/ Artifact [495535f3]
Login

Artifact 495535f3eb57acdc384572da570e869bb1834bf4:


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
/*
** 2012 April 10
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This module implements a VIRTUAL TABLE that can be used to search
** a large vocabulary for close matches.  For example, this virtual
** table can be used to suggest corrections to misspelled words.  Or,
** it could be used with FTS4 to do full-text search using potentially
** misspelled words.
**
** Create an instance of the virtual table this way:
**
**    CREATE VIRTUAL TABLE demo USING spellfix1;
**
** The "spellfix1" term is the name of this module.  The "demo" is the
** name of the virtual table you will be creating.  The table is initially
** empty.  You have to populate it with your vocabulary.  Suppose you
** have a list of words in a table named "big_vocabulary".  Then do this:
**
**    INSERT INTO demo(word) SELECT word FROM big_vocabulary;
**
** If you intend to use this virtual table in cooperation with an FTS4
** table (for spelling correctly of search terms) then you can extract
** the vocabulary using an fts3aux table:
**
**    INSERT INTO demo(word) SELECT term FROM search_aux WHERE col='*';
**
** You can also provide the virtual table with a "rank" for each word.
** The "rank" is an estimate of how common the word is.  Larger numbers
** mean the word is more common.  If you omit the rank when populating
** the table, then a rank of 1 is assumed.  But if you have rank 
** information, you can supply it and the virtual table will show a
** slight preference for selecting more commonly used terms.  To
** populate the rank from an fts4aux table "search_aux" do something
** like this:
**
**    INSERT INTO demo(word,rank)
**        SELECT term, documents FROM search_aux WHERE col='*';
**
** To query the virtual table, include a MATCH operator in the WHERE
** clause.  For example:
**
**    SELECT word FROM demo WHERE word MATCH 'kennasaw';
**
** Using a dataset of American place names (derived from
** http://geonames.usgs.gov/domestic/download_data.htm) the query above
** returns 20 results beginning with:
**
**    kennesaw
**    kenosha
**    kenesaw
**    kenaga
**    keanak
**
** If you append the character '*' to the end of the pattern, then
** a prefix search is performed.  For example:
**
**    SELECT word FROM demo WHERE word MATCH 'kennes*';
**
** Yields 20 results beginning with:
**
**    kennesaw
**    kennestone
**    kenneson
**    kenneys
**    keanes
**    keenes
**
** The virtual table actually has a unique rowid with five columns plus three
** extra hidden columns.  The columns are as follows:
**
**    rowid         A unique integer number associated with each
**                  vocabulary item in the table.  This can be used
**                  as a foreign key on other tables in the database.
**
**    word          The text of the word that matches the pattern.
**                  Both word and pattern can contains unicode characters
**                  and can be mixed case.
**
**    rank          This is the rank of the word, as specified in the
**                  original INSERT statement.
**
**    distance      This is an edit distance or Levensthein distance going
**                  from the pattern to the word.
**
**    langid        This is the language-id of the word.  All queries are
**                  against a single language-id, which defaults to 0.
**                  For any given query this value is the same on all rows.
**
**    score         The score is a combination of rank and distance.  The
**                  idea is that a lower score is better.  The virtual table
**                  attempts to find words with the lowest score and 
**                  by default (unless overridden by ORDER BY) returns
**                  results in order of increasing score.
**
**    top           (HIDDEN)  For any query, this value is the same on all
**                  rows.  It is an integer which is the maximum number of
**                  rows that will be output.  The actually number of rows
**                  output might be less than this number, but it will never
**                  be greater.  The default value for top is 20, but that
**                  can be changed for each query by including a term of
**                  the form "top=N" in the WHERE clause of the query.
**
**    scope         (HIDDEN)  For any query, this value is the same on all
**                  rows.  The scope is a measure of how widely the virtual
**                  table looks for matching words.  Smaller values of
**                  scope cause a broader search.  The scope is normally
**                  choosen automatically and is capped at 4.  Applications
**                  can change the scope by including a term of the form
**                  "scope=N" in the WHERE clause of the query.  Increasing
**                  the scope will make the query run faster, but will reduce
**                  the possible corrections.
**
**    srchcnt       (HIDDEN)  For any query, this value is the same on all
**                  rows.  This value is an integer which is the number of
**                  of words examined using the edit-distance algorithm to
**                  find the top matches that are ultimately displayed.  This
**                  value is for diagnostic use only.
**
**    soundslike    (HIDDEN)  When inserting vocabulary entries, this field
**                  can be set to an spelling that matches what the word
**                  sounds like.  See the DEALING WITH UNUSUAL AND DIFFICULT
**                  SPELLINGS section below for details.
**
** When inserting into or updating the virtual table, only the rowid, word,
** rank, and langid may be changes.  Any attempt to set or modify the values
** of distance, score, top, scope, or srchcnt is silently ignored.
**
** ALGORITHM
**
** A shadow table named "%_vocab" (where the % is replaced by the name of
** the virtual table; Ex: "demo_vocab" for the "demo" virtual table) is
** constructed with these columns:
**
**    id            The unique id (INTEGER PRIMARY KEY)
**
**    rank          The rank of word.
**
**    langid        The language id for this entry.
**
**    word          The original UTF8 text of the vocabulary word
**
**    k1            The word transliterated into lower-case ASCII.  
**                  There is a standard table of mappings from non-ASCII
**                  characters into ASCII.  Examples: "æ" -> "ae",
**                  "þ" -> "th", "ß" -> "ss", "á" -> "a", ...  The
**                  accessory function spellfix1_translit(X) will do
**                  the non-ASCII to ASCII mapping.  The built-in lower(X)
**                  function will convert to lower-case.  Thus:
**                  k1 = lower(spellfix1_translit(word)).
**
**    k2            This field holds a phonetic code derived from k1.  Letters
**                  that have similar sounds are mapped into the same symbol.
**                  For example, all vowels and vowel clusters become the
**                  single symbol "A".  And the letters "p", "b", "f", and
**                  "v" all become "B".  All nasal sounds are represented
**                  as "N".  And so forth.  The mapping is base on
**                  ideas found in Soundex, Metaphone, and other
**                  long-standing phonetic matching systems.  This key can
**                  be generated by the function spellfix1_charclass(X).  
**                  Hence: k2 = spellfix1_charclass(k1)
**
** There is also a function for computing the Wagner edit distance or the
** Levenshtein distance between a pattern and a word.  This function
** is exposed as spellfix1_editdist(X,Y).  The edit distance function
** returns the "cost" of converting X into Y.  Some transformations
** cost more than others.  Changing one vowel into a different vowel,
** for example is relatively cheap, as is doubling a constant, or
** omitting the second character of a double-constant.  Other transformations
** or more expensive.  The idea is that the edit distance function returns
** a low cost of words that are similar and a higher cost for words
** that are futher apart.  In this implementation, the maximum cost
** of any single-character edit (delete, insert, or substitute) is 100,
** with lower costs for some edits (such as transforming vowels).
**
** The "score" for a comparison is the edit distance between the pattern
** and the word, adjusted down by the base-2 logorithm of the word rank.
** For example, a match with distance 100 but rank 1000 would have a
** score of 122 (= 100 - log2(1000) + 32) where as a match with distance
** 100 with a rank of 1 would have a score of 131 (100 - log2(1) + 32).
** (NB:  The constant 32 is added to each score to keep it from going
** negative in case the edit distance is zero.)  In this way, frequently
** used words get a slightly lower cost which tends to move them toward
** the top of the list of alternative spellings.
**
** A straightforward implementation of a spelling corrector would be
** to compare the search term against every word in the vocabulary
** and select the 20 with the lowest scores.  However, there will 
** typically be hundreds of thousands or millions of words in the
** vocabulary, and so this approach is not fast enough.
**
** Suppose the term that is being spell-corrected is X.  To limit
** the search space, X is converted to a k2-like key using the
** equivalent of:
**
**    key = spellfix1_charclass(lower(spellfix1_translit(X)))
**
** This key is then limited to "scope" characters.  The default scope
** value is 4, but an alternative scope can be specified using the
** "scope=N" term in the WHERE clause.  After the key has been truncated,
** the edit distance is run against every term in the vocabulary that
** has a k2 value that begins with the abbreviated key.
**
** For example, suppose the input word is "Paskagula".  The phonetic 
** key is "BACACALA" which is then truncated to 4 characters "BACA".
** The edit distance is then run on the 4980 entries (out of
** 272,597 entries total) of the vocabulary whose k2 values begin with
** BACA, yielding "Pascagoula" as the best match.
** 
** Only terms of the vocabulary with a matching langid are searched.
** Hence, the same table can contain entries from multiple languages
** and only the requested language will be used.  The default langid
** is 0.
**
** DEALING WITH UNUSUAL AND DIFFICULT SPELLINGS
**
** The algorithm above works quite well for most cases, but there are
** exceptions.  These exceptions can be dealt with by making additional
** entries in the virtual table using the "soundslike" column.
**
** For example, many words of Greek origin begin with letters "ps" where
** the "p" is silent.  Ex:  psalm, pseudonym, psoriasis, psyche.  In
** another example, many Scottish surnames can be spelled with an
** initial "Mac" or "Mc".  Thus, "MacKay" and "McKay" are both pronounced
** the same.
**
** Accommodation can be made for words that are not spelled as they
** sound by making additional entries into the virtual table for the
** same word, but adding an alternative spelling in the "soundslike"
** column.  For example, the canonical entry for "psalm" would be this:
**
**   INSERT INTO demo(word) VALUES('psalm');
**
** To enhance the ability to correct the spelling of "salm" into
** "psalm", make an addition entry like this:
**
**   INSERT INTO demo(word,soundslike) VALUES('psalm','salm');
**
** It is ok to make multiple entries for the same word as long as
** each entry has a different soundslike value.  Note that if no
** soundslike value is specified, the soundslike defaults to the word
** itself.
**
** Listed below are some cases where it might make sense to add additional
** soundslike entries.  The specific entries will depend on the application
** and the target language.
**
**   *   Silent "p" in words beginning with "ps":  psalm, psyche
**
**   *   Silent "p" in words beginning with "pn":  pneumonia, pneumatic
**
**   *   Silent "p" in words beginning with "pt":  pterodactyl, ptolemaic
**
**   *   Silent "d" in words beginning with "dj":  djinn, Djikarta
**
**   *   Silent "k" in words beginning with "kn":  knight, Knuthson
**
**   *   Silent "g" in words beginning with "gn":  gnarly, gnome, gnat
**
**   *   "Mac" versus "Mc" beginning Scottish surnames
**
**   *   "Tch" sounds in Slavic words:  Tchaikovsky vs. Chaykovsky
**
**   *   The letter "j" pronounced like "h" in Spanish:  LaJolla
**
**   *   Words beginning with "wr" versus "r":  write vs. rite
**
**   *   Miscellanous problem words such as "debt", "tsetse",
**       "Nguyen", "Van Nuyes".
*/
#if SQLITE_CORE
# include "sqliteInt.h"
#else
# include <string.h>
# include <stdio.h>
# include <stdlib.h>
# include "sqlite3ext.h"
  SQLITE_EXTENSION_INIT1
#endif /* !SQLITE_CORE */

/*
** Character classes for ASCII characters:
**
**   0   ''        Silent letters:   H W
**   1   'A'       Any vowel:   A E I O U (Y)
**   2   'B'       A bilabeal stop or fricative:  B F P V
**   3   'C'       Other fricatives or back stops:  C G J K Q S X Z
**   4   'D'       Alveolar stops:  D T
**   5   'H'       Letter H at the beginning of a word
**   6   'L'       Glides:  L R
**   7   'M'       Nasals:  M N
**   8   'W'       Letter W at the beginning of a word
**   9   'Y'       Letter Y at the beginning of a word.
**   10  '9'       A digit: 0 1 2 3 4 5 6 7 8 9
**   11  ' '       White space
**   12  '?'       Other.
*/
#define CCLASS_SILENT         0
#define CCLASS_VOWEL          1
#define CCLASS_B              2
#define CCLASS_C              3
#define CCLASS_D              4
#define CCLASS_H              5
#define CCLASS_L              6
#define CCLASS_M              7
#define CCLASS_W              8
#define CCLASS_Y              9
#define CCLASS_DIGIT         10
#define CCLASS_SPACE         11
#define CCLASS_OTHER         12

/*
** The following table gives the character class for non-initial ASCII
** characters.
*/
static const unsigned char midClass[] = {
          /* x0  x1  x2  x3  x4  x5  x6  x7    x8  x9  xa  xb  xc  xd  xe  xf */
  /* 0x */   12, 12, 12, 12, 12, 12, 12, 12,   12, 11, 11, 12, 11, 12, 12, 12,
  /* 1x */   12, 12, 12, 12, 12, 12, 12, 12,   12, 12, 12, 12, 12, 12, 12, 12,
  /* 2x */   11, 12, 12, 12, 12, 12, 12, 12,   12, 12, 12, 12, 12, 12, 12, 12,
  /* 3x */   10, 10, 10, 10, 10, 10, 10, 10,   10, 10, 12, 12, 12, 12, 12, 12,
  /* 4x */   12,  1,  2,  3,  4,  1,  2,  3,    0,  1,  3,  3,  6,  7,  7,  1,
  /* 5x */    2,  3,  6,  3,  4,  1,  2,  0,    3,  1,  3, 12, 12, 12, 12, 12,
  /* 6x */   12,  1,  2,  3,  4,  1,  2,  3,    0,  1,  3,  3,  6,  7,  7,  1,
  /* 7x */    2,  3,  6,  3,  4,  1,  2,  0,    3,  1,  3, 12, 12, 12, 12, 12,
};

/* 
** This tables gives the character class for ASCII characters that form the
** initial character of a word.  The only difference from midClass is with
** the letters H, W, and Y.
*/
static const unsigned char initClass[] = {
          /* x0  x1  x2  x3  x4  x5  x6  x7    x8  x9  xa  xb  xc  xd  xe  xf */
  /* 0x */   12, 12, 12, 12, 12, 12, 12, 12,   12, 11, 11, 12, 11, 12, 12, 12,
  /* 1x */   12, 12, 12, 12, 12, 12, 12, 12,   12, 12, 12, 12, 12, 12, 12, 12,
  /* 2x */   11, 12, 12, 12, 12, 12, 12, 12,   12, 12, 12, 12, 12, 12, 12, 12,
  /* 3x */   10, 10, 10, 10, 10, 10, 10, 10,   10, 10, 12, 12, 12, 12, 12, 12,
  /* 4x */   12,  1,  2,  3,  4,  1,  2,  3,    5,  1,  3,  3,  6,  7,  7,  1,
  /* 5x */    2,  3,  6,  3,  4,  1,  2,  8,    3,  9,  3, 12, 12, 12, 12, 12,
  /* 6x */   12,  1,  2,  3,  4,  1,  2,  3,    5,  1,  3,  3,  6,  7,  7,  1,
  /* 7x */    2,  3,  6,  3,  4,  1,  2,  8,    3,  9,  3, 12, 12, 12, 12, 12,
};

/*
** Mapping from the character class number (0-12) to a symbol for each
** character class.  Note that initClass[] can be used to map the class
** symbol back into the class number.
*/
static const unsigned char className[] = ".ABCDHLMWY9 ?";

/*
** Generate a string of character classes corresponding to the
** ASCII characters in the input string zIn.  If the input is not
** ASCII then the behavior is undefined.
**
** Space to hold the result is obtained from sqlite3_malloc()
**
** Return NULL if memory allocation fails.  
*/
static unsigned char *characterClassString(const unsigned char *zIn, int nIn){
  unsigned char *zOut = sqlite3_malloc( nIn + 1 );
  int i;
  int nOut = 0;
  char cPrev = 0x77;
  const unsigned char *aClass = initClass;

  if( zOut==0 ) return 0;
  for(i=0; i<nIn; i++){
    unsigned char c = zIn[i];
    c = aClass[c&0x7f];
    if( c==CCLASS_OTHER && cPrev!=CCLASS_DIGIT ) continue;
    cPrev = c;
    if( c==CCLASS_SILENT ) continue;
    if( c==CCLASS_SPACE ) continue;
    aClass = midClass;
    c = className[c];
    if( c!=zOut[nOut-1] ) zOut[nOut++] = c;
  }
  zOut[nOut] = 0;
  return zOut;
}

/*
** This is an SQL function wrapper around characterClassString().  See
** the description of characterClassString() for additional information.
*/
static void characterClassSqlFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const unsigned char *zIn;
  unsigned char *zOut;

  zIn = sqlite3_value_text(argv[0]);
  if( zIn==0 ) return;
  zOut = characterClassString(zIn, sqlite3_value_bytes(argv[0]));
  if( zOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    sqlite3_result_text(context, (char*)zOut, -1, sqlite3_free);
  }
}

/*
** Return the character class number for a character given its
** context.
*/
static char characterClass(char cPrev, char c){
  return cPrev==0 ? initClass[c&0x7f] : midClass[c&0x7f];
}

/*
** Return the cost of inserting or deleting character c immediately
** following character cPrev.  If cPrev==0, that means c is the first
** character of the word.
*/
static int insertOrDeleteCost(char cPrev, char c){
  char classC = characterClass(cPrev, c);
  char classCprev;

  if( classC==CCLASS_SILENT ){
    /* Insert or delete "silent" characters such as H or W */
    return 1;
  }
  if( cPrev==c ){
    /* Repeated characters, or miss a repeat */
    return 10;
  }
  classCprev = characterClass(cPrev, cPrev);
  if( classC==classCprev ){
    if( classC==CCLASS_VOWEL ){
      /* Remove or add a new vowel to a vowel cluster */
      return 15;
    }else{
      /* Remove or add a consonant not in the same class */
      return 50;
    }
  }

  /* any other character insertion or deletion */
  return 100;
}

/*
** Divide the insertion cost by this factor when appending to the
** end of the word.
*/
#define FINAL_INS_COST_DIV  4

/*
** Return the cost of substituting cTo in place of cFrom assuming
** the previous character is cPrev.  If cPrev==0 then cTo is the first
** character of the word.
*/
static int substituteCost(char cPrev, char cFrom, char cTo){
  char classFrom, classTo;
  if( cFrom==cTo ){
    /* Exact match */
    return 0;
  }
  if( cFrom==(cTo^0x20) && ((cTo>='A' && cTo<='Z') || (cTo>='a' && cTo<='z')) ){
    /* differ only in case */
    return 0;
  }
  classFrom = characterClass(cPrev, cFrom);
  classTo = characterClass(cPrev, cTo);
  if( classFrom==classTo ){
    /* Same character class */
    return classFrom=='A' ? 25 : 40;
  }
  if( classFrom>=CCLASS_B && classFrom<=CCLASS_Y
      && classTo>=CCLASS_B && classTo<=CCLASS_Y ){
    /* Convert from one consonant to another, but in a different class */
    return 75;
  }
  /* Any other subsitution */
  return 100;
}

/*
** Given two strings zA and zB which are pure ASCII, return the cost
** of transforming zA into zB.  If zA ends with '*' assume that it is
** a prefix of zB and give only minimal penalty for extra characters
** on the end of zB.
**
** Smaller numbers mean a closer match.
**
** Negative values indicate an error:
**    -1  One of the inputs is NULL
**    -2  Non-ASCII characters on input
**    -3  Unable to allocate memory 
*/
static int editdist(const char *zA, const char *zB){
  int nA, nB;            /* Number of characters in zA[] and zB[] */
  int xA, xB;            /* Loop counters for zA[] and zB[] */
  char cA, cB;           /* Current character of zA and zB */
  char cAprev, cBprev;   /* Previous character of zA and zB */
  int d;                 /* North-west cost value */
  int dc = 0;            /* North-west character value */
  int res;               /* Final result */
  int *m;                /* The cost matrix */
  char *cx;              /* Corresponding character values */
  int *toFree = 0;       /* Malloced space */
  int mStack[60+15];     /* Stack space to use if not too much is needed */

  /* Early out if either input is NULL */
  if( zA==0 || zB==0 ) return -1;

  /* Skip any common prefix */
  while( zA[0] && zA[0]==zB[0] ){ dc = zA[0]; zA++; zB++; }
  if( zA[0]==0 && zB[0]==0 ) return 0;

#if 0
  printf("A=\"%s\" B=\"%s\" dc=%c\n", zA, zB, dc?dc:' ');
#endif

  /* Verify input strings and measure their lengths */
  for(nA=0; zA[nA]; nA++){
    if( zA[nA]>127 ) return -2;
  }
  for(nB=0; zB[nB]; nB++){
    if( zB[nB]>127 ) return -2;
  }

  /* Special processing if either string is empty */
  if( nA==0 ){
    cBprev = dc;
    for(xB=res=0; (cB = zB[xB])!=0; xB++){
      res += insertOrDeleteCost(cBprev, cB)/FINAL_INS_COST_DIV;
      cBprev = cB;
    }
    return res;
  }
  if( nB==0 ){
    cAprev = dc;
    for(xA=res=0; (cA = zA[xA])!=0; xA++){
      res += insertOrDeleteCost(cAprev, cA);
      cAprev = cA;
    }
    return res;
  }

  /* A is a prefix of B */
  if( zA[0]=='*' && zA[1]==0 ) return 0;

  /* Allocate and initialize the Wagner matrix */
  if( nB<(sizeof(mStack)*4)/(sizeof(mStack[0])*5) ){
    m = mStack;
  }else{
    m = toFree = sqlite3_malloc( (nB+1)*5*sizeof(m[0])/4 );
    if( m==0 ) return -3;
  }
  cx = (char*)&m[nB+1];

  /* Compute the Wagner edit distance */
  m[0] = 0;
  cx[0] = dc;
  cBprev = dc;
  for(xB=1; xB<=nB; xB++){
    cB = zB[xB-1];
    cx[xB] = cB;
    m[xB] = m[xB-1] + insertOrDeleteCost(cBprev, cB);
    cBprev = cB;
  }
  cAprev = dc;
  for(xA=1; xA<=nA; xA++){
    int lastA = (xA==nA);
    cA = zA[xA-1];
    if( cA=='*' && lastA ) break;
    d = m[0];
    dc = cx[0];
    m[0] = d + insertOrDeleteCost(cAprev, cA);
    cBprev = 0;
    for(xB=1; xB<=nB; xB++){
      int totalCost, insCost, delCost, subCost, ncx;
      cB = zB[xB-1];

      /* Cost to insert cB */
      insCost = insertOrDeleteCost(cx[xB-1], cB);
      if( lastA ) insCost /= FINAL_INS_COST_DIV;

      /* Cost to delete cA */
      delCost = insertOrDeleteCost(cx[xB], cA);

      /* Cost to substitute cA->cB */
      subCost = substituteCost(cx[xB-1], cA, cB);

      /* Best cost */
      totalCost = insCost + m[xB-1];
      ncx = cB;
      if( (delCost + m[xB])<totalCost ){
        totalCost = delCost + m[xB];
        ncx = cA;
      }
      if( (subCost + d)<totalCost ){
        totalCost = subCost + d;
      }

#if 0
      printf("%d,%d d=%4d u=%4d r=%4d dc=%c cA=%c cB=%c"
             " ins=%4d del=%4d sub=%4d t=%4d ncx=%c\n",
             xA, xB, d, m[xB], m[xB-1], dc?dc:' ', cA, cB,
             insCost, delCost, subCost, totalCost, ncx?ncx:' ');
#endif

      /* Update the matrix */
      d = m[xB];
      dc = cx[xB];
      m[xB] = totalCost;
      cx[xB] = ncx;
      cBprev = cB;
    }
    cAprev = cA;
  }

  /* Free the wagner matrix and return the result */
  if( cA=='*' && nB>nA ){
    res = m[nA];
    for(xB=nA+1; xB<=nB; xB++){
      if( m[xB]<res ) res = m[xB];
    }
  }else{
    res = m[nB];
  }
  sqlite3_free(toFree);
  return res;
}

/*
** Function:    editdist(A,B)
**
** Return the cost of transforming string A into string B.  Both strings
** must be pure ASCII text.  If A ends with '*' then it is assumed to be
** a prefix of B and extra characters on the end of B have minimal additional
** cost.
*/
static void editdistSqlFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int res = editdist((const char*)sqlite3_value_text(argv[0]),
                    (const char*)sqlite3_value_text(argv[1]));
  if( res<0 ){
    if( res==(-3) ){
      sqlite3_result_error_nomem(context);
    }else if( res==(-2) ){
      sqlite3_result_error(context, "non-ASCII input to editdist()", -1);
    }else{
      sqlite3_result_error(context, "NULL input to editdist()", -1);
    }
  }else{ 
    sqlite3_result_int(context, res);
  }
}

#if !SQLITE_CORE
/*
** This lookup table is used to help decode the first byte of
** a multi-byte UTF8 character.
*/
static const unsigned char sqlite3Utf8Trans1[] = {
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
  0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
  0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
  0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
};
#endif

/*
** Return the value of the first UTF-8 character in the string.
*/
static int utf8Read(const unsigned char *z, int n, int *pSize){
  int c, i;

  if( n==0 ){
    c = i = 0;
  }else{
    c = z[0];
    i = 1;
    if( c>=0xc0 ){
      c = sqlite3Utf8Trans1[c-0xc0];
      while( i<n && (z[i] & 0xc0)==0x80 ){
        c = (c<<6) + (0x3f & z[i++]);
      }
    }
  }
  *pSize = i;
  return c;
}

/*
** Table of translations from unicode characters into ASCII.
*/
static const struct {
 unsigned short int cFrom;
 unsigned char cTo0, cTo1;
} translit[] = {
  { 0x00A0,  0x20, 0x00 },  /*   to   */
  { 0x00B5,  0x75, 0x00 },  /* µ to u */
  { 0x00C0,  0x41, 0x00 },  /* À to A */
  { 0x00C1,  0x41, 0x00 },  /* Á to A */
  { 0x00C2,  0x41, 0x00 },  /* Â to A */
  { 0x00C3,  0x41, 0x00 },  /* Ã to A */
  { 0x00C4,  0x41, 0x65 },  /* Ä to Ae */
  { 0x00C5,  0x41, 0x61 },  /* Å to Aa */
  { 0x00C6,  0x41, 0x45 },  /* Æ to AE */
  { 0x00C7,  0x43, 0x00 },  /* Ç to C */
  { 0x00C8,  0x45, 0x00 },  /* È to E */
  { 0x00C9,  0x45, 0x00 },  /* É to E */
  { 0x00CA,  0x45, 0x00 },  /* Ê to E */
  { 0x00CB,  0x45, 0x00 },  /* Ë to E */
  { 0x00CC,  0x49, 0x00 },  /* Ì to I */
  { 0x00CD,  0x49, 0x00 },  /* Í to I */
  { 0x00CE,  0x49, 0x00 },  /* Î to I */
  { 0x00CF,  0x49, 0x00 },  /* Ï to I */
  { 0x00D0,  0x44, 0x00 },  /* Ð to D */
  { 0x00D1,  0x4E, 0x00 },  /* Ñ to N */
  { 0x00D2,  0x4F, 0x00 },  /* Ò to O */
  { 0x00D3,  0x4F, 0x00 },  /* Ó to O */
  { 0x00D4,  0x4F, 0x00 },  /* Ô to O */
  { 0x00D5,  0x4F, 0x00 },  /* Õ to O */
  { 0x00D6,  0x4F, 0x65 },  /* Ö to Oe */
  { 0x00D7,  0x78, 0x00 },  /* × to x */
  { 0x00D8,  0x4F, 0x00 },  /* Ø to O */
  { 0x00D9,  0x55, 0x00 },  /* Ù to U */
  { 0x00DA,  0x55, 0x00 },  /* Ú to U */
  { 0x00DB,  0x55, 0x00 },  /* Û to U */
  { 0x00DC,  0x55, 0x65 },  /* Ü to Ue */
  { 0x00DD,  0x59, 0x00 },  /* Ý to Y */
  { 0x00DE,  0x54, 0x68 },  /* Þ to Th */
  { 0x00DF,  0x73, 0x73 },  /* ß to ss */
  { 0x00E0,  0x61, 0x00 },  /* à to a */
  { 0x00E1,  0x61, 0x00 },  /* á to a */
  { 0x00E2,  0x61, 0x00 },  /* â to a */
  { 0x00E3,  0x61, 0x00 },  /* ã to a */
  { 0x00E4,  0x61, 0x65 },  /* ä to ae */
  { 0x00E5,  0x61, 0x61 },  /* å to aa */
  { 0x00E6,  0x61, 0x65 },  /* æ to ae */
  { 0x00E7,  0x63, 0x00 },  /* ç to c */
  { 0x00E8,  0x65, 0x00 },  /* è to e */
  { 0x00E9,  0x65, 0x00 },  /* é to e */
  { 0x00EA,  0x65, 0x00 },  /* ê to e */
  { 0x00EB,  0x65, 0x00 },  /* ë to e */
  { 0x00EC,  0x69, 0x00 },  /* ì to i */
  { 0x00ED,  0x69, 0x00 },  /* í to i */
  { 0x00EE,  0x69, 0x00 },  /* î to i */
  { 0x00EF,  0x69, 0x00 },  /* ï to i */
  { 0x00F0,  0x64, 0x00 },  /* ð to d */
  { 0x00F1,  0x6E, 0x00 },  /* ñ to n */
  { 0x00F2,  0x6F, 0x00 },  /* ò to o */
  { 0x00F3,  0x6F, 0x00 },  /* ó to o */
  { 0x00F4,  0x6F, 0x00 },  /* ô to o */
  { 0x00F5,  0x6F, 0x00 },  /* õ to o */
  { 0x00F6,  0x6F, 0x65 },  /* ö to oe */
  { 0x00F7,  0x3A, 0x00 },  /* ÷ to : */
  { 0x00F8,  0x6F, 0x00 },  /* ø to o */
  { 0x00F9,  0x75, 0x00 },  /* ù to u */
  { 0x00FA,  0x75, 0x00 },  /* ú to u */
  { 0x00FB,  0x75, 0x00 },  /* û to u */
  { 0x00FC,  0x75, 0x65 },  /* ü to ue */
  { 0x00FD,  0x79, 0x00 },  /* ý to y */
  { 0x00FE,  0x74, 0x68 },  /* þ to th */
  { 0x00FF,  0x79, 0x00 },  /* ÿ to y */
  { 0x0100,  0x41, 0x00 },  /* Ā to A */
  { 0x0101,  0x61, 0x00 },  /* ā to a */
  { 0x0102,  0x41, 0x00 },  /* Ă to A */
  { 0x0103,  0x61, 0x00 },  /* ă to a */
  { 0x0104,  0x41, 0x00 },  /* Ą to A */
  { 0x0105,  0x61, 0x00 },  /* ą to a */
  { 0x0106,  0x43, 0x00 },  /* Ć to C */
  { 0x0107,  0x63, 0x00 },  /* ć to c */
  { 0x0108,  0x43, 0x68 },  /* Ĉ to Ch */
  { 0x0109,  0x63, 0x68 },  /* ĉ to ch */
  { 0x010A,  0x43, 0x00 },  /* Ċ to C */
  { 0x010B,  0x63, 0x00 },  /* ċ to c */
  { 0x010C,  0x43, 0x00 },  /* Č to C */
  { 0x010D,  0x63, 0x00 },  /* č to c */
  { 0x010E,  0x44, 0x00 },  /* Ď to D */
  { 0x010F,  0x64, 0x00 },  /* ď to d */
  { 0x0110,  0x44, 0x00 },  /* Đ to D */
  { 0x0111,  0x64, 0x00 },  /* đ to d */
  { 0x0112,  0x45, 0x00 },  /* Ē to E */
  { 0x0113,  0x65, 0x00 },  /* ē to e */
  { 0x0114,  0x45, 0x00 },  /* Ĕ to E */
  { 0x0115,  0x65, 0x00 },  /* ĕ to e */
  { 0x0116,  0x45, 0x00 },  /* Ė to E */
  { 0x0117,  0x65, 0x00 },  /* ė to e */
  { 0x0118,  0x45, 0x00 },  /* Ę to E */
  { 0x0119,  0x65, 0x00 },  /* ę to e */
  { 0x011A,  0x45, 0x00 },  /* Ě to E */
  { 0x011B,  0x65, 0x00 },  /* ě to e */
  { 0x011C,  0x47, 0x68 },  /* Ĝ to Gh */
  { 0x011D,  0x67, 0x68 },  /* ĝ to gh */
  { 0x011E,  0x47, 0x00 },  /* Ğ to G */
  { 0x011F,  0x67, 0x00 },  /* ğ to g */
  { 0x0120,  0x47, 0x00 },  /* Ġ to G */
  { 0x0121,  0x67, 0x00 },  /* ġ to g */
  { 0x0122,  0x47, 0x00 },  /* Ģ to G */
  { 0x0123,  0x67, 0x00 },  /* ģ to g */
  { 0x0124,  0x48, 0x68 },  /* Ĥ to Hh */
  { 0x0125,  0x68, 0x68 },  /* ĥ to hh */
  { 0x0126,  0x48, 0x00 },  /* Ħ to H */
  { 0x0127,  0x68, 0x00 },  /* ħ to h */
  { 0x0128,  0x49, 0x00 },  /* Ĩ to I */
  { 0x0129,  0x69, 0x00 },  /* ĩ to i */
  { 0x012A,  0x49, 0x00 },  /* Ī to I */
  { 0x012B,  0x69, 0x00 },  /* ī to i */
  { 0x012C,  0x49, 0x00 },  /* Ĭ to I */
  { 0x012D,  0x69, 0x00 },  /* ĭ to i */
  { 0x012E,  0x49, 0x00 },  /* Į to I */
  { 0x012F,  0x69, 0x00 },  /* į to i */
  { 0x0130,  0x49, 0x00 },  /* İ to I */
  { 0x0131,  0x69, 0x00 },  /* ı to i */
  { 0x0132,  0x49, 0x4A },  /* IJ to IJ */
  { 0x0133,  0x69, 0x6A },  /* ij to ij */
  { 0x0134,  0x4A, 0x68 },  /* Ĵ to Jh */
  { 0x0135,  0x6A, 0x68 },  /* ĵ to jh */
  { 0x0136,  0x4B, 0x00 },  /* Ķ to K */
  { 0x0137,  0x6B, 0x00 },  /* ķ to k */
  { 0x0138,  0x6B, 0x00 },  /* ĸ to k */
  { 0x0139,  0x4C, 0x00 },  /* Ĺ to L */
  { 0x013A,  0x6C, 0x00 },  /* ĺ to l */
  { 0x013B,  0x4C, 0x00 },  /* Ļ to L */
  { 0x013C,  0x6C, 0x00 },  /* ļ to l */
  { 0x013D,  0x4C, 0x00 },  /* Ľ to L */
  { 0x013E,  0x6C, 0x00 },  /* ľ to l */
  { 0x013F,  0x4C, 0x2E },  /* Ŀ to L. */
  { 0x0140,  0x6C, 0x2E },  /* ŀ to l. */
  { 0x0141,  0x4C, 0x00 },  /* Ł to L */
  { 0x0142,  0x6C, 0x00 },  /* ł to l */
  { 0x0143,  0x4E, 0x00 },  /* Ń to N */
  { 0x0144,  0x6E, 0x00 },  /* ń to n */
  { 0x0145,  0x4E, 0x00 },  /* Ņ to N */
  { 0x0146,  0x6E, 0x00 },  /* ņ to n */
  { 0x0147,  0x4E, 0x00 },  /* Ň to N */
  { 0x0148,  0x6E, 0x00 },  /* ň to n */
  { 0x0149,  0x27, 0x6E },  /* ʼn to 'n */
  { 0x014A,  0x4E, 0x47 },  /* Ŋ to NG */
  { 0x014B,  0x6E, 0x67 },  /* ŋ to ng */
  { 0x014C,  0x4F, 0x00 },  /* Ō to O */
  { 0x014D,  0x6F, 0x00 },  /* ō to o */
  { 0x014E,  0x4F, 0x00 },  /* Ŏ to O */
  { 0x014F,  0x6F, 0x00 },  /* ŏ to o */
  { 0x0150,  0x4F, 0x00 },  /* Ő to O */
  { 0x0151,  0x6F, 0x00 },  /* ő to o */
  { 0x0152,  0x4F, 0x45 },  /* Πto OE */
  { 0x0153,  0x6F, 0x65 },  /* œ to oe */
  { 0x0154,  0x52, 0x00 },  /* Ŕ to R */
  { 0x0155,  0x72, 0x00 },  /* ŕ to r */
  { 0x0156,  0x52, 0x00 },  /* Ŗ to R */
  { 0x0157,  0x72, 0x00 },  /* ŗ to r */
  { 0x0158,  0x52, 0x00 },  /* Ř to R */
  { 0x0159,  0x72, 0x00 },  /* ř to r */
  { 0x015A,  0x53, 0x00 },  /* Ś to S */
  { 0x015B,  0x73, 0x00 },  /* ś to s */
  { 0x015C,  0x53, 0x68 },  /* Ŝ to Sh */
  { 0x015D,  0x73, 0x68 },  /* ŝ to sh */
  { 0x015E,  0x53, 0x00 },  /* Ş to S */
  { 0x015F,  0x73, 0x00 },  /* ş to s */
  { 0x0160,  0x53, 0x00 },  /* Š to S */
  { 0x0161,  0x73, 0x00 },  /* š to s */
  { 0x0162,  0x54, 0x00 },  /* Ţ to T */
  { 0x0163,  0x74, 0x00 },  /* ţ to t */
  { 0x0164,  0x54, 0x00 },  /* Ť to T */
  { 0x0165,  0x74, 0x00 },  /* ť to t */
  { 0x0166,  0x54, 0x00 },  /* Ŧ to T */
  { 0x0167,  0x74, 0x00 },  /* ŧ to t */
  { 0x0168,  0x55, 0x00 },  /* Ũ to U */
  { 0x0169,  0x75, 0x00 },  /* ũ to u */
  { 0x016A,  0x55, 0x00 },  /* Ū to U */
  { 0x016B,  0x75, 0x00 },  /* ū to u */
  { 0x016C,  0x55, 0x00 },  /* Ŭ to U */
  { 0x016D,  0x75, 0x00 },  /* ŭ to u */
  { 0x016E,  0x55, 0x00 },  /* Ů to U */
  { 0x016F,  0x75, 0x00 },  /* ů to u */
  { 0x0170,  0x55, 0x00 },  /* Ű to U */
  { 0x0171,  0x75, 0x00 },  /* ű to u */
  { 0x0172,  0x55, 0x00 },  /* Ų to U */
  { 0x0173,  0x75, 0x00 },  /* ų to u */
  { 0x0174,  0x57, 0x00 },  /* Ŵ to W */
  { 0x0175,  0x77, 0x00 },  /* ŵ to w */
  { 0x0176,  0x59, 0x00 },  /* Ŷ to Y */
  { 0x0177,  0x79, 0x00 },  /* ŷ to y */
  { 0x0178,  0x59, 0x00 },  /* Ÿ to Y */
  { 0x0179,  0x5A, 0x00 },  /* Ź to Z */
  { 0x017A,  0x7A, 0x00 },  /* ź to z */
  { 0x017B,  0x5A, 0x00 },  /* Ż to Z */
  { 0x017C,  0x7A, 0x00 },  /* ż to z */
  { 0x017D,  0x5A, 0x00 },  /* Ž to Z */
  { 0x017E,  0x7A, 0x00 },  /* ž to z */
  { 0x017F,  0x73, 0x00 },  /* ſ to s */
  { 0x0192,  0x66, 0x00 },  /* ƒ to f */
  { 0x0218,  0x53, 0x00 },  /* Ș to S */
  { 0x0219,  0x73, 0x00 },  /* ș to s */
  { 0x021A,  0x54, 0x00 },  /* Ț to T */
  { 0x021B,  0x74, 0x00 },  /* ț to t */
  { 0x0386,  0x41, 0x00 },  /* Ά to A */
  { 0x0388,  0x45, 0x00 },  /* Έ to E */
  { 0x0389,  0x49, 0x00 },  /* Ή to I */
  { 0x038A,  0x49, 0x00 },  /* Ί to I */
  { 0x038C,  0x4f, 0x00 },  /* Ό to O */
  { 0x038E,  0x59, 0x00 },  /* Ύ to Y */
  { 0x038F,  0x4f, 0x00 },  /* Ώ to O */
  { 0x0390,  0x69, 0x00 },  /* ΐ to i */
  { 0x0391,  0x41, 0x00 },  /* Α to A */
  { 0x0392,  0x42, 0x00 },  /* Β to B */
  { 0x0393,  0x47, 0x00 },  /* Γ to G */
  { 0x0394,  0x44, 0x00 },  /* Δ to D */
  { 0x0395,  0x45, 0x00 },  /* Ε to E */
  { 0x0396,  0x5a, 0x00 },  /* Ζ to Z */
  { 0x0397,  0x49, 0x00 },  /* Η to I */
  { 0x0398,  0x54, 0x68 },  /* Θ to Th */
  { 0x0399,  0x49, 0x00 },  /* Ι to I */
  { 0x039A,  0x4b, 0x00 },  /* Κ to K */
  { 0x039B,  0x4c, 0x00 },  /* Λ to L */
  { 0x039C,  0x4d, 0x00 },  /* Μ to M */
  { 0x039D,  0x4e, 0x00 },  /* Ν to N */
  { 0x039E,  0x58, 0x00 },  /* Ξ to X */
  { 0x039F,  0x4f, 0x00 },  /* Ο to O */
  { 0x03A0,  0x50, 0x00 },  /* Π to P */
  { 0x03A1,  0x52, 0x00 },  /* Ρ to R */
  { 0x03A3,  0x53, 0x00 },  /* Σ to S */
  { 0x03A4,  0x54, 0x00 },  /* Τ to T */
  { 0x03A5,  0x59, 0x00 },  /* Υ to Y */
  { 0x03A6,  0x46, 0x00 },  /* Φ to F */
  { 0x03A7,  0x43, 0x68 },  /* Χ to Ch */
  { 0x03A8,  0x50, 0x73 },  /* Ψ to Ps */
  { 0x03A9,  0x4f, 0x00 },  /* Ω to O */
  { 0x03AA,  0x49, 0x00 },  /* Ϊ to I */
  { 0x03AB,  0x59, 0x00 },  /* Ϋ to Y */
  { 0x03AC,  0x61, 0x00 },  /* ά to a */
  { 0x03AD,  0x65, 0x00 },  /* έ to e */
  { 0x03AE,  0x69, 0x00 },  /* ή to i */
  { 0x03AF,  0x69, 0x00 },  /* ί to i */
  { 0x03B1,  0x61, 0x00 },  /* α to a */
  { 0x03B2,  0x62, 0x00 },  /* β to b */
  { 0x03B3,  0x67, 0x00 },  /* γ to g */
  { 0x03B4,  0x64, 0x00 },  /* δ to d */
  { 0x03B5,  0x65, 0x00 },  /* ε to e */
  { 0x03B6,  0x7a, 0x00 },  /* ζ to z */
  { 0x03B7,  0x69, 0x00 },  /* η to i */
  { 0x03B8,  0x74, 0x68 },  /* θ to th */
  { 0x03B9,  0x69, 0x00 },  /* ι to i */
  { 0x03BA,  0x6b, 0x00 },  /* κ to k */
  { 0x03BB,  0x6c, 0x00 },  /* λ to l */
  { 0x03BC,  0x6d, 0x00 },  /* μ to m */
  { 0x03BD,  0x6e, 0x00 },  /* ν to n */
  { 0x03BE,  0x78, 0x00 },  /* ξ to x */
  { 0x03BF,  0x6f, 0x00 },  /* ο to o */
  { 0x03C0,  0x70, 0x00 },  /* π to p */
  { 0x03C1,  0x72, 0x00 },  /* ρ to r */
  { 0x03C3,  0x73, 0x00 },  /* σ to s */
  { 0x03C4,  0x74, 0x00 },  /* τ to t */
  { 0x03C5,  0x79, 0x00 },  /* υ to y */
  { 0x03C6,  0x66, 0x00 },  /* φ to f */
  { 0x03C7,  0x63, 0x68 },  /* χ to ch */
  { 0x03C8,  0x70, 0x73 },  /* ψ to ps */
  { 0x03C9,  0x6f, 0x00 },  /* ω to o */
  { 0x03CA,  0x69, 0x00 },  /* ϊ to i */
  { 0x03CB,  0x79, 0x00 },  /* ϋ to y */
  { 0x03CC,  0x6f, 0x00 },  /* ό to o */
  { 0x03CD,  0x79, 0x00 },  /* ύ to y */
  { 0x03CE,  0x69, 0x00 },  /* ώ to i */
  { 0x0400,  0x45, 0x00 },  /* Ѐ to E */
  { 0x0401,  0x45, 0x00 },  /* Ё to E */
  { 0x0402,  0x44, 0x00 },  /* Ђ to D */
  { 0x0403,  0x47, 0x00 },  /* Ѓ to G */
  { 0x0404,  0x45, 0x00 },  /* Є to E */
  { 0x0405,  0x5a, 0x00 },  /* Ѕ to Z */
  { 0x0406,  0x49, 0x00 },  /* І to I */
  { 0x0407,  0x49, 0x00 },  /* Ї to I */
  { 0x0408,  0x4a, 0x00 },  /* Ј to J */
  { 0x0409,  0x49, 0x00 },  /* Љ to I */
  { 0x040A,  0x4e, 0x00 },  /* Њ to N */
  { 0x040B,  0x44, 0x00 },  /* Ћ to D */
  { 0x040C,  0x4b, 0x00 },  /* Ќ to K */
  { 0x040D,  0x49, 0x00 },  /* Ѝ to I */
  { 0x040E,  0x55, 0x00 },  /* Ў to U */
  { 0x040F,  0x44, 0x00 },  /* Џ to D */
  { 0x0410,  0x41, 0x00 },  /* А to A */
  { 0x0411,  0x42, 0x00 },  /* Б to B */
  { 0x0412,  0x56, 0x00 },  /* В to V */
  { 0x0413,  0x47, 0x00 },  /* Г to G */
  { 0x0414,  0x44, 0x00 },  /* Д to D */
  { 0x0415,  0x45, 0x00 },  /* Е to E */
  { 0x0416,  0x5a, 0x68 },  /* Ж to Zh */
  { 0x0417,  0x5a, 0x00 },  /* З to Z */
  { 0x0418,  0x49, 0x00 },  /* И to I */
  { 0x0419,  0x49, 0x00 },  /* Й to I */
  { 0x041A,  0x4b, 0x00 },  /* К to K */
  { 0x041B,  0x4c, 0x00 },  /* Л to L */
  { 0x041C,  0x4d, 0x00 },  /* М to M */
  { 0x041D,  0x4e, 0x00 },  /* Н to N */
  { 0x041E,  0x4f, 0x00 },  /* О to O */
  { 0x041F,  0x50, 0x00 },  /* П to P */
  { 0x0420,  0x52, 0x00 },  /* Р to R */
  { 0x0421,  0x53, 0x00 },  /* С to S */
  { 0x0422,  0x54, 0x00 },  /* Т to T */
  { 0x0423,  0x55, 0x00 },  /* У to U */
  { 0x0424,  0x46, 0x00 },  /* Ф to F */
  { 0x0425,  0x4b, 0x68 },  /* Х to Kh */
  { 0x0426,  0x54, 0x63 },  /* Ц to Tc */
  { 0x0427,  0x43, 0x68 },  /* Ч to Ch */
  { 0x0428,  0x53, 0x68 },  /* Ш to Sh */
  { 0x0429,  0x53, 0x68 },  /* Щ to Shch */
  { 0x042B,  0x59, 0x00 },  /* Ы to Y */
  { 0x042D,  0x45, 0x00 },  /* Э to E */
  { 0x042E,  0x49, 0x75 },  /* Ю to Iu */
  { 0x042F,  0x49, 0x61 },  /* Я to Ia */
  { 0x0430,  0x61, 0x00 },  /* а to a */
  { 0x0431,  0x62, 0x00 },  /* б to b */
  { 0x0432,  0x76, 0x00 },  /* в to v */
  { 0x0433,  0x67, 0x00 },  /* г to g */
  { 0x0434,  0x64, 0x00 },  /* д to d */
  { 0x0435,  0x65, 0x00 },  /* е to e */
  { 0x0436,  0x7a, 0x68 },  /* ж to zh */
  { 0x0437,  0x7a, 0x00 },  /* з to z */
  { 0x0438,  0x69, 0x00 },  /* и to i */
  { 0x0439,  0x69, 0x00 },  /* й to i */
  { 0x043A,  0x6b, 0x00 },  /* к to k */
  { 0x043B,  0x6c, 0x00 },  /* л to l */
  { 0x043C,  0x6d, 0x00 },  /* м to m */
  { 0x043D,  0x6e, 0x00 },  /* н to n */
  { 0x043E,  0x6f, 0x00 },  /* о to o */
  { 0x043F,  0x70, 0x00 },  /* п to p */
  { 0x0440,  0x72, 0x00 },  /* р to r */
  { 0x0441,  0x73, 0x00 },  /* с to s */
  { 0x0442,  0x74, 0x00 },  /* т to t */
  { 0x0443,  0x75, 0x00 },  /* у to u */
  { 0x0444,  0x66, 0x00 },  /* ф to f */
  { 0x0445,  0x6b, 0x68 },  /* х to kh */
  { 0x0446,  0x74, 0x63 },  /* ц to tc */
  { 0x0447,  0x63, 0x68 },  /* ч to ch */
  { 0x0448,  0x73, 0x68 },  /* ш to sh */
  { 0x0449,  0x73, 0x68 },  /* щ to shch */
  { 0x044B,  0x79, 0x00 },  /* ы to y */
  { 0x044D,  0x65, 0x00 },  /* э to e */
  { 0x044E,  0x69, 0x75 },  /* ю to iu */
  { 0x044F,  0x69, 0x61 },  /* я to ia */
  { 0x0450,  0x65, 0x00 },  /* ѐ to e */
  { 0x0451,  0x65, 0x00 },  /* ё to e */
  { 0x0452,  0x64, 0x00 },  /* ђ to d */
  { 0x0453,  0x67, 0x00 },  /* ѓ to g */
  { 0x0454,  0x65, 0x00 },  /* є to e */
  { 0x0455,  0x7a, 0x00 },  /* ѕ to z */
  { 0x0456,  0x69, 0x00 },  /* і to i */
  { 0x0457,  0x69, 0x00 },  /* ї to i */
  { 0x0458,  0x6a, 0x00 },  /* ј to j */
  { 0x0459,  0x69, 0x00 },  /* љ to i */
  { 0x045A,  0x6e, 0x00 },  /* њ to n */
  { 0x045B,  0x64, 0x00 },  /* ћ to d */
  { 0x045C,  0x6b, 0x00 },  /* ќ to k */
  { 0x045D,  0x69, 0x00 },  /* ѝ to i */
  { 0x045E,  0x75, 0x00 },  /* ў to u */
  { 0x045F,  0x64, 0x00 },  /* џ to d */
  { 0x1E02,  0x42, 0x00 },  /* Ḃ to B */
  { 0x1E03,  0x62, 0x00 },  /* ḃ to b */
  { 0x1E0A,  0x44, 0x00 },  /* Ḋ to D */
  { 0x1E0B,  0x64, 0x00 },  /* ḋ to d */
  { 0x1E1E,  0x46, 0x00 },  /* Ḟ to F */
  { 0x1E1F,  0x66, 0x00 },  /* ḟ to f */
  { 0x1E40,  0x4D, 0x00 },  /* Ṁ to M */
  { 0x1E41,  0x6D, 0x00 },  /* ṁ to m */
  { 0x1E56,  0x50, 0x00 },  /* Ṗ to P */
  { 0x1E57,  0x70, 0x00 },  /* ṗ to p */
  { 0x1E60,  0x53, 0x00 },  /* Ṡ to S */
  { 0x1E61,  0x73, 0x00 },  /* ṡ to s */
  { 0x1E6A,  0x54, 0x00 },  /* Ṫ to T */
  { 0x1E6B,  0x74, 0x00 },  /* ṫ to t */
  { 0x1E80,  0x57, 0x00 },  /* Ẁ to W */
  { 0x1E81,  0x77, 0x00 },  /* ẁ to w */
  { 0x1E82,  0x57, 0x00 },  /* Ẃ to W */
  { 0x1E83,  0x77, 0x00 },  /* ẃ to w */
  { 0x1E84,  0x57, 0x00 },  /* Ẅ to W */
  { 0x1E85,  0x77, 0x00 },  /* ẅ to w */
  { 0x1EF2,  0x59, 0x00 },  /* Ỳ to Y */
  { 0x1EF3,  0x79, 0x00 },  /* ỳ to y */
  { 0xFB00,  0x66, 0x66 },  /* ff to ff */
  { 0xFB01,  0x66, 0x69 },  /* fi to fi */
  { 0xFB02,  0x66, 0x6C },  /* fl to fl */
  { 0xFB05,  0x73, 0x74 },  /* ſt to st */
  { 0xFB06,  0x73, 0x74 },  /* st to st */
};

/*
** Convert the input string from UTF-8 into pure ASCII by converting
** all non-ASCII characters to some combination of characters in the
** ASCII subset.
**
** The returned string might contain more characters than the input.
**
** Space to hold the returned string comes from sqlite3_malloc() and
** should be freed by the caller.
*/
static unsigned char *transliterate(const unsigned char *zIn, int nIn){
  unsigned char *zOut = sqlite3_malloc( nIn*4 + 1 );
  int i, c, sz, nOut;
  if( zOut==0 ) return 0;
  i = nOut = 0;
  while( i<nIn ){
    c = utf8Read(zIn, nIn, &sz);
    zIn += sz;
    nIn -= sz;
    if( c<=127 ){
      zOut[nOut++] = c;
    }else{
      int xTop, xBtm, x;
      xTop = sizeof(translit)/sizeof(translit[0]) - 1;
      xBtm = 0;
      while( xTop>=xBtm ){
        x = (xTop + xBtm)/2;
        if( translit[x].cFrom==c ){
          zOut[nOut++] = translit[x].cTo0;
          if( translit[x].cTo1 ){
            zOut[nOut++] = translit[x].cTo1;
            /* Add an extra "ch" after the "sh" for Щ and щ */
            if( c==0x0429 || c== 0x0449 ){
              zOut[nOut++] = 'c';
              zOut[nOut++] = 'h';
            }
          }
          c = 0;
          break;
        }else if( translit[x].cFrom>c ){
          xTop = x-1;
        }else{
          xBtm = x+1;
        }
      }
      if( c ) zOut[nOut++] = '?';
    }
  }
  zOut[nOut] = 0;
  return zOut;
}

/*
**    spellfix1_translit(X)
**
** Convert a string that contains non-ASCII Roman characters into 
** pure ASCII.
*/
static void transliterateSqlFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const unsigned char *zIn = sqlite3_value_text(argv[0]);
  int nIn = sqlite3_value_bytes(argv[0]);
  unsigned char *zOut = transliterate(zIn, nIn);
  if( zOut==0 ){
    sqlite3_result_error_nomem(context);
  }else{
    sqlite3_result_text(context, (char*)zOut, -1, sqlite3_free);
  }
}

/*
**    spellfix1_scriptcode(X)
**
** Try to determine the dominant script used by the word X and return
** its ISO 15924 numeric code.
**
** The current implementation only understands the following scripts:
**
**    215  (Latin)
**    220  (Cyrillic)
**    200  (Greek)
**
** This routine will return 998 if the input X contains characters from
** two or more of the above scripts or 999 if X contains no characters
** from any of the above scripts.
*/
static void scriptCodeSqlFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const unsigned char *zIn = sqlite3_value_text(argv[0]);
  int nIn = sqlite3_value_bytes(argv[0]);
  int c, sz;
  int scriptMask = 0;
  int res;
# define SCRIPT_LATIN       0x0001
# define SCRIPT_CYRILLIC    0x0002
# define SCRIPT_GREEK       0x0004

  while( nIn>0 ){
    c = utf8Read(zIn, nIn, &sz);
    zIn += sz;
    nIn -= sz;
    if( c<0x02af ){
      scriptMask |= SCRIPT_LATIN;
    }else if( c>=0x0400 && c<=0x04ff ){
      scriptMask |= SCRIPT_CYRILLIC;
    }else if( c>=0x0386 && c<=0x03ce ){
      scriptMask |= SCRIPT_GREEK;
    }
  }
  switch( scriptMask ){
    case 0:                res = 999; break;
    case SCRIPT_LATIN:     res = 215; break;
    case SCRIPT_CYRILLIC:  res = 220; break;
    case SCRIPT_GREEK:     res = 200; break;
    default:               res = 998; break;
  }
  sqlite3_result_int(context, res);
}

/*****************************************************************************
** Fuzzy-search virtual table
*****************************************************************************/

typedef struct spellfix1_vtab spellfix1_vtab;
typedef struct spellfix1_cursor spellfix1_cursor;

/* Fuzzy-search virtual table object */
struct spellfix1_vtab {
  sqlite3_vtab base;      /* Base class - must be first */
  sqlite3 *db;            /* Database connection */
  char *zDbName;          /* Name of database holding this table */
  char *zTableName;       /* Name of the virtual table */
};

/* Fuzzy-search cursor object */
struct spellfix1_cursor {
  sqlite3_vtab_cursor base;    /* Base class - must be first */
  spellfix1_vtab *pVTab;         /* The table to which this cursor belongs */
  int nRow;                    /* Number of rows of content */
  int nAlloc;                  /* Number of allocated rows */
  int iRow;                    /* Current row of content */
  int iLang;                   /* Value of the lang= constraint */
  int iTop;                    /* Value of the top= constraint */
  int iScope;                  /* Value of the scope= constraint */
  int nSearch;                 /* Number of vocabulary items checked */
  struct spellfix1_row {         /* For each row of content */
    sqlite3_int64 iRowid;         /* Rowid for this row */
    char *zWord;                  /* Text for this row */
    int iRank;                    /* Rank for this row */
    int iDistance;                /* Distance from pattern for this row */
    int iScore;                   /* Score for sorting */
  } *a; 
};

/*
** Construct one or more SQL statements from the format string given
** and then evaluate those statements. The success code is written
** into *pRc.
**
** If *pRc is initially non-zero then this routine is a no-op.
*/
static void spellfix1DbExec(
  int *pRc,              /* Success code */
  sqlite3 *db,           /* Database in which to run SQL */
  const char *zFormat,   /* Format string for SQL */
  ...                    /* Arguments to the format string */
){
  va_list ap;
  char *zSql;
  if( *pRc ) return;
  va_start(ap, zFormat);
  zSql = sqlite3_vmprintf(zFormat, ap);
  va_end(ap);
  if( zSql==0 ){
    *pRc = SQLITE_NOMEM;
  }else{
    *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
    sqlite3_free(zSql);
  }
}

/*
** xDisconnect/xDestroy method for the fuzzy-search module.
*/
static int spellfix1Uninit(int isDestroy, sqlite3_vtab *pVTab){
  spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
  int rc = SQLITE_OK;
  if( isDestroy ){
    sqlite3 *db = p->db;
    spellfix1DbExec(&rc, db, "DROP TABLE IF EXISTS \"%w\".\"%w_vocab\"",
                  p->zDbName, p->zTableName);
  }
  if( rc==SQLITE_OK ){
    sqlite3_free(p->zTableName);
    sqlite3_free(p);
  }
  return rc;
}
static int spellfix1Disconnect(sqlite3_vtab *pVTab){
  return spellfix1Uninit(0, pVTab);
}
static int spellfix1Destroy(sqlite3_vtab *pVTab){
  return spellfix1Uninit(1, pVTab);
}

/*
** xConnect/xCreate method for the spellfix1 module. Arguments are:
**
**   argv[0]   -> module name  ("spellfix1")
**   argv[1]   -> database name
**   argv[2]   -> table name
**   argv[3].. -> optional arguments (currently ignored)
*/
static int spellfix1Init(
  int isCreate,
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  spellfix1_vtab *pNew = 0;
  const char *zModule = argv[0];
  const char *zDbName = argv[1];
  const char *zTableName = argv[2];
  int nDbName;
  int rc = SQLITE_OK;

  if( argc<3 ){
    *pzErr = sqlite3_mprintf(
        "%s: wrong number of CREATE VIRTUAL TABLE arguments", argv[0]
    );
    rc = SQLITE_ERROR;
  }else{
    nDbName = strlen(zDbName);
    pNew = sqlite3_malloc( sizeof(*pNew) + nDbName + 1);
    if( pNew==0 ){
      rc = SQLITE_NOMEM;
    }else{
      memset(pNew, 0, sizeof(*pNew));
      pNew->zDbName = (char*)&pNew[1];
      memcpy(pNew->zDbName, zDbName, nDbName+1);
      pNew->zTableName = sqlite3_mprintf("%s", zTableName);
      pNew->db = db;
      if( pNew->zTableName==0 ){
        rc = SQLITE_NOMEM;
      }else{
        rc = sqlite3_declare_vtab(db, 
             "CREATE TABLE x(word,rank,distance,langid,"
             "score,top HIDDEN,scope HIDDEN,srchcnt HIDDEN,"
             "soundslike HIDDEN)"
        );
      }
      if( rc==SQLITE_OK && isCreate ){
        sqlite3_uint64 r;
        spellfix1DbExec(&rc, db,
           "CREATE TABLE IF NOT EXISTS \"%w\".\"%w_vocab\"(\n"
           "  id INTEGER PRIMARY KEY,\n"
           "  rank INT,\n"
           "  langid INT,\n"
           "  word TEXT,\n"
           "  k1 TEXT,\n"
           "  k2 TEXT\n"
           ");\n",
           zDbName, zTableName
        );
        sqlite3_randomness(sizeof(r), &r);
        spellfix1DbExec(&rc, db,
           "CREATE INDEX IF NOT EXISTS \"%w\".\"%w_index_%llx\" "
              "ON \"%w_vocab\"(langid,k2);",
           zDbName, zModule, r, zTableName
        );
      }
    }
  }

  *ppVTab = (sqlite3_vtab *)pNew;
  return rc;
}

/*
** The xConnect and xCreate methods
*/
static int spellfix1Connect(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  return spellfix1Init(0, db, pAux, argc, argv, ppVTab, pzErr);
}
static int spellfix1Create(
  sqlite3 *db,
  void *pAux,
  int argc, const char *const*argv,
  sqlite3_vtab **ppVTab,
  char **pzErr
){
  return spellfix1Init(1, db, pAux, argc, argv, ppVTab, pzErr);
}

/*
** Reset a cursor so that it contains zero rows of content but holds
** space for N rows.
*/
static void spellfix1ResetCursor(spellfix1_cursor *pCur, int N){
  int i;
  for(i=0; i<pCur->nRow; i++){
    sqlite3_free(pCur->a[i].zWord);
  }
  pCur->a = sqlite3_realloc(pCur->a, sizeof(pCur->a[0])*N);
  pCur->nAlloc = N;
  pCur->nRow = 0;
  pCur->iRow = 0;
  pCur->nSearch = 0;
}

/*
** Close a fuzzy-search cursor.
*/
static int spellfix1Close(sqlite3_vtab_cursor *cur){
  spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
  spellfix1ResetCursor(pCur, 0);
  sqlite3_free(pCur);
  return SQLITE_OK;
}

/*
** Search for terms of these forms:
**
**   (A)    word MATCH $str
**   (B)    langid == $langid
**   (C)    top = $top
**   (D)    scope = $scope
**
** The plan number is a bit mask formed with these bits:
**
**   0x01   (A) is found
**   0x02   (B) is found
**   0x04   (C) is found
**   0x08   (D) is found
**
** filter.argv[*] values contains $str, $langid, $top, and $scope,
** if specified and in that order.
*/
static int spellfix1BestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int iPlan = 0;
  int iLangTerm = -1;
  int iTopTerm = -1;
  int iScopeTerm = -1;
  int i;
  const struct sqlite3_index_constraint *pConstraint;
  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    if( pConstraint->usable==0 ) continue;

    /* Terms of the form:  word MATCH $str */
    if( (iPlan & 1)==0 
     && pConstraint->iColumn==0
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
    ){
      iPlan |= 1;
      pIdxInfo->aConstraintUsage[i].argvIndex = 1;
      pIdxInfo->aConstraintUsage[i].omit = 1;
    }

    /* Terms of the form:  langid = $langid  */
    if( (iPlan & 2)==0
     && pConstraint->iColumn==3
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 2;
      iLangTerm = i;
    }

    /* Terms of the form:  top = $top */
    if( (iPlan & 4)==0
     && pConstraint->iColumn==5
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 4;
      iTopTerm = i;
    }

    /* Terms of the form:  scope = $scope */
    if( (iPlan & 8)==0
     && pConstraint->iColumn==6
     && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
    ){
      iPlan |= 8;
      iScopeTerm = i;
    }
  }
  if( iPlan&1 ){
    int idx = 2;
    pIdxInfo->idxNum = iPlan;
    if( pIdxInfo->nOrderBy==1
     && pIdxInfo->aOrderBy[0].iColumn==4
     && pIdxInfo->aOrderBy[0].desc==0
    ){
      pIdxInfo->orderByConsumed = 1;  /* Default order by iScore */
    }
    if( iPlan&2 ){
      pIdxInfo->aConstraintUsage[iLangTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iLangTerm].omit = 1;
    }
    if( iPlan&4 ){
      pIdxInfo->aConstraintUsage[iTopTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iTopTerm].omit = 1;
    }
    if( iPlan&8 ){
      pIdxInfo->aConstraintUsage[iScopeTerm].argvIndex = idx++;
      pIdxInfo->aConstraintUsage[iScopeTerm].omit = 1;
    }
    pIdxInfo->estimatedCost = (double)10000;
  }else{
    pIdxInfo->idxNum = 0;
    pIdxInfo->estimatedCost = (double)10000000;
  }
  return SQLITE_OK;
}

/*
** Open a new fuzzy-search cursor.
*/
static int spellfix1Open(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
  spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
  spellfix1_cursor *pCur;
  pCur = sqlite3_malloc( sizeof(*pCur) );
  if( pCur==0 ) return SQLITE_NOMEM;
  memset(pCur, 0, sizeof(*pCur));
  pCur->pVTab = p;
  *ppCursor = &pCur->base;
  return SQLITE_OK;
}

/*
** Adjust a distance measurement by the words rank in order to show
** preference to common words.
*/
static int spellfix1Score(int iDistance, int iRank){
  int iLog2;
  for(iLog2=0; iRank>0; iLog2++, iRank>>=1){}
  return iDistance + 32 - iLog2;
}

/*
** Compare two spellfix1_row objects for sorting purposes in qsort() such
** that they sort in order of increasing distance.
*/
static int spellfix1RowCompare(const void *A, const void *B){
  const struct spellfix1_row *a = (const struct spellfix1_row*)A;
  const struct spellfix1_row *b = (const struct spellfix1_row*)B;
  return a->iScore - b->iScore;
}

/*
** This version of the xFilter method work if the MATCH term is present
** and we are doing a scan.
*/
static int spellfix1FilterForMatch(
  spellfix1_cursor *pCur,
  int idxNum,
  int argc,
  sqlite3_value **argv
){
  const unsigned char *zPatternIn;
  char *zPattern;
  int nPattern;
  char *zClass;
  int nClass;
  int iLimit = 20;
  int iScope = 4;
  int iLang = 0;
  char *zSql;
  int rc;
  sqlite3_stmt *pStmt;
  int idx = 1;
  spellfix1_vtab *p = pCur->pVTab;

  if( idxNum&2 ){
    iLang = sqlite3_value_int(argv[idx++]);
  }
  if( idxNum&4 ){
    iLimit = sqlite3_value_int(argv[idx++]);
    if( iLimit<1 ) iLimit = 1;
  }
  if( idxNum&8 ){
    iScope = sqlite3_value_int(argv[idx++]);
    if( iScope<1 ) iScope = 1;
  }
  spellfix1ResetCursor(pCur, iLimit);
  zPatternIn = sqlite3_value_text(argv[0]);
  if( zPatternIn==0 ) return SQLITE_OK;
  zPattern = (char*)transliterate(zPatternIn, sqlite3_value_bytes(argv[0]));
  if( zPattern==0 ) return SQLITE_NOMEM;
  nPattern = strlen(zPattern);
  if( zPattern[nPattern-1]=='*' ) nPattern--;
  if( nPattern<iScope ) iScope = nPattern;
  zClass = (char*)characterClassString((unsigned char*)zPattern,
                                       strlen(zPattern));
  nClass = strlen(zClass);
  if( nClass>iScope ){
    zClass[iScope] = 0;
    nClass = iScope;
  }
  zSql = sqlite3_mprintf(
     "SELECT id, word, rank, k1"
     "  FROM \"%w\".\"%w_vocab\""
     " WHERE langid=%d AND k2 GLOB '%q*'",
     p->zDbName, p->zTableName, iLang, zClass
  );
  rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
  sqlite3_free(zSql);
  if( rc==SQLITE_OK ){
    const char *zK1;
    int iDist;
    int iRank;
    int iScore;
    int iWorst = 999999999;
    int idx;
    int idxWorst;
    int i;

    while( sqlite3_step(pStmt)==SQLITE_ROW ){
      zK1 = (const char*)sqlite3_column_text(pStmt, 3);
      if( zK1==0 ) continue;
      pCur->nSearch++;
      iRank = sqlite3_column_int(pStmt, 2);
      iDist = editdist(zPattern, zK1);
      iScore = spellfix1Score(iDist,iRank);
      if( pCur->nRow<pCur->nAlloc ){
        idx = pCur->nRow;
      }else if( iScore<iWorst ){
        idx = idxWorst;
        sqlite3_free(pCur->a[idx].zWord);
      }else{
        continue;
      }
      pCur->a[idx].zWord = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
      pCur->a[idx].iRowid = sqlite3_column_int64(pStmt, 0);
      pCur->a[idx].iRank = iRank;
      pCur->a[idx].iDistance = iDist;
      pCur->a[idx].iScore = iScore;
      if( pCur->nRow<pCur->nAlloc ) pCur->nRow++;
      if( pCur->nRow==pCur->nAlloc ){
        iWorst = pCur->a[0].iScore;
        idxWorst = 0;
        for(i=1; i<pCur->nRow; i++){
          iScore = pCur->a[i].iScore;
          if( iWorst<iScore ){
            iWorst = iScore;
            idxWorst = i;
          }
        }
      }
    }
  }
  qsort(pCur->a, pCur->nRow, sizeof(pCur->a[0]), spellfix1RowCompare);
  pCur->iTop = iLimit;
  pCur->iScope = iScope;
  sqlite3_finalize(pStmt);
  sqlite3_free(zPattern);
  sqlite3_free(zClass);
  return SQLITE_OK;
}

/*
** This version of xFilter handles a full-table scan case
*/
static int spellfix1FilterForFullScan(
  spellfix1_cursor *pCur,
  int idxNum,
  int argc,
  sqlite3_value **argv
){
  spellfix1ResetCursor(pCur, 0);
  return SQLITE_OK;
}


/*
** Called to "rewind" a cursor back to the beginning so that
** it starts its output over again.  Always called at least once
** prior to any spellfix1Column, spellfix1Rowid, or spellfix1Eof call.
*/
static int spellfix1Filter(
  sqlite3_vtab_cursor *cur, 
  int idxNum, const char *idxStr,
  int argc, sqlite3_value **argv
){
  spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
  int rc;
  if( idxNum & 1 ){
    rc = spellfix1FilterForMatch(pCur, idxNum, argc, argv);
  }else{
    rc = spellfix1FilterForFullScan(pCur, idxNum, argc, argv);
  }
  return rc;
}


/*
** Advance a cursor to its next row of output
*/
static int spellfix1Next(sqlite3_vtab_cursor *cur){
  spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
  if( pCur->iRow < pCur->nRow ) pCur->iRow++;
  return SQLITE_OK;
}

/*
** Return TRUE if we are at the end-of-file
*/
static int spellfix1Eof(sqlite3_vtab_cursor *cur){
  spellfix1_cursor *pCur = (spellfix1_cursor *)cur;
  return pCur->iRow>=pCur->nRow;
}

/*
** Return columns from the current row.
*/
static int spellfix1Column(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
  spellfix1_cursor *pCur = (spellfix1_cursor*)cur;
  switch( i ){
    case 0: {
      sqlite3_result_text(ctx, pCur->a[pCur->iRow].zWord, -1, SQLITE_STATIC);
      break;
    }
    case 1: {
      sqlite3_result_int(ctx, pCur->a[pCur->iRow].iRank);
      break;
    }
    case 2: {
      sqlite3_result_int(ctx, pCur->a[pCur->iRow].iDistance);
      break;
    }
    case 3: {
      sqlite3_result_int(ctx, pCur->iLang);
      break;
    }
    case 4: {
      sqlite3_result_int(ctx, pCur->a[pCur->iRow].iScore);
      break;
    }
    case 5: {
      sqlite3_result_int(ctx, pCur->iTop);
      break;
    }
    case 6: {
      sqlite3_result_int(ctx, pCur->iScope);
      break;
    }
    case 7: {
      sqlite3_result_int(ctx, pCur->nSearch);
      break;
    }
    default: {
      sqlite3_result_null(ctx);
      break;
    }
  }
  return SQLITE_OK;
}

/*
** The rowid.
*/
static int spellfix1Rowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
  spellfix1_cursor *pCur = (spellfix1_cursor*)cur;
  *pRowid = pCur->a[pCur->iRow].iRowid;
  return SQLITE_OK;
}

/*
** The xUpdate() method.
*/
static int spellfix1Update(
  sqlite3_vtab *pVTab,
  int argc,
  sqlite3_value **argv,
  sqlite_int64 *pRowid
){
  int rc = SQLITE_OK;
  sqlite3_int64 rowid, newRowid;
  spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
  sqlite3 *db = p->db;

  if( argc==1 ){
    /* A delete operation on the rowid given by argv[0] */
    rowid = *pRowid = sqlite3_value_int64(argv[0]);
    spellfix1DbExec(&rc, db, "DELETE FROM \"%w\".\"%w_vocab\" "
                           " WHERE id=%lld",
                  p->zDbName, p->zTableName, rowid);
  }else{
    const unsigned char *zWord = sqlite3_value_text(argv[2]);
    int nWord = sqlite3_value_bytes(argv[2]);
    int iLang = sqlite3_value_int(argv[5]);
    int iRank = sqlite3_value_int(argv[3]);
    const unsigned char *zSoundslike = sqlite3_value_text(argv[10]);
    int nSoundslike = sqlite3_value_bytes(argv[10]);
    char *zK1, *zK2;
    int i;
    char c;

    if( zWord==0 ){
      pVTab->zErrMsg = sqlite3_mprintf("%w.word may not be NULL",
                            p->zTableName);
      return SQLITE_CONSTRAINT;
    }
    if( iRank<1 ) iRank = 1;
    if( zSoundslike ){
      zK1 = (char*)transliterate(zSoundslike, nSoundslike);
    }else{
      zK1 = (char*)transliterate(zWord, nWord);
    }
    if( zK1==0 ) return SQLITE_NOMEM;
    for(i=0; (c = zK1[i])!=0; i++){
       if( c>='A' && c<='Z' ) zK1[i] += 'a' - 'A';
    }
    zK2 = (char*)characterClassString((const unsigned char*)zK1, i);
    if( zK2==0 ){
      sqlite3_free(zK1);
      return SQLITE_NOMEM;
    }
    if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
      spellfix1DbExec(&rc, db,
             "INSERT INTO \"%w\".\"%w_vocab\"(rank,langid,word,k1,k2) "
             "VALUES(%d,%d,%Q,%Q,%Q)",
             p->zDbName, p->zTableName,
             iRank, iLang, zWord, zK1, zK2
      );
      *pRowid = sqlite3_last_insert_rowid(db);
    }else{
      rowid = sqlite3_value_int64(argv[0]);
      newRowid = *pRowid = sqlite3_value_int64(argv[1]);
      spellfix1DbExec(&rc, db,
             "UPDATE \"%w\".\"%w_vocab\" SET id=%lld, rank=%d, lang=%d,"
             " word=%Q, rank=%d, k1=%Q, k2=%Q WHERE id=%lld",
             p->zDbName, p->zTableName, newRowid, iRank, iLang,
             zWord, zK1, zK2, rowid
      );
    }
    sqlite3_free(zK1);
    sqlite3_free(zK2);
  }
  return rc;
}

/*
** Rename the spellfix1 table.
*/
static int spellfix1Rename(sqlite3_vtab *pVTab, const char *zNew){
  spellfix1_vtab *p = (spellfix1_vtab*)pVTab;
  sqlite3 *db = p->db;
  int rc = SQLITE_OK;
  char *zNewName = sqlite3_mprintf("%s", zNew);
  if( zNewName==0 ){
    return SQLITE_NOMEM;
  }
  spellfix1DbExec(&rc, db, 
     "ALTER TABLE \"%w\".\"%w_vocab\" RENAME TO \"%w_vocab\"",
     p->zDbName, p->zTableName, zNewName
  );
  if( rc==SQLITE_OK ){
    sqlite3_free(p->zTableName);
    p->zTableName = zNewName;
  }
  return rc;
}


/*
** A virtual table module that provides fuzzy search.
*/
static sqlite3_module spellfix1Module = {
  0,                       /* iVersion */
  spellfix1Create,         /* xCreate - handle CREATE VIRTUAL TABLE */
  spellfix1Connect,        /* xConnect - reconnected to an existing table */
  spellfix1BestIndex,      /* xBestIndex - figure out how to do a query */
  spellfix1Disconnect,     /* xDisconnect - close a connection */
  spellfix1Destroy,        /* xDestroy - handle DROP TABLE */
  spellfix1Open,           /* xOpen - open a cursor */
  spellfix1Close,          /* xClose - close a cursor */
  spellfix1Filter,         /* xFilter - configure scan constraints */
  spellfix1Next,           /* xNext - advance a cursor */
  spellfix1Eof,            /* xEof - check for end of scan */
  spellfix1Column,         /* xColumn - read data */
  spellfix1Rowid,          /* xRowid - read data */
  spellfix1Update,         /* xUpdate */
  0,                       /* xBegin */
  0,                       /* xSync */
  0,                       /* xCommit */
  0,                       /* xRollback */
  0,                       /* xFindMethod */
  spellfix1Rename,         /* xRename */
};

/*
** Register the various functions and the virtual table.
*/
static int spellfix1Register(sqlite3 *db){
  int nErr = 0;
  int i;
  nErr += sqlite3_create_function(db, "spellfix1_translit", 1, SQLITE_UTF8, 0,
                                  transliterateSqlFunc, 0, 0);
  nErr += sqlite3_create_function(db, "spellfix1_editdist", 2, SQLITE_UTF8, 0,
                                  editdistSqlFunc, 0, 0);
  nErr += sqlite3_create_function(db, "spellfix1_charclass", 1, SQLITE_UTF8, 0,
                                  characterClassSqlFunc, 0, 0);
  nErr += sqlite3_create_function(db, "spellfix1_scriptcode", 1, SQLITE_UTF8, 0,
                                  scriptCodeSqlFunc, 0, 0);
  nErr += sqlite3_create_module(db, "spellfix1", &spellfix1Module, 0);

  /* Verify sanity of the translit[] table */
  for(i=0; i<sizeof(translit)/sizeof(translit[0])-1; i++){
    assert( translit[i].cFrom<translit[i+1].cFrom );
  }  

  return nErr ? SQLITE_ERROR : SQLITE_OK;
}

#if SQLITE_CORE || defined(SQLITE_TEST)
/*
** Register the spellfix1 virtual table and its associated functions.
*/
int sqlite3Spellfix1Register(sqlite3 *db){
  return spellfix1Register(db);
}
#endif


#if !SQLITE_CORE
/*
** Extension load function.
*/
int sqlite3_extension_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  return spellfix1Register(db);
}
#endif /* !SQLITE_CORE */