/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains SQLite's grammar for SQL. Process this file
** using the lemon parser generator to generate C code that runs
** the parser. Lemon will also generate a header file containing
** numeric codes for all of the tokens.
**
** @(#) $Id: parse.y,v 1.43 2002/01/29 18:41:25 drh Exp $
*/
%token_prefix TK_
%token_type {Token}
%default_type {Token}
%extra_argument {Parse *pParse}
%syntax_error {
sqliteSetString(&pParse->zErrMsg,"syntax error",0);
pParse->sErrToken = TOKEN;
}
%name sqliteParser
%include {
#include "sqliteInt.h"
#include "parse.h"
/*
** A structure for holding two integers
*/
struct twoint { int a,b; };
}
// These are extra tokens used by the lexer but never seen by the
// parser. We put them in a rule so that the parser generator will
// add them to the parse.h output file.
//
%nonassoc END_OF_FILE ILLEGAL SPACE UNCLOSED_STRING COMMENT FUNCTION
COLUMN AGG_FUNCTION.
// Input is zero or more commands.
input ::= cmdlist.
// A list of commands is zero or more commands
//
cmdlist ::= ecmd.
cmdlist ::= cmdlist SEMI ecmd.
ecmd ::= explain cmd. {sqliteExec(pParse);}
ecmd ::= cmd. {sqliteExec(pParse);}
ecmd ::= .
explain ::= EXPLAIN. {pParse->explain = 1;}
///////////////////// Begin and end transactions. ////////////////////////////
//
cmd ::= BEGIN trans_opt. {sqliteBeginTransaction(pParse);}
trans_opt ::= .
trans_opt ::= TRANSACTION.
trans_opt ::= TRANSACTION ids.
cmd ::= COMMIT trans_opt. {sqliteCommitTransaction(pParse);}
cmd ::= END trans_opt. {sqliteCommitTransaction(pParse);}
cmd ::= ROLLBACK trans_opt. {sqliteRollbackTransaction(pParse);}
///////////////////// The CREATE TABLE statement ////////////////////////////
//
cmd ::= create_table create_table_args.
create_table ::= CREATE(X) temp(T) TABLE ids(Y).
{sqliteStartTable(pParse,&X,&Y,T);}
%type temp {int}
temp(A) ::= TEMP. {A = 1;}
temp(A) ::= . {A = 0;}
create_table_args ::= LP columnlist conslist_opt RP(X).
{sqliteEndTable(pParse,&X);}
columnlist ::= columnlist COMMA column.
columnlist ::= column.
// About the only information used for a column is the name of the
// column. The type is always just "text". But the code will accept
// an elaborate typename. Perhaps someday we'll do something with it.
//
column ::= columnid type carglist.
columnid ::= ids(X). {sqliteAddColumn(pParse,&X);}
// An IDENTIFIER can be a generic identifier, or one of several
// keywords. Any non-standard keyword can also be an identifier.
// We also make DESC and identifier since it comes up so often (as
// an abbreviation of "description").
//
%type id {Token}
id(A) ::= DESC(X). {A = X;}
id(A) ::= ASC(X). {A = X;}
id(A) ::= DELIMITERS(X). {A = X;}
id(A) ::= EXPLAIN(X). {A = X;}
id(A) ::= VACUUM(X). {A = X;}
id(A) ::= BEGIN(X). {A = X;}
id(A) ::= END(X). {A = X;}
id(A) ::= PRAGMA(X). {A = X;}
id(A) ::= CLUSTER(X). {A = X;}
id(A) ::= ID(X). {A = X;}
id(A) ::= TEMP(X). {A = X;}
id(A) ::= OFFSET(X). {A = X;}
id(A) ::= KEY(X). {A = X;}
id(A) ::= ABORT(X). {A = X;}
id(A) ::= IGNORE(X). {A = X;}
id(A) ::= REPLACE(X). {A = X;}
id(A) ::= CONFLICT(X). {A = X;}
// And "ids" is an identifer-or-string.
//
%type ids {Token}
ids(A) ::= id(X). {A = X;}
ids(A) ::= STRING(X). {A = X;}
type ::= .
type ::= typename(X). {sqliteAddColumnType(pParse,&X,&X);}
type ::= typename(X) LP signed RP(Y). {sqliteAddColumnType(pParse,&X,&Y);}
type ::= typename(X) LP signed COMMA signed RP(Y).
{sqliteAddColumnType(pParse,&X,&Y);}
%type typename {Token}
typename(A) ::= ids(X). {A = X;}
typename(A) ::= typename(X) ids. {A = X;}
signed ::= INTEGER.
signed ::= PLUS INTEGER.
signed ::= MINUS INTEGER.
carglist ::= carglist carg.
carglist ::= .
carg ::= CONSTRAINT ids ccons.
carg ::= ccons.
carg ::= DEFAULT STRING(X). {sqliteAddDefaultValue(pParse,&X,0);}
carg ::= DEFAULT ID(X). {sqliteAddDefaultValue(pParse,&X,0);}
carg ::= DEFAULT INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
carg ::= DEFAULT PLUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,0);}
carg ::= DEFAULT MINUS INTEGER(X). {sqliteAddDefaultValue(pParse,&X,1);}
carg ::= DEFAULT FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
carg ::= DEFAULT PLUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,0);}
carg ::= DEFAULT MINUS FLOAT(X). {sqliteAddDefaultValue(pParse,&X,1);}
carg ::= DEFAULT NULL.
// In addition to the type name, we also care about the primary key and
// UNIQUE constraints.
//
ccons ::= NOT NULL onconf(R). {sqliteAddNotNull(pParse, R);}
ccons ::= PRIMARY KEY sortorder onconf(R). {sqliteAddPrimaryKey(pParse,0,R);}
ccons ::= UNIQUE onconf(R). {sqliteCreateIndex(pParse,0,0,0,R,0,0);}
ccons ::= CHECK LP expr RP onconf.
// For the time being, the only constraint we care about is the primary
// key and UNIQUE. Both create indices.
//
conslist_opt ::= .
conslist_opt ::= COMMA conslist.
conslist ::= conslist COMMA tcons.
conslist ::= conslist tcons.
conslist ::= tcons.
tcons ::= CONSTRAINT ids.
tcons ::= PRIMARY KEY LP idxlist(X) RP onconf(R).
{sqliteAddPrimaryKey(pParse,X,R);}
tcons ::= UNIQUE LP idxlist(X) RP onconf(R).
{sqliteCreateIndex(pParse,0,0,X,R,0,0);}
tcons ::= CHECK expr onconf.
// The following is a non-standard extension that allows us to declare the
// default behavior when there is a constraint conflict.
//
%type onconf {int}
%type onconf_u {int}
%type confresolve {int}
onconf(A) ::= confresolve(X). { A = X; }
onconf(A) ::= onconf_u(X). { A = X; }
onconf_u(A) ::= ON CONFLICT confresolve(X). { A = X; }
onconf_u(A) ::= . { A = OE_Default; }
confresolve(A) ::= ABORT. { A = OE_Abort; }
confresolve(A) ::= IGNORE. { A = OE_Ignore; }
confresolve(A) ::= REPLACE. { A = OE_Replace; }
////////////////////////// The DROP TABLE /////////////////////////////////////
//
cmd ::= DROP TABLE ids(X). {sqliteDropTable(pParse,&X);}
//////////////////////// The SELECT statement /////////////////////////////////
//
cmd ::= select(X). {
sqliteSelect(pParse, X, SRT_Callback, 0);
sqliteSelectDelete(X);
}
%type select {Select*}
%destructor select {sqliteSelectDelete($$);}
%type oneselect {Select*}
%destructor oneselect {sqliteSelectDelete($$);}
select(A) ::= oneselect(X). {A = X;}
select(A) ::= select(X) joinop(Y) oneselect(Z). {
if( Z ){
Z->op = Y;
Z->pPrior = X;
}
A = Z;
}
%type joinop {int}
joinop(A) ::= UNION. {A = TK_UNION;}
joinop(A) ::= UNION ALL. {A = TK_ALL;}
joinop(A) ::= INTERSECT. {A = TK_INTERSECT;}
joinop(A) ::= EXCEPT. {A = TK_EXCEPT;}
oneselect(A) ::= SELECT distinct(D) selcollist(W) from(X) where_opt(Y)
groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). {
A = sqliteSelectNew(W,X,Y,P,Q,Z,D,L.a,L.b);
}
// The "distinct" nonterminal is true (1) if the DISTINCT keyword is
// present and false (0) if it is not.
//
%type distinct {int}
distinct(A) ::= DISTINCT. {A = 1;}
distinct(A) ::= ALL. {A = 0;}
distinct(A) ::= . {A = 0;}
// selcollist is a list of expressions that are to become the return
// values of the SELECT statement. The "*" in statements like
// "SELECT * FROM ..." is encoded as a special expression with an
// opcode of TK_ALL.
//
%type selcollist {ExprList*}
%destructor selcollist {sqliteExprListDelete($$);}
%type sclp {ExprList*}
%destructor sclp {sqliteExprListDelete($$);}
sclp(A) ::= selcollist(X) COMMA. {A = X;}
sclp(A) ::= . {A = 0;}
selcollist(A) ::= sclp(P) expr(X). {A = sqliteExprListAppend(P,X,0);}
selcollist(A) ::= sclp(P) expr(X) as ids(Y). {A = sqliteExprListAppend(P,X,&Y);}
selcollist(A) ::= sclp(P) STAR. {
A = sqliteExprListAppend(P, sqliteExpr(TK_ALL, 0, 0, 0), 0);
}
as ::= .
as ::= AS.
%type seltablist {IdList*}
%destructor seltablist {sqliteIdListDelete($$);}
%type stl_prefix {IdList*}
%destructor stl_prefix {sqliteIdListDelete($$);}
%type from {IdList*}
%destructor from {sqliteIdListDelete($$);}
from(A) ::= FROM seltablist(X). {A = X;}
stl_prefix(A) ::= seltablist(X) COMMA. {A = X;}
stl_prefix(A) ::= . {A = 0;}
seltablist(A) ::= stl_prefix(X) ids(Y). {A = sqliteIdListAppend(X,&Y);}
seltablist(A) ::= stl_prefix(X) ids(Y) as ids(Z). {
A = sqliteIdListAppend(X,&Y);
sqliteIdListAddAlias(A,&Z);
}
%type orderby_opt {ExprList*}
%destructor orderby_opt {sqliteExprListDelete($$);}
%type sortlist {ExprList*}
%destructor sortlist {sqliteExprListDelete($$);}
%type sortitem {Expr*}
%destructor sortitem {sqliteExprDelete($$);}
orderby_opt(A) ::= . {A = 0;}
orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;}
sortlist(A) ::= sortlist(X) COMMA sortitem(Y) sortorder(Z). {
A = sqliteExprListAppend(X,Y,0);
if( A ) A->a[A->nExpr-1].sortOrder = Z; /* 0=ascending, 1=decending */
}
sortlist(A) ::= sortitem(Y) sortorder(Z). {
A = sqliteExprListAppend(0,Y,0);
if( A ) A->a[0].sortOrder = Z;
}
sortitem(A) ::= expr(X). {A = X;}
%type sortorder {int}
sortorder(A) ::= ASC. {A = 0;}
sortorder(A) ::= DESC. {A = 1;}
sortorder(A) ::= . {A = 0;}
%type groupby_opt {ExprList*}
%destructor groupby_opt {sqliteExprListDelete($$);}
groupby_opt(A) ::= . {A = 0;}
groupby_opt(A) ::= GROUP BY exprlist(X). {A = X;}
%type having_opt {Expr*}
%destructor having_opt {sqliteExprDelete($$);}
having_opt(A) ::= . {A = 0;}
having_opt(A) ::= HAVING expr(X). {A = X;}
%type limit_opt {struct twoint}
limit_opt(A) ::= . {A.a = -1; A.b = 0;}
limit_opt(A) ::= LIMIT INTEGER(X). {A.a = atoi(X.z); A.b = 0;}
limit_opt(A) ::= LIMIT INTEGER(X) limit_sep INTEGER(Y).
{A.a = atoi(X.z); A.b = atoi(Y.z);}
limit_sep ::= OFFSET.
limit_sep ::= COMMA.
/////////////////////////// The DELETE statement /////////////////////////////
//
cmd ::= DELETE FROM ids(X) where_opt(Y).
{sqliteDeleteFrom(pParse, &X, Y);}
%type where_opt {Expr*}
%destructor where_opt {sqliteExprDelete($$);}
where_opt(A) ::= . {A = 0;}
where_opt(A) ::= WHERE expr(X). {A = X;}
%type setlist {ExprList*}
%destructor setlist {sqliteExprListDelete($$);}
////////////////////////// The UPDATE command ////////////////////////////////
//
cmd ::= UPDATE onconf_u(R) ids(X) SET setlist(Y) where_opt(Z).
{sqliteUpdate(pParse,&X,Y,Z,R);}
setlist(A) ::= setlist(Z) COMMA ids(X) EQ expr(Y).
{A = sqliteExprListAppend(Z,Y,&X);}
setlist(A) ::= ids(X) EQ expr(Y). {A = sqliteExprListAppend(0,Y,&X);}
////////////////////////// The INSERT command /////////////////////////////////
//
cmd ::= INSERT onconf(R) INTO ids(X) inscollist_opt(F) VALUES LP itemlist(Y) RP.
{sqliteInsert(pParse, &X, Y, 0, F, R);}
cmd ::= INSERT onconf(R) INTO ids(X) inscollist_opt(F) select(S).
{sqliteInsert(pParse, &X, 0, S, F, R);}
%type itemlist {ExprList*}
%destructor itemlist {sqliteExprListDelete($$);}
%type item {Expr*}
%destructor item {sqliteExprDelete($$);}
itemlist(A) ::= itemlist(X) COMMA item(Y). {A = sqliteExprListAppend(X,Y,0);}
itemlist(A) ::= item(X). {A = sqliteExprListAppend(0,X,0);}
item(A) ::= INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);}
item(A) ::= PLUS INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);}
item(A) ::= MINUS INTEGER(X). {
A = sqliteExpr(TK_UMINUS, 0, 0, 0);
if( A ) A->pLeft = sqliteExpr(TK_INTEGER, 0, 0, &X);
}
item(A) ::= FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);}
item(A) ::= PLUS FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);}
item(A) ::= MINUS FLOAT(X). {
A = sqliteExpr(TK_UMINUS, 0, 0, 0);
if( A ) A->pLeft = sqliteExpr(TK_FLOAT, 0, 0, &X);
}
item(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);}
item(A) ::= NULL. {A = sqliteExpr(TK_NULL, 0, 0, 0);}
%type inscollist_opt {IdList*}
%destructor inscollist_opt {sqliteIdListDelete($$);}
%type inscollist {IdList*}
%destructor inscollist {sqliteIdListDelete($$);}
inscollist_opt(A) ::= . {A = 0;}
inscollist_opt(A) ::= LP inscollist(X) RP. {A = X;}
inscollist(A) ::= inscollist(X) COMMA ids(Y). {A = sqliteIdListAppend(X,&Y);}
inscollist(A) ::= ids(Y). {A = sqliteIdListAppend(0,&Y);}
/////////////////////////// Expression Processing /////////////////////////////
//
%left OR.
%left AND.
%right NOT.
%left EQ NE ISNULL NOTNULL IS LIKE GLOB BETWEEN IN.
%left GT GE LT LE.
%left BITAND BITOR LSHIFT RSHIFT.
%left PLUS MINUS.
%left STAR SLASH REM.
%left CONCAT.
%right UMINUS BITNOT.
%type expr {Expr*}
%destructor expr {sqliteExprDelete($$);}
expr(A) ::= LP(B) expr(X) RP(E). {A = X; sqliteExprSpan(A,&B,&E);}
expr(A) ::= NULL(X). {A = sqliteExpr(TK_NULL, 0, 0, &X);}
expr(A) ::= id(X). {A = sqliteExpr(TK_ID, 0, 0, &X);}
expr(A) ::= ids(X) DOT ids(Y). {
Expr *temp1 = sqliteExpr(TK_ID, 0, 0, &X);
Expr *temp2 = sqliteExpr(TK_ID, 0, 0, &Y);
A = sqliteExpr(TK_DOT, temp1, temp2, 0);
}
expr(A) ::= INTEGER(X). {A = sqliteExpr(TK_INTEGER, 0, 0, &X);}
expr(A) ::= FLOAT(X). {A = sqliteExpr(TK_FLOAT, 0, 0, &X);}
expr(A) ::= STRING(X). {A = sqliteExpr(TK_STRING, 0, 0, &X);}
expr(A) ::= ID(X) LP exprlist(Y) RP(E). {
A = sqliteExprFunction(Y, &X);
sqliteExprSpan(A,&X,&E);
}
expr(A) ::= ID(X) LP STAR RP(E). {
A = sqliteExprFunction(0, &X);
sqliteExprSpan(A,&X,&E);
}
expr(A) ::= expr(X) AND expr(Y). {A = sqliteExpr(TK_AND, X, Y, 0);}
expr(A) ::= expr(X) OR expr(Y). {A = sqliteExpr(TK_OR, X, Y, 0);}
expr(A) ::= expr(X) LT expr(Y). {A = sqliteExpr(TK_LT, X, Y, 0);}
expr(A) ::= expr(X) GT expr(Y). {A = sqliteExpr(TK_GT, X, Y, 0);}
expr(A) ::= expr(X) LE expr(Y). {A = sqliteExpr(TK_LE, X, Y, 0);}
expr(A) ::= expr(X) GE expr(Y). {A = sqliteExpr(TK_GE, X, Y, 0);}
expr(A) ::= expr(X) NE expr(Y). {A = sqliteExpr(TK_NE, X, Y, 0);}
expr(A) ::= expr(X) EQ expr(Y). {A = sqliteExpr(TK_EQ, X, Y, 0);}
expr(A) ::= expr(X) BITAND expr(Y). {A = sqliteExpr(TK_BITAND, X, Y, 0);}
expr(A) ::= expr(X) BITOR expr(Y). {A = sqliteExpr(TK_BITOR, X, Y, 0);}
expr(A) ::= expr(X) LSHIFT expr(Y). {A = sqliteExpr(TK_LSHIFT, X, Y, 0);}
expr(A) ::= expr(X) RSHIFT expr(Y). {A = sqliteExpr(TK_RSHIFT, X, Y, 0);}
expr(A) ::= expr(X) LIKE expr(Y). {A = sqliteExpr(TK_LIKE, X, Y, 0);}
expr(A) ::= expr(X) NOT LIKE expr(Y). {
A = sqliteExpr(TK_LIKE, X, Y, 0);
A = sqliteExpr(TK_NOT, A, 0, 0);
sqliteExprSpan(A,&X->span,&Y->span);
}
expr(A) ::= expr(X) GLOB expr(Y). {A = sqliteExpr(TK_GLOB,X,Y,0);}
expr(A) ::= expr(X) NOT GLOB expr(Y). {
A = sqliteExpr(TK_GLOB, X, Y, 0);
A = sqliteExpr(TK_NOT, A, 0, 0);
sqliteExprSpan(A,&X->span,&Y->span);
}
expr(A) ::= expr(X) PLUS expr(Y). {A = sqliteExpr(TK_PLUS, X, Y, 0);}
expr(A) ::= expr(X) MINUS expr(Y). {A = sqliteExpr(TK_MINUS, X, Y, 0);}
expr(A) ::= expr(X) STAR expr(Y). {A = sqliteExpr(TK_STAR, X, Y, 0);}
expr(A) ::= expr(X) SLASH expr(Y). {A = sqliteExpr(TK_SLASH, X, Y, 0);}
expr(A) ::= expr(X) REM expr(Y). {A = sqliteExpr(TK_REM, X, Y, 0);}
expr(A) ::= expr(X) CONCAT expr(Y). {A = sqliteExpr(TK_CONCAT, X, Y, 0);}
expr(A) ::= expr(X) ISNULL(E). {
A = sqliteExpr(TK_ISNULL, X, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) IS NULL(E). {
A = sqliteExpr(TK_ISNULL, X, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) NOTNULL(E). {
A = sqliteExpr(TK_NOTNULL, X, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) NOT NULL(E). {
A = sqliteExpr(TK_NOTNULL, X, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) IS NOT NULL(E). {
A = sqliteExpr(TK_NOTNULL, X, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= NOT(B) expr(X). {
A = sqliteExpr(TK_NOT, X, 0, 0);
sqliteExprSpan(A,&B,&X->span);
}
expr(A) ::= BITNOT(B) expr(X). {
A = sqliteExpr(TK_BITNOT, X, 0, 0);
sqliteExprSpan(A,&B,&X->span);
}
expr(A) ::= MINUS(B) expr(X). [UMINUS] {
A = sqliteExpr(TK_UMINUS, X, 0, 0);
sqliteExprSpan(A,&B,&X->span);
}
expr(A) ::= PLUS(B) expr(X). [UMINUS] {
A = X;
sqliteExprSpan(A,&B,&X->span);
}
expr(A) ::= LP(B) select(X) RP(E). {
A = sqliteExpr(TK_SELECT, 0, 0, 0);
if( A ) A->pSelect = X;
sqliteExprSpan(A,&B,&E);
}
expr(A) ::= expr(W) BETWEEN expr(X) AND expr(Y). {
ExprList *pList = sqliteExprListAppend(0, X, 0);
pList = sqliteExprListAppend(pList, Y, 0);
A = sqliteExpr(TK_BETWEEN, W, 0, 0);
if( A ) A->pList = pList;
sqliteExprSpan(A,&W->span,&Y->span);
}
expr(A) ::= expr(W) NOT BETWEEN expr(X) AND expr(Y). {
ExprList *pList = sqliteExprListAppend(0, X, 0);
pList = sqliteExprListAppend(pList, Y, 0);
A = sqliteExpr(TK_BETWEEN, W, 0, 0);
if( A ) A->pList = pList;
A = sqliteExpr(TK_NOT, A, 0, 0);
sqliteExprSpan(A,&W->span,&Y->span);
}
expr(A) ::= expr(X) IN LP exprlist(Y) RP(E). {
A = sqliteExpr(TK_IN, X, 0, 0);
if( A ) A->pList = Y;
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) IN LP select(Y) RP(E). {
A = sqliteExpr(TK_IN, X, 0, 0);
if( A ) A->pSelect = Y;
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) NOT IN LP exprlist(Y) RP(E). {
A = sqliteExpr(TK_IN, X, 0, 0);
if( A ) A->pList = Y;
A = sqliteExpr(TK_NOT, A, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
expr(A) ::= expr(X) NOT IN LP select(Y) RP(E). {
A = sqliteExpr(TK_IN, X, 0, 0);
if( A ) A->pSelect = Y;
A = sqliteExpr(TK_NOT, A, 0, 0);
sqliteExprSpan(A,&X->span,&E);
}
%type exprlist {ExprList*}
%destructor exprlist {sqliteExprListDelete($$);}
%type expritem {Expr*}
%destructor expritem {sqliteExprDelete($$);}
exprlist(A) ::= exprlist(X) COMMA expritem(Y).
{A = sqliteExprListAppend(X,Y,0);}
exprlist(A) ::= expritem(X). {A = sqliteExprListAppend(0,X,0);}
expritem(A) ::= expr(X). {A = X;}
expritem(A) ::= . {A = 0;}
///////////////////////////// The CREATE INDEX command ///////////////////////
//
cmd ::= CREATE(S) uniqueflag(U) INDEX ids(X)
ON ids(Y) LP idxlist(Z) RP(E) onconf(R). {
if( U!=OE_None ) U = R;
if( U==OE_Default) U = OE_Abort;
sqliteCreateIndex(pParse, &X, &Y, Z, U, &S, &E);
}
%type uniqueflag {int}
uniqueflag(A) ::= UNIQUE. { A = OE_Abort; }
uniqueflag(A) ::= . { A = OE_None; }
%type idxlist {IdList*}
%destructor idxlist {sqliteIdListDelete($$);}
%type idxitem {Token}
idxlist(A) ::= idxlist(X) COMMA idxitem(Y).
{A = sqliteIdListAppend(X,&Y);}
idxlist(A) ::= idxitem(Y).
{A = sqliteIdListAppend(0,&Y);}
idxitem(A) ::= ids(X). {A = X;}
///////////////////////////// The DROP INDEX command /////////////////////////
//
cmd ::= DROP INDEX ids(X). {sqliteDropIndex(pParse, &X);}
///////////////////////////// The COPY command ///////////////////////////////
//
cmd ::= COPY ids(X) FROM ids(Y) USING DELIMITERS STRING(Z).
{sqliteCopy(pParse,&X,&Y,&Z);}
cmd ::= COPY ids(X) FROM ids(Y).
{sqliteCopy(pParse,&X,&Y,0);}
///////////////////////////// The VACUUM command /////////////////////////////
//
cmd ::= VACUUM. {sqliteVacuum(pParse,0);}
cmd ::= VACUUM ids(X). {sqliteVacuum(pParse,&X);}
///////////////////////////// The PRAGMA command /////////////////////////////
//
cmd ::= PRAGMA ids(X) EQ ids(Y). {sqlitePragma(pParse,&X,&Y,0);}
cmd ::= PRAGMA ids(X) EQ ON(Y). {sqlitePragma(pParse,&X,&Y,0);}
cmd ::= PRAGMA ids(X) EQ plus_num(Y). {sqlitePragma(pParse,&X,&Y,0);}
cmd ::= PRAGMA ids(X) EQ minus_num(Y). {sqlitePragma(pParse,&X,&Y,1);}
cmd ::= PRAGMA ids(X) LP ids(Y) RP. {sqlitePragma(pParse,&X,&Y,0);}
plus_num(A) ::= plus_opt number(X). {A = X;}
minus_num(A) ::= MINUS number(X). {A = X;}
number(A) ::= INTEGER(X). {A = X;}
number(A) ::= FLOAT(X). {A = X;}
plus_opt ::= PLUS.
plus_opt ::= .