SQLite

Check-in [01dc810259]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Attempt to use sqlite_stat4 data to estimate the number of rows visited by a range query that uses a skip-scan. This code is largely untested.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | stat4-skipscan
Files: files | file ages | folders
SHA1: 01dc8102592427b71a18c2cb82301d2266dd59c2
User & Date: dan 2014-06-26 20:21:46.005
Context
2014-06-26
21:32
Fix compilation issue when STAT4 is not enabled. (check-in: 74a5454a71 user: mistachkin tags: stat4-skipscan)
20:21
Attempt to use sqlite_stat4 data to estimate the number of rows visited by a range query that uses a skip-scan. This code is largely untested. (check-in: 01dc810259 user: dan tags: stat4-skipscan)
2014-06-24
20:19
Fix showstat4.c so that it decodes typecodes 8 and 9 correctly. (check-in: 9ca737c0b4 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/sqliteInt.h.
3427
3428
3429
3430
3431
3432
3433

3434

3435
3436
3437
3438
3439
3440
3441

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
void sqlite3AnalyzeFunctions(void);
int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);

void sqlite3Stat4ProbeFree(UnpackedRecord*);

#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));







>

>







3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443

void sqlite3BackupRestart(sqlite3_backup *);
void sqlite3BackupUpdate(sqlite3_backup *, Pgno, const u8 *);

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
void sqlite3AnalyzeFunctions(void);
int sqlite3Stat4ProbeSetValue(Parse*,Index*,UnpackedRecord**,Expr*,u8,int,int*);
int sqlite3Stat4ValueFromExpr(Parse*, Expr*, u8, sqlite3_value**);
void sqlite3Stat4ProbeFree(UnpackedRecord*);
int sqlite3Stat4Column(sqlite3*, const void*, int, int, sqlite3_value**);
#endif

/*
** The interface to the LEMON-generated parser
*/
void *sqlite3ParserAlloc(void*(*)(size_t));
void sqlite3ParserFree(void*, void(*)(void*));
Changes to src/vdbemem.c.
1147
1148
1149
1150
1151
1152
1153












































1154
1155
1156
1157
1158
1159
1160
  int i;
  FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
  FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
  for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
}













































/*
** This function is used to allocate and populate UnpackedRecord 
** structures intended to be compared against sample index keys stored 
** in the sqlite_stat4 table.
**
** A single call to this function attempts to populates field iVal (leftmost 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
  int i;
  FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
  FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs);
  for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){
    sqlite3FuncDefInsert(pHash, &aFunc[i]);
  }
}

static int stat4ValueFromExpr(
  Parse *pParse,                  /* Parse context */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  struct ValueNewStat4Ctx *pAlloc,/* How to allocate space */
  sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
){
  int rc = SQLITE_OK;
  sqlite3_value *pVal = 0;
  sqlite3 *db = pParse->db;

  /* Skip over any TK_COLLATE nodes */
  pExpr = sqlite3ExprSkipCollate(pExpr);

  if( !pExpr ){
    pVal = valueNew(db, pAlloc);
    if( pVal ){
      sqlite3VdbeMemSetNull((Mem*)pVal);
    }
  }else if( pExpr->op==TK_VARIABLE
        || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    Vdbe *v;
    int iBindVar = pExpr->iColumn;
    sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
    if( (v = pParse->pReprepare)!=0 ){
      pVal = valueNew(db, pAlloc);
      if( pVal ){
        rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
        if( rc==SQLITE_OK ){
          sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
        }
        pVal->db = pParse->db;
      }
    }
  }else{
    rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
  }

  assert( pVal==0 || pVal->db==db );
  *ppVal = pVal;
  return rc;
}

/*
** This function is used to allocate and populate UnpackedRecord 
** structures intended to be compared against sample index keys stored 
** in the sqlite_stat4 table.
**
** A single call to this function attempts to populates field iVal (leftmost 
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232

1233
1234























































1235
1236
1237
1238
1239
1240
1241
  Index *pIdx,                    /* Index being probed */
  UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  int iVal,                       /* Array element to populate */
  int *pbOk                       /* OUT: True if value was extracted */
){
  int rc = SQLITE_OK;
  sqlite3_value *pVal = 0;
  sqlite3 *db = pParse->db;


  struct ValueNewStat4Ctx alloc;
  alloc.pParse = pParse;
  alloc.pIdx = pIdx;
  alloc.ppRec = ppRec;
  alloc.iVal = iVal;

  /* Skip over any TK_COLLATE nodes */
  pExpr = sqlite3ExprSkipCollate(pExpr);

  if( !pExpr ){
    pVal = valueNew(db, &alloc);
    if( pVal ){
      sqlite3VdbeMemSetNull((Mem*)pVal);
    }
  }else if( pExpr->op==TK_VARIABLE
        || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE)
  ){
    Vdbe *v;
    int iBindVar = pExpr->iColumn;
    sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
    if( (v = pParse->pReprepare)!=0 ){
      pVal = valueNew(db, &alloc);
      if( pVal ){
        rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
        if( rc==SQLITE_OK ){
          sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
        }
        pVal->db = pParse->db;
      }
    }
  }else{
    rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, &alloc);
  }
  *pbOk = (pVal!=0);


  assert( pVal==0 || pVal->db==db );























































  return rc;
}

/*
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.







|

<
|

<





<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<

>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1231
1232
1233
1234
1235
1236
1237
1238
1239

1240
1241

1242
1243
1244
1245
1246


1247


















1248





1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
  Index *pIdx,                    /* Index being probed */
  UnpackedRecord **ppRec,         /* IN/OUT: Probe record */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  int iVal,                       /* Array element to populate */
  int *pbOk                       /* OUT: True if value was extracted */
){
  int rc;
  sqlite3_value *pVal = 0;

  struct ValueNewStat4Ctx alloc;


  alloc.pParse = pParse;
  alloc.pIdx = pIdx;
  alloc.ppRec = ppRec;
  alloc.iVal = iVal;



  rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal);


















  assert( pVal==0 || pVal->db==pParse->db );





  *pbOk = (pVal!=0);
  return rc;
}

/*
** Attempt to extract a value from expression pExpr using the methods
** as described for sqlite3Stat4ProbeSetValue() above. 
**
** If successful, set *ppVal to point to a new value object and return 
** SQLITE_OK. If no value can be extracted, but no other error occurs
** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
** does occur, return an SQLite error code. The final value of *ppVal
** is undefined in this case.
*/
int sqlite3Stat4ValueFromExpr(
  Parse *pParse,                  /* Parse context */
  Expr *pExpr,                    /* The expression to extract a value from */
  u8 affinity,                    /* Affinity to use */
  sqlite3_value **ppVal           /* OUT: New value object (or NULL) */
){
  return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
}

int sqlite3Stat4Column(
  sqlite3 *db,                    /* Database handle */
  const void *pRec,               /* Pointer to buffer containing record */
  int nRec,                       /* Size of buffer pRec in bytes */
  int iCol,                       /* Column to extract */
  sqlite3_value **ppVal           /* OUT: Extracted value */
){
  int rc = SQLITE_OK;
  Mem *pMem = *ppVal;
  if( pMem==0 ){
    pMem = (Mem*)sqlite3ValueNew(db);
    if( pMem==0 ){
      rc = SQLITE_NOMEM;
    }
  }

  if( rc==SQLITE_OK ){
    u32 t;
    int nHdr;
    int iHdr;
    int iField;
    int i;
    u8 *a = (u8*)pRec;

    iHdr = getVarint32(a, nHdr);
    iField = nHdr;
    for(i=0; i<iCol; i++){
      iHdr = getVarint32(&a[iHdr], t);
      iField += sqlite3VdbeSerialTypeLen(t);
    }

    iHdr = getVarint32(&a[iHdr], t);
    sqlite3VdbeSerialGet(&a[iField], t, pMem);
  }

  *ppVal = pMem;
  return rc;
}

/*
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.
Changes to src/where.c.
14
15
16
17
18
19
20

21
22
23
24
25
26
27
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"
#include "whereInt.h"


/*
** Return the estimated number of output rows from a WHERE clause
*/
u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
  return sqlite3LogEstToInt(pWInfo->nRowOut);
}







>







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** generating the code that loops through a table looking for applicable
** rows.  Indices are selected and used to speed the search when doing
** so is applicable.  Because this module is responsible for selecting
** indices, you might also think of this module as the "query optimizer".
*/
#include "sqliteInt.h"
#include "whereInt.h"
#include "vdbeInt.h"

/*
** Return the estimated number of output rows from a WHERE clause
*/
u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
  return sqlite3LogEstToInt(pWInfo->nRowOut);
}
1993
1994
1995
1996
1997
1998
1999





























































































2000
2001
2002
2003
2004
2005
2006
      nRet += pTerm->truthProb;
    }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
      nRet -= 20;        assert( 20==sqlite3LogEst(4) );
    }
  }
  return nRet;
}






























































































/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
      nRet += pTerm->truthProb;
    }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
      nRet -= 20;        assert( 20==sqlite3LogEst(4) );
    }
  }
  return nRet;
}

/* 
** This function is called to estimate the number of rows visited by a
** range-scan on a skip-scan index. For example:
**
**   CREATE INDEX i1 ON t1(a, b, c);
**   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
**
** Value pLoop->nOut is currently set to the estimated number of rows 
** visited for scanning (a=? AND b=?). This function reduces that estimate 
** by some factor to account for the (c BETWEEN ? AND ?) expression based
** on the stat4 data for the index. this scan will be peformed multiple 
** times (once for each (a,b) combination that matches a=?) is dealt with 
** by the caller.
**
** It does this by scanning through all stat4 samples, comparing values
** extracted from pLower and pUpper with the corresponding column in each
** sample. If L and U are the number of samples found to be less than or
** equal to the values extracted from pLower and pUpper respectively, and
** N is the total number of samples, the pLoop->nOut value is adjusted
** as follows:
**
**   nOut = nOut * ( min(U - L, 1) / N )
**
** If pLower is NULL, or a value cannot be extracted from the term, L is
** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
** U is set to N.
**
** Normally, this function sets *pbDone to 1 before returning. However,
** if no value can be extracted from either pLower or pUpper (and so the
** estimate of the number of rows delivered remains unchanged), *pbDone
** is left as is.
**
** If an error occurs, an SQLite error code is returned. Otherwise, 
** SQLITE_OK.
*/
static int whereRangeSkipScanEst(
  Parse *pParse,       /* Parsing & code generating context */
  WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
  WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
  WhereLoop *pLoop,    /* Update the .nOut value of this loop */
  int *pbDone          /* Set to true if at least one expr. value extracted */
){
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;
  sqlite3 *db = pParse->db;
  int nLower = 0;
  int nUpper = 0;
  int rc = SQLITE_OK;
  u8 aff = p->pTable->aCol[ p->aiColumn[nEq] ].affinity;
  CollSeq *pColl;
  
  sqlite3_value *p1 = 0;          /* Value extracted from pLower */
  sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
  sqlite3_value *pVal = 0;        /* Value extracted from record */

  pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
  if( pLower ){
    rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
  }
  if( pUpper && rc==SQLITE_OK ){
    rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
  }

  if( p1 || p2 ){
    int i;
    int nDiff;
    for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
      rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
      if( rc==SQLITE_OK && p1 ){
        int res = sqlite3MemCompare(p1, pVal, pColl);
        if( res<=0 ) nLower++;
      }
      if( rc==SQLITE_OK && p2 ){
        int res = sqlite3MemCompare(p2, pVal, pColl);
        if( res<=0 ) nUpper++;
      }
    }
    if( p2==0 ) nUpper = p->nSample;
    nDiff = (nUpper - nLower);
    if( nDiff<=0 ) nDiff = 1;
    pLoop->nOut -= (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
    *pbDone = 1;
  }else{
    assert( *pbDone==0 );
  }

  sqlite3ValueFree(p1);
  sqlite3ValueFree(p2);
  sqlite3ValueFree(pVal);

  return rc;
}

/*
** This function is used to estimate the number of rows that will be visited
** by scanning an index for a range of values. The range may have an upper
** bound, a lower bound, or both. The WHERE clause terms that set the upper
** and lower bounds are represented by pLower and pUpper respectively. For
** example, assuming that index p is on t1(a):
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145





2146
2147
2148
2149
2150
2151
2152
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0
   && nEq==pBuilder->nRecValid
   && nEq<p->nSampleCol
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 
  ){

    UnpackedRecord *pRec = pBuilder->pRec;
    tRowcnt a[2];
    u8 aff;

    /* Variable iLower will be set to the estimate of the number of rows in 
    ** the index that are less than the lower bound of the range query. The
    ** lower bound being the concatenation of $P and $L, where $P is the
    ** key-prefix formed by the nEq values matched against the nEq left-most
    ** columns of the index, and $L is the value in pLower.
    **
    ** Or, if pLower is NULL or $L cannot be extracted from it (because it
    ** is not a simple variable or literal value), the lower bound of the
    ** range is $P. Due to a quirk in the way whereKeyStats() works, even
    ** if $L is available, whereKeyStats() is called for both ($P) and 
    ** ($P:$L) and the larger of the two returned values used.
    **
    ** Similarly, iUpper is to be set to the estimate of the number of rows
    ** less than the upper bound of the range query. Where the upper bound
    ** is either ($P) or ($P:$U). Again, even if $U is available, both values
    ** of iUpper are requested of whereKeyStats() and the smaller used.
    */
    tRowcnt iLower;
    tRowcnt iUpper;

    if( nEq==p->nKeyCol ){
      aff = SQLITE_AFF_INTEGER;
    }else{
      aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
    }
    /* Determine iLower and iUpper using ($P) only. */
    if( nEq==0 ){
      iLower = 0;
      iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
    }else{
      /* Note: this call could be optimized away - since the same values must 
      ** have been requested when testing key $P in whereEqualScanEst().  */
      whereKeyStats(pParse, p, pRec, 0, a);
      iLower = a[0];
      iUpper = a[0] + a[1];
    }

    /* If possible, improve on the iLower estimate using ($P:$L). */
    if( pLower ){
      int bOk;                    /* True if value is extracted from pExpr */
      Expr *pExpr = pLower->pExpr->pRight;
      assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
      rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
      if( rc==SQLITE_OK && bOk ){
        tRowcnt iNew;
        whereKeyStats(pParse, p, pRec, 0, a);
        iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
        if( iNew>iLower ) iLower = iNew;
        nOut--;
      }
    }

    /* If possible, improve on the iUpper estimate using ($P:$U). */
    if( pUpper ){
      int bOk;                    /* True if value is extracted from pExpr */
      Expr *pExpr = pUpper->pExpr->pRight;
      assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
      rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
      if( rc==SQLITE_OK && bOk ){
        tRowcnt iNew;
        whereKeyStats(pParse, p, pRec, 1, a);
        iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
        if( iNew<iUpper ) iUpper = iNew;
        nOut--;
      }
    }

    pBuilder->pRec = pRec;
    if( rc==SQLITE_OK ){
      if( iUpper>iLower ){
        nNew = sqlite3LogEst(iUpper - iLower);
      }else{
        nNew = 10;        assert( 10==sqlite3LogEst(2) );
      }
      if( nNew<nOut ){
        nOut = nNew;
      }
      pLoop->nOut = (LogEst)nOut;
      WHERETRACE(0x10, ("range scan regions: %u..%u  est=%d\n",
                         (u32)iLower, (u32)iUpper, nOut));
      return SQLITE_OK;





    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(pBuilder);
#endif
  assert( pLower || pUpper );







<



>
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
>
>
>
>







2144
2145
2146
2147
2148
2149
2150

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0

   && nEq<p->nSampleCol
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 
  ){
    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      u8 aff;

      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
      ** lower bound being the concatenation of $P and $L, where $P is the
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **
      ** Or, if pLower is NULL or $L cannot be extracted from it (because it
      ** is not a simple variable or literal value), the lower bound of the
      ** range is $P. Due to a quirk in the way whereKeyStats() works, even
      ** if $L is available, whereKeyStats() is called for both ($P) and 
      ** ($P:$L) and the larger of the two returned values used.
      **
      ** Similarly, iUpper is to be set to the estimate of the number of rows
      ** less than the upper bound of the range query. Where the upper bound
      ** is either ($P) or ($P:$U). Again, even if $U is available, both values
      ** of iUpper are requested of whereKeyStats() and the smaller used.
      */
      tRowcnt iLower;
      tRowcnt iUpper;

      if( nEq==p->nKeyCol ){
        aff = SQLITE_AFF_INTEGER;
      }else{
        aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
      }
      /* Determine iLower and iUpper using ($P) only. */
      if( nEq==0 ){
        iLower = 0;
        iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }

      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
        }
      }

      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
        }
      }

      pBuilder->pRec = pRec;
      if( rc==SQLITE_OK ){
        if( iUpper>iLower ){
          nNew = sqlite3LogEst(iUpper - iLower);
        }else{
          nNew = 10;        assert( 10==sqlite3LogEst(2) );
        }
        if( nNew<nOut ){
          nOut = nNew;
        }
        pLoop->nOut = (LogEst)nOut;
        WHERETRACE(0x10, ("range scan regions: %u..%u  est=%d\n",
                           (u32)iLower, (u32)iUpper, nOut));
        return SQLITE_OK;
      }
    }else{
      int bDone = 0;
      rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
      if( bDone ) return rc;
    }
  }
#else
  UNUSED_PARAMETER(pParse);
  UNUSED_PARAMETER(pBuilder);
#endif
  assert( pLower || pUpper );