/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains C code routines that are called by the SQLite parser
** when syntax rules are reduced. The routines in this file handle the
** following kinds of SQL syntax:
**
** CREATE TABLE
** DROP TABLE
** CREATE INDEX
** DROP INDEX
** creating ID lists
** COPY
** VACUUM
** BEGIN TRANSACTION
** COMMIT
** ROLLBACK
** PRAGMA
**
** $Id: build.c,v 1.113 2002/09/21 15:57:57 drh Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
/*
** This routine is called when a new SQL statement is beginning to
** be parsed. Check to see if the schema for the database needs
** to be read from the SQLITE_MASTER and SQLITE_TEMP_MASTER tables.
** If it does, then read it.
*/
void sqliteBeginParse(Parse *pParse, int explainFlag){
sqlite *db = pParse->db;
pParse->explain = explainFlag;
if((db->flags & SQLITE_Initialized)==0 && pParse->initFlag==0 ){
int rc = sqliteInit(db, &pParse->zErrMsg);
if( rc!=SQLITE_OK ){
pParse->rc = rc;
pParse->nErr++;
}
}
}
/*
** This routine is called after a single SQL statement has been
** parsed and we want to execute the VDBE code to implement
** that statement. Prior action routines should have already
** constructed VDBE code to do the work of the SQL statement.
** This routine just has to execute the VDBE code.
**
** Note that if an error occurred, it might be the case that
** no VDBE code was generated.
*/
void sqliteExec(Parse *pParse){
int rc = SQLITE_OK;
sqlite *db = pParse->db;
if( sqlite_malloc_failed ) return;
if( pParse->pVdbe && pParse->nErr==0 ){
if( pParse->explain ){
rc = sqliteVdbeList(pParse->pVdbe, pParse->xCallback, pParse->pArg,
&pParse->zErrMsg);
db->next_cookie = db->schema_cookie;
}else{
FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
sqliteVdbeTrace(pParse->pVdbe, trace);
rc = sqliteVdbeExec(pParse->pVdbe, pParse->xCallback, pParse->pArg,
&pParse->zErrMsg, db->pBusyArg,
db->xBusyCallback);
if( rc ) pParse->nErr++;
}
sqliteVdbeDelete(pParse->pVdbe);
pParse->pVdbe = 0;
pParse->colNamesSet = 0;
pParse->rc = rc;
pParse->schemaVerified = 0;
}
}
/*
** Locate the in-memory structure that describes
** a particular database table given the name
** of that table. Return NULL if not found.
*/
Table *sqliteFindTable(sqlite *db, const char *zName){
Table *p;
p = sqliteHashFind(&db->tblHash, zName, strlen(zName)+1);
return p;
}
/*
** Locate the in-memory structure that describes
** a particular index given the name of that index.
** Return NULL if not found.
*/
Index *sqliteFindIndex(sqlite *db, const char *zName){
Index *p;
p = sqliteHashFind(&db->idxHash, zName, strlen(zName)+1);
return p;
}
/*
** Remove the given index from the index hash table, and free
** its memory structures.
**
** The index is removed from the database hash tables but
** it is not unlinked from the Table that it indexes.
** Unlinking from the Table must be done by the calling function.
*/
static void sqliteDeleteIndex(sqlite *db, Index *p){
Index *pOld;
assert( db!=0 && p->zName!=0 );
pOld = sqliteHashInsert(&db->idxHash, p->zName, strlen(p->zName)+1, 0);
if( pOld!=0 && pOld!=p ){
sqliteHashInsert(&db->idxHash, pOld->zName, strlen(pOld->zName)+1, pOld);
}
sqliteFree(p);
}
/*
** Unlink the given index from its table, then remove
** the index from the index hash table and free its memory
** structures.
*/
void sqliteUnlinkAndDeleteIndex(sqlite *db, Index *pIndex){
if( pIndex->pTable->pIndex==pIndex ){
pIndex->pTable->pIndex = pIndex->pNext;
}else{
Index *p;
for(p=pIndex->pTable->pIndex; p && p->pNext!=pIndex; p=p->pNext){}
if( p && p->pNext==pIndex ){
p->pNext = pIndex->pNext;
}
}
sqliteDeleteIndex(db, pIndex);
}
/*
** Erase all schema information from the in-memory hash tables of
** database connection. This routine is called to reclaim memory
** before the connection closes. It is also called during a rollback
** if there were schema changes during the transaction.
*/
void sqliteResetInternalSchema(sqlite *db){
HashElem *pElem;
Hash temp1;
Hash temp2;
sqliteHashClear(&db->aFKey);
temp1 = db->tblHash;
temp2 = db->trigHash;
sqliteHashInit(&db->trigHash, SQLITE_HASH_STRING, 0);
sqliteHashClear(&db->idxHash);
for(pElem=sqliteHashFirst(&temp2); pElem; pElem=sqliteHashNext(pElem)){
Trigger *pTrigger = sqliteHashData(pElem);
sqliteDeleteTrigger(pTrigger);
}
sqliteHashClear(&temp2);
sqliteHashInit(&db->tblHash, SQLITE_HASH_STRING, 0);
for(pElem=sqliteHashFirst(&temp1); pElem; pElem=sqliteHashNext(pElem)){
Table *pTab = sqliteHashData(pElem);
sqliteDeleteTable(db, pTab);
}
sqliteHashClear(&temp1);
db->flags &= ~(SQLITE_Initialized|SQLITE_InternChanges);
}
/*
** This routine is called whenever a rollback occurs. If there were
** schema changes during the transaction, then we have to reset the
** internal hash tables and reload them from disk.
*/
void sqliteRollbackInternalChanges(sqlite *db){
if( db->flags & SQLITE_InternChanges ){
sqliteResetInternalSchema(db);
}
}
/*
** This routine is called when a commit occurs.
*/
void sqliteCommitInternalChanges(sqlite *db){
db->schema_cookie = db->next_cookie;
db->flags &= ~SQLITE_InternChanges;
}
/*
** Remove the memory data structures associated with the given
** Table. No changes are made to disk by this routine.
**
** This routine just deletes the data structure. It does not unlink
** the table data structure from the hash table. Nor does it remove
** foreign keys from the sqlite.aFKey hash table. But it does destroy
** memory structures of the indices and foreign keys associated with
** the table.
**
** Indices associated with the table are unlinked from the "db"
** data structure if db!=NULL. If db==NULL, indices attached to
** the table are deleted, but it is assumed they have already been
** unlinked.
*/
void sqliteDeleteTable(sqlite *db, Table *pTable){
int i;
Index *pIndex, *pNext;
FKey *pFKey, *pNextFKey;
if( pTable==0 ) return;
/* Delete all indices associated with this table
*/
for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
pNext = pIndex->pNext;
sqliteDeleteIndex(db, pIndex);
}
/* Delete all foreign keys associated with this table. The keys
** should have already been unlinked from the db->aFKey hash table
*/
for(pFKey=pTable->pFKey; pFKey; pFKey=pNextFKey){
pNextFKey = pFKey->pNextFrom;
assert( sqliteHashFind(&db->aFKey,pFKey->zTo,strlen(pFKey->zTo)+1)!=pFKey );
sqliteFree(pFKey);
}
/* Delete the Table structure itself.
*/
for(i=0; i<pTable->nCol; i++){
sqliteFree(pTable->aCol[i].zName);
sqliteFree(pTable->aCol[i].zDflt);
sqliteFree(pTable->aCol[i].zType);
}
sqliteFree(pTable->zName);
sqliteFree(pTable->aCol);
sqliteSelectDelete(pTable->pSelect);
sqliteFree(pTable);
}
/*
** Unlink the given table from the hash tables and the delete the
** table structure with all its indices and foreign keys.
*/
static void sqliteUnlinkAndDeleteTable(sqlite *db, Table *p){
Table *pOld;
FKey *pF1, *pF2;
assert( db!=0 );
pOld = sqliteHashInsert(&db->tblHash, p->zName, strlen(p->zName)+1, 0);
assert( pOld==0 || pOld==p );
for(pF1=p->pFKey; pF1; pF1=pF1->pNextFrom){
int nTo = strlen(pF1->zTo) + 1;
pF2 = sqliteHashFind(&db->aFKey, pF1->zTo, nTo);
if( pF2==pF1 ){
sqliteHashInsert(&db->aFKey, pF1->zTo, nTo, pF1->pNextTo);
}else{
while( pF2 && pF2->pNextTo!=pF1 ){ pF2=pF2->pNextTo; }
if( pF2 ){
pF2->pNextTo = pF1->pNextTo;
}
}
}
sqliteDeleteTable(db, p);
}
/*
** Construct the name of a user table or index from a token.
**
** Space to hold the name is obtained from sqliteMalloc() and must
** be freed by the calling function.
*/
char *sqliteTableNameFromToken(Token *pName){
char *zName = sqliteStrNDup(pName->z, pName->n);
sqliteDequote(zName);
return zName;
}
/*
** Generate code to open the appropriate master table. The table
** opened will be SQLITE_MASTER for persistent tables and
** SQLITE_TEMP_MASTER for temporary tables. The table is opened
** on cursor 0.
*/
void sqliteOpenMasterTable(Vdbe *v, int isTemp){
if( isTemp ){
sqliteVdbeAddOp(v, OP_OpenWrAux, 0, 2);
sqliteVdbeChangeP3(v, -1, TEMP_MASTER_NAME, P3_STATIC);
}else{
sqliteVdbeAddOp(v, OP_OpenWrite, 0, 2);
sqliteVdbeChangeP3(v, -1, MASTER_NAME, P3_STATIC);
}
}
/*
** Begin constructing a new table representation in memory. This is
** the first of several action routines that get called in response
** to a CREATE TABLE statement. In particular, this routine is called
** after seeing tokens "CREATE" and "TABLE" and the table name. The
** pStart token is the CREATE and pName is the table name. The isTemp
** flag is true if the table should be stored in the auxiliary database
** file instead of in the main database file. This is normally the case
** when the "TEMP" or "TEMPORARY" keyword occurs in between
** CREATE and TABLE.
**
** The new table record is initialized and put in pParse->pNewTable.
** As more of the CREATE TABLE statement is parsed, additional action
** routines will be called to add more information to this record.
** At the end of the CREATE TABLE statement, the sqliteEndTable() routine
** is called to complete the construction of the new table record.
*/
void sqliteStartTable(Parse *pParse, Token *pStart, Token *pName, int isTemp){
Table *pTable;
Index *pIdx;
char *zName;
sqlite *db = pParse->db;
Vdbe *v;
pParse->sFirstToken = *pStart;
zName = sqliteTableNameFromToken(pName);
if( zName==0 ) return;
/* Before trying to create a temporary table, make sure the Btree for
** holding temporary tables is open.
*/
if( isTemp && db->pBeTemp==0 ){
int rc = sqliteBtreeOpen(0, 0, MAX_PAGES, &db->pBeTemp);
if( rc!=SQLITE_OK ){
sqliteSetString(&pParse->zErrMsg, "unable to open a temporary database "
"file for storing temporary tables", 0);
pParse->nErr++;
return;
}
if( db->flags & SQLITE_InTrans ){
rc = sqliteBtreeBeginTrans(db->pBeTemp);
if( rc!=SQLITE_OK ){
sqliteSetNString(&pParse->zErrMsg, "unable to get a write lock on "
"the temporary database file", 0);
pParse->nErr++;
return;
}
}
}
/* Make sure the new table name does not collide with an existing
** index or table name. Issue an error message if it does.
**
** If we are re-reading the sqlite_master table because of a schema
** change and a new permanent table is found whose name collides with
** an existing temporary table, then ignore the new permanent table.
** We will continue parsing, but the pParse->nameClash flag will be set
** so we will know to discard the table record once parsing has finished.
*/
pTable = sqliteFindTable(db, zName);
if( pTable!=0 ){
if( pTable->isTemp && pParse->initFlag ){
pParse->nameClash = 1;
}else{
sqliteSetNString(&pParse->zErrMsg, "table ", 0, pName->z, pName->n,
" already exists", 0, 0);
sqliteFree(zName);
pParse->nErr++;
return;
}
}else{
pParse->nameClash = 0;
}
if( (pIdx = sqliteFindIndex(db, zName))!=0 &&
(!pIdx->pTable->isTemp || !pParse->initFlag) ){
sqliteSetString(&pParse->zErrMsg, "there is already an index named ",
zName, 0);
sqliteFree(zName);
pParse->nErr++;
return;
}
pTable = sqliteMalloc( sizeof(Table) );
if( pTable==0 ){
sqliteFree(zName);
return;
}
pTable->zName = zName;
pTable->nCol = 0;
pTable->aCol = 0;
pTable->iPKey = -1;
pTable->pIndex = 0;
pTable->isTemp = isTemp;
if( pParse->pNewTable ) sqliteDeleteTable(db, pParse->pNewTable);
pParse->pNewTable = pTable;
/* Begin generating the code that will insert the table record into
** the SQLITE_MASTER table. Note in particular that we must go ahead
** and allocate the record number for the table entry now. Before any
** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
** indices to be created and the table record must come before the
** indices. Hence, the record number for the table must be allocated
** now.
*/
if( !pParse->initFlag && (v = sqliteGetVdbe(pParse))!=0 ){
sqliteBeginWriteOperation(pParse, 0, isTemp);
if( !isTemp ){
sqliteVdbeAddOp(v, OP_Integer, db->file_format, 0);
sqliteVdbeAddOp(v, OP_SetCookie, 0, 1);
}
sqliteOpenMasterTable(v, isTemp);
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
}
}
/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement. sqliteStartTable() gets called
** first to get things going. Then this routine is called for each
** column.
*/
void sqliteAddColumn(Parse *pParse, Token *pName){
Table *p;
int i;
char *z = 0;
Column *pCol;
if( (p = pParse->pNewTable)==0 ) return;
sqliteSetNString(&z, pName->z, pName->n, 0);
if( z==0 ) return;
sqliteDequote(z);
for(i=0; i<p->nCol; i++){
if( sqliteStrICmp(z, p->aCol[i].zName)==0 ){
sqliteSetString(&pParse->zErrMsg, "duplicate column name: ", z, 0);
pParse->nErr++;
sqliteFree(z);
return;
}
}
if( (p->nCol & 0x7)==0 ){
Column *aNew;
aNew = sqliteRealloc( p->aCol, (p->nCol+8)*sizeof(p->aCol[0]));
if( aNew==0 ) return;
p->aCol = aNew;
}
pCol = &p->aCol[p->nCol];
memset(pCol, 0, sizeof(p->aCol[0]));
pCol->zName = z;
pCol->sortOrder = SQLITE_SO_NUM;
p->nCol++;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
** been seen on a column. This routine sets the notNull flag on
** the column currently under construction.
*/
void sqliteAddNotNull(Parse *pParse, int onError){
Table *p;
int i;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i>=0 ) p->aCol[i].notNull = onError;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. The pFirst token is the first
** token in the sequence of tokens that describe the type of the
** column currently under construction. pLast is the last token
** in the sequence. Use this information to construct a string
** that contains the typename of the column and store that string
** in zType.
*/
void sqliteAddColumnType(Parse *pParse, Token *pFirst, Token *pLast){
Table *p;
int i, j;
int n;
char *z, **pz;
Column *pCol;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i<0 ) return;
pCol = &p->aCol[i];
pz = &pCol->zType;
n = pLast->n + Addr(pLast->z) - Addr(pFirst->z);
sqliteSetNString(pz, pFirst->z, n, 0);
z = *pz;
if( z==0 ) return;
for(i=j=0; z[i]; i++){
int c = z[i];
if( isspace(c) ) continue;
z[j++] = c;
}
z[j] = 0;
pCol->sortOrder = SQLITE_SO_NUM;
if( pParse->db->file_format>=4 ){
for(i=0; z[i]; i++){
switch( z[i] ){
case 'b':
case 'B': {
if( sqliteStrNICmp(&z[i],"blob",4)==0 ){
pCol->sortOrder = SQLITE_SO_TEXT;
return;
}
break;
}
case 'c':
case 'C': {
if( sqliteStrNICmp(&z[i],"char",4)==0 ||
sqliteStrNICmp(&z[i],"clob",4)==0 ){
pCol->sortOrder = SQLITE_SO_TEXT;
return;
}
break;
}
case 'x':
case 'X': {
if( i>=2 && sqliteStrNICmp(&z[i-2],"text",4)==0 ){
pCol->sortOrder = SQLITE_SO_TEXT;
return;
}
break;
}
default: {
break;
}
}
}
}
}
/*
** The given token is the default value for the last column added to
** the table currently under construction. If "minusFlag" is true, it
** means the value token was preceded by a minus sign.
**
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement.
*/
void sqliteAddDefaultValue(Parse *pParse, Token *pVal, int minusFlag){
Table *p;
int i;
char **pz;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i<0 ) return;
pz = &p->aCol[i].zDflt;
if( minusFlag ){
sqliteSetNString(pz, "-", 1, pVal->z, pVal->n, 0);
}else{
sqliteSetNString(pz, pVal->z, pVal->n, 0);
}
sqliteDequote(*pz);
}
/*
** Designate the PRIMARY KEY for the table. pList is a list of names
** of columns that form the primary key. If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key. If the table already has
** a primary key (and this is the second primary key) then create an
** error.
**
** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
** then we will try to use that column as the row id. (Exception:
** For backwards compatibility with older databases, do not do this
** if the file format version number is less than 1.) Set the Table.iPKey
** field of the table under construction to be the index of the
** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
** no INTEGER PRIMARY KEY.
**
** If the key is not an INTEGER PRIMARY KEY, then create a unique
** index for the key. No index is created for INTEGER PRIMARY KEYs.
*/
void sqliteAddPrimaryKey(Parse *pParse, IdList *pList, int onError){
Table *pTab = pParse->pNewTable;
char *zType = 0;
int iCol = -1;
if( pTab==0 ) return;
if( pTab->hasPrimKey ){
sqliteSetString(&pParse->zErrMsg, "table \"", pTab->zName,
"\" has more than one primary key", 0);
pParse->nErr++;
return;
}
pTab->hasPrimKey = 1;
if( pList==0 ){
iCol = pTab->nCol - 1;
}else if( pList->nId==1 ){
for(iCol=0; iCol<pTab->nCol; iCol++){
if( sqliteStrICmp(pList->a[0].zName, pTab->aCol[iCol].zName)==0 ) break;
}
}
if( iCol>=0 && iCol<pTab->nCol ){
zType = pTab->aCol[iCol].zType;
}
if( pParse->db->file_format>=1 &&
zType && sqliteStrICmp(zType, "INTEGER")==0 ){
pTab->iPKey = iCol;
pTab->keyConf = onError;
}else{
sqliteCreateIndex(pParse, 0, 0, pList, onError, 0, 0);
}
}
/*
** Return the appropriate collating type given the collation type token.
** Report an error if the type is undefined.
*/
int sqliteCollateType(Parse *pParse, Token *pType){
if( pType==0 ) return SQLITE_SO_UNK;
if( pType->n==4 && sqliteStrNICmp(pType->z, "text", 4)==0 ){
return SQLITE_SO_TEXT;
}
if( pType->n==7 && sqliteStrNICmp(pType->z, "numeric", 7)==0 ){
return SQLITE_SO_NUM;
}
sqliteSetNString(&pParse->zErrMsg, "unknown collating type: ", -1,
pType->z, pType->n, 0);
pParse->nErr++;
return SQLITE_SO_UNK;
}
/*
** This routine is called by the parser while in the middle of
** parsing a CREATE TABLE statement. A "COLLATE" clause has
** been seen on a column. This routine sets the Column.sortOrder on
** the column currently under construction.
*/
void sqliteAddCollateType(Parse *pParse, int collType){
Table *p;
int i;
if( (p = pParse->pNewTable)==0 ) return;
i = p->nCol-1;
if( i>=0 ) p->aCol[i].sortOrder = collType;
}
/*
** Come up with a new random value for the schema cookie. Make sure
** the new value is different from the old.
**
** The schema cookie is used to determine when the schema for the
** database changes. After each schema change, the cookie value
** changes. When a process first reads the schema it records the
** cookie. Thereafter, whenever it goes to access the database,
** it checks the cookie to make sure the schema has not changed
** since it was last read.
**
** This plan is not completely bullet-proof. It is possible for
** the schema to change multiple times and for the cookie to be
** set back to prior value. But schema changes are infrequent
** and the probability of hitting the same cookie value is only
** 1 chance in 2^32. So we're safe enough.
*/
void sqliteChangeCookie(sqlite *db, Vdbe *v){
if( db->next_cookie==db->schema_cookie ){
db->next_cookie = db->schema_cookie + sqliteRandomByte() + 1;
db->flags |= SQLITE_InternChanges;
sqliteVdbeAddOp(v, OP_Integer, db->next_cookie, 0);
sqliteVdbeAddOp(v, OP_SetCookie, 0, 0);
}
}
/*
** Measure the number of characters needed to output the given
** identifier. The number returned includes any quotes used
** but does not include the null terminator.
*/
static int identLength(const char *z){
int n;
int needQuote = 0;
for(n=0; *z; n++, z++){
if( *z=='\'' ){ n++; needQuote=1; }
}
return n + needQuote*2;
}
/*
** Write an identifier onto the end of the given string. Add
** quote characters as needed.
*/
static void identPut(char *z, int *pIdx, char *zIdent){
int i, j, needQuote;
i = *pIdx;
for(j=0; zIdent[j]; j++){
if( !isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
}
needQuote = zIdent[j]!=0 || isdigit(zIdent[0])
|| sqliteKeywordCode(zIdent, j)!=TK_ID;
if( needQuote ) z[i++] = '\'';
for(j=0; zIdent[j]; j++){
z[i++] = zIdent[j];
if( zIdent[j]=='\'' ) z[i++] = '\'';
}
if( needQuote ) z[i++] = '\'';
z[i] = 0;
*pIdx = i;
}
/*
** Generate a CREATE TABLE statement appropriate for the given
** table. Memory to hold the text of the statement is obtained
** from sqliteMalloc() and must be freed by the calling function.
*/
static char *createTableStmt(Table *p){
int i, k, n;
char *zStmt;
char *zSep, *zSep2, *zEnd;
n = 0;
for(i=0; i<p->nCol; i++){
n += identLength(p->aCol[i].zName);
}
n += identLength(p->zName);
if( n<40 ){
zSep = "";
zSep2 = ",";
zEnd = ")";
}else{
zSep = "\n ";
zSep2 = ",\n ";
zEnd = "\n)";
}
n += 35 + 6*p->nCol;
zStmt = sqliteMalloc( n );
if( zStmt==0 ) return 0;
strcpy(zStmt, p->isTemp ? "CREATE TEMP TABLE " : "CREATE TABLE ");
k = strlen(zStmt);
identPut(zStmt, &k, p->zName);
zStmt[k++] = '(';
for(i=0; i<p->nCol; i++){
strcpy(&zStmt[k], zSep);
k += strlen(&zStmt[k]);
zSep = zSep2;
identPut(zStmt, &k, p->aCol[i].zName);
}
strcpy(&zStmt[k], zEnd);
return zStmt;
}
/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have
** occurred.
**
** An entry for the table is made in the master table on disk,
** unless this is a temporary table or initFlag==1. When initFlag==1,
** it means we are reading the sqlite_master table because we just
** connected to the database or because the sqlite_master table has
** recently changes, so the entry for this table already exists in
** the sqlite_master table. We do not want to create it again.
**
** If the pSelect argument is not NULL, it means that this routine
** was called to create a table generated from a
** "CREATE TABLE ... AS SELECT ..." statement. The column names of
** the new table will match the result set of the SELECT.
*/
void sqliteEndTable(Parse *pParse, Token *pEnd, Select *pSelect){
Table *p;
sqlite *db = pParse->db;
if( (pEnd==0 && pSelect==0) || pParse->nErr || sqlite_malloc_failed ) return;
p = pParse->pNewTable;
if( p==0 ) return;
/* Add the table to the in-memory representation of the database.
*/
assert( pParse->nameClash==0 || pParse->initFlag==1 );
if( pParse->explain==0 && pParse->nameClash==0 ){
Table *pOld;
FKey *pFKey;
pOld = sqliteHashInsert(&db->tblHash, p->zName, strlen(p->zName)+1, p);
if( pOld ){
assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
return;
}
for(pFKey=p->pFKey; pFKey; pFKey=pFKey->pNextFrom){
int nTo = strlen(pFKey->zTo) + 1;
pFKey->pNextTo = sqliteHashFind(&db->aFKey, pFKey->zTo, nTo);
sqliteHashInsert(&db->aFKey, pFKey->zTo, nTo, pFKey);
}
pParse->pNewTable = 0;
db->nTable++;
db->flags |= SQLITE_InternChanges;
}
/* If the table is generated from a SELECT, then construct the
** list of columns and the text of the table.
*/
if( pSelect ){
Table *pSelTab = sqliteResultSetOfSelect(pParse, 0, pSelect);
if( pSelTab==0 ) return;
assert( p->aCol==0 );
p->nCol = pSelTab->nCol;
p->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqliteDeleteTable(0, pSelTab);
}
/* If the initFlag is 1 it means we are reading the SQL off the
** "sqlite_master" or "sqlite_temp_master" table on the disk.
** So do not write to the disk again. Extract the root page number
** for the table from the pParse->newTnum field. (The page number
** should have been put there by the sqliteOpenCb routine.)
*/
if( pParse->initFlag ){
p->tnum = pParse->newTnum;
}
/* If not initializing, then create a record for the new table
** in the SQLITE_MASTER table of the database. The record number
** for the new table entry should already be on the stack.
**
** If this is a TEMPORARY table, write the entry into the auxiliary
** file instead of into the main database file.
*/
if( !pParse->initFlag ){
int n;
Vdbe *v;
v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( p->pSelect==0 ){
/* A regular table */
sqliteVdbeAddOp(v, OP_CreateTable, 0, p->isTemp);
sqliteVdbeChangeP3(v, -1, (char *)&p->tnum, P3_POINTER);
}else{
/* A view */
sqliteVdbeAddOp(v, OP_Integer, 0, 0);
}
p->tnum = 0;
sqliteVdbeAddOp(v, OP_Pull, 1, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
if( p->pSelect==0 ){
sqliteVdbeChangeP3(v, -1, "table", P3_STATIC);
}else{
sqliteVdbeChangeP3(v, -1, "view", P3_STATIC);
}
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, p->zName, P3_STATIC);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, p->zName, P3_STATIC);
sqliteVdbeAddOp(v, OP_Dup, 4, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
if( pSelect ){
char *z = createTableStmt(p);
n = z ? strlen(z) : 0;
sqliteVdbeChangeP3(v, -1, z, n);
sqliteFree(z);
}else{
assert( pEnd!=0 );
n = Addr(pEnd->z) - Addr(pParse->sFirstToken.z) + 1;
sqliteVdbeChangeP3(v, -1, pParse->sFirstToken.z, n);
}
sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
if( !p->isTemp ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
if( pSelect ){
int op = p->isTemp ? OP_OpenWrAux : OP_OpenWrite;
sqliteVdbeAddOp(v, op, 1, 0);
pParse->nTab = 2;
sqliteSelect(pParse, pSelect, SRT_Table, 1, 0, 0, 0);
}
sqliteEndWriteOperation(pParse);
}
}
/*
** The parser calls this routine in order to create a new VIEW
*/
void sqliteCreateView(
Parse *pParse, /* The parsing context */
Token *pBegin, /* The CREATE token that begins the statement */
Token *pName, /* The token that holds the name of the view */
Select *pSelect, /* A SELECT statement that will become the new view */
int isTemp /* TRUE for a TEMPORARY view */
){
Table *p;
int n;
const char *z;
Token sEnd;
sqliteStartTable(pParse, pBegin, pName, isTemp);
p = pParse->pNewTable;
if( p==0 ){
sqliteSelectDelete(pSelect);
return;
}
/* Ignore ORDER BY clauses on a SELECT */
if( pSelect->pOrderBy ){
sqliteExprListDelete(pSelect->pOrderBy);
pSelect->pOrderBy = 0;
}
/* Make a copy of the entire SELECT statement that defines the view.
** This will force all the Expr.token.z values to be dynamically
** allocated rather than point to the input string - which means that
** they will persist after the current sqlite_exec() call returns.
*/
p->pSelect = sqliteSelectDup(pSelect);
sqliteSelectDelete(pSelect);
if( !pParse->initFlag ){
sqliteViewGetColumnNames(pParse, p);
}
/* Locate the end of the CREATE VIEW statement. Make sEnd point to
** the end.
*/
sEnd = pParse->sLastToken;
if( sEnd.z[0]!=0 && sEnd.z[0]!=';' ){
sEnd.z += sEnd.n;
}
sEnd.n = 0;
n = ((int)sEnd.z) - (int)pBegin->z;
z = pBegin->z;
while( n>0 && (z[n-1]==';' || isspace(z[n-1])) ){ n--; }
sEnd.z = &z[n-1];
sEnd.n = 1;
/* Use sqliteEndTable() to add the view to the SQLITE_MASTER table */
sqliteEndTable(pParse, &sEnd, 0);
return;
}
/*
** The Table structure pTable is really a VIEW. Fill in the names of
** the columns of the view in the pTable structure. Return the number
** of errors. If an error is seen leave an error message in pPare->zErrMsg.
*/
int sqliteViewGetColumnNames(Parse *pParse, Table *pTable){
ExprList *pEList;
Select *pSel;
Table *pSelTab;
int nErr = 0;
assert( pTable );
/* A positive nCol means the columns names for this view are
** already known.
*/
if( pTable->nCol>0 ) return 0;
/* A negative nCol is a special marker meaning that we are currently
** trying to compute the column names. If we enter this routine with
** a negative nCol, it means two or more views form a loop, like this:
**
** CREATE VIEW one AS SELECT * FROM two;
** CREATE VIEW two AS SELECT * FROM one;
**
** Actually, this error is caught previously and so the following test
** should always fail. But we will leave it in place just to be safe.
*/
if( pTable->nCol<0 ){
sqliteSetString(&pParse->zErrMsg, "view ", pTable->zName,
" is circularly defined", 0);
pParse->nErr++;
return 1;
}
/* If we get this far, it means we need to compute the table names.
*/
assert( pTable->pSelect ); /* If nCol==0, then pTable must be a VIEW */
pSel = pTable->pSelect;
/* Note that the call to sqliteResultSetOfSelect() will expand any
** "*" elements in this list. But we will need to restore the list
** back to its original configuration afterwards, so we save a copy of
** the original in pEList.
*/
pEList = pSel->pEList;
pSel->pEList = sqliteExprListDup(pEList);
if( pSel->pEList==0 ){
pSel->pEList = pEList;
return 1; /* Malloc failed */
}
pTable->nCol = -1;
pSelTab = sqliteResultSetOfSelect(pParse, 0, pSel);
if( pSelTab ){
assert( pTable->aCol==0 );
pTable->nCol = pSelTab->nCol;
pTable->aCol = pSelTab->aCol;
pSelTab->nCol = 0;
pSelTab->aCol = 0;
sqliteDeleteTable(0, pSelTab);
pParse->db->flags |= SQLITE_UnresetViews;
}else{
pTable->nCol = 0;
nErr++;
}
sqliteSelectUnbind(pSel);
sqliteExprListDelete(pSel->pEList);
pSel->pEList = pEList;
return nErr;
}
/*
** Clear the column names from the VIEW pTable.
**
** This routine is called whenever any other table or view is modified.
** The view passed into this routine might depend directly or indirectly
** on the modified or deleted table so we need to clear the old column
** names so that they will be recomputed.
*/
static void sqliteViewResetColumnNames(Table *pTable){
int i;
if( pTable==0 || pTable->pSelect==0 ) return;
if( pTable->nCol==0 ) return;
for(i=0; i<pTable->nCol; i++){
sqliteFree(pTable->aCol[i].zName);
sqliteFree(pTable->aCol[i].zDflt);
sqliteFree(pTable->aCol[i].zType);
}
sqliteFree(pTable->aCol);
pTable->aCol = 0;
pTable->nCol = 0;
}
/*
** Clear the column names from every VIEW.
*/
void sqliteViewResetAll(sqlite *db){
HashElem *i;
if( (db->flags & SQLITE_UnresetViews)==0 ) return;
for(i=sqliteHashFirst(&db->tblHash); i; i=sqliteHashNext(i)){
Table *pTab = sqliteHashData(i);
if( pTab->pSelect ){
sqliteViewResetColumnNames(pTab);
}
}
db->flags &= ~SQLITE_UnresetViews;
}
/*
** Given a token, look up a table with that name. If not found, leave
** an error for the parser to find and return NULL.
*/
Table *sqliteTableFromToken(Parse *pParse, Token *pTok){
char *zName;
Table *pTab;
zName = sqliteTableNameFromToken(pTok);
if( zName==0 ) return 0;
pTab = sqliteFindTable(pParse->db, zName);
sqliteFree(zName);
if( pTab==0 ){
sqliteSetNString(&pParse->zErrMsg, "no such table: ", 0,
pTok->z, pTok->n, 0);
pParse->nErr++;
}
return pTab;
}
/*
** This routine is called to do the work of a DROP TABLE statement.
** pName is the name of the table to be dropped.
*/
void sqliteDropTable(Parse *pParse, Token *pName, int isView){
Table *pTable;
Vdbe *v;
int base;
sqlite *db = pParse->db;
if( pParse->nErr || sqlite_malloc_failed ) return;
pTable = sqliteTableFromToken(pParse, pName);
if( pTable==0 ) return;
if( pTable->readOnly ){
sqliteSetString(&pParse->zErrMsg, "table ", pTable->zName,
" may not be dropped", 0);
pParse->nErr++;
return;
}
if( isView && pTable->pSelect==0 ){
sqliteSetString(&pParse->zErrMsg, "use DROP TABLE to delete table ",
pTable->zName, 0);
pParse->nErr++;
return;
}
if( !isView && pTable->pSelect ){
sqliteSetString(&pParse->zErrMsg, "use DROP VIEW to delete view ",
pTable->zName, 0);
pParse->nErr++;
return;
}
/* Generate code to remove the table from the master table
** on disk.
*/
v = sqliteGetVdbe(pParse);
if( v ){
static VdbeOp dropTable[] = {
{ OP_Rewind, 0, ADDR(8), 0},
{ OP_String, 0, 0, 0}, /* 1 */
{ OP_MemStore, 1, 1, 0},
{ OP_MemLoad, 1, 0, 0}, /* 3 */
{ OP_Column, 0, 2, 0},
{ OP_Ne, 0, ADDR(7), 0},
{ OP_Delete, 0, 0, 0},
{ OP_Next, 0, ADDR(3), 0}, /* 7 */
};
Index *pIdx;
Trigger *pTrigger;
sqliteBeginWriteOperation(pParse, 0, pTable->isTemp);
sqliteOpenMasterTable(v, pTable->isTemp);
/* Drop all triggers associated with the table being dropped */
pTrigger = pTable->pTrigger;
while( pTrigger ){
Token tt;
tt.z = pTable->pTrigger->name;
tt.n = strlen(pTable->pTrigger->name);
sqliteDropTrigger(pParse, &tt, 1);
if( pParse->explain ){
pTrigger = pTrigger->pNext;
}else{
pTrigger = pTable->pTrigger;
}
}
base = sqliteVdbeAddOpList(v, ArraySize(dropTable), dropTable);
sqliteVdbeChangeP3(v, base+1, pTable->zName, 0);
if( !pTable->isTemp ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
if( !isView ){
sqliteVdbeAddOp(v, OP_Destroy, pTable->tnum, pTable->isTemp);
for(pIdx=pTable->pIndex; pIdx; pIdx=pIdx->pNext){
sqliteVdbeAddOp(v, OP_Destroy, pIdx->tnum, pTable->isTemp);
}
}
sqliteEndWriteOperation(pParse);
}
/* Delete the in-memory description of the table.
**
** Exception: if the SQL statement began with the EXPLAIN keyword,
** then no changes should be made.
*/
if( !pParse->explain ){
sqliteUnlinkAndDeleteTable(db, pTable);
db->flags |= SQLITE_InternChanges;
}
sqliteViewResetAll(db);
}
/*
** This routine constructs a P3 string suitable for an OP_MakeIdxKey
** opcode and adds that P3 string to the most recently inserted instruction
** in the virtual machine. The P3 string consists of a single character
** for each column in the index pIdx of table pTab. If the column uses
** a numeric sort order, then the P3 string character corresponding to
** that column is 'n'. If the column uses a text sort order, then the
** P3 string is 't'. See the OP_MakeIdxKey opcode documentation for
** additional information. See also the sqliteAddKeyType() routine.
*/
void sqliteAddIdxKeyType(Vdbe *v, Index *pIdx){
char *zType;
Table *pTab;
int i, n;
assert( pIdx!=0 && pIdx->pTable!=0 );
pTab = pIdx->pTable;
n = pIdx->nColumn;
zType = sqliteMalloc( n+1 );
if( zType==0 ) return;
for(i=0; i<n; i++){
int iCol = pIdx->aiColumn[i];
assert( iCol>=0 && iCol<pTab->nCol );
if( (pTab->aCol[iCol].sortOrder & SQLITE_SO_TYPEMASK)==SQLITE_SO_TEXT ){
zType[i] = 't';
}else{
zType[i] = 'n';
}
}
zType[n] = 0;
sqliteVdbeChangeP3(v, -1, zType, n);
sqliteFree(zType);
}
/*
** This routine is called to create a new foreign key on the table
** currently under construction. pFromCol determines which columns
** in the current table point to the foreign key. If pFromCol==0 then
** connect the key to the last column inserted. pTo is the name of
** the table referred to. pToCol is a list of tables in the other
** pTo table that the foreign key points to. flags contains all
** information about the conflict resolution algorithms specified
** in the ON DELETE, ON UPDATE and ON INSERT clauses.
**
** An FKey structure is created and added to the table currently
** under construction in the pParse->pNewTable field. The new FKey
** is not linked into db->aFKey at this point - that does not happen
** until sqliteEndTable().
**
** The foreign key is set for IMMEDIATE processing. A subsequent call
** to sqliteDeferForeignKey() might change this to DEFERRED.
*/
void sqliteCreateForeignKey(
Parse *pParse, /* Parsing context */
IdList *pFromCol, /* Columns in this table that point to other table */
Token *pTo, /* Name of the other table */
IdList *pToCol, /* Columns in the other table */
int flags /* Conflict resolution algorithms. */
){
Table *p = pParse->pNewTable;
int nByte;
int i;
int nCol;
char *z;
FKey *pFKey = 0;
assert( pTo!=0 );
if( p==0 || pParse->nErr ) goto fk_end;
if( pFromCol==0 ){
int iCol = p->nCol-1;
if( iCol<0 ) goto fk_end;
if( pToCol && pToCol->nId!=1 ){
sqliteSetNString(&pParse->zErrMsg, "foreign key on ", -1,
p->aCol[iCol].zName, -1,
" should reference only one column of table ", -1,
pTo->z, pTo->n, 0);
pParse->nErr++;
goto fk_end;
}
nCol = 1;
}else if( pToCol && pToCol->nId!=pFromCol->nId ){
sqliteSetString(&pParse->zErrMsg,
"number of columns in foreign key does not match the number of "
"columns in the referenced table", 0);
pParse->nErr++;
goto fk_end;
}else{
nCol = pFromCol->nId;
}
nByte = sizeof(*pFKey) + nCol*sizeof(pFKey->aCol[0]) + pTo->n + 1;
if( pToCol ){
for(i=0; i<pToCol->nId; i++){
nByte += strlen(pToCol->a[i].zName) + 1;
}
}
pFKey = sqliteMalloc( nByte );
if( pFKey==0 ) goto fk_end;
pFKey->pFrom = p;
pFKey->pNextFrom = p->pFKey;
z = (char*)&pFKey[1];
pFKey->aCol = (struct sColMap*)z;
z += sizeof(struct sColMap)*nCol;
pFKey->zTo = z;
memcpy(z, pTo->z, pTo->n);
z[pTo->n] = 0;
z += pTo->n+1;
pFKey->pNextTo = 0;
pFKey->nCol = nCol;
if( pFromCol==0 ){
pFKey->aCol[0].iFrom = p->nCol-1;
}else{
for(i=0; i<nCol; i++){
int j;
for(j=0; j<p->nCol; j++){
if( sqliteStrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
pFKey->aCol[i].iFrom = j;
break;
}
}
if( j>=p->nCol ){
sqliteSetString(&pParse->zErrMsg, "unknown column \"",
pFromCol->a[i].zName, "\" in foreign key definition", 0);
pParse->nErr++;
goto fk_end;
}
}
}
if( pToCol ){
for(i=0; i<nCol; i++){
int n = strlen(pToCol->a[i].zName);
pFKey->aCol[i].zCol = z;
memcpy(z, pToCol->a[i].zName, n);
z[n] = 0;
z += n+1;
}
}
pFKey->isDeferred = 0;
pFKey->deleteConf = flags & 0xff;
pFKey->updateConf = (flags >> 8 ) & 0xff;
pFKey->insertConf = (flags >> 16 ) & 0xff;
/* Link the foreign key to the table as the last step.
*/
p->pFKey = pFKey;
pFKey = 0;
fk_end:
sqliteFree(pFKey);
sqliteIdListDelete(pFromCol);
sqliteIdListDelete(pToCol);
}
/*
** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
** clause is seen as part of a foreign key definition. The isDeferred
** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
** The behavior of the most recently created foreign key is adjusted
** accordingly.
*/
void sqliteDeferForeignKey(Parse *pParse, int isDeferred){
Table *pTab;
FKey *pFKey;
if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
pFKey->isDeferred = isDeferred;
}
/*
** Create a new index for an SQL table. pIndex is the name of the index
** and pTable is the name of the table that is to be indexed. Both will
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed. pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.
**
** pList is a list of columns to be indexed. pList will be NULL if this
** is a primary key or unique-constraint on the most recent column added
** to the table currently under construction.
*/
void sqliteCreateIndex(
Parse *pParse, /* All information about this parse */
Token *pName, /* Name of the index. May be NULL */
Token *pTable, /* Name of the table to index. Use pParse->pNewTable if 0 */
IdList *pList, /* A list of columns to be indexed */
int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
Token *pStart, /* The CREATE token that begins a CREATE TABLE statement */
Token *pEnd /* The ")" that closes the CREATE INDEX statement */
){
Table *pTab; /* Table to be indexed */
Index *pIndex; /* The index to be created */
char *zName = 0;
int i, j;
Token nullId; /* Fake token for an empty ID list */
sqlite *db = pParse->db;
int hideName = 0; /* Do not put table name in the hash table */
if( pParse->nErr || sqlite_malloc_failed ) goto exit_create_index;
/*
** Find the table that is to be indexed. Return early if not found.
*/
if( pTable!=0 ){
assert( pName!=0 );
pTab = sqliteTableFromToken(pParse, pTable);
}else{
assert( pName==0 );
pTab = pParse->pNewTable;
}
if( pTab==0 || pParse->nErr ) goto exit_create_index;
if( pTab->readOnly ){
sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
" may not have new indices added", 0);
pParse->nErr++;
goto exit_create_index;
}
if( pTab->pSelect ){
sqliteSetString(&pParse->zErrMsg, "views may not be indexed", 0);
pParse->nErr++;
goto exit_create_index;
}
/* If this index is created while re-reading the schema from sqlite_master
** but the table associated with this index is a temporary table, it can
** only mean that the table that this index is really associated with is
** one whose name is hidden behind a temporary table with the same name.
** Since its table has been suppressed, we need to also suppress the
** index.
*/
if( pParse->initFlag && !pParse->isTemp && pTab->isTemp ){
goto exit_create_index;
}
/*
** Find the name of the index. Make sure there is not already another
** index or table with the same name.
**
** Exception: If we are reading the names of permanent indices from the
** sqlite_master table (because some other process changed the schema) and
** one of the index names collides with the name of a temporary table or
** index, then we will continue to process this index, but we will not
** store its name in the hash table. Set the hideName flag to accomplish
** this.
**
** If pName==0 it means that we are
** dealing with a primary key or UNIQUE constraint. We have to invent our
** own name.
*/
if( pName ){
Index *pISameName; /* Another index with the same name */
Table *pTSameName; /* A table with same name as the index */
zName = sqliteTableNameFromToken(pName);
if( zName==0 ) goto exit_create_index;
if( (pISameName = sqliteFindIndex(db, zName))!=0 ){
if( pISameName->pTable->isTemp && pParse->initFlag ){
hideName = 1;
}else{
sqliteSetString(&pParse->zErrMsg, "index ", zName,
" already exists", 0);
pParse->nErr++;
goto exit_create_index;
}
}
if( (pTSameName = sqliteFindTable(db, zName))!=0 ){
if( pTSameName->isTemp && pParse->initFlag ){
hideName = 1;
}else{
sqliteSetString(&pParse->zErrMsg, "there is already a table named ",
zName, 0);
pParse->nErr++;
goto exit_create_index;
}
}
}else{
char zBuf[30];
int n;
Index *pLoop;
for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
sprintf(zBuf,"%d)",n);
zName = 0;
sqliteSetString(&zName, "(", pTab->zName, " autoindex ", zBuf, 0);
if( zName==0 ) goto exit_create_index;
hideName = sqliteFindIndex(db, zName)!=0;
}
/* If pList==0, it means this routine was called to make a primary
** key out of the last column added to the table under construction.
** So create a fake list to simulate this.
*/
if( pList==0 ){
nullId.z = pTab->aCol[pTab->nCol-1].zName;
nullId.n = strlen(nullId.z);
pList = sqliteIdListAppend(0, &nullId);
if( pList==0 ) goto exit_create_index;
}
/*
** Allocate the index structure.
*/
pIndex = sqliteMalloc( sizeof(Index) + strlen(zName) + 1 +
sizeof(int)*pList->nId );
if( pIndex==0 ) goto exit_create_index;
pIndex->aiColumn = (int*)&pIndex[1];
pIndex->zName = (char*)&pIndex->aiColumn[pList->nId];
strcpy(pIndex->zName, zName);
pIndex->pTable = pTab;
pIndex->nColumn = pList->nId;
pIndex->onError = pIndex->isUnique = onError;
pIndex->autoIndex = pName==0;
/* Scan the names of the columns of the table to be indexed and
** load the column indices into the Index structure. Report an error
** if any column is not found.
*/
for(i=0; i<pList->nId; i++){
for(j=0; j<pTab->nCol; j++){
if( sqliteStrICmp(pList->a[i].zName, pTab->aCol[j].zName)==0 ) break;
}
if( j>=pTab->nCol ){
sqliteSetString(&pParse->zErrMsg, "table ", pTab->zName,
" has no column named ", pList->a[i].zName, 0);
pParse->nErr++;
sqliteFree(pIndex);
goto exit_create_index;
}
pIndex->aiColumn[i] = j;
}
/* Link the new Index structure to its table and to the other
** in-memory database structures.
*/
if( !pParse->explain && !hideName ){
Index *p;
p = sqliteHashInsert(&db->idxHash, pIndex->zName, strlen(zName)+1, pIndex);
if( p ){
assert( p==pIndex ); /* Malloc must have failed */
sqliteFree(pIndex);
goto exit_create_index;
}
db->flags |= SQLITE_InternChanges;
}
/* When adding an index to the list of indices for a table, make
** sure all indices labeled OE_Replace come after all those labeled
** OE_Ignore. This is necessary for the correct operation of UPDATE
** and INSERT.
*/
if( onError!=OE_Replace || pTab->pIndex==0
|| pTab->pIndex->onError==OE_Replace){
pIndex->pNext = pTab->pIndex;
pTab->pIndex = pIndex;
}else{
Index *pOther = pTab->pIndex;
while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
pOther = pOther->pNext;
}
pIndex->pNext = pOther->pNext;
pOther->pNext = pIndex;
}
/* If the initFlag is 1 it means we are reading the SQL off the
** "sqlite_master" table on the disk. So do not write to the disk
** again. Extract the table number from the pParse->newTnum field.
*/
if( pParse->initFlag && pTable!=0 ){
pIndex->tnum = pParse->newTnum;
}
/* If the initFlag is 0 then create the index on disk. This
** involves writing the index into the master table and filling in the
** index with the current table contents.
**
** The initFlag is 0 when the user first enters a CREATE INDEX
** command. The initFlag is 1 when a database is opened and
** CREATE INDEX statements are read out of the master table. In
** the latter case the index already exists on disk, which is why
** we don't want to recreate it.
**
** If pTable==0 it means this index is generated as a primary key
** or UNIQUE constraint of a CREATE TABLE statement. Since the table
** has just been created, it contains no data and the index initialization
** step can be skipped.
*/
else if( pParse->initFlag==0 ){
int n;
Vdbe *v;
int lbl1, lbl2;
int i;
int addr;
int isTemp = pTab->isTemp;
v = sqliteGetVdbe(pParse);
if( v==0 ) goto exit_create_index;
if( pTable!=0 ){
sqliteBeginWriteOperation(pParse, 0, isTemp);
sqliteOpenMasterTable(v, isTemp);
}
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, "index", P3_STATIC);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, pIndex->zName, P3_STATIC);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
addr = sqliteVdbeAddOp(v, OP_CreateIndex, 0, isTemp);
sqliteVdbeChangeP3(v, addr, (char*)&pIndex->tnum, P3_POINTER);
pIndex->tnum = 0;
if( pTable ){
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
if( isTemp ){
sqliteVdbeAddOp(v, OP_OpenWrAux, 1, 0);
}else{
sqliteVdbeAddOp(v, OP_OpenWrite, 1, 0);
}
}
addr = sqliteVdbeAddOp(v, OP_String, 0, 0);
if( pStart && pEnd ){
n = Addr(pEnd->z) - Addr(pStart->z) + 1;
sqliteVdbeChangeP3(v, addr, pStart->z, n);
}
sqliteVdbeAddOp(v, OP_MakeRecord, 5, 0);
sqliteVdbeAddOp(v, OP_PutIntKey, 0, 0);
if( pTable ){
sqliteVdbeAddOp(v, isTemp ? OP_OpenAux : OP_Open, 2, pTab->tnum);
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
lbl2 = sqliteVdbeMakeLabel(v);
sqliteVdbeAddOp(v, OP_Rewind, 2, lbl2);
lbl1 = sqliteVdbeAddOp(v, OP_Recno, 2, 0);
for(i=0; i<pIndex->nColumn; i++){
sqliteVdbeAddOp(v, OP_Column, 2, pIndex->aiColumn[i]);
}
sqliteVdbeAddOp(v, OP_MakeIdxKey, pIndex->nColumn, 0);
if( db->file_format>=4 ) sqliteAddIdxKeyType(v, pIndex);
sqliteVdbeAddOp(v, OP_IdxPut, 1, pIndex->onError!=OE_None);
sqliteVdbeAddOp(v, OP_Next, 2, lbl1);
sqliteVdbeResolveLabel(v, lbl2);
sqliteVdbeAddOp(v, OP_Close, 2, 0);
sqliteVdbeAddOp(v, OP_Close, 1, 0);
}
if( pTable!=0 ){
if( !isTemp ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
sqliteEndWriteOperation(pParse);
}
}
/* Clean up before exiting */
exit_create_index:
sqliteIdListDelete(pList);
sqliteFree(zName);
return;
}
/*
** This routine will drop an existing named index. This routine
** implements the DROP INDEX statement.
*/
void sqliteDropIndex(Parse *pParse, Token *pName){
Index *pIndex;
char *zName;
Vdbe *v;
sqlite *db = pParse->db;
if( pParse->nErr || sqlite_malloc_failed ) return;
zName = sqliteTableNameFromToken(pName);
if( zName==0 ) return;
pIndex = sqliteFindIndex(db, zName);
sqliteFree(zName);
if( pIndex==0 ){
sqliteSetNString(&pParse->zErrMsg, "no such index: ", 0,
pName->z, pName->n, 0);
pParse->nErr++;
return;
}
if( pIndex->autoIndex ){
sqliteSetString(&pParse->zErrMsg, "index associated with UNIQUE "
"or PRIMARY KEY constraint cannot be dropped", 0);
pParse->nErr++;
return;
}
/* Generate code to remove the index and from the master table */
v = sqliteGetVdbe(pParse);
if( v ){
static VdbeOp dropIndex[] = {
{ OP_Rewind, 0, ADDR(9), 0},
{ OP_String, 0, 0, 0}, /* 1 */
{ OP_MemStore, 1, 1, 0},
{ OP_MemLoad, 1, 0, 0}, /* 3 */
{ OP_Column, 0, 1, 0},
{ OP_Eq, 0, ADDR(8), 0},
{ OP_Next, 0, ADDR(3), 0},
{ OP_Goto, 0, ADDR(9), 0},
{ OP_Delete, 0, 0, 0}, /* 8 */
};
int base;
Table *pTab = pIndex->pTable;
sqliteBeginWriteOperation(pParse, 0, pTab->isTemp);
sqliteOpenMasterTable(v, pTab->isTemp);
base = sqliteVdbeAddOpList(v, ArraySize(dropIndex), dropIndex);
sqliteVdbeChangeP3(v, base+1, pIndex->zName, 0);
if( !pTab->isTemp ){
sqliteChangeCookie(db, v);
}
sqliteVdbeAddOp(v, OP_Close, 0, 0);
sqliteVdbeAddOp(v, OP_Destroy, pIndex->tnum, pTab->isTemp);
sqliteEndWriteOperation(pParse);
}
/* Delete the in-memory description of this index.
*/
if( !pParse->explain ){
sqliteUnlinkAndDeleteIndex(db, pIndex);
db->flags |= SQLITE_InternChanges;
}
}
/*
** Append a new element to the given IdList. Create a new IdList if
** need be.
**
** A new IdList is returned, or NULL if malloc() fails.
*/
IdList *sqliteIdListAppend(IdList *pList, Token *pToken){
if( pList==0 ){
pList = sqliteMalloc( sizeof(IdList) );
if( pList==0 ) return 0;
}
if( (pList->nId & 7)==0 ){
struct IdList_item *a;
a = sqliteRealloc(pList->a, (pList->nId+8)*sizeof(pList->a[0]) );
if( a==0 ){
sqliteIdListDelete(pList);
return 0;
}
pList->a = a;
}
memset(&pList->a[pList->nId], 0, sizeof(pList->a[0]));
if( pToken ){
char **pz = &pList->a[pList->nId].zName;
sqliteSetNString(pz, pToken->z, pToken->n, 0);
if( *pz==0 ){
sqliteIdListDelete(pList);
return 0;
}else{
sqliteDequote(*pz);
}
}
pList->nId++;
return pList;
}
/*
** Append a new table name to the given SrcList. Create a new SrcList if
** need be. A new entry is created in the SrcList even if pToken is NULL.
**
** A new SrcList is returned, or NULL if malloc() fails.
*/
SrcList *sqliteSrcListAppend(SrcList *pList, Token *pToken){
if( pList==0 ){
pList = sqliteMalloc( sizeof(IdList) );
if( pList==0 ) return 0;
}
if( (pList->nSrc & 7)==0 ){
struct SrcList_item *a;
a = sqliteRealloc(pList->a, (pList->nSrc+8)*sizeof(pList->a[0]) );
if( a==0 ){
sqliteSrcListDelete(pList);
return 0;
}
pList->a = a;
}
memset(&pList->a[pList->nSrc], 0, sizeof(pList->a[0]));
if( pToken ){
char **pz = &pList->a[pList->nSrc].zName;
sqliteSetNString(pz, pToken->z, pToken->n, 0);
if( *pz==0 ){
sqliteSrcListDelete(pList);
return 0;
}else{
sqliteDequote(*pz);
}
}
pList->nSrc++;
return pList;
}
/*
** Add an alias to the last identifier on the given identifier list.
*/
void sqliteSrcListAddAlias(SrcList *pList, Token *pToken){
if( pList && pList->nSrc>0 ){
int i = pList->nSrc - 1;
sqliteSetNString(&pList->a[i].zAlias, pToken->z, pToken->n, 0);
sqliteDequote(pList->a[i].zAlias);
}
}
/*
** Delete an IdList.
*/
void sqliteIdListDelete(IdList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nId; i++){
sqliteFree(pList->a[i].zName);
}
sqliteFree(pList->a);
sqliteFree(pList);
}
/*
** Return the index in pList of the identifier named zId. Return -1
** if not found.
*/
int sqliteIdListIndex(IdList *pList, const char *zName){
int i;
if( pList==0 ) return -1;
for(i=0; i<pList->nId; i++){
if( sqliteStrICmp(pList->a[i].zName, zName)==0 ) return i;
}
return -1;
}
/*
** Delete an entire SrcList including all its substructure.
*/
void sqliteSrcListDelete(SrcList *pList){
int i;
if( pList==0 ) return;
for(i=0; i<pList->nSrc; i++){
sqliteFree(pList->a[i].zName);
sqliteFree(pList->a[i].zAlias);
if( pList->a[i].pTab && pList->a[i].pTab->isTransient ){
sqliteDeleteTable(0, pList->a[i].pTab);
}
sqliteSelectDelete(pList->a[i].pSelect);
sqliteExprDelete(pList->a[i].pOn);
sqliteIdListDelete(pList->a[i].pUsing);
}
sqliteFree(pList->a);
sqliteFree(pList);
}
/*
** The COPY command is for compatibility with PostgreSQL and specificially
** for the ability to read the output of pg_dump. The format is as
** follows:
**
** COPY table FROM file [USING DELIMITERS string]
**
** "table" is an existing table name. We will read lines of code from
** file to fill this table with data. File might be "stdin". The optional
** delimiter string identifies the field separators. The default is a tab.
*/
void sqliteCopy(
Parse *pParse, /* The parser context */
Token *pTableName, /* The name of the table into which we will insert */
Token *pFilename, /* The file from which to obtain information */
Token *pDelimiter, /* Use this as the field delimiter */
int onError /* What to do if a constraint fails */
){
Table *pTab;
char *zTab;
int i;
Vdbe *v;
int addr, end;
Index *pIdx;
sqlite *db = pParse->db;
zTab = sqliteTableNameFromToken(pTableName);
if( sqlite_malloc_failed || zTab==0 ) goto copy_cleanup;
pTab = sqliteTableNameToTable(pParse, zTab);
sqliteFree(zTab);
if( pTab==0 ) goto copy_cleanup;
v = sqliteGetVdbe(pParse);
if( v ){
int openOp;
sqliteBeginWriteOperation(pParse, 1, pTab->isTemp);
addr = sqliteVdbeAddOp(v, OP_FileOpen, 0, 0);
sqliteVdbeChangeP3(v, addr, pFilename->z, pFilename->n);
sqliteVdbeDequoteP3(v, addr);
openOp = pTab->isTemp ? OP_OpenWrAux : OP_OpenWrite;
sqliteVdbeAddOp(v, openOp, 0, pTab->tnum);
sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
sqliteVdbeAddOp(v, openOp, i, pIdx->tnum);
sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
}
if( db->flags & SQLITE_CountRows ){
sqliteVdbeAddOp(v, OP_Integer, 0, 0); /* Initialize the row count */
}
end = sqliteVdbeMakeLabel(v);
addr = sqliteVdbeAddOp(v, OP_FileRead, pTab->nCol, end);
if( pDelimiter ){
sqliteVdbeChangeP3(v, addr, pDelimiter->z, pDelimiter->n);
sqliteVdbeDequoteP3(v, addr);
}else{
sqliteVdbeChangeP3(v, addr, "\t", 1);
}
if( pTab->iPKey>=0 ){
sqliteVdbeAddOp(v, OP_FileColumn, pTab->iPKey, 0);
sqliteVdbeAddOp(v, OP_MustBeInt, 0, 0);
}else{
sqliteVdbeAddOp(v, OP_NewRecno, 0, 0);
}
for(i=0; i<pTab->nCol; i++){
if( i==pTab->iPKey ){
/* The integer primary key column is filled with NULL since its
** value is always pulled from the record number */
sqliteVdbeAddOp(v, OP_String, 0, 0);
}else{
sqliteVdbeAddOp(v, OP_FileColumn, i, 0);
}
}
sqliteGenerateConstraintChecks(pParse, pTab, 0, 0, 0, 0, onError, addr);
sqliteCompleteInsertion(pParse, pTab, 0, 0, 0, 0);
if( (db->flags & SQLITE_CountRows)!=0 ){
sqliteVdbeAddOp(v, OP_AddImm, 1, 0); /* Increment row count */
}
sqliteVdbeAddOp(v, OP_Goto, 0, addr);
sqliteVdbeResolveLabel(v, end);
sqliteVdbeAddOp(v, OP_Noop, 0, 0);
sqliteEndWriteOperation(pParse);
if( db->flags & SQLITE_CountRows ){
sqliteVdbeAddOp(v, OP_ColumnCount, 1, 0);
sqliteVdbeAddOp(v, OP_ColumnName, 0, 0);
sqliteVdbeChangeP3(v, -1, "rows inserted", P3_STATIC);
sqliteVdbeAddOp(v, OP_Callback, 1, 0);
}
}
copy_cleanup:
return;
}
/*
** The non-standard VACUUM command is used to clean up the database,
** collapse free space, etc. It is modelled after the VACUUM command
** in PostgreSQL.
**
** In version 1.0.x of SQLite, the VACUUM command would call
** gdbm_reorganize() on all the database tables. But beginning
** with 2.0.0, SQLite no longer uses GDBM so this command has
** become a no-op.
*/
void sqliteVacuum(Parse *pParse, Token *pTableName){
/* Do nothing */
}
/*
** Begin a transaction
*/
void sqliteBeginTransaction(Parse *pParse, int onError){
sqlite *db;
if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return;
if( pParse->nErr || sqlite_malloc_failed ) return;
if( db->flags & SQLITE_InTrans ){
pParse->nErr++;
sqliteSetString(&pParse->zErrMsg, "cannot start a transaction "
"within a transaction", 0);
return;
}
sqliteBeginWriteOperation(pParse, 0, 0);
db->flags |= SQLITE_InTrans;
db->onError = onError;
}
/*
** Commit a transaction
*/
void sqliteCommitTransaction(Parse *pParse){
sqlite *db;
if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return;
if( pParse->nErr || sqlite_malloc_failed ) return;
if( (db->flags & SQLITE_InTrans)==0 ){
pParse->nErr++;
sqliteSetString(&pParse->zErrMsg,
"cannot commit - no transaction is active", 0);
return;
}
db->flags &= ~SQLITE_InTrans;
sqliteEndWriteOperation(pParse);
db->onError = OE_Default;
}
/*
** Rollback a transaction
*/
void sqliteRollbackTransaction(Parse *pParse){
sqlite *db;
Vdbe *v;
if( pParse==0 || (db=pParse->db)==0 || db->pBe==0 ) return;
if( pParse->nErr || sqlite_malloc_failed ) return;
if( (db->flags & SQLITE_InTrans)==0 ){
pParse->nErr++;
sqliteSetString(&pParse->zErrMsg,
"cannot rollback - no transaction is active", 0);
return;
}
v = sqliteGetVdbe(pParse);
if( v ){
sqliteVdbeAddOp(v, OP_Rollback, 0, 0);
}
db->flags &= ~SQLITE_InTrans;
db->onError = OE_Default;
}
/*
** Generate VDBE code that prepares for doing an operation that
** might change the database.
**
** This routine starts a new transaction if we are not already within
** a transaction. If we are already within a transaction, then a checkpoint
** is set if the setCheckpoint parameter is true. A checkpoint should
** be set for operations that might fail (due to a constraint) part of
** the way through and which will need to undo some writes without having to
** rollback the whole transaction. For operations where all constraints
** can be checked before any changes are made to the database, it is never
** necessary to undo a write and the checkpoint should not be set.
**
** The tempOnly flag indicates that only temporary tables will be changed
** during this write operation. The primary database table is not
** write-locked. Only the temporary database file gets a write lock.
** Other processes can continue to read or write the primary database file.
*/
void sqliteBeginWriteOperation(Parse *pParse, int setCheckpoint, int tempOnly){
Vdbe *v;
v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( pParse->trigStack ) return; /* if this is in a trigger */
if( (pParse->db->flags & SQLITE_InTrans)==0 ){
sqliteVdbeAddOp(v, OP_Transaction, tempOnly, 0);
if( !tempOnly ){
sqliteVdbeAddOp(v, OP_VerifyCookie, pParse->db->schema_cookie, 0);
pParse->schemaVerified = 1;
}
}else if( setCheckpoint ){
sqliteVdbeAddOp(v, OP_Checkpoint, 0, 0);
}
}
/*
** Generate code that concludes an operation that may have changed
** the database. This is a companion function to BeginWriteOperation().
** If a transaction was started, then commit it. If a checkpoint was
** started then commit that.
*/
void sqliteEndWriteOperation(Parse *pParse){
Vdbe *v;
if( pParse->trigStack ) return; /* if this is in a trigger */
v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( pParse->db->flags & SQLITE_InTrans ){
/* Do Nothing */
}else{
sqliteVdbeAddOp(v, OP_Commit, 0, 0);
}
}
/*
** Interpret the given string as a boolean value.
*/
static int getBoolean(char *z){
static char *azTrue[] = { "yes", "on", "true" };
int i;
if( z[0]==0 ) return 0;
if( isdigit(z[0]) || (z[0]=='-' && isdigit(z[1])) ){
return atoi(z);
}
for(i=0; i<sizeof(azTrue)/sizeof(azTrue[0]); i++){
if( sqliteStrICmp(z,azTrue[i])==0 ) return 1;
}
return 0;
}
/*
** Process a pragma statement.
**
** Pragmas are of this form:
**
** PRAGMA id = value
**
** The identifier might also be a string. The value is a string, and
** identifier, or a number. If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
*/
void sqlitePragma(Parse *pParse, Token *pLeft, Token *pRight, int minusFlag){
char *zLeft = 0;
char *zRight = 0;
sqlite *db = pParse->db;
zLeft = sqliteStrNDup(pLeft->z, pLeft->n);
sqliteDequote(zLeft);
if( minusFlag ){
zRight = 0;
sqliteSetNString(&zRight, "-", 1, pRight->z, pRight->n, 0);
}else{
zRight = sqliteStrNDup(pRight->z, pRight->n);
sqliteDequote(zRight);
}
/*
** PRAGMA default_cache_size
** PRAGMA default_cache_size=N
**
** The first form reports the current persistent setting for the
** page cache size. The value returned is the maximum number of
** pages in the page cache. The second form sets both the current
** page cache size value and the persistent page cache size value
** stored in the database file.
**
** The default cache size is stored in meta-value 2 of page 1 of the
** database file. The cache size is actually the absolute value of
** this memory location. The sign of meta-value 2 determines the
** synchronous setting. A negative value means synchronous is off
** and a positive value means synchronous is on.
*/
if( sqliteStrICmp(zLeft,"default_cache_size")==0 ){
static VdbeOp getCacheSize[] = {
{ OP_ReadCookie, 0, 2, 0},
{ OP_AbsValue, 0, 0, 0},
{ OP_Dup, 0, 0, 0},
{ OP_Integer, 0, 0, 0},
{ OP_Ne, 0, 6, 0},
{ OP_Integer, MAX_PAGES,0, 0},
{ OP_ColumnCount, 1, 0, 0},
{ OP_ColumnName, 0, 0, "cache_size"},
{ OP_Callback, 1, 0, 0},
};
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( pRight->z==pLeft->z ){
sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
}else{
int addr;
int size = atoi(zRight);
if( size<0 ) size = -size;
sqliteBeginWriteOperation(pParse, 0, 0);
sqliteVdbeAddOp(v, OP_Integer, size, 0);
sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
sqliteVdbeAddOp(v, OP_Ge, 0, addr+3);
sqliteVdbeAddOp(v, OP_Negative, 0, 0);
sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
sqliteEndWriteOperation(pParse);
db->cache_size = db->cache_size<0 ? -size : size;
sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
}
}else
/*
** PRAGMA cache_size
** PRAGMA cache_size=N
**
** The first form reports the current local setting for the
** page cache size. The local setting can be different from
** the persistent cache size value that is stored in the database
** file itself. The value returned is the maximum number of
** pages in the page cache. The second form sets the local
** page cache size value. It does not change the persistent
** cache size stored on the disk so the cache size will revert
** to its default value when the database is closed and reopened.
** N should be a positive integer.
*/
if( sqliteStrICmp(zLeft,"cache_size")==0 ){
static VdbeOp getCacheSize[] = {
{ OP_ColumnCount, 1, 0, 0},
{ OP_ColumnName, 0, 0, "cache_size"},
{ OP_Callback, 1, 0, 0},
};
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( pRight->z==pLeft->z ){
int size = db->cache_size;;
if( size<0 ) size = -size;
sqliteVdbeAddOp(v, OP_Integer, size, 0);
sqliteVdbeAddOpList(v, ArraySize(getCacheSize), getCacheSize);
}else{
int size = atoi(zRight);
if( size<0 ) size = -size;
if( db->cache_size<0 ) size = -size;
db->cache_size = size;
sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
}
}else
/*
** PRAGMA default_synchronous
** PRAGMA default_synchronous=BOOLEAN
**
** The first form returns the persistent value of the "synchronous" setting
** that is stored in the database. This is the synchronous setting that
** is used whenever the database is opened unless overridden by a separate
** "synchronous" pragma. The second form changes the persistent and the
** local synchronous setting to the value given.
**
** If synchronous is on, SQLite will do an fsync() system call at strategic
** points to insure that all previously written data has actually been
** written onto the disk surface before continuing. This mode insures that
** the database will always be in a consistent state event if the operating
** system crashes or power to the computer is interrupted unexpectedly.
** When synchronous is off, SQLite will not wait for changes to actually
** be written to the disk before continuing. As soon as it hands changes
** to the operating system, it assumes that the changes are permanent and
** it continues going. The database cannot be corrupted by a program crash
** even with synchronous off, but an operating system crash or power loss
** could potentially corrupt data. On the other hand, synchronous off is
** faster than synchronous on.
*/
if( sqliteStrICmp(zLeft,"default_synchronous")==0 ){
static VdbeOp getSync[] = {
{ OP_Integer, 0, 0, 0},
{ OP_ReadCookie, 0, 2, 0},
{ OP_Integer, 0, 0, 0},
{ OP_Lt, 0, 5, 0},
{ OP_AddImm, 1, 0, 0},
{ OP_ColumnCount, 1, 0, 0},
{ OP_ColumnName, 0, 0, "synchronous"},
{ OP_Callback, 1, 0, 0},
};
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( pRight->z==pLeft->z ){
sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
}else{
int addr;
int size = db->cache_size;
if( size<0 ) size = -size;
sqliteBeginWriteOperation(pParse, 0, 0);
sqliteVdbeAddOp(v, OP_ReadCookie, 0, 2);
sqliteVdbeAddOp(v, OP_Dup, 0, 0);
addr = sqliteVdbeAddOp(v, OP_Integer, 0, 0);
sqliteVdbeAddOp(v, OP_Ne, 0, addr+3);
sqliteVdbeAddOp(v, OP_AddImm, MAX_PAGES, 0);
sqliteVdbeAddOp(v, OP_AbsValue, 0, 0);
if( !getBoolean(zRight) ){
sqliteVdbeAddOp(v, OP_Negative, 0, 0);
size = -size;
}
sqliteVdbeAddOp(v, OP_SetCookie, 0, 2);
sqliteEndWriteOperation(pParse);
db->cache_size = size;
sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
}
}else
/*
** PRAGMA synchronous
** PRAGMA synchronous=BOOLEAN
**
** Return or set the local value of the synchronous flag. Changing
** the local value does not make changes to the disk file and the
** default value will be restored the next time the database is
** opened.
*/
if( sqliteStrICmp(zLeft,"synchronous")==0 ){
static VdbeOp getSync[] = {
{ OP_ColumnCount, 1, 0, 0},
{ OP_ColumnName, 0, 0, "synchronous"},
{ OP_Callback, 1, 0, 0},
};
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
if( pRight->z==pLeft->z ){
sqliteVdbeAddOp(v, OP_Integer, db->cache_size>=0, 0);
sqliteVdbeAddOpList(v, ArraySize(getSync), getSync);
}else{
int size = db->cache_size;
if( size<0 ) size = -size;
if( !getBoolean(zRight) ) size = -size;
db->cache_size = size;
sqliteBtreeSetCacheSize(db->pBe, db->cache_size);
}
}else
if( sqliteStrICmp(zLeft, "trigger_overhead_test")==0 ){
if( getBoolean(zRight) ){
always_code_trigger_setup = 1;
}else{
always_code_trigger_setup = 0;
}
}else
if( sqliteStrICmp(zLeft, "vdbe_trace")==0 ){
if( getBoolean(zRight) ){
db->flags |= SQLITE_VdbeTrace;
}else{
db->flags &= ~SQLITE_VdbeTrace;
}
}else
if( sqliteStrICmp(zLeft, "full_column_names")==0 ){
if( getBoolean(zRight) ){
db->flags |= SQLITE_FullColNames;
}else{
db->flags &= ~SQLITE_FullColNames;
}
}else
if( sqliteStrICmp(zLeft, "show_datatypes")==0 ){
if( getBoolean(zRight) ){
db->flags |= SQLITE_ReportTypes;
}else{
db->flags &= ~SQLITE_ReportTypes;
}
}else
if( sqliteStrICmp(zLeft, "result_set_details")==0 ){
if( getBoolean(zRight) ){
db->flags |= SQLITE_ResultDetails;
}else{
db->flags &= ~SQLITE_ResultDetails;
}
}else
if( sqliteStrICmp(zLeft, "count_changes")==0 ){
if( getBoolean(zRight) ){
db->flags |= SQLITE_CountRows;
}else{
db->flags &= ~SQLITE_CountRows;
}
}else
if( sqliteStrICmp(zLeft, "empty_result_callbacks")==0 ){
if( getBoolean(zRight) ){
db->flags |= SQLITE_NullCallback;
}else{
db->flags &= ~SQLITE_NullCallback;
}
}else
if( sqliteStrICmp(zLeft, "table_info")==0 ){
Table *pTab;
Vdbe *v;
pTab = sqliteFindTable(db, zRight);
if( pTab ) v = sqliteGetVdbe(pParse);
if( pTab && v ){
static VdbeOp tableInfoPreface[] = {
{ OP_ColumnCount, 5, 0, 0},
{ OP_ColumnName, 0, 0, "cid"},
{ OP_ColumnName, 1, 0, "name"},
{ OP_ColumnName, 2, 0, "type"},
{ OP_ColumnName, 3, 0, "notnull"},
{ OP_ColumnName, 4, 0, "dflt_value"},
};
int i;
sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
sqliteViewGetColumnNames(pParse, pTab);
for(i=0; i<pTab->nCol; i++){
sqliteVdbeAddOp(v, OP_Integer, i, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zName, P3_STATIC);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1,
pTab->aCol[i].zType ? pTab->aCol[i].zType : "text", P3_STATIC);
sqliteVdbeAddOp(v, OP_Integer, pTab->aCol[i].notNull, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, pTab->aCol[i].zDflt, P3_STATIC);
sqliteVdbeAddOp(v, OP_Callback, 5, 0);
}
}
}else
if( sqliteStrICmp(zLeft, "index_info")==0 ){
Index *pIdx;
Table *pTab;
Vdbe *v;
pIdx = sqliteFindIndex(db, zRight);
if( pIdx ) v = sqliteGetVdbe(pParse);
if( pIdx && v ){
static VdbeOp tableInfoPreface[] = {
{ OP_ColumnCount, 3, 0, 0},
{ OP_ColumnName, 0, 0, "seqno"},
{ OP_ColumnName, 1, 0, "cid"},
{ OP_ColumnName, 2, 0, "name"},
};
int i;
pTab = pIdx->pTable;
sqliteVdbeAddOpList(v, ArraySize(tableInfoPreface), tableInfoPreface);
for(i=0; i<pIdx->nColumn; i++){
int cnum = pIdx->aiColumn[i];
sqliteVdbeAddOp(v, OP_Integer, i, 0);
sqliteVdbeAddOp(v, OP_Integer, cnum, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
assert( pTab->nCol>cnum );
sqliteVdbeChangeP3(v, -1, pTab->aCol[cnum].zName, P3_STATIC);
sqliteVdbeAddOp(v, OP_Callback, 3, 0);
}
}
}else
if( sqliteStrICmp(zLeft, "index_list")==0 ){
Index *pIdx;
Table *pTab;
Vdbe *v;
pTab = sqliteFindTable(db, zRight);
if( pTab ){
v = sqliteGetVdbe(pParse);
pIdx = pTab->pIndex;
}
if( pTab && pIdx && v ){
int i = 0;
static VdbeOp indexListPreface[] = {
{ OP_ColumnCount, 3, 0, 0},
{ OP_ColumnName, 0, 0, "seq"},
{ OP_ColumnName, 1, 0, "name"},
{ OP_ColumnName, 2, 0, "unique"},
};
sqliteVdbeAddOpList(v, ArraySize(indexListPreface), indexListPreface);
while(pIdx){
sqliteVdbeAddOp(v, OP_Integer, i, 0);
sqliteVdbeAddOp(v, OP_String, 0, 0);
sqliteVdbeChangeP3(v, -1, pIdx->zName, P3_STATIC);
sqliteVdbeAddOp(v, OP_Integer, pIdx->onError!=OE_None, 0);
sqliteVdbeAddOp(v, OP_Callback, 3, 0);
++i;
pIdx = pIdx->pNext;
}
}
}else
#ifndef NDEBUG
if( sqliteStrICmp(zLeft, "parser_trace")==0 ){
extern void sqliteParserTrace(FILE*, char *);
if( getBoolean(zRight) ){
sqliteParserTrace(stdout, "parser: ");
}else{
sqliteParserTrace(0, 0);
}
}else
#endif
if( sqliteStrICmp(zLeft, "integrity_check")==0 ){
static VdbeOp checkDb[] = {
{ OP_SetInsert, 0, 0, "2"},
{ OP_Open, 0, 2, 0},
{ OP_Rewind, 0, 6, 0},
{ OP_Column, 0, 3, 0}, /* 3 */
{ OP_SetInsert, 0, 0, 0},
{ OP_Next, 0, 3, 0},
{ OP_IntegrityCk, 0, 0, 0}, /* 6 */
{ OP_ColumnCount, 1, 0, 0},
{ OP_ColumnName, 0, 0, "integrity_check"},
{ OP_Callback, 1, 0, 0},
{ OP_SetInsert, 1, 0, "2"},
{ OP_OpenAux, 1, 2, 0},
{ OP_Rewind, 1, 16, 0},
{ OP_Column, 1, 3, 0}, /* 13 */
{ OP_SetInsert, 1, 0, 0},
{ OP_Next, 1, 13, 0},
{ OP_IntegrityCk, 1, 1, 0}, /* 16 */
{ OP_Callback, 1, 0, 0},
};
Vdbe *v = sqliteGetVdbe(pParse);
if( v==0 ) return;
sqliteVdbeAddOpList(v, ArraySize(checkDb), checkDb);
}else
{}
sqliteFree(zLeft);
sqliteFree(zRight);
}