/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** The code in this file implements the function that runs the
** bytecode of a prepared statement.
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
/*
** Invoke this macro on memory cells just prior to changing the
** value of the cell. This macro verifies that shallow copies are
** not misused. A shallow copy of a string or blob just copies a
** pointer to the string or blob, not the content. If the original
** is changed while the copy is still in use, the string or blob might
** be changed out from under the copy. This macro verifies that nothing
** like that ever happens.
*/
#ifdef SQLITE_DEBUG
# define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
#else
# define memAboutToChange(P,M)
#endif
/*
** The following global variable is incremented every time a cursor
** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
** procedures use this information to make sure that indices are
** working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_search_count = 0;
#endif
/*
** When this global variable is positive, it gets decremented once before
** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
** field of the sqlite3 structure is set in order to simulate an interrupt.
**
** This facility is used for testing purposes only. It does not function
** in an ordinary build.
*/
#ifdef SQLITE_TEST
int sqlite3_interrupt_count = 0;
#endif
/*
** The next global variable is incremented each type the OP_Sort opcode
** is executed. The test procedures use this information to make sure that
** sorting is occurring or not occurring at appropriate times. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_sort_count = 0;
#endif
/*
** The next global variable records the size of the largest MEM_Blob
** or MEM_Str that has been used by a VDBE opcode. The test procedures
** use this information to make sure that the zero-blob functionality
** is working correctly. This variable has no function other than to
** help verify the correct operation of the library.
*/
#ifdef SQLITE_TEST
int sqlite3_max_blobsize = 0;
static void updateMaxBlobsize(Mem *p){
if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
sqlite3_max_blobsize = p->n;
}
}
#endif
/*
** This macro evaluates to true if either the update hook or the preupdate
** hook are enabled for database connect DB.
*/
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
# define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
#else
# define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
#endif
/*
** The next global variable is incremented each time the OP_Found opcode
** is executed. This is used to test whether or not the foreign key
** operation implemented using OP_FkIsZero is working. This variable
** has no function other than to help verify the correct operation of the
** library.
*/
#ifdef SQLITE_TEST
int sqlite3_found_count = 0;
#endif
/*
** Test a register to see if it exceeds the current maximum blob size.
** If it does, record the new maximum blob size.
*/
#if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
# define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
#else
# define UPDATE_MAX_BLOBSIZE(P)
#endif
#ifdef SQLITE_DEBUG
/* This routine provides a convenient place to set a breakpoint during
** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
** each opcode is printed. Variables "pc" (program counter) and pOp are
** available to add conditionals to the breakpoint. GDB example:
**
** break test_trace_breakpoint if pc=22
**
** Other useful labels for breakpoints include:
** test_addop_breakpoint(pc,pOp)
** sqlite3CorruptError(lineno)
** sqlite3MisuseError(lineno)
** sqlite3CantopenError(lineno)
*/
static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
static u64 n = 0;
(void)pc;
(void)pOp;
(void)v;
n++;
if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */
}
#endif
/*
** Invoke the VDBE coverage callback, if that callback is defined. This
** feature is used for test suite validation only and does not appear an
** production builds.
**
** M is the type of branch. I is the direction taken for this instance of
** the branch.
**
** M: 2 - two-way branch (I=0: fall-thru 1: jump )
** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
**
** In other words, if M is 2, then I is either 0 (for fall-through) or
** 1 (for when the branch is taken). If M is 3, the I is 0 for an
** ordinary fall-through, I is 1 if the branch was taken, and I is 2
** if the result of comparison is NULL. For M=3, I=2 the jump may or
** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
** depending on if the operands are less than, equal, or greater than.
**
** iSrcLine is the source code line (from the __LINE__ macro) that
** generated the VDBE instruction combined with flag bits. The source
** code line number is in the lower 24 bits of iSrcLine and the upper
** 8 bytes are flags. The lower three bits of the flags indicate
** values for I that should never occur. For example, if the branch is
** always taken, the flags should be 0x05 since the fall-through and
** alternate branch are never taken. If a branch is never taken then
** flags should be 0x06 since only the fall-through approach is allowed.
**
** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
** interested in equal or not-equal. In other words, I==0 and I==2
** should be treated as equivalent
**
** Since only a line number is retained, not the filename, this macro
** only works for amalgamation builds. But that is ok, since these macros
** should be no-ops except for special builds used to measure test coverage.
*/
#if !defined(SQLITE_VDBE_COVERAGE)
# define VdbeBranchTaken(I,M)
#else
# define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
u8 mNever;
assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
assert( I<M ); /* I can only be 2 if M is 3 or 4 */
/* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
I = 1<<I;
/* The upper 8 bits of iSrcLine are flags. The lower three bits of
** the flags indicate directions that the branch can never go. If
** a branch really does go in one of those directions, assert right
** away. */
mNever = iSrcLine >> 24;
assert( (I & mNever)==0 );
if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
/* Invoke the branch coverage callback with three arguments:
** iSrcLine - the line number of the VdbeCoverage() macro, with
** flags removed.
** I - Mask of bits 0x07 indicating which cases are are
** fulfilled by this instance of the jump. 0x01 means
** fall-thru, 0x02 means taken, 0x04 means NULL. Any
** impossible cases (ex: if the comparison is never NULL)
** are filled in automatically so that the coverage
** measurement logic does not flag those impossible cases
** as missed coverage.
** M - Type of jump. Same as M argument above
*/
I |= mNever;
if( M==2 ) I |= 0x04;
if( M==4 ){
I |= 0x08;
if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
}
sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
iSrcLine&0xffffff, I, M);
}
#endif
/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the register
** does not control the string, it might be deleted without the register
** knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the register itself controls. In other words, it
** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
*/
#define Deephemeralize(P) \
if( ((P)->flags&MEM_Ephem)!=0 \
&& sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
/*
** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
Vdbe *p, /* The virtual machine */
int iCur, /* Index of the new VdbeCursor */
int nField, /* Number of fields in the table or index */
u8 eCurType /* Type of the new cursor */
){
/* Find the memory cell that will be used to store the blob of memory
** required for this VdbeCursor structure. It is convenient to use a
** vdbe memory cell to manage the memory allocation required for a
** VdbeCursor structure for the following reasons:
**
** * Sometimes cursor numbers are used for a couple of different
** purposes in a vdbe program. The different uses might require
** different sized allocations. Memory cells provide growable
** allocations.
**
** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
** be freed lazily via the sqlite3_release_memory() API. This
** minimizes the number of malloc calls made by the system.
**
** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
** Cursor 2 is at Mem[p->nMem-2]. And so forth.
*/
Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
int nByte;
VdbeCursor *pCx = 0;
nByte =
ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
(eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
assert( iCur>=0 && iCur<p->nCursor );
if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
p->apCsr[iCur] = 0;
}
/* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
** the pMem used to hold space for the cursor has enough storage available
** in pMem->zMalloc. But for the special case of the aMem[] entries used
** to hold cursors, it is faster to in-line the logic. */
assert( pMem->flags==MEM_Undefined );
assert( (pMem->flags & MEM_Dyn)==0 );
assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
if( pMem->szMalloc<nByte ){
if( pMem->szMalloc>0 ){
sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
}
pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
if( pMem->zMalloc==0 ){
pMem->szMalloc = 0;
return 0;
}
pMem->szMalloc = nByte;
}
p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
pCx->eCurType = eCurType;
pCx->nField = nField;
pCx->aOffset = &pCx->aType[nField];
if( eCurType==CURTYPE_BTREE ){
pCx->uc.pCursor = (BtCursor*)
&pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
sqlite3BtreeCursorZero(pCx->uc.pCursor);
}
return pCx;
}
/*
** The string in pRec is known to look like an integer and to have a
** floating point value of rValue. Return true and set *piValue to the
** integer value if the string is in range to be an integer. Otherwise,
** return false.
*/
static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
i64 iValue;
iValue = sqlite3RealToI64(rValue);
if( sqlite3RealSameAsInt(rValue,iValue) ){
*piValue = iValue;
return 1;
}
return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
}
/*
** Try to convert a value into a numeric representation if we can
** do so without loss of information. In other words, if the string
** looks like a number, convert it into a number. If it does not
** look like a number, leave it alone.
**
** If the bTryForInt flag is true, then extra effort is made to give
** an integer representation. Strings that look like floating point
** values but which have no fractional component (example: '48.00')
** will have a MEM_Int representation when bTryForInt is true.
**
** If bTryForInt is false, then if the input string contains a decimal
** point or exponential notation, the result is only MEM_Real, even
** if there is an exact integer representation of the quantity.
*/
static void applyNumericAffinity(Mem *pRec, int bTryForInt){
double rValue;
u8 enc = pRec->enc;
int rc;
assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
if( rc<=0 ) return;
if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
pRec->flags |= MEM_Int;
}else{
pRec->u.r = rValue;
pRec->flags |= MEM_Real;
if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
}
/* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
** string representation after computing a numeric equivalent, because the
** string representation might not be the canonical representation for the
** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
pRec->flags &= ~MEM_Str;
}
/*
** Processing is determine by the affinity parameter:
**
** SQLITE_AFF_INTEGER:
** SQLITE_AFF_REAL:
** SQLITE_AFF_NUMERIC:
** Try to convert pRec to an integer representation or a
** floating-point representation if an integer representation
** is not possible. Note that the integer representation is
** always preferred, even if the affinity is REAL, because
** an integer representation is more space efficient on disk.
**
** SQLITE_AFF_FLEXNUM:
** If the value is text, then try to convert it into a number of
** some kind (integer or real) but do not make any other changes.
**
** SQLITE_AFF_TEXT:
** Convert pRec to a text representation.
**
** SQLITE_AFF_BLOB:
** SQLITE_AFF_NONE:
** No-op. pRec is unchanged.
*/
static void applyAffinity(
Mem *pRec, /* The value to apply affinity to */
char affinity, /* The affinity to be applied */
u8 enc /* Use this text encoding */
){
if( affinity>=SQLITE_AFF_NUMERIC ){
assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
|| affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
}else if( affinity<=SQLITE_AFF_REAL ){
sqlite3VdbeIntegerAffinity(pRec);
}
}
}else if( affinity==SQLITE_AFF_TEXT ){
/* Only attempt the conversion to TEXT if there is an integer or real
** representation (blob and NULL do not get converted) but no string
** representation. It would be harmless to repeat the conversion if
** there is already a string rep, but it is pointless to waste those
** CPU cycles. */
if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
testcase( pRec->flags & MEM_Int );
testcase( pRec->flags & MEM_Real );
testcase( pRec->flags & MEM_IntReal );
sqlite3VdbeMemStringify(pRec, enc, 1);
}
}
pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
}
}
/*
** Try to convert the type of a function argument or a result column
** into a numeric representation. Use either INTEGER or REAL whichever
** is appropriate. But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
*/
int sqlite3_value_numeric_type(sqlite3_value *pVal){
int eType = sqlite3_value_type(pVal);
if( eType==SQLITE_TEXT ){
Mem *pMem = (Mem*)pVal;
applyNumericAffinity(pMem, 0);
eType = sqlite3_value_type(pVal);
}
return eType;
}
/*
** Exported version of applyAffinity(). This one works on sqlite3_value*,
** not the internal Mem* type.
*/
void sqlite3ValueApplyAffinity(
sqlite3_value *pVal,
u8 affinity,
u8 enc
){
applyAffinity((Mem *)pVal, affinity, enc);
}
/*
** pMem currently only holds a string type (or maybe a BLOB that we can
** interpret as a string if we want to). Compute its corresponding
** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
** accordingly.
*/
static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
int rc;
sqlite3_int64 ix;
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
if( ExpandBlob(pMem) ){
pMem->u.i = 0;
return MEM_Int;
}
rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
if( rc<=0 ){
if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
pMem->u.i = ix;
return MEM_Int;
}else{
return MEM_Real;
}
}else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
pMem->u.i = ix;
return MEM_Int;
}
return MEM_Real;
}
/*
** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
** none.
**
** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
** But it does set pMem->u.r and pMem->u.i appropriately.
*/
static u16 numericType(Mem *pMem){
assert( (pMem->flags & MEM_Null)==0
|| pMem->db==0 || pMem->db->mallocFailed );
if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
testcase( pMem->flags & MEM_Int );
testcase( pMem->flags & MEM_Real );
testcase( pMem->flags & MEM_IntReal );
return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
}
assert( pMem->flags & (MEM_Str|MEM_Blob) );
testcase( pMem->flags & MEM_Str );
testcase( pMem->flags & MEM_Blob );
return computeNumericType(pMem);
return 0;
}
#ifdef SQLITE_DEBUG
/*
** Write a nice string representation of the contents of cell pMem
** into buffer zBuf, length nBuf.
*/
void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
int f = pMem->flags;
static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
if( f&MEM_Blob ){
int i;
char c;
if( f & MEM_Dyn ){
c = 'z';
assert( (f & (MEM_Static|MEM_Ephem))==0 );
}else if( f & MEM_Static ){
c = 't';
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
}else if( f & MEM_Ephem ){
c = 'e';
assert( (f & (MEM_Static|MEM_Dyn))==0 );
}else{
c = 's';
}
sqlite3_str_appendf(pStr, "%cx[", c);
for(i=0; i<25 && i<pMem->n; i++){
sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
}
sqlite3_str_appendf(pStr, "|");
for(i=0; i<25 && i<pMem->n; i++){
char z = pMem->z[i];
sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
}
sqlite3_str_appendf(pStr,"]");
if( f & MEM_Zero ){
sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
}
}else if( f & MEM_Str ){
int j;
u8 c;
if( f & MEM_Dyn ){
c = 'z';
assert( (f & (MEM_Static|MEM_Ephem))==0 );
}else if( f & MEM_Static ){
c = 't';
assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
}else if( f & MEM_Ephem ){
c = 'e';
assert( (f & (MEM_Static|MEM_Dyn))==0 );
}else{
c = 's';
}
sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
for(j=0; j<25 && j<pMem->n; j++){
c = pMem->z[j];
sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
}
sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
if( f & MEM_Term ){
sqlite3_str_appendf(pStr, "(0-term)");
}
}
}
#endif
#ifdef SQLITE_DEBUG
/*
** Print the value of a register for tracing purposes:
*/
static void memTracePrint(Mem *p){
if( p->flags & MEM_Undefined ){
printf(" undefined");
}else if( p->flags & MEM_Null ){
printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
}else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
printf(" si:%lld", p->u.i);
}else if( (p->flags & (MEM_IntReal))!=0 ){
printf(" ir:%lld", p->u.i);
}else if( p->flags & MEM_Int ){
printf(" i:%lld", p->u.i);
#ifndef SQLITE_OMIT_FLOATING_POINT
}else if( p->flags & MEM_Real ){
printf(" r:%.17g", p->u.r);
#endif
}else if( sqlite3VdbeMemIsRowSet(p) ){
printf(" (rowset)");
}else{
StrAccum acc;
char zBuf[1000];
sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
sqlite3VdbeMemPrettyPrint(p, &acc);
printf(" %s", sqlite3StrAccumFinish(&acc));
}
if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
}
static void registerTrace(int iReg, Mem *p){
printf("R[%d] = ", iReg);
memTracePrint(p);
if( p->pScopyFrom ){
printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
}
printf("\n");
sqlite3VdbeCheckMemInvariants(p);
}
/**/ void sqlite3PrintMem(Mem *pMem){
memTracePrint(pMem);
printf("\n");
fflush(stdout);
}
#endif
#ifdef SQLITE_DEBUG
/*
** Show the values of all registers in the virtual machine. Used for
** interactive debugging.
*/
void sqlite3VdbeRegisterDump(Vdbe *v){
int i;
for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
}
#endif /* SQLITE_DEBUG */
#ifdef SQLITE_DEBUG
# define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
#else
# define REGISTER_TRACE(R,M)
#endif
#ifndef NDEBUG
/*
** This function is only called from within an assert() expression. It
** checks that the sqlite3.nTransaction variable is correctly set to
** the number of non-transaction savepoints currently in the
** linked list starting at sqlite3.pSavepoint.
**
** Usage:
**
** assert( checkSavepointCount(db) );
*/
static int checkSavepointCount(sqlite3 *db){
int n = 0;
Savepoint *p;
for(p=db->pSavepoint; p; p=p->pNext) n++;
assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
return 1;
}
#endif
/*
** Return the register of pOp->p2 after first preparing it to be
** overwritten with an integer value.
*/
static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
sqlite3VdbeMemSetNull(pOut);
pOut->flags = MEM_Int;
return pOut;
}
static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
Mem *pOut;
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
pOut = &p->aMem[pOp->p2];
memAboutToChange(p, pOut);
if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
return out2PrereleaseWithClear(pOut);
}else{
pOut->flags = MEM_Int;
return pOut;
}
}
/*
** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
** with pOp->p3. Return the hash.
*/
static u64 filterHash(const Mem *aMem, const Op *pOp){
int i, mx;
u64 h = 0;
assert( pOp->p4type==P4_INT32 );
for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
const Mem *p = &aMem[i];
if( p->flags & (MEM_Int|MEM_IntReal) ){
h += p->u.i;
}else if( p->flags & MEM_Real ){
h += sqlite3VdbeIntValue(p);
}else if( p->flags & (MEM_Str|MEM_Blob) ){
/* All strings have the same hash and all blobs have the same hash,
** though, at least, those hashes are different from each other and
** from NULL. */
h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
}
}
return h;
}
/*
** For OP_Column, factor out the case where content is loaded from
** overflow pages, so that the code to implement this case is separate
** the common case where all content fits on the page. Factoring out
** the code reduces register pressure and helps the common case
** to run faster.
*/
static SQLITE_NOINLINE int vdbeColumnFromOverflow(
VdbeCursor *pC, /* The BTree cursor from which we are reading */
int iCol, /* The column to read */
int t, /* The serial-type code for the column value */
i64 iOffset, /* Offset to the start of the content value */
u32 cacheStatus, /* Current Vdbe.cacheCtr value */
u32 colCacheCtr, /* Current value of the column cache counter */
Mem *pDest /* Store the value into this register. */
){
int rc;
sqlite3 *db = pDest->db;
int encoding = pDest->enc;
int len = sqlite3VdbeSerialTypeLen(t);
assert( pC->eCurType==CURTYPE_BTREE );
if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
if( len > 4000 && pC->pKeyInfo==0 ){
/* Cache large column values that are on overflow pages using
** an RCStr (reference counted string) so that if they are reloaded,
** that do not have to be copied a second time. The overhead of
** creating and managing the cache is such that this is only
** profitable for larger TEXT and BLOB values.
**
** Only do this on table-btrees so that writes to index-btrees do not
** need to clear the cache. This buys performance in the common case
** in exchange for generality.
*/
VdbeTxtBlbCache *pCache;
char *pBuf;
if( pC->colCache==0 ){
pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
if( pC->pCache==0 ) return SQLITE_NOMEM;
pC->colCache = 1;
}
pCache = pC->pCache;
if( pCache->pCValue==0
|| pCache->iCol!=iCol
|| pCache->cacheStatus!=cacheStatus
|| pCache->colCacheCtr!=colCacheCtr
|| pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
){
if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
if( pBuf==0 ) return SQLITE_NOMEM;
rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
if( rc ) return rc;
pBuf[len] = 0;
pBuf[len+1] = 0;
pBuf[len+2] = 0;
pCache->iCol = iCol;
pCache->cacheStatus = cacheStatus;
pCache->colCacheCtr = colCacheCtr;
pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
}else{
pBuf = pCache->pCValue;
}
assert( t>=12 );
sqlite3RCStrRef(pBuf);
if( t&1 ){
rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
sqlite3RCStrUnref);
pDest->flags |= MEM_Term;
}else{
rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
sqlite3RCStrUnref);
}
}else{
rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
if( rc ) return rc;
sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
pDest->z[len] = 0;
pDest->flags |= MEM_Term;
}
}
pDest->flags &= ~MEM_Ephem;
return rc;
}
/*
** Return the symbolic name for the data type of a pMem
*/
static const char *vdbeMemTypeName(Mem *pMem){
static const char *azTypes[] = {
/* SQLITE_INTEGER */ "INT",
/* SQLITE_FLOAT */ "REAL",
/* SQLITE_TEXT */ "TEXT",
/* SQLITE_BLOB */ "BLOB",
/* SQLITE_NULL */ "NULL"
};
return azTypes[sqlite3_value_type(pMem)-1];
}
/*
** Execute as much of a VDBE program as we can.
** This is the core of sqlite3_step().
*/
int sqlite3VdbeExec(
Vdbe *p /* The VDBE */
){
Op *aOp = p->aOp; /* Copy of p->aOp */
Op *pOp = aOp; /* Current operation */
#ifdef SQLITE_DEBUG
Op *pOrigOp; /* Value of pOp at the top of the loop */
int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
u8 iCompareIsInit = 0; /* iCompare is initialized */
#endif
int rc = SQLITE_OK; /* Value to return */
sqlite3 *db = p->db; /* The database */
u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
u8 encoding = ENC(db); /* The database encoding */
int iCompare = 0; /* Result of last comparison */
u64 nVmStep = 0; /* Number of virtual machine steps */
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
#endif
Mem *aMem = p->aMem; /* Copy of p->aMem */
Mem *pIn1 = 0; /* 1st input operand */
Mem *pIn2 = 0; /* 2nd input operand */
Mem *pIn3 = 0; /* 3rd input operand */
Mem *pOut = 0; /* Output operand */
u32 colCacheCtr = 0; /* Column cache counter */
#if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
u64 *pnCycle = 0;
int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
#endif
/*** INSERT STACK UNION HERE ***/
assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
if( DbMaskNonZero(p->lockMask) ){
sqlite3VdbeEnter(p);
}
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
if( db->xProgress ){
u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
assert( 0 < db->nProgressOps );
nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
}else{
nProgressLimit = LARGEST_UINT64;
}
#endif
if( p->rc==SQLITE_NOMEM ){
/* This happens if a malloc() inside a call to sqlite3_column_text() or
** sqlite3_column_text16() failed. */
goto no_mem;
}
assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
testcase( p->rc!=SQLITE_OK );
p->rc = SQLITE_OK;
assert( p->bIsReader || p->readOnly!=0 );
p->iCurrentTime = 0;
assert( p->explain==0 );
db->busyHandler.nBusy = 0;
if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
sqlite3VdbeIOTraceSql(p);
#ifdef SQLITE_DEBUG
sqlite3BeginBenignMalloc();
if( p->pc==0
&& (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
){
int i;
int once = 1;
sqlite3VdbePrintSql(p);
if( p->db->flags & SQLITE_VdbeListing ){
printf("VDBE Program Listing:\n");
for(i=0; i<p->nOp; i++){
sqlite3VdbePrintOp(stdout, i, &aOp[i]);
}
}
if( p->db->flags & SQLITE_VdbeEQP ){
for(i=0; i<p->nOp; i++){
if( aOp[i].opcode==OP_Explain ){
if( once ) printf("VDBE Query Plan:\n");
printf("%s\n", aOp[i].p4.z);
once = 0;
}
}
}
if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
}
sqlite3EndBenignMalloc();
#endif
for(pOp=&aOp[p->pc]; 1; pOp++){
/* Errors are detected by individual opcodes, with an immediate
** jumps to abort_due_to_error. */
assert( rc==SQLITE_OK );
assert( pOp>=aOp && pOp<&aOp[p->nOp]);
nVmStep++;
#if defined(VDBE_PROFILE)
pOp->nExec++;
pnCycle = &pOp->nCycle;
if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
if( bStmtScanStatus ){
pOp->nExec++;
pnCycle = &pOp->nCycle;
*pnCycle -= sqlite3Hwtime();
}
#endif
/* Only allow tracing if SQLITE_DEBUG is defined.
*/
#ifdef SQLITE_DEBUG
if( db->flags & SQLITE_VdbeTrace ){
sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
test_trace_breakpoint((int)(pOp - aOp),pOp,p);
}
#endif
/* Check to see if we need to simulate an interrupt. This only happens
** if we have a special test build.
*/
#ifdef SQLITE_TEST
if( sqlite3_interrupt_count>0 ){
sqlite3_interrupt_count--;
if( sqlite3_interrupt_count==0 ){
sqlite3_interrupt(db);
}
}
#endif
/* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
{
u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
if( (opProperty & OPFLG_IN1)!=0 ){
assert( pOp->p1>0 );
assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
assert( memIsValid(&aMem[pOp->p1]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
}
if( (opProperty & OPFLG_IN2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
assert( memIsValid(&aMem[pOp->p2]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
}
if( (opProperty & OPFLG_IN3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
assert( memIsValid(&aMem[pOp->p3]) );
assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
}
if( (opProperty & OPFLG_OUT2)!=0 ){
assert( pOp->p2>0 );
assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
memAboutToChange(p, &aMem[pOp->p2]);
}
if( (opProperty & OPFLG_OUT3)!=0 ){
assert( pOp->p3>0 );
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
memAboutToChange(p, &aMem[pOp->p3]);
}
}
#endif
#ifdef SQLITE_DEBUG
pOrigOp = pOp;
#endif
switch( pOp->opcode ){
/*****************************************************************************
** What follows is a massive switch statement where each case implements a
** separate instruction in the virtual machine. If we follow the usual
** indentation conventions, each case should be indented by 6 spaces. But
** that is a lot of wasted space on the left margin. So the code within
** the switch statement will break with convention and be flush-left. Another
** big comment (similar to this one) will mark the point in the code where
** we transition back to normal indentation.
**
** The formatting of each case is important. The makefile for SQLite
** generates two C files "opcodes.h" and "opcodes.c" by scanning this
** file looking for lines that begin with "case OP_". The opcodes.h files
** will be filled with #defines that give unique integer values to each
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode. If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** Other keywords in the comment that follows each case are used to
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
** Keywords include: in1, in2, in3, out2, out3. See
** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:". That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
** SUMMARY:
**
** Formatting is important to scripts that scan this file.
** Do not deviate from the formatting style currently in use.
**
*****************************************************************************/
/* Opcode: Goto * P2 * * *
**
** An unconditional jump to address P2.
** The next instruction executed will be
** the one at index P2 from the beginning of
** the program.
**
** The P1 parameter is not actually used by this opcode. However, it
** is sometimes set to 1 instead of 0 as a hint to the command-line shell
** that this Goto is the bottom of a loop and that the lines from P2 down
** to the current line should be indented for EXPLAIN output.
*/
case OP_Goto: { /* jump */
#ifdef SQLITE_DEBUG
/* In debugging mode, when the p5 flags is set on an OP_Goto, that
** means we should really jump back to the preceding OP_ReleaseReg
** instruction. */
if( pOp->p5 ){
assert( pOp->p2 < (int)(pOp - aOp) );
assert( pOp->p2 > 1 );
pOp = &aOp[pOp->p2 - 2];
assert( pOp[1].opcode==OP_ReleaseReg );
goto check_for_interrupt;
}
#endif
jump_to_p2_and_check_for_interrupt:
pOp = &aOp[pOp->p2 - 1];
/* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
** OP_VNext, or OP_SorterNext) all jump here upon
** completion. Check to see if sqlite3_interrupt() has been called
** or if the progress callback needs to be invoked.
**
** This code uses unstructured "goto" statements and does not look clean.
** But that is not due to sloppy coding habits. The code is written this
** way for performance, to avoid having to run the interrupt and progress
** checks on every opcode. This helps sqlite3_step() to run about 1.5%
** faster according to "valgrind --tool=cachegrind" */
check_for_interrupt:
if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/* Call the progress callback if it is configured and the required number
** of VDBE ops have been executed (either since this invocation of
** sqlite3VdbeExec() or since last time the progress callback was called).
** If the progress callback returns non-zero, exit the virtual machine with
** a return code SQLITE_ABORT.
*/
while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
assert( db->nProgressOps!=0 );
nProgressLimit += db->nProgressOps;
if( db->xProgress(db->pProgressArg) ){
nProgressLimit = LARGEST_UINT64;
rc = SQLITE_INTERRUPT;
goto abort_due_to_error;
}
}
#endif
break;
}
/* Opcode: Gosub P1 P2 * * *
**
** Write the current address onto register P1
** and then jump to address P2.
*/
case OP_Gosub: { /* jump */
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pIn1 = &aMem[pOp->p1];
assert( VdbeMemDynamic(pIn1)==0 );
memAboutToChange(p, pIn1);
pIn1->flags = MEM_Int;
pIn1->u.i = (int)(pOp-aOp);
REGISTER_TRACE(pOp->p1, pIn1);
goto jump_to_p2_and_check_for_interrupt;
}
/* Opcode: Return P1 P2 P3 * *
**
** Jump to the address stored in register P1. If P1 is a return address
** register, then this accomplishes a return from a subroutine.
**
** If P3 is 1, then the jump is only taken if register P1 holds an integer
** values, otherwise execution falls through to the next opcode, and the
** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
** integer or else an assert() is raised. P3 should be set to 1 when
** this opcode is used in combination with OP_BeginSubrtn, and set to 0
** otherwise.
**
** The value in register P1 is unchanged by this opcode.
**
** P2 is not used by the byte-code engine. However, if P2 is positive
** and also less than the current address, then the "EXPLAIN" output
** formatter in the CLI will indent all opcodes from the P2 opcode up
** to be not including the current Return. P2 should be the first opcode
** in the subroutine from which this opcode is returning. Thus the P2
** value is a byte-code indentation hint. See tag-20220407a in
** wherecode.c and shell.c.
*/
case OP_Return: { /* in1 */
pIn1 = &aMem[pOp->p1];
if( pIn1->flags & MEM_Int ){
if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
pOp = &aOp[pIn1->u.i];
}else if( ALWAYS(pOp->p3) ){
VdbeBranchTaken(0, 2);
}
break;
}
/* Opcode: InitCoroutine P1 P2 P3 * *
**
** Set up register P1 so that it will Yield to the coroutine
** located at address P3.
**
** If P2!=0 then the coroutine implementation immediately follows
** this opcode. So jump over the coroutine implementation to
** address P2.
**
** See also: EndCoroutine
*/
case OP_InitCoroutine: { /* jump0 */
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
assert( pOp->p2>=0 && pOp->p2<p->nOp );
assert( pOp->p3>=0 && pOp->p3<p->nOp );
pOut = &aMem[pOp->p1];
assert( !VdbeMemDynamic(pOut) );
pOut->u.i = pOp->p3 - 1;
pOut->flags = MEM_Int;
if( pOp->p2==0 ) break;
/* Most jump operations do a goto to this spot in order to update
** the pOp pointer. */
jump_to_p2:
assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
assert( pOp->p2<p->nOp ); /* Jumps must be in range */
pOp = &aOp[pOp->p2 - 1];
break;
}
/* Opcode: EndCoroutine P1 * * * *
**
** The instruction at the address in register P1 is a Yield.
** Jump to the P2 parameter of that Yield.
** After the jump, the value register P1 is left with a value
** such that subsequent OP_Yields go back to the this same
** OP_EndCoroutine instruction.
**
** See also: InitCoroutine
*/
case OP_EndCoroutine: { /* in1 */
VdbeOp *pCaller;
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags==MEM_Int );
assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
pCaller = &aOp[pIn1->u.i];
assert( pCaller->opcode==OP_Yield );
assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
pIn1->u.i = (int)(pOp - p->aOp) - 1;
pOp = &aOp[pCaller->p2 - 1];
break;
}
/* Opcode: Yield P1 P2 * * *
**
** Swap the program counter with the value in register P1. This
** has the effect of yielding to a coroutine.
**
** If the coroutine that is launched by this instruction ends with
** Yield or Return then continue to the next instruction. But if
** the coroutine launched by this instruction ends with
** EndCoroutine, then jump to P2 rather than continuing with the
** next instruction.
**
** See also: InitCoroutine
*/
case OP_Yield: { /* in1, jump0 */
int pcDest;
pIn1 = &aMem[pOp->p1];
assert( VdbeMemDynamic(pIn1)==0 );
pIn1->flags = MEM_Int;
pcDest = (int)pIn1->u.i;
pIn1->u.i = (int)(pOp - aOp);
REGISTER_TRACE(pOp->p1, pIn1);
pOp = &aOp[pcDest];
break;
}
/* Opcode: HaltIfNull P1 P2 P3 P4 P5
** Synopsis: if r[P3]=null halt
**
** Check the value in register P3. If it is NULL then Halt using
** parameter P1, P2, and P4 as if this were a Halt instruction. If the
** value in register P3 is not NULL, then this routine is a no-op.
** The P5 parameter should be 1.
*/
case OP_HaltIfNull: { /* in3 */
pIn3 = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
#endif
if( (pIn3->flags & MEM_Null)==0 ) break;
/* Fall through into OP_Halt */
/* no break */ deliberate_fall_through
}
/* Opcode: Halt P1 P2 P3 P4 P5
**
** Exit immediately. All open cursors, etc are closed
** automatically.
**
** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
** For errors, it can be some other value. If P1!=0 then P2 will determine
** whether or not to rollback the current transaction. Do not rollback
** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
** then back out all changes that have occurred during this execution of the
** VDBE, but do not rollback the transaction.
**
** If P3 is not zero and P4 is NULL, then P3 is a register that holds the
** text of an error message.
**
** If P3 is zero and P4 is not null then the error message string is held
** in P4.
**
** P5 is a value between 1 and 4, inclusive, then the P4 error message
** string is modified as follows:
**
** 1: NOT NULL constraint failed: P4
** 2: UNIQUE constraint failed: P4
** 3: CHECK constraint failed: P4
** 4: FOREIGN KEY constraint failed: P4
**
** If P3 is zero and P5 is not zero and P4 is NULL, then everything after
** the ":" is omitted.
**
** There is an implied "Halt 0 0 0" instruction inserted at the very end of
** every program. So a jump past the last instruction of the program
** is the same as executing Halt.
*/
case OP_Halt: {
VdbeFrame *pFrame;
int pcx;
#ifdef SQLITE_DEBUG
if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
#endif
assert( pOp->p4type==P4_NOTUSED
|| pOp->p4type==P4_STATIC
|| pOp->p4type==P4_DYNAMIC );
/* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
** something is wrong with the code generator. Raise an assertion in order
** to bring this to the attention of fuzzers and other testing tools. */
assert( pOp->p1!=SQLITE_INTERNAL );
if( p->pFrame && pOp->p1==SQLITE_OK ){
/* Halt the sub-program. Return control to the parent frame. */
pFrame = p->pFrame;
p->pFrame = pFrame->pParent;
p->nFrame--;
sqlite3VdbeSetChanges(db, p->nChange);
pcx = sqlite3VdbeFrameRestore(pFrame);
if( pOp->p2==OE_Ignore ){
/* Instruction pcx is the OP_Program that invoked the sub-program
** currently being halted. If the p2 instruction of this OP_Halt
** instruction is set to OE_Ignore, then the sub-program is throwing
** an IGNORE exception. In this case jump to the address specified
** as the p2 of the calling OP_Program. */
pcx = p->aOp[pcx].p2-1;
}
aOp = p->aOp;
aMem = p->aMem;
pOp = &aOp[pcx];
break;
}
p->rc = pOp->p1;
p->errorAction = (u8)pOp->p2;
assert( pOp->p5<=4 );
if( p->rc ){
if( pOp->p3>0 && pOp->p4type==P4_NOTUSED ){
const char *zErr;
assert( pOp->p3<=(p->nMem + 1 - p->nCursor) );
zErr = sqlite3ValueText(&aMem[pOp->p3], SQLITE_UTF8);
sqlite3VdbeError(p, "%s", zErr);
}else if( pOp->p5 ){
static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
"FOREIGN KEY" };
testcase( pOp->p5==1 );
testcase( pOp->p5==2 );
testcase( pOp->p5==3 );
testcase( pOp->p5==4 );
sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
if( pOp->p4.z ){
p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
}
}else{
sqlite3VdbeError(p, "%s", pOp->p4.z);
}
pcx = (int)(pOp - aOp);
sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
}
rc = sqlite3VdbeHalt(p);
assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
if( rc==SQLITE_BUSY ){
p->rc = SQLITE_BUSY;
}else{
assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
}
goto vdbe_return;
}
/* Opcode: Integer P1 P2 * * *
** Synopsis: r[P2]=P1
**
** The 32-bit integer value P1 is written into register P2.
*/
case OP_Integer: { /* out2 */
pOut = out2Prerelease(p, pOp);
pOut->u.i = pOp->p1;
break;
}
/* Opcode: Int64 * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
*/
case OP_Int64: { /* out2 */
pOut = out2Prerelease(p, pOp);
assert( pOp->p4.pI64!=0 );
pOut->u.i = *pOp->p4.pI64;
break;
}
#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: { /* same as TK_FLOAT, out2 */
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Real;
assert( !sqlite3IsNaN(*pOp->p4.pReal) );
pOut->u.r = *pOp->p4.pReal;
break;
}
#endif
/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed
** into a String opcode before it is executed for the first time. During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: { /* same as TK_STRING, out2 */
assert( pOp->p4.z!=0 );
pOut = out2Prerelease(p, pOp);
pOp->p1 = sqlite3Strlen30(pOp->p4.z);
#ifndef SQLITE_OMIT_UTF16
if( encoding!=SQLITE_UTF8 ){
rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
if( rc ) goto too_big;
if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
assert( VdbeMemDynamic(pOut)==0 );
pOut->szMalloc = 0;
pOut->flags |= MEM_Static;
if( pOp->p4type==P4_DYNAMIC ){
sqlite3DbFree(db, pOp->p4.z);
}
pOp->p4type = P4_DYNAMIC;
pOp->p4.z = pOut->z;
pOp->p1 = pOut->n;
}
#endif
if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
pOp->opcode = OP_String;
assert( rc==SQLITE_OK );
/* Fall through to the next case, OP_String */
/* no break */ deliberate_fall_through
}
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P3 is not zero and the content of register P3 is equal to P5, then
** the datatype of the register P2 is converted to BLOB. The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST. In other words:
**
** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
*/
case OP_String: { /* out2 */
assert( pOp->p4.z!=0 );
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
pOut->z = pOp->p4.z;
pOut->n = pOp->p1;
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
if( pOp->p3>0 ){
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
pIn3 = &aMem[pOp->p3];
assert( pIn3->flags & MEM_Int );
if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
}
#endif
break;
}
/* Opcode: BeginSubrtn * P2 * * *
** Synopsis: r[P2]=NULL
**
** Mark the beginning of a subroutine that can be entered in-line
** or that can be called using OP_Gosub. The subroutine should
** be terminated by an OP_Return instruction that has a P1 operand that
** is the same as the P2 operand to this opcode and that has P3 set to 1.
** If the subroutine is entered in-line, then the OP_Return will simply
** fall through. But if the subroutine is entered using OP_Gosub, then
** the OP_Return will jump back to the first instruction after the OP_Gosub.
**
** This routine works by loading a NULL into the P2 register. When the
** return address register contains a NULL, the OP_Return instruction is
** a no-op that simply falls through to the next instruction (assuming that
** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
** entered in-line, then the OP_Return will cause in-line execution to
** continue. But if the subroutine is entered via OP_Gosub, then the
** OP_Return will cause a return to the address following the OP_Gosub.
**
** This opcode is identical to OP_Null. It has a different name
** only to make the byte code easier to read and verify.
*/
/* Opcode: Null P1 P2 P3 * *
** Synopsis: r[P2..P3]=NULL
**
** Write a NULL into registers P2. If P3 greater than P2, then also write
** NULL into register P3 and every register in between P2 and P3. If P3
** is less than P2 (typically P3 is zero) then only register P2 is
** set to NULL.
**
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_BeginSubrtn:
case OP_Null: { /* out2 */
int cnt;
u16 nullFlag;
pOut = out2Prerelease(p, pOp);
cnt = pOp->p3-pOp->p2;
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
pOut->n = 0;
#ifdef SQLITE_DEBUG
pOut->uTemp = 0;
#endif
while( cnt>0 ){
pOut++;
memAboutToChange(p, pOut);
sqlite3VdbeMemSetNull(pOut);
pOut->flags = nullFlag;
pOut->n = 0;
cnt--;
}
break;
}
/* Opcode: SoftNull P1 * * * *
** Synopsis: r[P1]=NULL
**
** Set register P1 to have the value NULL as seen by the OP_MakeRecord
** instruction, but do not free any string or blob memory associated with
** the register, so that if the value was a string or blob that was
** previously copied using OP_SCopy, the copies will continue to be valid.
*/
case OP_SoftNull: {
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pOut = &aMem[pOp->p1];
pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
break;
}
/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long. Store this
** blob in register P2. If P4 is a NULL pointer, then construct
** a zero-filled blob that is P1 bytes long in P2.
*/
case OP_Blob: { /* out2 */
assert( pOp->p1 <= SQLITE_MAX_LENGTH );
pOut = out2Prerelease(p, pOp);
if( pOp->p4.z==0 ){
sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
}else{
sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
}
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Variable P1 P2 * * *
** Synopsis: r[P2]=parameter(P1)
**
** Transfer the values of bound parameter P1 into register P2
*/
case OP_Variable: { /* out2 */
Mem *pVar; /* Value being transferred */
assert( pOp->p1>0 && pOp->p1<=p->nVar );
pVar = &p->aVar[pOp->p1 - 1];
if( sqlite3VdbeMemTooBig(pVar) ){
goto too_big;
}
pOut = &aMem[pOp->p2];
if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
memcpy(pOut, pVar, MEMCELLSIZE);
pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
pOut->flags |= MEM_Static|MEM_FromBind;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Move P1 P2 P3 * *
** Synopsis: r[P2@P3]=r[P1@P3]
**
** Move the P3 values in register P1..P1+P3-1 over into
** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
** left holding a NULL. It is an error for register ranges
** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
** for P3 to be less than 1.
*/
case OP_Move: {
int n; /* Number of registers left to copy */
int p1; /* Register to copy from */
int p2; /* Register to copy to */
n = pOp->p3;
p1 = pOp->p1;
p2 = pOp->p2;
assert( n>0 && p1>0 && p2>0 );
assert( p1+n<=p2 || p2+n<=p1 );
pIn1 = &aMem[p1];
pOut = &aMem[p2];
do{
assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
assert( memIsValid(pIn1) );
memAboutToChange(p, pOut);
sqlite3VdbeMemMove(pOut, pIn1);
#ifdef SQLITE_DEBUG
pIn1->pScopyFrom = 0;
{ int i;
for(i=1; i<p->nMem; i++){
if( aMem[i].pScopyFrom==pIn1 ){
aMem[i].pScopyFrom = pOut;
}
}
}
#endif
Deephemeralize(pOut);
REGISTER_TRACE(p2++, pOut);
pIn1++;
pOut++;
}while( --n );
break;
}
/* Opcode: Copy P1 P2 P3 * P5
** Synopsis: r[P2@P3+1]=r[P1@P3+1]
**
** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
**
** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
** be merged. The 0x0001 bit is used by the query planner and does not
** come into play during query execution.
**
** This instruction makes a deep copy of the value. A duplicate
** is made of any string or blob constant. See also OP_SCopy.
*/
case OP_Copy: {
int n;
n = pOp->p3;
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
assert( pOut!=pIn1 );
while( 1 ){
memAboutToChange(p, pOut);
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
Deephemeralize(pOut);
if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
pOut->flags &= ~MEM_Subtype;
}
#ifdef SQLITE_DEBUG
pOut->pScopyFrom = 0;
#endif
REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
if( (n--)==0 ) break;
pOut++;
pIn1++;
}
break;
}
/* Opcode: SCopy P1 P2 * * *
** Synopsis: r[P2]=r[P1]
**
** Make a shallow copy of register P1 into register P2.
**
** This instruction makes a shallow copy of the value. If the value
** is a string or blob, then the copy is only a pointer to the
** original and hence if the original changes so will the copy.
** Worse, if the original is deallocated, the copy becomes invalid.
** Thus the program must guarantee that the original will not change
** during the lifetime of the copy. Use OP_Copy to make a complete
** copy.
*/
case OP_SCopy: { /* out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
assert( pOut!=pIn1 );
sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
#ifdef SQLITE_DEBUG
pOut->pScopyFrom = pIn1;
pOut->mScopyFlags = pIn1->flags;
#endif
break;
}
/* Opcode: IntCopy P1 P2 * * *
** Synopsis: r[P2]=r[P1]
**
** Transfer the integer value held in register P1 into register P2.
**
** This is an optimized version of SCopy that works only for integer
** values.
*/
case OP_IntCopy: { /* out2 */
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Int)!=0 );
pOut = &aMem[pOp->p2];
sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
break;
}
/* Opcode: FkCheck * * * * *
**
** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
** foreign key constraint violations. If there are no foreign key
** constraint violations, this is a no-op.
**
** FK constraint violations are also checked when the prepared statement
** exits. This opcode is used to raise foreign key constraint errors prior
** to returning results such as a row change count or the result of a
** RETURNING clause.
*/
case OP_FkCheck: {
if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
goto abort_due_to_error;
}
break;
}
/* Opcode: ResultRow P1 P2 * * *
** Synopsis: output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
** structure to provide access to the r(P1)..r(P1+P2-1) values as
** the result row.
*/
case OP_ResultRow: {
assert( p->nResColumn==pOp->p2 );
assert( pOp->p1>0 || CORRUPT_DB );
assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
p->cacheCtr = (p->cacheCtr + 2)|1;
p->pResultRow = &aMem[pOp->p1];
#ifdef SQLITE_DEBUG
{
Mem *pMem = p->pResultRow;
int i;
for(i=0; i<pOp->p2; i++){
assert( memIsValid(&pMem[i]) );
REGISTER_TRACE(pOp->p1+i, &pMem[i]);
/* The registers in the result will not be used again when the
** prepared statement restarts. This is because sqlite3_column()
** APIs might have caused type conversions of made other changes to
** the register values. Therefore, we can go ahead and break any
** OP_SCopy dependencies. */
pMem[i].pScopyFrom = 0;
}
}
#endif
if( db->mallocFailed ) goto no_mem;
if( db->mTrace & SQLITE_TRACE_ROW ){
db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
}
p->pc = (int)(pOp - aOp) + 1;
rc = SQLITE_ROW;
goto vdbe_return;
}
/* Opcode: Concat P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]+r[P1]
**
** Add the text in register P1 onto the end of the text in
** register P2 and store the result in register P3.
** If either the P1 or P2 text are NULL then store NULL in P3.
**
** P3 = P2 || P1
**
** It is illegal for P1 and P3 to be the same register. Sometimes,
** if P3 is the same register as P2, the implementation is able
** to avoid a memcpy().
*/
case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
i64 nByte; /* Total size of the output string or blob */
u16 flags1; /* Initial flags for P1 */
u16 flags2; /* Initial flags for P2 */
pIn1 = &aMem[pOp->p1];
pIn2 = &aMem[pOp->p2];
pOut = &aMem[pOp->p3];
testcase( pOut==pIn2 );
assert( pIn1!=pOut );
flags1 = pIn1->flags;
testcase( flags1 & MEM_Null );
testcase( pIn2->flags & MEM_Null );
if( (flags1 | pIn2->flags) & MEM_Null ){
sqlite3VdbeMemSetNull(pOut);
break;
}
if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
flags1 = pIn1->flags & ~MEM_Str;
}else if( (flags1 & MEM_Zero)!=0 ){
if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
flags1 = pIn1->flags & ~MEM_Str;
}
flags2 = pIn2->flags;
if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
flags2 = pIn2->flags & ~MEM_Str;
}else if( (flags2 & MEM_Zero)!=0 ){
if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
flags2 = pIn2->flags & ~MEM_Str;
}
nByte = pIn1->n + pIn2->n;
if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
goto no_mem;
}
MemSetTypeFlag(pOut, MEM_Str);
if( pOut!=pIn2 ){
memcpy(pOut->z, pIn2->z, pIn2->n);
assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
pIn2->flags = flags2;
}
memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
pIn1->flags = flags1;
if( encoding>SQLITE_UTF8 ) nByte &= ~1;
pOut->z[nByte]=0;
pOut->z[nByte+1] = 0;
pOut->flags |= MEM_Term;
pOut->n = (int)nByte;
pOut->enc = encoding;
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: Add P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]+r[P2]
**
** Add the value in register P1 to the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Multiply P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]*r[P2]
**
**
** Multiply the value in register P1 by the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Subtract P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]-r[P1]
**
** Subtract the value in register P1 from the value in register P2
** and store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: Divide P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]/r[P1]
**
** Divide the value in register P1 by the value in register P2
** and store the result in register P3 (P3=P2/P1). If the value in
** register P1 is zero, then the result is NULL. If either input is
** NULL, the result is NULL.
*/
/* Opcode: Remainder P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]%r[P1]
**
** Compute the remainder after integer register P2 is divided by
** register P1 and store the result in register P3.
** If the value in register P1 is zero the result is NULL.
** If either operand is NULL, the result is NULL.
*/
case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
u16 type1; /* Numeric type of left operand */
u16 type2; /* Numeric type of right operand */
i64 iA; /* Integer value of left operand */
i64 iB; /* Integer value of right operand */
double rA; /* Real value of left operand */
double rB; /* Real value of right operand */
pIn1 = &aMem[pOp->p1];
type1 = pIn1->flags;
pIn2 = &aMem[pOp->p2];
type2 = pIn2->flags;
pOut = &aMem[pOp->p3];
if( (type1 & type2 & MEM_Int)!=0 ){
int_math:
iA = pIn1->u.i;
iB = pIn2->u.i;
switch( pOp->opcode ){
case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
case OP_Divide: {
if( iA==0 ) goto arithmetic_result_is_null;
if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
iB /= iA;
break;
}
default: {
if( iA==0 ) goto arithmetic_result_is_null;
if( iA==-1 ) iA = 1;
iB %= iA;
break;
}
}
pOut->u.i = iB;
MemSetTypeFlag(pOut, MEM_Int);
}else if( ((type1 | type2) & MEM_Null)!=0 ){
goto arithmetic_result_is_null;
}else{
type1 = numericType(pIn1);
type2 = numericType(pIn2);
if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
fp_math:
rA = sqlite3VdbeRealValue(pIn1);
rB = sqlite3VdbeRealValue(pIn2);
switch( pOp->opcode ){
case OP_Add: rB += rA; break;
case OP_Subtract: rB -= rA; break;
case OP_Multiply: rB *= rA; break;
case OP_Divide: {
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
if( rA==(double)0 ) goto arithmetic_result_is_null;
rB /= rA;
break;
}
default: {
iA = sqlite3VdbeIntValue(pIn1);
iB = sqlite3VdbeIntValue(pIn2);
if( iA==0 ) goto arithmetic_result_is_null;
if( iA==-1 ) iA = 1;
rB = (double)(iB % iA);
break;
}
}
#ifdef SQLITE_OMIT_FLOATING_POINT
pOut->u.i = rB;
MemSetTypeFlag(pOut, MEM_Int);
#else
if( sqlite3IsNaN(rB) ){
goto arithmetic_result_is_null;
}
pOut->u.r = rB;
MemSetTypeFlag(pOut, MEM_Real);
#endif
}
break;
arithmetic_result_is_null:
sqlite3VdbeMemSetNull(pOut);
break;
}
/* Opcode: CollSeq P1 * * P4
**
** P4 is a pointer to a CollSeq object. If the next call to a user function
** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
** be returned. This is used by the built-in min(), max() and nullif()
** functions.
**
** If P1 is not zero, then it is a register that a subsequent min() or
** max() aggregate will set to 1 if the current row is not the minimum or
** maximum. The P1 register is initialized to 0 by this instruction.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly. Only built-in functions have access to this feature.
*/
case OP_CollSeq: {
assert( pOp->p4type==P4_COLLSEQ );
if( pOp->p1 ){
sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
}
break;
}
/* Opcode: BitAnd P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]&r[P2]
**
** Take the bit-wise AND of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: BitOr P1 P2 P3 * *
** Synopsis: r[P3]=r[P1]|r[P2]
**
** Take the bit-wise OR of the values in register P1 and P2 and
** store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftLeft P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]<<r[P1]
**
** Shift the integer value in register P2 to the left by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
/* Opcode: ShiftRight P1 P2 P3 * *
** Synopsis: r[P3]=r[P2]>>r[P1]
**
** Shift the integer value in register P2 to the right by the
** number of bits specified by the integer in register P1.
** Store the result in register P3.
** If either input is NULL, the result is NULL.
*/
case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
i64 iA;
u64 uA;
i64 iB;
u8 op;
pIn1 = &aMem[pOp->p1];
pIn2 = &aMem[pOp->p2];
pOut = &aMem[pOp->p3];
if( (pIn1->flags | pIn2->flags) & MEM_Null ){
sqlite3VdbeMemSetNull(pOut);
break;
}
iA = sqlite3VdbeIntValue(pIn2);
iB = sqlite3VdbeIntValue(pIn1);
op = pOp->opcode;
if( op==OP_BitAnd ){
iA &= iB;
}else if( op==OP_BitOr ){
iA |= iB;
}else if( iB!=0 ){
assert( op==OP_ShiftRight || op==OP_ShiftLeft );
/* If shifting by a negative amount, shift in the other direction */
if( iB<0 ){
assert( OP_ShiftRight==OP_ShiftLeft+1 );
op = 2*OP_ShiftLeft + 1 - op;
iB = iB>(-64) ? -iB : 64;
}
if( iB>=64 ){
iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
}else{
memcpy(&uA, &iA, sizeof(uA));
if( op==OP_ShiftLeft ){
uA <<= iB;
}else{
uA >>= iB;
/* Sign-extend on a right shift of a negative number */
if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
}
memcpy(&iA, &uA, sizeof(iA));
}
}
pOut->u.i = iA;
MemSetTypeFlag(pOut, MEM_Int);
break;
}
/* Opcode: AddImm P1 P2 * * *
** Synopsis: r[P1]=r[P1]+P2
**
** Add the constant P2 to the value in register P1.
** The result is always an integer.
**
** To force any register to be an integer, just add 0.
*/
case OP_AddImm: { /* in1 */
pIn1 = &aMem[pOp->p1];
memAboutToChange(p, pIn1);
sqlite3VdbeMemIntegerify(pIn1);
*(u64*)&pIn1->u.i += (u64)pOp->p2;
break;
}
/* Opcode: MustBeInt P1 P2 * * *
**
** Force the value in register P1 to be an integer. If the value
** in P1 is not an integer and cannot be converted into an integer
** without data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
*/
case OP_MustBeInt: { /* jump0, in1 */
pIn1 = &aMem[pOp->p1];
if( (pIn1->flags & MEM_Int)==0 ){
applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
if( (pIn1->flags & MEM_Int)==0 ){
VdbeBranchTaken(1, 2);
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
goto jump_to_p2;
}
}
}
VdbeBranchTaken(0, 2);
MemSetTypeFlag(pIn1, MEM_Int);
break;
}
#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: RealAffinity P1 * * * *
**
** If register P1 holds an integer convert it to a real value.
**
** This opcode is used when extracting information from a column that
** has REAL affinity. Such column values may still be stored as
** integers, for space efficiency, but after extraction we want them
** to have only a real value.
*/
case OP_RealAffinity: { /* in1 */
pIn1 = &aMem[pOp->p1];
if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
testcase( pIn1->flags & MEM_Int );
testcase( pIn1->flags & MEM_IntReal );
sqlite3VdbeMemRealify(pIn1);
REGISTER_TRACE(pOp->p1, pIn1);
}
break;
}
#endif
#if !defined(SQLITE_OMIT_CAST) || !defined(SQLITE_OMIT_ANALYZE)
/* Opcode: Cast P1 P2 * * *
** Synopsis: affinity(r[P1])
**
** Force the value in register P1 to be the type defined by P2.
**
** <ul>
** <li> P2=='A' → BLOB
** <li> P2=='B' → TEXT
** <li> P2=='C' → NUMERIC
** <li> P2=='D' → INTEGER
** <li> P2=='E' → REAL
** </ul>
**
** A NULL value is not changed by this routine. It remains NULL.
*/
case OP_Cast: { /* in1 */
assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
testcase( pOp->p2==SQLITE_AFF_TEXT );
testcase( pOp->p2==SQLITE_AFF_BLOB );
testcase( pOp->p2==SQLITE_AFF_NUMERIC );
testcase( pOp->p2==SQLITE_AFF_INTEGER );
testcase( pOp->p2==SQLITE_AFF_REAL );
pIn1 = &aMem[pOp->p1];
memAboutToChange(p, pIn1);
rc = ExpandBlob(pIn1);
if( rc ) goto abort_due_to_error;
rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
if( rc ) goto abort_due_to_error;
UPDATE_MAX_BLOBSIZE(pIn1);
REGISTER_TRACE(pOp->p1, pIn1);
break;
}
#endif /* SQLITE_OMIT_CAST */
/* Opcode: Eq P1 P2 P3 P4 P5
** Synopsis: IF r[P3]==r[P1]
**
** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
** jump to address P2.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3. So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison. If both values
** are text, then the appropriate collating function specified in
** P4 is used to do the comparison. If P4 is not specified then
** memcmp() is used to compare text string. If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
** true or false and is never NULL. If both operands are NULL then the result
** of comparison is true. If either operand is NULL then the result is false.
** If neither operand is NULL the result is the same as it would be if
** the SQLITE_NULLEQ flag were omitted from P5.
**
** This opcode saves the result of comparison for use by the new
** OP_Jump opcode.
*/
/* Opcode: Ne P1 P2 P3 P4 P5
** Synopsis: IF r[P3]!=r[P1]
**
** This works just like the Eq opcode except that the jump is taken if
** the operands in registers P1 and P3 are not equal. See the Eq opcode for
** additional information.
*/
/* Opcode: Lt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<r[P1]
**
** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
** jump to address P2.
**
** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
** bit is clear then fall through if either operand is NULL.
**
** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
** to coerce both inputs according to this affinity before the
** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
** affinity is used. Note that the affinity conversions are stored
** back into the input registers P1 and P3. So this opcode can cause
** persistent changes to registers P1 and P3.
**
** Once any conversions have taken place, and neither value is NULL,
** the values are compared. If both values are blobs then memcmp() is
** used to determine the results of the comparison. If both values
** are text, then the appropriate collating function specified in
** P4 is used to do the comparison. If P4 is not specified then
** memcmp() is used to compare text string. If both values are
** numeric, then a numeric comparison is used. If the two values
** are of different types, then numbers are considered less than
** strings and strings are considered less than blobs.
**
** This opcode saves the result of comparison for use by the new
** OP_Jump opcode.
*/
/* Opcode: Le P1 P2 P3 P4 P5
** Synopsis: IF r[P3]<=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is less than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Gt P1 P2 P3 P4 P5
** Synopsis: IF r[P3]>r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than the content of
** register P1. See the Lt opcode for additional information.
*/
/* Opcode: Ge P1 P2 P3 P4 P5
** Synopsis: IF r[P3]>=r[P1]
**
** This works just like the Lt opcode except that the jump is taken if
** the content of register P3 is greater than or equal to the content of
** register P1. See the Lt opcode for additional information.
*/
case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
case OP_Ne: /* same as TK_NE, jump, in1, in3 */
case OP_Lt: /* same as TK_LT, jump, in1, in3 */
case OP_Le: /* same as TK_LE, jump, in1, in3 */
case OP_Gt: /* same as TK_GT, jump, in1, in3 */
case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
int res, res2; /* Result of the comparison of pIn1 against pIn3 */
char affinity; /* Affinity to use for comparison */
u16 flags1; /* Copy of initial value of pIn1->flags */
u16 flags3; /* Copy of initial value of pIn3->flags */
pIn1 = &aMem[pOp->p1];
pIn3 = &aMem[pOp->p3];
flags1 = pIn1->flags;
flags3 = pIn3->flags;
if( (flags1 & flags3 & MEM_Int)!=0 ){
/* Common case of comparison of two integers */
if( pIn3->u.i > pIn1->u.i ){
if( sqlite3aGTb[pOp->opcode] ){
VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
goto jump_to_p2;
}
iCompare = +1;
VVA_ONLY( iCompareIsInit = 1; )
}else if( pIn3->u.i < pIn1->u.i ){
if( sqlite3aLTb[pOp->opcode] ){
VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
goto jump_to_p2;
}
iCompare = -1;
VVA_ONLY( iCompareIsInit = 1; )
}else{
if( sqlite3aEQb[pOp->opcode] ){
VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
goto jump_to_p2;
}
iCompare = 0;
VVA_ONLY( iCompareIsInit = 1; )
}
VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
break;
}
if( (flags1 | flags3)&MEM_Null ){
/* One or both operands are NULL */
if( pOp->p5 & SQLITE_NULLEQ ){
/* If SQLITE_NULLEQ is set (which will only happen if the operator is
** OP_Eq or OP_Ne) then take the jump or not depending on whether
** or not both operands are null.
*/
assert( (flags1 & MEM_Cleared)==0 );
assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
if( (flags1&flags3&MEM_Null)!=0
&& (flags3&MEM_Cleared)==0
){
res = 0; /* Operands are equal */
}else{
res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
}
}else{
/* SQLITE_NULLEQ is clear and at least one operand is NULL,
** then the result is always NULL.
** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
*/
VdbeBranchTaken(2,3);
if( pOp->p5 & SQLITE_JUMPIFNULL ){
goto jump_to_p2;
}
iCompare = 1; /* Operands are not equal */
VVA_ONLY( iCompareIsInit = 1; )
break;
}
}else{
/* Neither operand is NULL and we couldn't do the special high-speed
** integer comparison case. So do a general-case comparison. */
affinity = pOp->p5 & SQLITE_AFF_MASK;
if( affinity>=SQLITE_AFF_NUMERIC ){
if( (flags1 | flags3)&MEM_Str ){
if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
applyNumericAffinity(pIn1,0);
assert( flags3==pIn3->flags || CORRUPT_DB );
flags3 = pIn3->flags;
}
if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
applyNumericAffinity(pIn3,0);
}
}
}else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
if( (flags1 & MEM_Str)!=0 ){
pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
}else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
testcase( pIn1->flags & MEM_Int );
testcase( pIn1->flags & MEM_Real );
testcase( pIn1->flags & MEM_IntReal );
sqlite3VdbeMemStringify(pIn1, encoding, 1);
testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
}
if( (flags3 & MEM_Str)!=0 ){
pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
}else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
testcase( pIn3->flags & MEM_Int );
testcase( pIn3->flags & MEM_Real );
testcase( pIn3->flags & MEM_IntReal );
sqlite3VdbeMemStringify(pIn3, encoding, 1);
testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
}
}
assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
}
/* At this point, res is negative, zero, or positive if reg[P1] is
** less than, equal to, or greater than reg[P3], respectively. Compute
** the answer to this operator in res2, depending on what the comparison
** operator actually is. The next block of code depends on the fact
** that the 6 comparison operators are consecutive integers in this
** order: NE, EQ, GT, LE, LT, GE */
assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
if( res<0 ){
res2 = sqlite3aLTb[pOp->opcode];
}else if( res==0 ){
res2 = sqlite3aEQb[pOp->opcode];
}else{
res2 = sqlite3aGTb[pOp->opcode];
}
iCompare = res;
VVA_ONLY( iCompareIsInit = 1; )
/* Undo any changes made by applyAffinity() to the input registers. */
assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
pIn3->flags = flags3;
assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
pIn1->flags = flags1;
VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
if( res2 ){
goto jump_to_p2;
}
break;
}
/* Opcode: ElseEq * P2 * * *
**
** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
** can be zero or more OP_ReleaseReg opcodes intervening, but no other
** opcodes are allowed to occur between this instruction and the previous
** OP_Lt or OP_Gt.
**
** If the result of an OP_Eq comparison on the same two operands as
** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If
** the result of an OP_Eq comparison on the two previous operands
** would have been false or NULL, then fall through.
*/
case OP_ElseEq: { /* same as TK_ESCAPE, jump */
#ifdef SQLITE_DEBUG
/* Verify the preconditions of this opcode - that it follows an OP_Lt or
** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
int iAddr;
for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
break;
}
#endif /* SQLITE_DEBUG */
assert( iCompareIsInit );
VdbeBranchTaken(iCompare==0, 2);
if( iCompare==0 ) goto jump_to_p2;
break;
}
/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator in the next
** instruction. The permutation is stored in the P4 operand.
**
** The permutation is only valid for the next opcode which must be
** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
**
** The first integer in the P4 integer array is the length of the array
** and does not become part of the permutation.
*/
case OP_Permutation: {
assert( pOp->p4type==P4_INTARRAY );
assert( pOp->p4.ai );
assert( pOp[1].opcode==OP_Compare );
assert( pOp[1].p5 & OPFLAG_PERMUTE );
break;
}
/* Opcode: Compare P1 P2 P3 P4 P5
** Synopsis: r[P1@P3] <-> r[P2@P3]
**
** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
** the comparison for use by the next OP_Jump instruct.
**
** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
** determined by the most recent OP_Permutation operator. If the
** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
** order.
**
** P4 is a KeyInfo structure that defines collating sequences and sort
** orders for the comparison. The permutation applies to registers
** only. The KeyInfo elements are used sequentially.
**
** The comparison is a sort comparison, so NULLs compare equal,
** NULLs are less than numbers, numbers are less than strings,
** and strings are less than blobs.
**
** This opcode must be immediately followed by an OP_Jump opcode.
*/
case OP_Compare: {
int n;
int i;
int p1;
int p2;
const KeyInfo *pKeyInfo;
u32 idx;
CollSeq *pColl; /* Collating sequence to use on this term */
int bRev; /* True for DESCENDING sort order */
u32 *aPermute; /* The permutation */
if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
aPermute = 0;
}else{
assert( pOp>aOp );
assert( pOp[-1].opcode==OP_Permutation );
assert( pOp[-1].p4type==P4_INTARRAY );
aPermute = pOp[-1].p4.ai + 1;
assert( aPermute!=0 );
}
n = pOp->p3;
pKeyInfo = pOp->p4.pKeyInfo;
assert( n>0 );
assert( pKeyInfo!=0 );
p1 = pOp->p1;
p2 = pOp->p2;
#ifdef SQLITE_DEBUG
if( aPermute ){
int k, mx = 0;
for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
}else{
assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
}
#endif /* SQLITE_DEBUG */
for(i=0; i<n; i++){
idx = aPermute ? aPermute[i] : (u32)i;
assert( memIsValid(&aMem[p1+idx]) );
assert( memIsValid(&aMem[p2+idx]) );
REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
assert( i<pKeyInfo->nKeyField );
pColl = pKeyInfo->aColl[i];
bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
VVA_ONLY( iCompareIsInit = 1; )
if( iCompare ){
if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
&& ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
){
iCompare = -iCompare;
}
if( bRev ) iCompare = -iCompare;
break;
}
}
assert( pOp[1].opcode==OP_Jump );
break;
}
/* Opcode: Jump P1 P2 P3 * *
**
** Jump to the instruction at address P1, P2, or P3 depending on whether
** in the most recent OP_Compare instruction the P1 vector was less than,
** equal to, or greater than the P2 vector, respectively.
**
** This opcode must immediately follow an OP_Compare opcode.
*/
case OP_Jump: { /* jump */
assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
assert( iCompareIsInit );
if( iCompare<0 ){
VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
}else if( iCompare==0 ){
VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
}else{
VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
}
break;
}
/* Opcode: And P1 P2 P3 * *
** Synopsis: r[P3]=(r[P1] && r[P2])
**
** Take the logical AND of the values in registers P1 and P2 and
** write the result into register P3.
**
** If either P1 or P2 is 0 (false) then the result is 0 even if
** the other input is NULL. A NULL and true or two NULLs give
** a NULL output.
*/
/* Opcode: Or P1 P2 P3 * *
** Synopsis: r[P3]=(r[P1] || r[P2])
**
** Take the logical OR of the values in register P1 and P2 and
** store the answer in register P3.
**
** If either P1 or P2 is nonzero (true) then the result is 1 (true)
** even if the other input is NULL. A NULL and false or two NULLs
** give a NULL output.
*/
case OP_And: /* same as TK_AND, in1, in2, out3 */
case OP_Or: { /* same as TK_OR, in1, in2, out3 */
int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
if( pOp->opcode==OP_And ){
static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = and_logic[v1*3+v2];
}else{
static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = or_logic[v1*3+v2];
}
pOut = &aMem[pOp->p3];
if( v1==2 ){
MemSetTypeFlag(pOut, MEM_Null);
}else{
pOut->u.i = v1;
MemSetTypeFlag(pOut, MEM_Int);
}
break;
}
/* Opcode: IsTrue P1 P2 P3 P4 *
** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
**
** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
** IS NOT FALSE operators.
**
** Interpret the value in register P1 as a boolean value. Store that
** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
** NULL, then the P3 is stored in register P2. Invert the answer if P4
** is 1.
**
** The logic is summarized like this:
**
** <ul>
** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
** </ul>
*/
case OP_IsTrue: { /* in1, out2 */
assert( pOp->p4type==P4_INT32 );
assert( pOp->p4.i==0 || pOp->p4.i==1 );
assert( pOp->p3==0 || pOp->p3==1 );
sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
break;
}
/* Opcode: Not P1 P2 * * *
** Synopsis: r[P2]= !r[P1]
**
** Interpret the value in register P1 as a boolean value. Store the
** boolean complement in register P2. If the value in register P1 is
** NULL, then a NULL is stored in P2.
*/
case OP_Not: { /* same as TK_NOT, in1, out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
if( (pIn1->flags & MEM_Null)==0 ){
sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
}else{
sqlite3VdbeMemSetNull(pOut);
}
break;
}
/* Opcode: BitNot P1 P2 * * *
** Synopsis: r[P2]= ~r[P1]
**
** Interpret the content of register P1 as an integer. Store the
** ones-complement of the P1 value into register P2. If P1 holds
** a NULL then store a NULL in P2.
*/
case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
sqlite3VdbeMemSetNull(pOut);
if( (pIn1->flags & MEM_Null)==0 ){
pOut->flags = MEM_Int;
pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
}
break;
}
/* Opcode: Once P1 P2 * * *
**
** Fall through to the next instruction the first time this opcode is
** encountered on each invocation of the byte-code program. Jump to P2
** on the second and all subsequent encounters during the same invocation.
**
** Top-level programs determine first invocation by comparing the P1
** operand against the P1 operand on the OP_Init opcode at the beginning
** of the program. If the P1 values differ, then fall through and make
** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
** the same then take the jump.
**
** For subprograms, there is a bitmask in the VdbeFrame that determines
** whether or not the jump should be taken. The bitmask is necessary
** because the self-altering code trick does not work for recursive
** triggers.
*/
case OP_Once: { /* jump */
u32 iAddr; /* Address of this instruction */
assert( p->aOp[0].opcode==OP_Init );
if( p->pFrame ){
iAddr = (int)(pOp - p->aOp);
if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
VdbeBranchTaken(1, 2);
goto jump_to_p2;
}
p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
}else{
if( p->aOp[0].p1==pOp->p1 ){
VdbeBranchTaken(1, 2);
goto jump_to_p2;
}
}
VdbeBranchTaken(0, 2);
pOp->p1 = p->aOp[0].p1;
break;
}
/* Opcode: If P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is true. The value
** is considered true if it is numeric and non-zero. If the value
** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
case OP_If: { /* jump, in1 */
int c;
c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
VdbeBranchTaken(c!=0, 2);
if( c ) goto jump_to_p2;
break;
}
/* Opcode: IfNot P1 P2 P3 * *
**
** Jump to P2 if the value in register P1 is False. The value
** is considered false if it has a numeric value of zero. If the value
** in P1 is NULL then take the jump if and only if P3 is non-zero.
*/
case OP_IfNot: { /* jump, in1 */
int c;
c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
VdbeBranchTaken(c!=0, 2);
if( c ) goto jump_to_p2;
break;
}
/* Opcode: IsNull P1 P2 * * *
** Synopsis: if r[P1]==NULL goto P2
**
** Jump to P2 if the value in register P1 is NULL.
*/
case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
if( (pIn1->flags & MEM_Null)!=0 ){
goto jump_to_p2;
}
break;
}
/* Opcode: IsType P1 P2 P3 P4 P5
** Synopsis: if typeof(P1.P3) in P5 goto P2
**
** Jump to P2 if the type of a column in a btree is one of the types specified
** by the P5 bitmask.
**
** P1 is normally a cursor on a btree for which the row decode cache is
** valid through at least column P3. In other words, there should have been
** a prior OP_Column for column P3 or greater. If the cursor is not valid,
** then this opcode might give spurious results.
** The the btree row has fewer than P3 columns, then use P4 as the
** datatype.
**
** If P1 is -1, then P3 is a register number and the datatype is taken
** from the value in that register.
**
** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
**
** WARNING: This opcode does not reliably distinguish between NULL and REAL
** when P1>=0. If the database contains a NaN value, this opcode will think
** that the datatype is REAL when it should be NULL. When P1<0 and the value
** is already stored in register P3, then this opcode does reliably
** distinguish between NULL and REAL. The problem only arises then P1>=0.
**
** Take the jump to address P2 if and only if the datatype of the
** value determined by P1 and P3 corresponds to one of the bits in the
** P5 bitmask.
**
*/
case OP_IsType: { /* jump */
VdbeCursor *pC;
u16 typeMask;
u32 serialType;
assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
if( pOp->p1>=0 ){
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pOp->p3>=0 );
if( pOp->p3<pC->nHdrParsed ){
serialType = pC->aType[pOp->p3];
if( serialType>=12 ){
if( serialType&1 ){
typeMask = 0x04; /* SQLITE_TEXT */
}else{
typeMask = 0x08; /* SQLITE_BLOB */
}
}else{
static const unsigned char aMask[] = {
0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
0x01, 0x01, 0x10, 0x10
};
testcase( serialType==0 );
testcase( serialType==1 );
testcase( serialType==2 );
testcase( serialType==3 );
testcase( serialType==4 );
testcase( serialType==5 );
testcase( serialType==6 );
testcase( serialType==7 );
testcase( serialType==8 );
testcase( serialType==9 );
testcase( serialType==10 );
testcase( serialType==11 );
typeMask = aMask[serialType];
}
}else{
typeMask = 1 << (pOp->p4.i - 1);
testcase( typeMask==0x01 );
testcase( typeMask==0x02 );
testcase( typeMask==0x04 );
testcase( typeMask==0x08 );
testcase( typeMask==0x10 );
}
}else{
assert( memIsValid(&aMem[pOp->p3]) );
typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
testcase( typeMask==0x01 );
testcase( typeMask==0x02 );
testcase( typeMask==0x04 );
testcase( typeMask==0x08 );
testcase( typeMask==0x10 );
}
VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
if( typeMask & pOp->p5 ){
goto jump_to_p2;
}
break;
}
/* Opcode: ZeroOrNull P1 P2 P3 * *
** Synopsis: r[P2] = 0 OR NULL
**
** If both registers P1 and P3 are NOT NULL, then store a zero in
** register P2. If either registers P1 or P3 are NULL then put
** a NULL in register P2.
*/
case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
if( (aMem[pOp->p1].flags & MEM_Null)!=0
|| (aMem[pOp->p3].flags & MEM_Null)!=0
){
sqlite3VdbeMemSetNull(aMem + pOp->p2);
}else{
sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
}
break;
}
/* Opcode: NotNull P1 P2 * * *
** Synopsis: if r[P1]!=NULL goto P2
**
** Jump to P2 if the value in register P1 is not NULL.
*/
case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
pIn1 = &aMem[pOp->p1];
VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
if( (pIn1->flags & MEM_Null)==0 ){
goto jump_to_p2;
}
break;
}
/* Opcode: IfNullRow P1 P2 P3 * *
** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
**
** Check the cursor P1 to see if it is currently pointing at a NULL row.
** If it is, then set register P3 to NULL and jump immediately to P2.
** If P1 is not on a NULL row, then fall through without making any
** changes.
**
** If P1 is not an open cursor, then this opcode is a no-op.
*/
case OP_IfNullRow: { /* jump */
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
if( pC && pC->nullRow ){
sqlite3VdbeMemSetNull(aMem + pOp->p3);
goto jump_to_p2;
}
break;
}
#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
/* Opcode: Offset P1 P2 P3 * *
** Synopsis: r[P3] = sqlite_offset(P1)
**
** Store in register r[P3] the byte offset into the database file that is the
** start of the payload for the record at which that cursor P1 is currently
** pointing.
**
** P2 is the column number for the argument to the sqlite_offset() function.
** This opcode does not use P2 itself, but the P2 value is used by the
** code generator. The P1, P2, and P3 operands to this opcode are the
** same as for OP_Column.
**
** This opcode is only available if SQLite is compiled with the
** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
*/
case OP_Offset: { /* out3 */
VdbeCursor *pC; /* The VDBE cursor */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
pOut = &p->aMem[pOp->p3];
if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
sqlite3VdbeMemSetNull(pOut);
}else{
if( pC->deferredMoveto ){
rc = sqlite3VdbeFinishMoveto(pC);
if( rc ) goto abort_due_to_error;
}
if( sqlite3BtreeEof(pC->uc.pCursor) ){
sqlite3VdbeMemSetNull(pOut);
}else{
sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
}
}
break;
}
#endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
/* Opcode: Column P1 P2 P3 P4 P5
** Synopsis: r[P3]=PX cursor P1 column P2
**
** Interpret the data that cursor P1 points to as a structure built using
** the MakeRecord instruction. (See the MakeRecord opcode for additional
** information about the format of the data.) Extract the P2-th column
** from this record. If there are less than (P2+1)
** values in the record, extract a NULL.
**
** The value extracted is stored in register P3.
**
** If the record contains fewer than P2 fields, then extract a NULL. Or,
** if the P4 argument is a P4_MEM use the value of the P4 argument as
** the result.
**
** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
** to only be used by the length() function or the equivalent. The content
** of large blobs is not loaded, thus saving CPU cycles. If the
** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
** typeof() function or the IS NULL or IS NOT NULL operators or the
** equivalent. In this case, all content loading can be omitted.
*/
case OP_Column: { /* ncycle */
u32 p2; /* column number to retrieve */
VdbeCursor *pC; /* The VDBE cursor */
BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
int len; /* The length of the serialized data for the column */
int i; /* Loop counter */
Mem *pDest; /* Where to write the extracted value */
Mem sMem; /* For storing the record being decoded */
const u8 *zData; /* Part of the record being decoded */
const u8 *zHdr; /* Next unparsed byte of the header */
const u8 *zEndHdr; /* Pointer to first byte after the header */
u64 offset64; /* 64-bit offset */
u32 t; /* A type code from the record header */
Mem *pReg; /* PseudoTable input register */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
pC = p->apCsr[pOp->p1];
p2 = (u32)pOp->p2;
op_column_restart:
assert( pC!=0 );
assert( p2<(u32)pC->nField
|| (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
aOffset = pC->aOffset;
assert( aOffset==pC->aType+pC->nField );
assert( pC->eCurType!=CURTYPE_VTAB );
assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
assert( pC->eCurType!=CURTYPE_SORTER );
if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
if( pC->nullRow ){
if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
/* For the special case of as pseudo-cursor, the seekResult field
** identifies the register that holds the record */
pReg = &aMem[pC->seekResult];
assert( pReg->flags & MEM_Blob );
assert( memIsValid(pReg) );
pC->payloadSize = pC->szRow = pReg->n;
pC->aRow = (u8*)pReg->z;
}else{
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
sqlite3VdbeMemSetNull(pDest);
goto op_column_out;
}
}else{
pCrsr = pC->uc.pCursor;
if( pC->deferredMoveto ){
u32 iMap;
assert( !pC->isEphemeral );
if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
pC = pC->pAltCursor;
p2 = iMap - 1;
goto op_column_restart;
}
rc = sqlite3VdbeFinishMoveto(pC);
if( rc ) goto abort_due_to_error;
}else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
rc = sqlite3VdbeHandleMovedCursor(pC);
if( rc ) goto abort_due_to_error;
goto op_column_restart;
}
assert( pC->eCurType==CURTYPE_BTREE );
assert( pCrsr );
assert( sqlite3BtreeCursorIsValid(pCrsr) );
pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
assert( pC->szRow<=pC->payloadSize );
assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
}
pC->cacheStatus = p->cacheCtr;
if( (aOffset[0] = pC->aRow[0])<0x80 ){
pC->iHdrOffset = 1;
}else{
pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
}
pC->nHdrParsed = 0;
if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
/* pC->aRow does not have to hold the entire row, but it does at least
** need to cover the header of the record. If pC->aRow does not contain
** the complete header, then set it to zero, forcing the header to be
** dynamically allocated. */
pC->aRow = 0;
pC->szRow = 0;
/* Make sure a corrupt database has not given us an oversize header.
** Do this now to avoid an oversize memory allocation.
**
** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
** types use so much data space that there can only be 4096 and 32 of
** them, respectively. So the maximum header length results from a
** 3-byte type for each of the maximum of 32768 columns plus three
** extra bytes for the header length itself. 32768*3 + 3 = 98307.
*/
if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
goto op_column_corrupt;
}
}else{
/* This is an optimization. By skipping over the first few tests
** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
** measurable performance gain.
**
** This branch is taken even if aOffset[0]==0. Such a record is never
** generated by SQLite, and could be considered corruption, but we
** accept it for historical reasons. When aOffset[0]==0, the code this
** branch jumps to reads past the end of the record, but never more
** than a few bytes. Even if the record occurs at the end of the page
** content area, the "page header" comes after the page content and so
** this overread is harmless. Similar overreads can occur for a corrupt
** database file.
*/
zData = pC->aRow;
assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
testcase( aOffset[0]==0 );
goto op_column_read_header;
}
}else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
rc = sqlite3VdbeHandleMovedCursor(pC);
if( rc ) goto abort_due_to_error;
goto op_column_restart;
}
/* Make sure at least the first p2+1 entries of the header have been
** parsed and valid information is in aOffset[] and pC->aType[].
*/
if( pC->nHdrParsed<=p2 ){
/* If there is more header available for parsing in the record, try
** to extract additional fields up through the p2+1-th field
*/
if( pC->iHdrOffset<aOffset[0] ){
/* Make sure zData points to enough of the record to cover the header. */
if( pC->aRow==0 ){
memset(&sMem, 0, sizeof(sMem));
rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
zData = (u8*)sMem.z;
}else{
zData = pC->aRow;
}
/* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
op_column_read_header:
i = pC->nHdrParsed;
offset64 = aOffset[i];
zHdr = zData + pC->iHdrOffset;
zEndHdr = zData + aOffset[0];
testcase( zHdr>=zEndHdr );
do{
if( (pC->aType[i] = t = zHdr[0])<0x80 ){
zHdr++;
offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
}else{
zHdr += sqlite3GetVarint32(zHdr, &t);
pC->aType[i] = t;
offset64 += sqlite3VdbeSerialTypeLen(t);
}
aOffset[++i] = (u32)(offset64 & 0xffffffff);
}while( (u32)i<=p2 && zHdr<zEndHdr );
/* The record is corrupt if any of the following are true:
** (1) the bytes of the header extend past the declared header size
** (2) the entire header was used but not all data was used
** (3) the end of the data extends beyond the end of the record.
*/
if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
|| (offset64 > pC->payloadSize)
){
if( aOffset[0]==0 ){
i = 0;
zHdr = zEndHdr;
}else{
if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
goto op_column_corrupt;
}
}
pC->nHdrParsed = i;
pC->iHdrOffset = (u32)(zHdr - zData);
if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
}else{
t = 0;
}
/* If after trying to extract new entries from the header, nHdrParsed is
** still not up to p2, that means that the record has fewer than p2
** columns. So the result will be either the default value or a NULL.
*/
if( pC->nHdrParsed<=p2 ){
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
if( pOp->p4type==P4_MEM ){
sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
}else{
sqlite3VdbeMemSetNull(pDest);
}
goto op_column_out;
}
}else{
t = pC->aType[p2];
}
/* Extract the content for the p2+1-th column. Control can only
** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
** all valid.
*/
assert( p2<pC->nHdrParsed );
assert( rc==SQLITE_OK );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
assert( sqlite3VdbeCheckMemInvariants(pDest) );
if( VdbeMemDynamic(pDest) ){
sqlite3VdbeMemSetNull(pDest);
}
assert( t==pC->aType[p2] );
if( pC->szRow>=aOffset[p2+1] ){
/* This is the common case where the desired content fits on the original
** page - where the content is not on an overflow page */
zData = pC->aRow + aOffset[p2];
if( t<12 ){
sqlite3VdbeSerialGet(zData, t, pDest);
}else{
/* If the column value is a string, we need a persistent value, not
** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
*/
static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
pDest->n = len = (t-12)/2;
pDest->enc = encoding;
if( pDest->szMalloc < len+2 ){
if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
pDest->flags = MEM_Null;
if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
}else{
pDest->z = pDest->zMalloc;
}
memcpy(pDest->z, zData, len);
pDest->z[len] = 0;
pDest->z[len+1] = 0;
pDest->flags = aFlag[t&1];
}
}else{
u8 p5;
pDest->enc = encoding;
assert( pDest->db==db );
/* This branch happens only when content is on overflow pages */
if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
&& (p5==OPFLAG_TYPEOFARG
|| (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
)
)
|| sqlite3VdbeSerialTypeLen(t)==0
){
/* Content is irrelevant for
** 1. the typeof() function,
** 2. the length(X) function if X is a blob, and
** 3. if the content length is zero.
** So we might as well use bogus content rather than reading
** content from disk.
**
** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
** buffer passed to it, debugging function VdbeMemPrettyPrint() may
** read more. Use the global constant sqlite3CtypeMap[] as the array,
** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
** and it begins with a bunch of zeros.
*/
sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
}else{
rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
p->cacheCtr, colCacheCtr, pDest);
if( rc ){
if( rc==SQLITE_NOMEM ) goto no_mem;
if( rc==SQLITE_TOOBIG ) goto too_big;
goto abort_due_to_error;
}
}
}
op_column_out:
UPDATE_MAX_BLOBSIZE(pDest);
REGISTER_TRACE(pOp->p3, pDest);
break;
op_column_corrupt:
if( aOp[0].p3>0 ){
pOp = &aOp[aOp[0].p3-1];
break;
}else{
rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
}
/* Opcode: TypeCheck P1 P2 P3 P4 *
** Synopsis: typecheck(r[P1@P2])
**
** Apply affinities to the range of P2 registers beginning with P1.
** Take the affinities from the Table object in P4. If any value
** cannot be coerced into the correct type, then raise an error.
**
** This opcode is similar to OP_Affinity except that this opcode
** forces the register type to the Table column type. This is used
** to implement "strict affinity".
**
** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
** is zero. When P3 is non-zero, no type checking occurs for
** static generated columns. Virtual columns are computed at query time
** and so they are never checked.
**
** Preconditions:
**
** <ul>
** <li> P2 should be the number of non-virtual columns in the
** table of P4.
** <li> Table P4 should be a STRICT table.
** </ul>
**
** If any precondition is false, an assertion fault occurs.
*/
case OP_TypeCheck: {
Table *pTab;
Column *aCol;
int i;
assert( pOp->p4type==P4_TABLE );
pTab = pOp->p4.pTab;
assert( pTab->tabFlags & TF_Strict );
assert( pTab->nNVCol==pOp->p2 );
aCol = pTab->aCol;
pIn1 = &aMem[pOp->p1];
for(i=0; i<pTab->nCol; i++){
if( aCol[i].colFlags & COLFLAG_GENERATED ){
if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
if( pOp->p3 ){ pIn1++; continue; }
}
assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
applyAffinity(pIn1, aCol[i].affinity, encoding);
if( (pIn1->flags & MEM_Null)==0 ){
switch( aCol[i].eCType ){
case COLTYPE_BLOB: {
if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
break;
}
case COLTYPE_INTEGER:
case COLTYPE_INT: {
if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
break;
}
case COLTYPE_TEXT: {
if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
break;
}
case COLTYPE_REAL: {
testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
assert( (pIn1->flags & MEM_IntReal)==0 );
if( pIn1->flags & MEM_Int ){
/* When applying REAL affinity, if the result is still an MEM_Int
** that will fit in 6 bytes, then change the type to MEM_IntReal
** so that we keep the high-resolution integer value but know that
** the type really wants to be REAL. */
testcase( pIn1->u.i==140737488355328LL );
testcase( pIn1->u.i==140737488355327LL );
testcase( pIn1->u.i==-140737488355328LL );
testcase( pIn1->u.i==-140737488355329LL );
if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
pIn1->flags |= MEM_IntReal;
pIn1->flags &= ~MEM_Int;
}else{
pIn1->u.r = (double)pIn1->u.i;
pIn1->flags |= MEM_Real;
pIn1->flags &= ~MEM_Int;
}
}else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
goto vdbe_type_error;
}
break;
}
default: {
/* COLTYPE_ANY. Accept anything. */
break;
}
}
}
REGISTER_TRACE((int)(pIn1-aMem), pIn1);
pIn1++;
}
assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
break;
vdbe_type_error:
sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
pTab->zName, aCol[i].zCnName);
rc = SQLITE_CONSTRAINT_DATATYPE;
goto abort_due_to_error;
}
/* Opcode: Affinity P1 P2 * P4 *
** Synopsis: affinity(r[P1@P2])
**
** Apply affinities to a range of P2 registers starting with P1.
**
** P4 is a string that is P2 characters long. The N-th character of the
** string indicates the column affinity that should be used for the N-th
** memory cell in the range.
*/
case OP_Affinity: {
const char *zAffinity; /* The affinity to be applied */
zAffinity = pOp->p4.z;
assert( zAffinity!=0 );
assert( pOp->p2>0 );
assert( zAffinity[pOp->p2]==0 );
pIn1 = &aMem[pOp->p1];
while( 1 /*exit-by-break*/ ){
assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
applyAffinity(pIn1, zAffinity[0], encoding);
if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
/* When applying REAL affinity, if the result is still an MEM_Int
** that will fit in 6 bytes, then change the type to MEM_IntReal
** so that we keep the high-resolution integer value but know that
** the type really wants to be REAL. */
testcase( pIn1->u.i==140737488355328LL );
testcase( pIn1->u.i==140737488355327LL );
testcase( pIn1->u.i==-140737488355328LL );
testcase( pIn1->u.i==-140737488355329LL );
if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
pIn1->flags |= MEM_IntReal;
pIn1->flags &= ~MEM_Int;
}else{
pIn1->u.r = (double)pIn1->u.i;
pIn1->flags |= MEM_Real;
pIn1->flags &= ~(MEM_Int|MEM_Str);
}
}
REGISTER_TRACE((int)(pIn1-aMem), pIn1);
zAffinity++;
if( zAffinity[0]==0 ) break;
pIn1++;
}
break;
}
/* Opcode: MakeRecord P1 P2 P3 P4 *
** Synopsis: r[P3]=mkrec(r[P1@P2])
**
** Convert P2 registers beginning with P1 into the [record format]
** use as a data record in a database table or as a key
** in an index. The OP_Column opcode can decode the record later.
**
** P4 may be a string that is P2 characters long. The N-th character of the
** string indicates the column affinity that should be used for the N-th
** field of the index key.
**
** The mapping from character to affinity is given by the SQLITE_AFF_
** macros defined in sqliteInt.h.
**
** If P4 is NULL then all index fields have the affinity BLOB.
**
** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
** compile-time option is enabled:
**
** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
** of the right-most table that can be null-trimmed.
**
** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
** accept no-change records with serial_type 10. This value is
** only used inside an assert() and does not affect the end result.
*/
case OP_MakeRecord: {
Mem *pRec; /* The new record */
u64 nData; /* Number of bytes of data space */
int nHdr; /* Number of bytes of header space */
i64 nByte; /* Data space required for this record */
i64 nZero; /* Number of zero bytes at the end of the record */
int nVarint; /* Number of bytes in a varint */
u32 serial_type; /* Type field */
Mem *pData0; /* First field to be combined into the record */
Mem *pLast; /* Last field of the record */
int nField; /* Number of fields in the record */
char *zAffinity; /* The affinity string for the record */
u32 len; /* Length of a field */
u8 *zHdr; /* Where to write next byte of the header */
u8 *zPayload; /* Where to write next byte of the payload */
/* Assuming the record contains N fields, the record format looks
** like this:
**
** ------------------------------------------------------------------------
** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
** ------------------------------------------------------------------------
**
** Data(0) is taken from register P1. Data(1) comes from register P1+1
** and so forth.
**
** Each type field is a varint representing the serial type of the
** corresponding data element (see sqlite3VdbeSerialType()). The
** hdr-size field is also a varint which is the offset from the beginning
** of the record to data0.
*/
nData = 0; /* Number of bytes of data space */
nHdr = 0; /* Number of bytes of header space */
nZero = 0; /* Number of zero bytes at the end of the record */
nField = pOp->p1;
zAffinity = pOp->p4.z;
assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
pData0 = &aMem[nField];
nField = pOp->p2;
pLast = &pData0[nField-1];
/* Identify the output register */
assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
pOut = &aMem[pOp->p3];
memAboutToChange(p, pOut);
/* Apply the requested affinity to all inputs
*/
assert( pData0<=pLast );
if( zAffinity ){
pRec = pData0;
do{
applyAffinity(pRec, zAffinity[0], encoding);
if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
pRec->flags |= MEM_IntReal;
pRec->flags &= ~(MEM_Int);
}
REGISTER_TRACE((int)(pRec-aMem), pRec);
zAffinity++;
pRec++;
assert( zAffinity[0]==0 || pRec<=pLast );
}while( zAffinity[0] );
}
#ifdef SQLITE_ENABLE_NULL_TRIM
/* NULLs can be safely trimmed from the end of the record, as long as
** as the schema format is 2 or more and none of the omitted columns
** have a non-NULL default value. Also, the record must be left with
** at least one field. If P5>0 then it will be one more than the
** index of the right-most column with a non-NULL default value */
if( pOp->p5 ){
while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
pLast--;
nField--;
}
}
#endif
/* Loop through the elements that will make up the record to figure
** out how much space is required for the new record. After this loop,
** the Mem.uTemp field of each term should hold the serial-type that will
** be used for that term in the generated record:
**
** Mem.uTemp value type
** --------------- ---------------
** 0 NULL
** 1 1-byte signed integer
** 2 2-byte signed integer
** 3 3-byte signed integer
** 4 4-byte signed integer
** 5 6-byte signed integer
** 6 8-byte signed integer
** 7 IEEE float
** 8 Integer constant 0
** 9 Integer constant 1
** 10,11 reserved for expansion
** N>=12 and even BLOB
** N>=13 and odd text
**
** The following additional values are computed:
** nHdr Number of bytes needed for the record header
** nData Number of bytes of data space needed for the record
** nZero Zero bytes at the end of the record
*/
pRec = pLast;
do{
assert( memIsValid(pRec) );
if( pRec->flags & MEM_Null ){
if( pRec->flags & MEM_Zero ){
/* Values with MEM_Null and MEM_Zero are created by xColumn virtual
** table methods that never invoke sqlite3_result_xxxxx() while
** computing an unchanging column value in an UPDATE statement.
** Give such values a special internal-use-only serial-type of 10
** so that they can be passed through to xUpdate and have
** a true sqlite3_value_nochange(). */
#ifndef SQLITE_ENABLE_NULL_TRIM
assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
#endif
pRec->uTemp = 10;
}else{
pRec->uTemp = 0;
}
nHdr++;
}else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
i64 i = pRec->u.i;
u64 uu;
testcase( pRec->flags & MEM_Int );
testcase( pRec->flags & MEM_IntReal );
if( i<0 ){
uu = ~i;
}else{
uu = i;
}
nHdr++;
testcase( uu==127 ); testcase( uu==128 );
testcase( uu==32767 ); testcase( uu==32768 );
testcase( uu==8388607 ); testcase( uu==8388608 );
testcase( uu==2147483647 ); testcase( uu==2147483648LL );
testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
if( uu<=127 ){
if( (i&1)==i && p->minWriteFileFormat>=4 ){
pRec->uTemp = 8+(u32)uu;
}else{
nData++;
pRec->uTemp = 1;
}
}else if( uu<=32767 ){
nData += 2;
pRec->uTemp = 2;
}else if( uu<=8388607 ){
nData += 3;
pRec->uTemp = 3;
}else if( uu<=2147483647 ){
nData += 4;
pRec->uTemp = 4;
}else if( uu<=140737488355327LL ){
nData += 6;
pRec->uTemp = 5;
}else{
nData += 8;
if( pRec->flags & MEM_IntReal ){
/* If the value is IntReal and is going to take up 8 bytes to store
** as an integer, then we might as well make it an 8-byte floating
** point value */
pRec->u.r = (double)pRec->u.i;
pRec->flags &= ~MEM_IntReal;
pRec->flags |= MEM_Real;
pRec->uTemp = 7;
}else{
pRec->uTemp = 6;
}
}
}else if( pRec->flags & MEM_Real ){
nHdr++;
nData += 8;
pRec->uTemp = 7;
}else{
assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
assert( pRec->n>=0 );
len = (u32)pRec->n;
serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
if( pRec->flags & MEM_Zero ){
serial_type += pRec->u.nZero*2;
if( nData ){
if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
len += pRec->u.nZero;
}else{
nZero += pRec->u.nZero;
}
}
nData += len;
nHdr += sqlite3VarintLen(serial_type);
pRec->uTemp = serial_type;
}
if( pRec==pData0 ) break;
pRec--;
}while(1);
/* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
** which determines the total number of bytes in the header. The varint
** value is the size of the header in bytes including the size varint
** itself. */
testcase( nHdr==126 );
testcase( nHdr==127 );
if( nHdr<=126 ){
/* The common case */
nHdr += 1;
}else{
/* Rare case of a really large header */
nVarint = sqlite3VarintLen(nHdr);
nHdr += nVarint;
if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
}
nByte = nHdr+nData;
/* Make sure the output register has a buffer large enough to store
** the new record. The output register (pOp->p3) is not allowed to
** be one of the input registers (because the following call to
** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
*/
if( nByte+nZero<=pOut->szMalloc ){
/* The output register is already large enough to hold the record.
** No error checks or buffer enlargement is required */
pOut->z = pOut->zMalloc;
}else{
/* Need to make sure that the output is not too big and then enlarge
** the output register to hold the full result */
if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
goto no_mem;
}
}
pOut->n = (int)nByte;
pOut->flags = MEM_Blob;
if( nZero ){
pOut->u.nZero = nZero;
pOut->flags |= MEM_Zero;
}
UPDATE_MAX_BLOBSIZE(pOut);
zHdr = (u8 *)pOut->z;
zPayload = zHdr + nHdr;
/* Write the record */
if( nHdr<0x80 ){
*(zHdr++) = nHdr;
}else{
zHdr += sqlite3PutVarint(zHdr,nHdr);
}
assert( pData0<=pLast );
pRec = pData0;
while( 1 /*exit-by-break*/ ){
serial_type = pRec->uTemp;
/* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
** additional varints, one per column.
** EVIDENCE-OF: R-64536-51728 The values for each column in the record
** immediately follow the header. */
if( serial_type<=7 ){
*(zHdr++) = serial_type;
if( serial_type==0 ){
/* NULL value. No change in zPayload */
}else{
u64 v;
if( serial_type==7 ){
assert( sizeof(v)==sizeof(pRec->u.r) );
memcpy(&v, &pRec->u.r, sizeof(v));
swapMixedEndianFloat(v);
}else{
v = pRec->u.i;
}
len = sqlite3SmallTypeSizes[serial_type];
assert( len>=1 && len<=8 && len!=5 && len!=7 );
switch( len ){
default: zPayload[7] = (u8)(v&0xff); v >>= 8;
zPayload[6] = (u8)(v&0xff); v >>= 8;
/* no break */ deliberate_fall_through
case 6: zPayload[5] = (u8)(v&0xff); v >>= 8;
zPayload[4] = (u8)(v&0xff); v >>= 8;
/* no break */ deliberate_fall_through
case 4: zPayload[3] = (u8)(v&0xff); v >>= 8;
/* no break */ deliberate_fall_through
case 3: zPayload[2] = (u8)(v&0xff); v >>= 8;
/* no break */ deliberate_fall_through
case 2: zPayload[1] = (u8)(v&0xff); v >>= 8;
/* no break */ deliberate_fall_through
case 1: zPayload[0] = (u8)(v&0xff);
}
zPayload += len;
}
}else if( serial_type<0x80 ){
*(zHdr++) = serial_type;
if( serial_type>=14 && pRec->n>0 ){
assert( pRec->z!=0 );
memcpy(zPayload, pRec->z, pRec->n);
zPayload += pRec->n;
}
}else{
zHdr += sqlite3PutVarint(zHdr, serial_type);
if( pRec->n ){
assert( pRec->z!=0 );
memcpy(zPayload, pRec->z, pRec->n);
zPayload += pRec->n;
}
}
if( pRec==pLast ) break;
pRec++;
}
assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
assert( nByte==(int)(zPayload - (u8*)pOut->z) );
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
REGISTER_TRACE(pOp->p3, pOut);
break;
}
/* Opcode: Count P1 P2 P3 * *
** Synopsis: r[P2]=count()
**
** Store the number of entries (an integer value) in the table or index
** opened by cursor P1 in register P2.
**
** If P3==0, then an exact count is obtained, which involves visiting
** every btree page of the table. But if P3 is non-zero, an estimate
** is returned based on the current cursor position.
*/
case OP_Count: { /* out2 */
i64 nEntry;
BtCursor *pCrsr;
assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
assert( pCrsr );
if( pOp->p3 ){
nEntry = sqlite3BtreeRowCountEst(pCrsr);
}else{
nEntry = 0; /* Not needed. Only used to silence a warning. */
rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
if( rc ) goto abort_due_to_error;
}
pOut = out2Prerelease(p, pOp);
pOut->u.i = nEntry;
goto check_for_interrupt;
}
/* Opcode: Savepoint P1 * * P4 *
**
** Open, release or rollback the savepoint named by parameter P4, depending
** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
*/
case OP_Savepoint: {
int p1; /* Value of P1 operand */
char *zName; /* Name of savepoint */
int nName;
Savepoint *pNew;
Savepoint *pSavepoint;
Savepoint *pTmp;
int iSavepoint;
int ii;
p1 = pOp->p1;
zName = pOp->p4.z;
/* Assert that the p1 parameter is valid. Also that if there is no open
** transaction, then there cannot be any savepoints.
*/
assert( db->pSavepoint==0 || db->autoCommit==0 );
assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
assert( db->pSavepoint || db->isTransactionSavepoint==0 );
assert( checkSavepointCount(db) );
assert( p->bIsReader );
if( p1==SAVEPOINT_BEGIN ){
if( db->nVdbeWrite>0 ){
/* A new savepoint cannot be created if there are active write
** statements (i.e. open read/write incremental blob handles).
*/
sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
rc = SQLITE_BUSY;
}else{
nName = sqlite3Strlen30(zName);
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* This call is Ok even if this savepoint is actually a transaction
** savepoint (and therefore should not prompt xSavepoint()) callbacks.
** If this is a transaction savepoint being opened, it is guaranteed
** that the db->aVTrans[] array is empty. */
assert( db->autoCommit==0 || db->nVTrans==0 );
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
db->nStatement+db->nSavepoint);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
#endif
/* Create a new savepoint structure. */
pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
if( pNew ){
pNew->zName = (char *)&pNew[1];
memcpy(pNew->zName, zName, nName+1);
/* If there is no open transaction, then mark this as a special
** "transaction savepoint". */
if( db->autoCommit ){
db->autoCommit = 0;
db->isTransactionSavepoint = 1;
}else{
db->nSavepoint++;
}
/* Link the new savepoint into the database handle's list. */
pNew->pNext = db->pSavepoint;
db->pSavepoint = pNew;
pNew->nDeferredCons = db->nDeferredCons;
pNew->nDeferredImmCons = db->nDeferredImmCons;
}
}
}else{
assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
iSavepoint = 0;
/* Find the named savepoint. If there is no such savepoint, then an
** an error is returned to the user. */
for(
pSavepoint = db->pSavepoint;
pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
pSavepoint = pSavepoint->pNext
){
iSavepoint++;
}
if( !pSavepoint ){
sqlite3VdbeError(p, "no such savepoint: %s", zName);
rc = SQLITE_ERROR;
}else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
/* It is not possible to release (commit) a savepoint if there are
** active write statements.
*/
sqlite3VdbeError(p, "cannot release savepoint - "
"SQL statements in progress");
rc = SQLITE_BUSY;
}else{
/* Determine whether or not this is a transaction savepoint. If so,
** and this is a RELEASE command, then the current transaction
** is committed.
*/
int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
assert( db->eConcurrent==0 || db->isTransactionSavepoint==0 );
if( isTransaction && p1==SAVEPOINT_RELEASE ){
if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
goto vdbe_return;
}
db->autoCommit = 1;
if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
p->pc = (int)(pOp - aOp);
db->autoCommit = 0;
p->rc = rc = SQLITE_BUSY;
goto vdbe_return;
}
rc = p->rc;
if( rc ){
db->autoCommit = 0;
}else{
db->isTransactionSavepoint = 0;
}
}else{
int isSchemaChange;
iSavepoint = db->nSavepoint - iSavepoint - 1;
if( p1==SAVEPOINT_ROLLBACK ){
isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
for(ii=0; ii<db->nDb; ii++){
rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
SQLITE_ABORT_ROLLBACK,
isSchemaChange==0);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
}
}else{
assert( p1==SAVEPOINT_RELEASE );
isSchemaChange = 0;
}
for(ii=0; ii<db->nDb; ii++){
rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
}
if( isSchemaChange ){
sqlite3ExpirePreparedStatements(db, 0);
sqlite3ResetAllSchemasOfConnection(db);
db->mDbFlags |= DBFLAG_SchemaChange;
}
}
if( rc ) goto abort_due_to_error;
/* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
** savepoints nested inside of the savepoint being operated on. */
while( db->pSavepoint!=pSavepoint ){
pTmp = db->pSavepoint;
db->pSavepoint = pTmp->pNext;
sqlite3DbFree(db, pTmp);
db->nSavepoint--;
}
/* If it is a RELEASE, then destroy the savepoint being operated on
** too. If it is a ROLLBACK TO, then set the number of deferred
** constraint violations present in the database to the value stored
** when the savepoint was created. */
if( p1==SAVEPOINT_RELEASE ){
assert( pSavepoint==db->pSavepoint );
db->pSavepoint = pSavepoint->pNext;
sqlite3DbFree(db, pSavepoint);
if( !isTransaction ){
db->nSavepoint--;
}
}else{
assert( p1==SAVEPOINT_ROLLBACK );
db->nDeferredCons = pSavepoint->nDeferredCons;
db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
}
if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
}
}
}
if( rc ) goto abort_due_to_error;
if( p->eVdbeState==VDBE_HALT_STATE ){
rc = SQLITE_DONE;
goto vdbe_return;
}
break;
}
/* Opcode: AutoCommit P1 P2 P3 * *
**
** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
** back any currently active btree transactions. If there are any active
** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
** there are active writing VMs or active VMs that use shared cache.
**
** If P3 is non-zero, then this instruction is being executed as part of
** a "BEGIN CONCURRENT" command.
**
** This instruction causes the VM to halt.
*/
case OP_AutoCommit: {
int desiredAutoCommit;
int iRollback;
int bConcurrent;
int hrc;
desiredAutoCommit = pOp->p1;
iRollback = pOp->p2;
bConcurrent = pOp->p3;
assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
assert( desiredAutoCommit==1 || iRollback==0 );
assert( desiredAutoCommit==0 || bConcurrent==0 );
assert( db->autoCommit==0 || db->eConcurrent==CONCURRENT_NONE );
assert( db->nVdbeActive>0 ); /* At least this one VM is active */
assert( p->bIsReader );
if( desiredAutoCommit!=db->autoCommit ){
u64 aCommit[COMMIT_TIME_N];
memset(aCommit, 0, sizeof(aCommit));
sqlite3CommitTimeSet(aCommit, COMMIT_TIME_START);
if( iRollback ){
assert( desiredAutoCommit==1 );
sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
db->autoCommit = 1;
db->eConcurrent = CONCURRENT_NONE;
}else if( desiredAutoCommit
&& (db->nVdbeWrite>0 || (db->eConcurrent && db->nVdbeActive>1)) ){
/* A transaction may only be committed if there are no other active
** writer VMs. If the transaction is CONCURRENT, then it may only be
** committed if there are no active VMs at all (readers or writers).
**
** If this instruction is a COMMIT and the transaction may not be
** committed due to one of the conditions above, return an error
** indicating that other VMs must complete before the COMMIT can
** be processed. */
sqlite3VdbeError(p, "cannot commit transaction - "
"SQL statements in progress");
rc = SQLITE_BUSY;
goto abort_due_to_error;
}else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
goto vdbe_return;
}else{
db->autoCommit = (u8)desiredAutoCommit;
}
sqlite3CommitTimeSet(aCommit, COMMIT_TIME_BEFORE_HALT);
p->aCommitTime = aCommit;
hrc = sqlite3VdbeHalt(p);
p->aCommitTime = 0;
sqlite3CommitTimeSet(aCommit, COMMIT_TIME_AFTER_HALT);
if( (hrc & 0xFF)==SQLITE_BUSY ){
p->pc = (int)(pOp - aOp);
db->autoCommit = (u8)(1-desiredAutoCommit);
p->rc = hrc;
rc = SQLITE_BUSY;
goto vdbe_return;
}
assert( bConcurrent==CONCURRENT_NONE || bConcurrent==CONCURRENT_OPEN );
db->eConcurrent = (u8)bConcurrent;
sqlite3CloseSavepoints(db);
if( p->rc==SQLITE_OK ){
rc = SQLITE_DONE;
}else{
rc = SQLITE_ERROR;
}
sqlite3CommitTimeSet(aCommit, COMMIT_TIME_FINISH);
if( desiredAutoCommit ) sqlite3CommitTimeLog(aCommit);
goto vdbe_return;
}else{
sqlite3VdbeError(p,
(!desiredAutoCommit)?"cannot start a transaction within a transaction":(
(iRollback)?"cannot rollback - no transaction is active":
"cannot commit - no transaction is active"));
rc = SQLITE_ERROR;
goto abort_due_to_error;
}
/*NOTREACHED*/ assert(0);
}
/* Opcode: Transaction P1 P2 P3 P4 P5
**
** Begin a transaction on database P1 if a transaction is not already
** active.
** If P2 is non-zero, then a write-transaction is started, or if a
** read-transaction is already active, it is upgraded to a write-transaction.
** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
** then an exclusive transaction is started.
**
** P1 is the index of the database file on which the transaction is
** started. Index 0 is the main database file and index 1 is the
** file used for temporary tables. Indices of 2 or more are used for
** attached databases.
**
** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
** true (this flag is set if the Vdbe may modify more than one row and may
** throw an ABORT exception), a statement transaction may also be opened.
** More specifically, a statement transaction is opened iff the database
** connection is currently not in autocommit mode, or if there are other
** active statements. A statement transaction allows the changes made by this
** VDBE to be rolled back after an error without having to roll back the
** entire transaction. If no error is encountered, the statement transaction
** will automatically commit when the VDBE halts.
**
** If P5!=0 then this opcode also checks the schema cookie against P3
** and the schema generation counter against P4.
** The cookie changes its value whenever the database schema changes.
** This operation is used to detect when that the cookie has changed
** and that the current process needs to reread the schema. If the schema
** cookie in P3 differs from the schema cookie in the database header or
** if the schema generation counter in P4 differs from the current
** generation counter, then an SQLITE_SCHEMA error is raised and execution
** halts. The sqlite3_step() wrapper function might then reprepare the
** statement and rerun it from the beginning.
*/
case OP_Transaction: {
Btree *pBt;
Db *pDb;
int iMeta = 0;
assert( p->bIsReader );
assert( p->readOnly==0 || pOp->p2==0 );
assert( pOp->p2>=0 && pOp->p2<=2 );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( rc==SQLITE_OK );
if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
if( db->flags & SQLITE_QueryOnly ){
/* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
rc = SQLITE_READONLY;
}else{
/* Writes prohibited due to a prior SQLITE_CORRUPT in the current
** transaction */
rc = SQLITE_CORRUPT;
}
goto abort_due_to_error;
}
pDb = &db->aDb[pOp->p1];
pBt = pDb->pBt;
if( pBt ){
rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
testcase( rc==SQLITE_BUSY_SNAPSHOT );
testcase( rc==SQLITE_BUSY_RECOVERY );
if( rc!=SQLITE_OK ){
if( (rc&0xff)==SQLITE_BUSY ){
p->pc = (int)(pOp - aOp);
p->rc = rc;
goto vdbe_return;
}
goto abort_due_to_error;
}
if( p->usesStmtJournal
&& pOp->p2
&& (db->autoCommit==0 || db->nVdbeRead>1)
){
assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
if( p->iStatement==0 ){
assert( db->nStatement>=0 && db->nSavepoint>=0 );
db->nStatement++;
p->iStatement = db->nSavepoint + db->nStatement;
}
rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
}
/* Store the current value of the database handles deferred constraint
** counter. If the statement transaction needs to be rolled back,
** the value of this counter needs to be restored too. */
p->nStmtDefCons = db->nDeferredCons;
p->nStmtDefImmCons = db->nDeferredImmCons;
}
}
assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
if( rc==SQLITE_OK
&& pOp->p5
&& (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
){
/*
** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
** version is checked to ensure that the schema has not changed since the
** SQL statement was prepared.
*/
sqlite3DbFree(db, p->zErrMsg);
p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
/* If the schema-cookie from the database file matches the cookie
** stored with the in-memory representation of the schema, do
** not reload the schema from the database file.
**
** If virtual-tables are in use, this is not just an optimization.
** Often, v-tables store their data in other SQLite tables, which
** are queried from within xNext() and other v-table methods using
** prepared queries. If such a query is out-of-date, we do not want to
** discard the database schema, as the user code implementing the
** v-table would have to be ready for the sqlite3_vtab structure itself
** to be invalidated whenever sqlite3_step() is called from within
** a v-table method.
*/
if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
sqlite3ResetOneSchema(db, pOp->p1);
}
p->expired = 1;
rc = SQLITE_SCHEMA;
/* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
** from being modified in sqlite3VdbeHalt(). If this statement is
** reprepared, changeCntOn will be set again. */
p->changeCntOn = 0;
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: ReadCookie P1 P2 P3 * *
**
** Read cookie number P3 from database P1 and write it into register P2.
** P3==1 is the schema version. P3==2 is the database format.
** P3==3 is the recommended pager cache size, and so forth. P1==0 is
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: { /* out2 */
int iMeta;
int iDb;
int iCookie;
assert( p->bIsReader );
iDb = pOp->p1;
iCookie = pOp->p3;
assert( pOp->p3<SQLITE_N_BTREE_META );
assert( iDb>=0 && iDb<db->nDb );
assert( db->aDb[iDb].pBt!=0 );
assert( DbMaskTest(p->btreeMask, iDb) );
sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
pOut = out2Prerelease(p, pOp);
pOut->u.i = iMeta;
break;
}
/* Opcode: SetCookie P1 P2 P3 * P5
**
** Write the integer value P3 into cookie number P2 of database P1.
** P2==1 is the schema version. P2==2 is the database format.
** P2==3 is the recommended pager cache
** size, and so forth. P1==0 is the main database file and P1==1 is the
** database file used to store temporary tables.
**
** A transaction must be started before executing this opcode.
**
** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
** has P5 set to 1, so that the internal schema version will be different
** from the database schema version, resulting in a schema reset.
*/
case OP_SetCookie: {
Db *pDb;
sqlite3VdbeIncrWriteCounter(p, 0);
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( p->readOnly==0 );
pDb = &db->aDb[pOp->p1];
assert( pDb->pBt!=0 );
assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
#ifndef SQLITE_OMIT_CONCURRENT
if( db->eConcurrent
&& (pOp->p2==BTREE_USER_VERSION || pOp->p2==BTREE_APPLICATION_ID)
){
rc = SQLITE_ERROR;
sqlite3VdbeError(p, "cannot modify %s within CONCURRENT transaction",
pOp->p2==BTREE_USER_VERSION ? "user_version" : "application_id"
);
goto abort_due_to_error;
}
#endif
/* See note about index shifting on OP_ReadCookie */
rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
if( pOp->p2==BTREE_SCHEMA_VERSION ){
/* When the schema cookie changes, record the new cookie internally */
*(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
db->mDbFlags |= DBFLAG_SchemaChange;
sqlite3FkClearTriggerCache(db, pOp->p1);
}else if( pOp->p2==BTREE_FILE_FORMAT ){
/* Record changes in the file format */
pDb->pSchema->file_format = pOp->p3;
}
if( pOp->p1==1 ){
/* Invalidate all prepared statements whenever the TEMP database
** schema is changed. Ticket #1644 */
sqlite3ExpirePreparedStatements(db, 0);
p->expired = 0;
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: OpenRead P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read-only cursor for the database table whose root page is
** P2 in a database file. The database file is determined by P3.
** P3==0 means the main database, P3==1 means the database used for
** temporary tables, and P3>1 means used the corresponding attached
** database. Give the new cursor an identifier of P1. The P1
** values need not be contiguous but all P1 values should be small integers.
** It is an error for P1 to be negative.
**
** Allowed P5 bits:
** <ul>
** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
** of OP_SeekLE/OP_IdxLT)
** </ul>
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
** object, then table being opened must be an [index b-tree] where the
** KeyInfo object defines the content and collating
** sequence of that index b-tree. Otherwise, if P4 is an integer
** value, then the table being opened must be a [table b-tree] with a
** number of columns no less than the value of P4.
**
** See also: OpenWrite, ReopenIdx
*/
/* Opcode: ReopenIdx P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** The ReopenIdx opcode works like OP_OpenRead except that it first
** checks to see if the cursor on P1 is already open on the same
** b-tree and if it is this opcode becomes a no-op. In other words,
** if the cursor is already open, do not reopen it.
**
** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
** be the same as every other ReopenIdx or OpenRead for the same cursor
** number.
**
** Allowed P5 bits:
** <ul>
** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
** of OP_SeekLE/OP_IdxLT)
** </ul>
**
** See also: OP_OpenRead, OP_OpenWrite
*/
/* Opcode: OpenWrite P1 P2 P3 P4 P5
** Synopsis: root=P2 iDb=P3
**
** Open a read/write cursor named P1 on the table or index whose root
** page is P2 (or whose root page is held in register P2 if the
** OPFLAG_P2ISREG bit is set in P5 - see below).
**
** The P4 value may be either an integer (P4_INT32) or a pointer to
** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
** object, then table being opened must be an [index b-tree] where the
** KeyInfo object defines the content and collating
** sequence of that index b-tree. Otherwise, if P4 is an integer
** value, then the table being opened must be a [table b-tree] with a
** number of columns no less than the value of P4.
**
** Allowed P5 bits:
** <ul>
** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
** of OP_SeekLE/OP_IdxLT)
** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
** and subsequently delete entries in an index btree. This is a
** hint to the storage engine that the storage engine is allowed to
** ignore. The hint is not used by the official SQLite b*tree storage
** engine, but is used by COMDB2.
** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
** as the root page, not the value of P2 itself.
** </ul>
**
** This instruction works like OpenRead except that it opens the cursor
** in read/write mode.
**
** See also: OP_OpenRead, OP_ReopenIdx
*/
case OP_ReopenIdx: { /* ncycle */
int nField;
KeyInfo *pKeyInfo;
u32 p2;
int iDb;
int wrFlag;
Btree *pX;
VdbeCursor *pCur;
Db *pDb;
assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
assert( pOp->p4type==P4_KEYINFO );
pCur = p->apCsr[pOp->p1];
if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
assert( pCur->eCurType==CURTYPE_BTREE );
sqlite3BtreeClearCursor(pCur->uc.pCursor);
goto open_cursor_set_hints;
}
/* If the cursor is not currently open or is open on a different
** index, then fall through into OP_OpenRead to force a reopen */
case OP_OpenRead: /* ncycle */
case OP_OpenWrite:
assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
assert( p->bIsReader );
assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
|| p->readOnly==0 );
if( p->expired==1 ){
rc = SQLITE_ABORT_ROLLBACK;
goto abort_due_to_error;
}
nField = 0;
pKeyInfo = 0;
p2 = (u32)pOp->p2;
iDb = pOp->p3;
assert( iDb>=0 && iDb<db->nDb );
assert( DbMaskTest(p->btreeMask, iDb) );
pDb = &db->aDb[iDb];
pX = pDb->pBt;
assert( pX!=0 );
if( pOp->opcode==OP_OpenWrite ){
#ifndef SQLITE_OMIT_CONCURRENT
if( db->eConcurrent==CONCURRENT_OPEN && p2==1 && iDb!=1 ){
db->eConcurrent = CONCURRENT_SCHEMA;
}
#endif
assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
if( pDb->pSchema->file_format < p->minWriteFileFormat ){
p->minWriteFileFormat = pDb->pSchema->file_format;
}
if( pOp->p5 & OPFLAG_P2ISREG ){
assert( p2>0 );
assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
pIn2 = &aMem[p2];
assert( memIsValid(pIn2) );
assert( (pIn2->flags & MEM_Int)!=0 );
sqlite3VdbeMemIntegerify(pIn2);
p2 = (int)pIn2->u.i;
/* The p2 value always comes from a prior OP_CreateBtree opcode and
** that opcode will always set the p2 value to 2 or more or else fail.
** If there were a failure, the prepared statement would have halted
** before reaching this instruction. */
assert( p2>=2 );
}
}else{
wrFlag = 0;
assert( (pOp->p5 & OPFLAG_P2ISREG)==0 );
}
if( pOp->p4type==P4_KEYINFO ){
pKeyInfo = pOp->p4.pKeyInfo;
assert( pKeyInfo->enc==ENC(db) );
assert( pKeyInfo->db==db );
nField = pKeyInfo->nAllField;
}else if( pOp->p4type==P4_INT32 ){
nField = pOp->p4.i;
}
assert( pOp->p1>=0 );
assert( nField>=0 );
testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
if( pCur==0 ) goto no_mem;
pCur->iDb = iDb;
pCur->nullRow = 1;
pCur->isOrdered = 1;
pCur->pgnoRoot = p2;
#ifdef SQLITE_DEBUG
pCur->wrFlag = wrFlag;
#endif
rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
pCur->pKeyInfo = pKeyInfo;
/* Set the VdbeCursor.isTable variable. Previous versions of
** SQLite used to check if the root-page flags were sane at this point
** and report database corruption if they were not, but this check has
** since moved into the btree layer. */
pCur->isTable = pOp->p4type!=P4_KEYINFO;
open_cursor_set_hints:
assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
testcase( pOp->p5 & OPFLAG_BULKCSR );
testcase( pOp->p2 & OPFLAG_SEEKEQ );
sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
(pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: OpenDup P1 P2 * * *
**
** Open a new cursor P1 that points to the same ephemeral table as
** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
** opcode. Only ephemeral cursors may be duplicated.
**
** Duplicate ephemeral cursors are used for self-joins of materialized views.
*/
case OP_OpenDup: { /* ncycle */
VdbeCursor *pOrig; /* The original cursor to be duplicated */
VdbeCursor *pCx; /* The new cursor */
pOrig = p->apCsr[pOp->p2];
assert( pOrig );
assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->isEphemeral = 1;
pCx->pKeyInfo = pOrig->pKeyInfo;
pCx->isTable = pOrig->isTable;
pCx->pgnoRoot = pOrig->pgnoRoot;
pCx->isOrdered = pOrig->isOrdered;
pCx->ub.pBtx = pOrig->ub.pBtx;
pCx->noReuse = 1;
pOrig->noReuse = 1;
rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
pCx->pKeyInfo, pCx->uc.pCursor);
/* The sqlite3BtreeCursor() routine can only fail for the first cursor
** opened for a database. Since there is already an open cursor when this
** opcode is run, the sqlite3BtreeCursor() cannot fail */
assert( rc==SQLITE_OK );
break;
}
/* Opcode: OpenEphemeral P1 P2 P3 P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
** The cursor is always opened read/write even if
** the main database is read-only. The ephemeral
** table is deleted automatically when the cursor is closed.
**
** If the cursor P1 is already opened on an ephemeral table, the table
** is cleared (all content is erased).
**
** P2 is the number of columns in the ephemeral table.
** The cursor points to a BTree table if P4==0 and to a BTree index
** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
** that defines the format of keys in the index.
**
** The P5 parameter can be a mask of the BTREE_* flags defined
** in btree.h. These flags control aspects of the operation of
** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
** added automatically.
**
** If P3 is positive, then reg[P3] is modified slightly so that it
** can be used as zero-length data for OP_Insert. This is an optimization
** that avoids an extra OP_Blob opcode to initialize that register.
*/
/* Opcode: OpenAutoindex P1 P2 * P4 *
** Synopsis: nColumn=P2
**
** This opcode works the same as OP_OpenEphemeral. It has a
** different name to distinguish its use. Tables created using
** by this opcode will be used for automatically created transient
** indices in joins.
*/
case OP_OpenAutoindex: /* ncycle */
case OP_OpenEphemeral: { /* ncycle */
VdbeCursor *pCx;
KeyInfo *pKeyInfo;
static const int vfsFlags =
SQLITE_OPEN_READWRITE |
SQLITE_OPEN_CREATE |
SQLITE_OPEN_EXCLUSIVE |
SQLITE_OPEN_DELETEONCLOSE |
SQLITE_OPEN_TRANSIENT_DB;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
if( pOp->p3>0 ){
/* Make register reg[P3] into a value that can be used as the data
** form sqlite3BtreeInsert() where the length of the data is zero. */
assert( pOp->p2==0 ); /* Only used when number of columns is zero */
assert( pOp->opcode==OP_OpenEphemeral );
assert( aMem[pOp->p3].flags & MEM_Null );
aMem[pOp->p3].n = 0;
aMem[pOp->p3].z = "";
}
pCx = p->apCsr[pOp->p1];
if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
/* If the ephemeral table is already open and has no duplicates from
** OP_OpenDup, then erase all existing content so that the table is
** empty again, rather than creating a new table. */
assert( pCx->isEphemeral );
pCx->seqCount = 0;
pCx->cacheStatus = CACHE_STALE;
rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
}else{
pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
if( pCx==0 ) goto no_mem;
pCx->isEphemeral = 1;
rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
vfsFlags);
if( rc==SQLITE_OK ){
rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
if( rc==SQLITE_OK ){
/* If a transient index is required, create it by calling
** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
** opening it. If a transient table is required, just use the
** automatically created table with root-page 1 (an BLOB_INTKEY table).
*/
if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
assert( pOp->p4type==P4_KEYINFO );
rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
BTREE_BLOBKEY | pOp->p5);
if( rc==SQLITE_OK ){
assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
assert( pKeyInfo->db==db );
assert( pKeyInfo->enc==ENC(db) );
rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
pKeyInfo, pCx->uc.pCursor);
}
pCx->isTable = 0;
}else{
pCx->pgnoRoot = SCHEMA_ROOT;
rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
0, pCx->uc.pCursor);
pCx->isTable = 1;
}
}
pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
if( rc ){
sqlite3BtreeClose(pCx->ub.pBtx);
}
}
}
if( rc ) goto abort_due_to_error;
pCx->nullRow = 1;
break;
}
/* Opcode: SorterOpen P1 P2 P3 P4 *
**
** This opcode works like OP_OpenEphemeral except that it opens
** a transient index that is specifically designed to sort large
** tables using an external merge-sort algorithm.
**
** If argument P3 is non-zero, then it indicates that the sorter may
** assume that a stable sort considering the first P3 fields of each
** key is sufficient to produce the required results.
*/
case OP_SorterOpen: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p2>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
if( pCx==0 ) goto no_mem;
pCx->pKeyInfo = pOp->p4.pKeyInfo;
assert( pCx->pKeyInfo->db==db );
assert( pCx->pKeyInfo->enc==ENC(db) );
rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: SequenceTest P1 P2 * * *
** Synopsis: if( cursor[P1].ctr++ ) pc = P2
**
** P1 is a sorter cursor. If the sequence counter is currently zero, jump
** to P2. Regardless of whether or not the jump is taken, increment the
** the sequence value.
*/
case OP_SequenceTest: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
if( (pC->seqCount++)==0 ){
goto jump_to_p2;
}
break;
}
/* Opcode: OpenPseudo P1 P2 P3 * *
** Synopsis: P3 columns in r[P2]
**
** Open a new cursor that points to a fake table that contains a single
** row of data. The content of that one row is the content of memory
** register P2. In other words, cursor P1 becomes an alias for the
** MEM_Blob content contained in register P2.
**
** A pseudo-table created by this opcode is used to hold a single
** row output from the sorter so that the row can be decomposed into
** individual columns using the OP_Column opcode. The OP_Column opcode
** is the only cursor opcode that works with a pseudo-table.
**
** P3 is the number of fields in the records that will be stored by
** the pseudo-table. If P2 is 0 or negative then the pseudo-cursor
** will return NULL for every column.
*/
case OP_OpenPseudo: {
VdbeCursor *pCx;
assert( pOp->p1>=0 );
assert( pOp->p3>=0 );
pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
if( pCx==0 ) goto no_mem;
pCx->nullRow = 1;
pCx->seekResult = pOp->p2;
pCx->isTable = 1;
/* Give this pseudo-cursor a fake BtCursor pointer so that pCx
** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
** which is a performance optimization */
pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
assert( pOp->p5==0 );
break;
}
/* Opcode: Close P1 * * * *
**
** Close a cursor previously opened as P1. If P1 is not
** currently open, this instruction is a no-op.
*/
case OP_Close: { /* ncycle */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
p->apCsr[pOp->p1] = 0;
break;
}
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
/* Opcode: ColumnsUsed P1 * * P4 *
**
** This opcode (which only exists if SQLite was compiled with
** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
** table or index for cursor P1 are used. P4 is a 64-bit integer
** (P4_INT64) in which the first 63 bits are one for each of the
** first 63 columns of the table or index that are actually used
** by the cursor. The high-order bit is set if any column after
** the 64th is used.
*/
case OP_ColumnsUsed: {
VdbeCursor *pC;
pC = p->apCsr[pOp->p1];
assert( pC->eCurType==CURTYPE_BTREE );
pC->maskUsed = *(u64*)pOp->p4.pI64;
break;
}
#endif
/* Opcode: SeekGE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as the key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the smallest entry that
** is greater than or equal to the key value. If there are no records
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
** opcode will either land on a record that exactly matches the key, or
** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
** this opcode must be followed by an IdxLE opcode with the same arguments.
** The IdxGT opcode will be skipped if this opcode succeeds, but the
** IdxGT opcode will be used on subsequent loop iterations. The
** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
** is an equality search.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end. In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
/* Opcode: SeekGT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the smallest entry that
** is greater than the key value. If there are no records greater than
** the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end. In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
*/
/* Opcode: SeekLT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than the key value. If there are no records less than
** the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning. In other words, the cursor is
** configured to use Prev, not Next.
**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
*/
/* Opcode: SeekLE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
** use the value in register P3 as a key. If cursor P1 refers
** to an SQL index, then P3 is the first in an array of P4 registers
** that are used as an unpacked index key.
**
** Reposition cursor P1 so that it points to the largest entry that
** is less than or equal to the key value. If there are no records
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning. In other words, the cursor is
** configured to use Prev, not Next.
**
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
** opcode will either land on a record that exactly matches the key, or
** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
** this opcode must be followed by an IdxLE opcode with the same arguments.
** The IdxGE opcode will be skipped if this opcode succeeds, but the
** IdxGE opcode will be used on subsequent loop iterations. The
** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
** is an equality search.
**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLT: /* jump0, in3, group, ncycle */
case OP_SeekLE: /* jump0, in3, group, ncycle */
case OP_SeekGE: /* jump0, in3, group, ncycle */
case OP_SeekGT: { /* jump0, in3, group, ncycle */
int res; /* Comparison result */
int oc; /* Opcode */
VdbeCursor *pC; /* The cursor to seek */
UnpackedRecord r; /* The key to seek for */
int nField; /* Number of columns or fields in the key */
i64 iKey; /* The rowid we are to seek to */
int eqOnly; /* Only interested in == results */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p2!=0 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( OP_SeekLE == OP_SeekLT+1 );
assert( OP_SeekGE == OP_SeekLT+2 );
assert( OP_SeekGT == OP_SeekLT+3 );
assert( pC->isOrdered );
assert( pC->uc.pCursor!=0 );
oc = pOp->opcode;
eqOnly = 0;
pC->nullRow = 0;
#ifdef SQLITE_DEBUG
pC->seekOp = pOp->opcode;
#endif
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if( pC->isTable ){
u16 flags3, newType;
/* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
|| CORRUPT_DB );
/* The input value in P3 might be of any type: integer, real, string,
** blob, or NULL. But it needs to be an integer before we can do
** the seek, so convert it. */
pIn3 = &aMem[pOp->p3];
flags3 = pIn3->flags;
if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
applyNumericAffinity(pIn3, 0);
}
iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
newType = pIn3->flags; /* Record the type after applying numeric affinity */
pIn3->flags = flags3; /* But convert the type back to its original */
/* If the P3 value could not be converted into an integer without
** loss of information, then special processing is required... */
if( (newType & (MEM_Int|MEM_IntReal))==0 ){
int c;
if( (newType & MEM_Real)==0 ){
if( (newType & MEM_Null) || oc>=OP_SeekGE ){
VdbeBranchTaken(1,2);
goto jump_to_p2;
}else{
rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
goto seek_not_found;
}
}
c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
/* If the approximation iKey is larger than the actual real search
** term, substitute >= for > and < for <=. e.g. if the search term
** is 4.9 and the integer approximation 5:
**
** (x > 4.9) -> (x >= 5)
** (x <= 4.9) -> (x < 5)
*/
if( c>0 ){
assert( OP_SeekGE==(OP_SeekGT-1) );
assert( OP_SeekLT==(OP_SeekLE-1) );
assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
}
/* If the approximation iKey is smaller than the actual real search
** term, substitute <= for < and > for >=. */
else if( c<0 ){
assert( OP_SeekLE==(OP_SeekLT+1) );
assert( OP_SeekGT==(OP_SeekGE+1) );
assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
}
}
rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
pC->movetoTarget = iKey; /* Used by OP_Delete */
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
}else{
/* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
** with the same key.
*/
if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
eqOnly = 1;
assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
assert( pOp[1].p1==pOp[0].p1 );
assert( pOp[1].p2==pOp[0].p2 );
assert( pOp[1].p3==pOp[0].p3 );
assert( pOp[1].p4.i==pOp[0].p4.i );
}
nField = pOp->p4.i;
assert( pOp->p4type==P4_INT32 );
assert( nField>0 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)nField;
/* The next line of code computes as follows, only faster:
** if( oc==OP_SeekGT || oc==OP_SeekLE ){
** r.default_rc = -1;
** }else{
** r.default_rc = +1;
** }
*/
r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
assert( oc!=OP_SeekGT || r.default_rc==-1 );
assert( oc!=OP_SeekLE || r.default_rc==-1 );
assert( oc!=OP_SeekGE || r.default_rc==+1 );
assert( oc!=OP_SeekLT || r.default_rc==+1 );
r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
{
int i;
for(i=0; i<r.nField; i++){
assert( memIsValid(&r.aMem[i]) );
if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
}
}
#endif
r.eqSeen = 0;
rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( eqOnly && r.eqSeen==0 ){
assert( res!=0 );
goto seek_not_found;
}
}
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
if( res<0 || (res==0 && oc==OP_SeekGT) ){
res = 0;
rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
res = 1;
}else{
goto abort_due_to_error;
}
}
}else{
res = 0;
}
}else{
assert( oc==OP_SeekLT || oc==OP_SeekLE );
if( res>0 || (res==0 && oc==OP_SeekLT) ){
res = 0;
rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
if( rc!=SQLITE_OK ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
res = 1;
}else{
goto abort_due_to_error;
}
}
}else{
/* res might be negative because the table is empty. Check to
** see if this is the case.
*/
res = sqlite3BtreeEof(pC->uc.pCursor);
}
}
seek_not_found:
assert( pOp->p2>0 );
VdbeBranchTaken(res!=0,2);
if( res ){
goto jump_to_p2;
}else if( eqOnly ){
assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
}
break;
}
/* Opcode: SeekScan P1 P2 * * P5
** Synopsis: Scan-ahead up to P1 rows
**
** This opcode is a prefix opcode to OP_SeekGE. In other words, this
** opcode must be immediately followed by OP_SeekGE. This constraint is
** checked by assert() statements.
**
** This opcode uses the P1 through P4 operands of the subsequent
** OP_SeekGE. In the text that follows, the operands of the subsequent
** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
** the P1, P2 and P5 operands of this opcode are also used, and are called
** This.P1, This.P2 and This.P5.
**
** This opcode helps to optimize IN operators on a multi-column index
** where the IN operator is on the later terms of the index by avoiding
** unnecessary seeks on the btree, substituting steps to the next row
** of the b-tree instead. A correct answer is obtained if this opcode
** is omitted or is a no-op.
**
** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
** is the desired entry that we want the cursor SeekGE.P1 to be pointing
** to. Call this SeekGE.P3/P4 row the "target".
**
** If the SeekGE.P1 cursor is not currently pointing to a valid row,
** then this opcode is a no-op and control passes through into the OP_SeekGE.
**
** If the SeekGE.P1 cursor is pointing to a valid row, then that row
** might be the target row, or it might be near and slightly before the
** target row, or it might be after the target row. If the cursor is
** currently before the target row, then this opcode attempts to position
** the cursor on or after the target row by invoking sqlite3BtreeStep()
** on the cursor between 1 and This.P1 times.
**
** The This.P5 parameter is a flag that indicates what to do if the
** cursor ends up pointing at a valid row that is past the target
** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
** case occurs when there are no inequality constraints to the right of
** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case
** occurs when there are inequality constraints to the right of the IN
** operator. In that case, the This.P2 will point either directly to or
** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
** loop terminate.
**
** Possible outcomes from this opcode:<ol>
**
** <li> If the cursor is initially not pointed to any valid row, then
** fall through into the subsequent OP_SeekGE opcode.
**
** <li> If the cursor is left pointing to a row that is before the target
** row, even after making as many as This.P1 calls to
** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
**
** <li> If the cursor is left pointing at the target row, either because it
** was at the target row to begin with or because one or more
** sqlite3BtreeNext() calls moved the cursor to the target row,
** then jump to This.P2..,
**
** <li> If the cursor started out before the target row and a call to
** to sqlite3BtreeNext() moved the cursor off the end of the index
** (indicating that the target row definitely does not exist in the
** btree) then jump to SeekGE.P2, ending the loop.
**
** <li> If the cursor ends up on a valid row that is past the target row
** (indicating that the target row does not exist in the btree) then
** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
** </ol>
*/
case OP_SeekScan: { /* ncycle */
VdbeCursor *pC;
int res;
int nStep;
UnpackedRecord r;
assert( pOp[1].opcode==OP_SeekGE );
/* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
** opcode past the OP_SeekGE itself. */
assert( pOp->p2>=(int)(pOp-aOp)+2 );
#ifdef SQLITE_DEBUG
if( pOp->p5==0 ){
/* There are no inequality constraints following the IN constraint. */
assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
assert( aOp[pOp->p2-1].opcode==OP_IdxGT
|| aOp[pOp->p2-1].opcode==OP_IdxGE );
testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
}else{
/* There are inequality constraints. */
assert( pOp->p2==(int)(pOp-aOp)+2 );
assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
}
#endif
assert( pOp->p1>0 );
pC = p->apCsr[pOp[1].p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( !pC->isTable );
if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("... cursor not valid - fall through\n");
}
#endif
break;
}
nStep = pOp->p1;
assert( nStep>=1 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp[1].p4.i;
r.default_rc = 0;
r.aMem = &aMem[pOp[1].p3];
#ifdef SQLITE_DEBUG
{
int i;
for(i=0; i<r.nField; i++){
assert( memIsValid(&r.aMem[i]) );
REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
}
}
#endif
res = 0; /* Not needed. Only used to silence a warning. */
while(1){
rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
if( rc ) goto abort_due_to_error;
if( res>0 && pOp->p5==0 ){
seekscan_search_fail:
/* Jump to SeekGE.P2, ending the loop */
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("... %d steps and then skip\n", pOp->p1 - nStep);
}
#endif
VdbeBranchTaken(1,3);
pOp++;
goto jump_to_p2;
}
if( res>=0 ){
/* Jump to This.P2, bypassing the OP_SeekGE opcode */
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("... %d steps and then success\n", pOp->p1 - nStep);
}
#endif
VdbeBranchTaken(2,3);
goto jump_to_p2;
break;
}
if( nStep<=0 ){
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("... fall through after %d steps\n", pOp->p1);
}
#endif
VdbeBranchTaken(0,3);
break;
}
nStep--;
pC->cacheStatus = CACHE_STALE;
rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
if( rc ){
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
goto seekscan_search_fail;
}else{
goto abort_due_to_error;
}
}
}
break;
}
/* Opcode: SeekHit P1 P2 P3 * *
** Synopsis: set P2<=seekHit<=P3
**
** Increase or decrease the seekHit value for cursor P1, if necessary,
** so that it is no less than P2 and no greater than P3.
**
** The seekHit integer represents the maximum of terms in an index for which
** there is known to be at least one match. If the seekHit value is smaller
** than the total number of equality terms in an index lookup, then the
** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
** early, thus saving work. This is part of the IN-early-out optimization.
**
** P1 must be a valid b-tree cursor.
*/
case OP_SeekHit: { /* ncycle */
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pOp->p3>=pOp->p2 );
if( pC->seekHit<pOp->p2 ){
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
}
#endif
pC->seekHit = pOp->p2;
}else if( pC->seekHit>pOp->p3 ){
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
}
#endif
pC->seekHit = pOp->p3;
}
break;
}
/* Opcode: IfNotOpen P1 P2 * * *
** Synopsis: if( !csr[P1] ) goto P2
**
** If cursor P1 is not open or if P1 is set to a NULL row using the
** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
*/
case OP_IfNotOpen: { /* jump */
VdbeCursor *pCur;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pCur = p->apCsr[pOp->p1];
VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
if( pCur==0 || pCur->nullRow ){
goto jump_to_p2_and_check_for_interrupt;
}
break;
}
/* Opcode: Found P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** is a prefix of any entry in P1 then a jump is made to P2 and
** P1 is left pointing at the matching entry.
**
** This operation leaves the cursor in a state where it can be
** advanced in the forward direction. The Next instruction will work,
** but not the Prev instruction.
**
** See also: NotFound, NoConflict, NotExists. SeekGe
*/
/* Opcode: NotFound P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** is not the prefix of any entry in P1 then a jump is made to P2. If P1
** does contain an entry whose prefix matches the P3/P4 record then control
** falls through to the next instruction and P1 is left pointing at the
** matching entry.
**
** This operation leaves the cursor in a state where it cannot be
** advanced in either direction. In other words, the Next and Prev
** opcodes do not work after this operation.
**
** See also: Found, NotExists, NoConflict, IfNoHope
*/
/* Opcode: IfNoHope P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** Register P3 is the first of P4 registers that form an unpacked
** record. Cursor P1 is an index btree. P2 is a jump destination.
** In other words, the operands to this opcode are the same as the
** operands to OP_NotFound and OP_IdxGT.
**
** This opcode is an optimization attempt only. If this opcode always
** falls through, the correct answer is still obtained, but extra work
** is performed.
**
** A value of N in the seekHit flag of cursor P1 means that there exists
** a key P3:N that will match some record in the index. We want to know
** if it is possible for a record P3:P4 to match some record in the
** index. If it is not possible, we can skip some work. So if seekHit
** is less than P4, attempt to find out if a match is possible by running
** OP_NotFound.
**
** This opcode is used in IN clause processing for a multi-column key.
** If an IN clause is attached to an element of the key other than the
** left-most element, and if there are no matches on the most recent
** seek over the whole key, then it might be that one of the key element
** to the left is prohibiting a match, and hence there is "no hope" of
** any match regardless of how many IN clause elements are checked.
** In such a case, we abandon the IN clause search early, using this
** opcode. The opcode name comes from the fact that the
** jump is taken if there is "no hope" of achieving a match.
**
** See also: NotFound, SeekHit
*/
/* Opcode: NoConflict P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
** P4>0 then register P3 is the first of P4 registers that form an unpacked
** record.
**
** Cursor P1 is on an index btree. If the record identified by P3 and P4
** contains any NULL value, jump immediately to P2. If all terms of the
** record are not-NULL then a check is done to determine if any row in the
** P1 index btree has a matching key prefix. If there are no matches, jump
** immediately to P2. If there is a match, fall through and leave the P1
** cursor pointing to the matching row.
**
** This opcode is similar to OP_NotFound with the exceptions that the
** branch is always taken if any part of the search key input is NULL.
**
** This operation leaves the cursor in a state where it cannot be
** advanced in either direction. In other words, the Next and Prev
** opcodes do not work after this operation.
**
** See also: NotFound, Found, NotExists
*/
case OP_IfNoHope: { /* jump, in3, ncycle */
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
printf("seekHit is %d\n", pC->seekHit);
}
#endif
if( pC->seekHit>=pOp->p4.i ) break;
/* Fall through into OP_NotFound */
/* no break */ deliberate_fall_through
}
case OP_NoConflict: /* jump, in3, ncycle */
case OP_NotFound: /* jump, in3, ncycle */
case OP_Found: { /* jump, in3, ncycle */
int alreadyExists;
int ii;
VdbeCursor *pC;
UnpackedRecord *pIdxKey;
UnpackedRecord r;
#ifdef SQLITE_TEST
if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
#endif
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p4type==P4_INT32 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
#ifdef SQLITE_DEBUG
pC->seekOp = pOp->opcode;
#endif
r.aMem = &aMem[pOp->p3];
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
assert( pC->isTable==0 );
r.nField = (u16)pOp->p4.i;
if( r.nField>0 ){
/* Key values in an array of registers */
r.pKeyInfo = pC->pKeyInfo;
r.default_rc = 0;
#ifdef SQLITE_DEBUG
(void)sqlite3FaultSim(50); /* For use by --counter in TH3 */
for(ii=0; ii<r.nField; ii++){
assert( memIsValid(&r.aMem[ii]) );
assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
}
#endif
rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
}else{
/* Composite key generated by OP_MakeRecord */
assert( r.aMem->flags & MEM_Blob );
assert( pOp->opcode!=OP_NoConflict );
rc = ExpandBlob(r.aMem);
assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
if( rc ) goto no_mem;
pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
if( pIdxKey==0 ) goto no_mem;
sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
pIdxKey->default_rc = 0;
rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
sqlite3DbFreeNN(db, pIdxKey);
}
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
alreadyExists = (pC->seekResult==0);
pC->nullRow = 1-alreadyExists;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if( pOp->opcode==OP_Found ){
VdbeBranchTaken(alreadyExists!=0,2);
if( alreadyExists ) goto jump_to_p2;
}else{
if( !alreadyExists ){
VdbeBranchTaken(1,2);
goto jump_to_p2;
}
if( pOp->opcode==OP_NoConflict ){
/* For the OP_NoConflict opcode, take the jump if any of the
** input fields are NULL, since any key with a NULL will not
** conflict */
for(ii=0; ii<r.nField; ii++){
if( r.aMem[ii].flags & MEM_Null ){
VdbeBranchTaken(1,2);
goto jump_to_p2;
}
}
}
VdbeBranchTaken(0,2);
if( pOp->opcode==OP_IfNoHope ){
pC->seekHit = pOp->p4.i;
}
}
break;
}
/* Opcode: SeekRowid P1 P2 P3 * *
** Synopsis: intkey=r[P3]
**
** P1 is the index of a cursor open on an SQL table btree (with integer
** keys). If register P3 does not contain an integer or if P1 does not
** contain a record with rowid P3 then jump immediately to P2.
** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
** a record with rowid P3 then
** leave the cursor pointing at that record and fall through to the next
** instruction.
**
** The OP_NotExists opcode performs the same operation, but with OP_NotExists
** the P3 register must be guaranteed to contain an integer value. With this
** opcode, register P3 might not contain an integer.
**
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
** This opcode leaves the cursor in a state where it cannot be advanced
** in either direction. In other words, the Next and Prev opcodes will
** not work following this opcode.
**
** See also: Found, NotFound, NoConflict, SeekRowid
*/
/* Opcode: NotExists P1 P2 P3 * *
** Synopsis: intkey=r[P3]
**
** P1 is the index of a cursor open on an SQL table btree (with integer
** keys). P3 is an integer rowid. If P1 does not contain a record with
** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
** leave the cursor pointing at that record and fall through to the next
** instruction.
**
** The OP_SeekRowid opcode performs the same operation but also allows the
** P3 register to contain a non-integer value, in which case the jump is
** always taken. This opcode requires that P3 always contain an integer.
**
** The OP_NotFound opcode performs the same operation on index btrees
** (with arbitrary multi-value keys).
**
** This opcode leaves the cursor in a state where it cannot be advanced
** in either direction. In other words, the Next and Prev opcodes will
** not work following this opcode.
**
** See also: Found, NotFound, NoConflict, SeekRowid
*/
case OP_SeekRowid: { /* jump0, in3, ncycle */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
u64 iKey;
pIn3 = &aMem[pOp->p3];
testcase( pIn3->flags & MEM_Int );
testcase( pIn3->flags & MEM_IntReal );
testcase( pIn3->flags & MEM_Real );
testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
/* If pIn3->u.i does not contain an integer, compute iKey as the
** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
** into an integer without loss of information. Take care to avoid
** changing the datatype of pIn3, however, as it is used by other
** parts of the prepared statement. */
Mem x = pIn3[0];
applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
iKey = x.u.i;
goto notExistsWithKey;
}
/* Fall through into OP_NotExists */
/* no break */ deliberate_fall_through
case OP_NotExists: /* jump, in3, ncycle */
pIn3 = &aMem[pOp->p3];
assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
iKey = pIn3->u.i;
notExistsWithKey:
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
#ifdef SQLITE_DEBUG
if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
#endif
assert( pC->isTable );
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
assert( pCrsr!=0 );
res = 0;
rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
assert( rc==SQLITE_OK || res==0 );
pC->movetoTarget = iKey; /* Used by OP_Delete */
pC->nullRow = 0;
pC->cacheStatus = CACHE_STALE;
pC->deferredMoveto = 0;
VdbeBranchTaken(res!=0,2);
pC->seekResult = res;
if( res!=0 ){
assert( rc==SQLITE_OK );
if( pOp->p2==0 ){
rc = SQLITE_CORRUPT_BKPT;
}else{
goto jump_to_p2;
}
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: Sequence P1 P2 * * *
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.
*/
case OP_Sequence: { /* out2 */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( p->apCsr[pOp->p1]!=0 );
assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
pOut = out2Prerelease(p, pOp);
pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
break;
}
/* Opcode: NewRowid P1 P2 P3 * *
** Synopsis: r[P2]=rowid
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to. The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum,
** an SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: { /* out2 */
i64 v; /* The new rowid */
VdbeCursor *pC; /* Cursor of table to get the new rowid */
int res; /* Result of an sqlite3BtreeLast() */
int cnt; /* Counter to limit the number of searches */
#ifndef SQLITE_OMIT_AUTOINCREMENT
Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
VdbeFrame *pFrame; /* Root frame of VDBE */
#endif
v = 0;
res = 0;
pOut = out2Prerelease(p, pOp);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isTable );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
{
/* The next rowid or record number (different terms for the same
** thing) is obtained in a two-step algorithm.
**
** First we attempt to find the largest existing rowid and add one
** to that. But if the largest existing rowid is already the maximum
** positive integer, we have to fall through to the second
** probabilistic algorithm
**
** The second algorithm is to select a rowid at random and see if
** it already exists in the table. If it does not exist, we have
** succeeded. If the random rowid does exist, we select a new one
** and try again, up to 100 times.
*/
assert( pC->isTable );
#ifdef SQLITE_32BIT_ROWID
# define MAX_ROWID 0x7fffffff
#else
/* Some compilers complain about constants of the form 0x7fffffffffffffff.
** Others complain about 0x7ffffffffffffffffLL. The following macro seems
** to provide the constant while making all compilers happy.
*/
# define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif
if( !pC->useRandomRowid ){
rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( res ){
v = 1; /* IMP: R-61914-48074 */
}else{
assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
if( v>=MAX_ROWID ){
pC->useRandomRowid = 1;
}else{
v++; /* IMP: R-29538-34987 */
}
}
}
#ifndef SQLITE_OMIT_AUTOINCREMENT
if( pOp->p3 ){
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3>0 );
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=pFrame->nMem );
pMem = &pFrame->aMem[pOp->p3];
}else{
/* Assert that P3 is a valid memory cell. */
assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
pMem = &aMem[pOp->p3];
memAboutToChange(p, pMem);
}
assert( memIsValid(pMem) );
REGISTER_TRACE(pOp->p3, pMem);
sqlite3VdbeMemIntegerify(pMem);
assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
rc = SQLITE_FULL; /* IMP: R-17817-00630 */
goto abort_due_to_error;
}
if( v<pMem->u.i+1 ){
v = pMem->u.i + 1;
}
pMem->u.i = v;
}
#endif
if( pC->useRandomRowid ){
/* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
** largest possible integer (9223372036854775807) then the database
** engine starts picking positive candidate ROWIDs at random until
** it finds one that is not previously used. */
assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
** an AUTOINCREMENT table. */
cnt = 0;
do{
sqlite3_randomness(sizeof(v), &v);
v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
}while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
0, &res))==SQLITE_OK)
&& (res==0)
&& (++cnt<100));
if( rc ) goto abort_due_to_error;
if( res==0 ){
rc = SQLITE_FULL; /* IMP: R-38219-53002 */
goto abort_due_to_error;
}
assert( v>0 ); /* EV: R-40812-03570 */
}
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
pOut->u.i = v;
break;
}
/* Opcode: Insert P1 P2 P3 P4 P5
** Synopsis: intkey=r[P3] data=r[P2]
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
** entry is overwritten. The data is the value MEM_Blob stored in register
** number P2. The key is stored in register P3. The key must
** be a MEM_Int.
**
** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
** then rowid is stored for subsequent return by the
** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
**
** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
** run faster by avoiding an unnecessary seek on cursor P1. However,
** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
** seeks on the cursor or if the most recent seek used a key equal to P3.
**
** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
** UPDATE operation. Otherwise (if the flag is clear) then this opcode
** is part of an INSERT operation. The difference is only important to
** the update hook.
**
** Parameter P4 may point to a Table structure, or may be NULL. If it is
** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
** following a successful insert.
**
** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
** allocated, then ownership of P2 is transferred to the pseudo-cursor
** and register P2 becomes ephemeral. If the cursor is changed, the
** value of register P2 will then change. Make sure this does not
** cause any problems.)
**
** This instruction only works on tables. The equivalent instruction
** for indices is OP_IdxInsert.
*/
case OP_Insert: {
Mem *pData; /* MEM cell holding data for the record to be inserted */
Mem *pKey; /* MEM cell holding key for the record */
VdbeCursor *pC; /* Cursor to table into which insert is written */
int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
const char *zDb; /* database name - used by the update hook */
Table *pTab; /* Table structure - used by update and pre-update hooks */
BtreePayload x; /* Payload to be inserted */
pData = &aMem[pOp->p2];
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( memIsValid(pData) );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->deferredMoveto==0 );
assert( pC->uc.pCursor!=0 );
assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
REGISTER_TRACE(pOp->p2, pData);
sqlite3VdbeIncrWriteCounter(p, pC);
pKey = &aMem[pOp->p3];
assert( pKey->flags & MEM_Int );
assert( memIsValid(pKey) );
REGISTER_TRACE(pOp->p3, pKey);
x.nKey = pKey->u.i;
if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
assert( pC->iDb>=0 );
zDb = db->aDb[pC->iDb].zDbSName;
pTab = pOp->p4.pTab;
assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
}else{
pTab = 0;
zDb = 0;
}
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/* Invoke the pre-update hook, if any */
if( pTab ){
if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
}
if( db->xUpdateCallback==0 || pTab->aCol==0 ){
/* Prevent post-update hook from running in cases when it should not */
pTab = 0;
}
}
if( pOp->p5 & OPFLAG_ISNOOP ) break;
#endif
assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
if( pOp->p5 & OPFLAG_NCHANGE ){
p->nChange++;
if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
}
assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
x.pData = pData->z;
x.nData = pData->n;
seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
if( pData->flags & MEM_Zero ){
x.nZero = pData->u.nZero;
}else{
x.nZero = 0;
}
x.pKey = 0;
assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
(pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
seekResult
);
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
colCacheCtr++;
/* Invoke the update-hook if required. */
if( rc ) goto abort_due_to_error;
if( pTab ){
assert( db->xUpdateCallback!=0 );
assert( pTab->aCol!=0 );
db->xUpdateCallback(db->pUpdateArg,
(pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
zDb, pTab->zName, x.nKey);
}
break;
}
/* Opcode: RowCell P1 P2 P3 * *
**
** P1 and P2 are both open cursors. Both must be opened on the same type
** of table - intkey or index. This opcode is used as part of copying
** the current row from P2 into P1. If the cursors are opened on intkey
** tables, register P3 contains the rowid to use with the new record in
** P1. If they are opened on index tables, P3 is not used.
**
** This opcode must be followed by either an Insert or InsertIdx opcode
** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
*/
case OP_RowCell: {
VdbeCursor *pDest; /* Cursor to write to */
VdbeCursor *pSrc; /* Cursor to read from */
i64 iKey; /* Rowid value to insert with */
assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
assert( pOp[1].p5 & OPFLAG_PREFORMAT );
pDest = p->apCsr[pOp->p1];
pSrc = p->apCsr[pOp->p2];
iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
break;
};
/* Opcode: Delete P1 P2 P3 P4 P5
**
** Delete the record at which the P1 cursor is currently pointing.
**
** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
** the cursor will be left pointing at either the next or the previous
** record in the table. If it is left pointing at the next record, then
** the next Next instruction will be a no-op. As a result, in this case
** it is ok to delete a record from within a Next loop. If
** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
** left in an undefined state.
**
** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
** delete is one of several associated with deleting a table row and
** all its associated index entries. Exactly one of those deletes is
** the "primary" delete. The others are all on OPFLAG_FORDELETE
** cursors or else are marked with the AUXDELETE flag.
**
** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
** the row change count is incremented (otherwise not).
**
** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
** This happens when the OP_Delete is to be shortly followed by an OP_Insert
** with the same key, causing the btree entry to be overwritten.
**
** P1 must not be pseudo-table. It has to be a real table with
** multiple rows.
**
** If P4 is not NULL then it points to a Table object. In this case either
** the update or pre-update hook, or both, may be invoked. The P1 cursor must
** have been positioned using OP_NotFound prior to invoking this opcode in
** this case. Specifically, if one is configured, the pre-update hook is
** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
**
** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
** of the memory cell that contains the value that the rowid of the row will
** be set to by the update.
*/
case OP_Delete: {
VdbeCursor *pC;
const char *zDb;
Table *pTab;
int opflags;
opflags = pOp->p2;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
assert( pC->deferredMoveto==0 );
sqlite3VdbeIncrWriteCounter(p, pC);
#ifdef SQLITE_DEBUG
if( pOp->p4type==P4_TABLE
&& HasRowid(pOp->p4.pTab)
&& pOp->p5==0
&& sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
){
/* If p5 is zero, the seek operation that positioned the cursor prior to
** OP_Delete will have also set the pC->movetoTarget field to the rowid of
** the row that is being deleted */
i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
assert( CORRUPT_DB || pC->movetoTarget==iKey );
}
#endif
/* If the update-hook or pre-update-hook will be invoked, set zDb to
** the name of the db to pass as to it. Also set local pTab to a copy
** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
** VdbeCursor.movetoTarget to the current rowid. */
if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
assert( pC->iDb>=0 );
assert( pOp->p4.pTab!=0 );
zDb = db->aDb[pC->iDb].zDbSName;
pTab = pOp->p4.pTab;
if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
}
}else{
zDb = 0;
pTab = 0;
}
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/* Invoke the pre-update-hook if required. */
assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
if( db->xPreUpdateCallback && pTab ){
assert( !(opflags & OPFLAG_ISUPDATE)
|| HasRowid(pTab)==0
|| (aMem[pOp->p3].flags & MEM_Int)
);
sqlite3VdbePreUpdateHook(p, pC,
(opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
zDb, pTab, pC->movetoTarget,
pOp->p3, -1
);
}
if( opflags & OPFLAG_ISNOOP ) break;
#endif
/* Only flags that can be set are SAVEPOISTION and AUXDELETE */
assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
#ifdef SQLITE_DEBUG
if( p->pFrame==0 ){
if( pC->isEphemeral==0
&& (pOp->p5 & OPFLAG_AUXDELETE)==0
&& (pC->wrFlag & OPFLAG_FORDELETE)==0
){
nExtraDelete++;
}
if( pOp->p2 & OPFLAG_NCHANGE ){
nExtraDelete--;
}
}
#endif
rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
pC->cacheStatus = CACHE_STALE;
colCacheCtr++;
pC->seekResult = 0;
if( rc ) goto abort_due_to_error;
/* Invoke the update-hook if required. */
if( opflags & OPFLAG_NCHANGE ){
p->nChange++;
if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
pC->movetoTarget);
assert( pC->iDb>=0 );
}
}
break;
}
/* Opcode: ResetCount * * * * *
**
** The value of the change counter is copied to the database handle
** change counter (returned by subsequent calls to sqlite3_changes()).
** Then the VMs internal change counter resets to 0.
** This is used by trigger programs.
*/
case OP_ResetCount: {
sqlite3VdbeSetChanges(db, p->nChange);
p->nChange = 0;
break;
}
/* Opcode: SorterCompare P1 P2 P3 P4
** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
**
** P1 is a sorter cursor. This instruction compares a prefix of the
** record blob in register P3 against a prefix of the entry that
** the sorter cursor currently points to. Only the first P4 fields
** of r[P3] and the sorter record are compared.
**
** If either P3 or the sorter contains a NULL in one of their significant
** fields (not counting the P4 fields at the end which are ignored) then
** the comparison is assumed to be equal.
**
** Fall through to next instruction if the two records compare equal to
** each other. Jump to P2 if they are different.
*/
case OP_SorterCompare: {
VdbeCursor *pC;
int res;
int nKeyCol;
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
assert( pOp->p4type==P4_INT32 );
pIn3 = &aMem[pOp->p3];
nKeyCol = pOp->p4.i;
res = 0;
rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
VdbeBranchTaken(res!=0,2);
if( rc ) goto abort_due_to_error;
if( res ) goto jump_to_p2;
break;
};
/* Opcode: SorterData P1 P2 P3 * *
** Synopsis: r[P2]=data
**
** Write into register P2 the current sorter data for sorter cursor P1.
** Then clear the column header cache on cursor P3.
**
** This opcode is normally used to move a record out of the sorter and into
** a register that is the source for a pseudo-table cursor created using
** OpenPseudo. That pseudo-table cursor is the one that is identified by
** parameter P3. Clearing the P3 column cache as part of this opcode saves
** us from having to issue a separate NullRow instruction to clear that cache.
*/
case OP_SorterData: { /* ncycle */
VdbeCursor *pC;
pOut = &aMem[pOp->p2];
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
rc = sqlite3VdbeSorterRowkey(pC, pOut);
assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
if( rc ) goto abort_due_to_error;
p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
break;
}
/* Opcode: RowData P1 P2 P3 * *
** Synopsis: r[P2]=data
**
** Write into register P2 the complete row content for the row at
** which cursor P1 is currently pointing.
** There is no interpretation of the data.
** It is just copied onto the P2 register exactly as
** it is found in the database file.
**
** If cursor P1 is an index, then the content is the key of the row.
** If cursor P2 is a table, then the content extracted is the data.
**
** If the P1 cursor must be pointing to a valid row (not a NULL row)
** of a real table, not a pseudo-table.
**
** If P3!=0 then this opcode is allowed to make an ephemeral pointer
** into the database page. That means that the content of the output
** register will be invalidated as soon as the cursor moves - including
** moves caused by other cursors that "save" the current cursors
** position in order that they can write to the same table. If P3==0
** then a copy of the data is made into memory. P3!=0 is faster, but
** P3==0 is safer.
**
** If P3!=0 then the content of the P2 register is unsuitable for use
** in OP_Result and any OP_Result will invalidate the P2 register content.
** The P2 register content is invalidated by opcodes like OP_Function or
** by any use of another cursor pointing to the same table.
*/
case OP_RowData: {
VdbeCursor *pC;
BtCursor *pCrsr;
u32 n;
pOut = out2Prerelease(p, pOp);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( isSorter(pC)==0 );
assert( pC->nullRow==0 );
assert( pC->uc.pCursor!=0 );
pCrsr = pC->uc.pCursor;
/* The OP_RowData opcodes always follow OP_NotExists or
** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
** that might invalidate the cursor.
** If this where not the case, on of the following assert()s
** would fail. Should this ever change (because of changes in the code
** generator) then the fix would be to insert a call to
** sqlite3VdbeCursorMoveto().
*/
assert( pC->deferredMoveto==0 );
assert( sqlite3BtreeCursorIsValid(pCrsr) );
n = sqlite3BtreePayloadSize(pCrsr);
if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
goto too_big;
}
testcase( n==0 );
rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
if( rc ) goto abort_due_to_error;
if( !pOp->p3 ) Deephemeralize(pOut);
UPDATE_MAX_BLOBSIZE(pOut);
REGISTER_TRACE(pOp->p2, pOut);
break;
}
/* Opcode: Rowid P1 P2 * * *
** Synopsis: r[P2]=PX rowid of P1
**
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table. There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: { /* out2, ncycle */
VdbeCursor *pC;
i64 v;
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
pOut = out2Prerelease(p, pOp);
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
if( pC->nullRow ){
pOut->flags = MEM_Null;
break;
}else if( pC->deferredMoveto ){
v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
}else if( pC->eCurType==CURTYPE_VTAB ){
assert( pC->uc.pVCur!=0 );
pVtab = pC->uc.pVCur->pVtab;
pModule = pVtab->pModule;
assert( pModule->xRowid );
rc = pModule->xRowid(pC->uc.pVCur, &v);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
#endif /* SQLITE_OMIT_VIRTUALTABLE */
}else{
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0 );
rc = sqlite3VdbeCursorRestore(pC);
if( rc ) goto abort_due_to_error;
if( pC->nullRow ){
pOut->flags = MEM_Null;
break;
}
v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
}
pOut->u.i = v;
break;
}
/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row. Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
**
** If cursor P1 is not previously opened, open it now to a special
** pseudo-cursor that always returns NULL for every column.
*/
case OP_NullRow: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
if( pC==0 ){
/* If the cursor is not already open, create a special kind of
** pseudo-cursor that always gives null rows. */
pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
if( pC==0 ) goto no_mem;
pC->seekResult = 0;
pC->isTable = 1;
pC->noReuse = 1;
pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
}
pC->nullRow = 1;
pC->cacheStatus = CACHE_STALE;
if( pC->eCurType==CURTYPE_BTREE ){
assert( pC->uc.pCursor!=0 );
sqlite3BtreeClearCursor(pC->uc.pCursor);
}
#ifdef SQLITE_DEBUG
if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
#endif
break;
}
/* Opcode: SeekEnd P1 * * * *
**
** Position cursor P1 at the end of the btree for the purpose of
** appending a new entry onto the btree.
**
** It is assumed that the cursor is used only for appending and so
** if the cursor is valid, then the cursor must already be pointing
** at the end of the btree and so no changes are made to
** the cursor.
*/
/* Opcode: Last P1 P2 * * *
**
** The next use of the Rowid or Column or Prev instruction for P1
** will refer to the last entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning. In other words, the cursor is
** configured to use Prev, not Next.
*/
case OP_SeekEnd: /* ncycle */
case OP_Last: { /* jump0, ncycle */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
res = 0;
assert( pCrsr!=0 );
#ifdef SQLITE_DEBUG
pC->seekOp = pOp->opcode;
#endif
if( pOp->opcode==OP_SeekEnd ){
assert( pOp->p2==0 );
pC->seekResult = -1;
if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
break;
}
}
rc = sqlite3BtreeLast(pCrsr, &res);
pC->nullRow = (u8)res;
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
if( rc ) goto abort_due_to_error;
if( pOp->p2>0 ){
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
}
break;
}
/* Opcode: IfSizeBetween P1 P2 P3 P4 *
**
** Let N be the approximate number of rows in the table or index
** with cursor P1 and let X be 10*log2(N) if N is positive or -1
** if N is zero.
**
** Jump to P2 if X is in between P3 and P4, inclusive.
*/
case OP_IfSizeBetween: { /* jump */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
i64 sz;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p4type==P4_INT32 );
assert( pOp->p3>=-1 && pOp->p3<=640*2 );
assert( pOp->p4.i>=-1 && pOp->p4.i<=640*2 );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
pCrsr = pC->uc.pCursor;
assert( pCrsr );
rc = sqlite3BtreeFirst(pCrsr, &res);
if( rc ) goto abort_due_to_error;
if( res!=0 ){
sz = -1; /* -Infinity encoding */
}else{
sz = sqlite3BtreeRowCountEst(pCrsr);
assert( sz>0 );
sz = sqlite3LogEst((u64)sz);
}
res = sz>=pOp->p3 && sz<=pOp->p4.i;
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
break;
}
/* Opcode: SorterSort P1 P2 * * *
**
** After all records have been inserted into the Sorter object
** identified by P1, invoke this opcode to actually do the sorting.
** Jump to P2 if there are no records to be sorted.
**
** This opcode is an alias for OP_Sort and OP_Rewind that is used
** for Sorter objects.
*/
/* Opcode: Sort P1 P2 * * *
**
** This opcode does exactly the same thing as OP_Rewind except that
** it increments an undocumented global variable used for testing.
**
** Sorting is accomplished by writing records into a sorting index,
** then rewinding that index and playing it back from beginning to
** end. We use the OP_Sort opcode instead of OP_Rewind to do the
** rewinding so that the global variable will be incremented and
** regression tests can determine whether or not the optimizer is
** correctly optimizing out sorts.
*/
case OP_SorterSort: /* jump ncycle */
case OP_Sort: { /* jump ncycle */
#ifdef SQLITE_TEST
sqlite3_sort_count++;
sqlite3_search_count--;
#endif
p->aCounter[SQLITE_STMTSTATUS_SORT]++;
/* Fall through into OP_Rewind */
/* no break */ deliberate_fall_through
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1
** will refer to the first entry in the database table or index.
** If the table or index is empty, jump immediately to P2.
** If the table or index is not empty, fall through to the following
** instruction.
**
** If P2 is zero, that is an assertion that the P1 table is never
** empty and hence the jump will never be taken.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end. In other words, the cursor is
** configured to use Next, not Prev.
*/
case OP_Rewind: { /* jump0, ncycle */
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p5==0 );
assert( pOp->p2>=0 && pOp->p2<p->nOp );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
res = 1;
#ifdef SQLITE_DEBUG
pC->seekOp = OP_Rewind;
#endif
if( isSorter(pC) ){
rc = sqlite3VdbeSorterRewind(pC, &res);
}else{
assert( pC->eCurType==CURTYPE_BTREE );
pCrsr = pC->uc.pCursor;
assert( pCrsr );
rc = sqlite3BtreeFirst(pCrsr, &res);
pC->deferredMoveto = 0;
pC->cacheStatus = CACHE_STALE;
}
if( rc ) goto abort_due_to_error;
pC->nullRow = (u8)res;
if( pOp->p2>0 ){
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
}
break;
}
/* Opcode: Next P1 P2 P3 * P5
**
** Advance cursor P1 so that it points to the next key/data pair in its
** table or index. If there are no more key/value pairs then fall through
** to the following instruction. But if the cursor advance was successful,
** jump immediately to P2.
**
** The Next opcode is only valid following an SeekGT, SeekGE, or
** OP_Rewind opcode used to position the cursor. Next is not allowed
** to follow SeekLT, SeekLE, or OP_Last.
**
** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
** been opened prior to this opcode or the program will segfault.
**
** The P3 value is a hint to the btree implementation. If P3==1, that
** means P1 is an SQL index and that this instruction could have been
** omitted if that index had been unique. P3 is usually 0. P3 is
** always either 0 or 1.
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
**
** See also: Prev
*/
/* Opcode: Prev P1 P2 P3 * P5
**
** Back up cursor P1 so that it points to the previous key/data pair in its
** table or index. If there is no previous key/value pairs then fall through
** to the following instruction. But if the cursor backup was successful,
** jump immediately to P2.
**
**
** The Prev opcode is only valid following an SeekLT, SeekLE, or
** OP_Last opcode used to position the cursor. Prev is not allowed
** to follow SeekGT, SeekGE, or OP_Rewind.
**
** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
** not open then the behavior is undefined.
**
** The P3 value is a hint to the btree implementation. If P3==1, that
** means P1 is an SQL index and that this instruction could have been
** omitted if that index had been unique. P3 is usually 0. P3 is
** always either 0 or 1.
**
** If P5 is positive and the jump is taken, then event counter
** number P5-1 in the prepared statement is incremented.
*/
/* Opcode: SorterNext P1 P2 * * P5
**
** This opcode works just like OP_Next except that P1 must be a
** sorter object for which the OP_SorterSort opcode has been
** invoked. This opcode advances the cursor to the next sorted
** record, or jumps to P2 if there are no more sorted records.
*/
case OP_SorterNext: { /* jump */
VdbeCursor *pC;
pC = p->apCsr[pOp->p1];
assert( isSorter(pC) );
rc = sqlite3VdbeSorterNext(db, pC);
goto next_tail;
case OP_Prev: /* jump, ncycle */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p5==0
|| pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
|| pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->deferredMoveto==0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
|| pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
|| pC->seekOp==OP_NullRow);
rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
goto next_tail;
case OP_Next: /* jump, ncycle */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p5==0
|| pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
|| pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->deferredMoveto==0 );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
|| pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
|| pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
|| pC->seekOp==OP_IfNoHope);
rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
next_tail:
pC->cacheStatus = CACHE_STALE;
VdbeBranchTaken(rc==SQLITE_OK,2);
if( rc==SQLITE_OK ){
pC->nullRow = 0;
p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
sqlite3_search_count++;
#endif
goto jump_to_p2_and_check_for_interrupt;
}
if( rc!=SQLITE_DONE ) goto abort_due_to_error;
rc = SQLITE_OK;
pC->nullRow = 1;
goto check_for_interrupt;
}
/* Opcode: IdxInsert P1 P2 P3 P4 P5
** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
** into the index P1. Data for the entry is nil.
**
** If P4 is not zero, then it is the number of values in the unpacked
** key of reg(P2). In that case, P3 is the index of the first register
** for the unpacked key. The availability of the unpacked key can sometimes
** be an optimization.
**
** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
** that this insert is likely to be an append.
**
** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
** then the change counter is unchanged.
**
** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
** run faster by avoiding an unnecessary seek on cursor P1. However,
** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
** seeks on the cursor or if the most recent seek used a key equivalent
** to P2.
**
** This instruction only works for indices. The equivalent instruction
** for tables is OP_Insert.
*/
case OP_IdxInsert: { /* in2 */
VdbeCursor *pC;
BtreePayload x;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
sqlite3VdbeIncrWriteCounter(p, pC);
assert( pC!=0 );
assert( !isSorter(pC) );
pIn2 = &aMem[pOp->p2];
assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->isTable==0 );
rc = ExpandBlob(pIn2);
if( rc ) goto abort_due_to_error;
x.nKey = pIn2->n;
x.pKey = pIn2->z;
x.aMem = aMem + pOp->p3;
x.nMem = (u16)pOp->p4.i;
rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
(pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
);
assert( pC->deferredMoveto==0 );
pC->cacheStatus = CACHE_STALE;
if( rc) goto abort_due_to_error;
break;
}
/* Opcode: SorterInsert P1 P2 * * *
** Synopsis: key=r[P2]
**
** Register P2 holds an SQL index key made using the
** MakeRecord instructions. This opcode writes that key
** into the sorter P1. Data for the entry is nil.
*/
case OP_SorterInsert: { /* in2 */
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
sqlite3VdbeIncrWriteCounter(p, pC);
assert( pC!=0 );
assert( isSorter(pC) );
pIn2 = &aMem[pOp->p2];
assert( pIn2->flags & MEM_Blob );
assert( pC->isTable==0 );
rc = ExpandBlob(pIn2);
if( rc ) goto abort_due_to_error;
rc = sqlite3VdbeSorterWrite(pC, pIn2);
if( rc) goto abort_due_to_error;
break;
}
/* Opcode: IdxDelete P1 P2 P3 * P5
** Synopsis: key=r[P2@P3]
**
** The content of P3 registers starting at register P2 form
** an unpacked index key. This opcode removes that entry from the
** index opened by cursor P1.
**
** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
** if no matching index entry is found. This happens when running
** an UPDATE or DELETE statement and the index entry to be updated
** or deleted is not found. For some uses of IdxDelete
** (example: the EXCEPT operator) it does not matter that no matching
** entry is found. For those cases, P5 is zero. Also, do not raise
** this (self-correcting and non-critical) error if in writable_schema mode.
*/
case OP_IdxDelete: {
VdbeCursor *pC;
BtCursor *pCrsr;
int res;
UnpackedRecord r;
assert( pOp->p3>0 );
assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
sqlite3VdbeIncrWriteCounter(p, pC);
pCrsr = pC->uc.pCursor;
assert( pCrsr!=0 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p3;
r.default_rc = 0;
r.aMem = &aMem[pOp->p2];
rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
if( rc ) goto abort_due_to_error;
if( res==0 ){
rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
if( rc ) goto abort_due_to_error;
}else if( pOp->p5 && !sqlite3WritableSchema(db) ){
rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
goto abort_due_to_error;
}
assert( pC->deferredMoveto==0 );
pC->cacheStatus = CACHE_STALE;
pC->seekResult = 0;
break;
}
/* Opcode: DeferredSeek P1 * P3 P4 *
** Synopsis: Move P3 to P1.rowid if needed
**
** P1 is an open index cursor and P3 is a cursor on the corresponding
** table. This opcode does a deferred seek of the P3 table cursor
** to the row that corresponds to the current row of P1.
**
** This is a deferred seek. Nothing actually happens until
** the cursor is used to read a record. That way, if no reads
** occur, no unnecessary I/O happens.
**
** P4 may be an array of integers (type P4_INTARRAY) containing
** one entry for each column in the P3 table. If array entry a(i)
** is non-zero, then reading column a(i)-1 from cursor P3 is
** equivalent to performing the deferred seek and then reading column i
** from P1. This information is stored in P3 and used to redirect
** reads against P3 over to P1, thus possibly avoiding the need to
** seek and read cursor P3.
*/
/* Opcode: IdxRowid P1 P2 * * *
** Synopsis: r[P2]=rowid
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1. This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_DeferredSeek: /* ncycle */
case OP_IdxRowid: { /* out2, ncycle */
VdbeCursor *pC; /* The P1 index cursor */
VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
i64 rowid; /* Rowid that P1 current points to */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
assert( pC->uc.pCursor!=0 );
assert( pC->isTable==0 || IsNullCursor(pC) );
assert( pC->deferredMoveto==0 );
assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
/* The IdxRowid and Seek opcodes are combined because of the commonality
** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
rc = sqlite3VdbeCursorRestore(pC);
/* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
** since it was last positioned and an error (e.g. OOM or an IO error)
** occurs while trying to reposition it. */
if( rc!=SQLITE_OK ) goto abort_due_to_error;
if( !pC->nullRow ){
rowid = 0; /* Not needed. Only used to silence a warning. */
rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
if( rc!=SQLITE_OK ){
goto abort_due_to_error;
}
if( pOp->opcode==OP_DeferredSeek ){
assert( pOp->p3>=0 && pOp->p3<p->nCursor );
pTabCur = p->apCsr[pOp->p3];
assert( pTabCur!=0 );
assert( pTabCur->eCurType==CURTYPE_BTREE );
assert( pTabCur->uc.pCursor!=0 );
assert( pTabCur->isTable );
pTabCur->nullRow = 0;
pTabCur->movetoTarget = rowid;
pTabCur->deferredMoveto = 1;
pTabCur->cacheStatus = CACHE_STALE;
assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
assert( !pTabCur->isEphemeral );
pTabCur->ub.aAltMap = pOp->p4.ai;
assert( !pC->isEphemeral );
pTabCur->pAltCursor = pC;
}else{
pOut = out2Prerelease(p, pOp);
pOut->u.i = rowid;
}
}else{
assert( pOp->opcode==OP_IdxRowid );
sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
}
break;
}
/* Opcode: FinishSeek P1 * * * *
**
** If cursor P1 was previously moved via OP_DeferredSeek, complete that
** seek operation now, without further delay. If the cursor seek has
** already occurred, this instruction is a no-op.
*/
case OP_FinishSeek: { /* ncycle */
VdbeCursor *pC; /* The P1 index cursor */
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
if( pC->deferredMoveto ){
rc = sqlite3VdbeFinishMoveto(pC);
if( rc ) goto abort_due_to_error;
}
break;
}
/* Opcode: IdxGE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY. Compare this key value against the index
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
** fields at the end.
**
** If the P1 index entry is greater than or equal to the key value
** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxGT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY. Compare this key value against the index
** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
** fields at the end.
**
** If the P1 index entry is greater than the key value
** then jump to P2. Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLT P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
** ROWID on the P1 index.
**
** If the P1 index entry is less than the key value then jump to P2.
** Otherwise fall through to the next instruction.
*/
/* Opcode: IdxLE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** The P4 register values beginning with P3 form an unpacked index
** key that omits the PRIMARY KEY or ROWID. Compare this key value against
** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
** ROWID on the P1 index.
**
** If the P1 index entry is less than or equal to the key value then jump
** to P2. Otherwise fall through to the next instruction.
*/
case OP_IdxLE: /* jump, ncycle */
case OP_IdxGT: /* jump, ncycle */
case OP_IdxLT: /* jump, ncycle */
case OP_IdxGE: { /* jump, ncycle */
VdbeCursor *pC;
int res;
UnpackedRecord r;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->isOrdered );
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->uc.pCursor!=0);
assert( pC->deferredMoveto==0 );
assert( pOp->p4type==P4_INT32 );
r.pKeyInfo = pC->pKeyInfo;
r.nField = (u16)pOp->p4.i;
if( pOp->opcode<OP_IdxLT ){
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
r.default_rc = -1;
}else{
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
r.default_rc = 0;
}
r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
{
int i;
for(i=0; i<r.nField; i++){
assert( memIsValid(&r.aMem[i]) );
REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
}
}
#endif
/* Inlined version of sqlite3VdbeIdxKeyCompare() */
{
i64 nCellKey = 0;
BtCursor *pCur;
Mem m;
assert( pC->eCurType==CURTYPE_BTREE );
pCur = pC->uc.pCursor;
assert( sqlite3BtreeCursorIsValid(pCur) );
nCellKey = sqlite3BtreePayloadSize(pCur);
/* nCellKey will always be between 0 and 0xffffffff because of the way
** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
if( nCellKey<=0 || nCellKey>0x7fffffff ){
rc = SQLITE_CORRUPT_BKPT;
goto abort_due_to_error;
}
sqlite3VdbeMemInit(&m, db, 0);
rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
if( rc ) goto abort_due_to_error;
res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
sqlite3VdbeMemReleaseMalloc(&m);
}
/* End of inlined sqlite3VdbeIdxKeyCompare() */
assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
if( (pOp->opcode&1)==(OP_IdxLT&1) ){
assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
res = -res;
}else{
assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
res++;
}
VdbeBranchTaken(res>0,2);
assert( rc==SQLITE_OK );
if( res>0 ) goto jump_to_p2;
break;
}
/* Opcode: Destroy P1 P2 P3 * *
**
** Delete an entire database table or index whose root page in the database
** file is given by P1.
**
** The table being destroyed is in the main database file if P3==0. If
** P3==1 then the table to be destroyed is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If AUTOVACUUM is enabled then it is possible that another root page
** might be moved into the newly deleted root page in order to keep all
** root pages contiguous at the beginning of the database. The former
** value of the root page that moved - its value before the move occurred -
** is stored in register P2. If no page movement was required (because the
** table being dropped was already the last one in the database) then a
** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
** is stored in register P2.
**
** This opcode throws an error if there are any active reader VMs when
** it is invoked. This is done to avoid the difficulty associated with
** updating existing cursors when a root page is moved in an AUTOVACUUM
** database. This error is thrown even if the database is not an AUTOVACUUM
** db in order to avoid introducing an incompatibility between autovacuum
** and non-autovacuum modes.
**
** See also: Clear
*/
case OP_Destroy: { /* out2 */
int iMoved;
int iDb;
sqlite3VdbeIncrWriteCounter(p, 0);
assert( p->readOnly==0 );
assert( pOp->p1>1 );
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Null;
if( db->nVdbeRead > db->nVDestroy+1 ){
rc = SQLITE_LOCKED;
p->errorAction = OE_Abort;
goto abort_due_to_error;
}else{
iDb = pOp->p3;
assert( DbMaskTest(p->btreeMask, iDb) );
iMoved = 0; /* Not needed. Only to silence a warning. */
rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
pOut->flags = MEM_Int;
pOut->u.i = iMoved;
if( rc ) goto abort_due_to_error;
#ifndef SQLITE_OMIT_AUTOVACUUM
if( iMoved!=0 ){
sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
/* All OP_Destroy operations occur on the same btree */
assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
resetSchemaOnFault = iDb+1;
}
#endif
}
break;
}
/* Opcode: Clear P1 P2 P3
**
** Delete all contents of the database table or index whose root page
** in the database file is given by P1. But, unlike Destroy, do not
** remove the table or index from the database file.
**
** The table being cleared is in the main database file if P2==0. If
** P2==1 then the table to be cleared is in the auxiliary database file
** that is used to store tables create using CREATE TEMPORARY TABLE.
**
** If the P3 value is non-zero, then the row change count is incremented
** by the number of rows in the table being cleared. If P3 is greater
** than zero, then the value stored in register P3 is also incremented
** by the number of rows in the table being cleared.
**
** See also: Destroy
*/
case OP_Clear: {
i64 nChange;
sqlite3VdbeIncrWriteCounter(p, 0);
nChange = 0;
assert( p->readOnly==0 );
assert( DbMaskTest(p->btreeMask, pOp->p2) );
rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
if( pOp->p3 ){
p->nChange += nChange;
if( pOp->p3>0 ){
assert( memIsValid(&aMem[pOp->p3]) );
memAboutToChange(p, &aMem[pOp->p3]);
aMem[pOp->p3].u.i += nChange;
}
}
if( rc ) goto abort_due_to_error;
break;
}
/* Opcode: ResetSorter P1 * * * *
**
** Delete all contents from the ephemeral table or sorter
** that is open on cursor P1.
**
** This opcode only works for cursors used for sorting and
** opened with OP_OpenEphemeral or OP_SorterOpen.
*/
case OP_ResetSorter: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
if( isSorter(pC) ){
sqlite3VdbeSorterReset(db, pC->uc.pSorter);
}else{
assert( pC->eCurType==CURTYPE_BTREE );
assert( pC->isEphemeral );
rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
if( rc ) goto abort_due_to_error;
}
break;
}
/* Opcode: CreateBtree P1 P2 P3 * *
** Synopsis: r[P2]=root iDb=P1 flags=P3
**
** Allocate a new b-tree in the main database file if P1==0 or in the
** TEMP database file if P1==1 or in an attached database if
** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
** The root page number of the new b-tree is stored in register P2.
*/
case OP_CreateBtree: { /* out2 */
Pgno pgno;
Db *pDb;
sqlite3VdbeIncrWriteCounter(p, 0);
pOut = out2Prerelease(p, pOp);
pgno = 0;
assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( p->readOnly==0 );
pDb = &db->aDb[pOp->p1];
assert( pDb->pBt!=0 );
rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
if( rc ) goto abort_due_to_error;
pOut->u.i = pgno;
break;
}
/* Opcode: SqlExec P1 P2 * P4 *
**
** Run the SQL statement or statements specified in the P4 string.
**
** The P1 parameter is a bitmask of options:
**
** 0x0001 Disable Auth and Trace callbacks while the statements
** in P4 are running.
**
** 0x0002 Set db->nAnalysisLimit to P2 while the statements in
** P4 are running.
**
*/
case OP_SqlExec: {
char *zErr;
#ifndef SQLITE_OMIT_AUTHORIZATION
sqlite3_xauth xAuth;
#endif
u8 mTrace;
int savedAnalysisLimit;
sqlite3VdbeIncrWriteCounter(p, 0);
db->nSqlExec++;
zErr = 0;
#ifndef SQLITE_OMIT_AUTHORIZATION
xAuth = db->xAuth;
#endif
mTrace = db->mTrace;
savedAnalysisLimit = db->nAnalysisLimit;
if( pOp->p1 & 0x0001 ){
#ifndef SQLITE_OMIT_AUTHORIZATION
db->xAuth = 0;
#endif
db->mTrace = 0;
}
if( pOp->p1 & 0x0002 ){
db->nAnalysisLimit = pOp->p2;
}
rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
db->nSqlExec--;
#ifndef SQLITE_OMIT_AUTHORIZATION
db->xAuth = xAuth;
#endif
db->mTrace = mTrace;
db->nAnalysisLimit = savedAnalysisLimit;
if( zErr || rc ){
sqlite3VdbeError(p, "%s", zErr);
sqlite3_free(zErr);
if( rc==SQLITE_NOMEM ) goto no_mem;
goto abort_due_to_error;
}
break;
}
/* Opcode: ParseSchema P1 * * P4 *
**
** Read and parse all entries from the schema table of database P1
** that match the WHERE clause P4. If P4 is a NULL pointer, then the
** entire schema for P1 is reparsed.
**
** This opcode invokes the parser to create a new virtual machine,
** then runs the new virtual machine. It is thus a re-entrant opcode.
*/
case OP_ParseSchema: {
int iDb;
const char *zSchema;
char *zSql;
InitData initData;
/* Any prepared statement that invokes this opcode will hold mutexes
** on every btree. This is a prerequisite for invoking
** sqlite3InitCallback().
*/
#ifdef SQLITE_DEBUG
for(iDb=0; iDb<db->nDb; iDb++){
assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
}
#endif
iDb = pOp->p1;
assert( iDb>=0 && iDb<db->nDb );
assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
|| db->mallocFailed
|| (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
#ifndef SQLITE_OMIT_ALTERTABLE
if( pOp->p4.z==0 ){
sqlite3SchemaClear(db->aDb[iDb].pSchema);
db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
db->mDbFlags |= DBFLAG_SchemaChange;
p->expired = 0;
}else
#endif
{
zSchema = LEGACY_SCHEMA_TABLE;
initData.db = db;
initData.iDb = iDb;
initData.pzErrMsg = &p->zErrMsg;
initData.mInitFlags = 0;
initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
zSql = sqlite3MPrintf(db,
"SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
if( zSql==0 ){
rc = SQLITE_NOMEM_BKPT;
}else{
assert( db->init.busy==0 );
db->init.busy = 1;
initData.rc = SQLITE_OK;
initData.nInitRow = 0;
assert( !db->mallocFailed );
rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
if( rc==SQLITE_OK ) rc = initData.rc;
if( rc==SQLITE_OK && initData.nInitRow==0 ){
/* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
** at least one SQL statement. Any less than that indicates that
** the sqlite_schema table is corrupt. */
rc = SQLITE_CORRUPT_BKPT;
}
sqlite3DbFreeNN(db, zSql);
db->init.busy = 0;
}
}
if( rc ){
sqlite3ResetAllSchemasOfConnection(db);
if( rc==SQLITE_NOMEM ){
goto no_mem;
}
goto abort_due_to_error;
}
break;
}
#if !defined(SQLITE_OMIT_ANALYZE)
/* Opcode: LoadAnalysis P1 * * * *
**
** Read the sqlite_stat1 table for database P1 and load the content
** of that table into the internal index hash table. This will cause
** the analysis to be used when preparing all subsequent queries.
*/
case OP_LoadAnalysis: {
assert( pOp->p1>=0 && pOp->p1<db->nDb );
rc = sqlite3AnalysisLoad(db, pOp->p1);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* !defined(SQLITE_OMIT_ANALYZE) */
/* Opcode: DropTable P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the table named P4 in database P1. This is called after a table
** is dropped from disk (using the Destroy opcode) in order to keep
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTable: {
sqlite3VdbeIncrWriteCounter(p, 0);
sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
break;
}
/* Opcode: DropIndex P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the index named P4 in database P1. This is called after an index
** is dropped from disk (using the Destroy opcode)
** in order to keep the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropIndex: {
sqlite3VdbeIncrWriteCounter(p, 0);
sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
break;
}
/* Opcode: DropTrigger P1 * * P4 *
**
** Remove the internal (in-memory) data structures that describe
** the trigger named P4 in database P1. This is called after a trigger
** is dropped from disk (using the Destroy opcode) in order to keep
** the internal representation of the
** schema consistent with what is on disk.
*/
case OP_DropTrigger: {
sqlite3VdbeIncrWriteCounter(p, 0);
sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
break;
}
#ifndef SQLITE_OMIT_INTEGRITY_CHECK
/* Opcode: IntegrityCk P1 P2 P3 P4 P5
**
** Do an analysis of the currently open database. Store in
** register (P1+1) the text of an error message describing any problems.
** If no problems are found, store a NULL in register (P1+1).
**
** The register (P1) contains one less than the maximum number of allowed
** errors. At most reg(P1) errors will be reported.
** In other words, the analysis stops as soon as reg(P1) errors are
** seen. Reg(P1) is updated with the number of errors remaining.
**
** The root page numbers of all tables in the database are integers
** stored in P4_INTARRAY argument.
**
** If P5 is not zero, the check is done on the auxiliary database
** file, not the main database file.
**
** This opcode is used to implement the integrity_check pragma.
*/
case OP_IntegrityCk: {
int nRoot; /* Number of tables to check. (Number of root pages.) */
Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
int nErr; /* Number of errors reported */
char *z; /* Text of the error report */
Mem *pnErr; /* Register keeping track of errors remaining */
assert( p->bIsReader );
assert( pOp->p4type==P4_INTARRAY );
nRoot = pOp->p2;
aRoot = pOp->p4.ai;
assert( nRoot>0 );
assert( aRoot!=0 );
assert( aRoot[0]==(Pgno)nRoot );
assert( pOp->p1>0 && (pOp->p1+1)<=(p->nMem+1 - p->nCursor) );
pnErr = &aMem[pOp->p1];
assert( (pnErr->flags & MEM_Int)!=0 );
assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
pIn1 = &aMem[pOp->p1+1];
assert( pOp->p5<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p5) );
rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1],
&aMem[pOp->p3], nRoot, (int)pnErr->u.i+1, &nErr, &z);
sqlite3VdbeMemSetNull(pIn1);
if( nErr==0 ){
assert( z==0 );
}else if( rc ){
sqlite3_free(z);
goto abort_due_to_error;
}else{
pnErr->u.i -= nErr-1;
sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
}
UPDATE_MAX_BLOBSIZE(pIn1);
sqlite3VdbeChangeEncoding(pIn1, encoding);
goto check_for_interrupt;
}
#endif /* SQLITE_OMIT_INTEGRITY_CHECK */
/* Opcode: RowSetAdd P1 P2 * * *
** Synopsis: rowset(P1)=r[P2]
**
** Insert the integer value held by register P2 into a RowSet object
** held in register P1.
**
** An assertion fails if P2 is not an integer.
*/
case OP_RowSetAdd: { /* in1, in2 */
pIn1 = &aMem[pOp->p1];
pIn2 = &aMem[pOp->p2];
assert( (pIn2->flags & MEM_Int)!=0 );
if( (pIn1->flags & MEM_Blob)==0 ){
if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
}
assert( sqlite3VdbeMemIsRowSet(pIn1) );
sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
break;
}
/* Opcode: RowSetRead P1 P2 P3 * *
** Synopsis: r[P3]=rowset(P1)
**
** Extract the smallest value from the RowSet object in P1
** and put that value into register P3.
** Or, if RowSet object P1 is initially empty, leave P3
** unchanged and jump to instruction P2.
*/
case OP_RowSetRead: { /* jump, in1, out3 */
i64 val;
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
if( (pIn1->flags & MEM_Blob)==0
|| sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
){
/* The boolean index is empty */
sqlite3VdbeMemSetNull(pIn1);
VdbeBranchTaken(1,2);
goto jump_to_p2_and_check_for_interrupt;
}else{
/* A value was pulled from the index */
VdbeBranchTaken(0,2);
sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
}
goto check_for_interrupt;
}
/* Opcode: RowSetTest P1 P2 P3 P4
** Synopsis: if r[P3] in rowset(P1) goto P2
**
** Register P3 is assumed to hold a 64-bit integer value. If register P1
** contains a RowSet object and that RowSet object contains
** the value held in P3, jump to register P2. Otherwise, insert the
** integer in P3 into the RowSet and continue on to the
** next opcode.
**
** The RowSet object is optimized for the case where sets of integers
** are inserted in distinct phases, which each set contains no duplicates.
** Each set is identified by a unique P4 value. The first set
** must have P4==0, the final set must have P4==-1, and for all other sets
** must have P4>0.
**
** This allows optimizations: (a) when P4==0 there is no need to test
** the RowSet object for P3, as it is guaranteed not to contain it,
** (b) when P4==-1 there is no need to insert the value, as it will
** never be tested for, and (c) when a value that is part of set X is
** inserted, there is no need to search to see if the same value was
** previously inserted as part of set X (only if it was previously
** inserted as part of some other set).
*/
case OP_RowSetTest: { /* jump, in1, in3 */
int iSet;
int exists;
pIn1 = &aMem[pOp->p1];
pIn3 = &aMem[pOp->p3];
iSet = pOp->p4.i;
assert( pIn3->flags&MEM_Int );
/* If there is anything other than a rowset object in memory cell P1,
** delete it now and initialize P1 with an empty rowset
*/
if( (pIn1->flags & MEM_Blob)==0 ){
if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
}
assert( sqlite3VdbeMemIsRowSet(pIn1) );
assert( pOp->p4type==P4_INT32 );
assert( iSet==-1 || iSet>=0 );
if( iSet ){
exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
VdbeBranchTaken(exists!=0,2);
if( exists ) goto jump_to_p2;
}
if( iSet>=0 ){
sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
}
break;
}
#ifndef SQLITE_OMIT_TRIGGER
/* Opcode: Program P1 P2 P3 P4 P5
**
** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
**
** P1 contains the address of the memory cell that contains the first memory
** cell in an array of values used as arguments to the sub-program. P2
** contains the address to jump to if the sub-program throws an IGNORE
** exception using the RAISE() function. P2 might be zero, if there is
** no possibility that an IGNORE exception will be raised.
** Register P3 contains the address
** of a memory cell in this (the parent) VM that is used to allocate the
** memory required by the sub-vdbe at runtime.
**
** P4 is a pointer to the VM containing the trigger program.
**
** If P5 is non-zero, then recursive program invocation is enabled.
*/
case OP_Program: { /* jump0 */
int nMem; /* Number of memory registers for sub-program */
int nByte; /* Bytes of runtime space required for sub-program */
Mem *pRt; /* Register to allocate runtime space */
Mem *pMem; /* Used to iterate through memory cells */
Mem *pEnd; /* Last memory cell in new array */
VdbeFrame *pFrame; /* New vdbe frame to execute in */
SubProgram *pProgram; /* Sub-program to execute */
void *t; /* Token identifying trigger */
pProgram = pOp->p4.pProgram;
pRt = &aMem[pOp->p3];
assert( pProgram->nOp>0 );
/* If the p5 flag is clear, then recursive invocation of triggers is
** disabled for backwards compatibility (p5 is set if this sub-program
** is really a trigger, not a foreign key action, and the flag set
** and cleared by the "PRAGMA recursive_triggers" command is clear).
**
** It is recursive invocation of triggers, at the SQL level, that is
** disabled. In some cases a single trigger may generate more than one
** SubProgram (if the trigger may be executed with more than one different
** ON CONFLICT algorithm). SubProgram structures associated with a
** single trigger all have the same value for the SubProgram.token
** variable. */
if( pOp->p5 ){
t = pProgram->token;
for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
if( pFrame ) break;
}
if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
rc = SQLITE_ERROR;
sqlite3VdbeError(p, "too many levels of trigger recursion");
goto abort_due_to_error;
}
/* Register pRt is used to store the memory required to save the state
** of the current program, and the memory required at runtime to execute
** the trigger program. If this trigger has been fired before, then pRt
** is already allocated. Otherwise, it must be initialized. */
if( (pRt->flags&MEM_Blob)==0 ){
/* SubProgram.nMem is set to the number of memory cells used by the
** program stored in SubProgram.aOp. As well as these, one memory
** cell is required for each cursor used by the program. Set local
** variable nMem (and later, VdbeFrame.nChildMem) to this value.
*/
nMem = pProgram->nMem + pProgram->nCsr;
assert( nMem>0 );
if( pProgram->nCsr==0 ) nMem++;
nByte = ROUND8(sizeof(VdbeFrame))
+ nMem * sizeof(Mem)
+ pProgram->nCsr * sizeof(VdbeCursor*)
+ (pProgram->nOp + 7)/8;
pFrame = sqlite3DbMallocZero(db, nByte);
if( !pFrame ){
goto no_mem;
}
sqlite3VdbeMemRelease(pRt);
pRt->flags = MEM_Blob|MEM_Dyn;
pRt->z = (char*)pFrame;
pRt->n = nByte;
pRt->xDel = sqlite3VdbeFrameMemDel;
pFrame->v = p;
pFrame->nChildMem = nMem;
pFrame->nChildCsr = pProgram->nCsr;
pFrame->pc = (int)(pOp - aOp);
pFrame->aMem = p->aMem;
pFrame->nMem = p->nMem;
pFrame->apCsr = p->apCsr;
pFrame->nCursor = p->nCursor;
pFrame->aOp = p->aOp;
pFrame->nOp = p->nOp;
pFrame->token = pProgram->token;
#ifdef SQLITE_DEBUG
pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
#endif
pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
pMem->flags = MEM_Undefined;
pMem->db = db;
}
}else{
pFrame = (VdbeFrame*)pRt->z;
assert( pRt->xDel==sqlite3VdbeFrameMemDel );
assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
|| (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
assert( pProgram->nCsr==pFrame->nChildCsr );
assert( (int)(pOp - aOp)==pFrame->pc );
}
p->nFrame++;
pFrame->pParent = p->pFrame;
pFrame->lastRowid = db->lastRowid;
pFrame->nChange = p->nChange;
pFrame->nDbChange = p->db->nChange;
assert( pFrame->pAuxData==0 );
pFrame->pAuxData = p->pAuxData;
p->pAuxData = 0;
p->nChange = 0;
p->pFrame = pFrame;
p->aMem = aMem = VdbeFrameMem(pFrame);
p->nMem = pFrame->nChildMem;
p->nCursor = (u16)pFrame->nChildCsr;
p->apCsr = (VdbeCursor **)&aMem[p->nMem];
pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
p->aOp = aOp = pProgram->aOp;
p->nOp = pProgram->nOp;
#ifdef SQLITE_DEBUG
/* Verify that second and subsequent executions of the same trigger do not
** try to reuse register values from the first use. */
{
int i;
for(i=0; i<p->nMem; i++){
aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
}
}
#endif
pOp = &aOp[-1];
goto check_for_interrupt;
}
/* Opcode: Param P1 P2 * * *
**
** This opcode is only ever present in sub-programs called via the
** OP_Program instruction. Copy a value currently stored in a memory
** cell of the calling (parent) frame to cell P2 in the current frames
** address space. This is used by trigger programs to access the new.*
** and old.* values.
**
** The address of the cell in the parent frame is determined by adding
** the value of the P1 argument to the value of the P1 argument to the
** calling OP_Program instruction.
*/
case OP_Param: { /* out2 */
VdbeFrame *pFrame;
Mem *pIn;
pOut = out2Prerelease(p, pOp);
pFrame = p->pFrame;
pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
break;
}
#endif /* #ifndef SQLITE_OMIT_TRIGGER */
#ifndef SQLITE_OMIT_FOREIGN_KEY
/* Opcode: FkCounter P1 P2 * * *
** Synopsis: fkctr[P1]+=P2
**
** Increment a "constraint counter" by P2 (P2 may be negative or positive).
** If P1 is non-zero, the database constraint counter is incremented
** (deferred foreign key constraints). Otherwise, if P1 is zero, the
** statement counter is incremented (immediate foreign key constraints).
*/
case OP_FkCounter: {
if( db->flags & SQLITE_DeferFKs ){
db->nDeferredImmCons += pOp->p2;
}else if( pOp->p1 ){
db->nDeferredCons += pOp->p2;
}else{
p->nFkConstraint += pOp->p2;
}
break;
}
/* Opcode: FkIfZero P1 P2 * * *
** Synopsis: if fkctr[P1]==0 goto P2
**
** This opcode tests if a foreign key constraint-counter is currently zero.
** If so, jump to instruction P2. Otherwise, fall through to the next
** instruction.
**
** If P1 is non-zero, then the jump is taken if the database constraint-counter
** is zero (the one that counts deferred constraint violations). If P1 is
** zero, the jump is taken if the statement constraint-counter is zero
** (immediate foreign key constraint violations).
*/
case OP_FkIfZero: { /* jump */
if( pOp->p1 ){
VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
}else{
VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
}
break;
}
#endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
#ifndef SQLITE_OMIT_AUTOINCREMENT
/* Opcode: MemMax P1 P2 * * *
** Synopsis: r[P1]=max(r[P1],r[P2])
**
** P1 is a register in the root frame of this VM (the root frame is
** different from the current frame if this instruction is being executed
** within a sub-program). Set the value of register P1 to the maximum of
** its current value and the value in register P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemMax: { /* in2 */
VdbeFrame *pFrame;
if( p->pFrame ){
for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
pIn1 = &pFrame->aMem[pOp->p1];
}else{
pIn1 = &aMem[pOp->p1];
}
assert( memIsValid(pIn1) );
sqlite3VdbeMemIntegerify(pIn1);
pIn2 = &aMem[pOp->p2];
sqlite3VdbeMemIntegerify(pIn2);
if( pIn1->u.i<pIn2->u.i){
pIn1->u.i = pIn2->u.i;
}
break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */
/* Opcode: IfPos P1 P2 P3 * *
** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
**
** Register P1 must contain an integer.
** If the value of register P1 is 1 or greater, subtract P3 from the
** value in P1 and jump to P2.
**
** If the initial value of register P1 is less than 1, then the
** value is unchanged and control passes through to the next instruction.
*/
case OP_IfPos: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
VdbeBranchTaken( pIn1->u.i>0, 2);
if( pIn1->u.i>0 ){
pIn1->u.i -= pOp->p3;
goto jump_to_p2;
}
break;
}
/* Opcode: OffsetLimit P1 P2 P3 * *
** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
**
** This opcode performs a commonly used computation associated with
** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
** holds the offset counter. The opcode computes the combined value
** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
** value computed is the total number of rows that will need to be
** visited in order to complete the query.
**
** If r[P3] is zero or negative, that means there is no OFFSET
** and r[P2] is set to be the value of the LIMIT, r[P1].
**
** if r[P1] is zero or negative, that means there is no LIMIT
** and r[P2] is set to -1.
**
** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
*/
case OP_OffsetLimit: { /* in1, out2, in3 */
i64 x;
pIn1 = &aMem[pOp->p1];
pIn3 = &aMem[pOp->p3];
pOut = out2Prerelease(p, pOp);
assert( pIn1->flags & MEM_Int );
assert( pIn3->flags & MEM_Int );
x = pIn1->u.i;
if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
/* If the LIMIT is less than or equal to zero, loop forever. This
** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
** also loop forever. This is undocumented. In fact, one could argue
** that the loop should terminate. But assuming 1 billion iterations
** per second (far exceeding the capabilities of any current hardware)
** it would take nearly 300 years to actually reach the limit. So
** looping forever is a reasonable approximation. */
pOut->u.i = -1;
}else{
pOut->u.i = x;
}
break;
}
/* Opcode: IfNotZero P1 P2 * * *
** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
**
** Register P1 must contain an integer. If the content of register P1 is
** initially greater than zero, then decrement the value in register P1.
** If it is non-zero (negative or positive) and then also jump to P2.
** If register P1 is initially zero, leave it unchanged and fall through.
*/
case OP_IfNotZero: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
VdbeBranchTaken(pIn1->u.i<0, 2);
if( pIn1->u.i ){
if( pIn1->u.i>0 ) pIn1->u.i--;
goto jump_to_p2;
}
break;
}
/* Opcode: DecrJumpZero P1 P2 * * *
** Synopsis: if (--r[P1])==0 goto P2
**
** Register P1 must hold an integer. Decrement the value in P1
** and jump to P2 if the new value is exactly zero.
*/
case OP_DecrJumpZero: { /* jump, in1 */
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags&MEM_Int );
if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
VdbeBranchTaken(pIn1->u.i==0, 2);
if( pIn1->u.i==0 ) goto jump_to_p2;
break;
}
/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the xStep function for an aggregate.
** The function has P5 arguments. P4 is a pointer to the
** FuncDef structure that specifies the function. Register P3 is the
** accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
/* Opcode: AggInverse * P2 P3 P4 P5
** Synopsis: accum=r[P3] inverse(r[P2@P5])
**
** Execute the xInverse function for an aggregate.
** The function has P5 arguments. P4 is a pointer to the
** FuncDef structure that specifies the function. Register P3 is the
** accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
*/
/* Opcode: AggStep1 P1 P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
** aggregate. The function has P5 arguments. P4 is a pointer to the
** FuncDef structure that specifies the function. Register P3 is the
** accumulator.
**
** The P5 arguments are taken from register P2 and its
** successors.
**
** This opcode is initially coded as OP_AggStep0. On first evaluation,
** the FuncDef stored in P4 is converted into an sqlite3_context and
** the opcode is changed. In this way, the initialization of the
** sqlite3_context only happens once, instead of on each call to the
** step function.
*/
case OP_AggInverse:
case OP_AggStep: {
int n;
sqlite3_context *pCtx;
u64 nAlloc;
assert( pOp->p4type==P4_FUNCDEF );
n = pOp->p5;
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
/* Allocate space for (a) the context object and (n-1) extra pointers
** to append to the sqlite3_context.argv[1] array, and (b) a memory
** cell in which to store the accumulation. Be careful that the memory
** cell is 8-byte aligned, even on platforms where a pointer is 32-bits.
**
** Note: We could avoid this by using a regular memory cell from aMem[] for
** the accumulator, instead of allocating one here. */
nAlloc = ROUND8P( sizeof(pCtx[0]) + (n-1)*sizeof(sqlite3_value*) );
pCtx = sqlite3DbMallocRawNN(db, nAlloc + sizeof(Mem));
if( pCtx==0 ) goto no_mem;
pCtx->pOut = (Mem*)((u8*)pCtx + nAlloc);
assert( EIGHT_BYTE_ALIGNMENT(pCtx->pOut) );
sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
pCtx->pMem = 0;
pCtx->pFunc = pOp->p4.pFunc;
pCtx->iOp = (int)(pOp - aOp);
pCtx->pVdbe = p;
pCtx->skipFlag = 0;
pCtx->isError = 0;
pCtx->enc = encoding;
pCtx->argc = n;
pOp->p4type = P4_FUNCCTX;
pOp->p4.pCtx = pCtx;
/* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
pOp->opcode = OP_AggStep1;
/* Fall through into OP_AggStep */
/* no break */ deliberate_fall_through
}
case OP_AggStep1: {
int i;
sqlite3_context *pCtx;
Mem *pMem;
assert( pOp->p4type==P4_FUNCCTX );
pCtx = pOp->p4.pCtx;
pMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
if( pOp->p1 ){
/* This is an OP_AggInverse call. Verify that xStep has always
** been called at least once prior to any xInverse call. */
assert( pMem->uTemp==0x1122e0e3 );
}else{
/* This is an OP_AggStep call. Mark it as such. */
pMem->uTemp = 0x1122e0e3;
}
#endif
/* If this function is inside of a trigger, the register array in aMem[]
** might change from one evaluation to the next. The next block of code
** checks to see if the register array has changed, and if so it
** reinitializes the relevant parts of the sqlite3_context object */
if( pCtx->pMem != pMem ){
pCtx->pMem = pMem;
for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
}
#ifdef SQLITE_DEBUG
for(i=0; i<pCtx->argc; i++){
assert( memIsValid(pCtx->argv[i]) );
REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
}
#endif
pMem->n++;
assert( pCtx->pOut->flags==MEM_Null );
assert( pCtx->isError==0 );
assert( pCtx->skipFlag==0 );
#ifndef SQLITE_OMIT_WINDOWFUNC
if( pOp->p1 ){
(pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
}else
#endif
(pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
if( pCtx->isError ){
if( pCtx->isError>0 ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
rc = pCtx->isError;
}
if( pCtx->skipFlag ){
assert( pOp[-1].opcode==OP_CollSeq );
i = pOp[-1].p1;
if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
pCtx->skipFlag = 0;
}
sqlite3VdbeMemRelease(pCtx->pOut);
pCtx->pOut->flags = MEM_Null;
pCtx->isError = 0;
if( rc ) goto abort_due_to_error;
}
assert( pCtx->pOut->flags==MEM_Null );
assert( pCtx->skipFlag==0 );
break;
}
/* Opcode: AggFinal P1 P2 * P4 *
** Synopsis: accum=r[P1] N=P2
**
** P1 is the memory location that is the accumulator for an aggregate
** or window function. Execute the finalizer function
** for an aggregate and store the result in P1.
**
** P2 is the number of arguments that the step function takes and
** P4 is a pointer to the FuncDef for this function. The P2
** argument is not used by this opcode. It is only there to disambiguate
** functions that can take varying numbers of arguments. The
** P4 argument is only needed for the case where
** the step function was not previously called.
*/
/* Opcode: AggValue * P2 P3 P4 *
** Synopsis: r[P3]=value N=P2
**
** Invoke the xValue() function and store the result in register P3.
**
** P2 is the number of arguments that the step function takes and
** P4 is a pointer to the FuncDef for this function. The P2
** argument is not used by this opcode. It is only there to disambiguate
** functions that can take varying numbers of arguments. The
** P4 argument is only needed for the case where
** the step function was not previously called.
*/
case OP_AggValue:
case OP_AggFinal: {
Mem *pMem;
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
pMem = &aMem[pOp->p1];
assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
#ifndef SQLITE_OMIT_WINDOWFUNC
if( pOp->p3 ){
memAboutToChange(p, &aMem[pOp->p3]);
rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
pMem = &aMem[pOp->p3];
}else
#endif
{
rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
}
if( rc ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
goto abort_due_to_error;
}
sqlite3VdbeChangeEncoding(pMem, encoding);
UPDATE_MAX_BLOBSIZE(pMem);
REGISTER_TRACE((int)(pMem-aMem), pMem);
break;
}
#ifndef SQLITE_OMIT_WAL
/* Opcode: Checkpoint P1 P2 P3 * *
**
** Checkpoint database P1. This is a no-op if P1 is not currently in
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
** SQLITE_BUSY or not, respectively. Write the number of pages in the
** WAL after the checkpoint into mem[P3+1] and the number of pages
** in the WAL that have been checkpointed after the checkpoint
** completes into mem[P3+2]. However on an error, mem[P3+1] and
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
int i; /* Loop counter */
int aRes[3]; /* Results */
Mem *pMem; /* Write results here */
assert( p->readOnly==0 );
aRes[0] = 0;
aRes[1] = aRes[2] = -1;
assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
|| pOp->p2==SQLITE_CHECKPOINT_FULL
|| pOp->p2==SQLITE_CHECKPOINT_RESTART
|| pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
);
rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
if( rc ){
if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
rc = SQLITE_OK;
aRes[0] = 1;
}
for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
}
break;
};
#endif
#ifndef SQLITE_OMIT_PRAGMA
/* Opcode: JournalMode P1 P2 P3 * *
**
** Change the journal mode of database P1 to P3. P3 must be one of the
** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: { /* out2 */
Btree *pBt; /* Btree to change journal mode of */
Pager *pPager; /* Pager associated with pBt */
int eNew; /* New journal mode */
int eOld; /* The old journal mode */
#ifndef SQLITE_OMIT_WAL
const char *zFilename; /* Name of database file for pPager */
#endif
pOut = out2Prerelease(p, pOp);
eNew = pOp->p3;
assert( eNew==PAGER_JOURNALMODE_DELETE
|| eNew==PAGER_JOURNALMODE_TRUNCATE
|| eNew==PAGER_JOURNALMODE_PERSIST
|| eNew==PAGER_JOURNALMODE_OFF
|| eNew==PAGER_JOURNALMODE_MEMORY
|| eNew==PAGER_JOURNALMODE_WAL
|| eNew==PAGER_JOURNALMODE_WAL2
|| eNew==PAGER_JOURNALMODE_QUERY
);
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
pPager = sqlite3BtreePager(pBt);
eOld = sqlite3PagerGetJournalMode(pPager);
if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
assert( sqlite3BtreeHoldsMutex(pBt) );
if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
#ifndef SQLITE_OMIT_WAL
zFilename = sqlite3PagerFilename(pPager, 1);
/* Do not allow a transition to journal_mode=WAL for a database
** in temporary storage or if the VFS does not support shared memory
*/
if( isWalMode(eNew)
&& (sqlite3Strlen30(zFilename)==0 /* Temp file */
|| !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
){
eNew = eOld;
}
if( eNew!=eOld && (isWalMode(eNew) || isWalMode(eOld)) ){
/* Prevent changing directly to wal2 from wal mode. And vice versa. */
if( isWalMode(eNew) && isWalMode(eOld) ){
rc = SQLITE_ERROR;
sqlite3VdbeError(p, "cannot change from %s to %s mode",
sqlite3JournalModename(eOld), sqlite3JournalModename(eNew)
);
goto abort_due_to_error;
}
/* Prevent switching into or out of wal/wal2 mode mid-transaction */
if( !db->autoCommit || db->nVdbeRead>1 ){
rc = SQLITE_ERROR;
sqlite3VdbeError(p,
"cannot change %s wal mode from within a transaction",
(eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
);
goto abort_due_to_error;
}
if( isWalMode(eOld) ){
/* If leaving WAL mode, close the log file. If successful, the call
** to PagerCloseWal() checkpoints and deletes the write-ahead-log
** file. An EXCLUSIVE lock may still be held on the database file
** after a successful return.
*/
rc = sqlite3PagerCloseWal(pPager, db);
if( rc==SQLITE_OK ){
sqlite3PagerSetJournalMode(pPager, eNew);
}
}else if( eOld==PAGER_JOURNALMODE_MEMORY ){
/* Cannot transition directly from MEMORY to WAL. Use mode OFF
** as an intermediate */
sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
}
/* Open a transaction on the database file. Regardless of the journal
** mode, this transaction always uses a rollback journal.
*/
assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
if( rc==SQLITE_OK ){
/* 1==rollback, 2==wal, 3==wal2 */
rc = sqlite3BtreeSetVersion(pBt,
1 + isWalMode(eNew) + (eNew==PAGER_JOURNALMODE_WAL2)
);
}
}
#endif /* ifndef SQLITE_OMIT_WAL */
if( rc ) eNew = eOld;
eNew = sqlite3PagerSetJournalMode(pPager, eNew);
pOut->flags = MEM_Str|MEM_Static|MEM_Term;
pOut->z = (char *)sqlite3JournalModename(eNew);
pOut->n = sqlite3Strlen30(pOut->z);
pOut->enc = SQLITE_UTF8;
sqlite3VdbeChangeEncoding(pOut, encoding);
if( rc ) goto abort_due_to_error;
break;
};
#endif /* SQLITE_OMIT_PRAGMA */
#if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
/* Opcode: Vacuum P1 P2 * * *
**
** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
** for an attached database. The "temp" database may not be vacuumed.
**
** If P2 is not zero, then it is a register holding a string which is
** the file into which the result of vacuum should be written. When
** P2 is zero, the vacuum overwrites the original database.
*/
case OP_Vacuum: {
assert( p->readOnly==0 );
rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
pOp->p2 ? &aMem[pOp->p2] : 0);
if( rc ) goto abort_due_to_error;
break;
}
#endif
#if !defined(SQLITE_OMIT_AUTOVACUUM)
/* Opcode: IncrVacuum P1 P2 * * *
**
** Perform a single step of the incremental vacuum procedure on
** the P1 database. If the vacuum has finished, jump to instruction
** P2. Otherwise, fall through to the next instruction.
*/
case OP_IncrVacuum: { /* jump */
Btree *pBt;
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( DbMaskTest(p->btreeMask, pOp->p1) );
assert( p->readOnly==0 );
pBt = db->aDb[pOp->p1].pBt;
rc = sqlite3BtreeIncrVacuum(pBt);
VdbeBranchTaken(rc==SQLITE_DONE,2);
if( rc ){
if( rc!=SQLITE_DONE ) goto abort_due_to_error;
rc = SQLITE_OK;
goto jump_to_p2;
}
break;
}
#endif
/* Opcode: Expire P1 P2 * * *
**
** Cause precompiled statements to expire. When an expired statement
** is executed using sqlite3_step() it will either automatically
** reprepare itself (if it was originally created using sqlite3_prepare_v2())
** or it will fail with SQLITE_SCHEMA.
**
** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
** then only the currently executing statement is expired.
**
** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
** then running SQL statements are allowed to continue to run to completion.
** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
** that might help the statement run faster but which does not affect the
** correctness of operation.
*/
case OP_Expire: {
assert( pOp->p2==0 || pOp->p2==1 );
if( !pOp->p1 ){
sqlite3ExpirePreparedStatements(db, pOp->p2);
}else{
p->expired = pOp->p2+1;
}
break;
}
/* Opcode: CursorLock P1 * * * *
**
** Lock the btree to which cursor P1 is pointing so that the btree cannot be
** written by an other cursor.
*/
case OP_CursorLock: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
sqlite3BtreeCursorPin(pC->uc.pCursor);
break;
}
/* Opcode: CursorUnlock P1 * * * *
**
** Unlock the btree to which cursor P1 is pointing so that it can be
** written by other cursors.
*/
case OP_CursorUnlock: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
pC = p->apCsr[pOp->p1];
assert( pC!=0 );
assert( pC->eCurType==CURTYPE_BTREE );
sqlite3BtreeCursorUnpin(pC->uc.pCursor);
break;
}
#ifndef SQLITE_OMIT_SHARED_CACHE
/* Opcode: TableLock P1 P2 P3 P4 *
** Synopsis: iDb=P1 root=P2 write=P3
**
** Obtain a lock on a particular table. This instruction is only used when
** the shared-cache feature is enabled.
**
** P1 is the index of the database in sqlite3.aDb[] of the database
** on which the lock is acquired. A readlock is obtained if P3==0 or
** a write lock if P3==1.
**
** P2 contains the root-page of the table to lock.
**
** P4 contains a pointer to the name of the table being locked. This is only
** used to generate an error message if the lock cannot be obtained.
*/
case OP_TableLock: {
u8 isWriteLock = (u8)pOp->p3;
#ifndef SQLITE_OMIT_CONCURRENT
if( isWriteLock && db->eConcurrent && pOp->p2==1 && pOp->p1!=1 ){
db->eConcurrent = CONCURRENT_SCHEMA;
}
#endif
if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
int p1 = pOp->p1;
assert( p1>=0 && p1<db->nDb );
assert( DbMaskTest(p->btreeMask, p1) );
assert( isWriteLock==0 || isWriteLock==1 );
rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
if( rc ){
if( (rc&0xFF)==SQLITE_LOCKED ){
const char *z = pOp->p4.z;
sqlite3VdbeError(p, "database table is locked: %s", z);
}
goto abort_due_to_error;
}
}
break;
}
#endif /* SQLITE_OMIT_SHARED_CACHE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VBegin * * * P4 *
**
** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
** xBegin method for that table.
**
** Also, whether or not P4 is set, check that this is not being called from
** within a callback to a virtual table xSync() method. If it is, the error
** code will be set to SQLITE_LOCKED.
*/
case OP_VBegin: {
VTable *pVTab;
pVTab = pOp->p4.pVtab;
rc = sqlite3VtabBegin(db, pVTab);
if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 P2 * * *
**
** P2 is a register that holds the name of a virtual table in database
** P1. Call the xCreate method for that table.
*/
case OP_VCreate: {
Mem sMem; /* For storing the record being decoded */
const char *zTab; /* Name of the virtual table */
memset(&sMem, 0, sizeof(sMem));
sMem.db = db;
/* Because P2 is always a static string, it is impossible for the
** sqlite3VdbeMemCopy() to fail */
assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
assert( rc==SQLITE_OK );
zTab = (const char*)sqlite3_value_text(&sMem);
assert( zTab || db->mallocFailed );
if( zTab ){
rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
}
sqlite3VdbeMemRelease(&sMem);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {
db->nVDestroy++;
rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
db->nVDestroy--;
assert( p->errorAction==OE_Abort && p->usesStmtJournal );
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number. This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: { /* ncycle */
VdbeCursor *pCur;
sqlite3_vtab_cursor *pVCur;
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
assert( p->bIsReader );
pCur = 0;
pVCur = 0;
pVtab = pOp->p4.pVtab->pVtab;
if( pVtab==0 || NEVER(pVtab->pModule==0) ){
rc = SQLITE_LOCKED;
goto abort_due_to_error;
}
pModule = pVtab->pModule;
rc = pModule->xOpen(pVtab, &pVCur);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
/* Initialize sqlite3_vtab_cursor base class */
pVCur->pVtab = pVtab;
/* Initialize vdbe cursor object */
pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
if( pCur ){
pCur->uc.pVCur = pVCur;
pVtab->nRef++;
}else{
assert( db->mallocFailed );
pModule->xClose(pVCur);
goto no_mem;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCheck P1 P2 P3 P4 *
**
** P4 is a pointer to a Table object that is a virtual table in schema P1
** that supports the xIntegrity() method. This opcode runs the xIntegrity()
** method for that virtual table, using P3 as the integer argument. If
** an error is reported back, the table name is prepended to the error
** message and that message is stored in P2. If no errors are seen,
** register P2 is set to NULL.
*/
case OP_VCheck: { /* out2 */
Table *pTab;
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
char *zErr = 0;
pOut = &aMem[pOp->p2];
sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */
assert( pOp->p4type==P4_TABLEREF );
pTab = pOp->p4.pTab;
assert( pTab!=0 );
assert( pTab->nTabRef>0 );
assert( IsVirtual(pTab) );
if( pTab->u.vtab.p==0 ) break;
pVtab = pTab->u.vtab.p->pVtab;
assert( pVtab!=0 );
pModule = pVtab->pModule;
assert( pModule!=0 );
assert( pModule->iVersion>=4 );
assert( pModule->xIntegrity!=0 );
sqlite3VtabLock(pTab->u.vtab.p);
assert( pOp->p1>=0 && pOp->p1<db->nDb );
rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName,
pOp->p3, &zErr);
sqlite3VtabUnlock(pTab->u.vtab.p);
if( rc ){
sqlite3_free(zErr);
goto abort_due_to_error;
}
if( zErr ){
sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free);
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VInitIn P1 P2 P3 * *
** Synopsis: r[P2]=ValueList(P1,P3)
**
** Set register P2 to be a pointer to a ValueList object for cursor P1
** with cache register P3 and output register P3+1. This ValueList object
** can be used as the first argument to sqlite3_vtab_in_first() and
** sqlite3_vtab_in_next() to extract all of the values stored in the P1
** cursor. Register P3 is used to hold the values returned by
** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
*/
case OP_VInitIn: { /* out2, ncycle */
VdbeCursor *pC; /* The cursor containing the RHS values */
ValueList *pRhs; /* New ValueList object to put in reg[P2] */
pC = p->apCsr[pOp->p1];
pRhs = sqlite3_malloc64( sizeof(*pRhs) );
if( pRhs==0 ) goto no_mem;
pRhs->pCsr = pC->uc.pCursor;
pRhs->pOut = &aMem[pOp->p3];
pOut = out2Prerelease(p, pOp);
pOut->flags = MEM_Null;
sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VFilter P1 P2 P3 P4 *
** Synopsis: iplan=r[P3] zplan='P4'
**
** P1 is a cursor opened using VOpen. P2 is an address to jump to if
** the filtered result set is empty.
**
** P4 is either NULL or a string that was generated by the xBestIndex
** method of the module. The interpretation of the P4 string is left
** to the module implementation.
**
** This opcode invokes the xFilter method on the virtual table specified
** by P1. The integer query plan parameter to xFilter is stored in register
** P3. Register P3+1 stores the argc parameter to be passed to the
** xFilter method. Registers P3+2..P3+1+argc are the argc
** additional parameters which are passed to
** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
**
** A jump is made to P2 if the result set after filtering would be empty.
*/
case OP_VFilter: { /* jump, ncycle */
int nArg;
int iQuery;
const sqlite3_module *pModule;
Mem *pQuery;
Mem *pArgc;
sqlite3_vtab_cursor *pVCur;
sqlite3_vtab *pVtab;
VdbeCursor *pCur;
int res;
int i;
Mem **apArg;
pQuery = &aMem[pOp->p3];
pArgc = &pQuery[1];
pCur = p->apCsr[pOp->p1];
assert( memIsValid(pQuery) );
REGISTER_TRACE(pOp->p3, pQuery);
assert( pCur!=0 );
assert( pCur->eCurType==CURTYPE_VTAB );
pVCur = pCur->uc.pVCur;
pVtab = pVCur->pVtab;
pModule = pVtab->pModule;
/* Grab the index number and argc parameters */
assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
nArg = (int)pArgc->u.i;
iQuery = (int)pQuery->u.i;
/* Invoke the xFilter method */
apArg = p->apArg;
for(i = 0; i<nArg; i++){
apArg[i] = &pArgc[i+1];
}
rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
res = pModule->xEof(pVCur);
pCur->nullRow = 0;
VdbeBranchTaken(res!=0,2);
if( res ) goto jump_to_p2;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VColumn P1 P2 P3 * P5
** Synopsis: r[P3]=vcolumn(P2)
**
** Store in register P3 the value of the P2-th column of
** the current row of the virtual-table of cursor P1.
**
** If the VColumn opcode is being used to fetch the value of
** an unchanging column during an UPDATE operation, then the P5
** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
** function to return true inside the xColumn method of the virtual
** table implementation. The P5 column might also contain other
** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
** unused by OP_VColumn.
*/
case OP_VColumn: { /* ncycle */
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
Mem *pDest;
sqlite3_context sContext;
FuncDef nullFunc;
VdbeCursor *pCur = p->apCsr[pOp->p1];
assert( pCur!=0 );
assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
pDest = &aMem[pOp->p3];
memAboutToChange(p, pDest);
if( pCur->nullRow ){
sqlite3VdbeMemSetNull(pDest);
break;
}
assert( pCur->eCurType==CURTYPE_VTAB );
pVtab = pCur->uc.pVCur->pVtab;
pModule = pVtab->pModule;
assert( pModule->xColumn );
memset(&sContext, 0, sizeof(sContext));
sContext.pOut = pDest;
sContext.enc = encoding;
nullFunc.pUserData = 0;
nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE;
sContext.pFunc = &nullFunc;
assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
if( pOp->p5 & OPFLAG_NOCHNG ){
sqlite3VdbeMemSetNull(pDest);
pDest->flags = MEM_Null|MEM_Zero;
pDest->u.nZero = 0;
}else{
MemSetTypeFlag(pDest, MEM_Null);
}
rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
sqlite3VtabImportErrmsg(p, pVtab);
if( sContext.isError>0 ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
rc = sContext.isError;
}
sqlite3VdbeChangeEncoding(pDest, encoding);
REGISTER_TRACE(pOp->p3, pDest);
UPDATE_MAX_BLOBSIZE(pDest);
if( rc ) goto abort_due_to_error;
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VNext P1 P2 * * *
**
** Advance virtual table P1 to the next row in its result set and
** jump to instruction P2. Or, if the virtual table has reached
** the end of its result set, then fall through to the next instruction.
*/
case OP_VNext: { /* jump, ncycle */
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
int res;
VdbeCursor *pCur;
pCur = p->apCsr[pOp->p1];
assert( pCur!=0 );
assert( pCur->eCurType==CURTYPE_VTAB );
if( pCur->nullRow ){
break;
}
pVtab = pCur->uc.pVCur->pVtab;
pModule = pVtab->pModule;
assert( pModule->xNext );
/* Invoke the xNext() method of the module. There is no way for the
** underlying implementation to return an error if one occurs during
** xNext(). Instead, if an error occurs, true is returned (indicating that
** data is available) and the error code returned when xColumn or
** some other method is next invoked on the save virtual table cursor.
*/
rc = pModule->xNext(pCur->uc.pVCur);
sqlite3VtabImportErrmsg(p, pVtab);
if( rc ) goto abort_due_to_error;
res = pModule->xEof(pCur->uc.pVCur);
VdbeBranchTaken(!res,2);
if( !res ){
/* If there is data, jump to P2 */
goto jump_to_p2_and_check_for_interrupt;
}
goto check_for_interrupt;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VRename P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
sqlite3_vtab *pVtab;
Mem *pName;
int isLegacy;
isLegacy = (db->flags & SQLITE_LegacyAlter);
db->flags |= SQLITE_LegacyAlter;
pVtab = pOp->p4.pVtab->pVtab;
pName = &aMem[pOp->p1];
assert( pVtab->pModule->xRename );
assert( memIsValid(pName) );
assert( p->readOnly==0 );
REGISTER_TRACE(pOp->p1, pName);
assert( pName->flags & MEM_Str );
testcase( pName->enc==SQLITE_UTF8 );
testcase( pName->enc==SQLITE_UTF16BE );
testcase( pName->enc==SQLITE_UTF16LE );
rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
if( rc ) goto abort_due_to_error;
rc = pVtab->pModule->xRename(pVtab, pName->z);
if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
sqlite3VtabImportErrmsg(p, pVtab);
p->expired = 0;
if( rc ) goto abort_due_to_error;
break;
}
#endif
#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VUpdate P1 P2 P3 P4 P5
** Synopsis: data=r[P3@P2]
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xUpdate method. P2 values
** are contiguous memory cells starting at P3 to pass to the xUpdate
** invocation. The value in register (P3+P2-1) corresponds to the
** p2th element of the argv array passed to xUpdate.
**
** The xUpdate method will do a DELETE or an INSERT or both.
** The argv[0] element (which corresponds to memory cell P3)
** is the rowid of a row to delete. If argv[0] is NULL then no
** deletion occurs. The argv[1] element is the rowid of the new
** row. This can be NULL to have the virtual table select the new
** rowid for itself. The subsequent elements in the array are
** the values of columns in the new row.
**
** If P2==1 then no insert is performed. argv[0] is the rowid of
** a row to delete.
**
** P1 is a boolean flag. If it is set to true and the xUpdate call
** is successful, then the value returned by sqlite3_last_insert_rowid()
** is set to the value of the rowid for the row just inserted.
**
** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
** apply in the case of a constraint failure on an insert or update.
*/
case OP_VUpdate: {
sqlite3_vtab *pVtab;
const sqlite3_module *pModule;
int nArg;
int i;
sqlite_int64 rowid = 0;
Mem **apArg;
Mem *pX;
assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
|| pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
);
assert( p->readOnly==0 );
if( db->mallocFailed ) goto no_mem;
sqlite3VdbeIncrWriteCounter(p, 0);
pVtab = pOp->p4.pVtab->pVtab;
if( pVtab==0 || NEVER(pVtab->pModule==0) ){
rc = SQLITE_LOCKED;
goto abort_due_to_error;
}
pModule = pVtab->pModule;
nArg = pOp->p2;
assert( pOp->p4type==P4_VTAB );
if( ALWAYS(pModule->xUpdate) ){
u8 vtabOnConflict = db->vtabOnConflict;
apArg = p->apArg;
pX = &aMem[pOp->p3];
for(i=0; i<nArg; i++){
assert( memIsValid(pX) );
memAboutToChange(p, pX);
apArg[i] = pX;
pX++;
}
db->vtabOnConflict = pOp->p5;
rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
db->vtabOnConflict = vtabOnConflict;
sqlite3VtabImportErrmsg(p, pVtab);
if( rc==SQLITE_OK && pOp->p1 ){
assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
db->lastRowid = rowid;
}
if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
if( pOp->p5==OE_Ignore ){
rc = SQLITE_OK;
}else{
p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
}
}else{
p->nChange++;
}
if( rc ) goto abort_due_to_error;
}
break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: { /* out2 */
pOut = out2Prerelease(p, pOp);
pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
break;
}
#endif
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: MaxPgcnt P1 P2 P3 * *
**
** Try to set the maximum page count for database P1 to the value in P3.
** Do not let the maximum page count fall below the current page count and
** do not change the maximum page count value if P3==0.
**
** Store the maximum page count after the change in register P2.
*/
case OP_MaxPgcnt: { /* out2 */
unsigned int newMax;
Btree *pBt;
pOut = out2Prerelease(p, pOp);
pBt = db->aDb[pOp->p1].pBt;
newMax = 0;
if( pOp->p3 ){
newMax = sqlite3BtreeLastPage(pBt);
if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
}
pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
break;
}
#endif
/* Opcode: Function P1 P2 P3 P4 *
** Synopsis: r[P3]=func(r[P2@NP])
**
** Invoke a user function (P4 is a pointer to an sqlite3_context object that
** contains a pointer to the function to be run) with arguments taken
** from register P2 and successors. The number of arguments is in
** the sqlite3_context object that P4 points to.
** The result of the function is stored
** in register P3. Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** See also: AggStep, AggFinal, PureFunc
*/
/* Opcode: PureFunc P1 P2 P3 P4 *
** Synopsis: r[P3]=func(r[P2@NP])
**
** Invoke a user function (P4 is a pointer to an sqlite3_context object that
** contains a pointer to the function to be run) with arguments taken
** from register P2 and successors. The number of arguments is in
** the sqlite3_context object that P4 points to.
** The result of the function is stored
** in register P3. Register P3 must not be one of the function inputs.
**
** P1 is a 32-bit bitmask indicating whether or not each argument to the
** function was determined to be constant at compile time. If the first
** argument was constant then bit 0 of P1 is set. This is used to determine
** whether meta data associated with a user function argument using the
** sqlite3_set_auxdata() API may be safely retained until the next
** invocation of this opcode.
**
** This opcode works exactly like OP_Function. The only difference is in
** its name. This opcode is used in places where the function must be
** purely non-deterministic. Some built-in date/time functions can be
** either deterministic of non-deterministic, depending on their arguments.
** When those function are used in a non-deterministic way, they will check
** to see if they were called using OP_PureFunc instead of OP_Function, and
** if they were, they throw an error.
**
** See also: AggStep, AggFinal, Function
*/
case OP_PureFunc: /* group */
case OP_Function: { /* group */
int i;
sqlite3_context *pCtx;
assert( pOp->p4type==P4_FUNCCTX );
pCtx = pOp->p4.pCtx;
/* If this function is inside of a trigger, the register array in aMem[]
** might change from one evaluation to the next. The next block of code
** checks to see if the register array has changed, and if so it
** reinitializes the relevant parts of the sqlite3_context object */
pOut = &aMem[pOp->p3];
if( pCtx->pOut != pOut ){
pCtx->pVdbe = p;
pCtx->pOut = pOut;
pCtx->enc = encoding;
for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
}
assert( pCtx->pVdbe==p );
memAboutToChange(p, pOut);
#ifdef SQLITE_DEBUG
for(i=0; i<pCtx->argc; i++){
assert( memIsValid(pCtx->argv[i]) );
REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
}
#endif
MemSetTypeFlag(pOut, MEM_Null);
assert( pCtx->isError==0 );
(*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
/* If the function returned an error, throw an exception */
if( pCtx->isError ){
if( pCtx->isError>0 ){
sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
rc = pCtx->isError;
}
sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
pCtx->isError = 0;
if( rc ) goto abort_due_to_error;
}
assert( (pOut->flags&MEM_Str)==0
|| pOut->enc==encoding
|| db->mallocFailed );
assert( !sqlite3VdbeMemTooBig(pOut) );
REGISTER_TRACE(pOp->p3, pOut);
UPDATE_MAX_BLOBSIZE(pOut);
break;
}
/* Opcode: ClrSubtype P1 * * * *
** Synopsis: r[P1].subtype = 0
**
** Clear the subtype from register P1.
*/
case OP_ClrSubtype: { /* in1 */
pIn1 = &aMem[pOp->p1];
pIn1->flags &= ~MEM_Subtype;
break;
}
/* Opcode: GetSubtype P1 P2 * * *
** Synopsis: r[P2] = r[P1].subtype
**
** Extract the subtype value from register P1 and write that subtype
** into register P2. If P1 has no subtype, then P1 gets a NULL.
*/
case OP_GetSubtype: { /* in1 out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
if( pIn1->flags & MEM_Subtype ){
sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype);
}else{
sqlite3VdbeMemSetNull(pOut);
}
break;
}
/* Opcode: SetSubtype P1 P2 * * *
** Synopsis: r[P2].subtype = r[P1]
**
** Set the subtype value of register P2 to the integer from register P1.
** If P1 is NULL, clear the subtype from p2.
*/
case OP_SetSubtype: { /* in1 out2 */
pIn1 = &aMem[pOp->p1];
pOut = &aMem[pOp->p2];
if( pIn1->flags & MEM_Null ){
pOut->flags &= ~MEM_Subtype;
}else{
assert( pIn1->flags & MEM_Int );
pOut->flags |= MEM_Subtype;
pOut->eSubtype = (u8)(pIn1->u.i & 0xff);
}
break;
}
/* Opcode: FilterAdd P1 * P3 P4 *
** Synopsis: filter(P1) += key(P3@P4)
**
** Compute a hash on the P4 registers starting with r[P3] and
** add that hash to the bloom filter contained in r[P1].
*/
case OP_FilterAdd: {
u64 h;
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pIn1 = &aMem[pOp->p1];
assert( pIn1->flags & MEM_Blob );
assert( pIn1->n>0 );
h = filterHash(aMem, pOp);
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
int ii;
for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
registerTrace(ii, &aMem[ii]);
}
printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
}
#endif
h %= (pIn1->n*8);
pIn1->z[h/8] |= 1<<(h&7);
break;
}
/* Opcode: Filter P1 P2 P3 P4 *
** Synopsis: if key(P3@P4) not in filter(P1) goto P2
**
** Compute a hash on the key contained in the P4 registers starting
** with r[P3]. Check to see if that hash is found in the
** bloom filter hosted by register P1. If it is not present then
** maybe jump to P2. Otherwise fall through.
**
** False negatives are harmless. It is always safe to fall through,
** even if the value is in the bloom filter. A false negative causes
** more CPU cycles to be used, but it should still yield the correct
** answer. However, an incorrect answer may well arise from a
** false positive - if the jump is taken when it should fall through.
*/
case OP_Filter: { /* jump */
u64 h;
assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
pIn1 = &aMem[pOp->p1];
assert( (pIn1->flags & MEM_Blob)!=0 );
assert( pIn1->n >= 1 );
h = filterHash(aMem, pOp);
#ifdef SQLITE_DEBUG
if( db->flags&SQLITE_VdbeTrace ){
int ii;
for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
registerTrace(ii, &aMem[ii]);
}
printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
}
#endif
h %= (pIn1->n*8);
if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
VdbeBranchTaken(1, 2);
p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
goto jump_to_p2;
}else{
p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
VdbeBranchTaken(0, 2);
}
break;
}
/* Opcode: Trace P1 P2 * P4 *
**
** Write P4 on the statement trace output if statement tracing is
** enabled.
**
** Operand P1 must be 0x7fffffff and P2 must positive.
*/
/* Opcode: Init P1 P2 P3 P4 *
** Synopsis: Start at P2
**
** Programs contain a single instance of this opcode as the very first
** opcode.
**
** If tracing is enabled (by the sqlite3_trace()) interface, then
** the UTF-8 string contained in P4 is emitted on the trace callback.
** Or if P4 is blank, use the string returned by sqlite3_sql().
**
** If P2 is not zero, jump to instruction P2.
**
** Increment the value of P1 so that OP_Once opcodes will jump the
** first time they are evaluated for this run.
**
** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
** error is encountered.
*/
case OP_Trace:
case OP_Init: { /* jump0 */
int i;
#ifndef SQLITE_OMIT_TRACE
char *zTrace;
#endif
/* If the P4 argument is not NULL, then it must be an SQL comment string.
** The "--" string is broken up to prevent false-positives with srcck1.c.
**
** This assert() provides evidence for:
** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
** would have been returned by the legacy sqlite3_trace() interface by
** using the X argument when X begins with "--" and invoking
** sqlite3_expanded_sql(P) otherwise.
*/
assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
/* OP_Init is always instruction 0 */
assert( pOp==p->aOp || pOp->opcode==OP_Trace );
#ifndef SQLITE_OMIT_TRACE
if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
&& p->minWriteFileFormat!=254 /* tag-20220401a */
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
){
#ifndef SQLITE_OMIT_DEPRECATED
if( db->mTrace & SQLITE_TRACE_LEGACY ){
char *z = sqlite3VdbeExpandSql(p, zTrace);
db->trace.xLegacy(db->pTraceArg, z);
sqlite3_free(z);
}else
#endif
if( db->nVdbeExec>1 ){
char *z = sqlite3MPrintf(db, "-- %s", zTrace);
(void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
sqlite3DbFree(db, z);
}else{
(void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
}
}
#ifdef SQLITE_USE_FCNTL_TRACE
zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
if( zTrace ){
int j;
for(j=0; j<db->nDb; j++){
if( DbMaskTest(p->btreeMask, j)==0 ) continue;
sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
}
}
#endif /* SQLITE_USE_FCNTL_TRACE */
#ifdef SQLITE_DEBUG
if( (db->flags & SQLITE_SqlTrace)!=0
&& (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
){
sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
}
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
assert( pOp->p2>0 );
if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
if( pOp->opcode==OP_Trace ) break;
for(i=1; i<p->nOp; i++){
if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
}
pOp->p1 = 0;
}
pOp->p1++;
p->aCounter[SQLITE_STMTSTATUS_RUN]++;
goto jump_to_p2;
}
#ifdef SQLITE_ENABLE_CURSOR_HINTS
/* Opcode: CursorHint P1 * * P4 *
**
** Provide a hint to cursor P1 that it only needs to return rows that
** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
** to values currently held in registers. TK_COLUMN terms in the P4
** expression refer to columns in the b-tree to which cursor P1 is pointing.
*/
case OP_CursorHint: {
VdbeCursor *pC;
assert( pOp->p1>=0 && pOp->p1<p->nCursor );
assert( pOp->p4type==P4_EXPR );
pC = p->apCsr[pOp->p1];
if( pC ){
assert( pC->eCurType==CURTYPE_BTREE );
sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
pOp->p4.pExpr, aMem);
}
break;
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS */
#ifdef SQLITE_DEBUG
/* Opcode: Abortable * * * * *
**
** Verify that an Abort can happen. Assert if an Abort at this point
** might cause database corruption. This opcode only appears in debugging
** builds.
**
** An Abort is safe if either there have been no writes, or if there is
** an active statement journal.
*/
case OP_Abortable: {
sqlite3VdbeAssertAbortable(p);
break;
}
#endif
#ifdef SQLITE_DEBUG
/* Opcode: ReleaseReg P1 P2 P3 * P5
** Synopsis: release r[P1@P2] mask P3
**
** Release registers from service. Any content that was in the
** the registers is unreliable after this opcode completes.
**
** The registers released will be the P2 registers starting at P1,
** except if bit ii of P3 set, then do not release register P1+ii.
** In other words, P3 is a mask of registers to preserve.
**
** Releasing a register clears the Mem.pScopyFrom pointer. That means
** that if the content of the released register was set using OP_SCopy,
** a change to the value of the source register for the OP_SCopy will no longer
** generate an assertion fault in sqlite3VdbeMemAboutToChange().
**
** If P5 is set, then all released registers have their type set
** to MEM_Undefined so that any subsequent attempt to read the released
** register (before it is reinitialized) will generate an assertion fault.
**
** P5 ought to be set on every call to this opcode.
** However, there are places in the code generator will release registers
** before their are used, under the (valid) assumption that the registers
** will not be reallocated for some other purpose before they are used and
** hence are safe to release.
**
** This opcode is only available in testing and debugging builds. It is
** not generated for release builds. The purpose of this opcode is to help
** validate the generated bytecode. This opcode does not actually contribute
** to computing an answer.
*/
case OP_ReleaseReg: {
Mem *pMem;
int i;
u32 constMask;
assert( pOp->p1>0 );
assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
pMem = &aMem[pOp->p1];
constMask = pOp->p3;
for(i=0; i<pOp->p2; i++, pMem++){
if( i>=32 || (constMask & MASKBIT32(i))==0 ){
pMem->pScopyFrom = 0;
if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
}
}
break;
}
#endif
/* Opcode: Noop * * * * *
**
** Do nothing. Continue downward to the next opcode.
*/
/* Opcode: Explain P1 P2 P3 P4 *
**
** This is the same as OP_Noop during normal query execution. The
** purpose of this opcode is to hold information about the query
** plan for the purpose of EXPLAIN QUERY PLAN output.
**
** The P4 value is human-readable text that describes the query plan
** element. Something like "SCAN t1" or "SEARCH t2 USING INDEX t2x1".
**
** The P1 value is the ID of the current element and P2 is the parent
** element for the case of nested query plan elements. If P2 is zero
** then this element is a top-level element.
**
** For loop elements, P3 is the estimated code of each invocation of this
** element.
**
** As with all opcodes, the meanings of the parameters for OP_Explain
** are subject to change from one release to the next. Applications
** should not attempt to interpret or use any of the information
** contined in the OP_Explain opcode. The information provided by this
** opcode is intended for testing and debugging use only.
*/
default: { /* This is really OP_Noop, OP_Explain */
assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
break;
}
/*****************************************************************************
** The cases of the switch statement above this line should all be indented
** by 6 spaces. But the left-most 6 spaces have been removed to improve the
** readability. From this point on down, the normal indentation rules are
** restored.
*****************************************************************************/
}
#if defined(VDBE_PROFILE)
*pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
pnCycle = 0;
#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
if( pnCycle ){
*pnCycle += sqlite3Hwtime();
pnCycle = 0;
}
#endif
/* The following code adds nothing to the actual functionality
** of the program. It is only here for testing and debugging.
** On the other hand, it does burn CPU cycles every time through
** the evaluator loop. So we can leave it out when NDEBUG is defined.
*/
#ifndef NDEBUG
assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
#ifdef SQLITE_DEBUG
if( db->flags & SQLITE_VdbeTrace ){
u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
if( rc!=0 ) printf("rc=%d\n",rc);
if( opProperty & (OPFLG_OUT2) ){
registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
}
if( opProperty & OPFLG_OUT3 ){
registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
}
if( opProperty==0xff ){
/* Never happens. This code exists to avoid a harmless linkage
** warning about sqlite3VdbeRegisterDump() being defined but not
** used. */
sqlite3VdbeRegisterDump(p);
}
}
#endif /* SQLITE_DEBUG */
#endif /* NDEBUG */
} /* The end of the for(;;) loop the loops through opcodes */
/* If we reach this point, it means that execution is finished with
** an error of some kind.
*/
abort_due_to_error:
if( db->mallocFailed ){
rc = SQLITE_NOMEM_BKPT;
}else if( rc==SQLITE_IOERR_CORRUPTFS ){
rc = SQLITE_CORRUPT_BKPT;
}
assert( rc );
#ifdef SQLITE_DEBUG
if( db->flags & SQLITE_VdbeTrace ){
const char *zTrace = p->zSql;
if( zTrace==0 ){
if( aOp[0].opcode==OP_Trace ){
zTrace = aOp[0].p4.z;
}
if( zTrace==0 ) zTrace = "???";
}
printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
}
#endif
if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
}
p->rc = rc;
sqlite3SystemError(db, rc);
testcase( sqlite3GlobalConfig.xLog!=0 );
sqlite3_log(rc, "statement aborts at %d: [%s] %s",
(int)(pOp - aOp), p->zSql, p->zErrMsg);
if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
db->flags |= SQLITE_CorruptRdOnly;
}
rc = SQLITE_ERROR;
if( resetSchemaOnFault>0 ){
sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
}
/* This is the only way out of this procedure. We have to
** release the mutexes on btrees that were acquired at the
** top. */
vdbe_return:
#if defined(VDBE_PROFILE)
if( pnCycle ){
*pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
pnCycle = 0;
}
#elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
if( pnCycle ){
*pnCycle += sqlite3Hwtime();
pnCycle = 0;
}
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
nProgressLimit += db->nProgressOps;
if( db->xProgress(db->pProgressArg) ){
nProgressLimit = LARGEST_UINT64;
rc = SQLITE_INTERRUPT;
goto abort_due_to_error;
}
}
#endif
p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
if( DbMaskNonZero(p->lockMask) ){
sqlite3VdbeLeave(p);
}
assert( rc!=SQLITE_OK || nExtraDelete==0
|| sqlite3_strlike("DELETE%",p->zSql,0)!=0
);
return rc;
/* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
** is encountered.
*/
too_big:
sqlite3VdbeError(p, "string or blob too big");
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
/* Jump to here if a malloc() fails.
*/
no_mem:
sqlite3OomFault(db);
sqlite3VdbeError(p, "out of memory");
rc = SQLITE_NOMEM_BKPT;
goto abort_due_to_error;
/* Jump to here if the sqlite3_interrupt() API sets the interrupt
** flag.
*/
abort_due_to_interrupt:
assert( AtomicLoad(&db->u1.isInterrupted) );
rc = SQLITE_INTERRUPT;
goto abort_due_to_error;
}