/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.105 2002/04/12 10:08:59 drh Exp $
*/
#include "sqlite.h"
#include "hash.h"
#include "vdbe.h"
#include "parse.h"
#include "btree.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
/*
** The maximum number of in-memory pages to use for the main database
** table and for temporary tables.
*/
#define MAX_PAGES 2000
#define TEMP_PAGES 500
/*
** Integers of known sizes. These typedefs might change for architectures
** where the sizes very. Preprocessor macros are available so that the
** types can be conveniently redefined at compile-type. Like this:
**
** cc '-DUINTPTR_TYPE=long long int' ...
*/
#ifndef UINT32_TYPE
# define UINT32_TYPE unsigned int
#endif
#ifndef UINT16_TYPE
# define UINT16_TYPE unsigned short int
#endif
#ifndef UINT8_TYPE
# define UINT8_TYPE unsigned char
#endif
#ifndef INTPTR_TYPE
# define INTPTR_TYPE int
#endif
typedef UINT32_TYPE u32; /* 4-byte unsigned integer */
typedef UINT16_TYPE u16; /* 2-byte unsigned integer */
typedef UINT8_TYPE u8; /* 1-byte unsigned integer */
typedef INTPTR_TYPE ptr; /* Big enough to hold a pointer */
typedef unsigned INTPTR_TYPE uptr; /* Big enough to hold a pointer */
/*
** This macro casts a pointer to an integer. Useful for doing
** pointer arithmetic.
*/
#define Addr(X) ((uptr)X)
/*
** The maximum number of bytes of data that can be put into a single
** row of a single table. The upper bound on this limit is 16777215
** bytes (or 16MB-1). We have arbitrarily set the limit to just 1MB
** here because the overflow page chain is inefficient for really big
** records and we want to discourage people from thinking that
** multi-megabyte records are OK. If your needs are different, you can
** change this define and recompile to increase or decrease the record
** size.
*/
#define MAX_BYTES_PER_ROW 1048576
/*
** If memory allocation problems are found, recompile with
**
** -DMEMORY_DEBUG=1
**
** to enable some sanity checking on malloc() and free(). To
** check for memory leaks, recompile with
**
** -DMEMORY_DEBUG=2
**
** and a line of text will be written to standard error for
** each malloc() and free(). This output can be analyzed
** by an AWK script to determine if there are any leaks.
*/
#ifdef MEMORY_DEBUG
# define sqliteMalloc(X) sqliteMalloc_(X,__FILE__,__LINE__)
# define sqliteFree(X) sqliteFree_(X,__FILE__,__LINE__)
# define sqliteRealloc(X,Y) sqliteRealloc_(X,Y,__FILE__,__LINE__)
# define sqliteStrDup(X) sqliteStrDup_(X,__FILE__,__LINE__)
# define sqliteStrNDup(X,Y) sqliteStrNDup_(X,Y,__FILE__,__LINE__)
void sqliteStrRealloc(char**);
#else
# define sqliteStrRealloc(X)
#endif
/*
** This variable gets set if malloc() ever fails. After it gets set,
** the SQLite library shuts down permanently.
*/
extern int sqlite_malloc_failed;
/*
** The following global variables are used for testing and debugging
** only. They only work if MEMORY_DEBUG is defined.
*/
#ifdef MEMORY_DEBUG
extern int sqlite_nMalloc; /* Number of sqliteMalloc() calls */
extern int sqlite_nFree; /* Number of sqliteFree() calls */
extern int sqlite_iMallocFail; /* Fail sqliteMalloc() after this many calls */
#endif
/*
** Name of the master database table. The master database table
** is a special table that holds the names and attributes of all
** user tables and indices.
*/
#define MASTER_NAME "sqlite_master"
/*
** A convenience macro that returns the number of elements in
** an array.
*/
#define ArraySize(X) (sizeof(X)/sizeof(X[0]))
/*
** Forward references to structures
*/
typedef struct Column Column;
typedef struct Table Table;
typedef struct Index Index;
typedef struct Instruction Instruction;
typedef struct Expr Expr;
typedef struct ExprList ExprList;
typedef struct Parse Parse;
typedef struct Token Token;
typedef struct IdList IdList;
typedef struct WhereInfo WhereInfo;
typedef struct WhereLevel WhereLevel;
typedef struct Select Select;
typedef struct AggExpr AggExpr;
typedef struct FuncDef FuncDef;
/*
** Each database is an instance of the following structure
*/
struct sqlite {
Btree *pBe; /* The B*Tree backend */
Btree *pBeTemp; /* Backend for session temporary tables */
int flags; /* Miscellanous flags. See below */
int file_format; /* What file format version is this database? */
int schema_cookie; /* Magic number that changes with the schema */
int next_cookie; /* Value of schema_cookie after commit */
int cache_size; /* Number of pages to use in the cache */
int nTable; /* Number of tables in the database */
void *pBusyArg; /* 1st Argument to the busy callback */
int (*xBusyCallback)(void *,const char*,int); /* The busy callback */
Hash tblHash; /* All tables indexed by name */
Hash idxHash; /* All (named) indices indexed by name */
Hash tblDrop; /* Uncommitted DROP TABLEs */
Hash idxDrop; /* Uncommitted DROP INDEXs */
Hash aFunc; /* All functions that can be in SQL exprs */
int lastRowid; /* ROWID of most recent insert */
int priorNewRowid; /* Last randomly generated ROWID */
int onError; /* Default conflict algorithm */
int nChange; /* Number of rows changed */
int recursionDepth; /* Number of nested calls to sqlite_exec() */
};
/*
** Possible values for the sqlite.flags.
*/
#define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */
#define SQLITE_Initialized 0x00000002 /* True after initialization */
#define SQLITE_Interrupt 0x00000004 /* Cancel current operation */
#define SQLITE_InTrans 0x00000008 /* True if in a transaction */
#define SQLITE_InternChanges 0x00000010 /* Uncommitted Hash table changes */
#define SQLITE_FullColNames 0x00000020 /* Show full column names on SELECT */
#define SQLITE_CountRows 0x00000040 /* Count rows changed by INSERT, */
/* DELETE, or UPDATE and return */
/* the count using a callback. */
#define SQLITE_NullCallback 0x00000080 /* Invoke the callback once if the */
/* result set is empty */
#define SQLITE_ResultDetails 0x00000100 /* Details added to result set */
#define SQLITE_UnresetViews 0x00000200 /* True if one or more views have */
/* defined column names */
/*
** Each SQL function is defined by an instance of the following
** structure. A pointer to this structure is stored in the sqlite.aFunc
** hash table. When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/
struct FuncDef {
void (*xFunc)(sqlite_func*,int,const char**); /* Regular function */
void (*xStep)(sqlite_func*,int,const char**); /* Aggregate function step */
void (*xFinalize)(sqlite_func*); /* Aggregate function finializer */
int nArg; /* Number of arguments */
void *pUserData; /* User data parameter */
FuncDef *pNext; /* Next function with same name */
};
/*
** information about each column of an SQL table is held in an instance
** of this structure.
*/
struct Column {
char *zName; /* Name of this column */
char *zDflt; /* Default value of this column */
char *zType; /* Data type for this column */
u8 notNull; /* True if there is a NOT NULL constraint */
u8 isPrimKey; /* True if this column is an INTEGER PRIMARY KEY */
};
/*
** Each SQL table is represented in memory by an instance of the
** following structure.
**
** Expr.zName is the name of the table. The case of the original
** CREATE TABLE statement is stored, but case is not significant for
** comparisons.
**
** Expr.nCol is the number of columns in this table. Expr.aCol is a
** pointer to an array of Column structures, one for each column.
**
** If the table has an INTEGER PRIMARY KEY, then Expr.iPKey is the index of
** the column that is that key. Otherwise Expr.iPKey is negative. Note
** that the datatype of the PRIMARY KEY must be INTEGER for this field to
** be set. An INTEGER PRIMARY KEY is used as the rowid for each row of
** the table. If a table has no INTEGER PRIMARY KEY, then a random rowid
** is generated for each row of the table. Expr.hasPrimKey is true if
** the table has any PRIMARY KEY, INTEGER or otherwise.
**
** Expr.tnum is the page number for the root BTree page of the table in the
** database file. If Expr.isTemp is true, then this page occurs in the
** auxiliary database file, not the main database file. If Expr.isTransient
** is true, then the table is stored in a file that is automatically deleted
** when the VDBE cursor to the table is closed. In this case Expr.tnum
** refers VDBE cursor number that holds the table open, not to the root
** page number. Transient tables are used to hold the results of a
** sub-query that appears instead of a real table name in the FROM clause
** of a SELECT statement.
*/
struct Table {
char *zName; /* Name of the table */
int nCol; /* Number of columns in this table */
Column *aCol; /* Information about each column */
int iPKey; /* If not less then 0, use aCol[iPKey] as the primary key */
Index *pIndex; /* List of SQL indexes on this table. */
int tnum; /* Root BTree node for this table (see note above) */
Select *pSelect; /* NULL for tables. Points to definition if a view. */
u8 readOnly; /* True if this table should not be written by the user */
u8 isCommit; /* True if creation of this table has been committed */
u8 isTemp; /* True if stored in db->pBeTemp instead of db->pBe */
u8 isTransient; /* True if automatically deleted when VDBE finishes */
u8 hasPrimKey; /* True if there exists a primary key */
u8 keyConf; /* What to do in case of uniqueness conflict on iPKey */
};
/*
** SQLite supports 5 different ways to resolve a contraint
** error. ROLLBACK processing means that a constraint violation
** causes the operation in proces to fail and for the current transaction
** to be rolled back. ABORT processing means the operation in process
** fails and any prior changes from that one operation are backed out,
** but the transaction is not rolled back. FAIL processing means that
** the operation in progress stops and returns an error code. But prior
** changes due to the same operation are not backed out and no rollback
** occurs. IGNORE means that the particular row that caused the constraint
** error is not inserted or updated. Processing continues and no error
** is returned. REPLACE means that preexisting database rows that caused
** a UNIQUE constraint violation are removed so that the new insert or
** update can proceed. Processing continues and no error is reported.
**
** The following there symbolic values are used to record which type
** of action to take.
*/
#define OE_None 0 /* There is no constraint to check */
#define OE_Rollback 1 /* Fail the operation and rollback the transaction */
#define OE_Abort 2 /* Back out changes but do no rollback transaction */
#define OE_Fail 3 /* Stop the operation but leave all prior changes */
#define OE_Ignore 4 /* Ignore the error. Do not do the INSERT or UPDATE */
#define OE_Replace 5 /* Delete existing record, then do INSERT or UPDATE */
#define OE_Default 9 /* Do whatever the default action is */
/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
** The columns of the table that are to be indexed are described
** by the aiColumn[] field of this structure. For example, suppose
** we have the following table and index:
**
** CREATE TABLE Ex1(c1 int, c2 int, c3 text);
** CREATE INDEX Ex2 ON Ex1(c3,c1);
**
** In the Table structure describing Ex1, nCol==3 because there are
** three columns in the table. In the Index structure describing
** Ex2, nColumn==2 since 2 of the 3 columns of Ex1 are indexed.
** The value of aiColumn is {2, 0}. aiColumn[0]==2 because the
** first column to be indexed (c3) has an index of 2 in Ex1.aCol[].
** The second column to be indexed (c1) has an index of 0 in
** Ex1.aCol[], hence Ex2.aiColumn[1]==0.
*/
struct Index {
char *zName; /* Name of this index */
int nColumn; /* Number of columns in the table used by this index */
int *aiColumn; /* Which columns are used by this index. 1st is 0 */
Table *pTable; /* The SQL table being indexed */
int tnum; /* Page containing root of this index in database file */
u8 isUnique; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
u8 isCommit; /* True if creation of this index has been committed */
u8 isDropped; /* True if a DROP INDEX has executed on this index */
u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
Index *pNext; /* The next index associated with the same table */
};
/*
** Each token coming out of the lexer is an instance of
** this structure.
*/
struct Token {
const char *z; /* Text of the token. Not NULL-terminated! */
int n; /* Number of characters in this token */
};
/*
** Each node of an expression in the parse tree is an instance
** of this structure.
**
** Expr.op is the opcode. The integer parser token codes are reused
** as opcodes here. For example, the parser defines TK_GE to be an integer
** code representing the ">=" operator. This same integer code is reused
** to represent the greater-than-or-equal-to operator in the expression
** tree.
**
** Expr.pRight and Expr.pLeft are subexpressions. Expr.pList is a list
** of argument if the expression is a function.
**
** Expr.token is the operator token for this node. Expr.span is the complete
** subexpression represented by this node and all its decendents. These
** fields are used for error reporting and for reconstructing the text of
** an expression to use as the column name in a SELECT statement.
**
** An expression of the form ID or ID.ID refers to a column in a table.
** For such expressions, Expr.op is set to TK_COLUMN and Expr.iTable is
** the integer cursor number of a VDBE cursor pointing to that table and
** Expr.iColumn is the column number for the specific column. If the
** expression is used as a result in an aggregate SELECT, then the
** value is also stored in the Expr.iAgg column in the aggregate so that
** it can be accessed after all aggregates are computed.
**
** If the expression is a function, the Expr.iTable is an integer code
** representing which function.
**
** The Expr.pSelect field points to a SELECT statement. The SELECT might
** be the right operand of an IN operator. Or, if a scalar SELECT appears
** in an expression the opcode is TK_SELECT and Expr.pSelect is the only
** operand.
*/
struct Expr {
int op; /* Operation performed by this node */
Expr *pLeft, *pRight; /* Left and right subnodes */
ExprList *pList; /* A list of expressions used as a function argument */
Token token; /* An operand token */
Token span; /* Complete text of the expression */
int iTable, iColumn; /* When op==TK_COLUMN, then this expr node means the
** iColumn-th field of the iTable-th table. When
** op==TK_FUNCTION, iColumn holds the function id */
int iAgg; /* When op==TK_COLUMN and pParse->useAgg==TRUE, pull
** result from the iAgg-th element of the aggregator */
Select *pSelect; /* When the expression is a sub-select */
};
/*
** A list of expressions. Each expression may optionally have a
** name. An expr/name combination can be used in several ways, such
** as the list of "expr AS ID" fields following a "SELECT" or in the
** list of "ID = expr" items in an UPDATE. A list of expressions can
** also be used as the argument to a function, in which case the azName
** field is not used.
*/
struct ExprList {
int nExpr; /* Number of expressions on the list */
struct ExprList_item {
Expr *pExpr; /* The list of expressions */
char *zName; /* Token associated with this expression */
char sortOrder; /* 1 for DESC or 0 for ASC */
char isAgg; /* True if this is an aggregate like count(*) */
char done; /* A flag to indicate when processing is finished */
} *a; /* One entry for each expression */
};
/*
** A list of identifiers.
*/
struct IdList {
int nId; /* Number of identifiers on the list */
struct IdList_item {
char *zName; /* Text of the identifier. */
char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */
int idx; /* Index in some Table.aCol[] of a column named zName */
Table *pTab; /* An SQL table corresponding to zName */
Select *pSelect; /* A SELECT statement used in place of a table name */
} *a; /* One entry for each identifier on the list */
};
/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure. This structure
** is intended to be private the the where.c module and should not be
** access or modified by other modules.
*/
struct WhereLevel {
int iMem; /* Memory cell used by this level */
Index *pIdx; /* Index used */
int iCur; /* Cursor number used for this index */
int score; /* How well this indexed scored */
int brk; /* Jump here to break out of the loop */
int cont; /* Jump here to continue with the next loop cycle */
int op, p1, p2; /* Opcode used to terminate the loop */
};
/*
** The WHERE clause processing routine has two halves. The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop. An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
*/
struct WhereInfo {
Parse *pParse;
IdList *pTabList; /* List of tables in the join */
int iContinue; /* Jump here to continue with next record */
int iBreak; /* Jump here to break out of the loop */
int base; /* Index of first Open opcode */
int nLevel; /* Number of nested loop */
int savedNTab; /* Value of pParse->nTab before WhereBegin() */
int peakNTab; /* Value of pParse->nTab after WhereBegin() */
WhereLevel a[1]; /* Information about each nest loop in the WHERE */
};
/*
** An instance of the following structure contains all information
** needed to generate code for a single SELECT statement.
**
** The zSelect field is used when the Select structure must be persistent.
** Normally, the expression tree points to tokens in the original input
** string that encodes the select. But if the Select structure must live
** longer than its input string (for example when it is used to describe
** a VIEW) we have to make a copy of the input string so that the nodes
** of the expression tree will have something to point to. zSelect is used
** to hold that copy.
*/
struct Select {
int isDistinct; /* True if the DISTINCT keyword is present */
ExprList *pEList; /* The fields of the result */
IdList *pSrc; /* The FROM clause */
Expr *pWhere; /* The WHERE clause */
ExprList *pGroupBy; /* The GROUP BY clause */
Expr *pHaving; /* The HAVING clause */
ExprList *pOrderBy; /* The ORDER BY clause */
int op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */
Select *pPrior; /* Prior select in a compound select statement */
int nLimit, nOffset; /* LIMIT and OFFSET values. -1 means not used */
char *zSelect; /* Complete text of the SELECT command */
int base; /* Index of VDBE cursor for left-most FROM table */
};
/*
** The results of a select can be distributed in several ways.
*/
#define SRT_Callback 1 /* Invoke a callback with each row of result */
#define SRT_Mem 2 /* Store result in a memory cell */
#define SRT_Set 3 /* Store result as unique keys in a table */
#define SRT_Union 5 /* Store result as keys in a table */
#define SRT_Except 6 /* Remove result from a UNION table */
#define SRT_Table 7 /* Store result as data with a unique key */
#define SRT_TempTable 8 /* Store result in a trasient table */
/*
** When a SELECT uses aggregate functions (like "count(*)" or "avg(f1)")
** we have to do some additional analysis of expressions. An instance
** of the following structure holds information about a single subexpression
** somewhere in the SELECT statement. An array of these structures holds
** all the information we need to generate code for aggregate
** expressions.
**
** Note that when analyzing a SELECT containing aggregates, both
** non-aggregate field variables and aggregate functions are stored
** in the AggExpr array of the Parser structure.
**
** The pExpr field points to an expression that is part of either the
** field list, the GROUP BY clause, the HAVING clause or the ORDER BY
** clause. The expression will be freed when those clauses are cleaned
** up. Do not try to delete the expression attached to AggExpr.pExpr.
**
** If AggExpr.pExpr==0, that means the expression is "count(*)".
*/
struct AggExpr {
int isAgg; /* if TRUE contains an aggregate function */
Expr *pExpr; /* The expression */
FuncDef *pFunc; /* Information about the aggregate function */
};
/*
** An SQL parser context. A copy of this structure is passed through
** the parser and down into all the parser action routine in order to
** carry around information that is global to the entire parse.
*/
struct Parse {
sqlite *db; /* The main database structure */
Btree *pBe; /* The database backend */
int rc; /* Return code from execution */
sqlite_callback xCallback; /* The callback function */
void *pArg; /* First argument to the callback function */
char *zErrMsg; /* An error message */
Token sErrToken; /* The token at which the error occurred */
Token sFirstToken; /* The first token parsed */
Token sLastToken; /* The last token parsed */
Table *pNewTable; /* A table being constructed by CREATE TABLE */
Vdbe *pVdbe; /* An engine for executing database bytecode */
int colNamesSet; /* TRUE after OP_ColumnCount has been issued to pVdbe */
int explain; /* True if the EXPLAIN flag is found on the query */
int initFlag; /* True if reparsing CREATE TABLEs */
int nameClash; /* A permanent table name clashes with temp table name */
int newTnum; /* Table number to use when reparsing CREATE TABLEs */
int nErr; /* Number of errors seen */
int nTab; /* Number of previously allocated VDBE cursors */
int nMem; /* Number of memory cells used so far */
int nSet; /* Number of sets used so far */
int nAgg; /* Number of aggregate expressions */
AggExpr *aAgg; /* An array of aggregate expressions */
int useAgg; /* If true, extract field values from the aggregator
** while generating expressions. Normally false */
int schemaVerified; /* True if an OP_VerifySchema has been coded someplace
** other than after an OP_Transaction */
};
/*
** Internal function prototypes
*/
int sqliteStrICmp(const char *, const char *);
int sqliteStrNICmp(const char *, const char *, int);
int sqliteHashNoCase(const char *, int);
int sqliteCompare(const char *, const char *);
int sqliteSortCompare(const char *, const char *);
void sqliteRealToSortable(double r, char *);
#ifdef MEMORY_DEBUG
void *sqliteMalloc_(int,char*,int);
void sqliteFree_(void*,char*,int);
void *sqliteRealloc_(void*,int,char*,int);
char *sqliteStrDup_(const char*,char*,int);
char *sqliteStrNDup_(const char*, int,char*,int);
#else
void *sqliteMalloc(int);
void sqliteFree(void*);
void *sqliteRealloc(void*,int);
char *sqliteStrDup(const char*);
char *sqliteStrNDup(const char*, int);
#endif
void sqliteSetString(char **, const char *, ...);
void sqliteSetNString(char **, ...);
void sqliteDequote(char*);
int sqliteKeywordCode(const char*, int);
int sqliteRunParser(Parse*, const char*, char **);
void sqliteExec(Parse*);
Expr *sqliteExpr(int, Expr*, Expr*, Token*);
void sqliteExprSpan(Expr*,Token*,Token*);
Expr *sqliteExprFunction(ExprList*, Token*);
void sqliteExprDelete(Expr*);
ExprList *sqliteExprListAppend(ExprList*,Expr*,Token*);
void sqliteExprListDelete(ExprList*);
void sqlitePragma(Parse*,Token*,Token*,int);
void sqliteCommitInternalChanges(sqlite*);
void sqliteRollbackInternalChanges(sqlite*);
Table *sqliteResultSetOfSelect(Parse*,char*,Select*);
void sqliteStartTable(Parse*,Token*,Token*,int);
void sqliteAddColumn(Parse*,Token*);
void sqliteAddNotNull(Parse*, int);
void sqliteAddPrimaryKey(Parse*, IdList*, int);
void sqliteAddColumnType(Parse*,Token*,Token*);
void sqliteAddDefaultValue(Parse*,Token*,int);
void sqliteEndTable(Parse*,Token*,Select*);
void sqliteCreateView(Parse*,Token*,Token*,Select*);
int sqliteViewGetColumnNames(Parse*,Table*);
void sqliteViewResetAll(sqlite*);
void sqliteDropTable(Parse*, Token*, int);
void sqliteDeleteTable(sqlite*, Table*);
void sqliteInsert(Parse*, Token*, ExprList*, Select*, IdList*, int);
IdList *sqliteIdListAppend(IdList*, Token*);
void sqliteIdListAddAlias(IdList*, Token*);
void sqliteIdListDelete(IdList*);
void sqliteCreateIndex(Parse*, Token*, Token*, IdList*, int, Token*, Token*);
void sqliteDropIndex(Parse*, Token*);
int sqliteSelect(Parse*, Select*, int, int, Select*, int, int*);
Select *sqliteSelectNew(ExprList*,IdList*,Expr*,ExprList*,Expr*,ExprList*,
int,int,int);
void sqliteSelectDelete(Select*);
void sqliteSelectUnbind(Select*);
Table *sqliteTableNameToTable(Parse*, const char*);
IdList *sqliteTableTokenToIdList(Parse*, Token*);
void sqliteDeleteFrom(Parse*, Token*, Expr*);
void sqliteUpdate(Parse*, Token*, ExprList*, Expr*, int);
WhereInfo *sqliteWhereBegin(Parse*, int, IdList*, Expr*, int);
void sqliteWhereEnd(WhereInfo*);
void sqliteExprCode(Parse*, Expr*);
void sqliteExprIfTrue(Parse*, Expr*, int);
void sqliteExprIfFalse(Parse*, Expr*, int);
Table *sqliteFindTable(sqlite*,const char*);
Index *sqliteFindIndex(sqlite*,const char*);
void sqliteUnlinkAndDeleteIndex(sqlite*,Index*);
void sqliteCopy(Parse*, Token*, Token*, Token*, int);
void sqliteVacuum(Parse*, Token*);
int sqliteGlobCompare(const unsigned char*,const unsigned char*);
int sqliteLikeCompare(const unsigned char*,const unsigned char*);
char *sqliteTableNameFromToken(Token*);
int sqliteExprCheck(Parse*, Expr*, int, int*);
int sqliteExprCompare(Expr*, Expr*);
int sqliteFuncId(Token*);
int sqliteExprResolveIds(Parse*, int, IdList*, ExprList*, Expr*);
int sqliteExprAnalyzeAggregates(Parse*, Expr*);
Vdbe *sqliteGetVdbe(Parse*);
int sqliteRandomByte(void);
int sqliteRandomInteger(void);
void sqliteBeginTransaction(Parse*, int);
void sqliteCommitTransaction(Parse*);
void sqliteRollbackTransaction(Parse*);
char *sqlite_mprintf(const char *, ...);
int sqliteExprIsConstant(Expr*);
void sqliteGenerateRowDelete(Vdbe*, Table*, int, int);
void sqliteGenerateRowIndexDelete(Vdbe*, Table*, int, char*);
void sqliteGenerateConstraintChecks(Parse*,Table*,int,char*,int,int,int,int);
void sqliteCompleteInsertion(Parse*, Table*, int, char*, int, int);
void sqliteBeginWriteOperation(Parse*);
void sqliteBeginMultiWriteOperation(Parse*);
void sqliteEndWriteOperation(Parse*);
void sqliteExprMoveStrings(Expr*, int);
void sqliteExprListMoveStrings(ExprList*, int);
void sqliteSelectMoveStrings(Select*, int);
Expr *sqliteExprDup(Expr*);
ExprList *sqliteExprListDup(ExprList*);
IdList *sqliteIdListDup(IdList*);
Select *sqliteSelectDup(Select*);
FuncDef *sqliteFindFunction(sqlite*,const char*,int,int,int);
void sqliteRegisterBuildinFunctions(sqlite*);