
  iCur = pTabItem->iCursor;
  bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;

  omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 
           && (wctrlFlags & WHERE_FORCE_TABLE)==0;
  VdbeNoopComment((v, "Begin Join Loop %d", iLevel));

  /* Create labels for the "break" and "continue" instructions
  ** for the current loop.  Jump to addrBrk to break out of a loop.
  ** Jump to cont to go immediately to the next iteration of the
  ** loop.
  **
................................................................................
    pLevel->p2 =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));
    sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk);
    pLevel->op = OP_Goto;
  }else

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */
    int addrNotFound;
    sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
    int nConstraint = pVtabIdx->nConstraint;
    struct sqlite3_index_constraint_usage *aUsage =
                                                pVtabIdx->aConstraintUsage;
    const struct sqlite3_index_constraint *aConstraint =
                                                pVtabIdx->aConstraint;

    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);
    addrNotFound = pLevel->addrBrk;
    for(j=1; j<=nConstraint; j++){
      for(k=0; k<nConstraint; k++){
        if( aUsage[k].argvIndex==j ){
          int iTarget = iReg+j+1;
          pTerm = &pWC->a[aConstraint[k].iTermOffset];


          if( pTerm->eOperator & WO_IN ){
            codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget);
            addrNotFound = pLevel->addrNxt;
          }else{
            sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
          }
          break;
        }
      }
      if( k==nConstraint ) break;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr,

                      pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
    pVtabIdx->needToFreeIdxStr = 0;

    for(j=0; j<nConstraint; j++){
      if( aUsage[j].omit ){
        int iTerm = aConstraint[j].iTermOffset;

        disableTerm(pLevel, &pWC->a[iTerm]);
      }
    }
    pLevel->op = OP_VNext;
    pLevel->p1 = iCur;
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);
    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
    sqlite3ExprCachePop(pParse, 1);
  }else
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){


    /* Case 1:  We can directly reference a single row using an
    **          equality comparison against the ROWID field.  Or
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */

    iReleaseReg = sqlite3GetTempReg(pParse);
    pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);

    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );
    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
    VdbeComment((v, "pk"));
    pLevel->op = OP_Noop;
  }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){


    /* Case 2:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
    int start;
    int memEndValue = 0;
    WhereTerm *pStart, *pEnd;

    assert( omitTable==0 );
    pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
    pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);



    if( bRev ){
      pTerm = pStart;
      pStart = pEnd;
      pEnd = pTerm;
    }
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
................................................................................
      }
      disableTerm(pLevel, pEnd);
    }
    start = sqlite3VdbeCurrentAddr(v);
    pLevel->op = bRev ? OP_Prev : OP_Next;
    pLevel->p1 = iCur;
    pLevel->p2 = start;
    if( pStart==0 && pEnd==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
    if( testOp!=OP_Noop ){
      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
      sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
    }
  }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
    /* Case 3: A scan using an index.
    **
    **         The WHERE clause may contain zero or more equality 
    **         terms ("==" or "IN" operators) that refer to the N
    **         left-most columns of the index. It may also contain
    **         inequality constraints (>, <, >= or <=) on the indexed
    **         column that immediately follows the N equalities. Only 
    **         the right-most column can be an inequality - the rest must
................................................................................
      OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
    };
    static const u8 aEndOp[] = {
      OP_Noop,             /* 0: (!end_constraints) */
      OP_IdxGE,            /* 1: (end_constraints && !bRev) */
      OP_IdxLT             /* 2: (end_constraints && bRev) */
    };
    int nEq = pLevel->plan.nEq;  /* Number of == or IN terms */
    int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
    int regBase;                 /* Base register holding constraint values */
    int r1;                      /* Temp register */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
................................................................................
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff;               /* Affinity for end of range constraint */

    pIdx = pLevel->plan.u.pIdx;
    iIdxCur = pLevel->iIdxCur;
    k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]);

    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
    ** this requires some special handling.
    */
    if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && (pLevel->plan.wsFlags&WHERE_ORDERED)
     && (pIdx->nColumn>nEq)
    ){
      /* assert( pOrderBy->nExpr==1 ); */
      /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
      isMinQuery = 1;
      nExtraReg = 1;
    }

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
      nExtraReg = 1;
    }
    if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);

      nExtraReg = 1;
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(
        pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff
    );
    zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
    addrNxt = pLevel->addrNxt;

    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nColumn==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
    }

    testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
    testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
    testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
................................................................................
    }

    /* If there are inequality constraints, check that the value
    ** of the table column that the inequality contrains is not NULL.
    ** If it is, jump to the next iteration of the loop.
    */
    r1 = sqlite3GetTempReg(pParse);
    testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
    testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
    if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
      sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
    }
    sqlite3ReleaseTempReg(pParse, r1);

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
................................................................................
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
    }

    /* Record the instruction used to terminate the loop. Disable 
    ** WHERE clause terms made redundant by the index range scan.
    */
    if( pLevel->plan.wsFlags & WHERE_UNIQUE ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    if( pLevel->plan.wsFlags & WHERE_COVER_SCAN ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
  }else

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
    /* Case 4:  Two or more separately indexed terms connected by OR
    **
    ** Example:
    **
    **   CREATE TABLE t1(a,b,c,d);
    **   CREATE INDEX i1 ON t1(a);
    **   CREATE INDEX i2 ON t1(b);
    **   CREATE INDEX i3 ON t1(c);
................................................................................
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

................................................................................
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;
      pOrTab = sqlite3StackAllocRaw(pParse->db,
                            sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
      if( pOrTab==0 ) return notReady;
      pOrTab->nAlloc = (i16)(nNotReady + 1);
      pOrTab->nSrc = pOrTab->nAlloc;
      memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
      origSrc = pWInfo->pTabList->a;
      for(k=1; k<=nNotReady; k++){
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{
................................................................................
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
    ** over the top of the loop into the body of it. In this case the 
    ** correct response for the end-of-loop code (the OP_Return) is to 
    ** fall through to the next instruction, just as an OP_Next does if
    ** called on an uninitialized cursor.
    */
    if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
      regRowset = ++pParse->nMem;
      regRowid = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
    }
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
................................................................................
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
        assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed );
        if( pSubWInfo ){
          WhereLevel *pLvl;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
................................................................................
          ** If the call to sqlite3WhereBegin() above resulted in a scan that
          ** uses an index, and this is either the first OR-connected term
          ** processed or the index is the same as that used by all previous
          ** terms, set pCov to the candidate covering index. Otherwise, set 
          ** pCov to NULL to indicate that no candidate covering index will 
          ** be available.
          */
          pLvl = &pSubWInfo->a[0];
          if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0
           && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0
           && (ii==0 || pLvl->plan.u.pIdx==pCov)
          ){
            assert( pLvl->iIdxCur==iCovCur );
            pCov = pLvl->plan.u.pIdx;
          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
................................................................................

    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

  {
    /* Case 5:  There is no usable index.  We must do a complete
    **          scan of the entire table.
    */
    static const u8 aStep[] = { OP_Next, OP_Prev };
    static const u8 aStart[] = { OP_Rewind, OP_Last };
    assert( bRev==0 || bRev==1 );
    assert( omitTable==0 );
    pLevel->op = aStep[bRev];
    pLevel->p1 = iCur;
    pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
    pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
  }
  newNotReady = notReady & ~getMask(pWC->pMaskSet, iCur);

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  **
  ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
  ** the use of indices become tests that are evaluated against each row of
  ** the relevant input tables.
................................................................................
    if( pTerm->leftCursor!=iCur ) continue;
    pE = pTerm->pExpr;
    assert( !ExprHasProperty(pE, EP_FromJoin) );
    assert( (pTerm->prereqRight & newNotReady)!=0 );
    pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
    if( pAlt==0 ) continue;
    if( pAlt->wtFlags & (TERM_CODED) ) continue;


    VdbeNoopComment((v, "begin transitive constraint"));
    sEq = *pAlt->pExpr;
    sEq.pLeft = pE->pLeft;
    sqlite3ExprIfFalse(pParse, &sEq, addrCont, SQLITE_JUMPIFNULL);
  }

  /* For a LEFT OUTER JOIN, generate code that will record the fact that
................................................................................
    }
  }
  sqlite3ReleaseTempReg(pParse, iReleaseReg);

  return newNotReady;
}

#if defined(SQLITE_TEST)
/*
** The following variable holds a text description of query plan generated
** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
** overwrites the previous.  This information is used for testing and
** analysis only.






































*/
char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
static int nQPlan = 0;              /* Next free slow in _query_plan[] */














































#endif /* SQLITE_TEST */


/*
























** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
  if( ALWAYS(pWInfo) ){













































































































































































































































































































































































    int i;
    for(i=0; i<pWInfo->nLevel; i++){
























































































































































































      sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
      if( pInfo ){










































































        /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */























































        if( pInfo->needToFreeIdxStr ){









          sqlite3_free(pInfo->idxStr);

        }





        sqlite3DbFree(db, pInfo);

      }
























































































































































































































































      if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){
        Index *pIdx = pWInfo->a[i].plan.u.pIdx;








































        if( pIdx ){
          sqlite3DbFree(db, pIdx->zColAff);



























































































































































































































































































































          sqlite3DbFree(db, pIdx);

        }
      }






    }
    whereClauseClear(pWInfo->pWC);





























    sqlite3DbFree(db, pWInfo);

  }
}















































































/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop.  Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
................................................................................
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** pOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
**
** If an index can be used so that the natural output order of the table
** scan is correct for the ORDER BY clause, then that index is used and
** the returned WhereInfo.nOBSat field is set to pOrderBy->nExpr.  This
** is an optimization that prevents an unnecessary sort of the result set
** if an index appropriate for the ORDER BY clause already exists.
**
** If the where clause loops cannot be arranged to provide the correct
** output order, then WhereInfo.nOBSat is 0.
*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList *pOrderBy,   /* An ORDER BY clause, or NULL */
  ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
................................................................................
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereBestIdx sWBI;         /* Best index search context */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  int iFrom;                 /* First unused FROM clause element */
  int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */



  /* Variable initialization */
  memset(&sWBI, 0, sizeof(sWBI));
  sWBI.pParse = pParse;

  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  testcase( pTabList->nSrc==BMS );
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
................................................................................
  ** struct, the contents of WhereInfo.a[], the WhereClause structure
  ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
  ** field (type Bitmask) it must be aligned on an 8-byte boundary on
  ** some architectures. Hence the ROUND8() below.
  */
  db = pParse->db;
  nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
  pWInfo = sqlite3DbMallocZero(db, 
      nByteWInfo + 
      sizeof(WhereClause) +
      sizeof(WhereMaskSet)
  );
  if( db->mallocFailed ){
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;


  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
  pWInfo->pWC = sWBI.pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;
  pMaskSet = (WhereMaskSet*)&sWBI.pWC[1];

  sWBI.aLevel = pWInfo->a;







  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ) pDistinct = 0;

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(pMaskSet);
  whereClauseInit(sWBI.pWC, pParse, pMaskSet, wctrlFlags);
  sqlite3ExprCodeConstants(pParse, pWhere);
  whereSplit(sWBI.pWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
    
  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }








  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
  ** When assigning bitmask values to FROM clause cursors, it must be
  ** the case that if X is the bitmask for the N-th FROM clause term then
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
................................................................................
#endif

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  exprAnalyzeAll(pTabList, sWBI.pWC);
  if( db->mallocFailed ){
    goto whereBeginError;
  }

















  /* Check if the DISTINCT qualifier, if there is one, is redundant. 
  ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
  ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
  */

  if( pDistinct && isDistinctRedundant(pParse, pTabList, sWBI.pWC, pDistinct) ){
    pDistinct = 0;
    pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
  }

  /* Chose the best index to use for each table in the FROM clause.
  **
  ** This loop fills in the following fields:
  **
  **   pWInfo->a[].pIdx      The index to use for this level of the loop.
  **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
  **   pWInfo->a[].nEq       The number of == and IN constraints
  **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
  **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
  **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
  **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
  **
  ** This loop also figures out the nesting order of tables in the FROM
  ** clause.
  */
  sWBI.notValid = ~(Bitmask)0;
  sWBI.pOrderBy = pOrderBy;
  sWBI.n = nTabList;
  sWBI.pDistinct = pDistinct;
  andFlags = ~0;
  WHERETRACE(("*** Optimizer Start ***\n"));
  for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){
    WhereCost bestPlan;         /* Most efficient plan seen so far */
    Index *pIdx;                /* Index for FROM table at pTabItem */
    int j;                      /* For looping over FROM tables */
    int bestJ = -1;             /* The value of j */
    Bitmask m;                  /* Bitmask value for j or bestJ */
    int isOptimal;              /* Iterator for optimal/non-optimal search */
    int ckOptimal;              /* Do the optimal scan check */
    int nUnconstrained;         /* Number tables without INDEXED BY */
    Bitmask notIndexed;         /* Mask of tables that cannot use an index */

    memset(&bestPlan, 0, sizeof(bestPlan));
    bestPlan.rCost = SQLITE_BIG_DBL;
    WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i));

    /* Loop through the remaining entries in the FROM clause to find the
    ** next nested loop. The loop tests all FROM clause entries
    ** either once or twice. 
    **
    ** The first test is always performed if there are two or more entries
    ** remaining and never performed if there is only one FROM clause entry
    ** to choose from.  The first test looks for an "optimal" scan.  In
    ** this context an optimal scan is one that uses the same strategy
    ** for the given FROM clause entry as would be selected if the entry
    ** were used as the innermost nested loop.  In other words, a table
    ** is chosen such that the cost of running that table cannot be reduced
    ** by waiting for other tables to run first.  This "optimal" test works
    ** by first assuming that the FROM clause is on the inner loop and finding
    ** its query plan, then checking to see if that query plan uses any
    ** other FROM clause terms that are sWBI.notValid.  If no notValid terms
    ** are used then the "optimal" query plan works.
    **
    ** Note that the WhereCost.nRow parameter for an optimal scan might
    ** not be as small as it would be if the table really were the innermost
    ** join.  The nRow value can be reduced by WHERE clause constraints
    ** that do not use indices.  But this nRow reduction only happens if the
    ** table really is the innermost join.  
    **
    ** The second loop iteration is only performed if no optimal scan
    ** strategies were found by the first iteration. This second iteration
    ** is used to search for the lowest cost scan overall.
    **
    ** Without the optimal scan step (the first iteration) a suboptimal
    ** plan might be chosen for queries like this:
    **   
    **   CREATE TABLE t1(a, b); 
    **   CREATE TABLE t2(c, d);
    **   SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
    **
    ** The best strategy is to iterate through table t1 first. However it
    ** is not possible to determine this with a simple greedy algorithm.
    ** Since the cost of a linear scan through table t2 is the same 
    ** as the cost of a linear scan through table t1, a simple greedy 
    ** algorithm may choose to use t2 for the outer loop, which is a much
    ** costlier approach.
    */
    nUnconstrained = 0;
    notIndexed = 0;

    /* The optimal scan check only occurs if there are two or more tables
    ** available to be reordered */
    if( iFrom==nTabList-1 ){
      ckOptimal = 0;  /* Common case of just one table in the FROM clause */
    }else{
      ckOptimal = -1;
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          if( j==iFrom ) iFrom++;
          continue;





        }
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break;
        if( ++ckOptimal ) break;
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;










      }
    }
    assert( ckOptimal==0 || ckOptimal==1 );

    for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){
      for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){
        if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){
          /* This break and one like it in the ckOptimal computation loop
          ** above prevent table reordering across LEFT and CROSS JOINs.
          ** The LEFT JOIN case is necessary for correctness.  The prohibition
          ** against reordering across a CROSS JOIN is an SQLite feature that
          ** allows the developer to control table reordering */
          break;
        }
        m = getMask(pMaskSet, sWBI.pSrc->iCursor);
        if( (m & sWBI.notValid)==0 ){
          assert( j>iFrom );
          continue;
        }
        sWBI.notReady = (isOptimal ? m : sWBI.notValid);
        if( sWBI.pSrc->pIndex==0 ) nUnconstrained++;
  
        WHERETRACE(("   === trying table %d (%s) with isOptimal=%d ===\n",
                    j, sWBI.pSrc->pTab->zName, isOptimal));
        assert( sWBI.pSrc->pTab );
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(sWBI.pSrc->pTab) ){
          sWBI.ppIdxInfo = &pWInfo->a[j].pIdxInfo;
          bestVirtualIndex(&sWBI);
        }else 
#endif
        {
          bestBtreeIndex(&sWBI);





        }
        assert( isOptimal || (sWBI.cost.used&sWBI.notValid)==0 );

        /* If an INDEXED BY clause is present, then the plan must use that
        ** index if it uses any index at all */
        assert( sWBI.pSrc->pIndex==0 
                  || (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0
                  || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex );



        if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){
          notIndexed |= m;


        }
        if( isOptimal ){
          pWInfo->a[j].rOptCost = sWBI.cost.rCost;
        }else if( ckOptimal ){
          /* If two or more tables have nearly the same outer loop cost, but
          ** very different inner loop (optimal) cost, we want to choose
          ** for the outer loop that table which benefits the least from
          ** being in the inner loop.  The following code scales the 
          ** outer loop cost estimate to accomplish that. */
          WHERETRACE(("   scaling cost from %.1f to %.1f\n",
                      sWBI.cost.rCost,
                      sWBI.cost.rCost/pWInfo->a[j].rOptCost));
          sWBI.cost.rCost /= pWInfo->a[j].rOptCost;






        }

        /* Conditions under which this table becomes the best so far:
        **
        **   (1) The table must not depend on other tables that have not
        **       yet run.  (In other words, it must not depend on tables
        **       in inner loops.)
        **
        **   (2) (This rule was removed on 2012-11-09.  The scaling of the
        **       cost using the optimal scan cost made this rule obsolete.)
        **
        **   (3) All tables have an INDEXED BY clause or this table lacks an
        **       INDEXED BY clause or this table uses the specific
        **       index specified by its INDEXED BY clause.  This rule ensures
        **       that a best-so-far is always selected even if an impossible
        **       combination of INDEXED BY clauses are given.  The error
        **       will be detected and relayed back to the application later.
        **       The NEVER() comes about because rule (2) above prevents
        **       An indexable full-table-scan from reaching rule (3).
        **
        **   (4) The plan cost must be lower than prior plans, where "cost"
        **       is defined by the compareCost() function above. 
        */
        if( (sWBI.cost.used&sWBI.notValid)==0                    /* (1) */
            && (nUnconstrained==0 || sWBI.pSrc->pIndex==0        /* (3) */
                || NEVER((sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0))
            && (bestJ<0 || compareCost(&sWBI.cost, &bestPlan))   /* (4) */
        ){
          WHERETRACE(("   === table %d (%s) is best so far\n"
                      "       cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
                      j, sWBI.pSrc->pTab->zName,
                      sWBI.cost.rCost, sWBI.cost.plan.nRow,
                      sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags));
          bestPlan = sWBI.cost;
          bestJ = j;
        }

        /* In a join like "w JOIN x LEFT JOIN y JOIN z"  make sure that
        ** table y (and not table z) is always the next inner loop inside
        ** of table x. */
        if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break;
      }
    }
    assert( bestJ>=0 );
    assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
    assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 );
    testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 );
    testcase( bestJ>iFrom && bestJ<nTabList-1
                          && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 );
    WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
                "    cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
                bestJ, pTabList->a[bestJ].pTab->zName,
                pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow,
                bestPlan.plan.nOBSat, bestPlan.plan.wsFlags));
    if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){
      assert( pWInfo->eDistinct==0 );
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;


    }
    andFlags &= bestPlan.plan.wsFlags;
    pLevel->plan = bestPlan.plan;
    pLevel->iTabCur = pTabList->a[bestJ].iCursor;
    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
      if( (wctrlFlags & WHERE_ONETABLE_ONLY) 
       && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0 
      ){
        pLevel->iIdxCur = iIdxCur;
      }else{
        pLevel->iIdxCur = pParse->nTab++;



      }
    }else{
      pLevel->iIdxCur = -1;



    }
    sWBI.notValid &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
    pLevel->iFrom = (u8)bestJ;
    if( bestPlan.plan.nRow>=(double)1 ){
      pParse->nQueryLoop *= bestPlan.plan.nRow;
    }




    /* Check that if the table scanned by this loop iteration had an
    ** INDEXED BY clause attached to it, that the named index is being
    ** used for the scan. If not, then query compilation has failed.
    ** Return an error.
    */
    pIdx = pTabList->a[bestJ].pIndex;
    if( pIdx ){
      if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
        sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
        goto whereBeginError;
      }else{
        /* If an INDEXED BY clause is used, the bestIndex() function is
        ** guaranteed to find the index specified in the INDEXED BY clause
        ** if it find an index at all. */
        assert( bestPlan.plan.u.pIdx==pIdx );
      }
    }
  }

  WHERETRACE(("*** Optimizer Finished ***\n"));
  if( pParse->nErr || db->mallocFailed ){
    goto whereBeginError;
  }
  if( nTabList ){
    pLevel--;
    pWInfo->nOBSat = pLevel->plan.nOBSat;
  }else{
    pWInfo->nOBSat = 0;
  }

  /* If the total query only selects a single row, then the ORDER BY
  ** clause is irrelevant.
  */
  if( (andFlags & WHERE_UNIQUE)!=0 && pOrderBy ){
    assert( nTabList==0 || (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 );
    pWInfo->nOBSat = pOrderBy->nExpr;
  }


  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constraints
  ** the statement to update a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){

    pWInfo->okOnePass = 1;
    pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  notReady = ~(Bitmask)0;
  pWInfo->nRowOut = (double)1;
  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
    Table *pTab;     /* Table to open */
    int iDb;         /* Index of database containing table/index */
    struct SrcList_item *pTabItem;


    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;
    pWInfo->nRowOut *= pLevel->plan.nRow;
    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);

    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
      /* Do nothing */
    }else
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
    }else if( IsVirtual(pTab) ){
      /* noop */
    }else
#endif
    if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
      int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
      testcase( pTab->nCol==BMS-1 );
      testcase( pTab->nCol==BMS );
      if( !pWInfo->okOnePass && pTab->nCol<BMS ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
      constructAutomaticIndex(pParse, sWBI.pWC, pTabItem, notReady, pLevel);
    }else
#endif
    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
      Index *pIx = pLevel->plan.u.pIdx;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);

      int iIndexCur = pLevel->iIdxCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      VdbeComment((v, "%s", pIx->zName));
    }
    sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(sWBI.pWC->pMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  if( db->mallocFailed ) goto whereBeginError;

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    pLevel = &pWInfo->a[ii];
    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
    notReady = codeOneLoopStart(pWInfo, ii, wctrlFlags, notReady);
    pWInfo->iContinue = pLevel->addrCont;
  }

#ifdef SQLITE_TEST  /* For testing and debugging use only */
  /* Record in the query plan information about the current table
  ** and the index used to access it (if any).  If the table itself
  ** is not used, its name is just '{}'.  If no index is used
  ** the index is listed as "{}".  If the primary key is used the
  ** index name is '*'.
  */
  for(ii=0; ii<nTabList; ii++){
    char *z;
    int n;
    int w;
    struct SrcList_item *pTabItem;

    pLevel = &pWInfo->a[ii];
    w = pLevel->plan.wsFlags;
    pTabItem = &pTabList->a[pLevel->iFrom];
    z = pTabItem->zAlias;
    if( z==0 ) z = pTabItem->pTab->zName;
    n = sqlite3Strlen30(z);
    if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
      if( (w & WHERE_IDX_ONLY)!=0 && (w & WHERE_COVER_SCAN)==0 ){
        memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
        nQPlan += 2;
      }else{
        memcpy(&sqlite3_query_plan[nQPlan], z, n);
        nQPlan += n;
      }
      sqlite3_query_plan[nQPlan++] = ' ';
    }
    testcase( w & WHERE_ROWID_EQ );
    testcase( w & WHERE_ROWID_RANGE );
    if( w & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
      memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
      nQPlan += 2;
    }else if( (w & WHERE_INDEXED)!=0 && (w & WHERE_COVER_SCAN)==0 ){
      n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
      if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
        memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
        nQPlan += n;
        sqlite3_query_plan[nQPlan++] = ' ';
      }
    }else{
      memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
      nQPlan += 3;
    }
  }
  while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
    sqlite3_query_plan[--nQPlan] = 0;
  }
  sqlite3_query_plan[nQPlan] = 0;
  nQPlan = 0;
#endif /* SQLITE_TEST // Testing and debugging use only */

  /* Record the continuation address in the WhereInfo structure.  Then
  ** clean up and return.
  */
  return pWInfo;

  /* Jump here if malloc fails */
whereBeginError:
  if( pWInfo ){
    pParse->nQueryLoop = pWInfo->savedNQueryLoop;
    whereInfoFree(db, pWInfo);
................................................................................
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
  Parse *pParse = pWInfo->pParse;
  Vdbe *v = pParse->pVdbe;
  int i;
  WhereLevel *pLevel;

  SrcList *pTabList = pWInfo->pTabList;
  sqlite3 *db = pParse->db;

  /* Generate loop termination code.
  */
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    pLevel = &pWInfo->a[i];

    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
      sqlite3VdbeChangeP5(v, pLevel->p5);
    }
    if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
................................................................................
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
      assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
           || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 );
      if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }
      if( pLevel->iIdxCur>=0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
      }
      if( pLevel->op==OP_Return ){
        sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
      }else{
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
      }
................................................................................
  */
  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
    Index *pIdx = 0;
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );

    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
      int ws = pLevel->plan.wsFlags;
      if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
      }
      if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
      }
    }

    /* If this scan uses an index, make code substitutions to read data
    ** from the index in preference to the table. Sometimes, this means
    ** the table need never be read from. This is a performance boost,
    ** as the vdbe level waits until the table is read before actually
    ** seeking the table cursor to the record corresponding to the current
    ** position in the index.
    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( pLevel->plan.wsFlags & WHERE_INDEXED ){
      pIdx = pLevel->plan.u.pIdx;
    }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed){
      int k, j, last;
      VdbeOp *pOp;

      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);
      for(k=pWInfo->iTop; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
................................................................................
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              pOp->p1 = pLevel->iIdxCur;
              break;
            }
          }
          assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
               || j<pIdx->nColumn );
        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }
      }
    }
  }







>
|

|








>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













|
<


<







 







|
|

|
|
|
|
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>

<
>







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>




<







 







|







 







|







 







|
|










|

|










|







 







|


<
<
<
<
<
<
<
<
<







 







|







 







|
|
|
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
|
|
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
>
>
|
<
<
<
<
<
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
|
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<








<
<







 







|
>



<







 







|







 







|








|










|


|







 







|







 







|







 







|







 







>










|






|







 







|
|
<
<
<







 









|
|
<
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
>


|
|
|
|







 







|
|
|
|
|
<

>
|
|
|
|
|
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|

>


>
>
>
>
>
>
>
>





|







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







>






<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







>







 







>




|



>
|





|
>
>









|




|

|


|








|











|
>
>










|




|





|











>







 







|
|
|
|
|
>









<
<







 







<







 







|
|







 







<







 







>

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|
>
>
|
<







 







|







 







|
|
|
|
|
|
|









|
>
>
|
>
>
|
>
>







 







|







 







|







 







|

|
|
|
|










|





<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







>







 







|

|
>
|


<
<












|
>







 







|
<



|


<

>






<
|
>
>
>
>




|












|
|
<




|







 







|
<
|
|





|










|



|







 







<




<


>
>

>
>


<
|
>
|











|
>
>
|




|



|


|





|





<

<
>


<
<
<
<
<
<
|







 







<








>













|

>


<
>
|
|







 







|
|




<
|
<
<
<
<




|
<
<
|
<
>
>
|
|
|
|
|
|
<
|
<
<
<
|
|
|
>
|
<
>
|
<
<
>
|










|
>
>
|




>

<
>




|







|
>
>
|







|
|
>
>
>







 







<
<
<
|
<







|
|







 







|
|







 







|

<









|
|











|
|
|
|
|
|
>







|
<
<













|
|
|
|







 







|
|
|







 







|







|







|
|







 







|







 







|







 







|







 







|



|







 







|
|
|
|

|
|







 







|





<





|







 







>
>







 







|

|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

<
<
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
|
>
|
>
>
>
>
>
|
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
|
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<
<
<
<
<
<
<
<
<







 







|


<
<


>



|
|







 







|
<
<
<
<








>
>

<


<
>
|
>
>
>
>
>
>









|

|








>
>
>
>
>
>
>







 







|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




>
|
|
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
<
|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<
<
<
<
<
<
>
>
>
>
>
|
<
<
<
>
>
>
>
>
>
>
>
>
>


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

|
<
>
>
>
>
>
|
<
|
<
<
<
<
<
>
>
|
<
<
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
>
>
>
>
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
>
>
>

<
<
>
>
>
|
<
<
<
<

>
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
>
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
>







|
>

|







<




>



<

>




|







|



|
|












|
|


|
|

>
|







|












|



|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







>








>





|







 







|
|
|


|







 







>




|



|




|
|
|
|
<
<







|
|
|


|







 







|
<







23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
...
230
231
232
233
234
235
236

237
238
239
240
241
242
243
...
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

300
301

302
303
304
305
306
307
308
...
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
...
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523

524
525
526
527
528
529
530
...
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
...
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
...
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
...
671
672
673
674
675
676
677
678
679
680









681
682
683
684
685
686
687
...
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
...
754
755
756
757
758
759
760
761
762
763

764
765
766
767
768
769
770
...
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
...
968
969
970
971
972
973
974
975
976
977







978









979
980
981





982
983
984

























985

986
987
988






















989
990
991
992
993
994
995
996


997
998
999
1000
1001
1002
1003
....
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235
1236
1237
1238
1239
....
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
....
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
....
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
....
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
....
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
....
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
....
1768
1769
1770
1771
1772
1773
1774
1775
1776



1777
1778
1779
1780
1781
1782
1783
....
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809


1810
























































1811


1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
....
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
....
1983
1984
1985
1986
1987
1988
1989





































































































1990
1991
1992
1993
1994
1995
1996
....
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011












































































2012
2013
2014
2015
2016
2017
2018
....
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
....
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
....
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192


2193
2194
2195
2196
2197
2198
2199
....
2221
2222
2223
2224
2225
2226
2227

2228
2229
2230
2231
2232
2233
2234
....
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
....
2292
2293
2294
2295
2296
2297
2298

2299
2300
2301
2302
2303
2304
2305
....
2317
2318
2319
2320
2321
2322
2323
2324
2325








































































































































































































2326
2327
2328
2329
2330
2331
2332
....
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415

2416
2417
2418
2419
2420
2421
2422
....
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
....
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
....
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
....
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
....
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726









































































































































































































































































































































































































































































































































































































































































































































































































































































































2727
2728
2729
2730
2731
2732
2733
....
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
....
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848


2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
....
2925
2926
2927
2928
2929
2930
2931
2932

2933
2934
2935
2936
2937
2938

2939
2940
2941
2942
2943
2944
2945
2946

2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970

2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
....
3036
3037
3038
3039
3040
3041
3042
3043

3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
....
3082
3083
3084
3085
3086
3087
3088

3089
3090
3091
3092

3093
3094
3095
3096
3097
3098
3099
3100
3101

3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142

3143

3144
3145
3146






3147
3148
3149
3150
3151
3152
3153
3154
....
3156
3157
3158
3159
3160
3161
3162

3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189

3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
....
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234

3235




3236
3237
3238
3239
3240


3241

3242
3243
3244
3245
3246
3247
3248
3249

3250



3251
3252
3253
3254
3255

3256
3257


3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279

3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
....
3356
3357
3358
3359
3360
3361
3362



3363

3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
....
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
....
3428
3429
3430
3431
3432
3433
3434
3435
3436

3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473


3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
....
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
....
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
....
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
....
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
....
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
....
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
....
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
....
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
....
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
....
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967


3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411

4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596

4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996

4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037

5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363

5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
....
5547
5548
5549
5550
5551
5552
5553









5554
5555
5556
5557
5558
5559
5560
....
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571


5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
....
5599
5600
5601
5602
5603
5604
5605
5606




5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617

5618
5619

5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
....
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719

















5720
5721

5722












5723



5724











































5725











5726
5727
5728
5729
5730
5731



5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743




























5744
5745

5746
5747
5748
5749
5750
5751

5752





5753
5754
5755


5756
5757
5758












5759
5760
5761
5762
5763
5764
5765






















































5766
5767
5768
5769
5770












5771
5772
5773
5774


5775
5776
5777
5778




5779
5780
5781
5782
5783















5784


5785
5786

















5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805

5806
5807
5808
5809
5810
5811
5812
5813

5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879























































5880
5881
5882
5883
5884
5885
5886
....
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
....
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
....
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977


5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
....
5999
6000
6001
6002
6003
6004
6005
6006

6007
6008
6009
6010
6011
6012
6013
** Trace output macros
*/
#if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
/***/ int sqlite3WhereTrace = 0;
#endif
#if defined(SQLITE_DEBUG) \
    && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
# define WHERETRACE(K,X)  if(sqlite3WhereTrace&(K)) sqlite3DebugPrintf X
# define WHERETRACE_ENABLED 1
#else
# define WHERETRACE(K,X)
#endif

/* Forward reference
*/
typedef struct WhereClause WhereClause;
typedef struct WhereMaskSet WhereMaskSet;
typedef struct WhereOrInfo WhereOrInfo;
typedef struct WhereAndInfo WhereAndInfo;
typedef struct WhereLevel WhereLevel;
typedef struct WhereLoop WhereLoop;
typedef struct WherePath WherePath;
typedef struct WhereTerm WhereTerm;
typedef struct WhereLoopBuilder WhereLoopBuilder;
typedef struct WhereScan WhereScan;

/*
** Cost X is tracked as 10*log2(X) stored in a 16-bit integer.  The
** maximum cost for ordinary tables is 64*(2**63) which becomes 6900.
** (Virtual tables can return a larger cost, but let's assume they do not.)
** So all costs can be stored in a 16-bit unsigned integer without risk
** of overflow.
**
** Costs are estimates, so don't go to the computational trouble to compute
** 10*log2(X) exactly.  Instead, a close estimate is used.  Any value of
** X<=1 is stored as 0.  X=2 is 10.  X=3 is 16.  X=1000 is 99. etc.
**
** The tool/wherecosttest.c source file implements a command-line program
** that will convert between WhereCost to integers and do addition and
** multiplication on WhereCost values.  That command-line program is a
** useful utility to have around when working with this module.
*/
typedef unsigned short int WhereCost;

/*
** This object contains information needed to implement a single nested
** loop in WHERE clause.
**
** Contrast this object with WhereLoop.  This object describes the
** implementation of the loop.  WhereLoop describes the algorithm.
** This object contains a pointer to the WhereLoop algorithm as one of
** its elements.
**
** The WhereInfo object contains a single instance of this object for
** each term in the FROM clause (which is to say, for each of the
** nested loops as implemented).  The order of WhereLevel objects determines
** the loop nested order, with WhereInfo.a[0] being the outer loop and
** WhereInfo.a[WhereInfo.nLevel-1] being the inner loop.
*/
struct WhereLevel {
  int iLeftJoin;        /* Memory cell used to implement LEFT OUTER JOIN */
  int iTabCur;          /* The VDBE cursor used to access the table */
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p5;            /* Opcode and P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
};

/*
** Each instance of this object represents an algorithm for evaluating one
** term of a join.  Every term of the FROM clause will have at least
** one corresponding WhereLoop object (unless INDEXED BY constraints
** prevent a query solution - which is an error) and many terms of the
** FROM clause will have multiple WhereLoop objects, each describing a
** potential way of implementing that FROM-clause term, together with
** dependencies and cost estimates for using the chosen algorithm.
**
** Query planning consists of building up a collection of these WhereLoop
** objects, then computing a particular sequence of WhereLoop objects, with
** one WhereLoop object per FROM clause term, that satisfy all dependencies
** and that minimize the overall cost.
*/
struct WhereLoop {
  Bitmask prereq;       /* Bitmask of other loops that must run first */
  Bitmask maskSelf;     /* Bitmask identifying table iTab */
#ifdef SQLITE_DEBUG
  char cId;             /* Symbolic ID of this loop for debugging use */
#endif
  u8 iTab;              /* Position in FROM clause of table for this loop */
  u8 iSortIdx;          /* Sorting index number.  0==None */
  WhereCost rSetup;     /* One-time setup cost (ex: create transient index) */
  WhereCost rRun;       /* Cost of running each loop */
  WhereCost nOut;       /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      int nEq;               /* Number of equality constraints */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      u8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
      char *idxStr;          /* Index identifier string */
    } vtab;
  } u;
  u32 wsFlags;          /* WHERE_* flags describing the plan */
  u16 nLTerm;           /* Number of entries in aLTerm[] */
  /**** whereLoopXfer() copies fields above ***********************/
# define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
  u16 nLSlot;           /* Number of slots allocated for aLTerm[] */
  WhereTerm **aLTerm;   /* WhereTerms used */
  WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
  WhereTerm *aLTermSpace[4];  /* Initial aLTerm[] space */
};

/* Forward declaration of methods */
static int whereLoopResize(sqlite3*, WhereLoop*, int);

/*
** Each instance of this object holds a sequence of WhereLoop objects
** that implement some or all of a query plan.
**
** Think of each WhereLoop objects as a node in a graph, which arcs
** showing dependences and costs for travelling between nodes.  (That is
** not a completely accurate description because WhereLoop costs are a
** vector, not a scalar, and because dependences are many-to-one, not
** one-to-one as are graph nodes.  But it is a useful visualization aid.)
** Then a WherePath object is a path through the graph that visits some
** or all of the WhereLoop objects once.
**
** The "solver" works by creating the N best WherePath objects of length
** 1.  Then using those as a basis to compute the N best WherePath objects
** of length 2.  And so forth until the length of WherePaths equals the
** number of nodes in the FROM clause.  The best (lowest cost) WherePath
** at the end is the choosen query plan.
*/
struct WherePath {
  Bitmask maskLoop;     /* Bitmask of all WhereLoop objects in this path */
  Bitmask revLoop;      /* aLoop[]s that should be reversed for ORDER BY */
  WhereCost nRow;       /* Estimated number of rows generated by this path */
  WhereCost rCost;      /* Total cost of this path */
  u8 isOrdered;         /* True if this path satisfies ORDER BY */
  u8 isOrderedValid;    /* True if the isOrdered field is valid */
  WhereLoop **aLoop;    /* Array of WhereLoop objects implementing this path */
};

/*
** The query generator uses an array of instances of this structure to
** help it analyze the subexpressions of the WHERE clause.  Each WHERE
** clause subexpression is separated from the others by AND operators,
** usually, or sometimes subexpressions separated by OR.
**
................................................................................
** bits in the Bitmask.  So, in the example above, the cursor numbers
** would be mapped into integers 0 through 7.
**
** The number of terms in a join is limited by the number of bits
** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
** is only able to process joins with 64 or fewer tables.
*/

struct WhereTerm {
  Expr *pExpr;            /* Pointer to the subexpression that is this term */
  int iParent;            /* Disable pWC->a[iParent] when this term disabled */
  int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
................................................................................
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif

/*
** An instance of the WhereScan object is used as an iterator for locating
** terms in the WHERE clause that are useful to the query planner.
*/
struct WhereScan {
  WhereClause *pOrigWC;      /* Original, innermost WhereClause */
  WhereClause *pWC;          /* WhereClause currently being scanned */
  char *zCollName;           /* Required collating sequence, if not NULL */
  char idxaff;               /* Must match this affinity, if zCollName!=NULL */
  unsigned char nEquiv;      /* Number of entries in aEquiv[] */
  unsigned char iEquiv;      /* Next unused slot in aEquiv[] */
  u32 opMask;                /* Acceptable operators */
  int k;                     /* Resume scanning at this->pWC->a[this->k] */
  int aEquiv[22];            /* Cursor,Column pairs for equivalence classes */
};

/*
** An instance of the following structure holds all information about a
** WHERE clause.  Mostly this is a container for one or more WhereTerms.
**
** Explanation of pOuter:  For a WHERE clause of the form
**
**           a AND ((b AND c) OR (d AND e)) AND f
**
** There are separate WhereClause objects for the whole clause and for
** the subclauses "(b AND c)" and "(d AND e)".  The pOuter field of the
** subclauses points to the WhereClause object for the whole clause.
*/
struct WhereClause {
  WhereInfo *pWInfo;       /* WHERE clause processing context */

  WhereClause *pOuter;     /* Outer conjunction */
  u8 op;                   /* Split operator.  TK_AND or TK_OR */

  int nTerm;               /* Number of terms */
  int nSlot;               /* Number of entries in a[] */
  WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
#if defined(SQLITE_SMALL_STACK)
  WhereTerm aStatic[1];    /* Initial static space for a[] */
#else
  WhereTerm aStatic[8];    /* Initial static space for a[] */
................................................................................
*/
struct WhereMaskSet {
  int n;                        /* Number of assigned cursor values */
  int ix[BMS];                  /* Cursor assigned to each bit */
};

/*
** This object is a convenience wrapper holding all information needed
** to construct WhereLoop objects for a particular query.
*/
struct WhereLoopBuilder {
  WhereInfo *pWInfo;        /* Information about this WHERE */
  WhereClause *pWC;         /* WHERE clause terms */
  ExprList *pOrderBy;       /* ORDER BY clause */
  WhereLoop *pNew;          /* Template WhereLoop */
  WhereLoop *pBest;         /* If non-NULL, store single best loop here */
};

/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
**
** An instance of this object holds the complete state of the query
** planner.
*/
struct WhereInfo {
  Parse *pParse;            /* Parsing and code generating context */
  SrcList *pTabList;        /* List of tables in the join */
  ExprList *pOrderBy;       /* The ORDER BY clause or NULL */
  ExprList *pDistinct;      /* DISTINCT ON values, or NULL */
  WhereLoop *pLoops;        /* List of all WhereLoop objects */
  Bitmask revMask;          /* Mask of ORDER BY terms that need reversing */
  WhereCost nRowOut;        /* Estimated number of output rows */
  u16 wctrlFlags;           /* Flags originally passed to sqlite3WhereBegin() */
  u8 bOBSat;                /* ORDER BY satisfied by indices */
  u8 okOnePass;             /* Ok to use one-pass algorithm for UPDATE/DELETE */
  u8 untestedTerms;         /* Not all WHERE terms resolved by outer loop */
  u8 eDistinct;             /* One of the WHERE_DISTINCT_* values below */
  int iTop;                 /* The very beginning of the WHERE loop */
  int iContinue;            /* Jump here to continue with next record */
  int iBreak;               /* Jump here to break out of the loop */
  int nLevel;               /* Number of nested loop */
  int savedNQueryLoop;      /* pParse->nQueryLoop outside the WHERE loop */
  WhereMaskSet sMaskSet;    /* Map cursor numbers to bitmasks */
  WhereClause sWC;          /* Decomposition of the WHERE clause */
  WhereLevel a[1];          /* Information about each nest loop in WHERE */
};

/*
** Bitmasks for the operators on WhereTerm objects.  These are all
** operators that are of interest to the query planner.  An
** OR-ed combination of these values can be used when searching for

** particular WhereTerms within a WhereClause.
*/
#define WO_IN     0x001
#define WO_EQ     0x002
#define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
#define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
#define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
#define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
................................................................................
#define WO_EQUIV  0x400       /* Of the form A==B, both columns */
#define WO_NOOP   0x800       /* This term does not restrict search space */

#define WO_ALL    0xfff       /* Mask of all possible WO_* values */
#define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */

/*
** These are definitions of bits in the WhereLoop.wsFlags field.
** The particular combination of bits in each WhereLoop help to
** determine the algorithm that WhereLoop represents.
*/
#define WHERE_COLUMN_EQ    0x00000001  /* x=EXPR or x IN (...) or x IS NULL */
#define WHERE_COLUMN_RANGE 0x00000002  /* x<EXPR and/or x>EXPR */
#define WHERE_COLUMN_IN    0x00000004  /* x IN (...) */
#define WHERE_COLUMN_NULL  0x00000008  /* x IS NULL */
#define WHERE_CONSTRAINT   0x0000000f  /* Any of the WHERE_COLUMN_xxx values */
#define WHERE_TOP_LIMIT    0x00000010  /* x<EXPR or x<=EXPR constraint */
#define WHERE_BTM_LIMIT    0x00000020  /* x>EXPR or x>=EXPR constraint */
#define WHERE_BOTH_LIMIT   0x00000030  /* Both x>EXPR and x<EXPR */
#define WHERE_IDX_ONLY     0x00000040  /* Use index only - omit table */
#define WHERE_IPK          0x00000100  /* x is the INTEGER PRIMARY KEY */
#define WHERE_INDEXED      0x00000200  /* WhereLoop.u.btree.pIndex is valid */
#define WHERE_VIRTUALTABLE 0x00000400  /* WhereLoop.u.vtab is valid */
#define WHERE_IN_ABLE      0x00000800  /* Able to support an IN operator */
#define WHERE_ONEROW       0x00001000  /* Selects no more than one row */
#define WHERE_MULTI_OR     0x00002000  /* OR using multiple indices */
#define WHERE_TEMP_INDEX   0x00004000  /* Uses an ephemeral index */


/* Convert a WhereCost value (10 times log2(X)) into its integer value X.
** A rough approximation is used.  The value returned is not exact.
*/
static u64 whereCostToInt(WhereCost x){
  u64 n;
  if( x<10 ) return 1;
  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
  if( x>=3 ) return (n+8)<<(x-3);
  return (n+8)>>(3-x);
}

/*
** Return the estimated number of output rows from a WHERE clause
*/
u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
  return whereCostToInt(pWInfo->nRowOut);
}

/*
** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
** WHERE clause returns outputs for DISTINCT processing.
*/
int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
  return pWInfo->eDistinct;
}

/*
** Return TRUE if the WHERE clause returns rows in ORDER BY order.
** Return FALSE if the output needs to be sorted.
*/
int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
  return pWInfo->bOBSat!=0;
}

/*
** Return the VDBE address or label to jump to in order to continue
** immediately with the next row of a WHERE clause.
*/
int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
  return pWInfo->iContinue;
}

/*
** Return the VDBE address or label to jump to in order to break
** out of a WHERE loop.
*/
int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
  return pWInfo->iBreak;
}

/*
** Return TRUE if an UPDATE or DELETE statement can operate directly on
** the rowids returned by a WHERE clause.  Return FALSE if doing an
** UPDATE or DELETE might change subsequent WHERE clause results.
*/
int sqlite3WhereOkOnePass(WhereInfo *pWInfo){
  return pWInfo->okOnePass;
}

/*
** Initialize a preallocated WhereClause structure.
*/
static void whereClauseInit(
  WhereClause *pWC,        /* The WhereClause to be initialized */
  WhereInfo *pWInfo        /* The WHERE processing context */
){
  pWC->pWInfo = pWInfo;
  pWC->pOuter = 0;
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;

}

/* Forward reference */
static void whereClauseClear(WhereClause*);

/*
** Deallocate all memory associated with a WhereOrInfo object.
................................................................................
/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of whereClauseInit().
*/
static void whereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  sqlite3 *db = pWC->pWInfo->pParse->db;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->wtFlags & TERM_DYNAMIC ){
      sqlite3ExprDelete(db, a->pExpr);
    }
    if( a->wtFlags & TERM_ORINFO ){
      whereOrInfoDelete(db, a->u.pOrInfo);
    }else if( a->wtFlags & TERM_ANDINFO ){
................................................................................
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );  /* EV: R-00211-15100 */
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
    if( pWC->a==0 ){
      if( wtFlags & TERM_DYNAMIC ){
        sqlite3ExprDelete(db, p);
      }
      pWC->a = pOld;
      return 0;
................................................................................
** The original WHERE clause in pExpr is unaltered.  All this routine
** does is make slot[] entries point to substructure within pExpr.
**
** In the previous sentence and in the diagram, "slot[]" refers to
** the WhereClause.a[] array.  The slot[] array grows as needed to contain
** all terms of the WHERE clause.
*/
static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
  pWC->op = op;
  if( pExpr==0 ) return;
  if( pExpr->op!=op ){
    whereClauseInsert(pWC, pExpr, 0);
  }else{
    whereSplit(pWC, pExpr->pLeft, op);
    whereSplit(pWC, pExpr->pRight, op);
  }
}

/*
** Initialize a WhereMaskSet object
*/
#define initMaskSet(P)  (P)->n=0

/*
** Return the bitmask for the given cursor number.  Return 0 if
** iCursor is not in the set.
*/
static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
  int i;
  assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
  for(i=0; i<pMaskSet->n; i++){
    if( pMaskSet->ix[i]==iCursor ){
      return MASKBIT(i);
    }
  }
  return 0;
}

/*
** Create a new mask for cursor iCursor.
................................................................................
*/
static void createMask(WhereMaskSet *pMaskSet, int iCursor){
  assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
  pMaskSet->ix[pMaskSet->n++] = iCursor;
}

/*
** These routine walk (recursively) an expression tree and generates
** a bitmask indicating which tables are used in that expression
** tree.









*/
static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
  Bitmask mask = 0;
  if( p==0 ) return 0;
  if( p->op==TK_COLUMN ){
................................................................................
  }
  return mask;
}

/*
** Return TRUE if the given operator is one of the operators that is
** allowed for an indexable WHERE clause term.  The allowed operators are
** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
**
** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
** of one of the following forms: column = expression column > expression
** column >= expression column < expression column <= expression
** expression = column expression > column expression >= column
** expression < column expression <= column column IN
** (expression-list) column IN (subquery) column IS NULL
................................................................................
#define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}

/*
** Commute a comparison operator.  Expressions of the form "X op Y"
** are converted into "Y op X".
**
** If left/right precedence rules come into play when determining the
** collating sequence, then COLLATE operators are adjusted to ensure
** that the collating sequence does not change.  For example:
** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on

** the left hand side of a comparison overrides any collation sequence 
** attached to the right. For the same reason the EP_Collate flag
** is not commuted.
*/
static void exprCommute(Parse *pParse, Expr *pExpr){
  u16 expRight = (pExpr->pRight->flags & EP_Collate);
  u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
................................................................................
  assert( op!=TK_EQ || c==WO_EQ );
  assert( op!=TK_LT || c==WO_LT );
  assert( op!=TK_LE || c==WO_LE );
  assert( op!=TK_GT || c==WO_GT );
  assert( op!=TK_GE || c==WO_GE );
  return c;
}

/*
** Advance to the next WhereTerm that matches according to the criteria
** established when the pScan object was initialized by whereScanInit().
** Return NULL if there are no more matching WhereTerms.
*/
WhereTerm *whereScanNext(WhereScan *pScan){
  int iCur;            /* The cursor on the LHS of the term */
  int iColumn;         /* The column on the LHS of the term.  -1 for IPK */
  Expr *pX;            /* An expression being tested */
  WhereClause *pWC;    /* Shorthand for pScan->pWC */
  WhereTerm *pTerm;    /* The term being tested */
  int k = pScan->k;    /* Where to start scanning */

  while( pScan->iEquiv<=pScan->nEquiv ){
    iCur = pScan->aEquiv[pScan->iEquiv-2];
    iColumn = pScan->aEquiv[pScan->iEquiv-1];
    while( (pWC = pScan->pWC)!=0 ){
      for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
        if( pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn ){
          if( (pTerm->eOperator & WO_EQUIV)!=0
           && pScan->nEquiv<ArraySize(pScan->aEquiv)
          ){
            int j;
            pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
            assert( pX->op==TK_COLUMN );
            for(j=0; j<pScan->nEquiv; j+=2){
              if( pScan->aEquiv[j]==pX->iTable
               && pScan->aEquiv[j+1]==pX->iColumn ){
                  break;
              }
            }
            if( j==pScan->nEquiv ){
              pScan->aEquiv[j] = pX->iTable;
              pScan->aEquiv[j+1] = pX->iColumn;
              pScan->nEquiv += 2;
            }
          }
          if( (pTerm->eOperator & pScan->opMask)!=0 ){
            /* Verify the affinity and collating sequence match */
            if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
              CollSeq *pColl;
              Parse *pParse = pWC->pWInfo->pParse;
              pX = pTerm->pExpr;
              if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
                continue;
              }
              assert(pX->pLeft);
              pColl = sqlite3BinaryCompareCollSeq(pParse,
                                                  pX->pLeft, pX->pRight);
              if( pColl==0 ) pColl = pParse->db->pDfltColl;
              if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
                continue;
              }
            }
            if( (pTerm->eOperator & WO_EQ)!=0
             && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
             && pX->iTable==pScan->aEquiv[0]
             && pX->iColumn==pScan->aEquiv[1]
            ){
              continue;
            }
            pScan->k = k+1;
            return pTerm;
          }
        }
      }
      pScan->pWC = pScan->pWC->pOuter;
      k = 0;
    }
    pScan->pWC = pScan->pOrigWC;
    k = 0;
    pScan->iEquiv += 2;
  }
  return 0;
}

/*
** Initialize a WHERE clause scanner object.  Return a pointer to the
** first match.  Return NULL if there are no matches.
**
** The scanner will be searching the WHERE clause pWC.  It will look
** for terms of the form "X <op> <expr>" where X is column iColumn of table
** iCur.  The <op> must be one of the operators described by opMask.
**
** If the search is for X and the WHERE clause contains terms of the
** form X=Y then this routine might also return terms of the form
** "Y <op> <expr>".  The number of levels of transitivity is limited,
** but is enough to handle most commonly occurring SQL statements.
**
** If X is not the INTEGER PRIMARY KEY then X must be compatible with
** index pIdx.
*/
WhereTerm *whereScanInit(
  WhereScan *pScan,       /* The WhereScan object being initialized */
  WhereClause *pWC,       /* The WHERE clause to be scanned */
  int iCur,               /* Cursor to scan for */
  int iColumn,            /* Column to scan for */
  u32 opMask,             /* Operator(s) to scan for */
  Index *pIdx             /* Must be compatible with this index */
){
  int j;

  /* memset(pScan, 0, sizeof(*pScan)); */
  pScan->pOrigWC = pWC;
  pScan->pWC = pWC;
  if( pIdx && iColumn>=0 ){
    pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
    for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
      if( NEVER(j>=pIdx->nColumn) ) return 0;
    }
    pScan->zCollName = pIdx->azColl[j];
  }else{
    pScan->idxaff = 0;
    pScan->zCollName = 0;
  }
  pScan->opMask = opMask;
  pScan->k = 0;
  pScan->aEquiv[0] = iCur;
  pScan->aEquiv[1] = iColumn;
  pScan->nEquiv = 2;
  pScan->iEquiv = 2;
  return whereScanNext(pScan);
}

/*
** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
** where X is a reference to the iColumn of table iCur and <op> is one of
** the WO_xx operator codes specified by the op parameter.
** Return a pointer to the term.  Return 0 if not found.
**
................................................................................
  WhereClause *pWC,     /* The WHERE clause to be searched */
  int iCur,             /* Cursor number of LHS */
  int iColumn,          /* Column number of LHS */
  Bitmask notReady,     /* RHS must not overlap with this mask */
  u32 op,               /* Mask of WO_xx values describing operator */
  Index *pIdx           /* Must be compatible with this index, if not NULL */
){
  WhereTerm *pResult = 0;
  WhereTerm *p;
  WhereScan scan;

















  p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
  while( p ){
    if( (p->prereqRight & notReady)==0 ){





      if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){
        return p;
      }

























      if( pResult==0 ) pResult = p;

    }
    p = whereScanNext(&scan);
  }






















  return pResult;
}

/* Forward reference */
static void exprAnalyze(SrcList*, WhereClause*, int);

/*
** Call exprAnalyze on all terms in a WHERE clause.  


*/
static void exprAnalyzeAll(
  SrcList *pTabList,       /* the FROM clause */
  WhereClause *pWC         /* the WHERE clause to be analyzed */
){
  int i;
  for(i=pWC->nTerm-1; i>=0; i--){
................................................................................
** zero.  This term is not useful for search.
*/
static void exprAnalyzeOrTerm(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the complete WHERE clause */
  int idxTerm               /* Index of the OR-term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
  Parse *pParse = pWInfo->pParse;         /* Parser context */
  sqlite3 *db = pParse->db;               /* Database connection */
  WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
  Expr *pExpr = pTerm->pExpr;             /* The expression of the term */

  int i;                                  /* Loop counters */
  WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
  WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
  WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
  Bitmask chngToIN;         /* Tables that might satisfy case 1 */
  Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */

................................................................................
  */
  assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
  assert( pExpr->op==TK_OR );
  pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
  if( pOrInfo==0 ) return;
  pTerm->wtFlags |= TERM_ORINFO;
  pOrWc = &pOrInfo->wc;
  whereClauseInit(pOrWc, pWInfo);
  whereSplit(pOrWc, pExpr, TK_OR);
  exprAnalyzeAll(pSrc, pOrWc);
  if( db->mallocFailed ) return;
  assert( pOrWc->nTerm>=2 );

  /*
  ** Compute the set of tables that might satisfy cases 1 or 2.
................................................................................
        WhereTerm *pAndTerm;
        int j;
        Bitmask b = 0;
        pOrTerm->u.pAndInfo = pAndInfo;
        pOrTerm->wtFlags |= TERM_ANDINFO;
        pOrTerm->eOperator = WO_AND;
        pAndWC = &pAndInfo->wc;
        whereClauseInit(pAndWC, pWC->pWInfo);
        whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
        exprAnalyzeAll(pSrc, pAndWC);
        pAndWC->pOuter = pWC;
        testcase( db->mallocFailed );
        if( !db->mallocFailed ){
          for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
            assert( pAndTerm->pExpr );
            if( allowedOp(pAndTerm->pExpr->op) ){
              b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
            }
          }
        }
        indexable &= b;
      }
    }else if( pOrTerm->wtFlags & TERM_COPIED ){
      /* Skip this term for now.  We revisit it when we process the
      ** corresponding TERM_VIRTUAL term */
    }else{
      Bitmask b;
      b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
      if( pOrTerm->wtFlags & TERM_VIRTUAL ){
        WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
        b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor);
      }
      indexable &= b;
      if( (pOrTerm->eOperator & WO_EQ)==0 ){
        chngToIN = 0;
      }else{
        chngToIN &= b;
      }
................................................................................
        pOrTerm->wtFlags &= ~TERM_OR_OK;
        if( pOrTerm->leftCursor==iCursor ){
          /* This is the 2-bit case and we are on the second iteration and
          ** current term is from the first iteration.  So skip this term. */
          assert( j==1 );
          continue;
        }
        if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
          /* This term must be of the form t1.a==t2.b where t2 is in the
          ** chngToIN set but t1 is not.  This term will be either preceeded
          ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term 
          ** and use its inversion. */
          testcase( pOrTerm->wtFlags & TERM_COPIED );
          testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
          assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
................................................................................
        break;
      }
      if( i<0 ){
        /* No candidate table+column was found.  This can only occur
        ** on the second iteration */
        assert( j==1 );
        assert( IsPowerOfTwo(chngToIN) );
        assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) );
        break;
      }
      testcase( j==1 );

      /* We have found a candidate table and column.  Check to see if that
      ** table and column is common to every term in the OR clause */
      okToChngToIN = 1;
................................................................................

      for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
        if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
        assert( pOrTerm->eOperator & WO_EQ );
        assert( pOrTerm->leftCursor==iCursor );
        assert( pOrTerm->u.leftColumn==iColumn );
        pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
        pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
        pLeft = pOrTerm->pExpr->pLeft;
      }
      assert( pLeft!=0 );
      pDup = sqlite3ExprDup(db, pLeft, 0);
      pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
      if( pNew ){
        int idxNew;
................................................................................
** and the copy has idxParent set to the index of the original term.
*/
static void exprAnalyze(
  SrcList *pSrc,            /* the FROM clause */
  WhereClause *pWC,         /* the WHERE clause */
  int idxTerm               /* Index of the term to be analyzed */
){
  WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
  WhereTerm *pTerm;                /* The term to be analyzed */
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* LIKE/GLOB distinguishes case */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
  assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
  prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
  op = pExpr->op;
  if( op==TK_IN ){
    assert( pExpr->pRight==0 );
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
................................................................................
  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
  ** an index for tables to the left of the join.
  */
  pTerm->prereqRight |= extraRight;
}

/*
** This function searches pList for a entry that matches the iCol-th column
** of index pIdx.



**
** If such an expression is found, its index in pList->a[] is returned. If
** no expression is found, -1 is returned.
*/
static int findIndexCol(
  Parse *pParse,                  /* Parse context */
  ExprList *pList,                /* Expression list to search */
................................................................................
        return i;
      }
    }
  }

  return -1;
}

/*
** Return true if the DISTINCT expression-list passed as the third argument
** is redundant.


**
























































** A DISTINCT list is redundant if the database contains some subset of


** columns that are unique and non-null.
*/
static int isDistinctRedundant(
  Parse *pParse,            /* Parsing context */
  SrcList *pTabList,        /* The FROM clause */
  WhereClause *pWC,         /* The WHERE clause */
  ExprList *pDistinct       /* The result set that needs to be DISTINCT */
){
  Table *pTab;
  Index *pIdx;
  int i;                          
  int iBase;

  /* If there is more than one table or sub-select in the FROM clause of
................................................................................
      return 1;
    }
  }

  return 0;
}

/* 
** The (an approximate) sum of two WhereCosts.  This computation is
** not a simple "+" operator because WhereCost is stored as a logarithmic
** value.
** 

*/
static WhereCost whereCostAdd(WhereCost a, WhereCost b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */
      9, 9,                          /* 2,3 */
      8, 8,                          /* 4,5 */
      7, 7, 7,                       /* 6,7,8 */
      6, 6, 6,                       /* 9,10,11 */
      5, 5, 5,                       /* 12-14 */
      4, 4, 4, 4,                    /* 15-18 */
      3, 3, 3, 3, 3, 3,              /* 19-24 */
      2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
  };
  if( a>=b ){
    if( a>b+49 ) return a;
    if( a>b+31 ) return a+1;
    return a+x[a-b];
  }else{
    if( b>a+49 ) return b;
    if( b>a+31 ) return b+1;
    return b+x[b-a];
  }
}

/*
** Convert an integer into a WhereCost.  In other words, compute a
** good approximatation for 10*log2(x).
*/
static WhereCost whereCost(tRowcnt x){
  static WhereCost a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
  WhereCost y = 40;
  if( x<8 ){
    if( x<2 ) return 0;
    while( x<8 ){  y -= 10; x <<= 1; }
  }else{
    while( x>255 ){ y += 40; x >>= 4; }
    while( x>15 ){  y += 10; x >>= 1; }
  }
  return a[x&7] + y - 10;
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Convert a double (as received from xBestIndex of a virtual table)
** into a WhereCost.  In other words, compute an approximation for
** 10*log2(x).
*/
static WhereCost whereCostFromDouble(double x){
  u64 a;
  WhereCost e;
  assert( sizeof(x)==8 && sizeof(a)==8 );
  if( x<=1 ) return 0;
  if( x<=2000000000 ) return whereCost((tRowcnt)x);
  memcpy(&a, &x, 8);
  e = (a>>52) - 1022;
  return e*10;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Estimate the logarithm of the input value to base 2.
*/
static WhereCost estLog(WhereCost N){
  WhereCost x = whereCost(N);
  return x>33 ? x - 33 : 0;
}

/*
** Two routines for printing the content of an sqlite3_index_info
** structure.  Used for testing and debugging only.  If neither
** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
** are no-ops.
*/
#if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
  int i;
  if( !sqlite3WhereTrace ) return;
  for(i=0; i<p->nConstraint; i++){
    sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
       i,
       p->aConstraint[i].iColumn,
................................................................................
  sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
}
#else
#define TRACE_IDX_INPUTS(A)
#define TRACE_IDX_OUTPUTS(A)
#endif






































































































#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Return TRUE if the WHERE clause term pTerm is of a form where it
** could be used with an index to access pSrc, assuming an appropriate
** index existed.
*/
static int termCanDriveIndex(
................................................................................
  struct SrcList_item *pSrc,     /* Table we are trying to access */
  Bitmask notReady               /* Tables in outer loops of the join */
){
  char aff;
  if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
  if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
  if( (pTerm->prereqRight & notReady)!=0 ) return 0;
  if( pTerm->u.leftColumn<0 ) return 0;
  aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
  if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
  return 1;
}
#endif














































































#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
/*
** Generate code to construct the Index object for an automatic index
** and to set up the WhereLevel object pLevel so that the code generator
** makes use of the automatic index.
*/
................................................................................
  KeyInfo *pKeyinfo;          /* Key information for the index */   
  int addrTop;                /* Top of the index fill loop */
  int regRecord;              /* Register holding an index record */
  int n;                      /* Column counter */
  int i;                      /* Loop counter */
  int mxBitCol;               /* Maximum column in pSrc->colUsed */
  CollSeq *pColl;             /* Collating sequence to on a column */
  WhereLoop *pLoop;           /* The Loop object */
  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */

  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
................................................................................
  addrInit = sqlite3CodeOnce(pParse);

  /* Count the number of columns that will be added to the index
  ** and used to match WHERE clause constraints */
  nColumn = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];
  pLoop = pLevel->pWLoop;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( (idxCols & cMask)==0 ){
        if( whereLoopResize(pParse->db, pLoop, nColumn+1) ) return;
        pLoop->aLTerm[nColumn++] = pTerm;
        idxCols |= cMask;
      }
    }
  }
  assert( nColumn>0 );
  pLoop->u.btree.nEq = pLoop->nLTerm = nColumn;
  pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
                     | WHERE_TEMP_INDEX;

  /* Count the number of additional columns needed to create a
  ** covering index.  A "covering index" is an index that contains all
  ** columns that are needed by the query.  With a covering index, the
  ** original table never needs to be accessed.  Automatic indices must
  ** be a covering index because the index will not be updated if the
  ** original table changes and the index and table cannot both be used
  ** if they go out of sync.
  */
  extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
  mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
  testcase( pTable->nCol==BMS-1 );
  testcase( pTable->nCol==BMS-2 );
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ) nColumn++;
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    nColumn += pTable->nCol - BMS + 1;
  }
  pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;

  /* Construct the Index object to describe this index */
  nByte = sizeof(Index);
  nByte += nColumn*sizeof(int);     /* Index.aiColumn */
  nByte += nColumn*sizeof(char*);   /* Index.azColl */
  nByte += nColumn;                 /* Index.aSortOrder */
  pIdx = sqlite3DbMallocZero(pParse->db, nByte);
  if( pIdx==0 ) return;
  pLoop->u.btree.pIndex = pIdx;
  pIdx->azColl = (char**)&pIdx[1];
  pIdx->aiColumn = (int*)&pIdx->azColl[nColumn];
  pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn];
  pIdx->zName = "auto-index";
  pIdx->nColumn = nColumn;
  pIdx->pTable = pTable;
  n = 0;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS-1 );
      testcase( iCol==BMS );
      if( (idxCols & cMask)==0 ){
        Expr *pX = pTerm->pExpr;
        idxCols |= cMask;
        pIdx->aiColumn[n] = pTerm->u.leftColumn;
        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
        n++;
      }
    }
  }
  assert( (u32)n==pLoop->u.btree.nEq );

  /* Add additional columns needed to make the automatic index into
  ** a covering index */
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    for(i=BMS-1; i<pTable->nCol; i++){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  assert( n==nColumn );

  /* Create the automatic index */
  pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx);
  assert( pLevel->iIdxCur>=0 );
  pLevel->iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0,
                    (char*)pKeyinfo, P4_KEYINFO_HANDOFF);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur);
  regRecord = sqlite3GetTempReg(pParse);
................................................................................

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
** by passing the pointer returned by this function to sqlite3_free().
*/
static sqlite3_index_info *allocateIndexInfo(
  Parse *pParse,
  WhereClause *pWC,
  struct SrcList_item *pSrc,
  ExprList *pOrderBy
){
  int i, j;
  int nTerm;
  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_orderby *pIdxOrderBy;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int nOrderBy;
  sqlite3_index_info *pIdxInfo;



  /* Count the number of possible WHERE clause constraints referring
  ** to this virtual table */
  for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    if( pTerm->leftCursor != pSrc->iCursor ) continue;
    assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
    testcase( pTerm->eOperator & WO_IN );
    testcase( pTerm->eOperator & WO_ISNULL );
................................................................................
  /* Allocate the sqlite3_index_info structure
  */
  pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
                           + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
                           + sizeof(*pIdxOrderBy)*nOrderBy );
  if( pIdxInfo==0 ){
    sqlite3ErrorMsg(pParse, "out of memory");

    return 0;
  }

  /* Initialize the structure.  The sqlite3_index_info structure contains
  ** many fields that are declared "const" to prevent xBestIndex from
  ** changing them.  We have to do some funky casting in order to
  ** initialize those fields.
................................................................................

  return pIdxInfo;
}

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
** comes in as the 3rd argument to this function.
**
** If an error occurs, pParse is populated with an error message and a
** non-zero value is returned. Otherwise, 0 is returned and the output
** part of the sqlite3_index_info structure is left populated.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
................................................................................
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
  sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
  int i;
  int rc;


  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      pParse->db->mallocFailed = 1;
................................................................................
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);
    }
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */










































































































































































































#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
................................................................................
      const u8 *z;
      if( eType==SQLITE_BLOB ){
        z = (const u8 *)sqlite3_value_blob(pVal);
        pColl = db->pDfltColl;
        assert( pColl->enc==SQLITE_UTF8 );
      }else{
        pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl);
        /* If the collating sequence was unavailable, we should have failed
        ** long ago and never reached this point.  But we'll check just to
        ** be doubly sure. */
        if( NEVER(pColl==0) ) return SQLITE_ERROR;

        z = (const u8 *)sqlite3ValueText(pVal, pColl->enc);
        if( !z ){
          return SQLITE_NOMEM;
        }
        assert( z && pColl && pColl->xCmp );
      }
      n = sqlite3ValueBytes(pVal, pColl->enc);
................................................................................
*/
static int whereRangeScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index containing the range-compared column; "x" */
  int nEq,             /* index into p->aCol[] of the range-compared column */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  WhereCost *pRangeDiv /* OUT: Reduce search space by this divisor */
){
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_STAT3

  if( nEq==0 && p->nSample ){
    sqlite3_value *pRangeVal;
................................................................................
      ){
        iUpper = a[0];
        if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1];
      }
      sqlite3ValueFree(pRangeVal);
    }
    if( rc==SQLITE_OK ){
      WhereCost iBase = whereCost(p->aiRowEst[0]);
      if( iUpper>iLower ){
        iBase -= whereCost(iUpper - iLower);
      }
      *pRangeDiv = iBase;
      WHERETRACE(0x100, ("range scan regions: %u..%u  div=%d\n",
                         (u32)iLower, (u32)iUpper, *pRangeDiv));
      return SQLITE_OK;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(p);
  UNUSED_PARAMETER(nEq);
#endif
  assert( pLower || pUpper );
  *pRangeDiv = 0;
  /* TUNING:  Each inequality constraint reduces the search space 4-fold.
  ** A BETWEEN operator, therefore, reduces the search space 16-fold */
  if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ){
    *pRangeDiv += 20;  assert( 20==whereCost(4) );
  }
  if( pUpper ){
    *pRangeDiv += 20;  assert( 20==whereCost(4) );
  }
  return rc;
}

#ifdef SQLITE_ENABLE_STAT3
/*
** Estimate the number of rows that will be returned based on
** an equality constraint x=VALUE and where that VALUE occurs in
................................................................................
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereEqualScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  sqlite3_value *pRhs = 0;  /* VALUE on right-hand side of pTerm */
  u8 aff;                   /* Column affinity */
  int rc;                   /* Subfunction return code */
  tRowcnt a[2];             /* Statistics */

  assert( p->aSample!=0 );
................................................................................
    if( rc ) goto whereEqualScanEst_cancel;
  }else{
    pRhs = sqlite3ValueNew(pParse->db);
  }
  if( pRhs==0 ) return SQLITE_NOTFOUND;
  rc = whereKeyStats(pParse, p, pRhs, 0, a);
  if( rc==SQLITE_OK ){
    WHERETRACE(0x100,("equality scan regions: %d\n", (int)a[1]));
    *pnRow = a[1];
  }
whereEqualScanEst_cancel:
  sqlite3ValueFree(pRhs);
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */
................................................................................
** for a UTF conversion required for comparison.  The error is stored
** in the pParse structure.
*/
static int whereInScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  Index *p,            /* The index whose left-most column is pTerm */
  ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
  tRowcnt *pnRow       /* Write the revised row estimate here */
){
  int rc = SQLITE_OK;     /* Subfunction return code */
  tRowcnt nEst;           /* Number of rows for a single term */
  tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
  int i;                  /* Loop counter */

  assert( p->aSample!=0 );
  for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
    nEst = p->aiRowEst[0];
    rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst);
    nRowEst += nEst;
  }
  if( rc==SQLITE_OK ){
    if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0];
    *pnRow = nRowEst;
    WHERETRACE(0x100,("IN row estimate: est=%g\n", nRowEst));
  }
  return rc;
}
#endif /* defined(SQLITE_ENABLE_STAT3) */










































































































































































































































































































































































































































































































































































































































































































































































































































































































/*
** Disable a term in the WHERE clause.  Except, do not disable the term
** if it controls a LEFT OUTER JOIN and it did not originate in the ON
** or USING clause of that join.
**
** Consider the term t2.z='ok' in the following queries:
**
................................................................................
** this routine sets up a loop that will iterate over all values of X.
*/
static int codeEqualityTerm(
  Parse *pParse,      /* The parsing context */
  WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
  WhereLevel *pLevel, /* The level of the FROM clause we are working on */
  int iEq,            /* Index of the equality term within this level */
  int bRev,           /* True for reverse-order IN operations */
  int iTarget         /* Attempt to leave results in this register */
){
  Expr *pX = pTerm->pExpr;
  Vdbe *v = pParse->pVdbe;
  int iReg;                  /* Register holding results */

  assert( iTarget>0 );
................................................................................
    iReg = iTarget;
    sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
#ifndef SQLITE_OMIT_SUBQUERY
  }else{
    int eType;
    int iTab;
    struct InLoop *pIn;
    WhereLoop *pLoop = pLevel->pWLoop;

    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
      && pLoop->u.btree.pIndex!=0
      && pLoop->u.btree.pIndex->aSortOrder[iEq]
    ){
      testcase( iEq==0 );


      testcase( bRev );
      bRev = !bRev;
    }
    assert( pX->op==TK_IN );
    iReg = iTarget;
    eType = sqlite3FindInIndex(pParse, pX, 0);
    if( eType==IN_INDEX_INDEX_DESC ){
      testcase( bRev );
      bRev = !bRev;
    }
    iTab = pX->iTable;
    sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
    assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
    pLoop->wsFlags |= WHERE_IN_ABLE;
    if( pLevel->u.in.nIn==0 ){
      pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
    }
    pLevel->u.in.nIn++;
    pLevel->u.in.aInLoop =
       sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
                              sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
................................................................................
** no conversion should be attempted before using a t2.b value as part of
** a key to search the index. Hence the first byte in the returned affinity
** string in this example would be set to SQLITE_AFF_NONE.
*/
static int codeAllEqualityTerms(
  Parse *pParse,        /* Parsing context */
  WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
  int bRev,             /* Reverse the order of IN operators */

  int nExtraReg,        /* Number of extra registers to allocate */
  char **pzAff          /* OUT: Set to point to affinity string */
){
  int nEq;                      /* The number of == or IN constraints to code */
  Vdbe *v = pParse->pVdbe;      /* The vm under construction */
  Index *pIdx;                  /* The index being used for this loop */

  WhereTerm *pTerm;             /* A single constraint term */
  WhereLoop *pLoop;             /* The WhereLoop object */
  int j;                        /* Loop counter */
  int regBase;                  /* Base register */
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */

  pLoop = pLevel->pWLoop;
  assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
  nEq = pLoop->u.btree.nEq;
  pIdx = pLoop->u.btree.pIndex;
  assert( pIdx!=0 );

  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLoop->u.btree.nEq + nExtraReg;
  pParse->nMem += nReg;

  zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
  if( !zAff ){
    pParse->db->mallocFailed = 1;
  }

  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    pTerm = pLoop->aLTerm[j];
    assert( pTerm!=0 );

    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
        sqlite3ReleaseTempReg(pParse, regBase);
        regBase = r1;
      }else{
        sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
      }
................................................................................
**
**   "a=? AND b>?"
**
** The returned pointer points to memory obtained from sqlite3DbMalloc().
** It is the responsibility of the caller to free the buffer when it is
** no longer required.
*/
static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){

  Index *pIndex = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;
  int i, j;
  Column *aCol = pTab->aCol;
  int *aiColumn = pIndex->aiColumn;
  StrAccum txt;

  if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
    return 0;
  }
  sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
  txt.db = db;
  sqlite3StrAccumAppend(&txt, " (", 2);
  for(i=0; i<nEq; i++){
    explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "=");
  }

  j = i;
  if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i++, z, ">");
  }
  if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
    char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName;
    explainAppendTerm(&txt, i, z, "<");
  }
  sqlite3StrAccumAppend(&txt, ")", 1);
  return sqlite3StrAccumFinish(&txt);
}

................................................................................
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  if( pParse->explain==2 ){

    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    char *zMsg;                   /* Text to add to EQP output */

    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
    int isSearch;                 /* True for a SEARCH. False for SCAN. */
    WhereLoop *pLoop;             /* The controlling WhereLoop object */
    u32 flags;                    /* Flags that describe this loop */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;


    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
    if( pItem->pSelect ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
    }else{
      zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
    }

    if( pItem->zAlias ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
    }
    if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0
     && ALWAYS(pLoop->u.btree.pIndex!=0)
    ){
      char *zWhere = explainIndexRange(db, pLoop, pItem->pTab);
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, 
          ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""),
          ((flags & WHERE_IDX_ONLY)?"COVERING ":""),
          ((flags & WHERE_TEMP_INDEX)?"":" "),
          ((flags & WHERE_TEMP_INDEX)?"": pLoop->u.btree.pIndex->zName),
          zWhere
      );
      sqlite3DbFree(db, zWhere);
    }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
      zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);

      if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
      }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
      }else if( flags&WHERE_BTM_LIMIT ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
      }else if( ALWAYS(flags&WHERE_TOP_LIMIT) ){
        zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
      }
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    else if( (flags & WHERE_VIRTUALTABLE)!=0 ){

      zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,

                  pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
    }
#endif






    zMsg = sqlite3MAppendf(db, zMsg, "%s", zMsg);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }
}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */

................................................................................
/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
  int iLevel,          /* Which level of pWInfo->a[] should be coded */

  Bitmask notReady     /* Which tables are currently available */
){
  int j, k;            /* Loop counters */
  int iCur;            /* The VDBE cursor for the table */
  int addrNxt;         /* Where to jump to continue with the next IN case */
  int omitTable;       /* True if we use the index only */
  int bRev;            /* True if we need to scan in reverse order */
  WhereLevel *pLevel;  /* The where level to be coded */
  WhereLoop *pLoop;    /* The WhereLoop object being coded */
  WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
  WhereTerm *pTerm;               /* A WHERE clause term */
  Parse *pParse;                  /* Parsing context */
  Vdbe *v;                        /* The prepared stmt under constructions */
  struct SrcList_item *pTabItem;  /* FROM clause term being coded */
  int addrBrk;                    /* Jump here to break out of the loop */
  int addrCont;                   /* Jump here to continue with next cycle */
  int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
  int iReleaseReg = 0;      /* Temp register to free before returning */
  Bitmask newNotReady;      /* Return value */

  pParse = pWInfo->pParse;
  v = pParse->pVdbe;
  pWC = &pWInfo->sWC;
  pLevel = &pWInfo->a[iLevel];
  pLoop = pLevel->pWLoop;
  pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
  iCur = pTabItem->iCursor;

  bRev = (pWInfo->revMask>>iLevel)&1;
  omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 
           && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
  VdbeNoopComment((v, "Begin Join Loop %d", iLevel));

  /* Create labels for the "break" and "continue" instructions
  ** for the current loop.  Jump to addrBrk to break out of a loop.
  ** Jump to cont to go immediately to the next iteration of the
  ** loop.
  **
................................................................................
    pLevel->p2 =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName));
    sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk);
    pLevel->op = OP_Goto;
  }else

#ifndef SQLITE_OMIT_VIRTUALTABLE
  if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
    /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
    **          to access the data.
    */
    int iReg;   /* P3 Value for OP_VFilter */
    int addrNotFound;

    int nConstraint = pLoop->nLTerm;





    sqlite3ExprCachePush(pParse);
    iReg = sqlite3GetTempRange(pParse, nConstraint+2);
    addrNotFound = pLevel->addrBrk;
    for(j=0; j<nConstraint; j++){


      int iTarget = iReg+j+2;

      pTerm = pLoop->aLTerm[j];
      if( pTerm==0 ) continue;
      if( pTerm->eOperator & WO_IN ){
        codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
        addrNotFound = pLevel->addrNxt;
      }else{
        sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
      }

    }



    sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
    sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
    sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
                      pLoop->u.vtab.idxStr,
                      pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);

    pLoop->u.vtab.needFree = 0;
    for(j=0; j<nConstraint && j<16; j++){


      if( (pLoop->u.vtab.omitMask>>j)&1 ){
        disableTerm(pLevel, pLoop->aLTerm[j]);
      }
    }
    pLevel->op = OP_VNext;
    pLevel->p1 = iCur;
    pLevel->p2 = sqlite3VdbeCurrentAddr(v);
    sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
    sqlite3ExprCachePop(pParse, 1);
  }else
#endif /* SQLITE_OMIT_VIRTUALTABLE */

  if( (pLoop->wsFlags & WHERE_IPK)!=0
   && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
  ){
    /* Case 2:  We can directly reference a single row using an
    **          equality comparison against the ROWID field.  Or
    **          we reference multiple rows using a "rowid IN (...)"
    **          construct.
    */
    assert( pLoop->u.btree.nEq==1 );
    iReleaseReg = sqlite3GetTempReg(pParse);

    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->pExpr!=0 );
    assert( omitTable==0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
    addrNxt = pLevel->addrNxt;
    sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
    sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
    sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
    sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
    VdbeComment((v, "pk"));
    pLevel->op = OP_Noop;
  }else if( (pLoop->wsFlags & WHERE_IPK)!=0
         && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
  ){
    /* Case 3:  We have an inequality comparison against the ROWID field.
    */
    int testOp = OP_Noop;
    int start;
    int memEndValue = 0;
    WhereTerm *pStart, *pEnd;

    assert( omitTable==0 );
    j = 0;
    pStart = pEnd = 0;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
    assert( pStart!=0 || pEnd!=0 );
    if( bRev ){
      pTerm = pStart;
      pStart = pEnd;
      pEnd = pTerm;
    }
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
................................................................................
      }
      disableTerm(pLevel, pEnd);
    }
    start = sqlite3VdbeCurrentAddr(v);
    pLevel->op = bRev ? OP_Prev : OP_Next;
    pLevel->p1 = iCur;
    pLevel->p2 = start;



    assert( pLevel->p5==0 );

    if( testOp!=OP_Noop ){
      iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
      sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
    }
  }else if( pLoop->wsFlags & WHERE_INDEXED ){
    /* Case 4: A scan using an index.
    **
    **         The WHERE clause may contain zero or more equality 
    **         terms ("==" or "IN" operators) that refer to the N
    **         left-most columns of the index. It may also contain
    **         inequality constraints (>, <, >= or <=) on the indexed
    **         column that immediately follows the N equalities. Only 
    **         the right-most column can be an inequality - the rest must
................................................................................
      OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
    };
    static const u8 aEndOp[] = {
      OP_Noop,             /* 0: (!end_constraints) */
      OP_IdxGE,            /* 1: (end_constraints && !bRev) */
      OP_IdxLT             /* 2: (end_constraints && bRev) */
    };
    int nEq = pLoop->u.btree.nEq;  /* Number of == or IN terms */
    int isMinQuery = 0;            /* If this is an optimized SELECT min(x).. */
    int regBase;                 /* Base register holding constraint values */
    int r1;                      /* Temp register */
    WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
    WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
    int startEq;                 /* True if range start uses ==, >= or <= */
    int endEq;                   /* True if range end uses ==, >= or <= */
    int start_constraints;       /* Start of range is constrained */
................................................................................
    Index *pIdx;                 /* The index we will be using */
    int iIdxCur;                 /* The VDBE cursor for the index */
    int nExtraReg = 0;           /* Number of extra registers needed */
    int op;                      /* Instruction opcode */
    char *zStartAff;             /* Affinity for start of range constraint */
    char *zEndAff;               /* Affinity for end of range constraint */

    pIdx = pLoop->u.btree.pIndex;
    iIdxCur = pLevel->iIdxCur;


    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
    ** this requires some special handling.
    */
    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && (pWInfo->bOBSat!=0)
     && (pIdx->nColumn>nEq)
    ){
      /* assert( pOrderBy->nExpr==1 ); */
      /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
      isMinQuery = 1;
      nExtraReg = 1;
    }

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    j = nEq;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = pLoop->aLTerm[j++];
      nExtraReg = 1;
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);


    zEndAff = sqlite3DbStrDup(pParse->db, zStartAff);
    addrNxt = pLevel->addrNxt;

    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nColumn==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
    }

    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
................................................................................
    }

    /* If there are inequality constraints, check that the value
    ** of the table column that the inequality contrains is not NULL.
    ** If it is, jump to the next iteration of the loop.
    */
    r1 = sqlite3GetTempReg(pParse);
    testcase( pLoop->wsFlags & WHERE_BTM_LIMIT );
    testcase( pLoop->wsFlags & WHERE_TOP_LIMIT );
    if( (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){
      sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
      sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
    }
    sqlite3ReleaseTempReg(pParse, r1);

    /* Seek the table cursor, if required */
    disableTerm(pLevel, pRangeStart);
................................................................................
      sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
      sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
    }

    /* Record the instruction used to terminate the loop. Disable 
    ** WHERE clause terms made redundant by the index range scan.
    */
    if( pLoop->wsFlags & WHERE_ONEROW ){
      pLevel->op = OP_Noop;
    }else if( bRev ){
      pLevel->op = OP_Prev;
    }else{
      pLevel->op = OP_Next;
    }
    pLevel->p1 = iIdxCur;
    if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }else{
      assert( pLevel->p5==0 );
    }
  }else

#ifndef SQLITE_OMIT_OR_OPTIMIZATION
  if( pLoop->wsFlags & WHERE_MULTI_OR ){
    /* Case 5:  Two or more separately indexed terms connected by OR
    **
    ** Example:
    **
    **   CREATE TABLE t1(a,b,c,d);
    **   CREATE INDEX i1 ON t1(a);
    **   CREATE INDEX i2 ON t1(b);
    **   CREATE INDEX i3 ON t1(c);
................................................................................
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLoop->aLTerm[0];
    assert( pTerm!=0 );
    assert( pTerm->eOperator & WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

................................................................................
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;
      pOrTab = sqlite3StackAllocRaw(pParse->db,
                            sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
      if( pOrTab==0 ) return notReady;
      pOrTab->nAlloc = (u8)(nNotReady + 1);
      pOrTab->nSrc = pOrTab->nAlloc;
      memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
      origSrc = pWInfo->pTabList->a;
      for(k=1; k<=nNotReady; k++){
        memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
      }
    }else{
................................................................................
    ** immediately following the OP_Return at the bottom of the loop. This
    ** is required in a few obscure LEFT JOIN cases where control jumps
    ** over the top of the loop into the body of it. In this case the 
    ** correct response for the end-of-loop code (the OP_Return) is to 
    ** fall through to the next instruction, just as an OP_Next does if
    ** called on an uninitialized cursor.
    */
    if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
      regRowset = ++pParse->nMem;
      regRowid = ++pParse->nMem;
      sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
    }
    iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);

    /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
................................................................................
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
        assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
................................................................................
          ** If the call to sqlite3WhereBegin() above resulted in a scan that
          ** uses an index, and this is either the first OR-connected term
          ** processed or the index is the same as that used by all previous
          ** terms, set pCov to the candidate covering index. Otherwise, set 
          ** pCov to NULL to indicate that no candidate covering index will 
          ** be available.
          */
          pSubLoop = pSubWInfo->a[0].pWLoop;
          assert( (pSubLoop->wsFlags & WHERE_TEMP_INDEX)==0 );
          if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
           && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
          ){
            assert( pSubWInfo->a[0].iIdxCur==iCovCur );
            pCov = pSubLoop->u.btree.pIndex;
          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
................................................................................

    if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab);
    if( !untestedTerms ) disableTerm(pLevel, pTerm);
  }else
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

  {
    /* Case 6:  There is no usable index.  We must do a complete
    **          scan of the entire table.
    */
    static const u8 aStep[] = { OP_Next, OP_Prev };
    static const u8 aStart[] = { OP_Rewind, OP_Last };
    assert( bRev==0 || bRev==1 );

    pLevel->op = aStep[bRev];
    pLevel->p1 = iCur;
    pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
    pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
  }
  newNotReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur);

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  **
  ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
  ** the use of indices become tests that are evaluated against each row of
  ** the relevant input tables.
................................................................................
    if( pTerm->leftCursor!=iCur ) continue;
    pE = pTerm->pExpr;
    assert( !ExprHasProperty(pE, EP_FromJoin) );
    assert( (pTerm->prereqRight & newNotReady)!=0 );
    pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
    if( pAlt==0 ) continue;
    if( pAlt->wtFlags & (TERM_CODED) ) continue;
    testcase( pAlt->eOperator & WO_EQ );
    testcase( pAlt->eOperator & WO_IN );
    VdbeNoopComment((v, "begin transitive constraint"));
    sEq = *pAlt->pExpr;
    sEq.pLeft = pE->pLeft;
    sqlite3ExprIfFalse(pParse, &sEq, addrCont, SQLITE_JUMPIFNULL);
  }

  /* For a LEFT OUTER JOIN, generate code that will record the fact that
................................................................................
    }
  }
  sqlite3ReleaseTempReg(pParse, iReleaseReg);

  return newNotReady;
}

#ifdef WHERETRACE_ENABLED
/*
** Print a WhereLoop object for debugging purposes
*/
static void whereLoopPrint(WhereLoop *p, SrcList *pTabList){
  int nb = 1+(pTabList->nSrc+7)/8;
  struct SrcList_item *pItem = pTabList->a + p->iTab;
  Table *pTab = pItem->pTab;
  sqlite3DebugPrintf("%c %2d.%0*llx.%0*llx", p->cId,
                     p->iTab, nb, p->maskSelf, nb, p->prereq);
  sqlite3DebugPrintf(" %8s",
                     pItem->zAlias ? pItem->zAlias : pTab->zName);
  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
    if( p->u.btree.pIndex ){
      const char *zName = p->u.btree.pIndex->zName;
      if( zName==0 ) zName = "ipk";
      if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
        int i = sqlite3Strlen30(zName) - 1;
        while( zName[i]!='_' ) i--;
        zName += i;
      }
      sqlite3DebugPrintf(".%-12s %2d", zName, p->u.btree.nEq);
    }else{
      sqlite3DebugPrintf("%16s","");
    }
  }else{
    char *z;
    if( p->u.vtab.idxStr ){
      z = sqlite3_mprintf("(%d,\"%s\",%x)",
                p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
    }else{
      z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
    }
    sqlite3DebugPrintf(" %-15s", z);
    sqlite3_free(z);
  }
  sqlite3DebugPrintf(" fg %05x N %d", p->wsFlags, p->nLTerm);
  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
}
#endif

/*
** Convert bulk memory into a valid WhereLoop that can be passed
** to whereLoopClear harmlessly.
*/


static void whereLoopInit(WhereLoop *p){
  p->aLTerm = p->aLTermSpace;
  p->nLTerm = 0;
  p->nLSlot = ArraySize(p->aLTermSpace);
  p->wsFlags = 0;
}

/*
** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
*/
static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_TEMP_INDEX) ){
    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
      sqlite3_free(p->u.vtab.idxStr);
      p->u.vtab.needFree = 0;
      p->u.vtab.idxStr = 0;
    }else if( (p->wsFlags & WHERE_TEMP_INDEX)!=0 && p->u.btree.pIndex!=0 ){
      sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
      sqlite3DbFree(db, p->u.btree.pIndex);
      p->u.btree.pIndex = 0;
    }
  }
}

/*
** Deallocate internal memory used by a WhereLoop object
*/
static void whereLoopClear(sqlite3 *db, WhereLoop *p){
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  whereLoopClearUnion(db, p);
  whereLoopInit(p);
}

/*
** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
*/
static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
  WhereTerm **paNew;
  if( p->nLSlot>=n ) return SQLITE_OK;
  n = (n+7)&~7;
  paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
  if( paNew==0 ) return SQLITE_NOMEM;
  memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
  if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
  p->aLTerm = paNew;
  p->nLSlot = n;
  return SQLITE_OK;
}

/*
** Transfer content from the second pLoop into the first.
*/
static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
  if( whereLoopResize(db, pTo, pFrom->nLTerm) ) return SQLITE_NOMEM;
  whereLoopClearUnion(db, pTo);
  memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
  memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
  if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
    pFrom->u.vtab.needFree = 0;
  }else if( (pFrom->wsFlags & WHERE_TEMP_INDEX)!=0 ){
    pFrom->u.btree.pIndex = 0;
  }
  return SQLITE_OK;
}

/*
** Delete a WhereLoop object
*/
static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
  whereLoopClear(db, p);
  sqlite3DbFree(db, p);
}

/*
** Free a WhereInfo structure
*/
static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
  if( ALWAYS(pWInfo) ){
    whereClauseClear(&pWInfo->sWC);
    while( pWInfo->pLoops ){
      WhereLoop *p = pWInfo->pLoops;
      pWInfo->pLoops = p->pNextLoop;
      whereLoopDelete(db, p);
    }
    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Insert or replace a WhereLoop entry using the template supplied.
**
** An existing WhereLoop entry might be overwritten if the new template
** is better and has fewer dependencies.  Or the template will be ignored
** and no insert will occur if an existing WhereLoop is faster and has
** fewer dependencies than the template.  Otherwise a new WhereLoop is
** added based on the template.
**
** If pBuilder->pBest is not NULL then we only care about the very
** best template and that template should be stored in pBuilder->pBest.
** If pBuilder->pBest is NULL then a list of the best templates are stored
** in pBuilder->pWInfo->pLoops.
**
** When accumulating multiple loops (when pBuilder->pBest is NULL) we
** still might overwrite similar loops with the new template if the
** template is better.  Loops may be overwritten if the following 
** conditions are met:
**
**    (1)  They have the same iTab.
**    (2)  They have the same iSortIdx.
**    (3)  The template has same or fewer dependencies than the current loop
**    (4)  The template has the same or lower cost than the current loop
**    (5)  The template uses more terms of the same index but has no additional
**         dependencies          
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
  WhereLoop **ppPrev, *p, *pNext = 0;
  WhereInfo *pWInfo = pBuilder->pWInfo;
  sqlite3 *db = pWInfo->pParse->db;

  /* If pBuilder->pBest is defined, then only keep track of the single
  ** best WhereLoop.  pBuilder->pBest->maskSelf==0 indicates that no
  ** prior WhereLoops have been evaluated and that the current pTemplate
  ** is therefore the first and hence the best and should be retained.
  */
  if( (p = pBuilder->pBest)!=0 ){
    if( p->maskSelf!=0 ){
      WhereCost rCost = whereCostAdd(p->rRun,p->rSetup);
      WhereCost rTemplate = whereCostAdd(pTemplate->rRun,pTemplate->rSetup);
      if( rCost < rTemplate ){
        testcase( rCost==rTemplate-1 );
        goto whereLoopInsert_noop;
      }
      if( rCost==rTemplate && (p->prereq & pTemplate->prereq)==p->prereq ){
        goto whereLoopInsert_noop;
      }
    }
#if WHERETRACE_ENABLED
    if( sqlite3WhereTrace & 0x8 ){
      sqlite3DebugPrintf(p->maskSelf==0 ? "ins-init: " : "ins-best: ");
      whereLoopPrint(pTemplate, pWInfo->pTabList);
    }
#endif
    whereLoopXfer(db, p, pTemplate);
    return SQLITE_OK;
  }

  /* Search for an existing WhereLoop to overwrite, or which takes
  ** priority over pTemplate.
  */
  for(ppPrev=&pWInfo->pLoops, p=*ppPrev; p; ppPrev=&p->pNextLoop, p=*ppPrev){
    if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
      /* If either the iTab or iSortIdx values for two WhereLoop are different
      ** then those WhereLoops need to be considered separately.  Neither is
      ** a candidate to replace the other. */
      continue;
    }
    /* In the current implementation, the rSetup value is either zero
    ** or the cost of building an automatic index (NlogN) and the NlogN
    ** is the same for compatible WhereLoops. */
    assert( p->rSetup==0 || pTemplate->rSetup==0 
                 || p->rSetup==pTemplate->rSetup );

    /* whereLoopAddBtree() always generates and inserts the automatic index
    ** case first.  Hence compatible candidate WhereLoops never have a larger
    ** rSetup. Call this SETUP-INVARIANT */
    assert( p->rSetup>=pTemplate->rSetup );

    if( (p->prereq & pTemplate->prereq)==p->prereq
     && p->rSetup<=pTemplate->rSetup
     && p->rRun<=pTemplate->rRun
    ){
      /* This branch taken when p is equal or better than pTemplate in 
      ** all of (1) dependences (2) setup-cost, and (3) run-cost. */
      assert( p->rSetup==pTemplate->rSetup );
      if( p->nLTerm<pTemplate->nLTerm
       && (p->wsFlags & WHERE_INDEXED)!=0
       && (pTemplate->wsFlags & WHERE_INDEXED)!=0
       && p->u.btree.pIndex==pTemplate->u.btree.pIndex
       && p->prereq==pTemplate->prereq
      ){
        /* Overwrite an existing WhereLoop with an similar one that uses
        ** more terms of the index */
        pNext = p->pNextLoop;
        break;
      }else{
        /* pTemplate is not helpful.
        ** Return without changing or adding anything */
        goto whereLoopInsert_noop;
      }
    }
    if( (p->prereq & pTemplate->prereq)==pTemplate->prereq
     && p->rRun>=pTemplate->rRun
     && ALWAYS(p->rSetup>=pTemplate->rSetup) /* See SETUP-INVARIANT above */
    ){
      /* Overwrite an existing WhereLoop with a better one: one that is
      ** better at one of (1) dependences, (2) setup-cost, or (3) run-cost
      ** and is no worse in any of those categories. */
      pNext = p->pNextLoop;
      break;
    }
  }

  /* If we reach this point it means that either p[] should be overwritten
  ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
  ** WhereLoop and insert it.
  */
#if WHERETRACE_ENABLED
  if( sqlite3WhereTrace & 0x8 ){
    if( p!=0 ){
      sqlite3DebugPrintf("ins-del:  ");
      whereLoopPrint(p, pWInfo->pTabList);
    }
    sqlite3DebugPrintf("ins-new:  ");
    whereLoopPrint(pTemplate, pWInfo->pTabList);
  }
#endif
  if( p==0 ){
    p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
    if( p==0 ) return SQLITE_NOMEM;
    whereLoopInit(p);
  }
  whereLoopXfer(db, p, pTemplate);
  p->pNextLoop = pNext;
  *ppPrev = p;
  if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
    Index *pIndex = p->u.btree.pIndex;
    if( pIndex && pIndex->tnum==0 ){
      p->u.btree.pIndex = 0;
    }
  }
  return SQLITE_OK;

  /* Jump here if the insert is a no-op */
whereLoopInsert_noop:
#if WHERETRACE_ENABLED
  if( sqlite3WhereTrace & 0x8 ){
    sqlite3DebugPrintf(pBuilder->pBest ? "ins-skip: " : "ins-noop: ");
    whereLoopPrint(pTemplate, pWInfo->pTabList);
  }
#endif
  return SQLITE_OK;  
}

/*
** We have so far matched pBuilder->pNew->u.btree.nEq terms of the index pIndex.
** Try to match one more.
**
** If pProbe->tnum==0, that means pIndex is a fake index used for the
** INTEGER PRIMARY KEY.
*/
static int whereLoopAddBtreeIndex(
  WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
  struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
  Index *pProbe,                  /* An index on pSrc */
  WhereCost nInMul                /* log(Number of iterations due to IN) */
){
  WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
  Parse *pParse = pWInfo->pParse;        /* Parsing context */
  sqlite3 *db = pParse->db;       /* Database connection malloc context */
  WhereLoop *pNew;                /* Template WhereLoop under construction */
  WhereTerm *pTerm;               /* A WhereTerm under consideration */
  int opMask;                     /* Valid operators for constraints */
  WhereScan scan;                 /* Iterator for WHERE terms */
  Bitmask saved_prereq;           /* Original value of pNew->prereq */
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  int saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  WhereCost saved_nOut;           /* Original value of pNew->nOut */
  int iCol;                       /* Index of the column in the table */
  int rc = SQLITE_OK;             /* Return code */
  WhereCost nRowEst;              /* Estimated index selectivity */
  WhereCost rLogSize;             /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */

  pNew = pBuilder->pNew;
  if( db->mallocFailed ) return SQLITE_NOMEM;

  assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
  assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
  if( pNew->wsFlags & WHERE_BTM_LIMIT ){
    opMask = WO_LT|WO_LE;
  }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){
    opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
  }else{
    opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE;
  }
  if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);

  assert( pNew->u.btree.nEq<=pProbe->nColumn );
  if( pNew->u.btree.nEq < pProbe->nColumn ){
    iCol = pProbe->aiColumn[pNew->u.btree.nEq];
    nRowEst = whereCost(pProbe->aiRowEst[pNew->u.btree.nEq+1]);
    if( nRowEst==0 && pProbe->onError==OE_None ) nRowEst = 1;
  }else{
    iCol = -1;
    nRowEst = 0;
  }
  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
                        opMask, pProbe);
  saved_nEq = pNew->u.btree.nEq;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rLogSize = estLog(whereCost(pProbe->aiRowEst[0]));
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    int nIn = 0;
    if( pTerm->prereqRight & pNew->maskSelf ) continue;
    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
    pNew->rRun = rLogSize; /* Baseline cost is log2(N).  Adjustments below */
    if( pTerm->eOperator & WO_IN ){
      Expr *pExpr = pTerm->pExpr;
      pNew->wsFlags |= WHERE_COLUMN_IN;
      if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
        nIn = 46;  assert( 46==whereCost(25) );
      }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
        /* "x IN (value, value, ...)" */
        nIn = whereCost(pExpr->x.pList->nExpr);
      }
      pNew->rRun += nIn;
      pNew->u.btree.nEq++;
      pNew->nOut = nRowEst + nInMul + nIn;
    }else if( pTerm->eOperator & (WO_EQ) ){
      assert( (pNew->wsFlags & (WHERE_COLUMN_NULL|WHERE_COLUMN_IN))!=0
                  || nInMul==0 );
      pNew->wsFlags |= WHERE_COLUMN_EQ;
      if( iCol<0  
       || (pProbe->onError!=OE_None && nInMul==0
           && pNew->u.btree.nEq==pProbe->nColumn-1)
      ){
        assert( (pNew->wsFlags & WHERE_COLUMN_IN)==0 || iCol<0 );
        pNew->wsFlags |= WHERE_ONEROW;
      }
      pNew->u.btree.nEq++;
      pNew->nOut = nRowEst + nInMul;
    }else if( pTerm->eOperator & (WO_ISNULL) ){
      pNew->wsFlags |= WHERE_COLUMN_NULL;
      pNew->u.btree.nEq++;
      /* TUNING: IS NULL selects 2 rows */
      nIn = 10;  assert( 10==whereCost(2) );
      pNew->nOut = nRowEst + nInMul + nIn;
    }else if( pTerm->eOperator & (WO_GT|WO_GE) ){
      testcase( pTerm->eOperator & WO_GT );
      testcase( pTerm->eOperator & WO_GE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
      pBtm = pTerm;
      pTop = 0;
    }else{
      assert( pTerm->eOperator & (WO_LT|WO_LE) );
      testcase( pTerm->eOperator & WO_LT );
      testcase( pTerm->eOperator & WO_LE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
                     pNew->aLTerm[pNew->nLTerm-2] : 0;
    }
    if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
      /* Adjust nOut and rRun for STAT3 range values */
      WhereCost rDiv;
      whereRangeScanEst(pParse, pProbe, pNew->u.btree.nEq,
                        pBtm, pTop, &rDiv);
      pNew->nOut = saved_nOut>rDiv+10 ? saved_nOut - rDiv : 10;
    }
#ifdef SQLITE_ENABLE_STAT3
    if( pNew->u.btree.nEq==1 && pProbe->nSample ){
      tRowcnt nOut = 0;
      if( (pTerm->eOperator & (WO_EQ|WO_ISNULL))!=0 ){
        testcase( pTerm->eOperator & WO_EQ );
        testcase( pTerm->eOperator & WO_ISNULL );
        rc = whereEqualScanEst(pParse, pProbe, pTerm->pExpr->pRight, &nOut);
      }else if( (pTerm->eOperator & WO_IN)
             &&  !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)  ){
        rc = whereInScanEst(pParse, pProbe, pTerm->pExpr->x.pList, &nOut);
      }
      if( rc==SQLITE_OK ) pNew->nOut = whereCost(nOut);
    }
#endif
    if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
      /* Each row involves a step of the index, then a binary search of
      ** the main table */
      pNew->rRun =  whereCostAdd(pNew->rRun, rLogSize>27 ? rLogSize-17 : 10);
    }
    /* Step cost for each output row */
    pNew->rRun = whereCostAdd(pNew->rRun, pNew->nOut);
    /* TBD: Adjust nOut for additional constraints */
    rc = whereLoopInsert(pBuilder, pNew);
    if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
     && pNew->u.btree.nEq<(pProbe->nColumn + (pProbe->zName!=0))
    ){
      whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
    }
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;
  return rc;
}

/*
** Return True if it is possible that pIndex might be useful in
** implementing the ORDER BY clause in pBuilder.
**
** Return False if pBuilder does not contain an ORDER BY clause or
** if there is no way for pIndex to be useful in implementing that
** ORDER BY clause.
*/
static int indexMightHelpWithOrderBy(
  WhereLoopBuilder *pBuilder,
  Index *pIndex,
  int iCursor
){
  ExprList *pOB;
  int ii, jj;

  if( pIndex->bUnordered ) return 0;
  if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
  for(ii=0; ii<pOB->nExpr; ii++){
    Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
    if( pExpr->op!=TK_COLUMN ) return 0;
    if( pExpr->iTable==iCursor ){
      for(jj=0; jj<pIndex->nColumn; jj++){
        if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
      }
    }
  }
  return 0;
}

/*
** Return a bitmask where 1s indicate that the corresponding column of
** the table is used by an index.  Only the first 63 columns are considered.
*/
static Bitmask columnsInIndex(Index *pIdx){
  Bitmask m = 0;
  int j;

  for(j=pIdx->nColumn-1; j>=0; j--){
    int x = pIdx->aiColumn[j];
    testcase( x==BMS-1 );
    testcase( x==BMS-2 );
    if( x<BMS-1 ) m |= MASKBIT(x);
  }
  return m;
}


/*
** Add all WhereLoop objects a single table of the join were the table
** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
** a b-tree table, not a virtual table.
*/
static int whereLoopAddBtree(
  WhereLoopBuilder *pBuilder, /* WHERE clause information */
  Bitmask mExtra              /* Extra prerequesites for using this table */
){
  WhereInfo *pWInfo;          /* WHERE analysis context */
  Index *pProbe;              /* An index we are evaluating */
  Index sPk;                  /* A fake index object for the primary key */
  tRowcnt aiRowEstPk[2];      /* The aiRowEst[] value for the sPk index */
  int aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
  SrcList *pTabList;          /* The FROM clause */
  struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
  WhereLoop *pNew;            /* Template WhereLoop object */
  int rc = SQLITE_OK;         /* Return code */
  int iSortIdx = 1;           /* Index number */
  int b;                      /* A boolean value */
  WhereCost rSize;            /* number of rows in the table */
  WhereCost rLogSize;         /* Logarithm of the number of rows in the table */
  
  pNew = pBuilder->pNew;
  pWInfo = pBuilder->pWInfo;
  pTabList = pWInfo->pTabList;
  pSrc = pTabList->a + pNew->iTab;
  assert( !IsVirtual(pSrc->pTab) );

  if( pSrc->pIndex ){
    /* An INDEXED BY clause specifies a particular index to use */
    pProbe = pSrc->pIndex;
  }else{
    /* There is no INDEXED BY clause.  Create a fake Index object in local
    ** variable sPk to represent the rowid primary key index.  Make this
    ** fake index the first in a chain of Index objects with all of the real
    ** indices to follow */
    Index *pFirst;                  /* First of real indices on the table */
    memset(&sPk, 0, sizeof(Index));
    sPk.nColumn = 1;
    sPk.aiColumn = &aiColumnPk;
    sPk.aiRowEst = aiRowEstPk;
    sPk.onError = OE_Replace;
    sPk.pTable = pSrc->pTab;
    aiRowEstPk[0] = pSrc->pTab->nRowEst;
    aiRowEstPk[1] = 1;
    pFirst = pSrc->pTab->pIndex;
    if( pSrc->notIndexed==0 ){
      /* The real indices of the table are only considered if the
      ** NOT INDEXED qualifier is omitted from the FROM clause */
      sPk.pNext = pFirst;
    }
    pProbe = &sPk;
  }
  rSize = whereCost(pSrc->pTab->nRowEst);
  rLogSize = estLog(rSize);

  /* Automatic indexes */
  if( !pBuilder->pBest
   && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
   && pSrc->pIndex==0
   && !pSrc->viaCoroutine
   && !pSrc->notIndexed
   && !pSrc->isCorrelated
  ){
    /* Generate auto-index WhereLoops */
    WhereClause *pWC = pBuilder->pWC;
    WhereTerm *pTerm;
    WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
    for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
      if( pTerm->prereqRight & pNew->maskSelf ) continue;
      if( termCanDriveIndex(pTerm, pSrc, 0) ){
        pNew->u.btree.nEq = 1;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** approximately 6*N*log2(N) where N is the number of rows in
        ** the table being indexed. */
        pNew->rSetup = rLogSize + rSize + 26;  assert( 26==whereCost(6) );
        /* TUNING: Each index lookup yields 10 rows in the table */
        pNew->nOut = 33;  assert( 33==whereCost(10) );
        pNew->rRun = whereCostAdd(rLogSize,pNew->nOut);
        pNew->wsFlags = WHERE_TEMP_INDEX;
        pNew->prereq = mExtra | pTerm->prereqRight;
        rc = whereLoopInsert(pBuilder, pNew);
      }
    }
  }

  /* Loop over all indices
  */
  for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
    pNew->u.btree.nEq = 0;
    pNew->nLTerm = 0;
    pNew->iSortIdx = 0;
    pNew->rSetup = 0;
    pNew->prereq = mExtra;
    pNew->nOut = rSize;
    pNew->u.btree.pIndex = pProbe;
    b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
    /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
    assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
    if( pProbe->tnum<=0 ){
      /* Integer primary key index */
      pNew->wsFlags = WHERE_IPK;

      /* Full table scan */
      pNew->iSortIdx = b ? iSortIdx : 0;
      /* TUNING: Cost of full table scan is 3*(N + log2(N)).
      **  +  The extra 3 factor is to encourage the use of indexed lookups
      **     over full scans.  A smaller constant 2 is used for covering
      **     index scans so that a covering index scan will be favored over
      **     a table scan. */
      pNew->rRun = whereCostAdd(rSize,rLogSize) + 16;
      rc = whereLoopInsert(pBuilder, pNew);
      if( rc ) break;
    }else{
      Bitmask m = pSrc->colUsed & ~columnsInIndex(pProbe);
      pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;

      /* Full scan via index */
      if( b
       || ( m==0
         && pProbe->bUnordered==0
         && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
         && sqlite3GlobalConfig.bUseCis
         && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
          )
      ){
        pNew->iSortIdx = b ? iSortIdx : 0;
        if( m==0 ){
          /* TUNING: Cost of a covering index scan is 2*(N + log2(N)).
          **  +  The extra 2 factor is to encourage the use of indexed lookups
          **     over index scans.  A table scan uses a factor of 3 so that
          **     index scans are favored over table scans.
          **  +  If this covering index might also help satisfy the ORDER BY
          **     clause, then the cost is fudged down slightly so that this
          **     index is favored above other indices that have no hope of
          **     helping with the ORDER BY. */
          pNew->rRun = 10 + whereCostAdd(rSize,rLogSize) - b;
        }else{
          assert( b!=0 ); 
          /* TUNING: Cost of scanning a non-covering index is (N+1)*log2(N)
          ** which we will simplify to just N*log2(N) */
          pNew->rRun = rSize + rLogSize;
        }
        rc = whereLoopInsert(pBuilder, pNew);
        if( rc ) break;
      }
    }
    rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);

    /* If there was an INDEXED BY clause, then only that one index is
    ** considered. */
    if( pSrc->pIndex ) break;
  }
  return rc;
}

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Add all WhereLoop objects for a table of the join identified by
** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
*/
static int whereLoopAddVirtual(
  WhereLoopBuilder *pBuilder   /* WHERE clause information */
){
  WhereInfo *pWInfo;           /* WHERE analysis context */
  Parse *pParse;               /* The parsing context */
  WhereClause *pWC;            /* The WHERE clause */
  struct SrcList_item *pSrc;   /* The FROM clause term to search */
  Table *pTab;
  sqlite3 *db;
  sqlite3_index_info *pIdxInfo;

  struct sqlite3_index_constraint *pIdxCons;
  struct sqlite3_index_constraint_usage *pUsage;
  WhereTerm *pTerm;
  int i, j;
  int iTerm, mxTerm;
  int nConstraint;
  int seenIn = 0;              /* True if an IN operator is seen */
  int seenVar = 0;             /* True if a non-constant constraint is seen */
  int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */
  WhereLoop *pNew;
  int rc = SQLITE_OK;

  pWInfo = pBuilder->pWInfo;
  pParse = pWInfo->pParse;
  db = pParse->db;
  pWC = pBuilder->pWC;
  pNew = pBuilder->pNew;
  pSrc = &pWInfo->pTabList->a[pNew->iTab];
  pTab = pSrc->pTab;
  assert( IsVirtual(pTab) );
  pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy);
  if( pIdxInfo==0 ) return SQLITE_NOMEM;
  pNew->prereq = 0;
  pNew->rSetup = 0;
  pNew->wsFlags = WHERE_VIRTUALTABLE;
  pNew->nLTerm = 0;
  pNew->u.vtab.needFree = 0;
  pUsage = pIdxInfo->aConstraintUsage;
  nConstraint = pIdxInfo->nConstraint;
  if( whereLoopResize(db, pNew, nConstraint) ){
    sqlite3DbFree(db, pIdxInfo);
    return SQLITE_NOMEM;
  }

  for(iPhase=0; iPhase<=3; iPhase++){
    if( !seenIn && (iPhase&1)!=0 ){
      iPhase++;
      if( iPhase>3 ) break;
    }
    if( !seenVar && iPhase>1 ) break;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
      j = pIdxCons->iTermOffset;
      pTerm = &pWC->a[j];
      switch( iPhase ){
        case 0:    /* Constants without IN operator */
          pIdxCons->usable = 0;
          if( (pTerm->eOperator & WO_IN)!=0 ){
            seenIn = 1;
          }
          if( pTerm->prereqRight!=0 ){
            seenVar = 1;
          }else if( (pTerm->eOperator & WO_IN)==0 ){
            pIdxCons->usable = 1;
          }
          break;
        case 1:    /* Constants with IN operators */
          assert( seenIn );
          pIdxCons->usable = (pTerm->prereqRight==0);
          break;
        case 2:    /* Variables without IN */
          assert( seenVar );
          pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
          break;
        default:   /* Variables with IN */
          assert( seenVar && seenIn );
          pIdxCons->usable = 1;
          break;
      }
    }
    memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
    if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
    rc = vtabBestIndex(pParse, pTab, pIdxInfo);
    if( rc ) goto whereLoopAddVtab_exit;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pNew->prereq = 0;
    mxTerm = -1;
    assert( pNew->nLSlot>=nConstraint );
    for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
    pNew->u.vtab.omitMask = 0;
    for(i=0; i<nConstraint; i++, pIdxCons++){
      if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
        j = pIdxCons->iTermOffset;
        if( iTerm>=nConstraint
         || j<0
         || j>=pWC->nTerm
         || pNew->aLTerm[iTerm]!=0
        ){
          rc = SQLITE_ERROR;
          sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
          goto whereLoopAddVtab_exit;
        }
        testcase( iTerm==nConstraint-1 );
        testcase( j==0 );
        testcase( j==pWC->nTerm-1 );
        pTerm = &pWC->a[j];
        pNew->prereq |= pTerm->prereqRight;
        assert( iTerm<pNew->nLSlot );
        pNew->aLTerm[iTerm] = pTerm;
        if( iTerm>mxTerm ) mxTerm = iTerm;
        testcase( iTerm==15 );
        testcase( iTerm==16 );
        if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
        if( (pTerm->eOperator & WO_IN)!=0 ){
          if( pUsage[i].omit==0 ){
            /* Do not attempt to use an IN constraint if the virtual table
            ** says that the equivalent EQ constraint cannot be safely omitted.
            ** If we do attempt to use such a constraint, some rows might be
            ** repeated in the output. */
            break;
          }
          /* A virtual table that is constrained by an IN clause may not
          ** consume the ORDER BY clause because (1) the order of IN terms
          ** is not necessarily related to the order of output terms and
          ** (2) Multiple outputs from a single IN value will not merge
          ** together.  */
          pIdxInfo->orderByConsumed = 0;
        }
      }
    }
    if( i>=nConstraint ){
      pNew->nLTerm = mxTerm+1;
      assert( pNew->nLTerm<=pNew->nLSlot );
      pNew->u.vtab.idxNum = pIdxInfo->idxNum;
      pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
      pIdxInfo->needToFreeIdxStr = 0;
      pNew->u.vtab.idxStr = pIdxInfo->idxStr;
      pNew->u.vtab.isOrdered = (u8)((pIdxInfo->nOrderBy!=0)
                                     && pIdxInfo->orderByConsumed);
      pNew->rSetup = 0;
      pNew->rRun = whereCostFromDouble(pIdxInfo->estimatedCost);
      /* TUNING: Every virtual table query returns 25 rows */
      pNew->nOut = 46;  assert( 46==whereCost(25) );
      whereLoopInsert(pBuilder, pNew);
      if( pNew->u.vtab.needFree ){
        sqlite3_free(pNew->u.vtab.idxStr);
        pNew->u.vtab.needFree = 0;
      }
    }
  }  

whereLoopAddVtab_exit:
  if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
  sqlite3DbFree(db, pIdxInfo);
  return rc;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** Add WhereLoop entries to handle OR terms.  This works for either
** btrees or virtual tables.
*/
static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
  WhereInfo *pWInfo = pBuilder->pWInfo;
  WhereClause *pWC;
  WhereLoop *pNew;
  WhereTerm *pTerm, *pWCEnd;
  int rc = SQLITE_OK;
  int iCur;
  WhereClause tempWC;
  WhereLoopBuilder sSubBuild;
  WhereLoop sBest;
  struct SrcList_item *pItem;
  
  pWC = pBuilder->pWC;
  if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
  pWCEnd = pWC->a + pWC->nTerm;
  pNew = pBuilder->pNew;

  for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
    if( (pTerm->eOperator & WO_OR)!=0
     && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 
    ){
      WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
      WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
      WhereTerm *pOrTerm;
      WhereCost rTotal = 0;
      WhereCost nRow = 0;
      Bitmask prereq = mExtra;
    
      whereLoopInit(&sBest);
      pItem = pWInfo->pTabList->a + pNew->iTab;
      iCur = pItem->iCursor;
      sSubBuild = *pBuilder;
      sSubBuild.pOrderBy = 0;
      sSubBuild.pBest = &sBest;

      for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
        if( (pOrTerm->eOperator & WO_AND)!=0 ){
          sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
        }else if( pOrTerm->leftCursor==iCur ){
          tempWC.pWInfo = pWC->pWInfo;
          tempWC.pOuter = pWC;
          tempWC.op = TK_AND;
          tempWC.nTerm = 1;
          tempWC.a = pOrTerm;
          sSubBuild.pWC = &tempWC;
        }else{
          continue;
        }
        sBest.maskSelf = 0;
        sBest.rSetup = 0;
        sBest.rRun = 0;
#ifndef SQLITE_OMIT_VIRTUALTABLE
        if( IsVirtual(pItem->pTab) ){
          rc = whereLoopAddVirtual(&sSubBuild);
        }else
#endif
        {
          rc = whereLoopAddBtree(&sSubBuild, mExtra);
        }
        /* sBest.maskSelf is always zero if an error occurs */
        assert( rc==SQLITE_OK || sBest.maskSelf==0 );
        if( sBest.maskSelf==0 ) break;
        assert( sBest.rSetup==0 );
        rTotal = whereCostAdd(rTotal, sBest.rRun);
        nRow = whereCostAdd(nRow, sBest.nOut);
        prereq |= sBest.prereq;
      }
      assert( pNew->nLSlot>=1 );
      if( sBest.maskSelf ){
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        pNew->wsFlags = WHERE_MULTI_OR;
        pNew->rSetup = 0;
        /* TUNING: Multiple by 3.5 for the secondary table lookup */
        pNew->rRun = rTotal + 18; assert( 18==whereCost(7)-whereCost(2) );
        pNew->nOut = nRow;
        pNew->prereq = prereq;
        memset(&pNew->u, 0, sizeof(pNew->u));
        rc = whereLoopInsert(pBuilder, pNew);
      }
      whereLoopClear(pWInfo->pParse->db, &sBest);
    }
  }
  return rc;
}

/*
** Add all WhereLoop objects for all tables 
*/
static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
  WhereInfo *pWInfo = pBuilder->pWInfo;
  Bitmask mExtra = 0;
  Bitmask mPrior = 0;
  int iTab;
  SrcList *pTabList = pWInfo->pTabList;
  struct SrcList_item *pItem;
  sqlite3 *db = pWInfo->pParse->db;
  int nTabList = pWInfo->nLevel;
  int rc = SQLITE_OK;
  u8 priorJoinType = 0;
  WhereLoop *pNew;

  /* Loop over the tables in the join, from left to right */
  pNew = pBuilder->pNew;
  whereLoopInit(pNew);
  for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){
    pNew->iTab = iTab;
    pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor);
    if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){
      mExtra = mPrior;
    }
    priorJoinType = pItem->jointype;
    if( IsVirtual(pItem->pTab) ){
      rc = whereLoopAddVirtual(pBuilder);
    }else{
      rc = whereLoopAddBtree(pBuilder, mExtra);
    }
    if( rc==SQLITE_OK ){
      rc = whereLoopAddOr(pBuilder, mExtra);
    }
    mPrior |= pNew->maskSelf;
    if( rc || db->mallocFailed ) break;
  }
  whereLoopClear(db, pNew);
  return rc;
}

/*
** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
** parameters) to see if it outputs rows in the requested ORDER BY
** (or GROUP BY) without requiring a separate source operation.  Return:
** 
**    0:  ORDER BY is not satisfied.  Sorting required
**    1:  ORDER BY is satisfied.      Omit sorting
**   -1:  Unknown at this time
**
*/
static int wherePathSatisfiesOrderBy(
  WhereInfo *pWInfo,    /* The WHERE clause */
  ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
  WherePath *pPath,     /* The WherePath to check */
  u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
  u16 nLoop,            /* Number of entries in pPath->aLoop[] */
  WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
  Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
){
  u8 revSet;            /* True if rev is known */
  u8 rev;               /* Composite sort order */
  u8 revIdx;            /* Index sort order */
  u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
  u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
  u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
  u16 nColumn;          /* Number of columns in pIndex */
  u16 nOrderBy;         /* Number terms in the ORDER BY clause */
  int iLoop;            /* Index of WhereLoop in pPath being processed */
  int i, j;             /* Loop counters */
  int iCur;             /* Cursor number for current WhereLoop */
  int iColumn;          /* A column number within table iCur */
  WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
  WhereTerm *pTerm;     /* A single term of the WHERE clause */
  Expr *pOBExpr;        /* An expression from the ORDER BY clause */
  CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
  Index *pIndex;        /* The index associated with pLoop */
  sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
  Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
  Bitmask obDone;       /* Mask of all ORDER BY terms */
  Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
  Bitmask ready;              /* Mask of inner loops */

  /*
  ** We say the WhereLoop is "one-row" if it generates no more than one
  ** row of output.  A WhereLoop is one-row if all of the following are true:
  **  (a) All index columns match with WHERE_COLUMN_EQ.
  **  (b) The index is unique
  ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
  ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
  **
  ** We say the WhereLoop is "order-distinct" if the set of columns from
  ** that WhereLoop that are in the ORDER BY clause are different for every
  ** row of the WhereLoop.  Every one-row WhereLoop is automatically
  ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
  ** is not order-distinct. To be order-distinct is not quite the same as being
  ** UNIQUE since a UNIQUE column or index can have multiple rows that 
  ** are NULL and NULL values are equivalent for the purpose of order-distinct.
  ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
  **
  ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
  ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
  ** automatically order-distinct.
  */

  assert( pOrderBy!=0 );

  /* Sortability of virtual tables is determined by the xBestIndex method
  ** of the virtual table itself */
  if( pLast->wsFlags & WHERE_VIRTUALTABLE ){
    testcase( nLoop>0 );  /* True when outer loops are one-row and match 
                          ** no ORDER BY terms */
    return pLast->u.vtab.isOrdered;
  }
  if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;

  nOrderBy = pOrderBy->nExpr;
  testcase( nOrderBy==BMS-1 );
  if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
  isOrderDistinct = 1;
  obDone = MASKBIT(nOrderBy)-1;
  orderDistinctMask = 0;
  ready = 0;
  for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
    if( iLoop>0 ) ready |= pLoop->maskSelf;
    pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
    assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
    iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;

    /* Mark off any ORDER BY term X that is a column in the table of
    ** the current loop for which there is term in the WHERE
    ** clause of the form X IS NULL or X=? that reference only outer
    ** loops.
    */
    for(i=0; i<nOrderBy; i++){
      if( MASKBIT(i) & obSat ) continue;
      pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
      if( pOBExpr->op!=TK_COLUMN ) continue;
      if( pOBExpr->iTable!=iCur ) continue;
      pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
                       ~ready, WO_EQ|WO_ISNULL, 0);
      if( pTerm==0 ) continue;
      if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){
        const char *z1, *z2;
        pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
        if( !pColl ) pColl = db->pDfltColl;
        z1 = pColl->zName;
        pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
        if( !pColl ) pColl = db->pDfltColl;
        z2 = pColl->zName;
        if( sqlite3StrICmp(z1, z2)!=0 ) continue;
      }
      obSat |= MASKBIT(i);
    }

    if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
      if( pLoop->wsFlags & WHERE_IPK ){

        pIndex = 0;
        nColumn = 0;
      }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
        return 0;
      }else{
        nColumn = pIndex->nColumn;
        isOrderDistinct = pIndex->onError!=OE_None;
      }

      /* Loop through all columns of the index and deal with the ones
      ** that are not constrained by == or IN.
      */
      rev = revSet = 0;
      distinctColumns = 0;
      for(j=0; j<=nColumn; j++){
        u8 bOnce;   /* True to run the ORDER BY search loop */

        /* Skip over == and IS NULL terms */
        if( j<pLoop->u.btree.nEq
         && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
        ){
          if( i & WO_ISNULL ){
            testcase( isOrderDistinct );
            isOrderDistinct = 0;
          }
          continue;  
        }

        /* Get the column number in the table (iColumn) and sort order
        ** (revIdx) for the j-th column of the index.
        */
        if( j<nColumn ){
          /* Normal index columns */
          iColumn = pIndex->aiColumn[j];
          revIdx = pIndex->aSortOrder[j];
          if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
        }else{
          /* The ROWID column at the end */
          assert( j==nColumn );
          iColumn = -1;
          revIdx = 0;

        }

        /* An unconstrained column that might be NULL means that this
        ** WhereLoop is not well-ordered 
        */
        if( isOrderDistinct
         && iColumn>=0
         && j>=pLoop->u.btree.nEq
         && pIndex->pTable->aCol[iColumn].notNull==0
        ){
          isOrderDistinct = 0;
        }

        /* Find the ORDER BY term that corresponds to the j-th column
        ** of the index and and mark that ORDER BY term off 
        */
        bOnce = 1;
        isMatch = 0;
        for(i=0; bOnce && i<nOrderBy; i++){
          if( MASKBIT(i) & obSat ) continue;
          pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
          testcase( wctrlFlags & WHERE_GROUPBY );
          testcase( wctrlFlags & WHERE_DISTINCTBY );
          if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
          if( pOBExpr->op!=TK_COLUMN ) continue;
          if( pOBExpr->iTable!=iCur ) continue;
          if( pOBExpr->iColumn!=iColumn ) continue;
          if( iColumn>=0 ){
            pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
            if( !pColl ) pColl = db->pDfltColl;
            if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
          }
          isMatch = 1;
          break;
        }
        if( isMatch ){
          if( iColumn<0 ){
            testcase( distinctColumns==0 );
            distinctColumns = 1;
          }
          obSat |= MASKBIT(i);
          if( (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
            /* Make sure the sort order is compatible in an ORDER BY clause.
            ** Sort order is irrelevant for a GROUP BY clause. */
            if( revSet ){
              if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) return 0;
            }else{
              rev = revIdx ^ pOrderBy->a[i].sortOrder;
              if( rev ) *pRevMask |= MASKBIT(iLoop);
              revSet = 1;
            }
          }
        }else{
          /* No match found */
          if( j==0 || j<nColumn ){
            testcase( isOrderDistinct!=0 );
            isOrderDistinct = 0;
          }
          break;
        }
      } /* end Loop over all index columns */
      if( distinctColumns ){
        testcase( isOrderDistinct==0 );
        isOrderDistinct = 1;
      }
    } /* end-if not one-row */

    /* Mark off any other ORDER BY terms that reference pLoop */
    if( isOrderDistinct ){
      orderDistinctMask |= pLoop->maskSelf;
      for(i=0; i<nOrderBy; i++){
        Expr *p;
        if( MASKBIT(i) & obSat ) continue;
        p = pOrderBy->a[i].pExpr;
        if( (exprTableUsage(&pWInfo->sMaskSet, p)&~orderDistinctMask)==0 ){
          obSat |= MASKBIT(i);
        }
      }
    }
  } /* End the loop over all WhereLoops from outer-most down to inner-most */
  if( obSat==obDone ) return 1;
  if( !isOrderDistinct ) return 0;
  return -1;
}

#ifdef WHERETRACE_ENABLED
/* For debugging use only: */
static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
  static char zName[65];
  int i;
  for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
  if( pLast ) zName[i++] = pLast->cId;
  zName[i] = 0;
  return zName;
}
#endif


/*
** Given the list of WhereLoop objects on pWInfo->pLoops, this routine
** attempts to find the lowest cost path that visits each WhereLoop
** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
**
** Assume that the total number of output rows that will need to be sorted
** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
** costs if nRowEst==0.
**
** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
** error occurs.
*/
static int wherePathSolver(WhereInfo *pWInfo, WhereCost nRowEst){
  int mxChoice;             /* Maximum number of simultaneous paths tracked */
  int nLoop;                /* Number of terms in the join */
  Parse *pParse;            /* Parsing context */
  sqlite3 *db;              /* The database connection */
  int iLoop;                /* Loop counter over the terms of the join */
  int ii, jj;               /* Loop counters */
  WhereCost rCost;             /* Cost of a path */
  WhereCost mxCost = 0;        /* Maximum cost of a set of paths */
  WhereCost rSortCost;         /* Cost to do a sort */
  int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
  WherePath *aFrom;         /* All nFrom paths at the previous level */
  WherePath *aTo;           /* The nTo best paths at the current level */
  WherePath *pFrom;         /* An element of aFrom[] that we are working on */
  WherePath *pTo;           /* An element of aTo[] that we are working on */
  WhereLoop *pWLoop;        /* One of the WhereLoop objects */
  WhereLoop **pX;           /* Used to divy up the pSpace memory */
  char *pSpace;             /* Temporary memory used by this routine */

  pParse = pWInfo->pParse;
  db = pParse->db;
  nLoop = pWInfo->nLevel;
  /* TUNING: For simple queries, only the best path is tracked.
  ** For 2-way joins, the 5 best paths are followed.
  ** For joins of 3 or more tables, track the 10 best paths */
  mxChoice = (nLoop==1) ? 1 : (nLoop==2 ? 5 : 10);
  assert( nLoop<=pWInfo->pTabList->nSrc );
  WHERETRACE(0x002, ("---- begin solver\n"));

  /* Allocate and initialize space for aTo and aFrom */
  ii = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
  pSpace = sqlite3DbMallocRaw(db, ii);
  if( pSpace==0 ) return SQLITE_NOMEM;
  aTo = (WherePath*)pSpace;
  aFrom = aTo+mxChoice;
  memset(aFrom, 0, sizeof(aFrom[0]));
  pX = (WhereLoop**)(aFrom+mxChoice);
  for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
    pFrom->aLoop = pX;
  }

  /* Seed the search with a single WherePath containing zero WhereLoops.
  **
  ** TUNING: Do not let the number of iterations go above 25.  If the cost
  ** of computing an automatic index is not paid back within the first 25
  ** rows, then do not use the automatic index. */
  aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==whereCost(25) );
  nFrom = 1;

  /* Precompute the cost of sorting the final result set, if the caller
  ** to sqlite3WhereBegin() was concerned about sorting */
  rSortCost = 0;
  if( pWInfo->pOrderBy==0 || nRowEst==0 ){
    aFrom[0].isOrderedValid = 1;
  }else{
    /* TUNING: Estimated cost of sorting is N*log2(N) where N is the
    ** number of output rows. */
    rSortCost = nRowEst + estLog(nRowEst);
    WHERETRACE(0x002,("---- sort cost=%-3d\n", rSortCost));
  }

  /* Compute successively longer WherePaths using the previous generation
  ** of WherePaths as the basis for the next.  Keep track of the mxChoice
  ** best paths at each generation */
  for(iLoop=0; iLoop<nLoop; iLoop++){
    nTo = 0;
    for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
      for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
        Bitmask maskNew;
        Bitmask revMask = 0;
        u8 isOrderedValid = pFrom->isOrderedValid;
        u8 isOrdered = pFrom->isOrdered;
        if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
        if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
        /* At this point, pWLoop is a candidate to be the next loop. 
        ** Compute its cost */
        rCost = whereCostAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
        rCost = whereCostAdd(rCost, pFrom->rCost);
        maskNew = pFrom->maskLoop | pWLoop->maskSelf;
        if( !isOrderedValid ){
          switch( wherePathSatisfiesOrderBy(pWInfo,
                       pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
                       iLoop, pWLoop, &revMask) ){
            case 1:  /* Yes.  pFrom+pWLoop does satisfy the ORDER BY clause */
              isOrdered = 1;
              isOrderedValid = 1;
              break;
            case 0:  /* No.  pFrom+pWLoop will require a separate sort */
              isOrdered = 0;
              isOrderedValid = 1;
              rCost = whereCostAdd(rCost, rSortCost);
              break;
            default: /* Cannot tell yet.  Try again on the next iteration */
              break;
          }
        }else{
          revMask = pFrom->revLoop;
        }
        /* Check to see if pWLoop should be added to the mxChoice best so far */
        for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
          if( pTo->maskLoop==maskNew && pTo->isOrderedValid==isOrderedValid ){
            testcase( jj==nTo-1 );
            break;
          }
        }
        if( jj>=nTo ){
          if( nTo>=mxChoice && rCost>=mxCost ){
#ifdef WHERETRACE_ENABLED
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf("Skip   %s cost=%3d order=%c\n",
                  wherePathName(pFrom, iLoop, pWLoop), rCost,
                  isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
            }
#endif
            continue;
          }
          /* Add a new Path to the aTo[] set */
          if( nTo<mxChoice ){
            /* Increase the size of the aTo set by one */
            jj = nTo++;
          }else{
            /* New path replaces the prior worst to keep count below mxChoice */
            for(jj=nTo-1; aTo[jj].rCost<mxCost; jj--){ assert(jj>0); }
          }
          pTo = &aTo[jj];
#ifdef WHERETRACE_ENABLED
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf("New    %s cost=%-3d order=%c\n",
                wherePathName(pFrom, iLoop, pWLoop), rCost,
                isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
          }
#endif
        }else{
          if( pTo->rCost<=rCost ){
#ifdef WHERETRACE_ENABLED
            if( sqlite3WhereTrace&0x4 ){
              sqlite3DebugPrintf(
                  "Skip   %s cost=%-3d order=%c",
                  wherePathName(pFrom, iLoop, pWLoop), rCost,
                  isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
              sqlite3DebugPrintf("   vs %s cost=%-3d order=%c\n",
                  wherePathName(pTo, iLoop+1, 0), pTo->rCost,
                  pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
            }
#endif
            testcase( pTo->rCost==rCost );
            continue;
          }
          testcase( pTo->rCost==rCost+1 );
          /* A new and better score for a previously created equivalent path */
#ifdef WHERETRACE_ENABLED
          if( sqlite3WhereTrace&0x4 ){
            sqlite3DebugPrintf(
                "Update %s cost=%-3d order=%c",
                wherePathName(pFrom, iLoop, pWLoop), rCost,
                isOrderedValid ? (isOrdered ? 'Y' : 'N') : '?');
            sqlite3DebugPrintf("  was %s cost=%-3d order=%c\n",
                wherePathName(pTo, iLoop+1, 0), pTo->rCost,
                pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
          }
#endif
        }
        /* pWLoop is a winner.  Add it to the set of best so far */
        pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
        pTo->revLoop = revMask;
        pTo->nRow = pFrom->nRow + pWLoop->nOut;
        pTo->rCost = rCost;
        pTo->isOrderedValid = isOrderedValid;
        pTo->isOrdered = isOrdered;
        memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
        pTo->aLoop[iLoop] = pWLoop;
        if( nTo>=mxChoice ){
          mxCost = aTo[0].rCost;
          for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
            if( pTo->rCost>mxCost ) mxCost = pTo->rCost;
          }
        }
      }
    }

#ifdef WHERETRACE_ENABLED
    if( sqlite3WhereTrace>=2 ){
      sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
           pTo->isOrderedValid ? (pTo->isOrdered ? 'Y' : 'N') : '?');
        if( pTo->isOrderedValid && pTo->isOrdered ){
          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
        }else{
          sqlite3DebugPrintf("\n");
        }
      }
    }
#endif

    /* Swap the roles of aFrom and aTo for the next generation */
    pFrom = aTo;
    aTo = aFrom;
    aFrom = pFrom;
    nFrom = nTo;
  }

  if( nFrom==0 ){
    sqlite3ErrorMsg(pParse, "no query solution");
    sqlite3DbFree(db, pSpace);
    return SQLITE_ERROR;
  }
  
  /* Find the lowest cost path.  pFrom will be left pointing to that path */
  pFrom = aFrom;
  assert( nFrom==1 );
#if 0 /* The following is needed if nFrom is ever more than 1 */
  for(ii=1; ii<nFrom; ii++){
    if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
  }

#endif
  assert( pWInfo->nLevel==nLoop );
  /* Load the lowest cost path into pWInfo */
  for(iLoop=0; iLoop<nLoop; iLoop++){
    WhereLevel *pLevel = pWInfo->a + iLoop;
    pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
    pLevel->iFrom = pWLoop->iTab;
    pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
  }
  if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 
   && pWInfo->pDistinct
   && nRowEst
  ){
    Bitmask notUsed;
    int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pDistinct, pFrom,
                 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
    if( rc==1 ) pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
  }
  if( pFrom->isOrdered ){
    if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }else{
      pWInfo->bOBSat = 1;
      pWInfo->revMask = pFrom->revLoop;
    }
  }
  pWInfo->nRowOut = pFrom->nRow;

  /* Free temporary memory and return success */
  sqlite3DbFree(db, pSpace);
  return SQLITE_OK;
}

/*
** Most queries use only a single table (they are not joins) and have
** simple == constraints against indexed fields.  This routine attempts
** to plan those simple cases using much less ceremony than the
** general-purpose query planner, and thereby yield faster sqlite3_prepare()
** times for the common case.
**
** Return non-zero on success, if this query can be handled by this
** no-frills query planner.  Return zero if this query needs the 
** general-purpose query planner.
*/
static int whereShortCut(WhereLoopBuilder *pBuilder){
  WhereInfo *pWInfo;
  struct SrcList_item *pItem;
  WhereClause *pWC;
  WhereTerm *pTerm;
  WhereLoop *pLoop;
  int iCur;
  int j;
  Table *pTab;
  Index *pIdx;
  
  pWInfo = pBuilder->pWInfo;
  if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
  assert( pWInfo->pTabList->nSrc>=1 );
  pItem = pWInfo->pTabList->a;
  pTab = pItem->pTab;
  if( IsVirtual(pTab) ) return 0;
  if( pItem->zIndex ) return 0;
  iCur = pItem->iCursor;
  pWC = &pWInfo->sWC;
  pLoop = pBuilder->pNew;
  pLoop->wsFlags = 0;
  pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
  if( pTerm ){
    pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
    pLoop->aLTerm[0] = pTerm;
    pLoop->nLTerm = 1;
    pLoop->u.btree.nEq = 1;
    /* TUNING: Cost of a rowid lookup is 10 */
    pLoop->rRun = 33;  /* 33==whereCost(10) */
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      if( pIdx->onError==OE_None ) continue;
      for(j=0; j<pIdx->nColumn; j++){
        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
        if( pTerm==0 ) break;
        whereLoopResize(pWInfo->pParse->db, pLoop, j);
        pLoop->aLTerm[j] = pTerm;
      }
      if( j!=pIdx->nColumn ) continue;
      pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
      if( (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
        pLoop->wsFlags |= WHERE_IDX_ONLY;
      }
      pLoop->nLTerm = j;
      pLoop->u.btree.nEq = j;
      pLoop->u.btree.pIndex = pIdx;
      /* TUNING: Cost of a unique index lookup is 15 */
      pLoop->rRun = 39;  /* 39==whereCost(15) */
      break;
    }
  }
  if( pLoop->wsFlags ){
    pLoop->nOut = (WhereCost)1;
    pWInfo->a[0].pWLoop = pLoop;
    pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
    pWInfo->a[0].iTabCur = iCur;
    pWInfo->nRowOut = 1;
    if( pWInfo->pOrderBy ) pWInfo->bOBSat =  1;
    if( pWInfo->pDistinct ) pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
#ifdef SQLITE_DEBUG
    pLoop->cId = '0';
#endif
    return 1;
  }
  return 0;
}

/*
** Generate the beginning of the loop used for WHERE clause processing.
** The return value is a pointer to an opaque structure that contains
** information needed to terminate the loop.  Later, the calling routine
** should invoke sqlite3WhereEnd() with the return value of this function
** in order to complete the WHERE clause processing.
................................................................................
**    end
**
** ORDER BY CLAUSE PROCESSING
**
** pOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
** if there is one.  If there is no ORDER BY clause or if this routine
** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.









*/
WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList *pOrderBy,   /* An ORDER BY clause, or NULL */
  ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
................................................................................
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
  WhereLoopBuilder sWLB;     /* The WhereLoop builder */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */


  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */


  /* Variable initialization */
  memset(&sWLB, 0, sizeof(sWLB));
  sWLB.pOrderBy = pOrderBy;

  /* The number of tables in the FROM clause is limited by the number of
  ** bits in a Bitmask 
  */
  testcase( pTabList->nSrc==BMS );
  if( pTabList->nSrc>BMS ){
    sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
................................................................................
  ** struct, the contents of WhereInfo.a[], the WhereClause structure
  ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
  ** field (type Bitmask) it must be aligned on an 8-byte boundary on
  ** some architectures. Hence the ROUND8() below.
  */
  db = pParse->db;
  nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
  pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));




  if( db->mallocFailed ){
    sqlite3DbFree(db, pWInfo);
    pWInfo = 0;
    goto whereBeginError;
  }
  pWInfo->nLevel = nTabList;
  pWInfo->pParse = pParse;
  pWInfo->pTabList = pTabList;
  pWInfo->pOrderBy = pOrderBy;
  pWInfo->pDistinct = pDistinct;
  pWInfo->iBreak = sqlite3VdbeMakeLabel(v);

  pWInfo->wctrlFlags = wctrlFlags;
  pWInfo->savedNQueryLoop = pParse->nQueryLoop;

  pMaskSet = &pWInfo->sMaskSet;
  sWLB.pWInfo = pWInfo;
  sWLB.pWC = &pWInfo->sWC;
  sWLB.pNew = (WhereLoop*)&pWInfo->a[nTabList];
  whereLoopInit(sWLB.pNew);
#ifdef SQLITE_DEBUG
  sWLB.pNew->cId = '*';
#endif

  /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
  ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
  if( OptimizationDisabled(db, SQLITE_DistinctOpt) ) pDistinct = 0;

  /* Split the WHERE clause into separate subexpressions where each
  ** subexpression is separated by an AND operator.
  */
  initMaskSet(pMaskSet);
  whereClauseInit(&pWInfo->sWC, pWInfo);
  sqlite3ExprCodeConstants(pParse, pWhere);
  whereSplit(&pWInfo->sWC, pWhere, TK_AND);   /* IMP: R-15842-53296 */
    
  /* Special case: a WHERE clause that is constant.  Evaluate the
  ** expression and either jump over all of the code or fall thru.
  */
  if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
    sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
    pWhere = 0;
  }

  /* Special case: No FROM clause
  */
  if( nTabList==0 ){
    if( pOrderBy ) pWInfo->bOBSat = 1;
    if( pDistinct ) pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
  }

  /* Assign a bit from the bitmask to every term in the FROM clause.
  **
  ** When assigning bitmask values to FROM clause cursors, it must be
  ** the case that if X is the bitmask for the N-th FROM clause term then
  ** the bitmask for all FROM clause terms to the left of the N-th term
  ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
................................................................................
#endif

  /* Analyze all of the subexpressions.  Note that exprAnalyze() might
  ** add new virtual terms onto the end of the WHERE clause.  We do not
  ** want to analyze these virtual terms, so start analyzing at the end
  ** and work forward so that the added virtual terms are never processed.
  */
  exprAnalyzeAll(pTabList, &pWInfo->sWC);
  if( db->mallocFailed ){
    goto whereBeginError;
  }

  /* If the ORDER BY (or GROUP BY) clause contains references to general
  ** expressions, then we won't be able to satisfy it using indices, so
  ** go ahead and disable it now.
  */
  if( pOrderBy && pDistinct ){
    for(ii=0; ii<pOrderBy->nExpr; ii++){
      Expr *pExpr = sqlite3ExprSkipCollate(pOrderBy->a[ii].pExpr);
      if( pExpr->op!=TK_COLUMN ){
        pWInfo->pOrderBy = pOrderBy = 0;
        break;
      }else if( pExpr->iColumn<0 ){
        break;
      }
    }
  }

  /* Check if the DISTINCT qualifier, if there is one, is redundant. 
  ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
  ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
  */
  if( pDistinct ){
    if( isDistinctRedundant(pParse,pTabList,&pWInfo->sWC,pDistinct) ){
      pDistinct = 0;
      pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;

















    }else if( pOrderBy==0 ){
      pWInfo->wctrlFlags |= WHERE_DISTINCTBY;

      pWInfo->pOrderBy = pDistinct;












    }



  }























































  /* Construct the WhereLoop objects */
  WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
  if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
    rc = whereLoopAddAll(&sWLB);
    if( rc ) goto whereBeginError;
  



    /* Display all of the WhereLoop objects if wheretrace is enabled */
#ifdef WHERETRACE_ENABLED
    if( sqlite3WhereTrace ){
      WhereLoop *p;
      int i = 0;
      static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
                                       "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
      for(p=pWInfo->pLoops; p; p=p->pNextLoop){
        p->cId = zLabel[(i++)%sizeof(zLabel)];
        whereLoopPrint(p, pTabList);
      }
    }




























#endif
  

    wherePathSolver(pWInfo, 0);
    if( db->mallocFailed ) goto whereBeginError;
    if( pWInfo->pOrderBy ){
       wherePathSolver(pWInfo, pWInfo->nRowOut+1);
       if( db->mallocFailed ) goto whereBeginError;
    }

  }





  if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
     pWInfo->revMask = (Bitmask)(-1);
  }


  if( pParse->nErr || NEVER(db->mallocFailed) ){
    goto whereBeginError;
  }












#ifdef WHERETRACE_ENABLED
  if( sqlite3WhereTrace ){
    int ii;
    sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
    if( pWInfo->bOBSat ){
      sqlite3DebugPrintf(" ORDERBY=0x%llx", pWInfo->revMask);
    }






















































    switch( pWInfo->eDistinct ){
      case WHERE_DISTINCT_UNIQUE: {
        sqlite3DebugPrintf("  DISTINCT=unique");
        break;
      }












      case WHERE_DISTINCT_ORDERED: {
        sqlite3DebugPrintf("  DISTINCT=ordered");
        break;
      }


      case WHERE_DISTINCT_UNORDERED: {
        sqlite3DebugPrintf("  DISTINCT=unordered");
        break;
      }




    }
    sqlite3DebugPrintf("\n");
    for(ii=0; ii<nTabList; ii++){
      whereLoopPrint(pWInfo->a[ii].pWLoop, pTabList);
    }















  }


#endif
  WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));

















  pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;

  /* If the caller is an UPDATE or DELETE statement that is requesting
  ** to use a one-pass algorithm, determine if this is appropriate.
  ** The one-pass algorithm only works if the WHERE clause constraints
  ** the statement to update a single row.
  */
  assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
   && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){
    pWInfo->okOnePass = 1;
    pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
  sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
  notReady = ~(Bitmask)0;

  for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
    Table *pTab;     /* Table to open */
    int iDb;         /* Index of database containing table/index */
    struct SrcList_item *pTabItem;
    WhereLoop *pLoop;

    pTabItem = &pTabList->a[pLevel->iFrom];
    pTab = pTabItem->pTab;

    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
    pLoop = pLevel->pWLoop;
    if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
      /* Do nothing */
    }else
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
      const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
      int iCur = pTabItem->iCursor;
      sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
    }else if( IsVirtual(pTab) ){
      /* noop */
    }else
#endif
    if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
         && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
      int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
      sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
      testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 );
      testcase( !pWInfo->okOnePass && pTab->nCol==BMS );
      if( !pWInfo->okOnePass && pTab->nCol<BMS ){
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLoop->wsFlags & WHERE_TEMP_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC, pTabItem, notReady, pLevel);
    }else
#endif
    if( pLoop->wsFlags & WHERE_INDEXED ){
      Index *pIx = pLoop->u.btree.pIndex;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      /* FIXME:  As an optimization use pTabItem->iCursor if WHERE_IDX_ONLY */
      int iIndexCur = pLevel->iIdxCur = iIdxCur ? iIdxCur : pParse->nTab++;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      VdbeComment((v, "%s", pIx->zName));
    }
    sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
  if( db->mallocFailed ) goto whereBeginError;

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    pLevel = &pWInfo->a[ii];
    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
  }

  /* Done. */























































  return pWInfo;

  /* Jump here if malloc fails */
whereBeginError:
  if( pWInfo ){
    pParse->nQueryLoop = pWInfo->savedNQueryLoop;
    whereInfoFree(db, pWInfo);
................................................................................
** sqlite3WhereBegin() for additional information.
*/
void sqlite3WhereEnd(WhereInfo *pWInfo){
  Parse *pParse = pWInfo->pParse;
  Vdbe *v = pParse->pVdbe;
  int i;
  WhereLevel *pLevel;
  WhereLoop *pLoop;
  SrcList *pTabList = pWInfo->pTabList;
  sqlite3 *db = pParse->db;

  /* Generate loop termination code.
  */
  sqlite3ExprCacheClear(pParse);
  for(i=pWInfo->nLevel-1; i>=0; i--){
    pLevel = &pWInfo->a[i];
    pLoop = pLevel->pWLoop;
    sqlite3VdbeResolveLabel(v, pLevel->addrCont);
    if( pLevel->op!=OP_Noop ){
      sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
      sqlite3VdbeChangeP5(v, pLevel->p5);
    }
    if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
      struct InLoop *pIn;
      int j;
      sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
      for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
        sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
        sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
        sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
................................................................................
      }
      sqlite3DbFree(db, pLevel->u.in.aInLoop);
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->iLeftJoin ){
      int addr;
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }
      if( pLoop->wsFlags & WHERE_INDEXED ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
      }
      if( pLevel->op==OP_Return ){
        sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
      }else{
        sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
      }
................................................................................
  */
  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
    Index *pIdx = 0;
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    pLoop = pLevel->pWLoop;
    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
      int ws = pLoop->wsFlags;
      if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
      }
      if( (ws & WHERE_INDEXED)!=0 && (ws & (WHERE_IPK|WHERE_TEMP_INDEX))==0 ){
        sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
      }
    }

    /* If this scan uses an index, make VDBE code substitutions to read data
    ** from the index instead of from the table where possible.  In some cases
    ** this optimization prevents the table from ever being read, which can
    ** yield a significant performance boost.


    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
      pIdx = pLoop->u.btree.pIndex;
    }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed ){
      int k, j, last;
      VdbeOp *pOp;

      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);
      for(k=pWInfo->iTop; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
................................................................................
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
              pOp->p2 = j;
              pOp->p1 = pLevel->iIdxCur;
              break;
            }
          }
          assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || j<pIdx->nColumn );

        }else if( pOp->opcode==OP_Rowid ){
          pOp->p1 = pLevel->iIdxCur;
          pOp->opcode = OP_IdxRowid;
        }
      }
    }
  }

Changes to test/all.test.

44
45
46
47
48
49
50
51
52
if {$::tcl_platform(platform)=="unix"} {
  ifcapable !default_autovacuum {
    run_test_suite autovacuum_crash
  }
}

finish_test









<
<
44
45
46
47
48
49
50


if {$::tcl_platform(platform)=="unix"} {
  ifcapable !default_autovacuum {
    run_test_suite autovacuum_crash
  }
}

finish_test


Changes to test/analyze3.test.

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
...
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
...
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    COMMIT;
    ANALYZE;
  }
} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~179 rows)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?) (~959 rows)}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
      CREATE INDEX i2 ON t2(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~196 rows)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?) (~968 rows)}}
do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
................................................................................
      CREATE INDEX i3 ON t3(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~156 rows)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?) (~989 rows)}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?) (~31250 rows)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1 (~500000 rows)}}

do_test analyze3-2.4 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' }
} {101 0 100}
do_test analyze3-2.5 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE '%a' }
} {999 999 100}
................................................................................
do_test analyze3-3.2.5 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b=?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.6 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.7 {
  sqlite3_finalize $S
} {SQLITE_OK}

do_test analyze3-3.4.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy]
  sqlite3_expired $S







|


|







 







|


|







 







|


|







 







|


|







 







|







93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
...
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
...
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
...
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
...
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
    COMMIT;
    ANALYZE;
  }
} {}

do_eqp_test analyze3-1.1.2 {
  SELECT sum(y) FROM t1 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}
do_eqp_test analyze3-1.1.3 {
  SELECT sum(y) FROM t1 WHERE x>0 AND x<1100 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (x>? AND x<?)}}

do_test analyze3-1.1.4 {
  sf_execsql { SELECT sum(y) FROM t1 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.1.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
      CREATE INDEX i2 ON t2(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.2.2 {
  SELECT sum(y) FROM t2 WHERE x>1 AND x<2
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}}
do_eqp_test analyze3-1.2.3 {
  SELECT sum(y) FROM t2 WHERE x>0 AND x<99
} {0 0 0 {SEARCH TABLE t2 USING INDEX i2 (x>? AND x<?)}}
do_test analyze3-1.2.4 {
  sf_execsql { SELECT sum(y) FROM t2 WHERE x>12 AND x<20 }
} {161 0 4760}
do_test analyze3-1.2.5 {
  set l [string range "12" 0 end]
  set u [string range "20" 0 end]
  sf_execsql {SELECT typeof($l), typeof($u), sum(y) FROM t2 WHERE x>$l AND x<$u}
................................................................................
      CREATE INDEX i3 ON t3(x);
    COMMIT;
    ANALYZE;
  }
} {}
do_eqp_test analyze3-1.3.2 {
  SELECT sum(y) FROM t3 WHERE x>200 AND x<300
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}}
do_eqp_test analyze3-1.3.3 {
  SELECT sum(y) FROM t3 WHERE x>0 AND x<1100
} {0 0 0 {SEARCH TABLE t3 USING INDEX i3 (x>? AND x<?)}}

do_test analyze3-1.3.4 {
  sf_execsql { SELECT sum(y) FROM t3 WHERE x>200 AND x<300 }
} {199 0 14850}
do_test analyze3-1.3.5 {
  set l [string range "200" 0 end]
  set u [string range "300" 0 end]
................................................................................
    append t [lindex {a b c d e f g h i j} [expr ($i%10)]]
    execsql { INSERT INTO t1 VALUES($i, $t) }
  }
  execsql COMMIT
} {}
do_eqp_test analyze3-2.2 {
  SELECT count(a) FROM t1 WHERE b LIKE 'a%'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (b>? AND b<?)}}
do_eqp_test analyze3-2.3 {
  SELECT count(a) FROM t1 WHERE b LIKE '%a'
} {0 0 0 {SCAN TABLE t1}}

do_test analyze3-2.4 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE 'a%' }
} {101 0 100}
do_test analyze3-2.5 {
  sf_execsql { SELECT count(*) FROM t1 WHERE b LIKE '%a' }
} {999 999 100}
................................................................................
do_test analyze3-3.2.5 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE b=?" -1 dummy]
  sqlite3_expired $S
} {0}
do_test analyze3-3.2.6 {
  sqlite3_bind_text $S 1 "abc" 3
  sqlite3_expired $S
} {1}
do_test analyze3-3.2.7 {
  sqlite3_finalize $S
} {SQLITE_OK}

do_test analyze3-3.4.1 {
  set S [sqlite3_prepare_v2 db "SELECT * FROM t1 WHERE a=? AND b>?" -1 dummy]
  sqlite3_expired $S

Changes to test/analyze4.test.

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;







|







34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
    INSERT INTO t1 SELECT a+32, b FROM t1;
    INSERT INTO t1 SELECT a+64, b FROM t1;
    ANALYZE;
  }

  # Should choose the t1a index since it is more specific than t1b.
  db eval {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=5 AND b IS NULL}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Verify that the t1b index shows that it does not narrow down the
# search any at all.
#
do_test analyze4-1.1 {
  db eval {
    SELECT idx, stat FROM sqlite_stat1 WHERE tbl='t1' ORDER BY idx;

Changes to test/analyze5.test.

152
153
154
155
156
157
158

159
160
161
162
163
164
165
166
167
168
169
170
171
172
...
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  301  {y=1}                 t1y   26
  302  {y=0.1}               t1y    1

  400  {x IS NULL}           t1x  400

} {
  # Verify that the expected index is used with the expected row count

  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
    set idx {}
    regexp {INDEX (t1.) } $x all idx
    regexp {~([0-9]+) rows} $x all nrow
    list $idx $nrow
  } [list $index $rows]

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]
................................................................................
  503  {x=1}                               t1x   1
  504  {x IS NOT NULL}                     t1x   2
  505  {+x IS NOT NULL}                     {} 500
  506  {upper(x) IS NOT NULL}               {} 500

} {
  # Verify that the expected index is used with the expected row count
if {$testid==50299} {breakpoint; set sqlite_where_trace 1}
  do_test analyze5-1.${testid}a {
    set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
    set idx {}
    regexp {INDEX (t1.) } $x all idx
    regexp {~([0-9]+) rows} $x all nrow
    list $idx $nrow
  } [list $index $rows]
if {$testid==50299} exit

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]







>
|
|
|
|
|
|
|







 







|
|
|
|
|
|
|
|
<







152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
...
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

214
215
216
217
218
219
220
  301  {y=1}                 t1y   26
  302  {y=0.1}               t1y    1

  400  {x IS NULL}           t1x  400

} {
  # Verify that the expected index is used with the expected row count
  # No longer valid due to an EXPLAIN QUERY PLAN output format change
  # do_test analyze5-1.${testid}a {
  #   set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
  #   set idx {}
  #   regexp {INDEX (t1.) } $x all idx
  #   regexp {~([0-9]+) rows} $x all nrow
  #   list $idx $nrow
  # } [list $index $rows]

  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]
................................................................................
  503  {x=1}                               t1x   1
  504  {x IS NOT NULL}                     t1x   2
  505  {+x IS NOT NULL}                     {} 500
  506  {upper(x) IS NOT NULL}               {} 500

} {
  # Verify that the expected index is used with the expected row count
  # No longer valid due to an EXPLAIN QUERY PLAN format change
  # do_test analyze5-1.${testid}a {
  #   set x [lindex [eqp "SELECT * FROM t1 WHERE $where"] 3]
  #   set idx {}
  #   regexp {INDEX (t1.) } $x all idx
  #   regexp {~([0-9]+) rows} $x all nrow
  #   list $idx $nrow
  # } [list $index $rows]


  # Verify that the same result is achieved regardless of whether or not
  # the index is used
  do_test analyze5-1.${testid}b {
    set w2 [string map {y +y z +z} $where]
    set a1 [db eval "SELECT rowid FROM t1 NOT INDEXED WHERE $w2\
                     ORDER BY +rowid"]

Changes to test/analyze6.test.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {0 0 1 {SCAN TABLE cat USING COVERING INDEX catx (~16 rows)} 0 1 0 {SEARCH TABLE ev USING COVERING INDEX evy (y=?) (~32 rows)}}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}
} {0 0 0 {SCAN TABLE cat USING COVERING INDEX catx (~16 rows)} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?) (~32 rows)}}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?) (~10 rows)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?) (~1 rows)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}}

finish_test







|






|













|


|


|






|


|


|









|


|


|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
# The lowest cost plan is to scan CAT and for each integer there, do a single
# lookup of the first corresponding entry in EV then read off the equal values
# in EV.  (Prior to the 2011-03-04 enhancement to where.c, this query would
# have used EV for the outer loop instead of CAT - which was about 3x slower.)
#
do_test analyze6-1.1 {
  eqp {SELECT count(*) FROM ev, cat WHERE x=y}
} {0 0 1 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 0 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}

# The same plan is chosen regardless of the order of the tables in the
# FROM clause.
#
do_test analyze6-1.2 {
  eqp {SELECT count(*) FROM cat, ev WHERE x=y}
} {0 0 0 {SCAN TABLE cat USING COVERING INDEX catx} 0 1 1 {SEARCH TABLE ev USING COVERING INDEX evy (y=?)}}


# Ticket [83ea97620bd3101645138b7b0e71c12c5498fe3d] 2011-03-30
# If ANALYZE is run on an empty table, make sure indices are used
# on the table.
#
do_test analyze6-2.1 {
  execsql {
    CREATE TABLE t201(x INTEGER PRIMARY KEY, y UNIQUE, z);
    CREATE INDEX t201z ON t201(z);
    ANALYZE;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.2 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.3 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.4 {
  execsql {
    INSERT INTO t201 VALUES(1,2,3);
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.5 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.6 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}
do_test analyze6-2.7 {
  execsql {
    INSERT INTO t201 VALUES(4,5,7);
    INSERT INTO t201 SELECT x+100, y+100, z+100 FROM t201;
    INSERT INTO t201 SELECT x+200, y+200, z+200 FROM t201;
    INSERT INTO t201 SELECT x+400, y+400, z+400 FROM t201;
    ANALYZE t201;
  }
  eqp {SELECT * FROM t201 WHERE z=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX t201z (z=?)}}
do_test analyze6-2.8 {
  eqp {SELECT * FROM t201 WHERE y=5}
} {0 0 0 {SEARCH TABLE t201 USING INDEX sqlite_autoindex_t201_1 (y=?)}}
do_test analyze6-2.9 {
  eqp {SELECT * FROM t201 WHERE x=5}
} {0 0 0 {SEARCH TABLE t201 USING INTEGER PRIMARY KEY (rowid=?)}}

finish_test

Changes to test/analyze7.test.

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~10 rows)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~10 rows)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~10 rows)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~10 rows)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~86 rows)}}
ifcapable stat3 {
  # If ENABLE_STAT3 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~57 rows)}}
} else {
  # If ENABLE_STAT3 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?) (~86 rows)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
ifcapable {!stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?) (~1 rows)}}

finish_test







|


|


|









|


|


|






|








|


|


|





|





|



|



|


|



|


33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    CREATE INDEX t1b ON t1(b);
    CREATE INDEX t1cd ON t1(c,d);
    CREATE VIRTUAL TABLE nums USING wholenumber;
    INSERT INTO t1 SELECT value, value, value/100, value FROM nums
                    WHERE value BETWEEN 1 AND 256;
    EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;
  }
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-1.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-1.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Run an analyze on one of the three indices.  Verify that this
# effects the row-count estimate on the one query that uses that
# one index.
#
do_test analyze7-2.0 {
  execsql {ANALYZE t1a;}
  db cache flush
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-2.2 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}

# Verify that since the query planner now things that t1a is more
# selective than t1b, it prefers to use t1a.
#
do_test analyze7-2.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}

# Run an analysis on another of the three indices.  Verify  that this
# new analysis works and does not disrupt the previous analysis.
#
do_test analyze7-3.0 {
  execsql {ANALYZE t1cd;}
  db cache flush;
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test analyze7-3.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b=123;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test analyze7-3.2.1 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=?;}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
ifcapable stat3 {
  # If ENABLE_STAT3 is defined, SQLite comes up with a different estimated
  # row count for (c=2) than it does for (c=?).
  do_test analyze7-3.2.2 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
} else {
  # If ENABLE_STAT3 is not defined, the expected row count for (c=2) is the
  # same as that for (c=?).
  do_test analyze7-3.2.3 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=2;}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=?)}}
}
do_test analyze7-3.3 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
ifcapable {!stat3} {
  do_test analyze7-3.4 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND b=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
  do_test analyze7-3.5 {
    execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=123 AND c=123}
  } {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
}
do_test analyze7-3.6 {
  execsql {EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE c=123 AND d=123 AND b=123}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1cd (c=? AND d=?)}}

finish_test

Changes to test/analyze8.test.

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~2 rows)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~1 rows)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) (~2 rows)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
#
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?) (~6 rows)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?) (~4 rows)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?) (~63 rows)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?) (~2 rows)}}

finish_test







|


|


|


|


|


|


|







|



|


|



|


57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# with a==100.  And so for those cases, choose the t1b index.
#
# Buf ro a==99 and a==101, there are far fewer rows so choose
# the t1a index.
#
do_test 1.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.2 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.3 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=55}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.4 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}}
do_test 1.5 {
  eqp {SELECT * FROM t1 WHERE a=99 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 1.6 {
  eqp {SELECT * FROM t1 WHERE a=101 AND b=56}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 2.1 {
  eqp {SELECT * FROM t1 WHERE a=100 AND b BETWEEN 50 AND 54}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}

# There are many more values of c between 0 and 100000 than there are
# between 800000 and 900000.  So t1c is more selective for the latter
# range.
#
do_test 3.1 {
  eqp {SELECT * FROM t1 WHERE b BETWEEN 50 AND 54 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>? AND b<?)}}
do_test 3.2 {
  eqp {SELECT * FROM t1
       WHERE b BETWEEN 50 AND 54 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}
do_test 3.3 {
  eqp {SELECT * FROM t1 WHERE a=100 AND c BETWEEN 0 AND 100000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1a (a=?)}}
do_test 3.4 {
  eqp {SELECT * FROM t1
       WHERE a=100 AND c BETWEEN 800000 AND 900000}
} {0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c>? AND c<?)}}

finish_test

Changes to test/async5.test.

62
63
64
65
66
67
68
69
sqlite3async_control halt idle
sqlite3async_start
sqlite3async_wait
sqlite3async_control halt never
sqlite3async_shutdown
set sqlite3async_trace 0
finish_test








<
62
63
64
65
66
67
68

sqlite3async_control halt idle
sqlite3async_start
sqlite3async_wait
sqlite3async_control halt never
sqlite3async_shutdown
set sqlite3async_trace 0
finish_test

Changes to test/autoindex1.test.

74
75
76
77
78
79
80



81
82
83
84
85
86
87
...
139
140
141
142
143
144
145



146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
...
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
} {35}
do_test autoindex1-202 {
  db status autoindex
} {0}
do_test autoindex1-210 {
  db eval {
    PRAGMA automatic_index=ON;



    SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
  }
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-211 {
  db status step
} {7}
do_test autoindex1-212 {
................................................................................
# Ticket [8011086c85c6c404014c947fcf3eb9f42b184a0d] from 2010-07-08
# Make sure automatic indices are not created for the RHS of an IN expression
# that is not a correlated subquery.
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);



  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) (~25 rows)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502 (~100000 rows)}
}
do_execsql_test autoindex1-501 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SCAN TABLE t501 (~500000 rows)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?) (~7 rows)}
}
do_execsql_test autoindex1-502 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502 (~100000 rows)}
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
................................................................................
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {
  1 0 0 {SCAN TABLE sheep AS s (~1000000 rows)} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?) (~2 rows)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?) (~1 rows)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index (~1000000 rows)} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?) (~8 rows)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5 (~100000 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {







>
>
>







 







>
>
>




|

|






|

|







|

|







 







|
|

|
|
|







|







74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
...
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
...
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
} {35}
do_test autoindex1-202 {
  db status autoindex
} {0}
do_test autoindex1-210 {
  db eval {
    PRAGMA automatic_index=ON;
    ANALYZE;
    UPDATE sqlite_stat1 SET stat='10000' WHERE tbl='t1';
    ANALYZE sqlite_master;
    SELECT b, (SELECT d FROM t2 WHERE c=a) FROM t1;
  }
} {11 911 22 922 33 933 44 944 55 955 66 966 77 977 88 988}
do_test autoindex1-211 {
  db status step
} {7}
do_test autoindex1-212 {
................................................................................
# Ticket [8011086c85c6c404014c947fcf3eb9f42b184a0d] from 2010-07-08
# Make sure automatic indices are not created for the RHS of an IN expression
# that is not a correlated subquery.
#
do_execsql_test autoindex1-500 {
  CREATE TABLE t501(a INTEGER PRIMARY KEY, b);
  CREATE TABLE t502(x INTEGER PRIMARY KEY, y);
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t501',null,'1000000');
  INSERT INTO sqlite_stat1(tbl,idx,stat) VALUES('t502',null,'1000');
  ANALYZE sqlite_master;
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=?);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}
do_execsql_test autoindex1-501 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SCAN TABLE t501} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SEARCH TABLE t502 USING AUTOMATIC COVERING INDEX (y=?)}
}
do_execsql_test autoindex1-502 {
  EXPLAIN QUERY PLAN
  SELECT b FROM t501
   WHERE t501.a=123
     AND t501.a IN (SELECT x FROM t502 WHERE y=t501.b);
} {
  0 0 0 {SEARCH TABLE t501 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t502}
}


# The following code checks a performance regression reported on the
# mailing list on 2010-10-19.  The problem is that the nRowEst field
# of ephermeral tables was not being initialized correctly and so no
# automatic index was being created for the emphemeral table when it was
................................................................................
           WHERE prev.flock_no = later.flock_no
           AND later.owner_change_date > prev.owner_change_date
           AND later.owner_change_date <= s.date_of_registration||' 00:00:00')
       ) y ON x.sheep_no = y.sheep_no
   WHERE y.sheep_no IS NULL
   ORDER BY x.registering_flock;
} {
  1 0 0 {SCAN TABLE sheep AS s} 
  1 1 1 {SEARCH TABLE flock_owner AS prev USING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date<?)} 
  1 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2} 
  2 0 0 {SEARCH TABLE flock_owner AS later USING COVERING INDEX sqlite_autoindex_flock_owner_1 (flock_no=? AND owner_change_date>? AND owner_change_date<?)} 
  0 0 0 {SCAN TABLE sheep AS x USING INDEX sheep_reg_flock_index} 
  0 1 1 {SEARCH SUBQUERY 1 AS y USING AUTOMATIC COVERING INDEX (sheep_no=?)}
}


do_execsql_test autoindex1-700 {
  CREATE TABLE t5(a, b, c);
  EXPLAIN QUERY PLAN SELECT a FROM t5 WHERE b=10 ORDER BY c;
} {
  0 0 0 {SCAN TABLE t5} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# The following checks a performance issue reported on the sqlite-dev
# mailing list on 2013-01-10
#
do_execsql_test autoindex1-800 {

Changes to test/backup4.test.

97
98
99
100
101
102
103
104
  db1 close
  file size test.db
} {1024}

do_test 3.4 { file size test.db2 } 0

finish_test








<
97
98
99
100
101
102
103

  db1 close
  file size test.db
} {1024}

do_test 3.4 { file size test.db2 } 0

finish_test

Changes to test/between.test.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58










59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
...
103
104
105
106
107
108
109
110
111
112
113
    CREATE INDEX i1zyx ON t1(z,y,x);
    COMMIT;
  }
} {}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword depending on whether or not any sorting
# is done.  Then it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return [concat $data $::sqlite_query_plan]










}

do_test between-1.1.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.1.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.2.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.2.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.3.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.3.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.4 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 {}}
do_test between-1.5.1 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.2 {
  queryplan {
................................................................................
    SELECT * FROM t1 WHERE 26 BETWEEN +y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.3 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND +z ORDER BY +w
  }
} {4 2 25 27 sort t1 {}}


finish_test







|






|
>
>
>
>
>
>
>
>
>
>











|









|









|




|







 







|



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
...
113
114
115
116
117
118
119
120
121
122
123
    CREATE INDEX i1zyx ON t1(z,y,x);
    COMMIT;
  }
} {}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword depending on whether or not any sorting
# is done.  Then it appends the names of the table and index used.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}

do_test between-1.1.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.1.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.2.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.2.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 5 AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.3.1 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 i1w}
do_test between-1.3.2 {
  queryplan {
    SELECT * FROM t1 WHERE +w BETWEEN 41-y AND 6 ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.4 {
  queryplan {
    SELECT * FROM t1 WHERE w BETWEEN 41-y AND 65-y ORDER BY +w
  }
} {5 2 36 38 6 2 49 51 sort t1 *}
do_test between-1.5.1 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.2 {
  queryplan {
................................................................................
    SELECT * FROM t1 WHERE 26 BETWEEN +y AND z ORDER BY +w
  }
} {4 2 25 27 sort t1 i1zyx}
do_test between-1.5.3 {
  queryplan {
    SELECT * FROM t1 WHERE 26 BETWEEN y AND +z ORDER BY +w
  }
} {4 2 25 27 sort t1 *}


finish_test

Changes to test/btreefault.test.

51
52
53
54
55
56
57
58
} -test {
  sqlite3_finalize $::STMT
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test








<
51
52
53
54
55
56
57

} -test {
  sqlite3_finalize $::STMT
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test

Changes to test/capi3e.test.

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# capi3e-1.*: Test sqlite3_open with various UTF8 filenames
# capi3e-2.*: Test sqlite3_open16 with various UTF8 filenames
# capi3e-3.*: Test ATTACH with various UTF8 filenames

db close

# here's the list of file names we're testing
set names {t 1 t. 1. t.d 1.d t-1 1-1 t.db .db .db .db .db .db}

set i 0
foreach name $names {
  incr i
  do_test capi3e-1.1.$i {
    set db2 [sqlite3_open $name {}]
    sqlite3_errcode $db2







|







56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# capi3e-1.*: Test sqlite3_open with various UTF8 filenames
# capi3e-2.*: Test sqlite3_open16 with various UTF8 filenames
# capi3e-3.*: Test ATTACH with various UTF8 filenames

db close

# here's the list of file names we're testing
set names {t 1 t. 1. t.d 1.d t-1 1-1 t.db ä.db ë.db ö.db ü.db ÿ.db}

set i 0
foreach name $names {
  incr i
  do_test capi3e-1.1.$i {
    set db2 [sqlite3_open $name {}]
    sqlite3_errcode $db2

Changes to test/close.test.

72
73
74
75
76
77
78
79
} {1 {(21) library routine called out of sequence}}

do_test 1.4.4 {
  sqlite3_finalize $STMT
} {SQLITE_OK}

finish_test








<
72
73
74
75
76
77
78

} {1 {(21) library routine called out of sequence}}

do_test 1.4.4 {
  sqlite3_finalize $STMT
} {SQLITE_OK}

finish_test

Changes to test/collate2.test.

632
633
634
635
636
637
638
639

640
641
642
643
644
645

646
647
648
649
650
651
652
} {aa}

# Test that when one side has a default collation type and the other
# does not, the collation type is used.
do_test collate2-4.3 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t1.b = collate2t3.b||'';

  }
} {aa aA Aa AA}
do_test collate2-4.4 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t3.b||'' = collate2t1.b;

  }
} {aa aA Aa AA}

do_test collate2-4.5 {
  execsql {
    DROP TABLE collate2t3;
  }







|
>





|
>







632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
} {aa}

# Test that when one side has a default collation type and the other
# does not, the collation type is used.
do_test collate2-4.3 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t1.b = collate2t3.b||''
      ORDER BY +collate2t1.a DESC;
  }
} {aa aA Aa AA}
do_test collate2-4.4 {
  execsql {
    SELECT collate2t1.a FROM collate2t1, collate2t3 
      WHERE collate2t3.b||'' = collate2t1.b
      ORDER BY +collate2t1.a DESC;
  }
} {aa aA Aa AA}

do_test collate2-4.5 {
  execsql {
    DROP TABLE collate2t3;
  }

Added test/contrib01.test.





















































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# 2013-06-05
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.
#
# This file contains test cases that were contributed on the sqlite-users
# mailing list on 2013-06-05 by Mi Chen at mi.chen@echostar.com.
#
# At the time it was contributed, this test failed on trunk, but 
# worked on the NGQP.

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Build some test data
#
do_test contrib01-1.0 {
  db eval {
    CREATE TABLE T1 (B INTEGER NOT NULL,
                     C INTEGER NOT NULL,
                     D INTEGER NOT NULL,
                     E INTEGER NOT NULL,
                     F INTEGER NOT NULL,
                     G INTEGER NOT NULL,
                     H INTEGER NOT NULL,
                     PRIMARY KEY (B, C, D));
    
    CREATE TABLE T2 (A INTEGER NOT NULL,
                     B INTEGER NOT NULL,
                     C INTEGER NOT NULL,
                     PRIMARY KEY (A, B, C));
    
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15527);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15560);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15561);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15563);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15564);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15566);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15567);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15569);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15612);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15613);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15638);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15681);
    INSERT INTO T2(A, B, C) VALUES(702118,16183,15682);
    
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15527,6,0,5,5,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15560,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15561,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15563,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15564,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15566,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15567,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15569,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15612,6,0,5,5,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15613,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15638,6,0,5,2,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15681,6,0,5,5,0);
    INSERT INTO T1(B, C, D, E, F, G, H) VALUES(16183,15682,6,0,5,2,0);
  }
} {}
do_test contrib01-1.1 {
  db eval {
    SELECT T2.A, T2.B, T1.D, T1.E, T1.F, T1.G, T1.H, MAX(T1.C), '^'
      FROM T1, T2
     WHERE T1.B = T2.B
       AND T1.C = T2.C
     GROUP BY T2.A, T2.B, T1.D, T1.E, T1.F, T1.G, T1.H
     ORDER BY +max(t1.c);
  }
} {702118 16183 6 0 5 5 0 15681 ^ 702118 16183 6 0 5 2 0 15682 ^}
do_test contrib01-1.2 {
  db eval {
   SELECT T2.A, T2.B, T1.D, T1.E, T1.F, T1.G, T1.H, MAX(T1.C), '^'
     FROM T1, T2
    WHERE T1.B = T2.B
      AND T1.C = T2.C
    GROUP BY T2.A, T2.B, T1.F, T1.D, T1.E, T1.G, T1.H
    ORDER BY +max(t1.c);
  }
} {702118 16183 6 0 5 5 0 15681 ^ 702118 16183 6 0 5 2 0 15682 ^}

finish_test

Changes to test/corruptF.test.

143
144
145
146
147
148
149
150
      set res ""
    }
    set res
  } {}
}

finish_test








<
143
144
145
146
147
148
149

      set res ""
    }
    set res
  } {}
}

finish_test

Changes to test/descidx1.test.

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  do_test descidx1-4.2 {
    execsql {
      SELECT d FROM t2 ORDER BY a;
    }
  } {1.0 2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.3 {
    execsql {
      SELECT d FROM t2 WHERE a>=2;
    }
  } {2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.4 {
    execsql {
      SELECT d FROM t2 WHERE a>2;
    }
  } {3.0 4.0 5.0 6.0}
  do_test descidx1-4.5 {
    execsql {
      SELECT d FROM t2 WHERE a=2 AND b>'two';
    }
  } {2.2}







|




|







193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  do_test descidx1-4.2 {
    execsql {
      SELECT d FROM t2 ORDER BY a;
    }
  } {1.0 2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.3 {
    execsql {
      SELECT d FROM t2 WHERE a>=2 ORDER BY a;
    }
  } {2.2 2.0 2.1 2.3 3.0 4.0 5.0 6.0}
  do_test descidx1-4.4 {
    execsql {
      SELECT d FROM t2 WHERE a>2 ORDER BY a;
    }
  } {3.0 4.0 5.0 6.0}
  do_test descidx1-4.5 {
    execsql {
      SELECT d FROM t2 WHERE a=2 AND b>'two';
    }
  } {2.2}

Changes to test/distinct.test.

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {a b c A B C}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1"                                          {hash}  {b B}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {b}
} {
  do_execsql_test    2.$tn.1 "SELECT DISTINCT $sql" $res
  do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables
}







|







161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

foreach {tn sql temptables res} {
  1   "a, b FROM t1"                                       {}      {A B a b}
  2   "b, a FROM t1"                                       {}      {B A b a}
  3   "a, b, c FROM t1"                                    {hash}  {a b c A B C}
  4   "a, b, c FROM t1 ORDER BY a, b, c"                   {btree} {A B C a b c}
  5   "b FROM t1 WHERE a = 'a'"                            {}      {b}
  6   "b FROM t1 ORDER BY +b COLLATE binary"          {btree hash} {B b}
  7   "a FROM t1"                                          {}      {A a}
  8   "b COLLATE nocase FROM t1"                           {}      {b}
  9   "b COLLATE nocase FROM t1 ORDER BY b COLLATE nocase" {}      {b}
} {
  do_execsql_test    2.$tn.1 "SELECT DISTINCT $sql" $res
  do_temptables_test 2.$tn.2 "SELECT DISTINCT $sql" $temptables
}

Changes to test/e_createtable.test.

1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?) (~1 rows)}}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1 (~1000000 rows)}}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?) (~2 rows)}}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 







|


|


|







1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
#
do_execsql_test 4.10.0 {
  CREATE TABLE t1(a, b PRIMARY KEY);
  CREATE TABLE t2(a, b, c, UNIQUE(b, c));
}
do_createtable_tests 4.10 {
  1    "EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 5" 
       {0 0 0 {SEARCH TABLE t1 USING INDEX sqlite_autoindex_t1_1 (b=?)}}

  2    "EXPLAIN QUERY PLAN SELECT * FROM t2 ORDER BY b, c"
       {0 0 0 {SCAN TABLE t2 USING INDEX sqlite_autoindex_t2_1}}

  3    "EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE b=10 AND c>10"
       {0 0 0 {SEARCH TABLE t2 USING INDEX sqlite_autoindex_t2_1 (b=? AND c>?)}}
}

# EVIDENCE-OF: R-45493-35653 A CHECK constraint may be attached to a
# column definition or specified as a table constraint. In practice it
# makes no difference.
#
#   All the tests that deal with CHECK constraints below (4.11.* and 

Changes to test/e_fkey.test.

970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
....
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
  }
} {}
do_execsql_test e_fkey-25.2 {
  PRAGMA foreign_keys = OFF;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
  EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SCAN TABLE track (~100000 rows)}
}
do_execsql_test e_fkey-25.3 {
  PRAGMA foreign_keys = ON;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SCAN TABLE track (~100000 rows)}
}
do_test e_fkey-25.4 {
  execsql {
    INSERT INTO artist VALUES(5, 'artist 5');
    INSERT INTO artist VALUES(6, 'artist 6');
    INSERT INTO artist VALUES(7, 'artist 7');
    INSERT INTO track VALUES(1, 'track 1', 5);
................................................................................
} {}
do_test e_fkey-27.2 {
  eqp { INSERT INTO artist VALUES(?, ?) }
} {}
do_execsql_test e_fkey-27.3 {
  EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
}
do_execsql_test e_fkey-27.4 {
  EXPLAIN QUERY PLAN DELETE FROM artist
} {
  0 0 0 {SCAN TABLE artist (~1000000 rows)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?) (~10 rows)}
}


###########################################################################
### SECTION 4.1: Composite Foreign Key Constraints
###########################################################################








|
|





|
|







 







|
|
|




|
|







970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
....
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
  }
} {}
do_execsql_test e_fkey-25.2 {
  PRAGMA foreign_keys = OFF;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
  EXPLAIN QUERY PLAN SELECT rowid FROM track WHERE trackartist = ?;
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SCAN TABLE track}
}
do_execsql_test e_fkey-25.3 {
  PRAGMA foreign_keys = ON;
  EXPLAIN QUERY PLAN DELETE FROM artist WHERE 1;
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SCAN TABLE track}
}
do_test e_fkey-25.4 {
  execsql {
    INSERT INTO artist VALUES(5, 'artist 5');
    INSERT INTO artist VALUES(6, 'artist 6');
    INSERT INTO artist VALUES(7, 'artist 7');
    INSERT INTO track VALUES(1, 'track 1', 5);
................................................................................
} {}
do_test e_fkey-27.2 {
  eqp { INSERT INTO artist VALUES(?, ?) }
} {}
do_execsql_test e_fkey-27.3 {
  EXPLAIN QUERY PLAN UPDATE artist SET artistid = ?, artistname = ?
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}
do_execsql_test e_fkey-27.4 {
  EXPLAIN QUERY PLAN DELETE FROM artist
} {
  0 0 0 {SCAN TABLE artist} 
  0 0 0 {SEARCH TABLE track USING COVERING INDEX trackindex (trackartist=?)}
}


###########################################################################
### SECTION 4.1: Composite Foreign Key Constraints
###########################################################################

Changes to test/eqp.test.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399

400
401
402
403
404
405
406
407
408
409

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
...
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
...
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
...
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
  CREATE TABLE t2(a, b);
  CREATE TABLE t3(a, b);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 1 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)} 
  0 0 1 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~10 rows)} 
  0 1 0 {SCAN TABLE t2 (~1000000 rows)}
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 0 {SCAN TABLE t2 (~1000000 rows)}
  0 1 1 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)} 
  0 1 1 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~10 rows)} 
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)}
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {
  0 0 0 {SCAN TABLE t3 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {
  0 0 1 {SCAN SUBQUERY 1 (~1 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  0 0 1 {SCAN SUBQUERY 1 (~2 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3 (~1000000 rows)}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (EXCEPT)}
  0 0 1 {SCAN SUBQUERY 1 (~17 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3 (~1000000 rows)}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (INTERSECT)}
  0 0 1 {SCAN SUBQUERY 1 (~1 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3 (~1000000 rows)}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION ALL)}
  0 0 1 {SCAN SUBQUERY 1 (~17 rows)}
  0 1 0 {SCAN TABLE t3 (~1000000 rows)}
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
................................................................................
  CREATE TABLE t1(x, y);

  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 1 1 {SCAN TABLE t2 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 1 1 {SCAN TABLE t2 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {
  0 0 1 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
  0 1 0 {SCAN TABLE t1 (~1000000 rows)}
}

det 2.3.1 "SELECT max(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1 (~1 rows)}
}
det 2.3.2 "SELECT min(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1 (~1 rows)}
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {
  0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub (~1000000 rows)}
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub (~1000000 rows)}
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub (~1000000 rows)}
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)}
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {SCAN SUBQUERY 1 (~10 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1 (~1000000 rows)} 
  0 0 0 {SCAN SUBQUERY 1 AS x1 (~10 rows)} 
  0 1 1 {SCAN SUBQUERY 2 AS x2 (~10 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {
  0 0 0 {SCAN TABLE t1 (~100000 rows)} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2 (~1000000 rows)}
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1 (~500000 rows)} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2 (~500000 rows)}
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1 (~500000 rows)} 
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2 (~500000 rows)}
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {
  1 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} 
}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {
  2 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  4 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 USING TEMP B-TREE (UNION)}
}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {
  2 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1 (~1000000 rows)} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION)} 
  4 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  4 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 (UNION)}
}

#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# EVIDENCE-OF: R-64208-08323 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1; 0|0|0|SCAN TABLE t1 (~100000 rows)
do_execsql_test 5.1.0 { CREATE TABLE t1(a, b) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1 (~100000 rows)}
}

# EVIDENCE-OF: R-09022-44606 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)}
}

# EVIDENCE-OF: R-62228-34103 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)}
}

# EVIDENCE-OF: R-22253-05302 sqlite> EXPLAIN QUERY PLAN SELECT t1.*,
# t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2; 0|0|0|SEARCH TABLE t1
# USING COVERING INDEX i2 (a=? AND b>?) (~3 rows) 0|1|1|SCAN TABLE t2
# (~1000000 rows)

do_execsql_test 5.4.0 {CREATE TABLE t2(c, d)}
det 5.4.1 "SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~2 rows)}
  0 1 1 {SCAN TABLE t2 (~1000000 rows)}
}

# EVIDENCE-OF: R-21040-07025 sqlite> EXPLAIN QUERY PLAN SELECT t1.*,
# t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2; 0|0|1|SEARCH TABLE t1
# USING COVERING INDEX i2 (a=? AND b>?) (~3 rows) 0|1|0|SCAN TABLE t2
# (~1000000 rows)

det 5.5 "SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?) (~2 rows)}
  0 1 0 {SCAN TABLE t2 (~1000000 rows)}
}

# EVIDENCE-OF: R-39007-61103 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?) (~10 rows)
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT * FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?) (~10 rows)}
}

# EVIDENCE-OF: R-33025-54904 sqlite> EXPLAIN QUERY PLAN SELECT c, d
# FROM t2 ORDER BY c; 0|0|0|SCAN TABLE t2 (~1000000 rows) 0|0|0|USE TEMP
# B-TREE FOR ORDER BY
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 (~1000000 rows)}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# EVIDENCE-OF: R-38854-22809 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4 (~1000000 rows)
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4 (~1000000 rows)}
}

# EVIDENCE-OF: R-29884-43993 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2 (~1000000 rows) 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2 2|0|0|SEARCH TABLE t1 USING
# INDEX i3 (b=?) (~10 rows)
det 5.9 {
  SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4 (~1000000 rows)}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?) (~10 rows)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?) (~10 rows)}
}

# EVIDENCE-OF: R-17911-16445 sqlite> EXPLAIN QUERY PLAN SELECT
# count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows) 0|0|0|SCAN
# SUBQUERY 1 (~1000000 rows) 0|0|0|USE TEMP B-TREE FOR GROUP BY
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)}
  0 0 0 {SCAN SUBQUERY 1 (~100 rows)}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# EVIDENCE-OF: R-18544-33103 sqlite> EXPLAIN QUERY PLAN SELECT * FROM
# (SELECT * FROM t2 WHERE c=1), t1; 0|0|0|SEARCH TABLE t2 USING INDEX i4
# (c=?) (~10 rows) 0|1|1|SCAN TABLE t1 (~1000000 rows)
det 5.11 "SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?) (~10 rows)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)}
}

# EVIDENCE-OF: R-40701-42164 sqlite> EXPLAIN QUERY PLAN SELECT a FROM
# t1 UNION SELECT c FROM t2; 1|0|0|SCAN TABLE t1 (~1000000 rows)
# 2|0|0|SCAN TABLE t2 (~1000000 rows) 0|0|0|COMPOUND SUBQUERIES 1 AND 2
# USING TEMP B-TREE (UNION)
det 5.12 "SELECT a FROM t1 UNION SELECT c FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4 (~1000000 rows)}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# EVIDENCE-OF: R-61538-24748 sqlite> EXPLAIN QUERY PLAN SELECT a FROM
# t1 EXCEPT SELECT d FROM t2 ORDER BY 1; 1|0|0|SCAN TABLE t1 USING
# COVERING INDEX i2 (~1000000 rows) 2|0|0|SCAN TABLE t2 (~1000000 rows)
# 2|0|0|USE TEMP B-TREE FOR ORDER BY 0|0|0|COMPOUND SUBQUERIES 1 AND 2
# (EXCEPT)
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)}
  2 0 0 {SCAN TABLE t2 (~1000000 rows)}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


#-------------------------------------------------------------------------
# The following tests - eqp-6.* - test that the example C code on 
................................................................................
    set data
  }] [list $res]
}

do_peqp_test 6.1 {
  SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1
} [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2 (~1000000 rows)
2 0 0 SCAN TABLE t2 (~1000000 rows)
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]

#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
................................................................................
do_execsql_test 7.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)}
}

det 7.2 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1(~1000000 rows)}
}

do_execsql_test 7.3 {
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(3, 4);

  INSERT INTO t2 VALUES(1, 2);
................................................................................
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1 (~2 rows)}
}

det 7.5 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1(~3 rows)}
}


finish_test







|
|
|




|
|
|




|




|





|




|







|
|





|
|




|

|
|




|

|
|





|

|
|







 







|





|




|



|
|



|
|




|
|



|


|


|



|










|

|




|

|




|

|





|

|





|

|








|

|
|
|






|

|




|

|




|

|








|
|





|

|






|

|






|

|






|

|







|

|





|

|






|

|






|

|







|
|






|
|

|





|

|

|











|


|




|


|




|


|




|
<
>


|
|




|
<
>

|
|




|
|


|
|



|


|





|


|




|
|

|



|

|

|




|
|



|
|





|

|
|



|
|


|
|





|



|
|







 







|
|







 







|



|







 







|



|




39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
...
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

399
400
401
402
403
404
405
406
407
408

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
...
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
...
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
...
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
  CREATE TABLE t2(a, b);
  CREATE TABLE t3(a, b);
}

do_eqp_test 1.2 {
  SELECT * FROM t2, t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 0 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
  0 1 0 {SCAN TABLE t2}
}
do_eqp_test 1.3 {
  SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=1 OR t1.b=2;
} {
  0 0 0 {SCAN TABLE t2}
  0 1 1 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
  0 1 1 {SEARCH TABLE t1 USING INDEX i2 (b=?)} 
}
do_eqp_test 1.3 {
  SELECT a FROM t1 ORDER BY a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
}
do_eqp_test 1.4 {
  SELECT a FROM t1 ORDER BY +a
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 1.5 {
  SELECT a FROM t1 WHERE a=4
} {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}
}
do_eqp_test 1.6 {
  SELECT DISTINCT count(*) FROM t3 GROUP BY a;
} {
  0 0 0 {SCAN TABLE t3}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}

do_eqp_test 1.7 {
  SELECT * FROM t3 JOIN (SELECT 1)
} {
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.8 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION SELECT 2)
} {
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.9 {
  SELECT * FROM t3 JOIN (SELECT 1 EXCEPT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (EXCEPT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}
do_eqp_test 1.10 {
  SELECT * FROM t3 JOIN (SELECT 1 INTERSECT SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (INTERSECT)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

do_eqp_test 1.11 {
  SELECT * FROM t3 JOIN (SELECT 1 UNION ALL SELECT a FROM t3 LIMIT 17)
} {
  3 0 0 {SCAN TABLE t3}
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION ALL)}
  0 0 1 {SCAN SUBQUERY 1}
  0 1 0 {SCAN TABLE t3}
}

#-------------------------------------------------------------------------
# Test cases eqp-2.* - tests for single select statements.
#
drop_all_tables
do_execsql_test 2.1 {
................................................................................
  CREATE TABLE t1(x, y);

  CREATE TABLE t2(x, y);
  CREATE INDEX t2i1 ON t2(x);
}

det 2.2.1 "SELECT DISTINCT min(x), max(x) FROM t1 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.2 "SELECT DISTINCT min(x), max(x) FROM t2 GROUP BY x ORDER BY 1" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.3 "SELECT DISTINCT * FROM t1" {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.4 "SELECT DISTINCT * FROM t1, t2" {
  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
}
det 2.2.5 "SELECT DISTINCT * FROM t1, t2 ORDER BY t1.x" {
  0 0 0 {SCAN TABLE t1}
  0 1 1 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR DISTINCT}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 2.2.6 "SELECT DISTINCT t2.x FROM t1, t2 ORDER BY t2.x" {
  0 0 1 {SCAN TABLE t2 USING COVERING INDEX t2i1}
  0 1 0 {SCAN TABLE t1}
}

det 2.3.1 "SELECT max(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.2 "SELECT min(x) FROM t2" {
  0 0 0 {SEARCH TABLE t2 USING COVERING INDEX t2i1}
}
det 2.3.3 "SELECT min(x), max(x) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 2.4.1 "SELECT * FROM t1 WHERE rowid=?" {
  0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)}
}



#-------------------------------------------------------------------------
# Test cases eqp-3.* - tests for select statements that use sub-selects.
#
do_eqp_test 3.1.1 {
  SELECT (SELECT x FROM t1 AS sub) FROM t1;
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.2 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub);
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
}
do_eqp_test 3.1.3 {
  SELECT * FROM t1 WHERE (SELECT x FROM t1 AS sub ORDER BY y);
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t1 AS sub}
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_eqp_test 3.1.4 {
  SELECT * FROM t1 WHERE (SELECT x FROM t2 ORDER BY x);
} {
  0 0 0 {SCAN TABLE t1}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1}
}

det 3.2.1 {
  SELECT * FROM (SELECT * FROM t1 ORDER BY x LIMIT 10) ORDER BY y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {SCAN SUBQUERY 1} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
det 3.2.2 {
  SELECT * FROM 
    (SELECT * FROM t1 ORDER BY x LIMIT 10) AS x1,
    (SELECT * FROM t2 ORDER BY x LIMIT 10) AS x2
  ORDER BY x2.y LIMIT 5
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {SCAN SUBQUERY 1 AS x1} 
  0 1 1 {SCAN SUBQUERY 2 AS x2} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

det 3.3.1 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2)
} {
  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.2 {
  SELECT * FROM t1 WHERE y IN (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED LIST SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}
det 3.3.3 {
  SELECT * FROM t1 WHERE EXISTS (SELECT y FROM t2 WHERE t1.x!=t2.x)
} {
  0 0 0 {SCAN TABLE t1} 
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 1} 
  1 0 0 {SCAN TABLE t2}
}

#-------------------------------------------------------------------------
# Test cases eqp-4.* - tests for composite select statements.
#
do_eqp_test 4.1.1 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2
} {
  1 0 0 {SCAN TABLE t1} 
  2 0 0 {SCAN TABLE t2} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.1.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.1.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.1.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 2
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.2.2 {
  SELECT * FROM t1 UNION ALL SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2 USING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION ALL)} 
}
do_eqp_test 4.2.3 {
  SELECT * FROM t1 UNION SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (UNION)} 
}
do_eqp_test 4.2.4 {
  SELECT * FROM t1 INTERSECT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (INTERSECT)} 
}
do_eqp_test 4.2.5 {
  SELECT * FROM t1 EXCEPT SELECT * FROM t2 ORDER BY 1
} {
  1 0 0 {SCAN TABLE t1} 
  1 0 0 {USE TEMP B-TREE FOR ORDER BY}
  2 0 0 {SCAN TABLE t2} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)} 
}

do_eqp_test 4.3.1 {
  SELECT x FROM t1 UNION SELECT x FROM t2
} {
  1 0 0 {SCAN TABLE t1} 
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)} 
}

do_eqp_test 4.3.2 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1
} {
  2 0 0 {SCAN TABLE t1} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 USING TEMP B-TREE (UNION)}
  4 0 0 {SCAN TABLE t1} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 USING TEMP B-TREE (UNION)}
}
do_eqp_test 4.3.3 {
  SELECT x FROM t1 UNION SELECT x FROM t2 UNION SELECT x FROM t1 ORDER BY 1
} {
  2 0 0 {SCAN TABLE t1} 
  2 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  3 0 0 {SCAN TABLE t2 USING COVERING INDEX t2i1} 
  1 0 0 {COMPOUND SUBQUERIES 2 AND 3 (UNION)} 
  4 0 0 {SCAN TABLE t1} 
  4 0 0 {USE TEMP B-TREE FOR ORDER BY} 
  0 0 0 {COMPOUND SUBQUERIES 1 AND 4 (UNION)}
}

#-------------------------------------------------------------------------
# This next block of tests verifies that the examples on the 
# lang_explain.html page are correct.
#
drop_all_tables

# EVIDENCE-OF: R-64208-08323 sqlite> EXPLAIN QUERY PLAN SELECT a, b
# FROM t1 WHERE a=1; 0|0|0|SCAN TABLE t1
do_execsql_test 5.1.0 { CREATE TABLE t1(a, b) }
det 5.1.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SCAN TABLE t1}
}

# EVIDENCE-OF: R-09022-44606 sqlite> CREATE INDEX i1 ON t1(a);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING INDEX i1 (a=?)
do_execsql_test 5.2.0 { CREATE INDEX i1 ON t1(a) }
det 5.2.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}

# EVIDENCE-OF: R-62228-34103 sqlite> CREATE INDEX i2 ON t1(a, b);
# sqlite> EXPLAIN QUERY PLAN SELECT a, b FROM t1 WHERE a=1;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
do_execsql_test 5.3.0 { CREATE INDEX i2 ON t1(a, b) }
det 5.3.1 "SELECT a, b FROM t1 WHERE a=1" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
}

# EVIDENCE-OF: R-22253-05302 sqlite> EXPLAIN QUERY PLAN SELECT t1.*,
# t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2; 0|0|0|SEARCH TABLE t1
# USING COVERING INDEX i2 (a=? AND b>?) 0|1|1|SCAN TABLE t2

#
do_execsql_test 5.4.0 {CREATE TABLE t2(c, d)}
det 5.4.1 "SELECT t1.*, t2.* FROM t1, t2 WHERE t1.a=1 AND t1.b>2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 1 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-21040-07025 sqlite> EXPLAIN QUERY PLAN SELECT t1.*,
# t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2; 0|0|1|SEARCH TABLE t1
# USING COVERING INDEX i2 (a=? AND b>?) 0|1|0|SCAN TABLE t2

#
det 5.5 "SELECT t1.*, t2.* FROM t2, t1 WHERE t1.a=1 AND t1.b>2" {
  0 0 1 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=? AND b>?)}
  0 1 0 {SCAN TABLE t2}
}

# EVIDENCE-OF: R-39007-61103 sqlite> CREATE INDEX i3 ON t1(b);
# sqlite> EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE a=1 OR b=2;
# 0|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|SEARCH TABLE t1 USING INDEX i3 (b=?)
do_execsql_test 5.5.0 {CREATE INDEX i3 ON t1(b)}
det 5.6.1 "SELECT * FROM t1 WHERE a=1 OR b=2" {
  0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-33025-54904 sqlite> EXPLAIN QUERY PLAN SELECT c, d
# FROM t2 ORDER BY c; 0|0|0|SCAN TABLE t2 0|0|0|USE TEMP
# B-TREE FOR ORDER BY
det 5.7 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2}
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# EVIDENCE-OF: R-38854-22809 sqlite> CREATE INDEX i4 ON t2(c);
# sqlite> EXPLAIN QUERY PLAN SELECT c, d FROM t2 ORDER BY c;
# 0|0|0|SCAN TABLE t2 USING INDEX i4
do_execsql_test 5.8.0 {CREATE INDEX i4 ON t2(c)}
det 5.8.1 "SELECT c, d FROM t2 ORDER BY c" {
  0 0 0 {SCAN TABLE t2 USING INDEX i4}
}

# EVIDENCE-OF: R-29884-43993 sqlite> EXPLAIN QUERY PLAN SELECT
# (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2;
# 0|0|0|SCAN TABLE t2 0|0|0|EXECUTE SCALAR SUBQUERY 1
# 1|0|0|SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)
# 0|0|0|EXECUTE CORRELATED SCALAR SUBQUERY 2 2|0|0|SEARCH TABLE t1 USING
# INDEX i3 (b=?)
det 5.9 {
  SELECT (SELECT b FROM t1 WHERE a=0), (SELECT a FROM t1 WHERE b=t2.c) FROM t2
} {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {EXECUTE SCALAR SUBQUERY 1}
  1 0 0 {SEARCH TABLE t1 USING COVERING INDEX i2 (a=?)}
  0 0 0 {EXECUTE CORRELATED SCALAR SUBQUERY 2}
  2 0 0 {SEARCH TABLE t1 USING INDEX i3 (b=?)}
}

# EVIDENCE-OF: R-17911-16445 sqlite> EXPLAIN QUERY PLAN SELECT
# count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x;
# 1|0|0|SCAN TABLE t1 USING COVERING INDEX i2 0|0|0|SCAN
# SUBQUERY 1 0|0|0|USE TEMP B-TREE FOR GROUP BY
det 5.10 {
  SELECT count(*) FROM (SELECT max(b) AS x FROM t1 GROUP BY a) GROUP BY x
} {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  0 0 0 {SCAN SUBQUERY 1}
  0 0 0 {USE TEMP B-TREE FOR GROUP BY}
}

# EVIDENCE-OF: R-18544-33103 sqlite> EXPLAIN QUERY PLAN SELECT * FROM
# (SELECT * FROM t2 WHERE c=1), t1; 0|0|0|SEARCH TABLE t2 USING INDEX i4
# (c=?) 0|1|1|SCAN TABLE t1
det 5.11 "SELECT * FROM (SELECT * FROM t2 WHERE c=1), t1" {
  0 0 0 {SEARCH TABLE t2 USING INDEX i4 (c=?)}
  0 1 1 {SCAN TABLE t1 USING COVERING INDEX i2}
}

# EVIDENCE-OF: R-40701-42164 sqlite> EXPLAIN QUERY PLAN SELECT a FROM
# t1 UNION SELECT c FROM t2; 1|0|0|SCAN TABLE t1
# 2|0|0|SCAN TABLE t2 0|0|0|COMPOUND SUBQUERIES 1 AND 2
# USING TEMP B-TREE (UNION)
det 5.12 "SELECT a FROM t1 UNION SELECT c FROM t2" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2 USING COVERING INDEX i4}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 USING TEMP B-TREE (UNION)}
}

# EVIDENCE-OF: R-61538-24748 sqlite> EXPLAIN QUERY PLAN SELECT a FROM
# t1 EXCEPT SELECT d FROM t2 ORDER BY 1; 1|0|0|SCAN TABLE t1 USING
# COVERING INDEX i2 2|0|0|SCAN TABLE t2
# 2|0|0|USE TEMP B-TREE FOR ORDER BY 0|0|0|COMPOUND SUBQUERIES 1 AND 2
# (EXCEPT)
det 5.13 "SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1" {
  1 0 0 {SCAN TABLE t1 USING COVERING INDEX i2}
  2 0 0 {SCAN TABLE t2}
  2 0 0 {USE TEMP B-TREE FOR ORDER BY}
  0 0 0 {COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)}
}


#-------------------------------------------------------------------------
# The following tests - eqp-6.* - test that the example C code on 
................................................................................
    set data
  }] [list $res]
}

do_peqp_test 6.1 {
  SELECT a FROM t1 EXCEPT SELECT d FROM t2 ORDER BY 1
} [string trimleft {
1 0 0 SCAN TABLE t1 USING COVERING INDEX i2
2 0 0 SCAN TABLE t2
2 0 0 USE TEMP B-TREE FOR ORDER BY
0 0 0 COMPOUND SUBQUERIES 1 AND 2 (EXCEPT)
}]

#-------------------------------------------------------------------------
# The following tests - eqp-7.* - test that queries that use the OP_Count
# optimization return something sensible with EQP.
................................................................................
do_execsql_test 7.0 {
  CREATE TABLE t1(a, b);
  CREATE TABLE t2(a, b);
  CREATE INDEX i1 ON t2(a);
}

det 7.1 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1}
}

det 7.2 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}

do_execsql_test 7.3 {
  INSERT INTO t1 VALUES(1, 2);
  INSERT INTO t1 VALUES(3, 4);

  INSERT INTO t2 VALUES(1, 2);
................................................................................
  ANALYZE;
}

db close
sqlite3 db test.db

det 7.4 "SELECT count(*) FROM t1" {
  0 0 0 {SCAN TABLE t1}
}

det 7.5 "SELECT count(*) FROM t2" {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX i1}
}


finish_test

Changes to test/exclusive.test.

502
503
504
505
506
507
508
509

do_execsql_test exclusive-6.5 {
  PRAGMA locking_mode = EXCLUSIVE;
  SELECT * FROM sqlite_master;
} {exclusive}

finish_test








<
502
503
504
505
506
507
508


do_execsql_test exclusive-6.5 {
  PRAGMA locking_mode = EXCLUSIVE;
  SELECT * FROM sqlite_master;
} {exclusive}

finish_test

Changes to test/fallocate.test.

139
140
141
142
143
144
145
146
    execsql { PRAGMA wal_checkpoint }
    file size test.db
  } [expr 32*1024]
}


finish_test








<
139
140
141
142
143
144
145

    execsql { PRAGMA wal_checkpoint }
    file size test.db
  } [expr 32*1024]
}


finish_test

Changes to test/filefmt.test.

244
245
246
247
248
249
250
251
do_test filefmt-4.4 { 
  sqlite3 db2 bak.db
  db2 eval { PRAGMA integrity_check }
} {ok}
db2 close

finish_test








<
244
245
246
247
248
249
250

do_test filefmt-4.4 { 
  sqlite3 db2 bak.db
  db2 eval { PRAGMA integrity_check }
} {ok}
db2 close

finish_test

Changes to test/fts3aa.test.

220
221
222
223
224
225
226
227
} {}
do_catchsql_test fts3aa-7.5 {
  CREATE VIRTUAL TABLE t4 USING fts4(tokenize=simple, tokenize=simple);
} {1 {unrecognized parameter: tokenize=simple}}


finish_test








<
220
221
222
223
224
225
226

} {}
do_catchsql_test fts3aa-7.5 {
  CREATE VIRTUAL TABLE t4 USING fts4(tokenize=simple, tokenize=simple);
} {1 {unrecognized parameter: tokenize=simple}}


finish_test

Changes to test/fts3ao.test.

216
217
218
219
220
221
222
223
do_execsql_test 5.2 {
  ALTER TABLE t7 RENAME TO t8;
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't7%';
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {0 6}

finish_test








<
216
217
218
219
220
221
222

do_execsql_test 5.2 {
  ALTER TABLE t7 RENAME TO t8;
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't7%';
  SELECT count(*) FROM sqlite_master WHERE name LIKE 't8%';
} {0 6}

finish_test

Changes to test/fts3atoken.test.

189
190
191
192
193
194
195
196
197

do_test fts3token-internal {
  execsql { SELECT fts3_tokenizer_internal_test() }
} {ok}


finish_test









<
<
189
190
191
192
193
194
195



do_test fts3token-internal {
  execsql { SELECT fts3_tokenizer_internal_test() }
} {ok}


finish_test


Changes to test/fts3auto.test.

703
704
705
706
707
708
709
710
  do_fts3query_test 7.$tn.1             t1 {"M B"}
  do_fts3query_test 7.$tn.2             t1 {"B D"}
  do_fts3query_test 7.$tn.3 -deferred B t1 {"M B D"}
}

set sqlite_fts3_enable_parentheses $sfep
finish_test








<
703
704
705
706
707
708
709

  do_fts3query_test 7.$tn.1             t1 {"M B"}
  do_fts3query_test 7.$tn.2             t1 {"B D"}
  do_fts3query_test 7.$tn.3 -deferred B t1 {"M B D"}
}

set sqlite_fts3_enable_parentheses $sfep
finish_test

Changes to test/fts3aux1.test.

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
...
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
...
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
...
515
516
517
518
519
520
521
522
db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1: (~0 rows)} }
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)}}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }
................................................................................

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 2: (~0 rows)} }
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} }

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 4: (~0 rows)} }
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} }

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 6: (~0 rows)} }
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} }

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {
................................................................................
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res [list 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)}]
  if {$sort} { lappend res 0 0 0 {USE TEMP B-TREE FOR ORDER BY} }

  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
................................................................................
proc do_plansql_test {tn sql r} {
  uplevel do_execsql_test $tn [list "EXPLAIN QUERY PLAN $sql ; $sql"] [list $r]
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {
  0 0 0 {SCAN TABLE x2 (~1000000 rows)} 
  0 1 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 1: (~0 rows)} 
  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE x2 (~1000000 rows)} 
  0 1 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1: (~0 rows)} 
  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} 
  0 1 0 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?) (~10 rows)}
  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {
  0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0: (~0 rows)} 
  0 1 1 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?) (~10 rows)}
  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.
................................................................................

do_test 8.2 {
  execsql {DETACH att}
  catchsql { SELECT * FROM aux2 }
} {1 {SQL logic error or missing database}}

finish_test








|


|







 







|


|



|


|



|


|







 







|







 







|
|






|
|






|
|






|
|







 







<
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
...
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
...
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
...
515
516
517
518
519
520
521

db func rec rec

# Use EQP to show that the WHERE expression "term='braid'" uses a different
# index number (1) than "+term='braid'" (0).
#
do_execsql_test 2.1.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term='braid'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} }
do_execsql_test 2.1.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term='braid'
} {0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}}

# Now show that using "term='braid'" means the virtual table returns
# only 1 row to SQLite, but "+term='braid'" means all 19 are returned.
#
do_test 2.1.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms_v WHERE rec('cnt', term) AND term='braid' }
................................................................................

# Special case: term=NULL
#
do_execsql_test 2.1.5 { SELECT * FROM terms WHERE term=NULL } {}

do_execsql_test 2.2.1.1 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 2:} }
do_execsql_test 2.2.1.2 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term>'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.3 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 4:} }
do_execsql_test 2.2.1.4 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term<'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_execsql_test 2.2.1.5 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 6:} }
do_execsql_test 2.2.1.6 {
  EXPLAIN QUERY PLAN SELECT * FROM terms WHERE +term BETWEEN 'brags' AND 'brain'
} { 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} }

do_test 2.2.2.1 {
  set cnt 0
  execsql { SELECT * FROM terms WHERE rec('cnt', term) AND term>'brain' }
  set cnt
} {18}
do_test 2.2.2.2 {
................................................................................
  5    1    "ORDER BY documents"
  6    1    "ORDER BY documents DESC"
  7    1    "ORDER BY occurrences ASC"
  8    1    "ORDER BY occurrences"
  9    1    "ORDER BY occurrences DESC"
} {

  set res [list 0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:}]
  if {$sort} { lappend res 0 0 0 {USE TEMP B-TREE FOR ORDER BY} }

  set sql "SELECT * FROM terms $orderby"
  do_execsql_test 2.3.1.$tn "EXPLAIN QUERY PLAN $sql" $res
}

#-------------------------------------------------------------------------
................................................................................
proc do_plansql_test {tn sql r} {
  uplevel do_execsql_test $tn [list "EXPLAIN QUERY PLAN $sql ; $sql"] [list $r]
}

do_plansql_test 4.2 {
  SELECT y FROM x2, terms WHERE y = term AND col = '*'
} {
  0 0 0 {SCAN TABLE x2} 
  0 1 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 
  a b c d e f g h i j k l
}

do_plansql_test 4.3 {
  SELECT y FROM terms, x2 WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE x2} 
  0 1 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 1:} 
  a b c d e f g h i j k l
}

do_plansql_test 4.4 {
  SELECT y FROM x3, terms WHERE y = term AND col = '*'
} {
  0 0 1 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 0 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}
  a b c d e f g h i j k l
}

do_plansql_test 4.5 {
  SELECT y FROM terms, x3 WHERE y = term AND occurrences>1 AND col = '*'
} {
  0 0 0 {SCAN TABLE terms VIRTUAL TABLE INDEX 0:} 
  0 1 1 {SEARCH TABLE x3 USING COVERING INDEX i1 (y=?)}
  a k l
}

#-------------------------------------------------------------------------
# The following tests check that fts4aux can handle an fts table with an
# odd name (one that requires quoting for use in SQL statements). And that
# the argument to the fts4aux constructor is properly dequoted before use.
................................................................................

do_test 8.2 {
  execsql {DETACH att}
  catchsql { SELECT * FROM aux2 }
} {1 {SQL logic error or missing database}}

finish_test

Changes to test/fts3corrupt.test.

162
163
164
165
166
167
168
169
  UPDATE t1_stat SET value = NULL;
  SELECT matchinfo(t1, 'nxa') FROM t1 WHERE t1 MATCH 't*';
} {1 {database disk image is malformed}}
do_test 5.3.1 { sqlite3_extended_errcode db } SQLITE_CORRUPT_VTAB


finish_test








<
162
163
164
165
166
167
168

  UPDATE t1_stat SET value = NULL;
  SELECT matchinfo(t1, 'nxa') FROM t1 WHERE t1 MATCH 't*';
} {1 {database disk image is malformed}}
do_test 5.3.1 { sqlite3_extended_errcode db } SQLITE_CORRUPT_VTAB


finish_test

Changes to test/fts3defer2.test.

149
150
151
152
153
154
155
156
  do_execsql_test 2.4.$tn {
    SELECT docid, mit(matchinfo(t3, 'pcxnal')) FROM t3 WHERE t3 MATCH '"a b c"';
  } {1 {1 1 1 4 4 11 912 6} 3 {1 1 1 4 4 11 912 6}}
}


finish_test








<
149
150
151
152
153
154
155

  do_execsql_test 2.4.$tn {
    SELECT docid, mit(matchinfo(t3, 'pcxnal')) FROM t3 WHERE t3 MATCH '"a b c"';
  } {1 {1 1 1 4 4 11 912 6} 3 {1 1 1 4 4 11 912 6}}
}


finish_test

Changes to test/fts3expr3.test.

200
201
202
203
204
205
206
207
208
209
210
  test_fts3expr2 $::query
} -test {
  faultsim_test_result [list 0 $::result]
}

set sqlite_fts3_enable_parentheses 0
finish_test











<
<
<
<
200
201
202
203
204
205
206




  test_fts3expr2 $::query
} -test {
  faultsim_test_result [list 0 $::result]
}

set sqlite_fts3_enable_parentheses 0
finish_test




Changes to test/fts3malloc.test.

301
302
303
304
305
306
307
308

do_write_test fts3_malloc-5.3 ft_content {
  INSERT INTO ft8 VALUES('short alongertoken reallyquitealotlongerimeanit andthistokenisjustsolongthatonemightbeforgivenforimaginingthatitwasmerelyacontrivedexampleandnotarealtoken')
}


finish_test








<
301
302
303
304
305
306
307


do_write_test fts3_malloc-5.3 ft_content {
  INSERT INTO ft8 VALUES('short alongertoken reallyquitealotlongerimeanit andthistokenisjustsolongthatonemightbeforgivenforimaginingthatitwasmerelyacontrivedexampleandnotarealtoken')
}


finish_test

Changes to test/fts3matchinfo.test.

423
424
425
426
427
428
429
430
  INSERT INTO t12 VALUES('a d d a');
  SELECT mit(matchinfo(t12, 'x')) FROM t12 WHERE t12 MATCH 'a NEAR/1 d OR a';
} {
  {0 3 2 0 3 2 1 4 3} {1 3 2 1 3 2 1 4 3} {2 3 2 2 3 2 2 4 3}
}

finish_test








<
423
424
425
426
427
428
429

  INSERT INTO t12 VALUES('a d d a');
  SELECT mit(matchinfo(t12, 'x')) FROM t12 WHERE t12 MATCH 'a NEAR/1 d OR a';
} {
  {0 3 2 0 3 2 1 4 3} {1 3 2 1 3 2 1 4 3} {2 3 2 2 3 2 2 4 3}
}

finish_test

Changes to test/fts3prefix2.test.

55
56
57
58
59
60
61
62
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
}

finish_test








<
55
56
57
58
59
60
61

  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
  {T TX T TX T TX T TX T TX}
}

finish_test

Changes to test/fts3query.test.

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
...
206
207
208
209
210
211
212
213
    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 1 {SCAN TABLE ft VIRTUAL TABLE INDEX 1: (~0 rows)}
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 0 {SCAN TABLE ft VIRTUAL TABLE INDEX 1: (~0 rows)}
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 1 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1 (~1000000 rows)} 
  0 1 0 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {
................................................................................

  7 "SELECT snippet(t3, 'XXX', 'YYY', 'ZZZ', 1, 5) FROM t3 WHERE t3 MATCH 'gestures'" 
  {{ZZZthe hand XXXgesturesYYY (called beatsZZZ}}
}


finish_test








|
|




|
|




|
|




|
|







 







<
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
...
206
207
208
209
210
211
212

    CREATE VIRTUAL TABLE ft USING fts3(title);
    CREATE TABLE bt(title);
  }
} {}
do_eqp_test fts3query-4.2 {
  SELECT t1.number FROM t1, ft WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.3 {
  SELECT t1.number FROM ft, t1 WHERE t1.number=ft.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SCAN TABLE ft VIRTUAL TABLE INDEX 1:}
}
do_eqp_test fts3query-4.4 {
  SELECT t1.number FROM t1, bt WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 1 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}
do_eqp_test fts3query-4.5 {
  SELECT t1.number FROM bt, t1 WHERE t1.number=bt.rowid ORDER BY t1.date
} {
  0 0 1 {SCAN TABLE t1 USING COVERING INDEX i1} 
  0 1 0 {SEARCH TABLE bt USING INTEGER PRIMARY KEY (rowid=?)}
}


# Test that calling matchinfo() with the wrong number of arguments, or with
# an invalid argument returns an error.
#
do_execsql_test 5.1 {
................................................................................

  7 "SELECT snippet(t3, 'XXX', 'YYY', 'ZZZ', 1, 5) FROM t3 WHERE t3 MATCH 'gestures'" 
  {{ZZZthe hand XXXgesturesYYY (called beatsZZZ}}
}


finish_test

Changes to test/fts3shared.test.

170
171
172
173
174
175
176
177
  execsql ROLLBACK dbW 
}

dbW close
dbR close
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
170
171
172
173
174
175
176

  execsql ROLLBACK dbW 
}

dbW close
dbR close
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/fts3snippet.test.

Changes to test/fts3sort.test.

178
179
180
181
182
183
184
185
  INSERT INTO t4(docid, x) VALUES(1, 'ab');
  SELECT rowid FROM t4 WHERE x MATCH 'a*';
} {-113382409004785664 1}



finish_test








<
178
179
180
181
182
183
184

  INSERT INTO t4(docid, x) VALUES(1, 'ab');
  SELECT rowid FROM t4 WHERE x MATCH 'a*';
} {-113382409004785664 1}



finish_test

Changes to test/fts3tok1.test.

109
110
111
112
113
114
115
116
117
do_catchsql_test 2.1 {
  CREATE VIRTUAL TABLE t4 USING fts3tokenize;
  SELECT * FROM t4;
} {1 {SQL logic error or missing database}}


finish_test









<
<
109
110
111
112
113
114
115


do_catchsql_test 2.1 {
  CREATE VIRTUAL TABLE t4 USING fts3tokenize;
  SELECT * FROM t4;
} {1 {SQL logic error or missing database}}


finish_test


Changes to test/fts3tok_err.test.

41
42
43
44
45
46
47
48
49
  execsql { SELECT token FROM t1 WHERE input = 'A galaxy far, far away' } 
} -test {
  faultsim_test_result {0 {a galaxy far far away}} 
}


finish_test









<
<
41
42
43
44
45
46
47


  execsql { SELECT token FROM t1 WHERE input = 'A galaxy far, far away' } 
} -test {
  faultsim_test_result {0 {a galaxy far far away}} 
}


finish_test


Changes to test/fts4content.test.

619
620
621
622
623
624
625
626
do_execsql_test 10.7 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e'
} {
  {...c d [e] f g...}
}

finish_test








<
619
620
621
622
623
624
625

do_execsql_test 10.7 {
  SELECT snippet(ft, '[', ']', '...', -1, 5) FROM ft WHERE ft MATCH 'e'
} {
  {...c d [e] f g...}
}

finish_test

Changes to test/fuzzer1.test.

1724
1725
1726
1727
1728
1729
1730
1731

1732
1733
1734
1735
1736
1737

1738
1739
1740
1741
1742
1743

1744
1745
1746
1747
1748
1749

1750
1751
1752
1753
1754
1755
1756

1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
  INSERT INTO x3_rules VALUES(2, 'a', 'z',  8);
  CREATE VIRTUAL TABLE x3 USING fuzzer(x3_rules);
}

do_execsql_test 8.2.1 {
  SELECT cFrom, cTo, word 
    FROM x3_rules CROSS JOIN x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a x x a y y a z z}

do_execsql_test 8.2.2 {
  SELECT cFrom, cTo, word 
    FROM x3 CROSS JOIN x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.3 {
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.4 {
  SELECT cFrom, cTo, word 
    FROM x3, x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  CREATE INDEX i1 ON x3_rules(cost);
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2;

} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  SELECT word FROM x3_rules, x3 WHERE word MATCH x3_rules.cFrom AND ruleset=2;
} {a z y x a z y x a z y x}

do_execsql_test 8.2.6 {
  SELECT word FROM x3_rules, x3 
  WHERE word MATCH x3_rules.cFrom 
    AND ruleset=2 
    AND x3_rules.cost=8;







|
>





|
>





|
>





|
>






|
>



|







1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
  INSERT INTO x3_rules VALUES(2, 'a', 'z',  8);
  CREATE VIRTUAL TABLE x3 USING fuzzer(x3_rules);
}

do_execsql_test 8.2.1 {
  SELECT cFrom, cTo, word 
    FROM x3_rules CROSS JOIN x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo;
} {a x x a y y a z z}

do_execsql_test 8.2.2 {
  SELECT cFrom, cTo, word 
    FROM x3 CROSS JOIN x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC
} {a z z a y y a x x}

do_execsql_test 8.2.3 {
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC;
} {a z z a y y a x x}

do_execsql_test 8.2.4 {
  SELECT cFrom, cTo, word 
    FROM x3, x3_rules
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC;
} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  CREATE INDEX i1 ON x3_rules(cost);
  SELECT cFrom, cTo, word 
    FROM x3_rules, x3 
    WHERE word MATCH 'a' AND cost=distance AND ruleset=2
    ORDER BY +cTo DESC;
} {a z z a y y a x x}

do_execsql_test 8.2.5 {
  SELECT word FROM x3_rules, x3 WHERE word MATCH x3_rules.cFrom AND ruleset=2
} {a z y x a z y x a z y x}

do_execsql_test 8.2.6 {
  SELECT word FROM x3_rules, x3 
  WHERE word MATCH x3_rules.cFrom 
    AND ruleset=2 
    AND x3_rules.cost=8;

Changes to test/incrblob3.test.

265
266
267
268
269
270
271
272
  sqlite3_db_config_lookaside db 0 0 0
  list [catch {db incrblob blobs v 1} msg] $msg
} {1 {database schema has changed}}
db close
tvfs delete

finish_test








<
265
266
267
268
269
270
271

  sqlite3_db_config_lookaside db 0 0 0
  list [catch {db incrblob blobs v 1} msg] $msg
} {1 {database schema has changed}}
db close
tvfs delete

finish_test

Changes to test/incrblob4.test.

83
84
85
86
87
88
89
90
  set new [string repeat % 900]
  execsql { UPDATE t1 SET v = $new WHERE k = 20 }
  execsql { DELETE FROM t1 WHERE k=19 }
  execsql { INSERT INTO t1(v) VALUES($new) }
} {}

finish_test








<
83
84
85
86
87
88
89

  set new [string repeat % 900]
  execsql { UPDATE t1 SET v = $new WHERE k = 20 }
  execsql { DELETE FROM t1 WHERE k=19 }
  execsql { INSERT INTO t1(v) VALUES($new) }
} {}

finish_test

Changes to test/incrblobfault.test.

63
64
65
66
67
68
69
70
  gets $::blob
} -test {
  faultsim_test_result {0 {hello world}}
  catch { close $::blob }
}

finish_test








<
63
64
65
66
67
68
69

  gets $::blob
} -test {
  faultsim_test_result {0 {hello world}}
  catch { close $::blob }
}

finish_test

Changes to test/incrvacuum3.test.

147
148
149
150
151
152
153
154
  }

  do_execsql_test $T.1.x.1 { PRAGMA freelist_count   } 0
  do_execsql_test $T.1.x.2 { SELECT count(*) FROM t1 } 128
}

finish_test








<
147
148
149
150
151
152
153

  }

  do_execsql_test $T.1.x.1 { PRAGMA freelist_count   } 0
  do_execsql_test $T.1.x.2 { SELECT count(*) FROM t1 } 128
}

finish_test

Changes to test/indexedby.test.

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
..
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
...
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_execsql_test indexedby-1.2 {
  EXPLAIN QUERY PLAN select * from t1 WHERE a = 10; 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-1.3 {
  EXPLAIN QUERY PLAN select * from t1 ; 
} {0 0 0 {SCAN TABLE t1 (~1000000 rows)}}
do_execsql_test indexedby-1.4 {
  EXPLAIN QUERY PLAN select * from t1, t2 WHERE c = 10; 
} {
  0 0 1 {SEARCH TABLE t2 USING INDEX i3 (c=?) (~10 rows)} 
  0 1 0 {SCAN TABLE t1 (~1000000 rows)}
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
# 
................................................................................
  catchsql { SELECT * FROM v1 INDEXED BY i1 WHERE a = 'one' }
} {1 {no such index: i1}}

# Tests for single table cases.
#
do_execsql_test indexedby-3.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {0 0 0 {SCAN TABLE t1 (~10000 rows)}}
do_execsql_test indexedby-3.2 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~2 rows)}}
do_execsql_test indexedby-3.3 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~2 rows)}}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {cannot use index: i2}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {cannot use index: i2}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_execsql_test indexedby-3.8 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {0 0 0 {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1 (~1000000 rows)}}
do_execsql_test indexedby-3.9 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {0 0 0 {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?) (~1 rows)}}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {cannot use index: sqlite_autoindex_t3_1}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_execsql_test indexedby-4.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE a = c 
} {
  0 0 0 {SCAN TABLE t1 (~1000000 rows)} 
  0 1 1 {SEARCH TABLE t2 USING INDEX i3 (c=?) (~10 rows)}
}
do_execsql_test indexedby-4.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {
  0 0 1 {SCAN TABLE t2 (~1000000 rows)} 
  0 1 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~10 rows)}
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {cannot use index: i1}}
do_test indexedby-4.4 {
  catchsql {
    SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c
  }
} {1 {cannot use index: i3}}

# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~250000 rows)}}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~25000 rows)}}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
  catchsql { SELECT * FROM v2 }
} {1 {cannot use index: i1}}
do_test indexedby-5.5 {
  # Drop and recreate index i1 again. This time, create it so that it can
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_execsql_test indexedby-6.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~10 rows)}}
do_execsql_test indexedby-6.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SCAN TABLE t1 USING INTEGER PRIMARY KEY (~100000 rows)}}

# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1 (~100000 rows)}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~2 rows)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~2 rows)}}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {cannot use index: i2}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_execsql_test indexedby-8.1 {
  EXPLAIN QUERY PLAN UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-8.2 {
  EXPLAIN QUERY PLAN UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SCAN TABLE t1 (~100000 rows)}}
do_execsql_test indexedby-8.3 {
  EXPLAIN QUERY PLAN UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?) (~10 rows)}}
do_execsql_test indexedby-8.4 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~2 rows)}}
do_execsql_test indexedby-8.5 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?) (~2 rows)}}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {cannot use index: i2}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
  execsql {
    CREATE TABLE maintable( id integer);
    CREATE TABLE joinme(id_int integer, id_text text);
................................................................................
} {}
do_test indexedby-9.2 {
  catchsql {
    select * from maintable as m inner join
    joinme as j indexed by joinme_id_text_idx
    on ( m.id  = j.id_int)
  }
} {1 {cannot use index: joinme_id_text_idx}}
do_test indexedby-9.3 {
  catchsql { select * from maintable, joinme INDEXED by joinme_id_text_idx }
} {1 {cannot use index: joinme_id_text_idx}}

# Make sure we can still create tables, indices, and columns whose name
# is "indexed".
#
do_test indexedby-10.1 {
  execsql {
    CREATE TABLE indexed(x,y);







|


|



|
|







 







|



|



|


|


|










|



|


|









|
|




|
|





|




|








|


|








|











|


|





|


|


|


|


|


|





|


|


|



|



|


|







 







|


|







38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
..
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
...
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
  uplevel "execsql {EXPLAIN QUERY PLAN $sql}"
}

# These tests are to check that "EXPLAIN QUERY PLAN" is working as expected.
#
do_execsql_test indexedby-1.2 {
  EXPLAIN QUERY PLAN select * from t1 WHERE a = 10; 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-1.3 {
  EXPLAIN QUERY PLAN select * from t1 ; 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-1.4 {
  EXPLAIN QUERY PLAN select * from t1, t2 WHERE c = 10; 
} {
  0 0 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)} 
  0 1 0 {SCAN TABLE t1}
}

# Parser tests. Test that an INDEXED BY or NOT INDEX clause can be 
# attached to a table in the FROM clause, but not to a sub-select or
# SQL view. Also test that specifying an index that does not exist or
# is attached to a different table is detected as an error.
# 
................................................................................
  catchsql { SELECT * FROM v1 INDEXED BY i1 WHERE a = 'one' }
} {1 {no such index: i1}}

# Tests for single table cases.
#
do_execsql_test indexedby-3.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE a = 'one' AND b = 'two'
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-3.2 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-3.3 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' AND b = 'two'
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-3.4 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 WHERE a = 'one' }
} {1 {no query solution}}
do_test indexedby-3.5 {
  catchsql { SELECT * FROM t1 INDEXED BY i2 ORDER BY a }
} {1 {no query solution}}
do_test indexedby-3.6 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 WHERE a = 'one' }
} {0 {}}
do_test indexedby-3.7 {
  catchsql { SELECT * FROM t1 INDEXED BY i1 ORDER BY a }
} {0 {}}

do_execsql_test indexedby-3.8 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 ORDER BY e 
} {0 0 0 {SCAN TABLE t3 USING INDEX sqlite_autoindex_t3_1}}
do_execsql_test indexedby-3.9 {
  EXPLAIN QUERY PLAN 
  SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE e = 10 
} {0 0 0 {SEARCH TABLE t3 USING INDEX sqlite_autoindex_t3_1 (e=?)}}
do_test indexedby-3.10 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_1 WHERE f = 10 }
} {1 {no query solution}}
do_test indexedby-3.11 {
  catchsql { SELECT * FROM t3 INDEXED BY sqlite_autoindex_t3_2 WHERE f = 10 }
} {1 {no such index: sqlite_autoindex_t3_2}}

# Tests for multiple table cases.
#
do_execsql_test indexedby-4.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1, t2 WHERE a = c 
} {
  0 0 0 {SCAN TABLE t1} 
  0 1 1 {SEARCH TABLE t2 USING INDEX i3 (c=?)}
}
do_execsql_test indexedby-4.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 INDEXED BY i1, t2 WHERE a = c 
} {
  0 0 1 {SCAN TABLE t2} 
  0 1 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}
}
do_test indexedby-4.3 {
  catchsql {
    SELECT * FROM t1 INDEXED BY i1, t2 INDEXED BY i3 WHERE a=c
  }
} {1 {no query solution}}
do_test indexedby-4.4 {
  catchsql {
    SELECT * FROM t2 INDEXED BY i3, t1 INDEXED BY i1 WHERE a=c
  }
} {1 {no query solution}}

# Test embedding an INDEXED BY in a CREATE VIEW statement. This block
# also tests that nothing bad happens if an index refered to by
# a CREATE VIEW statement is dropped and recreated.
#
do_execsql_test indexedby-5.1 {
  CREATE VIEW v2 AS SELECT * FROM t1 INDEXED BY i1 WHERE a > 5;
  EXPLAIN QUERY PLAN SELECT * FROM v2 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_execsql_test indexedby-5.2 {
  EXPLAIN QUERY PLAN SELECT * FROM v2 WHERE b = 10 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
do_test indexedby-5.3 {
  execsql { DROP INDEX i1 }
  catchsql { SELECT * FROM v2 }
} {1 {no such index: i1}}
do_test indexedby-5.4 {
  # Recreate index i1 in such a way as it cannot be used by the view query.
  execsql { CREATE INDEX i1 ON t1(b) }
  catchsql { SELECT * FROM v2 }
} {1 {no query solution}}
do_test indexedby-5.5 {
  # Drop and recreate index i1 again. This time, create it so that it can
  # be used by the query.
  execsql { DROP INDEX i1 ; CREATE INDEX i1 ON t1(a) }
  catchsql { SELECT * FROM v2 }
} {0 {}}

# Test that "NOT INDEXED" may use the rowid index, but not others.
# 
do_execsql_test indexedby-6.1 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_execsql_test indexedby-6.2 {
  EXPLAIN QUERY PLAN SELECT * FROM t1 NOT INDEXED WHERE b = 10 ORDER BY rowid 
} {0 0 0 {SCAN TABLE t1}}

# Test that "INDEXED BY" can be used in a DELETE statement.
# 
do_execsql_test indexedby-7.1 {
  EXPLAIN QUERY PLAN DELETE FROM t1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.2 {
  EXPLAIN QUERY PLAN DELETE FROM t1 NOT INDEXED WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-7.3 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.4 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-7.5 {
  EXPLAIN QUERY PLAN DELETE FROM t1 INDEXED BY i2 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-7.6 {
  catchsql { DELETE FROM t1 INDEXED BY i2 WHERE a = 5}
} {1 {no query solution}}

# Test that "INDEXED BY" can be used in an UPDATE statement.
# 
do_execsql_test indexedby-8.1 {
  EXPLAIN QUERY PLAN UPDATE t1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.2 {
  EXPLAIN QUERY PLAN UPDATE t1 NOT INDEXED SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SCAN TABLE t1}}
do_execsql_test indexedby-8.3 {
  EXPLAIN QUERY PLAN UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 
} {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.4 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i1 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
do_execsql_test indexedby-8.5 {
  EXPLAIN QUERY PLAN 
  UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5 AND b = 10
} {0 0 0 {SEARCH TABLE t1 USING INDEX i2 (b=?)}}
do_test indexedby-8.6 {
  catchsql { UPDATE t1 INDEXED BY i2 SET rowid=rowid+1 WHERE a = 5}
} {1 {no query solution}}

# Test that bug #3560 is fixed.
#
do_test indexedby-9.1 {
  execsql {
    CREATE TABLE maintable( id integer);
    CREATE TABLE joinme(id_int integer, id_text text);
................................................................................
} {}
do_test indexedby-9.2 {
  catchsql {
    select * from maintable as m inner join
    joinme as j indexed by joinme_id_text_idx
    on ( m.id  = j.id_int)
  }
} {1 {no query solution}}
do_test indexedby-9.3 {
  catchsql { select * from maintable, joinme INDEXED by joinme_id_text_idx }
} {1 {no query solution}}

# Make sure we can still create tables, indices, and columns whose name
# is "indexed".
#
do_test indexedby-10.1 {
  execsql {
    CREATE TABLE indexed(x,y);

Changes to test/intpkey.test.

121
122
123
124
125
126
127
128
129



130
131
132
133
134
135
136
#
do_test intpkey-1.12.1 {
  execsql {
    SELECT * FROM t1 WHERE a==4;
  }
} {4 one two}
do_test intpkey-1.12.2 {
  set sqlite_query_plan
} {t1 *}




# Try to insert a non-integer value into the primary key field.  This
# should result in a data type mismatch.
#
do_test intpkey-1.13.1 {
  set r [catch {execsql {
    INSERT INTO t1 VALUES('x','y','z');







|
|
>
>
>







121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#
do_test intpkey-1.12.1 {
  execsql {
    SELECT * FROM t1 WHERE a==4;
  }
} {4 one two}
do_test intpkey-1.12.2 {
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t1 WHERE a==4;
  }
} {/SEARCH TABLE t1 /}

# Try to insert a non-integer value into the primary key field.  This
# should result in a data type mismatch.
#
do_test intpkey-1.13.1 {
  set r [catch {execsql {
    INSERT INTO t1 VALUES('x','y','z');

Changes to test/io.test.

637
638
639
640
641
642
643
644
  hexio_write test.db [expr 1024 * 5] [string repeat 00 2048]
  do_execsql_test 6.2.$tn.3 { PRAGMA integrity_check } {ok}
  db close
}

sqlite3_simulate_device -char {} -sectorsize 0
finish_test








<
637
638
639
640
641
642
643

  hexio_write test.db [expr 1024 * 5] [string repeat 00 2048]
  do_execsql_test 6.2.$tn.3 { PRAGMA integrity_check } {ok}
  db close
}

sqlite3_simulate_device -char {} -sectorsize 0
finish_test

Changes to test/ioerr6.test.

85
86
87
88
89
90
91
92
  db eval { CREATE TABLE t3(x) }
  if {[db one { PRAGMA integrity_check }] != "ok"} {
    error "integrity check failed"
  }
}

finish_test








<
85
86
87
88
89
90
91

  db eval { CREATE TABLE t3(x) }
  if {[db one { PRAGMA integrity_check }] != "ok"} {
    error "integrity check failed"
  }
}

finish_test

Changes to test/like.test.

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166













167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
...
265
266
267
268
269
270
271

272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287


288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
...
314
315
316
317
318
319
320

321
322
323
324
325
326
327
328
329
330

331
332
333
334
335
336
337
338
339
...
805
806
807
808
809
810
811

812
813
814
815
816
817

818
819
820
821
822
823
824
825
826


827
828
829
830

831
832
833
834
835
836
837
838
839
840


841
842
843
844

845
846
847
848
849
850

851
852
853
854
855
856

857
858
859
860
861
862
863
864
865


866
867
868
869
870
871
872
873
874
875
876
ifcapable !like_opt {
  finish_test
  return
} 

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return [concat $data $::sqlite_query_plan]













}

# Perform tests on the like optimization.
#
# With no index on t1.x and with case sensitivity turned off, no optimization
# is performed.
#
do_test like-3.1 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd sort t1 {}}
do_test like-3.2 {
  set sqlite_like_count
} {12}

# With an index on t1.x and case sensitivity on, optimize completely.
#
do_test like-3.3 {
................................................................................
  set sqlite_like_count
} 12

# No optimization for case insensitive LIKE
#
do_test like-3.13 {
  set sqlite_like_count 0

  queryplan {
    PRAGMA case_sensitive_like=off;
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd nosort {} i1}
do_test like-3.14 {
  set sqlite_like_count
} 12

# No optimization without an index.
#
do_test like-3.15 {
  set sqlite_like_count 0
  queryplan {
    PRAGMA case_sensitive_like=on;
    DROP INDEX i1;


    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {abc abcd sort t1 {}}
do_test like-3.16 {
  set sqlite_like_count
} 12

# No GLOB optimization without an index.
#
do_test like-3.17 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd sort t1 {}}
do_test like-3.18 {
  set sqlite_like_count
} 12

# GLOB is optimized regardless of the case_sensitive_like setting.
#
do_test like-3.19 {
................................................................................
  }
} {abc abcd nosort {} i1}
do_test like-3.20 {
  set sqlite_like_count
} 0
do_test like-3.21 {
  set sqlite_like_count 0

  queryplan {
    PRAGMA case_sensitive_like=on;
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd nosort {} i1}
do_test like-3.22 {
  set sqlite_like_count
} 0
do_test like-3.23 {
  set sqlite_like_count 0

  queryplan {
    PRAGMA case_sensitive_like=off;
    SELECT x FROM t1 WHERE x GLOB 'a[bc]d' ORDER BY 1;
  }
} {abd acd nosort {} i1}
do_test like-3.24 {
  set sqlite_like_count
} 6

................................................................................
    INSERT INTO t11 VALUES(10, 'yz','yz');
    INSERT INTO t11 VALUES(11, 'X','X');
    INSERT INTO t11 VALUES(12, 'YZ','YZ');
    SELECT count(*) FROM t11;
  }
} {12}
do_test like-11.1 {

  queryplan {
    PRAGMA case_sensitive_like=OFF;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd ABC ABCD nosort t11 *}
do_test like-11.2 {

  queryplan {
    PRAGMA case_sensitive_like=ON;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.3 {
  queryplan {
    PRAGMA case_sensitive_like=OFF;
    CREATE INDEX t11b ON t11(b);


    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11b}
do_test like-11.4 {

  queryplan {
    PRAGMA case_sensitive_like=ON;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.5 {
  queryplan {
    PRAGMA case_sensitive_like=OFF;
    DROP INDEX t11b;
    CREATE INDEX t11bnc ON t11(b COLLATE nocase);


    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.6 {

  queryplan {
    CREATE INDEX t11bb ON t11(b COLLATE binary);
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.7 {

  queryplan {
    PRAGMA case_sensitive_like=ON;
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.8 {

  queryplan {
    PRAGMA case_sensitive_like=OFF;
    SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.9 {
  queryplan {
    CREATE INDEX t11cnc ON t11(c COLLATE nocase);
    CREATE INDEX t11cb ON t11(c COLLATE binary);


    SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11cnc}
do_test like-11.10 {
  queryplan {
    SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11cb}


finish_test







|






|
>
>
>
>
>
>
>
>
>
>
>
>
>












|







 







>

<











|


>
>


|











|







 







>

<








>

<







 







>

<




>

<




|


>
>




>

<




|



>
>




>

<




>

<




>

<




|


>
>











152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
...
278
279
280
281
282
283
284
285
286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
...
329
330
331
332
333
334
335
336
337

338
339
340
341
342
343
344
345
346
347

348
349
350
351
352
353
354
...
820
821
822
823
824
825
826
827
828

829
830
831
832
833
834

835
836
837
838
839
840
841
842
843
844
845
846
847
848
849

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865

866
867
868
869
870
871

872
873
874
875
876
877

878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
ifcapable !like_opt {
  finish_test
  return
} 

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the names of the table and index used.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING COVERING INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data {} $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}

# Perform tests on the like optimization.
#
# With no index on t1.x and with case sensitivity turned off, no optimization
# is performed.
#
do_test like-3.1 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd sort t1 *}
do_test like-3.2 {
  set sqlite_like_count
} {12}

# With an index on t1.x and case sensitivity on, optimize completely.
#
do_test like-3.3 {
................................................................................
  set sqlite_like_count
} 12

# No optimization for case insensitive LIKE
#
do_test like-3.13 {
  set sqlite_like_count 0
  db eval {PRAGMA case_sensitive_like=off;}
  queryplan {

    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {ABC {ABC abc xyz} abc abcd nosort {} i1}
do_test like-3.14 {
  set sqlite_like_count
} 12

# No optimization without an index.
#
do_test like-3.15 {
  set sqlite_like_count 0
  db eval {
    PRAGMA case_sensitive_like=on;
    DROP INDEX i1;
  }
  queryplan {
    SELECT x FROM t1 WHERE x LIKE 'abc%' ORDER BY 1;
  }
} {abc abcd sort t1 *}
do_test like-3.16 {
  set sqlite_like_count
} 12

# No GLOB optimization without an index.
#
do_test like-3.17 {
  set sqlite_like_count 0
  queryplan {
    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd sort t1 *}
do_test like-3.18 {
  set sqlite_like_count
} 12

# GLOB is optimized regardless of the case_sensitive_like setting.
#
do_test like-3.19 {
................................................................................
  }
} {abc abcd nosort {} i1}
do_test like-3.20 {
  set sqlite_like_count
} 0
do_test like-3.21 {
  set sqlite_like_count 0
  db eval {PRAGMA case_sensitive_like=on;}
  queryplan {

    SELECT x FROM t1 WHERE x GLOB 'abc*' ORDER BY 1;
  }
} {abc abcd nosort {} i1}
do_test like-3.22 {
  set sqlite_like_count
} 0
do_test like-3.23 {
  set sqlite_like_count 0
  db eval {PRAGMA case_sensitive_like=off;}
  queryplan {

    SELECT x FROM t1 WHERE x GLOB 'a[bc]d' ORDER BY 1;
  }
} {abd acd nosort {} i1}
do_test like-3.24 {
  set sqlite_like_count
} 6

................................................................................
    INSERT INTO t11 VALUES(10, 'yz','yz');
    INSERT INTO t11 VALUES(11, 'X','X');
    INSERT INTO t11 VALUES(12, 'YZ','YZ');
    SELECT count(*) FROM t11;
  }
} {12}
do_test like-11.1 {
  db eval {PRAGMA case_sensitive_like=OFF;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd ABC ABCD nosort t11 *}
do_test like-11.2 {
  db eval {PRAGMA case_sensitive_like=ON;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.3 {
  db eval {
    PRAGMA case_sensitive_like=OFF;
    CREATE INDEX t11b ON t11(b);
  }
  queryplan {
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11b}
do_test like-11.4 {
  db eval {PRAGMA case_sensitive_like=ON;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY a;
  }
} {abc abcd nosort t11 *}
do_test like-11.5 {
  db eval {
    PRAGMA case_sensitive_like=OFF;
    DROP INDEX t11b;
    CREATE INDEX t11bnc ON t11(b COLLATE nocase);
  }
  queryplan {
    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.6 {
  db eval {CREATE INDEX t11bb ON t11(b COLLATE binary);}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11bnc}
do_test like-11.7 {
  db eval {PRAGMA case_sensitive_like=ON;}
  queryplan {

    SELECT b FROM t11 WHERE b LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.8 {
  db eval {PRAGMA case_sensitive_like=OFF;}
  queryplan {

    SELECT b FROM t11 WHERE b GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11bb}
do_test like-11.9 {
  db eval {
    CREATE INDEX t11cnc ON t11(c COLLATE nocase);
    CREATE INDEX t11cb ON t11(c COLLATE binary);
  }
  queryplan {
    SELECT c FROM t11 WHERE c LIKE 'abc%' ORDER BY +a;
  }
} {abc abcd ABC ABCD sort {} t11cnc}
do_test like-11.10 {
  queryplan {
    SELECT c FROM t11 WHERE c GLOB 'abc*' ORDER BY +a;
  }
} {abc abcd sort {} t11cb}


finish_test

Changes to test/lock7.test.

54
55
56
57
58
59
60
61
  execsql { COMMIT } db1
} {}

db1 close
db2 close

finish_test








<
54
55
56
57
58
59
60

  execsql { COMMIT } db1
} {}

db1 close
db2 close

finish_test

Changes to test/misc7.test.

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
sqlite3 db test.db

ifcapable explain {
  do_execsql_test misc7-14.1 {
    CREATE TABLE abc(a PRIMARY KEY, b, c);
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE rowid = 1;
  } {
    0 0 0 {SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
  }
  do_execsql_test misc7-14.2 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE a = 1;
  } {0 0 0 
     {SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?) (~1 rows)}
  }
  do_execsql_test misc7-14.3 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 ORDER BY a;
  } {0 0 0 
     {SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (~1000000 rows)}
  }
}

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db







|




|




|







265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
sqlite3 db test.db

ifcapable explain {
  do_execsql_test misc7-14.1 {
    CREATE TABLE abc(a PRIMARY KEY, b, c);
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE rowid = 1;
  } {
    0 0 0 {SEARCH TABLE abc AS t2 USING INTEGER PRIMARY KEY (rowid=?)}
  }
  do_execsql_test misc7-14.2 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 WHERE a = 1;
  } {0 0 0 
     {SEARCH TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1 (a=?)}
  }
  do_execsql_test misc7-14.3 {
    EXPLAIN QUERY PLAN SELECT * FROM abc AS t2 ORDER BY a;
  } {0 0 0 
     {SCAN TABLE abc AS t2 USING INDEX sqlite_autoindex_abc_1}
  }
}

db close
forcedelete test.db
forcedelete test.db-journal
sqlite3 db test.db

Changes to test/notify3.test.

146
147
148
149
150
151
152
153
}
catch { db1 close }
catch { db2 close }


sqlite3_enable_shared_cache $esc
finish_test








<
146
147
148
149
150
151
152

}
catch { db1 close }
catch { db2 close }


sqlite3_enable_shared_cache $esc
finish_test

Changes to test/orderby1.test.

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144

145
146
147
148
149
150

151
152
153
154
155
156
157
158
159
...
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
...
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428
429
430
431
432
433
434
435

















436
437
438
        (NULL, 2, 1, 'two-a'),
        (NULL, 3, 1, 'three-a');
    COMMIT;
  }
} {}
do_test 1.1a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 1.1b {
  db eval {
................................................................................
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 1.2a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 1.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 1.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 1.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 1.4a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 1.4b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 1.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# optimized out


do_test 1.5a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 1.5b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 1.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {~/ORDER BY/}  ;# optimized out

do_test 1.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC

  }
} {three-c three-a two-b two-a one-c one-a}
do_test 1.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn DESC

  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 1.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC

  }
} {~/ORDER BY/}  ;# ORDER BY optimized-out


# Reconstruct the test data to use indices rather than integer primary keys.
#
do_test 2.0 {
  db eval {
    BEGIN;
................................................................................
        (20, 1, 'two-a'),
        (3,  1, 'three-a');
    COMMIT;
  }
} {}
do_test 2.1a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 2.1b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out

do_test 2.1c {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.1d {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 2.2a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 2.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 2.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 2.4a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 2.4b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 2.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# optimized out


do_test 2.5a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 2.5b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 2.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {~/ORDER BY/}  ;# optimized out

do_test 2.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 2.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 2.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY optimized out


# Generate another test dataset, but this time using mixed ASC/DESC indices.
#
do_test 3.0 {
  db eval {
    BEGIN;
................................................................................
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 3.2a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}

# The output is sorted manually in this case.
#
do_test 3.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 3.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 3.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Without the mixed ASC/DESC on ORDER BY
#
do_test 3.4a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 3.4b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}  ;# verify same order after sorting
do_test 3.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# optimized out


do_test 3.5a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 3.5b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 3.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# optimzed out


do_test 3.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 3.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY +title DESC, +tn

  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 3.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# inverted ASC/DESC is optimized out



















finish_test







|







 







|








|









|





|









|




|





|

|
<



|




|





|

|



|
>




|
>





|
>

|







 







|








|

|



|





|

|






|








|









|





|









|




|





|

|




|




|





|

|



|




|





|

|







 







|








|









|





|









|




|





|

|
<



|




|





|

|









|
>








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
..
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
...
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
...
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        (NULL, 2, 1, 'two-a'),
        (NULL, 3, 1, 'three-a');
    COMMIT;
  }
} {}
do_test 1.1a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 1.1b {
  db eval {
................................................................................
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 1.2a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 1.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 1.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 1.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 1.4a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 1.4b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 1.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed due to uniqueness constraints


do_test 1.5a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 1.5b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 1.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed due to uniqueness constraints

do_test 1.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 1.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 1.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY 


# Reconstruct the test data to use indices rather than integer primary keys.
#
do_test 2.0 {
  db eval {
    BEGIN;
................................................................................
        (20, 1, 'two-a'),
        (3,  1, 'three-a');
    COMMIT;
  }
} {}
do_test 2.1a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}

# Verify that the ORDER BY clause is optimized out
#
do_test 2.1b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}  ;# ORDER BY required because of missing aid term in ORDER BY

do_test 2.1c {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.1d {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, aid, tn
  }
} {/ORDER BY/}  ;# ORDER BY required in this case

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 2.2a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}

# The output is sorted manually in this case.
#
do_test 2.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 2.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 2.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Reverse order sorts
#
do_test 2.4a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 2.4b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 2.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {/ORDER BY/}  ;# separate sorting pass due to mixed DESC/ASC


do_test 2.5a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 2.5b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}  ;# verify same order after sorting
do_test 2.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {/ORDER BY/}  ;# separate sorting pass due to mixed ASC/DESC

do_test 2.6a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 2.6b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 2.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {/ORDER BY/}  ;# ORDER BY required


# Generate another test dataset, but this time using mixed ASC/DESC indices.
#
do_test 3.0 {
  db eval {
    BEGIN;
................................................................................
} {~/ORDER BY/}  ;# ORDER BY optimized out

# The same query with ORDER BY clause optimization disabled via + operators
# should give exactly the same answer.
#
do_test 3.2a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}

# The output is sorted manually in this case.
#
do_test 3.2b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to "+" on ORDER BY terms

# The same query with ORDER BY optimizations turned off via built-in test.
#
do_test 3.3a {
  optimization_control db order-by-idx-join 0
  db cache flush
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {one-c one-a two-b two-a three-c three-a}
do_test 3.3b {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn DESC
  }
} {/ORDER BY/}   ;# separate sorting pass due to disabled optimization
optimization_control db all 1
db cache flush

# Without the mixed ASC/DESC on ORDER BY
#
do_test 3.4a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {one-a one-c two-a two-b three-a three-c}
do_test 3.4b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title, +tn
  }
} {one-a one-c two-a two-b three-a three-c}  ;# verify same order after sorting
do_test 3.4c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title, tn
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed by uniqueness constraints


do_test 3.5a {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}
do_test 3.5b {
  db eval {
    SELECT name FROM album JOIN track USING (aid) ORDER BY +title DESC, +tn DESC
  }
} {three-c three-a two-b two-a one-c one-a}  ;# verify same order after sorting
do_test 3.5c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album JOIN track USING (aid) ORDER BY title DESC, tn DESC
  }
} {~/ORDER BY/}  ;# ORDER BY suppressed by uniqueness constraints


do_test 3.6a {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {three-a three-c two-a two-b one-a one-c}
do_test 3.6b {
  db eval {
    SELECT name FROM album CROSS JOIN track USING (aid)
     ORDER BY +title DESC, +tn
  }
} {three-a three-c two-a two-b one-a one-c}  ;# verify same order after sorting
do_test 3.6c {
  db eval {
    EXPLAIN QUERY PLAN
    SELECT name FROM album CROSS JOIN track USING (aid) ORDER BY title DESC, tn
  }
} {~/ORDER BY/}  ;# inverted ASC/DESC is optimized out

# Ticket 5ed1772895bf3deeab78c5e3519b1da9165c541b (2013-06-04)
# Incorrect ORDER BY on an indexed JOIN
#
do_test 4.0 {
  db eval {
    CREATE TABLE t41(a INT UNIQUE NOT NULL, b INT NOT NULL);
    CREATE INDEX t41ba ON t41(b,a);
    CREATE TABLE t42(x INT NOT NULL REFERENCES t41(a), y INT NOT NULL);
    CREATE UNIQUE INDEX t42xy ON t42(x,y);
    INSERT INTO t41 VALUES(1,1),(3,1);
    INSERT INTO t42 VALUES(1,13),(1,15),(3,14),(3,16);
    
    SELECT b, y FROM t41 CROSS JOIN t42 ON x=a ORDER BY b, y;
  }
} {1 13 1 14 1 15 1 16}



finish_test

Added test/orderby5.test.



































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# 2013-06-14
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing that the optimizations that disable
# ORDER BY clauses work correctly
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix orderby5

# Generate test data for a join.  Verify that the join gets the
# correct answer.
#
do_execsql_test 1.1 {
  CREATE TABLE t1(a,b,c);
  CREATE INDEX t1bc ON t1(b,c);

  EXPLAIN QUERY PLAN
  SELECT DISTINCT a, b, c FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.2.1 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a, c, b FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.2.2 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a, c, b FROM t1 WHERE a='xyz' COLLATE nocase;
} {/B-TREE/}
do_execsql_test 1.2.3 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a COLLATE nocase, c, b FROM t1 WHERE a='xyz';
} {/B-TREE/}
do_execsql_test 1.2.4 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT a COLLATE nocase, c, b FROM t1 WHERE a='xyz' COLLATE nocase;
} {~/B-TREE/}
do_execsql_test 1.3 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT b, a, c FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.4 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT b, c, a FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.5 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, a, b FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.6 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE a=0;
} {~/B-TREE/}
do_execsql_test 1.7 {
  EXPLAIN QUERY PLAN
  SELECT DISTINCT c, b, a FROM t1 WHERE +a=0;
} {/B-TREE/}
do_execsql_test 2.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY a, b, c;
} {~/B-TREE/}
do_execsql_test 2.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE +a=0 ORDER BY a, b, c;
} {/B-TREE/}
do_execsql_test 2.3 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY b, a, c;
} {~/B-TREE/}
do_execsql_test 2.4 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY b, c, a;
} {~/B-TREE/}
do_execsql_test 2.5 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY a, c, b;
} {/B-TREE/}
do_execsql_test 2.6 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY c, a, b;
} {/B-TREE/}
do_execsql_test 2.7 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t1 WHERE a=0 ORDER BY c, b, a;
} {/B-TREE/}


finish_test

Changes to test/pager1.test.

2811
2812
2813
2814
2815
2816
2817
2818

do_test 43.3 {
  db eval { SELECT * FROM t3 }
  sqlite3_db_status db CACHE_MISS 0
} {0 1 0}

finish_test








<
2811
2812
2813
2814
2815
2816
2817


do_test 43.3 {
  db eval { SELECT * FROM t3 }
  sqlite3_db_status db CACHE_MISS 0
} {0 1 0}

finish_test

Changes to test/pagerfault.test.

1542
1543
1544
1545
1546
1547
1548
1549
  catch { db2 close }
}

sqlite3_shutdown
sqlite3_config_uri 0

finish_test








<
1542
1543
1544
1545
1546
1547
1548

  catch { db2 close }
}

sqlite3_shutdown
sqlite3_config_uri 0

finish_test

Changes to test/pagerfault2.test.

92
93
94
95
96
97
98
99
  execsql { INSERT INTO t1 VALUES (a_string(2000000), a_string(2500000)) }
} -test {
  faultsim_test_result {0 {}}
}

sqlite3_memdebug_vfs_oom_test 1
finish_test








<
92
93
94
95
96
97
98

  execsql { INSERT INTO t1 VALUES (a_string(2000000), a_string(2500000)) }
} -test {
  faultsim_test_result {0 {}}
}

sqlite3_memdebug_vfs_oom_test 1
finish_test

Changes to test/pagerfault3.test.

57
58
59
60
61
62
63
64
  }
} -test {
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test








<
57
58
59
60
61
62
63

  }
} -test {
  faultsim_test_result {0 {}} 
  faultsim_integrity_check
}

finish_test

Changes to test/permutations.test.

208
209
210
211
212
213
214












































































215
216
217
218
219
220
221
  sqlite3_shutdown
  install_malloc_faultsim 0
  sqlite3_initialize
  autoinstall_test_functions
} -shutdown {
  unset -nocomplain ::G(valgrind)
}













































































lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the coverage related test suites:
#
#   coverage-wal
#







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
  sqlite3_shutdown
  install_malloc_faultsim 0
  sqlite3_initialize
  autoinstall_test_functions
} -shutdown {
  unset -nocomplain ::G(valgrind)
}

test_suite "queryplanner" -prefix "" -description {
  Tests of the query planner and query optimizer
} -files {
  alter2.test alter3.test alter4.test alter.test analyze3.test
  analyze4.test analyze5.test analyze6.test analyze7.test analyze8.test
  analyze.test attach2.test attach3.test attach4.test
  attach.test autoinc.test autoindex1.test between.test cast.test
  check.test closure01.test coalesce.test collate1.test collate2.test
  collate3.test collate4.test collate5.test collate6.test collate7.test
  collate8.test collate9.test collateA.test colmeta.test colname.test
  conflict.test count.test coveridxscan.test createtab.test cse.test
  date.test dbstatus2.test dbstatus.test default.test delete2.test
  delete3.test delete.test descidx1.test descidx2.test descidx3.test
  distinctagg.test distinct.test e_createtable.test e_delete.test
  e_droptrigger.test e_dropview.test e_expr.test e_insert.test
  eqp.test e_reindex.test e_resolve.test e_select2.test e_select.test
  e_update.test exists.test expr.test fkey1.test fkey2.test fkey3.test
  fkey4.test fkey5.test func2.test func3.test func.test 
  in3.test in4.test in5.test index2.test index3.test
  index4.test index5.test indexedby.test index.test
  insert2.test insert3.test insert4.test insert5.test insert.test
  instr.test in.test intpkey.test join2.test join3.test join4.test
  join5.test join6.test join.test like2.test like.test limit.test
  minmax2.test minmax3.test minmax4.test minmax.test misc1.test misc2.test
  misc3.test misc4.test misc5.test misc6.test misc7.test orderby1.test
  orderby2.test orderby3.test orderby4.test randexpr1.test regexp1.test
  reindex.test rowhash.test rowid.test schema2.test schema3.test
  schema4.test schema5.test schema.test
  select1.test select2.test select3.test select4.test select5.test
  select6.test select7.test select8.test select9.test selectA.test
  selectB.test selectC.test selectD.test selectE.test sidedelete.test
  sort.test spellfix.test subquery2.test subquery.test subselect.test
  substr.test tkt-02a8e81d44.test tkt1435.test tkt1443.test tkt1444.test
  tkt1449.test tkt1473.test tkt1501.test tkt1512.test tkt1514.test
  tkt1536.test tkt1537.test tkt1567.test tkt1644.test tkt1667.test
  tkt1873.test tkt2141.test tkt2192.test tkt2213.test tkt2251.test
  tkt2285.test tkt2332.test tkt2339.test tkt2391.test tkt2409.test
  tkt2450.test tkt2565.test tkt2640.test tkt2643.test tkt2686.test
  tkt-26ff0c2d1e.test tkt2767.test tkt2817.test tkt2820.test tkt2822.test
  tkt2832.test tkt2854.test tkt2920.test tkt2927.test tkt2942.test
  tkt-2a5629202f.test tkt-2d1a5c67d.test tkt-2ea2425d34.test tkt3080.test
  tkt3093.test tkt3121.test tkt-31338dca7e.test tkt-313723c356.test
  tkt3201.test tkt3292.test tkt3298.test tkt3334.test tkt3346.test
  tkt3357.test tkt3419.test tkt3424.test tkt3442.test tkt3457.test
  tkt3461.test tkt3493.test tkt3508.test tkt3522.test tkt3527.test
  tkt3541.test tkt3554.test tkt3581.test tkt35xx.test tkt3630.test
  tkt3718.test tkt3731.test tkt3757.test tkt3761.test tkt3762.test
  tkt3773.test tkt3791.test tkt3793.test tkt3810.test tkt3824.test
  tkt3832.test tkt3838.test tkt3841.test tkt-385a5b56b9.test tkt3871.test
  tkt3879.test tkt-38cb5df375.test tkt3911.test tkt3918.test tkt3922.test
  tkt3929.test tkt3935.test tkt3992.test tkt3997.test tkt-3998683a16.test
  tkt-3a77c9714e.test tkt-3fe897352e.test tkt4018.test tkt-4a03edc4c8.test
  tkt-4dd95f6943.test tkt-54844eea3f.test tkt-5d863f876e.test
  tkt-5e10420e8d.test tkt-5ee23731f.test tkt-6bfb98dfc0.test
  tkt-752e1646fc.test tkt-78e04e52ea.test tkt-7a31705a7e6.test
  tkt-7bbfb7d442.test tkt-80ba201079.test tkt-80e031a00f.test
  tkt-8454a207b9.test tkt-91e2e8ba6f.test tkt-94c04eaadb.test
  tkt-9d68c883.test tkt-a7b7803e.test tkt-b1d3a2e531.test
  tkt-b351d95f9.test tkt-b72787b1.test tkt-bd484a090c.test
  tkt-bdc6bbbb38.test tkt-c48d99d690.test tkt-cbd054fa6b.test
  tkt-d11f09d36e.test tkt-d635236375.test tkt-d82e3f3721.test
  tkt-f3e5abed55.test tkt-f777251dc7a.test tkt-f7b4edec.test
  tkt-f973c7ac31.test tkt-fa7bf5ec.test tkt-fc62af4523.test
  tkt-fc7bd6358f.test trigger1.test trigger2.test trigger3.test
  trigger4.test trigger5.test trigger6.test trigger7.test trigger8.test
  trigger9.test triggerA.test triggerB.test triggerC.test triggerD.test
  types2.test types3.test types.test unique.test unordered.test
  update.test view.test vtab1.test vtab2.test vtab3.test vtab4.test
  vtab5.test vtab6.test vtab7.test vtab8.test vtab9.test vtab_alter.test
  vtabA.test vtabB.test vtabC.test vtabD.test vtabE.test
  vtabF.test where2.test where3.test where4.test where5.test where6.test
  where7.test where8m.test where8.test where9.test whereA.test whereB.test
  whereC.test whereD.test whereE.test whereF.test wherelimit.test
  where.test
}

lappend ::testsuitelist xxx
#-------------------------------------------------------------------------
# Define the coverage related test suites:
#
#   coverage-wal
#

Changes to test/securedel2.test.

88
89
90
91
92
93
94
95
  for {set i 2} {$i <= 850} {incr i 5} {
    incr n [detect_blob {} $i]
  }
  set n
} {0}

finish_test








<
88
89
90
91
92
93
94

  for {set i 2} {$i <= 850} {incr i 5} {
    incr n [detect_blob {} $i]
  }
  set n
} {0}

finish_test

Changes to test/shared8.test.

106
107
108
109
110
111
112
113
  catchsql { SELECT * FROM v1 } db4
} {1 {no such table: v1}}


foreach db {db1 db2 db3 db4} { catch { $db close } }
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
106
107
108
109
110
111
112

  catchsql { SELECT * FROM v1 } db4
} {1 {no such table: v1}}


foreach db {db1 db2 db3 db4} { catch { $db close } }
sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/sharedlock.test.

48
49
50
51
52
53
54
55
} {1 one 2 two 3 three}

db close
db2 close

sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
48
49
50
51
52
53
54

} {1 one 2 two 3 three}

db close
db2 close

sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/subquery.test.

237
238
239
240
241
242
243
244
245



246
247
248
249
250
251
252
  execsql {
    CREATE INDEX t4i ON t4(x);
    SELECT * FROM t4 WHERE x IN (SELECT a FROM t3);
  }
} {10.0}
do_test subquery-2.5.3.2 {
  # Verify that the t4i index was not used in the previous query
  set ::sqlite_query_plan
} {t4 {}}



do_test subquery-2.5.4 {
  execsql {
    DROP TABLE t3;
    DROP TABLE t4;
  }
} {}








|
|
>
>
>







237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
  execsql {
    CREATE INDEX t4i ON t4(x);
    SELECT * FROM t4 WHERE x IN (SELECT a FROM t3);
  }
} {10.0}
do_test subquery-2.5.3.2 {
  # Verify that the t4i index was not used in the previous query
  execsql {
    EXPLAIN QUERY PLAN
    SELECT * FROM t4 WHERE x IN (SELECT a FROM t3);
  }
} {/SCAN TABLE t4 /}
do_test subquery-2.5.4 {
  execsql {
    DROP TABLE t3;
    DROP TABLE t4;
  }
} {}

Changes to test/tester.tcl.

547
548
549
550
551
552
553



554
555
556
557
558
559










560
561
562
563
564
565
566
...
789
790
791
792
793
794
795














796

797

798



799
800
801
802
803
804
805

  if {![info exists ::G(match)] || [string match $::G(match) $name]} {
    if {[catch {uplevel #0 "$cmd;\n"} result]} {
      puts "\nError: $result"
      fail_test $name
    } else {
      if {[regexp {^~?/.*/$} $expected]} {



        if {[string index $expected 0]=="~"} {
          set re [string map {# {[-0-9.]+}} [string range $expected 2 end-1]]
          set ok [expr {![regexp $re $result]}]
        } else {
          set re [string map {# {[-0-9.]+}} [string range $expected 1 end-1]]
          set ok [regexp $re $result]










        }
      } else {
        set ok [expr {[string compare $result $expected]==0}]
      }
      if {!$ok} {
        # if {![info exists ::testprefix] || $::testprefix eq ""} {
        #   error "no test prefix"
................................................................................
  db close
  sqlite3_reset_auto_extension

  sqlite3_soft_heap_limit 0
  set nTest [incr_ntest]
  set nErr [set_test_counter errors]















  puts "$nErr errors out of $nTest tests"

  if {$nErr>0} {

    puts "Failures on these tests: [set_test_counter fail_list]"



  }
  foreach warning [set_test_counter warn_list] {
    puts "Warning: $warning"
  }
  run_thread_tests 1
  if {[llength $omitList]>0} {
    puts "Omitted test cases:"







>
>
>






>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
>
|
>
>
>







547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
...
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

  if {![info exists ::G(match)] || [string match $::G(match) $name]} {
    if {[catch {uplevel #0 "$cmd;\n"} result]} {
      puts "\nError: $result"
      fail_test $name
    } else {
      if {[regexp {^~?/.*/$} $expected]} {
        # "expected" is of the form "/PATTERN/" then the result if correct if
        # regular expression PATTERN matches the result.  "~/PATTERN/" means
        # the regular expression must not match.
        if {[string index $expected 0]=="~"} {
          set re [string map {# {[-0-9.]+}} [string range $expected 2 end-1]]
          set ok [expr {![regexp $re $result]}]
        } else {
          set re [string map {# {[-0-9.]+}} [string range $expected 1 end-1]]
          set ok [regexp $re $result]
        }
      } elseif {[regexp {^~?\*.*\*$} $expected]} {
        # "expected" is of the form "*GLOB*" then the result if correct if
        # glob pattern GLOB matches the result.  "~/GLOB/" means
        # the glob must not match.
        if {[string index $expected 0]=="~"} {
          set e [string range $expected 1 end]
          set ok [expr {![string match $e $result]}]
        } else {
          set ok [string match $expected $result]
        }
      } else {
        set ok [expr {[string compare $result $expected]==0}]
      }
      if {!$ok} {
        # if {![info exists ::testprefix] || $::testprefix eq ""} {
        #   error "no test prefix"
................................................................................
  db close
  sqlite3_reset_auto_extension

  sqlite3_soft_heap_limit 0
  set nTest [incr_ntest]
  set nErr [set_test_counter errors]

  set nKnown 0
  if {[file readable known-problems.txt]} {
    set fd [open known-problems.txt]
    set content [read $fd]
    close $fd
    foreach x $content {set known_error($x) 1}
    foreach x [set_test_counter fail_list] {
      if {[info exists known_error($x)]} {incr nKnown}
    }
  }
  if {$nKnown>0} {
    puts "[expr {$nErr-$nKnown}] new errors and $nKnown known errors\
         out of $nTest tests"
  } else {
    puts "$nErr errors out of $nTest tests"
  }
  if {$nErr>$nKnown} {
    puts -nonewline "Failures on these tests:"
    foreach x [set_test_counter fail_list] {
      if {![info exists known_error($x)]} {puts -nonewline " $x"}
    }
    puts ""
  }
  foreach warning [set_test_counter warn_list] {
    puts "Warning: $warning"
  }
  run_thread_tests 1
  if {[llength $omitList]>0} {
    puts "Omitted test cases:"

Changes to test/tkt-2a5629202f.test.

42
43
44
45
46
47
48






49
50
51
52
53
54
55
..
64
65
66
67
68
69
70
71
} {null/four null/three a/one b/two}

do_execsql_test 1.3 {
  CREATE UNIQUE INDEX i1 ON t8(b);
  SELECT coalesce(b, 'null') || '/' || c FROM t8 x ORDER BY x.b, x.c
} {null/four null/three a/one b/two}







#-------------------------------------------------------------------------
#

do_execsql_test 2.1 {
  CREATE TABLE t2(a, b NOT NULL, c);
  CREATE UNIQUE INDEX t2ab ON t2(a, b);
  CREATE UNIQUE INDEX t2ba ON t2(b, a);
................................................................................
} {sort}

do_test 2.4 {
  cksort { SELECT * FROM t2 WHERE a IS NULL ORDER BY a, b, c }
} {sort}

finish_test








>
>
>
>
>
>







 







<
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
..
70
71
72
73
74
75
76

} {null/four null/three a/one b/two}

do_execsql_test 1.3 {
  CREATE UNIQUE INDEX i1 ON t8(b);
  SELECT coalesce(b, 'null') || '/' || c FROM t8 x ORDER BY x.b, x.c
} {null/four null/three a/one b/two}

do_execsql_test 1.4 {
  DROP INDEX i1;
  CREATE UNIQUE INDEX i1 ON t8(b, c);
  SELECT coalesce(b, 'null') || '/' || c FROM t8 x ORDER BY x.b, x.c
} {null/four null/three a/one b/two}

#-------------------------------------------------------------------------
#

do_execsql_test 2.1 {
  CREATE TABLE t2(a, b NOT NULL, c);
  CREATE UNIQUE INDEX t2ab ON t2(a, b);
  CREATE UNIQUE INDEX t2ba ON t2(b, a);
................................................................................
} {sort}

do_test 2.4 {
  cksort { SELECT * FROM t2 WHERE a IS NULL ORDER BY a, b, c }
} {sort}

finish_test

Changes to test/tkt-385a5b56b9.test.

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2x (~1000000 rows)}
}

do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2y (~1000000 rows)}
}

do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?) (~1 rows)}
}

do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x=?) (~1 rows)}
}

finish_test







|



|



|



|



31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
do_execsql_test 2.0 {
  CREATE TABLE t2(x, y NOT NULL);
  CREATE UNIQUE INDEX t2x ON t2(x);
  CREATE UNIQUE INDEX t2y ON t2(y);
}

do_eqp_test 2.1 { SELECT DISTINCT x FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2x}
}

do_eqp_test 2.2 { SELECT DISTINCT y FROM t2 } {
  0 0 0 {SCAN TABLE t2 USING COVERING INDEX t2y}
}

do_eqp_test 2.3 { SELECT DISTINCT x, y FROM t2 WHERE y=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2y (y=?)}
}

do_eqp_test 2.4 { SELECT DISTINCT x, y FROM t2 WHERE x=10 } {
  0 0 0 {SEARCH TABLE t2 USING INDEX t2x (x=?)}
}

finish_test

Changes to test/tkt-3a77c9714e.test.

66
67
68
69
70
71
72
73
        WHERE Connected=SrcWord LIMIT 1
      )
    )
} {FACTORING FACTOR SWIMMING SWIMM} 


finish_test








<
66
67
68
69
70
71
72

        WHERE Connected=SrcWord LIMIT 1
      )
    )
} {FACTORING FACTOR SWIMMING SWIMM} 


finish_test

Changes to test/tkt-3fe897352e.test.

Changes to test/tkt-78e04e52ea.test.

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT * FROM "" WHERE "" LIKE 'abc%';
  }
} {0 0 0 {SCAN TABLE  USING COVERING INDEX i1 (~500000 rows)}}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX  (x=?) (~10 rows)}}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 0 {SCAN TABLE t2 (~100000 rows)}}

finish_test







|












|





|


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    CREATE INDEX i1 ON ""("" COLLATE nocase);
  }
} {}
do_test tkt-78e04-1.4 {
  execsql {
    EXPLAIN QUERY PLAN SELECT * FROM "" WHERE "" LIKE 'abc%';
  }
} {0 0 0 {SCAN TABLE  USING COVERING INDEX i1}}
do_test tkt-78e04-1.5 {
  execsql {
    DROP TABLE "";
    SELECT name FROM sqlite_master;
  }
} {t2}

do_test tkt-78e04-2.1 {
  execsql {
    CREATE INDEX "" ON t2(x);
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=5;
  }
} {0 0 0 {SEARCH TABLE t2 USING COVERING INDEX  (x=?)}}
do_test tkt-78e04-2.2 {
  execsql {
    DROP INDEX "";
    EXPLAIN QUERY PLAN SELECT * FROM t2 WHERE x=2;
  }
} {0 0 0 {SCAN TABLE t2}}

finish_test

Changes to test/tkt-7a31705a7e6.test.

19
20
21
22
23
24
25
26

do_execsql_test tkt-7a31705a7e6-1.1 {
  CREATE TABLE t1 (a INTEGER PRIMARY KEY);
  CREATE TABLE t2 (a INTEGER PRIMARY KEY, b INTEGER);
  CREATE TABLE t2x (b INTEGER PRIMARY KEY);
  SELECT t1.a FROM ((t1 JOIN t2 ON t1.a=t2.a) AS x JOIN t2x ON x.b=t2x.b) as y;
} {}








<
19
20
21
22
23
24
25


do_execsql_test tkt-7a31705a7e6-1.1 {
  CREATE TABLE t1 (a INTEGER PRIMARY KEY);
  CREATE TABLE t2 (a INTEGER PRIMARY KEY, b INTEGER);
  CREATE TABLE t2x (b INTEGER PRIMARY KEY);
  SELECT t1.a FROM ((t1 JOIN t2 ON t1.a=t2.a) AS x JOIN t2x ON x.b=t2x.b) as y;
} {}

Changes to test/tkt-7bbfb7d442.test.

148
149
150
151
152
153
154
155
156
do_execsql_test 2.3 {
  SELECT CASE WHEN DeliveredQty=10 THEN "TEST PASSED!" ELSE "TEST FAILED!" END 
  FROM InventoryControl WHERE SKU=31; 
} {{TEST PASSED!}}


finish_test









<
<
148
149
150
151
152
153
154


do_execsql_test 2.3 {
  SELECT CASE WHEN DeliveredQty=10 THEN "TEST PASSED!" ELSE "TEST FAILED!" END 
  FROM InventoryControl WHERE SKU=31; 
} {{TEST PASSED!}}


finish_test


Changes to test/tkt-c48d99d690.test.

19
20
21
22
23
24
25
26
do_test 1.1 {
  execsql { INSERT INTO t2 SELECT * FROM t1 }
} {4}

do_test 1.2 { execsql VACUUM } {}

finish_test








<
19
20
21
22
23
24
25

do_test 1.1 {
  execsql { INSERT INTO t2 SELECT * FROM t1 }
} {4}

do_test 1.2 { execsql VACUUM } {}

finish_test

Changes to test/tkt-d11f09d36e.test.

55
56
57
58
59
60
61
62
  }
} {}
do_test tkt-d11f09d36e.5 {
  execsql { PRAGMA integrity_check }
} {ok}

finish_test








<
55
56
57
58
59
60
61

  }
} {}
do_test tkt-d11f09d36e.5 {
  execsql { PRAGMA integrity_check }
} {ok}

finish_test

Changes to test/tkt-f3e5abed55.test.

110
111
112
113
114
115
116
117
      SELECT * FROM t2;
    }
  } {1 2 3 4 1 2 3 4}
}


finish_test








<
110
111
112
113
114
115
116

      SELECT * FROM t2;
    }
  } {1 2 3 4 1 2 3 4}
}


finish_test

Changes to test/tkt-f973c7ac31.test.

80
81
82
83
84
85
86
87
      SELECT * FROM t WHERE c1 = 5 AND c2>'0' AND c2<='5' ORDER BY c2 ASC 
    }
  } {5 4 5 5}
} 


finish_test








<
80
81
82
83
84
85
86

      SELECT * FROM t WHERE c1 = 5 AND c2>'0' AND c2<='5' ORDER BY c2 ASC 
    }
  } {5 4 5 5}
} 


finish_test

Changes to test/tkt3442.test.

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#
ifcapable explain {
  do_test tkt3442-1.2 {
    EQP { SELECT node FROM listhash WHERE id='5000' LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?) (~1 rows)}}
  do_test tkt3442-1.3 {
    EQP { SELECT node FROM listhash WHERE id="5000" LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?) (~1 rows)}}
}


# Some extra tests testing other permutations of 5000.
#
ifcapable explain {
  do_test tkt3442-1.4 {
    EQP { SELECT node FROM listhash WHERE id=5000 LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?) (~1 rows)}}
}
do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

finish_test







|


|








|








45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# These tests perform an EXPLAIN QUERY PLAN on both versions of the 
# SELECT referenced in ticket #3442 (both '5000' and "5000") 
# and verify that the query plan is the same.
#
ifcapable explain {
  do_test tkt3442-1.2 {
    EQP { SELECT node FROM listhash WHERE id='5000' LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
  do_test tkt3442-1.3 {
    EQP { SELECT node FROM listhash WHERE id="5000" LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}


# Some extra tests testing other permutations of 5000.
#
ifcapable explain {
  do_test tkt3442-1.4 {
    EQP { SELECT node FROM listhash WHERE id=5000 LIMIT 1; }
  } {0 0 0 {SEARCH TABLE listhash USING INDEX ididx (id=?)}}
}
do_test tkt3442-1.5 {
  catchsql {
    SELECT node FROM listhash WHERE id=[5000] LIMIT 1;
  }
} {1 {no such column: 5000}}

finish_test

Changes to test/tkt3918.test.

53
54
55
56
57
58
59
60
# page 4 from the database free-list. Bug 3918 caused sqlite to
# incorrectly report corruption here.
do_test tkt3918.5 {
  execsql { CREATE TABLE t2(a, b) }
} {}

finish_test








<
53
54
55
56
57
58
59

# page 4 from the database free-list. Bug 3918 caused sqlite to
# incorrectly report corruption here.
do_test tkt3918.5 {
  execsql { CREATE TABLE t2(a, b) }
} {}

finish_test

Changes to test/tkt3929.test.

46
47
48
49
50
51
52
53
  for {set i 3} {$i < 100} {incr i} {
    execsql { INSERT INTO t1(a) VALUES($i) }
  }
} {}

integrity_check tkt3930-1.3
finish_test








<
46
47
48
49
50
51
52

  for {set i 3} {$i < 100} {incr i} {
    execsql { INSERT INTO t1(a) VALUES($i) }
  }
} {}

integrity_check tkt3930-1.3
finish_test

Changes to test/unordered.test.

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    2   "SELECT * FROM t1 WHERE a >?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?) (~32 rows)}}
        {0 0 0 {SCAN TABLE t1 (~42 rows)}}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)} 
         0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    4   "SELECT max(a) FROM t1"
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (~1 rows)}}
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1 (~1 rows)}}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1 (~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}}

    6   "SELECT * FROM t1 WHERE a = ?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?) (~1 rows)}}
    7   "SELECT count(*) FROM t1"
        {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1(~128 rows)}}
        {0 0 0 {SCAN TABLE t1 (~128 rows)}}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test







|
|

|
|

|
|


|
|

|
|


|
|

|
|






36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
  if {$idxmode == "unordered"} {
    execsql { UPDATE sqlite_stat1 SET stat = stat || ' unordered' }
  }
  db close
  sqlite3 db test.db
  foreach {tn sql r(ordered) r(unordered)} {
    1   "SELECT * FROM t1 ORDER BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    2   "SELECT * FROM t1 WHERE a >?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a>?)}}
        {0 0 0 {SCAN TABLE t1}}
    3   "SELECT * FROM t1 WHERE a = ? ORDER BY rowid"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)} 
         0 0 0 {USE TEMP B-TREE FOR ORDER BY}}
    4   "SELECT max(a) FROM t1"
        {0 0 0 {SEARCH TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SEARCH TABLE t1}}
    5   "SELECT group_concat(b) FROM t1 GROUP BY a"
        {0 0 0 {SCAN TABLE t1 USING INDEX i1}}
        {0 0 0 {SCAN TABLE t1} 0 0 0 {USE TEMP B-TREE FOR GROUP BY}}

    6   "SELECT * FROM t1 WHERE a = ?"
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
        {0 0 0 {SEARCH TABLE t1 USING INDEX i1 (a=?)}}
    7   "SELECT count(*) FROM t1"
        {0 0 0 {SCAN TABLE t1 USING COVERING INDEX i1}}
        {0 0 0 {SCAN TABLE t1}}
  } {
    do_eqp_test 1.$idxmode.$tn $sql $r($idxmode)
  }
}

finish_test

Changes to test/veryquick.test.

12
13
14
15
16
17
18
19

set testdir [file dirname $argv0]
source $testdir/permutations.test

run_test_suite veryquick

finish_test








<
12
13
14
15
16
17
18


set testdir [file dirname $argv0]
source $testdir/permutations.test

run_test_suite veryquick

finish_test

Changes to test/vtab1.test.

614
615
616
617
618
619
620

621
622
623
624
625
626
627
628
629
....
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
} [list \
  1 red green 2 hearts diamonds  \
  2 blue black 2 hearts diamonds \
]
do_test vtab1-5-7 {
  filter $::echo_module
} [list \

  xFilter {SELECT rowid, * FROM 't2' WHERE d = ?} \
  xFilter {SELECT rowid, * FROM 't1'}             \
]

execsql {
  DROP TABLE t1;
  DROP TABLE t2;
  DROP TABLE et1;
  DROP TABLE et2;
................................................................................
} {}
do_test vtab1-14.015 {
  execsql {SELECT * FROM echo_c WHERE +a NOT IN (1,8,'x',NULL,15,24)}
} {}



do_test vtab1-14.1 {
  execsql { DELETE FROM c }
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid IN (1, 2, 3) }
  set echo_module
} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE rowid = .} xFilter {SELECT rowid, . FROM 'c' WHERE rowid = .} 1/}

do_test vtab1-14.2 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE rowid = ?} xFilter {SELECT rowid, * FROM 'c' WHERE rowid = ?} 1]

do_test vtab1-14.3 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE a = ?} xFilter {SELECT rowid, * FROM 'c' WHERE a = ?} 1]

do_test vtab1-14.4 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a IN (1, 2) }
  set echo_module
} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE a = .} xFilter {SELECT rowid, . FROM 'c' WHERE a = .} 1/}

do_test vtab1-15.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE VIRTUAL TABLE echo_t1 USING echo(t1);
  }
} {}







>

|







 







|
|
|
|
|
|













|
|
|
|
|







614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
....
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
} [list \
  1 red green 2 hearts diamonds  \
  2 blue black 2 hearts diamonds \
]
do_test vtab1-5-7 {
  filter $::echo_module
} [list \
  xFilter {SELECT rowid, * FROM 't1'}             \
  xFilter {SELECT rowid, * FROM 't2' WHERE d = ?} \
  xFilter {SELECT rowid, * FROM 't2' WHERE d = ?} \
]

execsql {
  DROP TABLE t1;
  DROP TABLE t2;
  DROP TABLE et1;
  DROP TABLE et2;
................................................................................
} {}
do_test vtab1-14.015 {
  execsql {SELECT * FROM echo_c WHERE +a NOT IN (1,8,'x',NULL,15,24)}
} {}



#do_test vtab1-14.1 {
#  execsql { DELETE FROM c }
#  set echo_module ""
#  execsql { SELECT * FROM echo_c WHERE rowid IN (1, 2, 3) }
#  set echo_module
#} {/.*xBestIndex {SELECT rowid, . FROM 'c' WHERE rowid = .} xFilter {SELECT rowid, . FROM 'c'} 1/}

do_test vtab1-14.2 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE rowid = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE rowid = ?} xFilter {SELECT rowid, * FROM 'c' WHERE rowid = ?} 1]

do_test vtab1-14.3 {
  set echo_module ""
  execsql { SELECT * FROM echo_c WHERE a = 1 }
  set echo_module
} [list xBestIndex {SELECT rowid, * FROM 'c' WHERE a = ?} xFilter {SELECT rowid, * FROM 'c' WHERE a = ?} 1]

#do_test vtab1-14.4 {
#  set echo_module ""
#  execsql { SELECT * FROM echo_c WHERE a IN (1, 2) }
#  set echo_module
#} {/xBestIndex {SELECT rowid, . FROM 'c' WHERE a = .} xFilter {SELECT rowid, . FROM 'c' WHERE a = .} 1/}

do_test vtab1-15.1 {
  execsql {
    CREATE TABLE t1(a, b, c);
    CREATE VIRTUAL TABLE echo_t1 USING echo(t1);
  }
} {}

Changes to test/vtab6.test.

557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
set ::echo_module_ignore_usable 1
db cache flush

do_test vtab6-11.4.1 {
  catchsql {
    SELECT a, b, c FROM ab NATURAL JOIN bc;
  }
} {1 {table bc: xBestIndex returned an invalid plan}}
do_test vtab6-11.4.2 {
  catchsql {
    SELECT a, b, c FROM bc NATURAL JOIN ab;
  }
} {1 {table ab: xBestIndex returned an invalid plan}}

unset ::echo_module_ignore_usable

finish_test







|




|




557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
set ::echo_module_ignore_usable 1
db cache flush

do_test vtab6-11.4.1 {
  catchsql {
    SELECT a, b, c FROM ab NATURAL JOIN bc;
  }
} {1 {table ab: xBestIndex returned an invalid plan}}
do_test vtab6-11.4.2 {
  catchsql {
    SELECT a, b, c FROM bc NATURAL JOIN ab;
  }
} {1 {table bc: xBestIndex returned an invalid plan}}

unset ::echo_module_ignore_usable

finish_test

Changes to test/wal8.test.

84
85
86
87
88
89
90
91

do_execsql_test 3.1 {
  PRAGMA page_size = 4096;
  SELECT name FROM sqlite_master;
} {t1}

finish_test








<
84
85
86
87
88
89
90


do_execsql_test 3.1 {
  PRAGMA page_size = 4096;
  SELECT name FROM sqlite_master;
} {t1}

finish_test

Changes to test/walcksum.test.

386
387
388
389
390
391
392
393
      db2 close
    }
    set FAIL
  } {0}
}
  
finish_test








<
386
387
388
389
390
391
392

      db2 close
    }
    set FAIL
  } {0}
}
  
finish_test

Changes to test/walcrash.test.

289
290
291
292
293
294
295
296
  do_test walcrash-7.$i.3 { execsql { PRAGMA main.integrity_check } } {ok}
  do_test walcrash-7.$i.4 { execsql { PRAGMA main.journal_mode } } {wal}

  db close
}

finish_test








<
289
290
291
292
293
294
295

  do_test walcrash-7.$i.3 { execsql { PRAGMA main.integrity_check } } {ok}
  do_test walcrash-7.$i.4 { execsql { PRAGMA main.journal_mode } } {wal}

  db close
}

finish_test

Changes to test/walcrash2.test.

92
93
94
95
96
97
98
99
do_test walcrash2-1.3 {
  sqlite3 db2 test.db
  execsql { SELECT count(*) FROM t1 } db2
} {0}
catch { db2 close }

finish_test








<
92
93
94
95
96
97
98

do_test walcrash2-1.3 {
  sqlite3 db2 test.db
  execsql { SELECT count(*) FROM t1 } db2
} {0}
catch { db2 close }

finish_test

Changes to test/walcrash3.test.

122
123
124
125
126
127
128
129
  do_test 2.$i.2 {
    sqlite3 db test.db
    execsql { PRAGMA integrity_check } 
  } {ok}
}

finish_test








<
122
123
124
125
126
127
128

  do_test 2.$i.2 {
    sqlite3 db test.db
    execsql { PRAGMA integrity_check } 
  } {ok}
}

finish_test

Changes to test/walro.test.

287
288
289
290
291
292
293
294
295
  do_test 2.1.5 {
    code1 { db close }
    code1 { tv delete }
  } {}
}

finish_test









<
<
287
288
289
290
291
292
293


  do_test 2.1.5 {
    code1 { db close }
    code1 { tv delete }
  } {}
}

finish_test


Changes to test/walshared.test.

56
57
58
59
60
61
62
63
  execsql { PRAGMA integrity_check } db2
} {ok}



sqlite3_enable_shared_cache $::enable_shared_cache
finish_test








<
56
57
58
59
60
61
62

  execsql { PRAGMA integrity_check } db2
} {ok}



sqlite3_enable_shared_cache $::enable_shared_cache
finish_test

Changes to test/where.test.

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
...
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
# "sqlite_search_count" which tallys the number of executions of MoveTo
# and Next operators in the VDBE.  By verifing that the search count is
# small we can be assured that indices are being used properly.
#
do_test where-1.1.1 {
  count {SELECT x, y, w FROM t1 WHERE w=10}
} {3 121 10 3}
do_test where-1.1.2 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.1.3 {
  db status step
} {0}
do_test where-1.1.4 {
  db eval {SELECT x, y, w FROM t1 WHERE +w=10}
} {3 121 10}
do_test where-1.1.5 {
  db status step
} {99}
do_test where-1.1.6 {
  set sqlite_query_plan
} {t1 {}}
do_test where-1.1.7 {
  count {SELECT x, y, w AS abc FROM t1 WHERE abc=10}
} {3 121 10 3}
do_test where-1.1.8 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.1.9 {
  db status step
} {0}
do_test where-1.2.1 {
  count {SELECT x, y, w FROM t1 WHERE w=11}
} {3 144 11 3}
do_test where-1.2.2 {
................................................................................
} {3 144 11 3}
do_test where-1.3.2 {
  count {SELECT x, y, w AS abc FROM t1 WHERE 11=abc}
} {3 144 11 3}
do_test where-1.4.1 {
  count {SELECT w, x, y FROM t1 WHERE 11=w AND x>2}
} {11 3 144 3}
do_test where-1.4.2 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.4.3 {
  count {SELECT w AS a, x AS b, y FROM t1 WHERE 11=a AND b>2}
} {11 3 144 3}
do_test where-1.4.4 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.5 {
  count {SELECT x, y FROM t1 WHERE y<200 AND w=11 AND x>2}
} {3 144 3}
do_test where-1.5.2 {
  set sqlite_query_plan
} {t1 i1w}
do_test where-1.6 {
  count {SELECT x, y FROM t1 WHERE y<200 AND x>2 AND w=11}
} {3 144 3}
do_test where-1.7 {
  count {SELECT x, y FROM t1 WHERE w=11 AND y<200 AND x>2}
} {3 144 3}
do_test where-1.8 {
  count {SELECT x, y FROM t1 WHERE w>10 AND y=144 AND x=3}
} {3 144 3}
do_test where-1.8.2 {
  set sqlite_query_plan
} {t1 i1xy}
do_test where-1.8.3 {
  count {SELECT x, y FROM t1 WHERE y=144 AND x=3}
  set sqlite_query_plan
} {{} i1xy}
do_test where-1.9 {
  count {SELECT x, y FROM t1 WHERE y=144 AND w>10 AND x=3}
} {3 144 3}
do_test where-1.10 {
  count {SELECT x, y FROM t1 WHERE x=3 AND w>=10 AND y=121}
} {3 121 3}
do_test where-1.11 {
................................................................................
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c DESC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.7 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c,a LIMIT 3
  }
} {1 100 4 sort}
do_test where-6.9.8 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a DESC, c ASC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.9 {
  cksort {







|
|
|









|
|
|



|
|
|







 







|
|
|



|
|
|



|
|
|









|
|
|
|
|
|
<







 







|







61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
...
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

137
138
139
140
141
142
143
...
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# "sqlite_search_count" which tallys the number of executions of MoveTo
# and Next operators in the VDBE.  By verifing that the search count is
# small we can be assured that indices are being used properly.
#
do_test where-1.1.1 {
  count {SELECT x, y, w FROM t1 WHERE w=10}
} {3 121 10 3}
do_eqp_test where-1.1.2 {
  SELECT x, y, w FROM t1 WHERE w=10
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.1.3 {
  db status step
} {0}
do_test where-1.1.4 {
  db eval {SELECT x, y, w FROM t1 WHERE +w=10}
} {3 121 10}
do_test where-1.1.5 {
  db status step
} {99}
do_eqp_test where-1.1.6 {
  SELECT x, y, w FROM t1 WHERE +w=10
} {*SCAN TABLE t1*}
do_test where-1.1.7 {
  count {SELECT x, y, w AS abc FROM t1 WHERE abc=10}
} {3 121 10 3}
do_eqp_test where-1.1.8 {
  SELECT x, y, w AS abc FROM t1 WHERE abc=10
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.1.9 {
  db status step
} {0}
do_test where-1.2.1 {
  count {SELECT x, y, w FROM t1 WHERE w=11}
} {3 144 11 3}
do_test where-1.2.2 {
................................................................................
} {3 144 11 3}
do_test where-1.3.2 {
  count {SELECT x, y, w AS abc FROM t1 WHERE 11=abc}
} {3 144 11 3}
do_test where-1.4.1 {
  count {SELECT w, x, y FROM t1 WHERE 11=w AND x>2}
} {11 3 144 3}
do_eqp_test where-1.4.2 {
  SELECT w, x, y FROM t1 WHERE 11=w AND x>2
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.4.3 {
  count {SELECT w AS a, x AS b, y FROM t1 WHERE 11=a AND b>2}
} {11 3 144 3}
do_eqp_test where-1.4.4 {
  SELECT w AS a, x AS b, y FROM t1 WHERE 11=a AND b>2
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.5 {
  count {SELECT x, y FROM t1 WHERE y<200 AND w=11 AND x>2}
} {3 144 3}
do_eqp_test where-1.5.2 {
  SELECT x, y FROM t1 WHERE y<200 AND w=11 AND x>2
} {*SEARCH TABLE t1 USING INDEX i1w (w=?)*}
do_test where-1.6 {
  count {SELECT x, y FROM t1 WHERE y<200 AND x>2 AND w=11}
} {3 144 3}
do_test where-1.7 {
  count {SELECT x, y FROM t1 WHERE w=11 AND y<200 AND x>2}
} {3 144 3}
do_test where-1.8 {
  count {SELECT x, y FROM t1 WHERE w>10 AND y=144 AND x=3}
} {3 144 3}
do_eqp_test where-1.8.2 {
  SELECT x, y FROM t1 WHERE w>10 AND y=144 AND x=3
} {*SEARCH TABLE t1 USING INDEX i1xy (x=? AND y=?)*}
do_eqp_test where-1.8.3 {
  SELECT x, y FROM t1 WHERE y=144 AND x=3
} {*SEARCH TABLE t1 USING COVERING INDEX i1xy (x=? AND y=?)*}

do_test where-1.9 {
  count {SELECT x, y FROM t1 WHERE y=144 AND w>10 AND x=3}
} {3 144 3}
do_test where-1.10 {
  count {SELECT x, y FROM t1 WHERE x=3 AND w>=10 AND y=121}
} {3 121 3}
do_test where-1.11 {
................................................................................
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c DESC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.7 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY c,a LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.8 {
  cksort {
    SELECT * FROM t3 WHERE a=1 AND c>0 ORDER BY a DESC, c ASC LIMIT 3
  }
} {1 100 4 nosort}
do_test where-6.9.9 {
  cksort {

Changes to test/where2.test.

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76










77
78
79
80
81
82
83
...
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
...
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
  if {[db status sort]} {set x sort} {set x nosort}
  lappend data $x
  return $data
}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  return [concat $data $::sqlite_query_plan]










}


# Prefer a UNIQUE index over another index.
#
do_test where2-1.1 {
  queryplan {
................................................................................
  }
} [list 6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 $::idx]

do_test where2-6.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 OR 6=+w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 {}}
do_test where2-6.4 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR +w=100 OR 6=w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 {}}

set ::idx {}
ifcapable subquery {set ::idx i1zyx}
do_test where2-6.5 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (a.y=b.z OR b.z=10)
................................................................................
  queryplan {
    -- Because a is type TEXT and b is type INTEGER, both a and b
    -- will attempt to convert to NUMERIC before the comparison.
    -- They will thus compare equal.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b;
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.9 {
  queryplan {
    -- The + operator removes affinity from the rhs.  No conversions
    -- occur and the comparison is false.  The result is an empty set.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b;
  }
} {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
do_test where2-6.9.2 {
  # The same thing but with the expression flipped around.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a
  }
} {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
do_test where2-6.10 {
  queryplan {
    -- Use + on both sides of the comparison to disable indices
    -- completely.  Make sure we get the same result.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +a=+b;
  }
} {nosort t2249b {} t2249a {}}
do_test where2-6.11 {
  # This will not attempt the OR optimization because of the a=b
  # comparison.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b OR a='hello';
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.11.2 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE b=a OR a='hello';
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.11.3 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE 'hello'=a OR b=a;
  }
} {123 0123 nosort t2249b {} t2249a {}}
do_test where2-6.11.4 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR b=a;
  }
} {123 0123 nosort t2249b {} t2249a {}}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.12 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR a='hello';
    }
  } {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.12.2 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR +b=a;
    }
  } {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.12.3 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a OR a='hello';
    }
  } {nosort t2249b {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.13 {
    # The addition of +a on the second term disabled the OR optimization.
    # But we should still get the same empty-set result as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR +a='hello';
    }
  } {nosort t2249b {} t2249a {}}
}

# Variations on the order of terms in a WHERE clause in order
# to make sure the OR optimizer can recognize them all.
do_test where2-6.20 {
  queryplan {
    SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a
  }
} {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.21 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a OR y.a='hello'
    }
  } {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.22 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a=x.a OR y.a='hello'
    }
  } {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
  do_test where2-6.23 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a='hello' OR x.a=y.a
    }
  } {0123 0123 nosort x {} {} sqlite_autoindex_t2249a_1}
}

# Unique queries (queries that are guaranteed to return only a single
# row of result) do not call the sorter.  But all tables must give
# a unique result.  If any one table in the join does not give a unique
# result then sorting is necessary.
#







|






|
>
>
>
>
>
>
>
>
>
>







 







|




|







 







|







|





|







|






|





|





|





|













|







|







|






|








|










|




|




|







62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
...
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
...
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
  if {[db status sort]} {set x sort} {set x nosort}
  lappend data $x
  return $data
}

# This procedure executes the SQL.  Then it appends to the result the
# "sort" or "nosort" keyword (as in the cksort procedure above) then
# it appends the name of the table and index used.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  if {$::sqlite_sort_count} {set x sort} {set x nosort}
  lappend data $x
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}


# Prefer a UNIQUE index over another index.
#
do_test where2-1.1 {
  queryplan {
................................................................................
  }
} [list 6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 $::idx]

do_test where2-6.3 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR w=100 OR 6=+w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 *}
do_test where2-6.4 {
  queryplan {
    SELECT * FROM t1 WHERE w=99 OR +w=100 OR 6=w ORDER BY +w
  }
} {6 2 49 51 99 6 10000 10006 100 6 10201 10207 sort t1 *}

set ::idx {}
ifcapable subquery {set ::idx i1zyx}
do_test where2-6.5 {
  queryplan {
    SELECT b.* FROM t1 a, t1 b
     WHERE a.w=1 AND (a.y=b.z OR b.z=10)
................................................................................
  queryplan {
    -- Because a is type TEXT and b is type INTEGER, both a and b
    -- will attempt to convert to NUMERIC before the comparison.
    -- They will thus compare equal.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b;
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.9 {
  queryplan {
    -- The + operator removes affinity from the rhs.  No conversions
    -- occur and the comparison is false.  The result is an empty set.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b;
  }
} {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.9.2 {
  # The same thing but with the expression flipped around.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a
  }
} {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.10 {
  queryplan {
    -- Use + on both sides of the comparison to disable indices
    -- completely.  Make sure we get the same result.
    --
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE +a=+b;
  }
} {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11 {
  # This will not attempt the OR optimization because of the a=b
  # comparison.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=b OR a='hello';
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11.2 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE b=a OR a='hello';
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11.3 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE 'hello'=a OR b=a;
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
do_test where2-6.11.4 {
  # Permutations of the expression terms.
  queryplan {
    SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR b=a;
  }
} {123 0123 nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.12 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR a='hello';
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
  do_test where2-6.12.2 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a='hello' OR +b=a;
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
  do_test where2-6.12.3 {
    # In this case, the +b disables the affinity conflict and allows
    # the OR optimization to be used again.  The result is now an empty
    # set, the same as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE +b=a OR a='hello';
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
  do_test where2-6.13 {
    # The addition of +a on the second term disabled the OR optimization.
    # But we should still get the same empty-set result as in where2-6.9.
    queryplan {
      SELECT * FROM t2249b CROSS JOIN t2249a WHERE a=+b OR +a='hello';
    }
  } {nosort t2249b * t2249a sqlite_autoindex_t2249a_1}
}

# Variations on the order of terms in a WHERE clause in order
# to make sure the OR optimizer can recognize them all.
do_test where2-6.20 {
  queryplan {
    SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a
  }
} {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
ifcapable explain&&subquery {
  # These tests are not run if subquery support is not included in the
  # build. This is because these tests test the "a = 1 OR a = 2" to
  # "a IN (1, 2)" optimisation transformation, which is not enabled if
  # subqueries and the IN operator is not available.
  #
  do_test where2-6.21 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE x.a=y.a OR y.a='hello'
    }
  } {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
  do_test where2-6.22 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a=x.a OR y.a='hello'
    }
  } {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
  do_test where2-6.23 {
    queryplan {
      SELECT * FROM t2249a x CROSS JOIN t2249a y WHERE y.a='hello' OR x.a=y.a
    }
  } {0123 0123 nosort x sqlite_autoindex_t2249a_1 y sqlite_autoindex_t2249a_1}
}

# Unique queries (queries that are guaranteed to return only a single
# row of result) do not call the sorter.  But all tables must give
# a unique result.  If any one table in the join does not give a unique
# result then sorting is necessary.
#

Changes to test/where3.test.

99
100
101
102
103
104
105
106
107
108
109
110
111










112
113
114
115
116
117
118
...
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
...
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

271
272
273
274
275
276
277
...
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
       FROM parent1
       LEFT OUTER JOIN child1 ON parent1.child1key = child1.child1key 
       INNER JOIN child2 ON child2.child2key = parent1.child2key;
     }]
}

# This procedure executes the SQL.  Then it appends 
# the ::sqlite_query_plan variable.
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  return [concat $data $::sqlite_query_plan]










}


# If you have a from clause of the form:   A B C left join D
# then make sure the query optimizer is able to reorder the 
# A B C part anyway it wants. 
#
................................................................................
    CREATE TABLE tC(cpk integer primary key, cx);
    CREATE TABLE tD(dpk integer primary key, dx);
  }
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND bpk=ax
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.1 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE cpk=bx AND bpk=ax
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND bpk=ax
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND ax=bpk
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bx=cpk AND ax=bpk
  }
} {tA {} tB * tC * tD *}
do_test where3-2.1.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND ax=bpk
  }
} {tA {} tB * tC * tD *}
do_test where3-2.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB {} tA * tC * tD *}
do_test where3-2.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB {} tA * tC * tD *}
do_test where3-2.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE apk=cx AND bpk=ax
  }
} {tC {} tA * tB * tD *}
do_test where3-2.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=ax AND bpk=cx
  }
} {tA {} tC * tB * tD *}
do_test where3-2.6 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bpk=cx AND apk=bx
  }
} {tC {} tB * tA * tD *}
do_test where3-2.7 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=cx
  }
} {tB {} tC * tA * tD *}

# Ticket [13f033c865f878953]
# If the outer loop must be a full table scan, do not let ANALYZE trick
# the planner into use a table for the outer loop that might be indexable
# if held until an inner loop.
# 
do_execsql_test where3-3.0 {
................................................................................
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 0 {SCAN TABLE t302 (~1 rows)} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 1 {SCAN TABLE t302 (~1 rows)} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)}
}


# Verify that when there are multiple tables in a join which must be
# full table scans that the query planner attempts put the table with
# the fewest number of output rows as the outer loop.
#
do_execsql_test where3-4.0 {
  CREATE TABLE t400(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE t401(p INTEGER PRIMARY KEY, q, r);
  CREATE TABLE t402(x INTEGER PRIMARY KEY, y, z);
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t402.z GLOB 'abc*';
} {
  0 0 2 {SCAN TABLE t402 (~500000 rows)} 
  0 1 0 {SCAN TABLE t400 (~1000000 rows)} 
  0 2 1 {SCAN TABLE t401 (~1000000 rows)}
}
do_execsql_test where3-4.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t401.r GLOB 'abc*';
} {
  0 0 1 {SCAN TABLE t401 (~500000 rows)} 
  0 1 0 {SCAN TABLE t400 (~1000000 rows)} 
  0 2 2 {SCAN TABLE t402 (~1000000 rows)}
}
do_execsql_test where3-4.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t400.c GLOB 'abc*';
} {
  0 0 0 {SCAN TABLE t400 (~500000 rows)} 
  0 1 1 {SCAN TABLE t401 (~1000000 rows)} 
  0 2 2 {SCAN TABLE t402 (~1000000 rows)}
}


# Verify that a performance regression encountered by firefox
# has been fixed.
#
do_execsql_test where3-5.0 {
  CREATE TABLE aaa (id INTEGER PRIMARY KEY, type INTEGER,
                    fk INTEGER DEFAULT NULL, parent INTEGER,
................................................................................
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 1 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.1 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 1 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.2 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 0 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.3 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?) (~10 rows)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {







|




|
>
>
>
>
>
>
>
>
>
>







 







|





|





|





|





|





|





|





|





|





|





|





|







 







|
|





|
|


>











|
|
|





|
|
|





|
|
|

>







 







|
|











|
|











|
|











|
|







99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
...
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
...
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
...
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
       FROM parent1
       LEFT OUTER JOIN child1 ON parent1.child1key = child1.child1key 
       INNER JOIN child2 ON child2.child2key = parent1.child2key;
     }]
}

# This procedure executes the SQL.  Then it appends 
# the names of the table and index used
#
proc queryplan {sql} {
  set ::sqlite_sort_count 0
  set data [execsql $sql]
  set eqp [execsql "EXPLAIN QUERY PLAN $sql"]
  # puts eqp=$eqp
  foreach {a b c x} $eqp {
    if {[regexp { TABLE (\w+ AS )?(\w+) USING.* INDEX (\w+)\y} \
        $x all as tab idx]} {
      lappend data $tab $idx
    } elseif {[regexp { TABLE (\w+ AS )?(\w+)\y} $x all as tab]} {
      lappend data $tab *
    }
  }
  return $data   
}


# If you have a from clause of the form:   A B C left join D
# then make sure the query optimizer is able to reorder the 
# A B C part anyway it wants. 
#
................................................................................
    CREATE TABLE tC(cpk integer primary key, cx);
    CREATE TABLE tD(dpk integer primary key, dx);
  }
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND bpk=ax
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.1 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE cpk=bx AND bpk=ax
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND bpk=ax
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk
     WHERE bx=cpk AND ax=bpk
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bx=cpk AND ax=bpk
  }
} {tA * tB * tC * tD *}
do_test where3-2.1.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND ax=bpk
  }
} {tA * tB * tC * tD *}
do_test where3-2.2 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB * tA * tC * tD *}
do_test where3-2.3 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=bx
  }
} {tB * tA * tC * tD *}
do_test where3-2.4 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE apk=cx AND bpk=ax
  }
} {tC * tA * tB * tD *}
do_test where3-2.5 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=ax AND bpk=cx
  }
} {tA * tC * tB * tD *}
do_test where3-2.6 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE bpk=cx AND apk=bx
  }
} {tC * tB * tA * tD *}
do_test where3-2.7 {
  queryplan {
    SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx
     WHERE cpk=bx AND apk=cx
  }
} {tB * tC * tA * tD *}

# Ticket [13f033c865f878953]
# If the outer loop must be a full table scan, do not let ANALYZE trick
# the planner into use a table for the outer loop that might be indexable
# if held until an inner loop.
# 
do_execsql_test where3-3.0 {
................................................................................
  CREATE INDEX t301c ON t301(c);
  INSERT INTO t301 VALUES(1,2,3);
  CREATE TABLE t302(x, y);
  INSERT INTO t302 VALUES(4,5);
  ANALYZE;
  explain query plan SELECT * FROM t302, t301 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 0 {SCAN TABLE t302} 
  0 1 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}
do_execsql_test where3-3.1 {
  explain query plan
  SELECT * FROM t301, t302 WHERE t302.x=5 AND t301.a=t302.y;
} {
  0 0 1 {SCAN TABLE t302} 
  0 1 0 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)}
}

if 0 {  # Query planner no longer does this
# Verify that when there are multiple tables in a join which must be
# full table scans that the query planner attempts put the table with
# the fewest number of output rows as the outer loop.
#
do_execsql_test where3-4.0 {
  CREATE TABLE t400(a INTEGER PRIMARY KEY, b, c);
  CREATE TABLE t401(p INTEGER PRIMARY KEY, q, r);
  CREATE TABLE t402(x INTEGER PRIMARY KEY, y, z);
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t402.z GLOB 'abc*';
} {
  0 0 2 {SCAN TABLE t402} 
  0 1 0 {SCAN TABLE t400} 
  0 2 1 {SCAN TABLE t401}
}
do_execsql_test where3-4.1 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t401.r GLOB 'abc*';
} {
  0 0 1 {SCAN TABLE t401} 
  0 1 0 {SCAN TABLE t400} 
  0 2 2 {SCAN TABLE t402}
}
do_execsql_test where3-4.2 {
  EXPLAIN QUERY PLAN
  SELECT * FROM t400, t401, t402 WHERE t400.c GLOB 'abc*';
} {
  0 0 0 {SCAN TABLE t400} 
  0 1 1 {SCAN TABLE t401} 
  0 2 2 {SCAN TABLE t402}
}
} ;# endif

# Verify that a performance regression encountered by firefox
# has been fixed.
#
do_execsql_test where3-5.0 {
  CREATE TABLE aaa (id INTEGER PRIMARY KEY, type INTEGER,
                    fk INTEGER DEFAULT NULL, parent INTEGER,
................................................................................
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.1 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa JOIN aaa AS bbb ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 0 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 1 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.2 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}
do_execsql_test where3-5.3 {
  EXPLAIN QUERY PLAN
   SELECT bbb.title AS tag_title 
     FROM aaa AS bbb JOIN aaa ON bbb.id = aaa.parent  
    WHERE aaa.fk = 'constant'
      AND LENGTH(bbb.title) > 0
      AND bbb.parent = 4
    ORDER BY bbb.title COLLATE NOCASE ASC;
} {
  0 0 1 {SEARCH TABLE aaa USING INDEX aaa_333 (fk=?)} 
  0 1 0 {SEARCH TABLE aaa AS bbb USING INTEGER PRIMARY KEY (rowid=?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

# Name resolution with NATURAL JOIN and USING
#
do_test where3-6.setup {
  db eval {

Changes to test/where7.test.

23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
.....
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
} {2 22 23 28 54 80 91 scan 0 sort 0}

# test case for the performance regression fixed by
# check-in 28ba6255282b on 2010-10-21 02:05:06
#
# The test case that follows is code from an actual
# application with identifiers change and unused columns
# remove.
#
do_execsql_test where7-3.1 {
  CREATE TABLE t301 (
      c8 INTEGER PRIMARY KEY,
      c6 INTEGER,
      c4 INTEGER,
      c7 INTEGER,
................................................................................
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
  
  EXPLAIN QUERY PLAN
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?) (~10 rows)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?) (~2 rows)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test







|







 







|






|
|
|




23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
.....
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
} {2 22 23 28 54 80 91 scan 0 sort 0}

# test case for the performance regression fixed by
# check-in 28ba6255282b on 2010-10-21 02:05:06
#
# The test case that follows is code from an actual
# application with identifiers change and unused columns
# removed.
#
do_execsql_test where7-3.1 {
  CREATE TABLE t301 (
      c8 INTEGER PRIMARY KEY,
      c6 INTEGER,
      c4 INTEGER,
      c7 INTEGER,
................................................................................
  );
  CREATE INDEX t302_c3 on t302(c3);
  CREATE INDEX t302_c8_c3 on t302(c8, c3);
  CREATE INDEX t302_c5 on t302(c5);
  
  EXPLAIN QUERY PLAN
  SELECT t302.c1 
    FROM t302 JOIN t301 ON t302.c8 = +t301.c8
    WHERE t302.c2 = 19571
      AND t302.c3 > 1287603136
      AND (t301.c4 = 1407449685622784
           OR t301.c8 = 1407424651264000)
   ORDER BY t302.c5 LIMIT 200;
} {
  0 0 1 {SEARCH TABLE t301 USING COVERING INDEX t301_c4 (c4=?)} 
  0 0 1 {SEARCH TABLE t301 USING INTEGER PRIMARY KEY (rowid=?)} 
  0 1 0 {SEARCH TABLE t302 USING INDEX t302_c8_c3 (c8=? AND c3>?)} 
  0 0 0 {USE TEMP B-TREE FOR ORDER BY}
}

finish_test

Changes to test/where8.test.

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.12 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.13 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5
  }
} {1 1 2 2 3 3 4 2 4 4 9 0}

do_test where8-3.14 {







|







264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 0 0}
do_test where8-3.12 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5 ORDER BY a
  }
} {1 1 2 2 3 3 4 2 4 4 9 0}
do_test where8-3.13 {
  execsql_status {
    SELECT a, d FROM t1, t2 WHERE (a=d OR b=e) AND +a<5
  }
} {1 1 2 2 3 3 4 2 4 4 9 0}

do_test where8-3.14 {

Changes to test/where9.test.

358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
...
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
...
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
...
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783










784



























785
786
787
788
789
790
791

ifcapable explain {
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~10 rows)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?) (~1 rows)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?) (~2 rows)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?) (~10 rows)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
................................................................................
do_test where9-4.5 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1b
     WHERE +b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {cannot use index: t1b}}
do_test where9-4.6 {
  count_steps {
    SELECT a FROM t1 NOT INDEXED
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
................................................................................
do_test where9-4.7 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1c
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {cannot use index: t1c}}
do_test where9-4.8 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {cannot use index: t1d}}

ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?) (~3 rows)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?) (~3 rows)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?) (~5 rows)}
  }

  # Likewise, inequalities in an AND are preferred over inequalities in
  # an OR.
  #
  do_execsql_test where9-5.3 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?) (~125000 rows)}
  }
}

############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
................................................................................
    ROLLBACK;
  }
} {99 85 86 87 88 89 93 94 95 96 98 99 190 191 192 197}

do_test where9-6.8.1 {
  catchsql {
    DELETE FROM t1 INDEXED BY t1b
     WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {cannot use index: t1b}}
do_test where9-6.8.2 {
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {cannot use index: t1b}}






































############################################################################
# Test cases where terms inside an OR series are combined with AND terms
# external to the OR clause.  In other words, cases where
#
#              x AND (y OR z)
#
# is able to use indices on x,y and x,z, or indices y,x and z,x.







|
|
|







|
|
|







 







|







 







|







|








|
|







|








|







 







|



|



|



|
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
...
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
...
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
...
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

ifcapable explain {
  do_execsql_test where9-3.1 {
    EXPLAIN QUERY PLAN
    SELECT t2.a FROM t1, t2
    WHERE t1.a=80 AND ((t1.c=t2.c AND t1.d=t2.d) OR t1.f=t2.f)
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
  do_execsql_test where9-3.2 {
    EXPLAIN QUERY PLAN
    SELECT coalesce(t2.a,9999)
    FROM t1 LEFT JOIN t2 ON (t1.c+1=t2.c AND t1.d=t2.d) OR (t1.f||'x')=t2.f
    WHERE t1.a=80
  } {
    0 0 0 {SEARCH TABLE t1 USING INTEGER PRIMARY KEY (rowid=?)} 
    0 1 1 {SEARCH TABLE t2 USING INDEX t2d (d=?)} 
    0 1 1 {SEARCH TABLE t2 USING COVERING INDEX t2f (f=?)}
  }
} 

# Make sure that INDEXED BY and multi-index OR clauses play well with
# one another.
#
do_test where9-4.1 {
................................................................................
do_test where9-4.5 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1b
     WHERE +b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}
do_test where9-4.6 {
  count_steps {
    SELECT a FROM t1 NOT INDEXED
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
................................................................................
do_test where9-4.7 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1c
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}
do_test where9-4.8 {
  catchsql {
    SELECT a FROM t1 INDEXED BY t1d
     WHERE b>1000
       AND (c=31031 OR d IS NULL)
     ORDER BY +a
  }
} {1 {no query solution}}

ifcapable explain {
  # The (c=31031 OR d IS NULL) clause is preferred over b>1000 because
  # the former is an equality test which is expected to return fewer rows.
  #
  do_execsql_test where9-5.1 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1c (c=?)} 
    0 0 0 {SEARCH TABLE t1 USING INDEX t1d (d=?)}
  }

  # In contrast, b=1000 is preferred over any OR-clause.
  #
  do_execsql_test where9-5.2 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b=1000 AND (c=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b=?)}
  }

  # Likewise, inequalities in an AND are preferred over inequalities in
  # an OR.
  #
  do_execsql_test where9-5.3 {
    EXPLAIN QUERY PLAN SELECT a FROM t1 WHERE b>1000 AND (c>=31031 OR d IS NULL)
  } {
    0 0 0 {SEARCH TABLE t1 USING INDEX t1b (b>?)}
  }
}

############################################################################
# Make sure OR-clauses work correctly on UPDATE and DELETE statements.

do_test where9-6.2.1 {
................................................................................
    ROLLBACK;
  }
} {99 85 86 87 88 89 93 94 95 96 98 99 190 191 192 197}

do_test where9-6.8.1 {
  catchsql {
    DELETE FROM t1 INDEXED BY t1b
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
do_test where9-6.8.2 {
  catchsql {
    UPDATE t1 INDEXED BY t1b SET a=a+100
     WHERE (+b IS NULL AND c NOT NULL AND d NOT NULL)
        OR (b NOT NULL AND c IS NULL AND d NOT NULL)
        OR (b NOT NULL AND c NOT NULL AND d IS NULL)
  }
} {1 {no query solution}}
ifcapable stat3 {
  # When STAT3 is enabled, the "b NOT NULL" terms get translated
  # into b>NULL, which can be satified by the index t1b.  It is a very
  # expensive way to do the query, but it works, and so a solution is possible.
  do_test where9-6.8.3-stat3 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
  do_test where9-6.8.4-stat3 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {0 {}}
} else {
  do_test where9-6.8.3 {
    catchsql {
      UPDATE t1 INDEXED BY t1b SET a=a+100
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {1 {no query solution}}
  do_test where9-6.8.4 {
    catchsql {
      DELETE FROM t1 INDEXED BY t1b
       WHERE (b IS NULL AND c NOT NULL AND d NOT NULL)
          OR (b NOT NULL AND c IS NULL AND d NOT NULL)
          OR (b NOT NULL AND c NOT NULL AND d IS NULL)
    }
  } {1 {no query solution}}
}
############################################################################
# Test cases where terms inside an OR series are combined with AND terms
# external to the OR clause.  In other words, cases where
#
#              x AND (y OR z)
#
# is able to use indices on x,y and x,z, or indices y,x and z,x.

Changes to test/whereC.test.

63
64
65
66
67
68
69
70
  do_execsql_test 1.$tn.1 $sql $res
  do_execsql_test 1.$tn.2 "$sql ORDER BY i ASC"  [lsort -integer -inc  $res]
  do_execsql_test 1.$tn.3 "$sql ORDER BY i DESC" [lsort -integer -dec  $res]
}


finish_test








<
63
64
65
66
67
68
69

  do_execsql_test 1.$tn.1 $sql $res
  do_execsql_test 1.$tn.2 "$sql ORDER BY i ASC"  [lsort -integer -inc  $res]
  do_execsql_test 1.$tn.3 "$sql ORDER BY i DESC" [lsort -integer -dec  $res]
}


finish_test

Changes to test/whereD.test.

181
182
183
184
185
186
187
188

































189
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}
do_test 4.3 {
  db eval {
    SELECT * FROM t41 AS x LEFT JOIN t42 AS y ON (y.d=x.c) OR (y.d=x.b);
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}


































finish_test








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}
do_test 4.3 {
  db eval {
    SELECT * FROM t41 AS x LEFT JOIN t42 AS y ON (y.d=x.c) OR (y.d=x.b);
  }
} {1 2 3 3 6 9 4 5 6 {} {} {}}

# Ticket [bc1aea7b725f276177]
# Incorrect result on LEFT JOIN with OR constraints and an ORDER BY clause.
#
do_execsql_test 4.4 {
  CREATE TABLE t44(a INTEGER, b INTEGER);
  INSERT INTO t44 VALUES(1,2);
  INSERT INTO t44 VALUES(3,4);
  SELECT *
    FROM t44 AS x
       LEFT JOIN (SELECT a AS c, b AS d FROM t44) AS y ON a=c
   WHERE d=4 OR d IS NULL;
} {3 4 3 4}
do_execsql_test 4.5 {
  SELECT *
    FROM t44 AS x
       LEFT JOIN (SELECT a AS c, b AS d FROM t44) AS y ON a=c
   WHERE d=4 OR d IS NULL
   ORDER BY a;
} {3 4 3 4}
do_execsql_test 4.6 {
  CREATE TABLE t46(c INTEGER, d INTEGER);
  INSERT INTO t46 SELECT a, b FROM t44;
  SELECT * FROM t44 LEFT JOIN t46 ON a=c
   WHERE d=4 OR d IS NULL;
} {3 4 3 4}
do_execsql_test 4.7 {
  SELECT * FROM t44 LEFT JOIN t46 ON a=c
   WHERE d=4 OR d IS NULL
   ORDER BY a;
} {3 4 3 4}



finish_test

Changes to test/whereE.test.

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  INSERT INTO t2 SELECT x+32, (x+32)*11 FROM t2;
  INSERT INTO t2 SELECT x+64, (x+32)*11 FROM t2;
  ALTER TABLE t2 ADD COLUMN z;
  UPDATE t2 SET z=2;
  CREATE UNIQUE INDEX t2zx ON t2(z,x);

  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}
do_execsql_test 1.2 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}
do_execsql_test 1.3 {
  ANALYZE;
  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}
do_execsql_test 1.4 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1 .*SEARCH TABLE t2 .*/}

finish_test







|


|



|


|


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
  INSERT INTO t2 SELECT x+32, (x+32)*11 FROM t2;
  INSERT INTO t2 SELECT x+64, (x+32)*11 FROM t2;
  ALTER TABLE t2 ADD COLUMN z;
  UPDATE t2 SET z=2;
  CREATE UNIQUE INDEX t2zx ON t2(z,x);

  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}
do_execsql_test 1.2 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}
do_execsql_test 1.3 {
  ANALYZE;
  EXPLAIN QUERY PLAN SELECT x FROM t1, t2 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}
do_execsql_test 1.4 {
  EXPLAIN QUERY PLAN SELECT x FROM t2, t1 WHERE a=z AND c=x;
} {/.*SCAN TABLE t1.*SEARCH TABLE t2.*/}

finish_test

Changes to test/whereF.test.

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
..
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
105
106
107
108
109
110
111
112
113
114
115
#
# In order to make them more predictable, automatic indexes are turned off for
# the tests in this file.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix x

do_execsql_test 1.0 {
  PRAGMA automatic_index = 0;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
  CREATE UNIQUE INDEX i1 ON t1(a);
  CREATE UNIQUE INDEX i2 ON t2(d);
................................................................................
foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  2 "SELECT * FROM t2,           t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
} {
  do_test 1.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2 .*SEARCH TABLE t1 .*/}
}

do_execsql_test 2.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
................................................................................
foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  2 "SELECT * FROM t2,           t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
} {
  do_test 2.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2 .*SEARCH TABLE t1 .*/}
}

do_execsql_test 3.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
................................................................................
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}

  3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1 
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
} {
  do_test 3.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2 .*SEARCH TABLE t1 .*/}
}

finish_test







|







 







|







 







|







 







|



42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
..
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
..
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
...
105
106
107
108
109
110
111
112
113
114
115
#
# In order to make them more predictable, automatic indexes are turned off for
# the tests in this file.
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl
set testprefix whereF

do_execsql_test 1.0 {
  PRAGMA automatic_index = 0;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
  CREATE UNIQUE INDEX i1 ON t1(a);
  CREATE UNIQUE INDEX i2 ON t2(d);
................................................................................
foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  2 "SELECT * FROM t2,           t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
} {
  do_test 1.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2\y.*SEARCH TABLE t1\y.*/}
}

do_execsql_test 2.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
................................................................................
foreach {tn sql} {
  1 "SELECT * FROM t1,           t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  2 "SELECT * FROM t2,           t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
  3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
} {
  do_test 2.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2\y.*SEARCH TABLE t1\y.*/}
}

do_execsql_test 3.0 {
  DROP TABLE t1;
  DROP TABLE t2;
  CREATE TABLE t1(a, b, c);
  CREATE TABLE t2(d, e, f);
................................................................................
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}

  3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1 
     WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
} {
  do_test 3.$tn {
    db eval "EXPLAIN QUERY PLAN $sql"
   } {/.*SCAN TABLE t2\y.*SEARCH TABLE t1\y.*/}
}

finish_test

Added tool/wherecosttest.c.































































































































































































































>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/*
** 2013-06-10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains a simple command-line utility for converting from
** integers and WhereCost values and back again and for doing simple
** arithmetic operations (multiple and add) on WhereCost values.
**
** Usage:
**
**      ./wherecosttest ARGS
**
** Arguments:
**
**    'x'    Multiple the top two elements of the stack
**    '+'    Add the top two elements of the stack
**    NUM    Convert NUM from integer to WhereCost and push onto the stack
**   ^NUM    Interpret NUM as a WhereCost and push onto stack.
**
** Examples:
**
** To convert 123 from WhereCost to integer:
** 
**         ./wherecosttest ^123
**
** To convert 123456 from integer to WhereCost:
**
**         ./wherecosttest 123456
**
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>

typedef unsigned short int WhereCost;  /* 10 times log2() */

WhereCost whereCostMultiply(WhereCost a, WhereCost b){ return a+b; }
WhereCost whereCostAdd(WhereCost a, WhereCost b){
  static const unsigned char x[] = {
     10, 10,                         /* 0,1 */
      9, 9,                          /* 2,3 */
      8, 8,                          /* 4,5 */
      7, 7, 7,                       /* 6,7,8 */
      6, 6, 6,                       /* 9,10,11 */
      5, 5, 5,                       /* 12-14 */
      4, 4, 4, 4,                    /* 15-18 */
      3, 3, 3, 3, 3, 3,              /* 19-24 */
      2, 2, 2, 2, 2, 2, 2,           /* 25-31 */
  };
  if( a<b ){ WhereCost t = a; a = b; b = t; }
  if( a>b+49 ) return a;
  if( a>b+31 ) return a+1;
  return a+x[a-b];
}
WhereCost whereCostFromInteger(int x){
  static WhereCost a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
  WhereCost y = 40;
  if( x<8 ){
    if( x<2 ) return 0;
    while( x<8 ){  y -= 10; x <<= 1; }
  }else{
    while( x>255 ){ y += 40; x >>= 4; }
    while( x>15 ){  y += 10; x >>= 1; }
  }
  return a[x&7] + y - 10;
}
static unsigned long int whereCostToInt(WhereCost x){
  unsigned long int n;
  if( x<10 ) return 1;
  n = x%10;
  x /= 10;
  if( n>=5 ) n -= 2;
  else if( n>=1 ) n -= 1;
  if( x>=3 ) return (n+8)<<(x-3);
  return (n+8)>>(3-x);
}

int main(int argc, char **argv){
  int i;
  int n = 0;
  WhereCost a[100];
  for(i=1; i<argc; i++){
    const char *z = argv[i];
    if( z[0]=='+' ){
      if( n>=2 ){
        a[n-2] = whereCostAdd(a[n-2],a[n-1]);
        n--;
      }
    }else if( z[0]=='x' ){
      if( n>=2 ){
        a[n-2] = whereCostMultiply(a[n-2],a[n-1]);
        n--;
      }
    }else if( z[0]=='^' ){
      a[n++] = atoi(z+1);
    }else{
      a[n++] = whereCostFromInteger(atoi(z));
    }
  }
  for(i=n-1; i>=0; i--){
    printf("%d (%lu)\n", a[i], whereCostToInt(a[i]));
  }
  return 0;
}