/ Artifact Content
Login

Artifact 2a9139e0ea215c2e8a896c4a610b6b85a6010f64177e1fd374ab007efd7dd787:


/*
** 2010 February 1
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of a write-ahead log (WAL) used in 
** "journal_mode=WAL" mode.
**
** WRITE-AHEAD LOG (WAL) FILE FORMAT
**
** A WAL file consists of a header followed by zero or more "frames".
** Each frame records the revised content of a single page from the
** database file.  All changes to the database are recorded by writing
** frames into the WAL.  Transactions commit when a frame is written that
** contains a commit marker.  A single WAL can and usually does record 
** multiple transactions.  Periodically, the content of the WAL is
** transferred back into the database file in an operation called a
** "checkpoint".
**
** A single WAL file can be used multiple times.  In other words, the
** WAL can fill up with frames and then be checkpointed and then new
** frames can overwrite the old ones.  A WAL always grows from beginning
** toward the end.  Checksums and counters attached to each frame are
** used to determine which frames within the WAL are valid and which
** are leftovers from prior checkpoints.
**
** The WAL header is 32 bytes in size and consists of the following eight
** big-endian 32-bit unsigned integer values:
**
**     0: Magic number.  0x377f0682 or 0x377f0683
**     4: File format version.  Currently 3007000
**     8: Database page size.  Example: 1024
**    12: Checkpoint sequence number
**    16: Salt-1, random integer incremented with each checkpoint
**    20: Salt-2, a different random integer changing with each ckpt
**    24: Checksum-1 (first part of checksum for first 24 bytes of header).
**    28: Checksum-2 (second part of checksum for first 24 bytes of header).
**
** Immediately following the wal-header are zero or more frames. Each
** frame consists of a 24-byte frame-header followed by a <page-size> bytes
** of page data. The frame-header is six big-endian 32-bit unsigned 
** integer values, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages 
**        after the commit. For all other records, zero.
**     8: Salt-1 (copied from the header)
**    12: Salt-2 (copied from the header)
**    16: Checksum-1.
**    20: Checksum-2.
**
** A frame is considered valid if and only if the following conditions are
** true:
**
**    (1) The salt-1 and salt-2 values in the frame-header match
**        salt values in the wal-header
**
**    (2) The checksum values in the final 8 bytes of the frame-header
**        exactly match the checksum computed consecutively on the
**        WAL header and the first 8 bytes and the content of all frames
**        up to and including the current frame.
**
** The checksum is computed using 32-bit big-endian integers if the
** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
** is computed using little-endian if the magic number is 0x377f0682.
** The checksum values are always stored in the frame header in a
** big-endian format regardless of which byte order is used to compute
** the checksum.  The checksum is computed by interpreting the input as
** an even number of unsigned 32-bit integers: x[0] through x[N].  The
** algorithm used for the checksum is as follows:
** 
**   for i from 0 to n-1 step 2:
**     s0 += x[i] + s1;
**     s1 += x[i+1] + s0;
**   endfor
**
** Note that s0 and s1 are both weighted checksums using fibonacci weights
** in reverse order (the largest fibonacci weight occurs on the first element
** of the sequence being summed.)  The s1 value spans all 32-bit 
** terms of the sequence whereas s0 omits the final term.
**
** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
** WAL is transferred into the database, then the database is VFS.xSync-ed.
** The VFS.xSync operations serve as write barriers - all writes launched
** before the xSync must complete before any write that launches after the
** xSync begins.
**
** After each checkpoint, the salt-1 value is incremented and the salt-2
** value is randomized.  This prevents old and new frames in the WAL from
** being considered valid at the same time and being checkpointing together
** following a crash.
**
** READER ALGORITHM
**
** To read a page from the database (call it page number P), a reader
** first checks the WAL to see if it contains page P.  If so, then the
** last valid instance of page P that is followed by a commit frame
** or is a commit frame itself becomes the value read.  If the WAL
** contains no copies of page P that are valid and which are a commit
** frame or are followed by a commit frame, then page P is read from
** the database file.
**
** To start a read transaction, the reader records the index of the last
** valid frame in the WAL.  The reader uses this recorded "mxFrame" value
** for all subsequent read operations.  New transactions can be appended
** to the WAL, but as long as the reader uses its original mxFrame value
** and ignores the newly appended content, it will see a consistent snapshot
** of the database from a single point in time.  This technique allows
** multiple concurrent readers to view different versions of the database
** content simultaneously.
**
** The reader algorithm in the previous paragraphs works correctly, but 
** because frames for page P can appear anywhere within the WAL, the
** reader has to scan the entire WAL looking for page P frames.  If the
** WAL is large (multiple megabytes is typical) that scan can be slow,
** and read performance suffers.  To overcome this problem, a separate
** data structure called the wal-index is maintained to expedite the
** search for frames of a particular page.
** 
** WAL-INDEX FORMAT
**
** Conceptually, the wal-index is shared memory, though VFS implementations
** might choose to implement the wal-index using a mmapped file.  Because
** the wal-index is shared memory, SQLite does not support journal_mode=WAL 
** on a network filesystem.  All users of the database must be able to
** share memory.
**
** In the default unix and windows implementation, the wal-index is a mmapped
** file whose name is the database name with a "-shm" suffix added.  For that
** reason, the wal-index is sometimes called the "shm" file.
**
** The wal-index is transient.  After a crash, the wal-index can (and should
** be) reconstructed from the original WAL file.  In fact, the VFS is required
** to either truncate or zero the header of the wal-index when the last
** connection to it closes.  Because the wal-index is transient, it can
** use an architecture-specific format; it does not have to be cross-platform.
** Hence, unlike the database and WAL file formats which store all values
** as big endian, the wal-index can store multi-byte values in the native
** byte order of the host computer.
**
** The purpose of the wal-index is to answer this question quickly:  Given
** a page number P and a maximum frame index M, return the index of the 
** last frame in the wal before frame M for page P in the WAL, or return
** NULL if there are no frames for page P in the WAL prior to M.
**
** The wal-index consists of a header region, followed by an one or
** more index blocks.  
**
** The wal-index header contains the total number of frames within the WAL
** in the mxFrame field.
**
** Each index block except for the first contains information on 
** HASHTABLE_NPAGE frames. The first index block contains information on
** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 
** HASHTABLE_NPAGE are selected so that together the wal-index header and
** first index block are the same size as all other index blocks in the
** wal-index.
**
** Each index block contains two sections, a page-mapping that contains the
** database page number associated with each wal frame, and a hash-table 
** that allows readers to query an index block for a specific page number.
** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
** for the first index block) 32-bit page numbers. The first entry in the 
** first index-block contains the database page number corresponding to the
** first frame in the WAL file. The first entry in the second index block
** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
** the log, and so on.
**
** The last index block in a wal-index usually contains less than the full
** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
** depending on the contents of the WAL file. This does not change the
** allocated size of the page-mapping array - the page-mapping array merely
** contains unused entries.
**
** Even without using the hash table, the last frame for page P
** can be found by scanning the page-mapping sections of each index block
** starting with the last index block and moving toward the first, and
** within each index block, starting at the end and moving toward the
** beginning.  The first entry that equals P corresponds to the frame
** holding the content for that page.
**
** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
** hash table for each page number in the mapping section, so the hash 
** table is never more than half full.  The expected number of collisions 
** prior to finding a match is 1.  Each entry of the hash table is an
** 1-based index of an entry in the mapping section of the same
** index block.   Let K be the 1-based index of the largest entry in
** the mapping section.  (For index blocks other than the last, K will
** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
** K will be (mxFrame%HASHTABLE_NPAGE).)  Unused slots of the hash table
** contain a value of 0.
**
** To look for page P in the hash table, first compute a hash iKey on
** P as follows:
**
**      iKey = (P * 383) % HASHTABLE_NSLOT
**
** Then start scanning entries of the hash table, starting with iKey
** (wrapping around to the beginning when the end of the hash table is
** reached) until an unused hash slot is found. Let the first unused slot
** be at index iUnused.  (iUnused might be less than iKey if there was
** wrap-around.) Because the hash table is never more than half full,
** the search is guaranteed to eventually hit an unused entry.  Let 
** iMax be the value between iKey and iUnused, closest to iUnused,
** where aHash[iMax]==P.  If there is no iMax entry (if there exists
** no hash slot such that aHash[i]==p) then page P is not in the
** current index block.  Otherwise the iMax-th mapping entry of the
** current index block corresponds to the last entry that references 
** page P.
**
** A hash search begins with the last index block and moves toward the
** first index block, looking for entries corresponding to page P.  On
** average, only two or three slots in each index block need to be
** examined in order to either find the last entry for page P, or to
** establish that no such entry exists in the block.  Each index block
** holds over 4000 entries.  So two or three index blocks are sufficient
** to cover a typical 10 megabyte WAL file, assuming 1K pages.  8 or 10
** comparisons (on average) suffice to either locate a frame in the
** WAL or to establish that the frame does not exist in the WAL.  This
** is much faster than scanning the entire 10MB WAL.
**
** Note that entries are added in order of increasing K.  Hence, one
** reader might be using some value K0 and a second reader that started
** at a later time (after additional transactions were added to the WAL
** and to the wal-index) might be using a different value K1, where K1>K0.
** Both readers can use the same hash table and mapping section to get
** the correct result.  There may be entries in the hash table with
** K>K0, but to the first reader those entries will appear to be unused
** slots in the hash table and so the first reader will get an answer as
** if no values greater than K0 had ever been inserted into the hash table
** in the first place - which is what reader one wants.  Meanwhile, the
** second reader using K1 will see additional values that were inserted
** later, which is exactly what reader two wants.  
**
** When a rollback occurs, the value of K is decreased. Hash table entries
** that correspond to frames greater than the new K value are removed
** from the hash table at this point.
*/

/*
** WAL2 NOTES
**
** This file also contains the implementation of "wal2" mode - activated
** using "PRAGMA journal_mode = wal2". Wal2 mode is very similar to wal
** mode, except that it uses two wal files instead of one. Under some
** circumstances, wal2 mode provides more concurrency than legacy wal 
** mode.
**
** THE PROBLEM WAL2 SOLVES:
**
** In legacy wal mode, if a writer wishes to write to the database while
** a checkpoint is ongoing, it may append frames to the existing wal file.
** This means that after the checkpoint has finished, the wal file consists
** of a large block of checkpointed frames, followed by a block of
** uncheckpointed frames. In a deployment that features a high volume of
** write traffic, this may mean that the wal file is never completely
** checkpointed. And so grows indefinitely.
**
** An alternative is to use "PRAGMA wal_checkpoint=RESTART" or similar to
** force a complete checkpoint of the wal file. But this must:
**
**   1) Wait on all existing readers to finish,
**   2) Wait on any existing writer, and then block all new writers,
**   3) Do the checkpoint,
**   4) Wait on any new readers that started during steps 2 and 3. Writers
**      are still blocked during this step.
**
** This means that in order to avoid the wal file growing indefinitely 
** in a busy system, writers must periodically pause to allow a checkpoint
** to complete. In a system with long running readers, such pauses may be
** for a non-trivial amount of time.
**
** OVERVIEW OF SOLUTION
**
** Wal2 mode uses two wal files. After writers have grown the first wal 
** file to a pre-configured size, they begin appending transactions to 
** the second wal file. Once all existing readers are reading snapshots
** new enough to include the entire first wal file, a checkpointer can
** checkpoint it.
**
** Meanwhile, writers are writing transactions to the second wal file.
** Once that wal file has grown larger than the pre-configured size, each
** new writer checks if:
**
**    * the first wal file has been checkpointed, and if so, if
**    * there are no readers still reading from the first wal file (once
**      it has been checkpointed, new readers read only from the second
**      wal file).
**
** If both these conditions are true, the writer may switch back to the
** first wal file. Eventually, a checkpointer can checkpoint the second
** wal file, and so on.
**
** The wal file that writers are currently appending to (the one they
** don't have to check the above two criteria before writing to) is called
** the "current" wal file.
**
** The first wal file takes the same name as the wal file in legacy wal
** mode systems - "<db>-wal". The second is named "<db>-wal2".
**
** WAL FILE FORMAT
**
** The file format used for each wal file in wal2 mode is the same as for
** legacy wal mode.  Except, the file format field is set to 3021000 
** instead of 3007000.
**
** WAL-INDEX FORMAT
**
** The wal-index format is also very similar. Even though there are two
** wal files, there is still a single wal-index shared-memory area (*-shm
** file with the default unix or win32 VFS). The wal-index header is the
** same size, with the following exceptions it has the same format:
**
**   * The version field is set to 3021000 instead of 3007000.
**
**   * An unused 32-bit field in the legacy wal-index header is
**     now used to store (a) a single bit indicating which of the
**     two wal files writers should append to and (b) the number
**     of frames in the second wal file (31 bits).
**
** The first hash table in the wal-index contains entries corresponding
** to the first HASHTABLE_NPAGE_ONE frames stored in the first wal file.
** The second hash table in the wal-index contains entries indexing the
** first HASHTABLE_NPAGE frames in the second wal file. The third hash
** table contains the next HASHTABLE_NPAGE frames in the first wal file,
** and so on.
**
** LOCKS
**
** Read-locks are simpler than for legacy wal mode. There are no locking
** slots that contain frame numbers. Instead, there are four distinct
** combinations of read locks a reader may hold:
**
**   WAL_LOCK_PART1:       "part" lock on first wal, none of second.
**   WAL_LOCK_PART1_FULL2: "part" lock on first wal, "full" of second.
**   WAL_LOCK_PART2: no lock on first wal, "part" lock on second.
**   WAL_LOCK_PART2_FULL1: "full" lock on first wal, "part" lock on second.
**
** When a reader reads the wal-index header as part of opening a read
** transaction, it takes a "part" lock on the current wal file. "Part" 
** because the wal file may grow while the read transaction is active, in 
** which case the reader would be reading only part of the wal file. 
** A part lock prevents a checkpointer from checkpointing the wal file 
** on which it is held.
**
** If there is data in the non-current wal file that has not been 
** checkpointed, the reader takes a "full" lock on that wal file. A 
** "full" lock indicates that the reader is using the entire wal file.
** A full lock prevents a writer from overwriting the wal file on which
** it is held, but does not prevent a checkpointer from checkpointing 
** it.
**
** There is still a single WRITER and a single CHECKPOINTER lock. The
** recovery procedure still takes the same exclusive lock on the entire
** range of SQLITE_SHM_NLOCK shm-locks. This works because the read-locks
** above use four of the six read-locking slots used by legacy wal mode.
**
** STARTUP/RECOVERY
**
** The read and write version fields of the database header in a wal2
** database are set to 0x03, instead of 0x02 as in legacy wal mode.
**
** The wal file format used in wal2 mode is the same as the format used
** in legacy wal mode. However, in order to support recovery, there are two
** differences in the way wal file header fields are populated, as follows:
**
**   * When the first wal file is first created, the "nCkpt" field in
**     the wal file header is set to 0. Thereafter, each time the writer
**     switches wal file, it sets the nCkpt field in the new wal file
**     header to ((nCkpt0 + 1) & 0x0F), where nCkpt0 is the value in
**     the previous wal file header. This means that the first wal file
**     always has an even value in the nCkpt field, and the second wal
**     file always has an odd value.
**
**   * When a writer switches wal file, it sets the salt values in the
**     new wal file to a copy of the checksum for the final frame in
**     the previous wal file.
**
** Recovery proceeds as follows:
**
** 1. Each wal file is recovered separately. Except, if the first wal 
**    file does not exist or is zero bytes in size, the second wal file
**    is truncated to zero bytes before it is "recovered".
**
** 2. If both wal files contain valid headers, then the nCkpt fields
**    are compared to see which of the two wal files is older. If the
**    salt keys in the second wal file match the final frame checksum 
**    in the older wal file, then both wal files are used. Otherwise,
**    the newer wal file is ignored.
**
** 3. Or, if only one or neither of the wal files has a valid header, 
**    then only a single or no wal files are recovered into the 
**    reconstructed wal-index.
**
** Refer to header comments for walIndexRecover() for further details.
*/

#ifndef SQLITE_OMIT_WAL

#include "wal.h"

/*
** Trace output macros
*/
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
int sqlite3WalTrace = 0;
# define WALTRACE(X)  if(sqlite3WalTrace) sqlite3DebugPrintf X
#else
# define WALTRACE(X)
#endif

/*
** WAL mode depends on atomic aligned 32-bit loads and stores in a few
** places.  The following macros try to make this explicit.
*/
#if GCC_VESRION>=5004000
# define AtomicLoad(PTR)       __atomic_load_n((PTR),__ATOMIC_RELAXED)
# define AtomicStore(PTR,VAL)  __atomic_store_n((PTR),(VAL),__ATOMIC_RELAXED)
#else
# define AtomicLoad(PTR)       (*(PTR))
# define AtomicStore(PTR,VAL)  (*(PTR) = (VAL))
#endif

/*
** Both the wal-file and the wal-index contain version fields 
** indicating the current version of the system. If a client
** reads the header of a wal file (as part of recovery), or the
** wal-index (as part of opening a read transaction) and (a) the
** header checksum is correct but (b) the version field is not
** recognized, the operation fails with SQLITE_CANTOPEN.
**
** Currently, clients support both version-1 ("journal_mode=wal") and
** version-2 ("journal_mode=wal2"). Legacy clients may support version-1
** only.
*/
#define WAL_VERSION1 3007000      /* For "journal_mode=wal" */
#define WAL_VERSION2 3021000      /* For "journal_mode=wal2" */

/*
** Index numbers for various locking bytes.   WAL_NREADER is the number
** of available reader locks and should be at least 3.  The default
** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
**
** Technically, the various VFSes are free to implement these locks however
** they see fit.  However, compatibility is encouraged so that VFSes can
** interoperate.  The standard implemention used on both unix and windows
** is for the index number to indicate a byte offset into the
** WalCkptInfo.aLock[] array in the wal-index header.  In other words, all
** locks are on the shm file.  The WALINDEX_LOCK_OFFSET constant (which
** should be 120) is the location in the shm file for the first locking
** byte.
*/
#define WAL_WRITE_LOCK         0
#define WAL_ALL_BUT_WRITE      1
#define WAL_CKPT_LOCK          1
#define WAL_RECOVER_LOCK       2
#define WAL_READ_LOCK(I)       (3+(I))
#define WAL_NREADER            (SQLITE_SHM_NLOCK-3)

/*
** Values that may be stored in Wal.readLock in wal2 mode.
**
** In wal mode, the Wal.readLock member is set to -1 when no read-lock
** is held, or else is the index of the read-mark on which a lock is
** held.
**
** In wal2 mode, a value of -1 still indicates that no read-lock is held.
** And a non-zero value still represents the index of the read-mark on
** which a lock is held. There are two differences:
**
**   1. wal2 mode never uses read-mark 0.
**
**   2. locks on each read-mark have a different interpretation, as 
**      indicated by the symbolic names below.
*/
#define WAL_LOCK_NONE        -1
#define WAL_LOCK_PART1        1
#define WAL_LOCK_PART1_FULL2  2
#define WAL_LOCK_PART2_FULL1  3
#define WAL_LOCK_PART2        4

/* 
** This constant is used in wal2 mode only.
**
** In wal2 mode, when committing a transaction, if the current wal file 
** is sufficiently large and there are no conflicting locks held, the
** writer writes the new transaction into the start of the other wal
** file. Usually, "sufficiently large" is defined by the value configured
** using "PRAGMA journal_size_limit". However, if no such value has been
** configured, sufficiently large defaults to WAL_DEFAULT_WALSIZE frames.
*/
#define WAL_DEFAULT_WALSIZE 1000

/* Object declarations */
typedef struct WalIndexHdr WalIndexHdr;
typedef struct WalIterator WalIterator;
typedef struct WalCkptInfo WalCkptInfo;


/*
** The following object holds a copy of the wal-index header content.
**
** The actual header in the wal-index consists of two copies of this
** object followed by one instance of the WalCkptInfo object.
** For all versions of SQLite through 3.10.0 and probably beyond,
** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
** the total header size is 136 bytes.
**
** The szPage value can be any power of 2 between 512 and 32768, inclusive.
** Or it can be 1 to represent a 65536-byte page.  The latter case was
** added in 3.7.1 when support for 64K pages was added.  
**
** WAL2 mode notes: Member variable mxFrame2 is only used in wal2 mode
** (when iVersion is set to WAL_VERSION2). The lower 31 bits store
** the maximum frame number in file *-wal2. The most significant bit
** is a flag - set if clients are currently appending to *-wal2, clear
** otherwise.
*/
struct WalIndexHdr {
  u32 iVersion;                   /* Wal-index version */
  u32 mxFrame2;                   /* See "WAL2 mode notes" above */
  u32 iChange;                    /* Counter incremented each transaction */
  u8 isInit;                      /* 1 when initialized */
  u8 bigEndCksum;                 /* True if checksums in WAL are big-endian */
  u16 szPage;                     /* Database page size in bytes. 1==64K */
  u32 mxFrame;                    /* Index of last valid frame in each WAL */
  u32 nPage;                      /* Size of database in pages */
  u32 aFrameCksum[2];             /* Checksum of last frame in log */
  u32 aSalt[2];                   /* Two salt values copied from WAL header */
  u32 aCksum[2];                  /* Checksum over all prior fields */
};

/*
** The following macros and functions are get/set methods for the maximum
** frame numbers and current wal file values stored in the WalIndexHdr
** structure. These are helpful because of the unorthodox way in which
** the values are stored in wal2 mode (see above). They are equivalent
** to functions with the following signatures.
**
**   u32  walidxGetMxFrame(WalIndexHdr*, int iWal);          // get mxFrame
**   void walidxSetMxFrame(WalIndexHdr*, int iWal, u32 val); // set mxFrame
**   int  walidxGetFile(WalIndexHdr*)                        // get file
**   void walidxSetFile(WalIndexHdr*, int val);              // set file
*/
#define walidxGetMxFrame(pHdr, iWal) \
  ((iWal) ? ((pHdr)->mxFrame2 & 0x7FFFFFF) : (pHdr)->mxFrame)

static void walidxSetMxFrame(WalIndexHdr *pHdr, int iWal, u32 mxFrame){
  if( iWal ){
    pHdr->mxFrame2 = (pHdr->mxFrame2 & 0x80000000) | mxFrame;
  }else{
    pHdr->mxFrame = mxFrame;
  }
  assert( walidxGetMxFrame(pHdr, iWal)==mxFrame );
}

#define walidxGetFile(pHdr) ((pHdr)->mxFrame2 >> 31)

#define walidxSetFile(pHdr, iWal) (                                   \
    (pHdr)->mxFrame2 = ((pHdr)->mxFrame2 & 0x7FFFFFFF) | ((iWal)<<31) \
)

/*
** Argument is a pointer to a Wal structure. Return true if the current
** cache of the wal-index header indicates "journal_mode=wal2" mode, or
** false otherwise.
*/
#define isWalMode2(pWal) ((pWal)->hdr.iVersion==WAL_VERSION2)

/*
** A copy of the following object occurs in the wal-index immediately
** following the second copy of the WalIndexHdr.  This object stores
** information used by checkpoint.
**
** nBackfill is the number of frames in the WAL that have been written
** back into the database. (We call the act of moving content from WAL to
** database "backfilling".)  The nBackfill number is never greater than
** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
** mxFrame back to zero when the WAL is reset.
**
** nBackfillAttempted is the largest value of nBackfill that a checkpoint
** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
** the nBackfillAttempted is set before any backfilling is done and the
** nBackfill is only set after all backfilling completes.  So if a checkpoint
** crashes, nBackfillAttempted might be larger than nBackfill.  The
** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
**
** The aLock[] field is a set of bytes used for locking.  These bytes should
** never be read or written.
**
** There is one entry in aReadMark[] for each reader lock.  If a reader
** holds read-lock K, then the value in aReadMark[K] is no greater than
** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
** for any aReadMark[] means that entry is unused.  aReadMark[0] is 
** a special case; its value is never used and it exists as a place-holder
** to avoid having to offset aReadMark[] indexs by one.  Readers holding
** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
** directly from the database.
**
** The value of aReadMark[K] may only be changed by a thread that
** is holding an exclusive lock on WAL_READ_LOCK(K).  Thus, the value of
** aReadMark[K] cannot changed while there is a reader is using that mark
** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
**
** The checkpointer may only transfer frames from WAL to database where
** the frame numbers are less than or equal to every aReadMark[] that is
** in use (that is, every aReadMark[j] for which there is a corresponding
** WAL_READ_LOCK(j)).  New readers (usually) pick the aReadMark[] with the
** largest value and will increase an unused aReadMark[] to mxFrame if there
** is not already an aReadMark[] equal to mxFrame.  The exception to the
** previous sentence is when nBackfill equals mxFrame (meaning that everything
** in the WAL has been backfilled into the database) then new readers
** will choose aReadMark[0] which has value 0 and hence such reader will
** get all their all content directly from the database file and ignore 
** the WAL.
**
** Writers normally append new frames to the end of the WAL.  However,
** if nBackfill equals mxFrame (meaning that all WAL content has been
** written back into the database) and if no readers are using the WAL
** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
** the writer will first "reset" the WAL back to the beginning and start
** writing new content beginning at frame 1.
**
** We assume that 32-bit loads are atomic and so no locks are needed in
** order to read from any aReadMark[] entries.
*/
struct WalCkptInfo {
  u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
  u32 aReadMark[WAL_NREADER];     /* Reader marks */
  u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
  u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
  u32 notUsed0;                   /* Available for future enhancements */
};
#define READMARK_NOT_USED  0xffffffff


/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
** only support mandatory file-locks, we do not read or write data
** from the region of the file on which locks are applied.
*/
#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
#define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))

/* Size of header before each frame in wal */
#define WAL_FRAME_HDRSIZE 24

/* Size of write ahead log header, including checksum. */
#define WAL_HDRSIZE 32

/* WAL magic value. Either this value, or the same value with the least
** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
** big-endian format in the first 4 bytes of a WAL file.
**
** If the LSB is set, then the checksums for each frame within the WAL
** file are calculated by treating all data as an array of 32-bit 
** big-endian words. Otherwise, they are calculated by interpreting 
** all data as 32-bit little-endian words.
*/
#define WAL_MAGIC 0x377f0682

/*
** Return the offset of frame iFrame in the write-ahead log file, 
** assuming a database page size of szPage bytes. The offset returned
** is to the start of the write-ahead log frame-header.
*/
#define walFrameOffset(iFrame, szPage) (                               \
  WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE)         \
)

/*
** An open write-ahead log file is represented by an instance of the
** following object.
*/
struct Wal {
  sqlite3_vfs *pVfs;         /* The VFS used to create pDbFd */
  sqlite3_file *pDbFd;       /* File handle for the database file */
  sqlite3_file *apWalFd[2];  /* File handle for "*-wal" and "*-wal2" */
  u32 iCallback;             /* Value to pass to log callback (or 0) */
  i64 mxWalSize;             /* Truncate WAL to this size upon reset */
  int nWiData;               /* Size of array apWiData */
  int szFirstBlock;          /* Size of first block written to WAL file */
  volatile u32 **apWiData;   /* Pointer to wal-index content in memory */
  u32 szPage;                /* Database page size */
  i16 readLock;              /* Which read lock is being held.  -1 for none */
  u8 syncFlags;              /* Flags to use to sync header writes */
  u8 exclusiveMode;          /* Non-zero if connection is in exclusive mode */
  u8 writeLock;              /* True if in a write transaction */
  u8 ckptLock;               /* True if holding a checkpoint lock */
  u8 readOnly;               /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
  u8 truncateOnCommit;       /* True to truncate WAL file on commit */
  u8 syncHeader;             /* Fsync the WAL header if true */
  u8 padToSectorBoundary;    /* Pad transactions out to the next sector */
  u8 bShmUnreliable;         /* SHM content is read-only and unreliable */
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */
  u32 iReCksum;              /* On commit, recalculate checksums from here */
  u32 nPriorFrame;           /* For sqlite3WalInfo() */
  const char *zWalName;      /* Name of WAL file */
  char *zWalName2;           /* Name of second WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
#endif
  int bWal2;                 /* bWal2 flag passed to WalOpen() */
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     
#define WAL_HEAPMEMORY_MODE 2

/*
** Possible values for WAL.readOnly
*/
#define WAL_RDWR        0    /* Normal read/write connection */
#define WAL_RDONLY      1    /* The WAL file is readonly */
#define WAL_SHM_RDONLY  2    /* The SHM file is readonly */

/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;

/*
** This structure is used to implement an iterator that loops through
** all frames in the WAL in database page order. Where two or more frames
** correspond to the same database page, the iterator visits only the 
** frame most recently written to the WAL (in other words, the frame with
** the largest index).
**
** The internals of this structure are only accessed by:
**
**   walIteratorInit() - Create a new iterator,
**   walIteratorNext() - Step an iterator,
**   walIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see walCheckpoint()).
*/
struct WalIterator {
  int iPrior;                     /* Last result returned from the iterator */
  int nSegment;                   /* Number of entries in aSegment[] */
  struct WalSegment {
    int iNext;                    /* Next slot in aIndex[] not yet returned */
    ht_slot *aIndex;              /* i0, i1, i2... such that aPgno[iN] ascend */
    u32 *aPgno;                   /* Array of page numbers. */
    int nEntry;                   /* Nr. of entries in aPgno[] and aIndex[] */
    int iZero;                    /* Frame number associated with aPgno[0] */
  } aSegment[1];                  /* One for every 32KB page in the wal-index */
};

/*
** Define the parameters of the hash tables in the wal-index file. There
** is a hash-table following every HASHTABLE_NPAGE page numbers in the
** wal-index.
**
** Changing any of these constants will alter the wal-index format and
** create incompatibilities.
*/
#define HASHTABLE_NPAGE      4096                 /* Must be power of 2 */
#define HASHTABLE_HASH_1     383                  /* Should be prime */
#define HASHTABLE_NSLOT      (HASHTABLE_NPAGE*2)  /* Must be a power of 2 */

/* 
** The block of page numbers associated with the first hash-table in a
** wal-index is smaller than usual. This is so that there is a complete
** hash-table on each aligned 32KB page of the wal-index.
*/
#define HASHTABLE_NPAGE_ONE  (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))

/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
#define WALINDEX_PGSZ   (                                         \
    sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
)

/*
** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
** numbered from zero.
**
** If the wal-index is currently smaller the iPage pages then the size
** of the wal-index might be increased, but only if it is safe to do
** so.  It is safe to enlarge the wal-index if pWal->writeLock is true
** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
**
** If this call is successful, *ppPage is set to point to the wal-index
** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
** then an SQLite error code is returned and *ppPage is set to 0.
*/
static SQLITE_NOINLINE int walIndexPageRealloc(
  Wal *pWal,               /* The WAL context */
  int iPage,               /* The page we seek */
  volatile u32 **ppPage    /* Write the page pointer here */
){
  int rc = SQLITE_OK;

  /* Enlarge the pWal->apWiData[] array if required */
  if( pWal->nWiData<=iPage ){
    int nByte = sizeof(u32*)*(iPage+1);
    volatile u32 **apNew;
    apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
    if( !apNew ){
      *ppPage = 0;
      return SQLITE_NOMEM_BKPT;
    }
    memset((void*)&apNew[pWal->nWiData], 0,
           sizeof(u32*)*(iPage+1-pWal->nWiData));
    pWal->apWiData = apNew;
    pWal->nWiData = iPage+1;
  }

  /* Request a pointer to the required page from the VFS */
  assert( pWal->apWiData[iPage]==0 );
  if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
    pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
    if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
  }else{
    rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, 
        pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
    );
    assert( pWal->apWiData[iPage]!=0 || rc!=SQLITE_OK || pWal->writeLock==0 );
    testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
    if( (rc&0xff)==SQLITE_READONLY ){
      pWal->readOnly |= WAL_SHM_RDONLY;
      if( rc==SQLITE_READONLY ){
        rc = SQLITE_OK;
      }
    }
  }

  *ppPage = pWal->apWiData[iPage];
  assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
  return rc;
}
static int walIndexPage(
  Wal *pWal,               /* The WAL context */
  int iPage,               /* The page we seek */
  volatile u32 **ppPage    /* Write the page pointer here */
){
  if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
    return walIndexPageRealloc(pWal, iPage, ppPage);
  }
  return SQLITE_OK;
}

/*
** Return a pointer to the WalCkptInfo structure in the wal-index.
*/
static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
  assert( pWal->nWiData>0 && pWal->apWiData[0] );
  return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
}

/*
** Return a pointer to the WalIndexHdr structure in the wal-index.
*/
static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
  assert( pWal->nWiData>0 && pWal->apWiData[0] );
  return (volatile WalIndexHdr*)pWal->apWiData[0];
}

/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by interpreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
    (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8)  \
  + (((x)&0x00FF0000)>>8)  + (((x)&0xFF000000)>>24) \
)

/*
** Generate or extend an 8 byte checksum based on the data in 
** array aByte[] and the initial values of aIn[0] and aIn[1] (or
** initial values of 0 and 0 if aIn==NULL).
**
** The checksum is written back into aOut[] before returning.
**
** nByte must be a positive multiple of 8.
*/
static void walChecksumBytes(
  int nativeCksum, /* True for native byte-order, false for non-native */
  u8 *a,           /* Content to be checksummed */
  int nByte,       /* Bytes of content in a[].  Must be a multiple of 8. */
  const u32 *aIn,  /* Initial checksum value input */
  u32 *aOut        /* OUT: Final checksum value output */
){
  u32 s1, s2;
  u32 *aData = (u32 *)a;
  u32 *aEnd = (u32 *)&a[nByte];

  if( aIn ){
    s1 = aIn[0];
    s2 = aIn[1];
  }else{
    s1 = s2 = 0;
  }

  assert( nByte>=8 );
  assert( (nByte&0x00000007)==0 );

  if( nativeCksum ){
    do {
      s1 += *aData++ + s2;
      s2 += *aData++ + s1;
    }while( aData<aEnd );
  }else{
    do {
      s1 += BYTESWAP32(aData[0]) + s2;
      s2 += BYTESWAP32(aData[1]) + s1;
      aData += 2;
    }while( aData<aEnd );
  }

  aOut[0] = s1;
  aOut[1] = s2;
}

static void walShmBarrier(Wal *pWal){
  if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    sqlite3OsShmBarrier(pWal->pDbFd);
  }
}

/*
** Write the header information in pWal->hdr into the wal-index.
**
** The checksum on pWal->hdr is updated before it is written.
*/
static void walIndexWriteHdr(Wal *pWal){
  volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
  const int nCksum = offsetof(WalIndexHdr, aCksum);

  assert( pWal->writeLock );
  pWal->hdr.isInit = 1;
  assert( pWal->hdr.iVersion==WAL_VERSION1||pWal->hdr.iVersion==WAL_VERSION2 );
  walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
  memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
  walShmBarrier(pWal);
  memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
}

/*
** This function encodes a single frame header and writes it to a buffer
** supplied by the caller. A frame-header is made up of a series of 
** 4-byte big-endian integers, as follows:
**
**     0: Page number.
**     4: For commit records, the size of the database image in pages 
**        after the commit. For all other records, zero.
**     8: Salt-1 (copied from the wal-header)
**    12: Salt-2 (copied from the wal-header)
**    16: Checksum-1.
**    20: Checksum-2.
*/
static void walEncodeFrame(
  Wal *pWal,                      /* The write-ahead log */
  u32 iPage,                      /* Database page number for frame */
  u32 nTruncate,                  /* New db size (or 0 for non-commit frames) */
  u8 *aData,                      /* Pointer to page data */
  u8 *aFrame                      /* OUT: Write encoded frame here */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  assert( WAL_FRAME_HDRSIZE==24 );
  sqlite3Put4byte(&aFrame[0], iPage);
  sqlite3Put4byte(&aFrame[4], nTruncate);
  if( pWal->iReCksum==0 ){
    memcpy(&aFrame[8], pWal->hdr.aSalt, 8);

    nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
    walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
    walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);

    sqlite3Put4byte(&aFrame[16], aCksum[0]);
    sqlite3Put4byte(&aFrame[20], aCksum[1]);
  }else{
    memset(&aFrame[8], 0, 16);
  }
}

/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid.  If it is a valid frame, fill *piPage and
** *pnTruncate and return true.  Return if the frame is not valid.
*/
static int walDecodeFrame(
  Wal *pWal,                      /* The write-ahead log */
  u32 *piPage,                    /* OUT: Database page number for frame */
  u32 *pnTruncate,                /* OUT: New db size (or 0 if not commit) */
  u8 *aData,                      /* Pointer to page data (for checksum) */
  u8 *aFrame                      /* Frame data */
){
  int nativeCksum;                /* True for native byte-order checksums */
  u32 *aCksum = pWal->hdr.aFrameCksum;
  u32 pgno;                       /* Page number of the frame */
  assert( WAL_FRAME_HDRSIZE==24 );

  /* A frame is only valid if the salt values in the frame-header
  ** match the salt values in the wal-header. 
  */
  if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
    return 0;
  }

  /* A frame is only valid if the page number is creater than zero.
  */
  pgno = sqlite3Get4byte(&aFrame[0]);
  if( pgno==0 ){
    return 0;
  }

  /* A frame is only valid if a checksum of the WAL header,
  ** all prior frames, the first 16 bytes of this frame-header, 
  ** and the frame-data matches the checksum in the last 8 
  ** bytes of this frame-header.
  */
  nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
  walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
  walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
  if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) 
   || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) 
  ){
    /* Checksum failed. */
    return 0;
  }

  /* If we reach this point, the frame is valid.  Return the page number
  ** and the new database size.
  */
  *piPage = pgno;
  *pnTruncate = sqlite3Get4byte(&aFrame[4]);
  return 1;
}


#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
/*
** Names of locks.  This routine is used to provide debugging output and is not
** a part of an ordinary build.
*/
static const char *walLockName(int lockIdx){
  if( lockIdx==WAL_WRITE_LOCK ){
    return "WRITE-LOCK";
  }else if( lockIdx==WAL_CKPT_LOCK ){
    return "CKPT-LOCK";
  }else if( lockIdx==WAL_RECOVER_LOCK ){
    return "RECOVER-LOCK";
  }else{
    static char zName[15];
    sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
                     lockIdx-WAL_READ_LOCK(0));
    return zName;
  }
}
#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
    

/*
** Set or release locks on the WAL.  Locks are either shared or exclusive.
** A lock cannot be moved directly between shared and exclusive - it must go
** through the concurrent state first.
**
** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
*/
static int walLockShared(Wal *pWal, int lockIdx){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;
  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                        SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
            walLockName(lockIdx), rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  return rc;
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;
  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                        SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
            walLockName(lockIdx), n, rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  return rc;
}
static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
             walLockName(lockIdx), n));
}

/*
** Compute a hash on a page number.  The resulting hash value must land
** between 0 and (HASHTABLE_NSLOT-1).  The walHashNext() function advances
** the hash to the next value in the event of a collision.
*/
static int walHash(u32 iPage){
  assert( iPage>0 );
  assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
  return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
}
static int walNextHash(int iPriorHash){
  return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
}

/*
** An instance of the WalHashLoc object is used to describe the location
** of a page hash table in the wal-index.  This becomes the return value
** from walHashGet().
*/
typedef struct WalHashLoc WalHashLoc;
struct WalHashLoc {
  volatile ht_slot *aHash;  /* Start of the wal-index hash table */
  volatile u32 *aPgno;      /* aPgno[1] is the page of first frame indexed */
  u32 iZero;                /* One less than the frame number of first indexed*/
};

/* 
** Return pointers to the hash table and page number array stored on
** page iHash of the wal-index. The wal-index is broken into 32KB pages
** numbered starting from 0.
**
** Set output variable pLoc->aHash to point to the start of the hash table
** in the wal-index file. Set pLoc->iZero to one less than the frame 
** number of the first frame indexed by this hash table. If a
** slot in the hash table is set to N, it refers to frame number 
** (pLoc->iZero+N) in the log.
**
** Finally, set pLoc->aPgno so that pLoc->aPgno[1] is the page number of the
** first frame indexed by the hash table, frame (pLoc->iZero+1).
*/
static int walHashGet(
  Wal *pWal,                      /* WAL handle */
  int iHash,                      /* Find the iHash'th table */
  WalHashLoc *pLoc                /* OUT: Hash table location */
){
  int rc;                         /* Return code */

  rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
  assert( rc==SQLITE_OK || iHash>0 );

  if( rc==SQLITE_OK ){
    pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
    if( iHash==0 ){
      pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
      pLoc->iZero = 0;
    }else{
      pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
    }
    pLoc->aPgno = &pLoc->aPgno[-1];
  }
  return rc;
}

static u32 walExternalEncode(int iWal, u32 iFrame){
  u32 iRet;
  if( iWal ){
    iRet = HASHTABLE_NPAGE_ONE + iFrame;
    iRet += ((iFrame-1) / HASHTABLE_NPAGE) * HASHTABLE_NPAGE;
  }else{
    iRet = iFrame;
    iFrame += HASHTABLE_NPAGE - HASHTABLE_NPAGE_ONE;
    iRet += ((iFrame-1) / HASHTABLE_NPAGE) * HASHTABLE_NPAGE;
  }
  return iRet;
}

/*
** Parameter iExternal is an external frame identifier. This function
** transforms it to a wal file number (0 or 1) and frame number within
** this wal file (reported via output parameter *piRead).
*/
static int walExternalDecode(u32 iExternal, u32 *piRead){
  int iHash = (iExternal+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1)/HASHTABLE_NPAGE;

  if( 0==(iHash & 0x01) ){
    /* A frame in wal file 0 */
    *piRead = (iExternal <= HASHTABLE_NPAGE_ONE) ? iExternal :
      iExternal - (iHash/2) * HASHTABLE_NPAGE;
    return 0;
  }

  *piRead = iExternal - HASHTABLE_NPAGE_ONE - ((iHash-1)/2) * HASHTABLE_NPAGE;
  return 1;
}

/*
** Return the number of the wal-index page that contains the hash-table
** and page-number array that contain entries corresponding to WAL frame
** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages 
** are numbered starting from 0.
*/
static int walFramePage(u32 iFrame){
  int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
  assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
       && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
       && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
       && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
       && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
  );
  return iHash;
}

/*
** Return the index of the hash-table corresponding to frame iFrame of wal
** file iWal.
*/
static int walFramePage2(int iWal, u32 iFrame){
  int iRet;
  assert( iWal==0 || iWal==1 );
  assert( iFrame>0 );
  if( iWal==0 ){
    iRet = 2*((iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1)/HASHTABLE_NPAGE);
  }else{
    iRet = 1 + 2 * ((iFrame-1) / HASHTABLE_NPAGE);
  }
  return iRet;
}

/*
** Return the page number associated with frame iFrame in this WAL.
*/
static u32 walFramePgno(Wal *pWal, u32 iFrame){
  int iHash = walFramePage(iFrame);
  if( iHash==0 ){
    return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
  }
  return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
}

static u32 walFramePgno2(Wal *pWal, int iWal, u32 iFrame){
  return walFramePgno(pWal, walExternalEncode(iWal, iFrame));
}

/*
** Remove entries from the hash table that point to WAL slots greater
** than pWal->hdr.mxFrame.
**
** This function is called whenever pWal->hdr.mxFrame is decreased due
** to a rollback or savepoint.
**
** At most only the hash table containing pWal->hdr.mxFrame needs to be
** updated.  Any later hash tables will be automatically cleared when
** pWal->hdr.mxFrame advances to the point where those hash tables are
** actually needed.
*/
static void walCleanupHash(Wal *pWal){
  WalHashLoc sLoc;                /* Hash table location */
  int iLimit = 0;                 /* Zero values greater than this */
  int nByte;                      /* Number of bytes to zero in aPgno[] */
  int i;                          /* Used to iterate through aHash[] */
  int iWal = walidxGetFile(&pWal->hdr);
  u32 mxFrame = walidxGetMxFrame(&pWal->hdr, iWal);

  u32 iExternal;
  if( isWalMode2(pWal) ){
    iExternal = walExternalEncode(iWal, mxFrame);
  }else{
    assert( iWal==0 );
    iExternal = mxFrame;
  }

  assert( pWal->writeLock );
  testcase( mxFrame==HASHTABLE_NPAGE_ONE-1 );
  testcase( mxFrame==HASHTABLE_NPAGE_ONE );
  testcase( mxFrame==HASHTABLE_NPAGE_ONE+1 );

  if( mxFrame==0 ) return;

  /* Obtain pointers to the hash-table and page-number array containing 
  ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
  ** that the page said hash-table and array reside on is already mapped.
  */
  assert( pWal->nWiData>walFramePage(iExternal) );
  assert( pWal->apWiData[walFramePage(iExternal)] );
  walHashGet(pWal, walFramePage(iExternal), &sLoc);

  /* Zero all hash-table entries that correspond to frame numbers greater
  ** than pWal->hdr.mxFrame.
  */
  iLimit = iExternal - sLoc.iZero;
  assert( iLimit>0 );
  for(i=0; i<HASHTABLE_NSLOT; i++){
    if( sLoc.aHash[i]>iLimit ){
      sLoc.aHash[i] = 0;
    }
  }
  
  /* Zero the entries in the aPgno array that correspond to frames with
  ** frame numbers greater than pWal->hdr.mxFrame.  */
  nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit+1]);
  memset((void *)&sLoc.aPgno[iLimit+1], 0, nByte);

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* Verify that the every entry in the mapping region is still reachable
  ** via the hash table even after the cleanup.
  */
  if( iLimit ){
    int j;           /* Loop counter */
    int iKey;        /* Hash key */
    for(j=1; j<=iLimit; j++){
      for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
        if( sLoc.aHash[iKey]==j ) break;
      }
      assert( sLoc.aHash[iKey]==j );
    }
  }
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
}

/*
** Set an entry in the wal-index that will map database page number
** pPage into WAL frame iFrame.
*/
static int walIndexAppend(Wal *pWal, int iWal, u32 iFrame, u32 iPage){
  int rc;                         /* Return code */
  WalHashLoc sLoc;                /* Wal-index hash table location */
  u32 iExternal;
  
  if( isWalMode2(pWal) ){
    iExternal = walExternalEncode(iWal, iFrame);
  }else{
    assert( iWal==0 );
    iExternal = iFrame;
  }

  rc = walHashGet(pWal, walFramePage(iExternal), &sLoc);

  /* Assuming the wal-index file was successfully mapped, populate the
  ** page number array and hash table entry.
  */
  if( rc==SQLITE_OK ){
    int iKey;                     /* Hash table key */
    int idx;                      /* Value to write to hash-table slot */
    int nCollide;                 /* Number of hash collisions */

    idx = iExternal - sLoc.iZero;
    assert( idx <= HASHTABLE_NSLOT/2 + 1 );
    
    /* If this is the first entry to be added to this hash-table, zero the
    ** entire hash table and aPgno[] array before proceeding. 
    */
    if( idx==1 ){
      int nByte = (int)((u8 *)&sLoc.aHash[HASHTABLE_NSLOT]
                               - (u8 *)&sLoc.aPgno[1]);
      memset((void*)&sLoc.aPgno[1], 0, nByte);
    }

    /* If the entry in aPgno[] is already set, then the previous writer
    ** must have exited unexpectedly in the middle of a transaction (after
    ** writing one or more dirty pages to the WAL to free up memory). 
    ** Remove the remnants of that writers uncommitted transaction from 
    ** the hash-table before writing any new entries.
    */
    if( sLoc.aPgno[idx] ){
      walCleanupHash(pWal);
      assert( !sLoc.aPgno[idx] );
    }

    /* Write the aPgno[] array entry and the hash-table slot. */
    nCollide = idx;
    for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
      if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
    }
    sLoc.aPgno[idx] = iPage;
    sLoc.aHash[iKey] = (ht_slot)idx;

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
    /* Verify that the number of entries in the hash table exactly equals
    ** the number of entries in the mapping region.
    */
    {
      int i;           /* Loop counter */
      int nEntry = 0;  /* Number of entries in the hash table */
      for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
      assert( nEntry==idx );
    }

    /* Verify that the every entry in the mapping region is reachable
    ** via the hash table.  This turns out to be a really, really expensive
    ** thing to check, so only do this occasionally - not on every
    ** iteration.
    */
    if( (idx&0x3ff)==0 ){
      int i;           /* Loop counter */
      for(i=1; i<=idx; i++){
        for(iKey=walHash(sLoc.aPgno[i]);
            sLoc.aHash[iKey];
            iKey=walNextHash(iKey)){
          if( sLoc.aHash[iKey]==i ) break;
        }
        assert( sLoc.aHash[iKey]==i );
      }
    }
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
  }


  return rc;
}

/*
** Recover a single wal file - *-wal if iWal==0, or *-wal2 if iWal==1.
*/
static int walIndexRecoverOne(Wal *pWal, int iWal, u32 *pnCkpt, int *pbZero){
  i64 nSize;                      /* Size of log file */
  u32 aFrameCksum[2] = {0, 0};
  int rc;
  sqlite3_file *pWalFd = pWal->apWalFd[iWal];

  assert( iWal==0 || iWal==1 );

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
  sqlite3_randomness(8, pWal->hdr.aSalt);

  rc = sqlite3OsFileSize(pWalFd, &nSize);
  if( rc==SQLITE_OK ){
    if( nSize>WAL_HDRSIZE ){
      u8 aBuf[WAL_HDRSIZE];         /* Buffer to load WAL header into */
      u8 *aFrame = 0;               /* Malloc'd buffer to load entire frame */
      int szFrame;                  /* Number of bytes in buffer aFrame[] */
      u8 *aData;                    /* Pointer to data part of aFrame buffer */
      int iFrame;                   /* Index of last frame read */
      i64 iOffset;                  /* Next offset to read from log file */
      int szPage;                   /* Page size according to the log */
      u32 magic;                    /* Magic value read from WAL header */
      u32 version;                  /* Magic value read from WAL header */
      int isValid;                  /* True if this frame is valid */
  
      /* Read in the WAL header. */
      rc = sqlite3OsRead(pWalFd, aBuf, WAL_HDRSIZE, 0);
      if( rc!=SQLITE_OK ){
        return rc;
      }
  
      /* If the database page size is not a power of two, or is greater than
      ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid 
      ** data. Similarly, if the 'magic' value is invalid, ignore the whole
      ** WAL file.
      */
      magic = sqlite3Get4byte(&aBuf[0]);
      szPage = sqlite3Get4byte(&aBuf[8]);
      if( (magic&0xFFFFFFFE)!=WAL_MAGIC 
       || szPage&(szPage-1) 
       || szPage>SQLITE_MAX_PAGE_SIZE 
       || szPage<512 
      ){
        return SQLITE_OK;
      }
      pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
      pWal->szPage = szPage;
  
      /* Verify that the WAL header checksum is correct */
      walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, 
          aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
      );
      if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
       || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
      ){
        return SQLITE_OK;
      }
  
      memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
      *pnCkpt = sqlite3Get4byte(&aBuf[12]);
  
      /* Verify that the version number on the WAL format is one that
      ** are able to understand */
      version = sqlite3Get4byte(&aBuf[4]);
      if( version!=WAL_VERSION1 && version!=WAL_VERSION2 ){
        return SQLITE_CANTOPEN_BKPT;
      }
      pWal->hdr.iVersion = version;
  
      /* Malloc a buffer to read frames into. */
      szFrame = szPage + WAL_FRAME_HDRSIZE;
      aFrame = (u8 *)sqlite3_malloc64(szFrame);
      if( !aFrame ){
        return SQLITE_NOMEM_BKPT;
      }
      aData = &aFrame[WAL_FRAME_HDRSIZE];
  
      /* Read all frames from the log file. */
      iFrame = 0;
      for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
        u32 pgno;                   /* Database page number for frame */
        u32 nTruncate;              /* dbsize field from frame header */
  
        /* Read and decode the next log frame. */
        iFrame++;
        rc = sqlite3OsRead(pWalFd, aFrame, szFrame, iOffset);
        if( rc!=SQLITE_OK ) break;
        isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
        if( !isValid ) break;
        rc = walIndexAppend(pWal, iWal, iFrame, pgno);
        if( rc!=SQLITE_OK ) break;
  
        /* If nTruncate is non-zero, this is a commit record. */
        if( nTruncate ){
          pWal->hdr.mxFrame = iFrame;
          pWal->hdr.nPage = nTruncate;
          pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
          testcase( szPage<=32768 );
          testcase( szPage>=65536 );
          aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
          aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
        }
      }
  
      sqlite3_free(aFrame);
    }else if( pbZero ){
      *pbZero = 1;
    }
  }

  pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
  pWal->hdr.aFrameCksum[1] = aFrameCksum[1];

  return rc;
}

static int walOpenWal2(Wal *pWal){
  int rc = SQLITE_OK;
  if( !isOpen(pWal->apWalFd[1]) ){
    int f = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
    rc = sqlite3OsOpen(pWal->pVfs, pWal->zWalName2, pWal->apWalFd[1], f, &f);
  }
  return rc;
}

static int walTruncateWal2(Wal *pWal){
  int bIs;
  int rc;
  assert( !isOpen(pWal->apWalFd[1]) );
  rc = sqlite3OsAccess(pWal->pVfs, pWal->zWalName2, SQLITE_ACCESS_EXISTS, &bIs);
  if( rc==SQLITE_OK && bIs ){
    rc = walOpenWal2(pWal);
    if( rc==SQLITE_OK ){
      rc = sqlite3OsTruncate(pWal->apWalFd[1], 0);
      sqlite3OsClose(pWal->apWalFd[1]);
    }
  }
  return rc;
}

/*
** Recover the wal-index by reading the write-ahead log file. 
**
** This routine first tries to establish an exclusive lock on the
** wal-index to prevent other threads/processes from doing anything
** with the WAL or wal-index while recovery is running.  The
** WAL_RECOVER_LOCK is also held so that other threads will know
** that this thread is running recovery.  If unable to establish
** the necessary locks, this routine returns SQLITE_BUSY.
*/
static int walIndexRecover(Wal *pWal){
  int rc;                         /* Return Code */
  int iLock;                      /* Lock offset to lock for checkpoint */
  u32 nCkpt1 = 0xFFFFFFFF;
  u32 nCkpt2 = 0xFFFFFFFF;
  int bZero = 0;
  WalIndexHdr hdr;

  /* Obtain an exclusive lock on all byte in the locking range not already
  ** locked by the caller. The caller is guaranteed to have locked the
  ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
  ** If successful, the same bytes that are locked here are concurrent before
  ** this function returns.
  */
  assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
  assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
  assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
  assert( pWal->writeLock );
  iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
  rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
  if( rc==SQLITE_OK ){
    rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
    if( rc!=SQLITE_OK ){
      walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
    }
  }
  if( rc ){
    return rc;
  }

  WALTRACE(("WAL%p: recovery begin...\n", pWal));

  /* Recover the *-wal file. If a valid version-1 header is recovered
  ** from it, do not open the *-wal2 file. Even if it exists.
  **
  ** Otherwise, if the *-wal2 file exists or if the "wal2" flag was 
  ** specified when sqlite3WalOpen() was called, open and recover
  ** the *-wal2 file. Except, if the *-wal file was zero bytes in size,
  ** truncate the *-wal2 to zero bytes in size.
  **
  ** After this block has run, if the *-wal2 file is open the system
  ** starts up in VERSION2 mode. In this case pWal->hdr contains the 
  ** wal-index header considering only *-wal2. Stack variable hdr
  ** contains the wal-index header considering only *-wal. The hash 
  ** tables are populated for both.  
  **
  ** Or, if the *-wal2 file is not open, start up in VERSION1 mode.
  ** pWal->hdr is already populated.
  */
  rc = walIndexRecoverOne(pWal, 0, &nCkpt1, &bZero);
  assert( pWal->hdr.iVersion==0 
      || pWal->hdr.iVersion==WAL_VERSION1 
      || pWal->hdr.iVersion==WAL_VERSION2 
  );
  if( rc==SQLITE_OK && bZero ){
    rc = walTruncateWal2(pWal);
  }
  if( rc==SQLITE_OK && pWal->hdr.iVersion!=WAL_VERSION1 ){
    int bOpen = 1;
    sqlite3_vfs *pVfs = pWal->pVfs;
    if( pWal->hdr.iVersion==0 && pWal->bWal2==0 ){
      rc = sqlite3OsAccess(pVfs, pWal->zWalName2, SQLITE_ACCESS_EXISTS, &bOpen);
    }
    if( rc==SQLITE_OK && bOpen ){
      rc = walOpenWal2(pWal);
      if( rc==SQLITE_OK ){
        hdr = pWal->hdr;
        rc = walIndexRecoverOne(pWal, 1, &nCkpt2, 0);
      }
    }
  }

  if( rc==SQLITE_OK ){
    volatile WalCkptInfo *pInfo;

    if( isOpen(pWal->apWalFd[1]) ){
      /* The case where *-wal2 may follow *-wal */
      if( nCkpt2<=0x0F && nCkpt2==nCkpt1+1 ){
        if( sqlite3Get4byte((u8*)(&pWal->hdr.aSalt[0]))==hdr.aFrameCksum[0]
         && sqlite3Get4byte((u8*)(&pWal->hdr.aSalt[1]))==hdr.aFrameCksum[1]
        ){
          walidxSetFile(&pWal->hdr, 1);
          walidxSetMxFrame(&pWal->hdr, 1, pWal->hdr.mxFrame);
          walidxSetMxFrame(&pWal->hdr, 0, hdr.mxFrame);
        }else{
          pWal->hdr = hdr;
        }
      }else

      /* When *-wal may follow *-wal2 */
      if( (nCkpt2==0x0F && nCkpt1==0) || (nCkpt2<0x0F && nCkpt2==nCkpt1-1) ){
        if( sqlite3Get4byte((u8*)(&hdr.aSalt[0]))==pWal->hdr.aFrameCksum[0]
         && sqlite3Get4byte((u8*)(&hdr.aSalt[1]))==pWal->hdr.aFrameCksum[1]
        ){
          SWAP(WalIndexHdr, pWal->hdr, hdr);
          walidxSetMxFrame(&pWal->hdr, 1, hdr.mxFrame);
        }else{
          walidxSetFile(&pWal->hdr, 1);
          walidxSetMxFrame(&pWal->hdr, 1, pWal->hdr.mxFrame);
          walidxSetMxFrame(&pWal->hdr, 0, 0);
        }
      }else

      /* Fallback */
      if( nCkpt1<=nCkpt2 ){
        pWal->hdr = hdr;
      }else{
        walidxSetFile(&pWal->hdr, 1);
        walidxSetMxFrame(&pWal->hdr, 1, pWal->hdr.mxFrame);
        walidxSetMxFrame(&pWal->hdr, 0, 0);
      }
      pWal->hdr.iVersion = WAL_VERSION2;
    }else{
      pWal->hdr.iVersion = WAL_VERSION1;
    }

    walIndexWriteHdr(pWal);

    /* Reset the checkpoint-header. This is safe because this thread is 
    ** currently holding locks that exclude all other readers, writers and
    ** checkpointers.  */
    pInfo = walCkptInfo(pWal);
    memset((void*)pInfo, 0, sizeof(WalCkptInfo));
    if( 0==isWalMode2(pWal) ){
      int i;
      pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
      pInfo->aReadMark[0] = 0;
      for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
      if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
    }

    /* If more than one frame was recovered from the log file, report an
    ** event via sqlite3_log(). This is to help with identifying performance
    ** problems caused by applications routinely shutting down without
    ** checkpointing the log file.  */
    if( pWal->hdr.nPage ){
      if( isWalMode2(pWal) ){
        sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
            "recovered (%d,%d) frames from WAL files %s[2] (wal2 mode)",
            walidxGetMxFrame(&pWal->hdr, 0), walidxGetMxFrame(&pWal->hdr, 1), 
            pWal->zWalName
        );
      }else{
        sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
            "recovered %d frames from WAL file %s",
            pWal->hdr.mxFrame, pWal->zWalName
        );
      }
    }
  }

  WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
  walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
  walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
  return rc;
}

/*
** Close an open wal-index and wal files.
*/
static void walIndexClose(Wal *pWal, int isDelete){
  if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
    int i;
    for(i=0; i<pWal->nWiData; i++){
      sqlite3_free((void *)pWal->apWiData[i]);
      pWal->apWiData[i] = 0;
    }
  }
  if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
    sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
  }
  sqlite3OsClose(pWal->apWalFd[0]);
  sqlite3OsClose(pWal->apWalFd[1]);
}

/* 
** Open a connection to the WAL file zWalName. The database file must 
** already be opened on connection pDbFd. The buffer that zWalName points
** to must remain valid for the lifetime of the returned Wal* handle.
**
** A SHARED lock should be held on the database file when this function
** is called. The purpose of this SHARED lock is to prevent any other
** client from unlinking the WAL or wal-index file. If another process
** were to do this just after this client opened one of these files, the
** system would be badly broken.
**
** If the log file is successfully opened, SQLITE_OK is returned and 
** *ppWal is set to point to a new WAL handle. If an error occurs,
** an SQLite error code is returned and *ppWal is left unmodified.
*/
int sqlite3WalOpen(
  sqlite3_vfs *pVfs,              /* vfs module to open wal and wal-index */
  sqlite3_file *pDbFd,            /* The open database file */
  const char *zWalName,           /* Name of the WAL file */
  int bNoShm,                     /* True to run in heap-memory mode */
  i64 mxWalSize,                  /* Truncate WAL to this size on reset */
  int bWal2,                      /* True to open in wal2 mode */
  Wal **ppWal                     /* OUT: Allocated Wal handle */
){
  int rc;                         /* Return Code */
  Wal *pRet;                      /* Object to allocate and return */
  int flags;                      /* Flags passed to OsOpen() */
  int nWalName;                   /* Length of zWalName in bytes */
  int nByte;                      /* Bytes of space to allocate */

  assert( zWalName && zWalName[0] );
  assert( pDbFd );

  /* In the amalgamation, the os_unix.c and os_win.c source files come before
  ** this source file.  Verify that the #defines of the locking byte offsets
  ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
  ** For that matter, if the lock offset ever changes from its initial design
  ** value of 120, we need to know that so there is an assert() to check it.
  */
  assert( 120==WALINDEX_LOCK_OFFSET );
  assert( 136==WALINDEX_HDR_SIZE );
#ifdef WIN_SHM_BASE
  assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
#ifdef UNIX_SHM_BASE
  assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif

  nWalName = sqlite3Strlen30(zWalName);
  nByte = sizeof(Wal) + pVfs->szOsFile*2 + nWalName+2;

  /* Allocate an instance of struct Wal to return. */
  *ppWal = 0;
  pRet = (Wal*)sqlite3MallocZero(nByte);
  if( !pRet ){
    return SQLITE_NOMEM_BKPT;
  }

  pRet->pVfs = pVfs;
  pRet->apWalFd[0] = (sqlite3_file*)((char*)pRet+sizeof(Wal));
  pRet->apWalFd[1] = (sqlite3_file*)((char*)pRet+sizeof(Wal)+pVfs->szOsFile);
  pRet->pDbFd = pDbFd;
  pRet->readLock = WAL_LOCK_NONE;
  pRet->mxWalSize = mxWalSize;
  pRet->zWalName = zWalName;
  pRet->syncHeader = 1;
  pRet->padToSectorBoundary = 1;
  pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
  pRet->bWal2 = bWal2;

  pRet->zWalName2 = (char*)pRet + sizeof(Wal) + 2*pVfs->szOsFile;
  memcpy(pRet->zWalName2, zWalName, nWalName);
  pRet->zWalName2[nWalName] = '2';
  pRet->zWalName2[nWalName+1] = '\0';

  /* Open a file handle on the first write-ahead log file. */
  flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
  rc = sqlite3OsOpen(pVfs, zWalName, pRet->apWalFd[0], flags, &flags);
  if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
    pRet->readOnly = WAL_RDONLY;
  }

  if( rc!=SQLITE_OK ){
    walIndexClose(pRet, 0);
    sqlite3_free(pRet);
  }else{
    int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
    if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
    if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
      pRet->padToSectorBoundary = 0;
    }
    *ppWal = pRet;
    WALTRACE(("WAL%d: opened\n", pRet));
  }
  return rc;
}

/*
** Change the size to which the WAL file is trucated on each reset.
*/
void sqlite3WalLimit(Wal *pWal, i64 iLimit){
  if( pWal ) pWal->mxWalSize = iLimit;
}

/*
** Find the smallest page number out of all pages held in the WAL that
** has not been returned by any prior invocation of this method on the
** same WalIterator object.   Write into *piFrame the frame index where
** that page was last written into the WAL.  Write into *piPage the page
** number.
**
** Return 0 on success.  If there are no pages in the WAL with a page
** number larger than *piPage, then return 1.
*/
static int walIteratorNext(
  WalIterator *p,               /* Iterator */
  u32 *piPage,                  /* OUT: The page number of the next page */
  u32 *piFrame                  /* OUT: Wal frame index of next page */
){
  u32 iMin;                     /* Result pgno must be greater than iMin */
  u32 iRet = 0xFFFFFFFF;        /* 0xffffffff is never a valid page number */
  int i;                        /* For looping through segments */

  iMin = p->iPrior;
  assert( iMin<0xffffffff );
  for(i=p->nSegment-1; i>=0; i--){
    struct WalSegment *pSegment = &p->aSegment[i];
    while( pSegment->iNext<pSegment->nEntry ){
      u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
      if( iPg>iMin ){
        if( iPg<iRet ){
          iRet = iPg;
          *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
        }
        break;
      }
      pSegment->iNext++;
    }
  }

  *piPage = p->iPrior = iRet;
  return (iRet==0xFFFFFFFF);
}

/*
** This function merges two sorted lists into a single sorted list.
**
** aLeft[] and aRight[] are arrays of indices.  The sort key is
** aContent[aLeft[]] and aContent[aRight[]].  Upon entry, the following
** is guaranteed for all J<K:
**
**        aContent[aLeft[J]] < aContent[aLeft[K]]
**        aContent[aRight[J]] < aContent[aRight[K]]
**
** This routine overwrites aRight[] with a new (probably longer) sequence
** of indices such that the aRight[] contains every index that appears in
** either aLeft[] or the old aRight[] and such that the second condition
** above is still met.
**
** The aContent[aLeft[X]] values will be unique for all X.  And the
** aContent[aRight[X]] values will be unique too.  But there might be
** one or more combinations of X and Y such that
**
**      aLeft[X]!=aRight[Y]  &&  aContent[aLeft[X]] == aContent[aRight[Y]]
**
** When that happens, omit the aLeft[X] and use the aRight[Y] index.
*/
static void walMerge(
  const u32 *aContent,            /* Pages in wal - keys for the sort */
  ht_slot *aLeft,                 /* IN: Left hand input list */
  int nLeft,                      /* IN: Elements in array *paLeft */
  ht_slot **paRight,              /* IN/OUT: Right hand input list */
  int *pnRight,                   /* IN/OUT: Elements in *paRight */
  ht_slot *aTmp                   /* Temporary buffer */
){
  int iLeft = 0;                  /* Current index in aLeft */
  int iRight = 0;                 /* Current index in aRight */
  int iOut = 0;                   /* Current index in output buffer */
  int nRight = *pnRight;
  ht_slot *aRight = *paRight;

  assert( nLeft>0 && nRight>0 );
  while( iRight<nRight || iLeft<nLeft ){
    ht_slot logpage;
    Pgno dbpage;

    if( (iLeft<nLeft) 
     && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
    ){
      logpage = aLeft[iLeft++];
    }else{
      logpage = aRight[iRight++];
    }
    dbpage = aContent[logpage];

    aTmp[iOut++] = logpage;
    if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;

    assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
    assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
  }

  *paRight = aLeft;
  *pnRight = iOut;
  memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
}

/*
** Sort the elements in list aList using aContent[] as the sort key.
** Remove elements with duplicate keys, preferring to keep the
** larger aList[] values.
**
** The aList[] entries are indices into aContent[].  The values in
** aList[] are to be sorted so that for all J<K:
**
**      aContent[aList[J]] < aContent[aList[K]]
**
** For any X and Y such that
**
**      aContent[aList[X]] == aContent[aList[Y]]
**
** Keep the larger of the two values aList[X] and aList[Y] and discard
** the smaller.
*/
static void walMergesort(
  const u32 *aContent,            /* Pages in wal */
  ht_slot *aBuffer,               /* Buffer of at least *pnList items to use */
  ht_slot *aList,                 /* IN/OUT: List to sort */
  int *pnList                     /* IN/OUT: Number of elements in aList[] */
){
  struct Sublist {
    int nList;                    /* Number of elements in aList */
    ht_slot *aList;               /* Pointer to sub-list content */
  };

  const int nList = *pnList;      /* Size of input list */
  int nMerge = 0;                 /* Number of elements in list aMerge */
  ht_slot *aMerge = 0;            /* List to be merged */
  int iList;                      /* Index into input list */
  u32 iSub = 0;                   /* Index into aSub array */
  struct Sublist aSub[13];        /* Array of sub-lists */

  memset(aSub, 0, sizeof(aSub));
  assert( nList<=HASHTABLE_NPAGE && nList>0 );
  assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );

  for(iList=0; iList<nList; iList++){
    nMerge = 1;
    aMerge = &aList[iList];
    for(iSub=0; iList & (1<<iSub); iSub++){
      struct Sublist *p;
      assert( iSub<ArraySize(aSub) );
      p = &aSub[iSub];
      assert( p->aList && p->nList<=(1<<iSub) );
      assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
      walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
    }
    aSub[iSub].aList = aMerge;
    aSub[iSub].nList = nMerge;
  }

  for(iSub++; iSub<ArraySize(aSub); iSub++){
    if( nList & (1<<iSub) ){
      struct Sublist *p;
      assert( iSub<ArraySize(aSub) );
      p = &aSub[iSub];
      assert( p->nList<=(1<<iSub) );
      assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
      walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
    }
  }
  assert( aMerge==aList );
  *pnList = nMerge;

#ifdef SQLITE_DEBUG
  {
    int i;
    for(i=1; i<*pnList; i++){
      assert( aContent[aList[i]] > aContent[aList[i-1]] );
    }
  }
#endif
}

/* 
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3_free(p);
}

/*
** Construct a WalInterator object that can be used to loop over all 
** pages in wal file iWal following frame nBackfill in ascending order. Frames
** nBackfill or earlier may be included - excluding them is an optimization
** only. The caller must hold the checkpoint lock.
**
** On success, make *pp point to the newly allocated WalIterator object
** and return SQLITE_OK. Otherwise, return an error code. If this routine
** returns an error, the final value of *pp is undefined.
**
** The calling routine should invoke walIteratorFree() to destroy the
** WalIterator object when it has finished with it.
*/
static int walIteratorInit(
  Wal *pWal, 
  int iWal, 
  u32 nBackfill, 
  WalIterator **pp
){
  WalIterator *p;                 /* Return value */
  int nSegment;                   /* Number of segments to merge */
  u32 iLast;                      /* Last frame in log */
  int nByte;                      /* Number of bytes to allocate */
  int i;                          /* Iterator variable */
  int iLastSeg;                   /* Last hash table to iterate though */
  ht_slot *aTmp;                  /* Temp space used by merge-sort */
  int rc = SQLITE_OK;             /* Return Code */
  int iMode = isWalMode2(pWal) ? 2 : 1;

  assert( isWalMode2(pWal) || iWal==0 );
  assert( 0==isWalMode2(pWal) || nBackfill==0 );

  /* This routine only runs while holding the checkpoint lock. And
  ** it only runs if there is actually content in the log (mxFrame>0).
  */
  iLast = walidxGetMxFrame(&pWal->hdr, iWal);
  assert( pWal->ckptLock && iLast>0 );

  if( iMode==2 ){
    iLastSeg = walFramePage2(iWal, iLast);
  }else{
    iLastSeg = walFramePage(iLast);
  }
  nSegment = 1 + (iLastSeg/iMode);

  /* Allocate space for the WalIterator object. */
  nByte = sizeof(WalIterator) 
        + (nSegment-1)*sizeof(struct WalSegment)
        + iLast*sizeof(ht_slot);
  p = (WalIterator *)sqlite3_malloc64(nByte);
  if( !p ){
    return SQLITE_NOMEM_BKPT;
  }
  memset(p, 0, nByte);
  p->nSegment = nSegment;

  /* Allocate temporary space used by the merge-sort routine. This block
  ** of memory will be freed before this function returns.
  */
  aTmp = (ht_slot *)sqlite3_malloc64(
      sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
  );
  if( !aTmp ){
    rc = SQLITE_NOMEM_BKPT;
  }

  i = iMode==2 ? iWal : walFramePage(nBackfill+1);
  for(; rc==SQLITE_OK && i<=iLastSeg; i+=iMode){
    WalHashLoc sLoc;

    rc = walHashGet(pWal, i, &sLoc);
    if( rc==SQLITE_OK ){
      int j;                      /* Counter variable */
      int nEntry;                 /* Number of entries in this segment */
      ht_slot *aIndex;            /* Sorted index for this segment */
      u32 iZero;

      if( iMode==2 ){
        walExternalDecode(sLoc.iZero+1, &iZero);
        iZero--;
        assert( iZero==0 || i>=2 );
      }else{
        iZero = sLoc.iZero;
      }

      sLoc.aPgno++;
      if( i==iLastSeg ){
        nEntry = (int)(iLast - iZero);
      }else{
        nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
      }
      aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
      iZero++;
  
      for(j=0; j<nEntry; j++){
        aIndex[j] = (ht_slot)j;
      }
      walMergesort((u32*)sLoc.aPgno, aTmp, aIndex, &nEntry);
      p->aSegment[i/iMode].iZero = iZero;
      p->aSegment[i/iMode].nEntry = nEntry;
      p->aSegment[i/iMode].aIndex = aIndex;
      p->aSegment[i/iMode].aPgno = (u32*)sLoc.aPgno;
    }
  }
  sqlite3_free(aTmp);

  if( rc!=SQLITE_OK ){
    walIteratorFree(p);
    p = 0;
  }
  *pp = p;
  return rc;
}

/*
** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
** n. If the attempt fails and parameter xBusy is not NULL, then it is a
** busy-handler function. Invoke it and retry the lock until either the
** lock is successfully obtained or the busy-handler returns 0.
*/
static int walBusyLock(
  Wal *pWal,                      /* WAL connection */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int lockIdx,                    /* Offset of first byte to lock */
  int n                           /* Number of bytes to lock */
){
  int rc;
  do {
    rc = walLockExclusive(pWal, lockIdx, n);
  }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
  return rc;
}

/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
*/
static int walPagesize(Wal *pWal){
  return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
}

/*
** The following is guaranteed when this function is called:
**
**   a) the WRITER lock is held,
**   b) the entire log file has been checkpointed, and
**   c) any existing readers are reading exclusively from the database
**      file - there are no readers that may attempt to read a frame from
**      the log file.
**
** This function updates the shared-memory structures so that the next
** client to write to the database (which may be this one) does so by
** writing frames into the start of the log file.
**
** The value of parameter salt1 is used as the aSalt[1] value in the 
** new wal-index header. It should be passed a pseudo-random value (i.e. 
** one obtained from sqlite3_randomness()).
*/
static void walRestartHdr(Wal *pWal, u32 salt1){
  volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
  int i;                          /* Loop counter */
  u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
  assert( isWalMode2(pWal)==0 );
  pWal->nCkpt++;
  pWal->hdr.mxFrame = 0;
  sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
  memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
  walIndexWriteHdr(pWal);
  pInfo->nBackfill = 0;
  pInfo->nBackfillAttempted = 0;
  pInfo->aReadMark[1] = 0;
  for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
  assert( pInfo->aReadMark[0]==0 );
}

/*
** This function is used in wal2 mode.
**
** This function is called when writer pWal is just about to start 
** writing out frames. Parameter iApp is the current wal file. The "other" wal
** file (wal file !iApp) has been fully checkpointed. This function returns
** SQLITE_OK if there are no readers preventing the writer from switching to
** the other wal file. Or SQLITE_BUSY if there are.
*/
static int wal2RestartOk(Wal *pWal, int iApp){
  /* The other wal file (wal file !iApp) can be overwritten if there
  ** are no readers reading from it - no "full" or "partial" locks.
  ** Technically speaking it is not possible for any reader to hold
  ** a "part" lock, as this would have prevented the file from being
  ** checkpointed. But checking anyway doesn't hurt. The following
  ** is equivalent to:
  **
  **   if( iApp==0 ) eLock = WAL_LOCK_PART1_FULL2;
  **   if( iApp==1 ) eLock = WAL_LOCK_PART1;
  */
  int eLock = 1 + (iApp==0);

  assert( WAL_LOCK_PART1==1 );
  assert( WAL_LOCK_PART1_FULL2==2 );
  assert( WAL_LOCK_PART2_FULL1==3 );
  assert( WAL_LOCK_PART2==4 );

  assert( iApp!=0 || eLock==WAL_LOCK_PART1_FULL2 );
  assert( iApp!=1 || eLock==WAL_LOCK_PART1 );

  return walLockExclusive(pWal, WAL_READ_LOCK(eLock), 3);
}
static void wal2RestartFinished(Wal *pWal, int iApp){
  walUnlockExclusive(pWal, WAL_READ_LOCK(1 + (iApp==0)), 3);
}

/*
** This function is used in wal2 mode.
**
** This function is called when a checkpointer wishes to checkpoint wal
** file iCkpt. It takes the required lock and, if successful, returns
** SQLITE_OK. Otherwise, an SQLite error code (e.g. SQLITE_BUSY). If this
** function returns SQLITE_OK, it is the responsibility of the caller
** to invoke wal2CheckpointFinished() to release the lock.
*/
static int wal2CheckpointOk(Wal *pWal, int iCkpt){
  int eLock = 1 + (iCkpt*2);

  assert( WAL_LOCK_PART1==1 );
  assert( WAL_LOCK_PART1_FULL2==2 );
  assert( WAL_LOCK_PART2_FULL1==3 );
  assert( WAL_LOCK_PART2==4 );

  assert( iCkpt!=0 || eLock==WAL_LOCK_PART1 );
  assert( iCkpt!=1 || eLock==WAL_LOCK_PART2_FULL1 );

  return walLockExclusive(pWal, WAL_READ_LOCK(eLock), 2);
}
static void wal2CheckpointFinished(Wal *pWal, int iCkpt){
  walUnlockExclusive(pWal, WAL_READ_LOCK(1 + (iCkpt*2)), 2);
}

/*
** Copy as much content as we can from the WAL back into the database file
** in response to an sqlite3_wal_checkpoint() request or the equivalent.
**
** The amount of information copies from WAL to database might be limited
** by active readers.  This routine will never overwrite a database page
** that a concurrent reader might be using.
**
** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
** SQLite is in WAL-mode in synchronous=NORMAL.  That means that if 
** checkpoints are always run by a background thread or background 
** process, foreground threads will never block on a lengthy fsync call.
**
** Fsync is called on the WAL before writing content out of the WAL and
** into the database.  This ensures that if the new content is persistent
** in the WAL and can be recovered following a power-loss or hard reset.
**
** Fsync is also called on the database file if (and only if) the entire
** WAL content is copied into the database file.  This second fsync makes
** it safe to delete the WAL since the new content will persist in the
** database file.
**
** This routine uses and updates the nBackfill field of the wal-index header.
** This is the only routine that will increase the value of nBackfill.  
** (A WAL reset or recovery will revert nBackfill to zero, but not increase
** its value.)
**
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
static int walCheckpoint(
  Wal *pWal,                      /* Wal connection */
  sqlite3 *db,                    /* Check for interrupts on this handle */
  int eMode,                      /* One of PASSIVE, FULL or RESTART */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc = SQLITE_OK;             /* Return code */
  int szPage;                     /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  u32 mxPage;                     /* Max database page to write */
  int i;                          /* Loop counter */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
  int bWal2 = isWalMode2(pWal);   /* True for wal2 connections */
  int iCkpt = bWal2 ? !walidxGetFile(&pWal->hdr) : 0;

  mxSafeFrame = walidxGetMxFrame(&pWal->hdr, iCkpt);
  szPage = walPagesize(pWal);
  testcase( szPage<=32768 );
  testcase( szPage>=65536 );
  pInfo = walCkptInfo(pWal);
  if( (bWal2==1 && pInfo->nBackfill==0 && mxSafeFrame) 
   || (bWal2==0 && pInfo->nBackfill<mxSafeFrame)
  ){
    sqlite3_file *pWalFd = pWal->apWalFd[iCkpt];
    mxPage = pWal->hdr.nPage;

    /* If this is a wal2 system, check for a reader holding a lock 
    ** preventing this checkpoint operation. If one is found, return
    ** early.  */
    if( bWal2 ){
      rc = wal2CheckpointOk(pWal, iCkpt);
      if( rc!=SQLITE_OK ) return rc;
    }

    /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
    ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
    assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

    /* If this is a wal system (not wal2), compute in mxSafeFrame the index 
    ** of the last frame of the WAL that is safe to write into the database.
    ** Frames beyond mxSafeFrame might overwrite database pages that are in 
    ** use by active readers and thus cannot be backfilled from the WAL.
    */
    if( bWal2==0 ){
      mxSafeFrame = pWal->hdr.mxFrame;
      mxPage = pWal->hdr.nPage;
      for(i=1; i<WAL_NREADER; i++){
        /* Thread-sanitizer reports that the following is an unsafe read,
        ** as some other thread may be in the process of updating the value
        ** of the aReadMark[] slot. The assumption here is that if that is
        ** happening, the other client may only be increasing the value,
        ** not decreasing it. So assuming either that either the "old" or
        ** "new" version of the value is read, and not some arbitrary value
        ** that would never be written by a real client, things are still 
        ** safe.  */
        u32 y = pInfo->aReadMark[i];
        if( mxSafeFrame>y ){
          assert( y<=pWal->hdr.mxFrame );
          rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
          if( rc==SQLITE_OK ){
            pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
            walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          }else if( rc==SQLITE_BUSY ){
            mxSafeFrame = y;
            xBusy = 0;
          }else{
            goto walcheckpoint_out;
          }
        }
      }
    }

    /* Allocate the iterator */
    if( bWal2 || pInfo->nBackfill<mxSafeFrame ){
      assert( bWal2==0 || pInfo->nBackfill==0 );
      rc = walIteratorInit(pWal, iCkpt, pInfo->nBackfill, &pIter);
      assert( rc==SQLITE_OK || pIter==0 );
    }

    if( pIter && (bWal2 
     || (rc = walBusyLock(pWal, xBusy, pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
    )){
      u32 nBackfill = pInfo->nBackfill;

      assert( bWal2==0 || nBackfill==0 );
      pInfo->nBackfillAttempted = mxSafeFrame;

      /* Sync the wal file being checkpointed to disk */
      rc = sqlite3OsSync(pWalFd, CKPT_SYNC_FLAGS(sync_flags));

      /* If the database may grow as a result of this checkpoint, hint
      ** about the eventual size of the db file to the VFS layer.  */
      if( rc==SQLITE_OK ){
        i64 nReq = ((i64)mxPage * szPage);
        i64 nSize;                    /* Current size of database file */
        rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
        if( rc==SQLITE_OK && nSize<nReq ){
          sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
        }
      }

      /* Iterate through the contents of the WAL, copying data to the db file */
      while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
        i64 iOffset;

        assert( bWal2==1 || walFramePgno(pWal, iFrame)==iDbpage );
        assert( bWal2==0 || walFramePgno2(pWal, iCkpt, iFrame)==iDbpage );

        if( db->u1.isInterrupted ){
          rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
          break;
        }
        if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
          assert( bWal2==0 || iDbpage>mxPage );
          continue;
        }
        iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
        WALTRACE(("WAL%p: checkpoint frame %d of wal %d to db page %d\n",
              pWal, (int)iFrame, iCkpt, (int)iDbpage
        ));
        /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
        rc = sqlite3OsRead(pWalFd, zBuf, szPage, iOffset);
        if( rc!=SQLITE_OK ) break;
        iOffset = (iDbpage-1)*(i64)szPage;
        testcase( IS_BIG_INT(iOffset) );
        rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
        if( rc!=SQLITE_OK ) break;
      }

      /* If work was actually accomplished, truncate the db file, sync the wal
      ** file and set WalCkptInfo.nBackfill to indicate so. */
      if( rc==SQLITE_OK && (bWal2 || mxSafeFrame==walIndexHdr(pWal)->mxFrame) ){
        if( !bWal2 ){
          i64 szDb = pWal->hdr.nPage*(i64)szPage;
          testcase( IS_BIG_INT(szDb) );
          rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
        }
        if( rc==SQLITE_OK ){
          rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
        }
      }
      if( rc==SQLITE_OK ){
        pInfo->nBackfill = bWal2 ? 1 : mxSafeFrame;
      }

      /* Release the reader lock held while backfilling */
      if( bWal2==0 ){
        walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
      }
    }

    if( rc==SQLITE_BUSY ){
      /* Reset the return code so as not to report a checkpoint failure
      ** just because there are active readers.  */
      rc = SQLITE_OK;
    }
    if( bWal2 ) wal2CheckpointFinished(pWal, iCkpt);
  }

  /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
  ** entire wal file has been copied into the database file, then block 
  ** until all readers have finished using the wal file. This ensures that 
  ** the next process to write to the database restarts the wal file.
  */
  if( bWal2==0 && rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    assert( pWal->writeLock );
    if( pInfo->nBackfill<pWal->hdr.mxFrame ){
      rc = SQLITE_BUSY;
    }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      assert( pInfo->nBackfill==pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
          /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
          ** SQLITE_CHECKPOINT_RESTART with the addition that it also
          ** truncates the log file to zero bytes just prior to a
          ** successful return.
          **
          ** In theory, it might be safe to do this without updating the
          ** wal-index header in shared memory, as all subsequent reader or
          ** writer clients should see that the entire log file has been
          ** checkpointed and behave accordingly. This seems unsafe though,
          ** as it would leave the system in a state where the contents of
          ** the wal-index header do not match the contents of the 
          ** file-system. To avoid this, update the wal-index header to
          ** indicate that the log file contains zero valid frames.  */
          walRestartHdr(pWal, salt1);
          rc = sqlite3OsTruncate(pWal->apWalFd[0], 0);
        }
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }
    }
  }

 walcheckpoint_out:
  walIteratorFree(pIter);
  return rc;
}

/*
** If the WAL file is currently larger than nMax bytes in size, truncate
** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
*/
static void walLimitSize(Wal *pWal, i64 nMax){
  if( isWalMode2(pWal)==0 ){
    i64 sz;
    int rx;
    sqlite3BeginBenignMalloc();
    rx = sqlite3OsFileSize(pWal->apWalFd[0], &sz);
    if( rx==SQLITE_OK && (sz > nMax ) ){
      rx = sqlite3OsTruncate(pWal->apWalFd[0], nMax);
    }
    sqlite3EndBenignMalloc();
    if( rx ){
      sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
    }
  }
}

/*
** Close a connection to a log file.
*/
int sqlite3WalClose(
  Wal *pWal,                      /* Wal to close */
  sqlite3 *db,                    /* For interrupt flag */
  int sync_flags,                 /* Flags to pass to OsSync() (or 0) */
  int nBuf,
  u8 *zBuf                        /* Buffer of at least nBuf bytes */
){
  int rc = SQLITE_OK;
  if( pWal ){
    int isDelete = 0;             /* True to unlink wal and wal-index files */

    /* If an EXCLUSIVE lock can be obtained on the database file (using the
    ** ordinary, rollback-mode locking methods, this guarantees that the
    ** connection associated with this log file is the only connection to
    ** the database. In this case checkpoint the database and unlink both
    ** the wal and wal-index files.
    **
    ** The EXCLUSIVE lock is not released before returning.
    */
    if( zBuf!=0
     && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
    ){
      int i;
      if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
        pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
      }
      for(i=0; rc==SQLITE_OK && i<2; i++){
        rc = sqlite3WalCheckpoint(pWal, db, 
            SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
        );
        if( rc==SQLITE_OK ){
          int bPersist = -1;
          sqlite3OsFileControlHint(
              pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
          );
          if( bPersist!=1 ){
            /* Try to delete the WAL file if the checkpoint completed and
            ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
            ** mode (!bPersist) */
            isDelete = 1;
          }else if( pWal->mxWalSize>=0 ){
            /* Try to truncate the WAL file to zero bytes if the checkpoint
            ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
            ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
            ** non-negative value (pWal->mxWalSize>=0).  Note that we truncate
            ** to zero bytes as truncating to the journal_size_limit might
            ** leave a corrupt WAL file on disk. */
            walLimitSize(pWal, 0);
          }
        }

        if( isWalMode2(pWal)==0 ) break;

        walCkptInfo(pWal)->nBackfill = 0;
        walidxSetFile(&pWal->hdr, !walidxGetFile(&pWal->hdr));
        pWal->writeLock = 1;
        walIndexWriteHdr(pWal);
        pWal->writeLock = 0;
      }
    }

    walIndexClose(pWal, isDelete);
    if( isDelete ){
      sqlite3BeginBenignMalloc();
      sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
      sqlite3OsDelete(pWal->pVfs, pWal->zWalName2, 0);
      sqlite3EndBenignMalloc();
    }
    WALTRACE(("WAL%p: closed\n", pWal));
    sqlite3_free((void *)pWal->apWiData);
    sqlite3_free(pWal);
  }
  return rc;
}

/*
** Try to copy the wal-index header from shared-memory into (*pHdr). Return
** zero if successful or non-zero otherwise. If the header is corrupted
** (either because the two copies are inconsistent or because the checksum 
** values are incorrect), the read fails and non-zero is returned.
*/
static int walIndexLoadHdr(Wal *pWal, WalIndexHdr *pHdr){
  u32 aCksum[2];                  /* Checksum on the header content */
  WalIndexHdr h2;                 /* Second copy of the header content */
  WalIndexHdr volatile *aHdr;     /* Header in shared memory */

  /* The first page of the wal-index must be mapped at this point. */
  assert( pWal->nWiData>0 && pWal->apWiData[0] );

  /* Read the header. This might happen concurrently with a write to the
  ** same area of shared memory on a different CPU in a SMP,
  ** meaning it is possible that an inconsistent snapshot is read
  ** from the file. If this happens, return non-zero.
  **
  ** There are two copies of the header at the beginning of the wal-index.
  ** When reading, read [0] first then [1].  Writes are in the reverse order.
  ** Memory barriers are used to prevent the compiler or the hardware from
  ** reordering the reads and writes.
  */
  aHdr = walIndexHdr(pWal);
  memcpy(pHdr, (void *)&aHdr[0], sizeof(h2));
  walShmBarrier(pWal);
  memcpy(&h2, (void *)&aHdr[1], sizeof(h2));

  if( memcmp(&h2, pHdr, sizeof(h2))!=0 ){
    return 1;   /* Dirty read */
  }  
  if( h2.isInit==0 ){
    return 1;   /* Malformed header - probably all zeros */
  }
  walChecksumBytes(1, (u8*)&h2, sizeof(h2)-sizeof(h2.aCksum), 0, aCksum);
  if( aCksum[0]!=h2.aCksum[0] || aCksum[1]!=h2.aCksum[1] ){
    return 1;   /* Checksum does not match */
  }

  return 0;
}

/*
** Try to read the wal-index header.  Return 0 on success and 1 if
** there is a problem.
**
** The wal-index is in shared memory.  Another thread or process might
** be writing the header at the same time this procedure is trying to
** read it, which might result in inconsistency.  A dirty read is detected
** by verifying that both copies of the header are the same and also by
** a checksum on the header.
**
** If and only if the read is consistent and the header is different from
** pWal->hdr, then pWal->hdr is updated to the content of the new header
** and *pChanged is set to 1.
**
** If the checksum cannot be verified return non-zero. If the header
** is read successfully and the checksum verified, return zero.
*/
static int walIndexTryHdr(Wal *pWal, int *pChanged){
  WalIndexHdr h1;                 /* Copy of the header content */

  if( walIndexLoadHdr(pWal, &h1) ){
    return 1;
  }

  if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
    *pChanged = 1;
    memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
    pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
    testcase( pWal->szPage<=32768 );
    testcase( pWal->szPage>=65536 );
  }

  /* The header was successfully read. Return zero. */
  return 0;
}

/*
** This is the value that walTryBeginRead returns when it needs to
** be retried.
*/
#define WAL_RETRY  (-1)

/*
** Read the wal-index header from the wal-index and into pWal->hdr.
** If the wal-header appears to be corrupt, try to reconstruct the
** wal-index from the WAL before returning.
**
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
** changed by this operation.  If pWal->hdr is unchanged, set *pChanged
** to 0.
**
** If the wal-index header is successfully read, return SQLITE_OK. 
** Otherwise an SQLite error code.
*/
static int walIndexReadHdr(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int badHdr;                     /* True if a header read failed */
  volatile u32 *page0;            /* Chunk of wal-index containing header */

  /* Ensure that page 0 of the wal-index (the page that contains the 
  ** wal-index header) is mapped. Return early if an error occurs here.
  */
  assert( pChanged );
  rc = walIndexPage(pWal, 0, &page0);
  if( rc!=SQLITE_OK ){
    assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
    if( rc==SQLITE_READONLY_CANTINIT ){
      /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
      ** was openable but is not writable, and this thread is unable to
      ** confirm that another write-capable connection has the shared-memory
      ** open, and hence the content of the shared-memory is unreliable,
      ** since the shared-memory might be inconsistent with the WAL file
      ** and there is no writer on hand to fix it. */
      assert( page0==0 );
      assert( pWal->writeLock==0 );
      assert( pWal->readOnly & WAL_SHM_RDONLY );
      pWal->bShmUnreliable = 1;
      pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
      *pChanged = 1;
    }else{
      return rc; /* Any other non-OK return is just an error */
    }
  }else{
    /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
    ** is zero, which prevents the SHM from growing */
    testcase( page0!=0 );
  }
  assert( page0!=0 || pWal->writeLock==0 );

  /* If the first page of the wal-index has been mapped, try to read the
  ** wal-index header immediately, without holding any lock. This usually
  ** works, but may fail if the wal-index header is corrupt or currently 
  ** being modified by another thread or process.
  */
  badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);

  /* If the first attempt failed, it might have been due to a race
  ** with a writer.  So get a WRITE lock and try again.
  */
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.
          */
          rc = walIndexRecover(pWal);
          *pChanged = 1;
        }
      }
      pWal->writeLock = 0;
      walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    }
  }

  /* If the header is read successfully, check the version number to make
  ** sure the wal-index was not constructed with some future format that
  ** this version of SQLite cannot understand.
  */
  if( badHdr==0 
   && pWal->hdr.iVersion!=WAL_VERSION1 && pWal->hdr.iVersion!=WAL_VERSION2
  ){
    rc = SQLITE_CANTOPEN_BKPT;
  }
  if( pWal->bShmUnreliable ){
    if( rc!=SQLITE_OK ){
      walIndexClose(pWal, 0);
      pWal->bShmUnreliable = 0;
      assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
      /* walIndexRecover() might have returned SHORT_READ if a concurrent
      ** writer truncated the WAL out from under it.  If that happens, it
      ** indicates that a writer has fixed the SHM file for us, so retry */
      if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
    }
    pWal->exclusiveMode = WAL_NORMAL_MODE;
  }

  return rc;
}

/*
** Open a transaction in a connection where the shared-memory is read-only
** and where we cannot verify that there is a separate write-capable connection
** on hand to keep the shared-memory up-to-date with the WAL file.
**
** This can happen, for example, when the shared-memory is implemented by
** memory-mapping a *-shm file, where a prior writer has shut down and
** left the *-shm file on disk, and now the present connection is trying
** to use that database but lacks write permission on the *-shm file.
** Other scenarios are also possible, depending on the VFS implementation.
**
** Precondition:
**
**    The *-wal file has been read and an appropriate wal-index has been
**    constructed in pWal->apWiData[] using heap memory instead of shared
**    memory. 
**
** If this function returns SQLITE_OK, then the read transaction has
** been successfully opened. In this case output variable (*pChanged) 
** is set to true before returning if the caller should discard the
** contents of the page cache before proceeding. Or, if it returns 
** WAL_RETRY, then the heap memory wal-index has been discarded and 
** the caller should retry opening the read transaction from the 
** beginning (including attempting to map the *-shm file). 
**
** If an error occurs, an SQLite error code is returned.
*/
static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
  i64 szWal;                      /* Size of wal file on disk in bytes */
  i64 iOffset;                    /* Current offset when reading wal file */
  u8 aBuf[WAL_HDRSIZE];           /* Buffer to load WAL header into */
  u8 *aFrame = 0;                 /* Malloc'd buffer to load entire frame */
  int szFrame;                    /* Number of bytes in buffer aFrame[] */
  u8 *aData;                      /* Pointer to data part of aFrame buffer */
  volatile void *pDummy;          /* Dummy argument for xShmMap */
  int rc;                         /* Return code */
  u32 aSaveCksum[2];              /* Saved copy of pWal->hdr.aFrameCksum */

  assert( pWal->bShmUnreliable );
  assert( pWal->readOnly & WAL_SHM_RDONLY );
  assert( pWal->nWiData>0 && pWal->apWiData[0] );

  /* Take WAL_READ_LOCK(0). This has the effect of preventing any
  ** writers from running a checkpoint, but does not stop them
  ** from running recovery.  */
  rc = walLockShared(pWal, WAL_READ_LOCK(0));
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
    goto begin_unreliable_shm_out;
  }
  pWal->readLock = 0;

  /* Check to see if a separate writer has attached to the shared-memory area,
  ** thus making the shared-memory "reliable" again.  Do this by invoking
  ** the xShmMap() routine of the VFS and looking to see if the return
  ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
  **
  ** If the shared-memory is now "reliable" return WAL_RETRY, which will
  ** cause the heap-memory WAL-index to be discarded and the actual
  ** shared memory to be used in its place.
  **
  ** This step is important because, even though this connection is holding
  ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
  ** have already checkpointed the WAL file and, while the current
  ** is active, wrap the WAL and start overwriting frames that this
  ** process wants to use.
  **
  ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
  ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
  ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
  ** even if some external agent does a "chmod" to make the shared-memory
  ** writable by us, until sqlite3OsShmUnmap() has been called.
  ** This is a requirement on the VFS implementation.
  */
  rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
  assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
  if( rc!=SQLITE_READONLY_CANTINIT ){
    rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
    goto begin_unreliable_shm_out;
  }

  /* We reach this point only if the real shared-memory is still unreliable.
  ** Assume the in-memory WAL-index substitute is correct and load it
  ** into pWal->hdr.
  */
  memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));

  /* Make sure some writer hasn't come in and changed the WAL file out
  ** from under us, then disconnected, while we were not looking.
  */
  rc = sqlite3OsFileSize(pWal->apWalFd[0], &szWal);
  if( rc!=SQLITE_OK ){
    goto begin_unreliable_shm_out;
  }
  if( szWal<WAL_HDRSIZE ){
    /* If the wal file is too small to contain a wal-header and the
    ** wal-index header has mxFrame==0, then it must be safe to proceed
    ** reading the database file only. However, the page cache cannot
    ** be trusted, as a read/write connection may have connected, written
    ** the db, run a checkpoint, truncated the wal file and disconnected
    ** since this client's last read transaction.  */
    *pChanged = 1;
    rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
    goto begin_unreliable_shm_out;
  }

  /* Check the salt keys at the start of the wal file still match. */
  rc = sqlite3OsRead(pWal->apWalFd[0], aBuf, WAL_HDRSIZE, 0);
  if( rc!=SQLITE_OK ){
    goto begin_unreliable_shm_out;
  }
  if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
    /* Some writer has wrapped the WAL file while we were not looking.
    ** Return WAL_RETRY which will cause the in-memory WAL-index to be
    ** rebuilt. */
    rc = WAL_RETRY;
    goto begin_unreliable_shm_out;
  }

  /* Allocate a buffer to read frames into */
  szFrame = pWal->hdr.szPage + WAL_FRAME_HDRSIZE;
  aFrame = (u8 *)sqlite3_malloc64(szFrame);
  if( aFrame==0 ){
    rc = SQLITE_NOMEM_BKPT;
    goto begin_unreliable_shm_out;
  }
  aData = &aFrame[WAL_FRAME_HDRSIZE];

  /* Check to see if a complete transaction has been appended to the
  ** wal file since the heap-memory wal-index was created. If so, the
  ** heap-memory wal-index is discarded and WAL_RETRY returned to
  ** the caller.  */
  aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
  aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
  for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->hdr.szPage); 
      iOffset+szFrame<=szWal; 
      iOffset+=szFrame
  ){
    u32 pgno;                   /* Database page number for frame */
    u32 nTruncate;              /* dbsize field from frame header */

    /* Read and decode the next log frame. */
    rc = sqlite3OsRead(pWal->apWalFd[0], aFrame, szFrame, iOffset);
    if( rc!=SQLITE_OK ) break;
    if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;

    /* If nTruncate is non-zero, then a complete transaction has been
    ** appended to this wal file. Set rc to WAL_RETRY and break out of
    ** the loop.  */
    if( nTruncate ){
      rc = WAL_RETRY;
      break;
    }
  }
  pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
  pWal->hdr.aFrameCksum[1] = aSaveCksum[1];

 begin_unreliable_shm_out:
  sqlite3_free(aFrame);
  if( rc!=SQLITE_OK ){
    int i;
    for(i=0; i<pWal->nWiData; i++){
      sqlite3_free((void*)pWal->apWiData[i]);
      pWal->apWiData[i] = 0;
    }
    pWal->bShmUnreliable = 0;
    sqlite3WalEndReadTransaction(pWal);
    *pChanged = 1;
  }
  return rc;
}

/*
** Attempt to start a read transaction.  This might fail due to a race or
** other transient condition.  When that happens, it returns WAL_RETRY to
** indicate to the caller that it is safe to retry immediately.
**
** On success return SQLITE_OK.  On a permanent failure (such an
** I/O error or an SQLITE_BUSY because another process is running
** recovery) return a positive error code.
**
** The useWal parameter is true to force the use of the WAL and disable
** the case where the WAL is bypassed because it has been completely
** checkpointed.  If useWal==0 then this routine calls walIndexReadHdr() 
** to make a copy of the wal-index header into pWal->hdr.  If the 
** wal-index header has changed, *pChanged is set to 1 (as an indication 
** to the caller that the local page cache is obsolete and needs to be 
** flushed.)  When useWal==1, the wal-index header is assumed to already
** be loaded and the pChanged parameter is unused.
**
** The caller must set the cnt parameter to the number of prior calls to
** this routine during the current read attempt that returned WAL_RETRY.
** This routine will start taking more aggressive measures to clear the
** race conditions after multiple WAL_RETRY returns, and after an excessive
** number of errors will ultimately return SQLITE_PROTOCOL.  The
** SQLITE_PROTOCOL return indicates that some other process has gone rogue
** and is not honoring the locking protocol.  There is a vanishingly small
** chance that SQLITE_PROTOCOL could be returned because of a run of really
** bad luck when there is lots of contention for the wal-index, but that
** possibility is so small that it can be safely neglected, we believe.
**
** On success, this routine obtains a read lock on 
** WAL_READ_LOCK(pWal->readLock).  The pWal->readLock integer is
** in the range 0 <= pWal->readLock < WAL_NREADER.  If pWal->readLock==(-1)
** that means the Wal does not hold any read lock.  The reader must not
** access any database page that is modified by a WAL frame up to and
** including frame number aReadMark[pWal->readLock].  The reader will
** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
** Or if pWal->readLock==0, then the reader will ignore the WAL
** completely and get all content directly from the database file.
** If the useWal parameter is 1 then the WAL will never be ignored and
** this routine will always set pWal->readLock>0 on success.
** When the read transaction is completed, the caller must release the
** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
**
** This routine uses the nBackfill and aReadMark[] fields of the header
** to select a particular WAL_READ_LOCK() that strives to let the
** checkpoint process do as much work as possible.  This routine might
** update values of the aReadMark[] array in the header, but if it does
** so it takes care to hold an exclusive lock on the corresponding
** WAL_READ_LOCK() while changing values.
*/
static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
  volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
  int rc = SQLITE_OK;             /* Return code  */

  assert( pWal->readLock==WAL_LOCK_NONE );     /* Not currently locked */

  /* useWal may only be set for read/write connections */
  assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );

  /* Take steps to avoid spinning forever if there is a protocol error.
  **
  ** Circumstances that cause a RETRY should only last for the briefest
  ** instances of time.  No I/O or other system calls are done while the
  ** locks are held, so the locks should not be held for very long. But 
  ** if we are unlucky, another process that is holding a lock might get
  ** paged out or take a page-fault that is time-consuming to resolve, 
  ** during the few nanoseconds that it is holding the lock.  In that case,
  ** it might take longer than normal for the lock to free.
  **
  ** After 5 RETRYs, we begin calling sqlite3OsSleep().  The first few
  ** calls to sqlite3OsSleep() have a delay of 1 microsecond.  Really this
  ** is more of a scheduler yield than an actual delay.  But on the 10th
  ** an subsequent retries, the delays start becoming longer and longer, 
  ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
  ** The total delay time before giving up is less than 10 seconds.
  */
  if( cnt>5 ){
    int nDelay = 1;                      /* Pause time in microseconds */
    if( cnt>100 ){
      VVA_ONLY( pWal->lockError = 1; )
      return SQLITE_PROTOCOL;
    }
    if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
    sqlite3OsSleep(pWal->pVfs, nDelay);
  }

  if( !useWal ){
    assert( rc==SQLITE_OK );
    if( pWal->bShmUnreliable==0 ){
      rc = walIndexReadHdr(pWal, pChanged);
    }
    if( rc==SQLITE_BUSY ){
      /* If there is not a recovery running in another thread or process
      ** then convert BUSY errors to WAL_RETRY.  If recovery is known to
      ** be running, convert BUSY to BUSY_RECOVERY.  There is a race here
      ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
      ** would be technically correct.  But the race is benign since with
      ** WAL_RETRY this routine will be called again and will probably be
      ** right on the second iteration.
      */
      if( pWal->apWiData[0]==0 ){
        /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
        ** We assume this is a transient condition, so return WAL_RETRY. The
        ** xShmMap() implementation used by the default unix and win32 VFS 
        ** modules may return SQLITE_BUSY due to a race condition in the 
        ** code that determines whether or not the shared-memory region 
        ** must be zeroed before the requested page is returned.
        */
        rc = WAL_RETRY;
      }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
        walUnlockShared(pWal, WAL_RECOVER_LOCK);
        rc = WAL_RETRY;
      }else if( rc==SQLITE_BUSY ){
        rc = SQLITE_BUSY_RECOVERY;
      }
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }
    else if( pWal->bShmUnreliable ){
      return walBeginShmUnreliable(pWal, pChanged);
    }
  }

  assert( pWal->nWiData>0 );
  assert( pWal->apWiData[0]!=0 );
  pInfo = walCkptInfo(pWal);
  if( isWalMode2(pWal) ){
    /* This connection needs a "part" lock on the current wal file and, 
    ** unless pInfo->nBackfill is set to indicate that it has already been
    ** checkpointed, a "full" lock on the other wal file.  */
    int iWal = walidxGetFile(&pWal->hdr);
    int nBackfill = pInfo->nBackfill || walidxGetMxFrame(&pWal->hdr, !iWal)==0;
    int eLock = 1 + (iWal*2) + (nBackfill==iWal);

    assert( nBackfill==0 || nBackfill==1 );
    assert( iWal==0 || iWal==1 );
    assert( iWal!=0 || nBackfill!=1 || eLock==WAL_LOCK_PART1 );
    assert( iWal!=0 || nBackfill!=0 || eLock==WAL_LOCK_PART1_FULL2 );
    assert( iWal!=1 || nBackfill!=1 || eLock==WAL_LOCK_PART2 );
    assert( iWal!=1 || nBackfill!=0 || eLock==WAL_LOCK_PART2_FULL1 );

    rc = walLockShared(pWal, WAL_READ_LOCK(eLock));
    if( rc!=SQLITE_OK ){
      return (rc==SQLITE_BUSY ? WAL_RETRY : rc);
    }
    walShmBarrier(pWal);
    if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
      walUnlockShared(pWal, WAL_READ_LOCK(eLock));
      return WAL_RETRY;
    }else{
      pWal->readLock = eLock;
    }
    assert( pWal->minFrame==0 && walFramePage(pWal->minFrame)==0 );
  }else{
    u32 mxReadMark;               /* Largest aReadMark[] value */
    int mxI;                      /* Index of largest aReadMark[] value */
    int i;                        /* Loop counter */
    u32 mxFrame;                  /* Wal frame to lock to */
    if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
  #ifdef SQLITE_ENABLE_SNAPSHOT
     && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
  #endif
    ){
      /* The WAL has been completely backfilled (or it is empty).
      ** and can be safely ignored.
      */
      rc = walLockShared(pWal, WAL_READ_LOCK(0));
      walShmBarrier(pWal);
      if( rc==SQLITE_OK ){
        if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr,sizeof(WalIndexHdr)) ){
          /* It is not safe to allow the reader to continue here if frames
          ** may have been appended to the log before READ_LOCK(0) was obtained.
          ** When holding READ_LOCK(0), the reader ignores the entire log file,
          ** which implies that the database file contains a trustworthy
          ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
          ** happening, this is usually correct.
          **
          ** However, if frames have been appended to the log (or if the log 
          ** is wrapped and written for that matter) before the READ_LOCK(0)
          ** is obtained, that is not necessarily true. A checkpointer may
          ** have started to backfill the appended frames but crashed before
          ** it finished. Leaving a corrupt image in the database file.
          */
          walUnlockShared(pWal, WAL_READ_LOCK(0));
          return WAL_RETRY;
        }
        pWal->readLock = 0;
        return SQLITE_OK;
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
  
    /* If we get this far, it means that the reader will want to use
    ** the WAL to get at content from recent commits.  The job now is
    ** to select one of the aReadMark[] entries that is closest to
    ** but not exceeding pWal->hdr.mxFrame and lock that entry.
    */
    mxReadMark = 0;
    mxI = 0;
    mxFrame = pWal->hdr.mxFrame;
  #ifdef SQLITE_ENABLE_SNAPSHOT
    if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
      mxFrame = pWal->pSnapshot->mxFrame;
    }
  #endif
    for(i=1; i<WAL_NREADER; i++){
      u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
      if( mxReadMark<=thisMark && thisMark<=mxFrame ){
        assert( thisMark!=READMARK_NOT_USED );
        mxReadMark = thisMark;
        mxI = i;
      }
    }
    if( (pWal->readOnly & WAL_SHM_RDONLY)==0
     && (mxReadMark<mxFrame || mxI==0)
    ){
      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          mxReadMark = AtomicStore(pInfo->aReadMark+i,mxFrame);
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
        }
      }
    }
    if( mxI==0 ){
      assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
      return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
    }
  
    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    /* Now that the read-lock has been obtained, check that neither the
    ** value in the aReadMark[] array or the contents of the wal-index
    ** header have changed.
    **
    ** It is necessary to check that the wal-index header did not change
    ** between the time it was read and when the shared-lock was obtained
    ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
    ** that the log file may have been wrapped by a writer, or that frames
    ** that occur later in the log than pWal->hdr.mxFrame may have been
    ** copied into the database by a checkpointer. If either of these things
    ** happened, then reading the database with the current value of
    ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
    ** instead.
    **
    ** Before checking that the live wal-index header has not changed
    ** since it was read, set Wal.minFrame to the first frame in the wal
    ** file that has not yet been checkpointed. This client will not need
    ** to read any frames earlier than minFrame from the wal file - they
    ** can be safely read directly from the database file.
    **
    ** Because a ShmBarrier() call is made between taking the copy of 
    ** nBackfill and checking that the wal-header in shared-memory still
    ** matches the one cached in pWal->hdr, it is guaranteed that the 
    ** checkpointer that set nBackfill was not working with a wal-index
    ** header newer than that cached in pWal->hdr. If it were, that could
    ** cause a problem. The checkpointer could omit to checkpoint
    ** a version of page X that lies before pWal->minFrame (call that version
    ** A) on the basis that there is a newer version (version B) of the same
    ** page later in the wal file. But if version B happens to like past
    ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
    ** that it can read version A from the database file. However, since
    ** we can guarantee that the checkpointer that set nBackfill could not
    ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
    */
    pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
    walShmBarrier(pWal);
    if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
     || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
    ){
      walUnlockShared(pWal, WAL_READ_LOCK(mxI));
      return WAL_RETRY;
    }else{
      assert( mxReadMark<=pWal->hdr.mxFrame );
      pWal->readLock = (i16)mxI;
    }
  }
  return rc;
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/*
** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted 
** variable so that older snapshots can be accessed. To do this, loop
** through all wal frames from nBackfillAttempted to (nBackfill+1), 
** comparing their content to the corresponding page with the database
** file, if any. Set nBackfillAttempted to the frame number of the
** first frame for which the wal file content matches the db file.
**
** This is only really safe if the file-system is such that any page 
** writes made by earlier checkpointers were atomic operations, which 
** is not always true. It is also possible that nBackfillAttempted
** may be left set to a value larger than expected, if a wal frame
** contains content that duplicate of an earlier version of the same
** page.
**
** SQLITE_OK is returned if successful, or an SQLite error code if an
** error occurs. It is not an error if nBackfillAttempted cannot be
** decreased at all.
*/
int sqlite3WalSnapshotRecover(Wal *pWal){
  int rc;

  /* Snapshots may not be used with wal2 mode databases. */
  if( isWalMode2(pWal) ) return SQLITE_ERROR;

  assert( pWal->readLock>=0 );
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc==SQLITE_OK ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    int szPage = (int)pWal->szPage;
    i64 szDb;                   /* Size of db file in bytes */

    rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
    if( rc==SQLITE_OK ){
      void *pBuf1 = sqlite3_malloc(szPage);
      void *pBuf2 = sqlite3_malloc(szPage);
      if( pBuf1==0 || pBuf2==0 ){
        rc = SQLITE_NOMEM;
      }else{
        u32 i = pInfo->nBackfillAttempted;
        for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
          WalHashLoc sLoc;          /* Hash table location */
          u32 pgno;                 /* Page number in db file */
          i64 iDbOff;               /* Offset of db file entry */
          i64 iWalOff;              /* Offset of wal file entry */

          rc = walHashGet(pWal, walFramePage(i), &sLoc);
          if( rc!=SQLITE_OK ) break;
          pgno = sLoc.aPgno[i-sLoc.iZero];
          iDbOff = (i64)(pgno-1) * szPage;

          if( iDbOff+szPage<=szDb ){
            iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
            rc = sqlite3OsRead(pWal->apWalFd[0], pBuf1, szPage, iWalOff);

            if( rc==SQLITE_OK ){
              rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
            }

            if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
              break;
            }
          }

          pInfo->nBackfillAttempted = i-1;
        }
      }

      sqlite3_free(pBuf1);
      sqlite3_free(pBuf2);
    }
    walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
  }

  return rc;
}
#endif /* SQLITE_ENABLE_SNAPSHOT */

/*
** Begin a read transaction on the database.
**
** This routine used to be called sqlite3OpenSnapshot() and with good reason:
** it takes a snapshot of the state of the WAL and wal-index for the current
** instant in time.  The current thread will continue to use this snapshot.
** Other threads might append new content to the WAL and wal-index but
** that extra content is ignored by the current thread.
**
** If the database contents have changes since the previous read
** transaction, then *pChanged is set to 1 before returning.  The
** Pager layer will use this to know that its cache is stale and
** needs to be flushed.
*/
int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int cnt = 0;                    /* Number of TryBeginRead attempts */

#ifdef SQLITE_ENABLE_SNAPSHOT
  int bChanged = 0;
  WalIndexHdr *pSnapshot = pWal->pSnapshot;
  if( pSnapshot && isWalMode2(pWal) ) return SQLITE_ERROR;
  if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
    bChanged = 1;
  }
#endif

  do{
    rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
  }while( rc==WAL_RETRY );
  testcase( (rc&0xff)==SQLITE_BUSY );
  testcase( (rc&0xff)==SQLITE_IOERR );
  testcase( rc==SQLITE_PROTOCOL );
  testcase( rc==SQLITE_OK );
  
  if( rc==SQLITE_OK && pWal->hdr.iVersion==WAL_VERSION2 ){
    rc = walOpenWal2(pWal);
  }

  pWal->nPriorFrame = pWal->hdr.mxFrame;
#ifdef SQLITE_ENABLE_SNAPSHOT
  if( rc==SQLITE_OK ){
    if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
      /* At this point the client has a lock on an aReadMark[] slot holding
      ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
      ** is populated with the wal-index header corresponding to the head
      ** of the wal file. Verify that pSnapshot is still valid before
      ** continuing.  Reasons why pSnapshot might no longer be valid:
      **
      **    (1)  The WAL file has been reset since the snapshot was taken.
      **         In this case, the salt will have changed.
      **
      **    (2)  A checkpoint as been attempted that wrote frames past
      **         pSnapshot->mxFrame into the database file.  Note that the
      **         checkpoint need not have completed for this to cause problems.
      */
      volatile WalCkptInfo *pInfo = walCkptInfo(pWal);

      assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
      assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );

      /* It is possible that there is a checkpointer thread running 
      ** concurrent with this code. If this is the case, it may be that the
      ** checkpointer has already determined that it will checkpoint 
      ** snapshot X, where X is later in the wal file than pSnapshot, but 
      ** has not yet set the pInfo->nBackfillAttempted variable to indicate 
      ** its intent. To avoid the race condition this leads to, ensure that
      ** there is no checkpointer process by taking a shared CKPT lock 
      ** before checking pInfo->nBackfillAttempted.  
      **
      ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
      **       this already?
      */
      rc = walLockShared(pWal, WAL_CKPT_LOCK);

      if( rc==SQLITE_OK ){
        /* Check that the wal file has not been wrapped. Assuming that it has
        ** not, also check that no checkpointer has attempted to checkpoint any
        ** frames beyond pSnapshot->mxFrame. If either of these conditions are
        ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
        ** with *pSnapshot and set *pChanged as appropriate for opening the
        ** snapshot.  */
        if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
         && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
        ){
          assert( pWal->readLock>0 );
          memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
          *pChanged = bChanged;
        }else{
          rc = SQLITE_ERROR_SNAPSHOT;
        }

        /* Release the shared CKPT lock obtained above. */
        walUnlockShared(pWal, WAL_CKPT_LOCK);
        pWal->minFrame = 1;
      }


      if( rc!=SQLITE_OK ){
        sqlite3WalEndReadTransaction(pWal);
      }
    }
  }
#endif
  return rc;
}

/*
** Finish with a read transaction.  All this does is release the
** read-lock.
*/
void sqlite3WalEndReadTransaction(Wal *pWal){
  sqlite3WalEndWriteTransaction(pWal);
  if( pWal->readLock!=WAL_LOCK_NONE ){
    walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
    pWal->readLock = WAL_LOCK_NONE;
  }
}

/* Search hash table iHash for an entry matching page number
** pgno. Each call to this function searches a single hash table
** (each hash table indexes up to HASHTABLE_NPAGE frames).
**
** This code might run concurrently to the code in walIndexAppend()
** that adds entries to the wal-index (and possibly to this hash 
** table). This means the value just read from the hash 
** slot (aHash[iKey]) may have been added before or after the 
** current read transaction was opened. Values added after the
** read transaction was opened may have been written incorrectly -
** i.e. these slots may contain garbage data. However, we assume
** that any slots written before the current read transaction was
** opened remain unmodified.
**
** For the reasons above, the if(...) condition featured in the inner
** loop of the following block is more stringent that would be required 
** if we had exclusive access to the hash-table:
**
**   (aPgno[iFrame]==pgno): 
**     This condition filters out normal hash-table collisions.
**
**   (iFrame<=iLast): 
**     This condition filters out entries that were added to the hash
**     table after the current read-transaction had started.
*/
static int walSearchHash(
  Wal *pWal, 
  u32 iLast,
  int iHash, 
  Pgno pgno, 
  u32 *piRead
){
  WalHashLoc sLoc;                /* Hash table location */
  int iKey;                       /* Hash slot index */
  int nCollide;                   /* Number of hash collisions remaining */
  int rc;                         /* Error code */

  rc = walHashGet(pWal, iHash, &sLoc);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  nCollide = HASHTABLE_NSLOT;
  for(iKey=walHash(pgno); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
    u32 iFrame = sLoc.aHash[iKey] + sLoc.iZero;
    if( iFrame<=iLast 
     && iFrame>=pWal->minFrame 
     && sLoc.aPgno[sLoc.aHash[iKey]]==pgno 
    ){
      assert( iFrame>*piRead || CORRUPT_DB );
      *piRead = iFrame;
    }
    if( (nCollide--)==0 ){
      return SQLITE_CORRUPT_BKPT;
    }
  }

  return SQLITE_OK;
}

static int walSearchWal(
  Wal *pWal, 
  int iWal, 
  Pgno pgno, 
  u32 *piRead
){
  int rc = SQLITE_OK;
  int bWal2 = isWalMode2(pWal);
  u32 iLast = walidxGetMxFrame(&pWal->hdr, iWal);
  if( iLast ){
    int iHash;
    int iMinHash = walFramePage(pWal->minFrame);
    u32 iExternal = bWal2 ? walExternalEncode(iWal, iLast) : iLast;
    assert( bWal2==0 || pWal->minFrame==0 );
    for(iHash=walFramePage(iExternal); 
        iHash>=iMinHash && *piRead==0; 
        iHash-=(1+bWal2)
    ){
      rc = walSearchHash(pWal, iExternal, iHash, pgno, piRead);
      if( rc!=SQLITE_OK ) break;
    }
  }
  return rc;
}

/*
** Search the wal file for page pgno. If found, set *piRead to the frame that
** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
** to zero.
**
** Return SQLITE_OK if successful, or an error code if an error occurs. If an
** error does occur, the final value of *piRead is undefined.
*/
int sqlite3WalFindFrame(
  Wal *pWal,                      /* WAL handle */
  Pgno pgno,                      /* Database page number to read data for */
  u32 *piRead                     /* OUT: Frame number (or zero) */
){
  int bWal2 = isWalMode2(pWal);
  int iApp = walidxGetFile(&pWal->hdr);
  int rc = SQLITE_OK;
  u32 iRead = 0;                  /* If !=0, WAL frame to return data from */

  /* This routine is only be called from within a read transaction. */
  assert( pWal->readLock!=WAL_LOCK_NONE );

  /* If this is a regular wal system, then iApp must be set to 0 (there is
  ** only one wal file, after all). Or, if this is a wal2 system and the
  ** write-lock is not held, the client must have a partial-wal lock on wal 
  ** file iApp. This is not always true if the write-lock is held and this
  ** function is being called after WalLockForCommit() as part of committing
  ** a CONCURRENT transaction.  */
#ifdef SQLITE_DEBUG
  if( bWal2 ){
    if( pWal->writeLock==0 ){
      int l = pWal->readLock;
      assert( iApp==1 || l==WAL_LOCK_PART1 || l==WAL_LOCK_PART1_FULL2 );
      assert( iApp==0 || l==WAL_LOCK_PART2 || l==WAL_LOCK_PART2_FULL1 );
    }
  }else{
    assert( iApp==0 );
  }
#endif

  /* Return early if read-lock 0 is held. */
  if( (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
    assert( !bWal2 );
    *piRead = 0;
    return SQLITE_OK;
  }

  /* Search the wal file that the client holds a partial lock on first. */
  rc = walSearchWal(pWal, iApp, pgno, &iRead);

  /* If the requested page was not found, no error has occured, and 
  ** the client holds a full-wal lock on the other wal file, search it
  ** too.  */
  if( rc==SQLITE_OK && bWal2 && iRead==0 && (
        pWal->readLock==WAL_LOCK_PART1_FULL2 
     || pWal->readLock==WAL_LOCK_PART2_FULL1
#ifndef SQLITE_OMIT_CONCURRENT
     || (pWal->readLock==WAL_LOCK_PART1 && iApp==1)
     || (pWal->readLock==WAL_LOCK_PART2 && iApp==0)
#endif
  )){
    rc = walSearchWal(pWal, !iApp, pgno, &iRead);
  }

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  if( iRead ){ 
    u32 iFrame;
    int iWal = walExternalDecode(iRead, &iFrame);
    WALTRACE(("WAL%p: page %d @ frame %d wal %d\n",pWal,(int)pgno,iFrame,iWal));
  }else{
    WALTRACE(("WAL%p: page %d not found\n", pWal, (int)pgno));
  }
#endif

#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
  /* If expensive assert() statements are available, do a linear search
  ** of the wal-index file content. Make sure the results agree with the
  ** result obtained using the hash indexes above.  
  **
  ** TODO: This is broken for wal2.
  */
  if( rc==SQLITE_OK ){
    u32 iRead2 = 0;
    u32 iTest;
    assert( pWal->bShmUnreliable || pWal->minFrame>0 );
    for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
      if( walFramePgno(pWal, iTest)==pgno ){
        iRead2 = iTest;
        break;
      }
    }
    assert( iRead==iRead2 );
  }
#endif

  *piRead = iRead;
  return SQLITE_OK;
}

/*
** Read the contents of frame iRead from the wal file into buffer pOut
** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
** error code otherwise.
*/
int sqlite3WalReadFrame(
  Wal *pWal,                      /* WAL handle */
  u32 iExternal,                  /* Frame to read */
  int nOut,                       /* Size of buffer pOut in bytes */
  u8 *pOut                        /* Buffer to write page data to */
){
  int sz;
  int iWal = 0;
  u32 iRead;
  i64 iOffset;

  /* Figure out the page size */
  sz = pWal->hdr.szPage;
  sz = (sz&0xfe00) + ((sz&0x0001)<<16);
  testcase( sz<=32768 );
  testcase( sz>=65536 );

  if( isWalMode2(pWal) ){
    /* Figure out which of the two wal files, and the frame within, that 
    ** iExternal refers to.  */
    iWal = walExternalDecode(iExternal, &iRead);
  }else{
    iRead = iExternal;
  }

  WALTRACE(("WAL%p: reading frame %d wal %d\n", pWal, iRead, iWal));
  iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
  /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
  return sqlite3OsRead(pWal->apWalFd[iWal], pOut, (nOut>sz?sz:nOut), iOffset);
}

/* 
** Return the size of the database in pages (or zero, if unknown).
*/
Pgno sqlite3WalDbsize(Wal *pWal){
  if( pWal && ALWAYS(pWal->readLock!=WAL_LOCK_NONE) ){
    return pWal->hdr.nPage;
  }
  return 0;
}

/*
** Take the WRITER lock on the WAL file. Return SQLITE_OK if successful,
** or an SQLite error code otherwise. This routine does not invoke any
** busy-handler callbacks, that is done at a higher level.
*/
static int walWriteLock(Wal *pWal){
  int rc;

  /* Cannot start a write transaction without first holding a read lock */
  assert( pWal->readLock>=0 );
  assert( pWal->writeLock==0 );
  assert( pWal->iReCksum==0 );

  /* If this is a read-only connection, obtaining a write-lock is not
  ** possible. In this case return SQLITE_READONLY. Otherwise, attempt
  ** to grab the WRITER lock. Set Wal.writeLock to true and return
  ** SQLITE_OK if successful, or leave Wal.writeLock clear and return 
  ** an SQLite error code (possibly SQLITE_BUSY) otherwise. */
  if( pWal->readOnly ){
    rc = SQLITE_READONLY;
  }else{
    rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
    if( rc==SQLITE_OK ){
      pWal->writeLock = 1;
    }
  }

  return rc;
}

/* 
** This function starts a write transaction on the WAL.
**
** A read transaction must have already been started by a prior call
** to sqlite3WalBeginReadTransaction().
**
** If another thread or process has written into the database since
** the read transaction was started, then it is not possible for this
** thread to write as doing so would cause a fork.  So this routine
** returns SQLITE_BUSY in that case and no write transaction is started.
**
** There can only be a single writer active at a time.
*/
int sqlite3WalBeginWriteTransaction(Wal *pWal){
  int rc = walWriteLock(pWal);
  if( rc==SQLITE_OK ){
    /* If another connection has written to the database file since the
    ** time the read transaction on this connection was started, then
    ** the write is disallowed. Release the WRITER lock and return
    ** SQLITE_BUSY_SNAPSHOT in this case.  */
    if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
      walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
      pWal->writeLock = 0;
      rc = SQLITE_BUSY_SNAPSHOT;
    }
  }
  return rc;
}

/*
** This function is called by a writer that has a read-lock on aReadmark[0]
** (pWal->readLock==0). This function relinquishes that lock and takes a
** lock on a different aReadmark[] slot. 
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
static int walUpgradeReadlock(Wal *pWal){
  int cnt;
  int rc;
  assert( pWal->writeLock && pWal->readLock==0 );
  walUnlockShared(pWal, WAL_READ_LOCK(0));
  pWal->readLock = -1;
  cnt = 0;
  do{
    int notUsed;
    rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
  }while( rc==WAL_RETRY );
  assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
  testcase( (rc&0xff)==SQLITE_IOERR );
  testcase( rc==SQLITE_PROTOCOL );
  testcase( rc==SQLITE_OK );
  return rc;
}


#ifndef SQLITE_OMIT_CONCURRENT
/* 
** This function is only ever called when committing a "BEGIN CONCURRENT"
** transaction. It may be assumed that no frames have been written to
** the wal file. The second parameter is a pointer to the in-memory 
** representation of page 1 of the database (which may or may not be
** dirty). The third is a bitvec with a bit set for each page in the
** database file that was read by the current concurrent transaction.
**
** This function performs three tasks:
**
**   1) It obtains the WRITER lock on the wal file,
**
**   2) It checks that there are no conflicts between the current
**      transaction and any transactions committed to the wal file since
**      it was opened, and
**
**   3) It ejects any non-dirty pages from the page-cache that have been
**      written by another client since the CONCURRENT transaction was started
**      (so as to avoid ending up with an inconsistent cache after the
**      current transaction is committed).
**
** If no error occurs and the caller may proceed with committing the 
** transaction, SQLITE_OK is returned. SQLITE_BUSY is returned if the WRITER
** lock cannot be obtained. Or, if the WRITER lock can be obtained but there
** are conflicts with a committed transaction, SQLITE_BUSY_SNAPSHOT. Finally,
** if an error (i.e. an OOM condition or IO error), an SQLite error code
** is returned.
*/
int sqlite3WalLockForCommit(
  Wal *pWal, 
  PgHdr *pPage1, 
  Bitvec *pAllRead, 
  Pgno *piConflict
){
  Pager *pPager = pPage1->pPager;
  int rc = walWriteLock(pWal);

  /* If the database has been modified since this transaction was started,
  ** check if it is still possible to commit. The transaction can be 
  ** committed if:
  **
  **   a) None of the pages in pList have been modified since the 
  **      transaction opened, and
  **
  **   b) The database schema cookie has not been modified since the
  **      transaction was started.
  */
  if( rc==SQLITE_OK ){
    WalIndexHdr head;

    if( walIndexLoadHdr(pWal, &head) ){
      /* This branch is taken if the wal-index header is corrupted. This 
      ** occurs if some other writer has crashed while committing a 
      ** transaction to this database since the current concurrent transaction
      ** was opened.  */
      rc = SQLITE_BUSY_SNAPSHOT;
    }else if( memcmp(&pWal->hdr, (void*)&head, sizeof(WalIndexHdr))!=0 ){
      int bWal2 = isWalMode2(pWal);
      int iHash;
      int iLastHash = walFramePage(head.mxFrame);
      int nLoop = 1+(bWal2 && walidxGetFile(&head)!=walidxGetFile(&pWal->hdr));
      int iLoop;
      

      assert( nLoop==1 || nLoop==2 );
      for(iLoop=0; iLoop<nLoop && rc==SQLITE_OK; iLoop++){
        u32 iFirst;               /* First (external) wal frame to check */
        u32 iLastHash;            /* Last hash to check this loop */
        u32 mxFrame;              /* Last (external) wal frame to check */

        if( bWal2==0 ){
          assert( iLoop==0 );
          /* Special case for wal mode. If this concurrent transaction was
          ** opened after the entire wal file had been checkpointed, and
          ** another connection has since wrapped the wal file, then we wish to
          ** iterate through every frame in the new wal file - not just those
          ** that follow the current value of pWal->hdr.mxFrame (which will be
          ** set to the size of the old, now overwritten, wal file). This
          ** doesn't come up in wal2 mode, as in wal2 mode the client always
          ** has a PART lock on one of the wal files, preventing it from being
          ** checkpointed or overwritten. */
          iFirst = pWal->hdr.mxFrame+1;
          if( memcmp(pWal->hdr.aSalt, (u32*)head.aSalt, sizeof(u32)*2) ){
            assert( pWal->readLock==0 );
            iFirst = 1;
          }
          mxFrame = head.mxFrame;
        }else{
          int iA = walidxGetFile(&pWal->hdr);
          if( iLoop==0 ){
            iFirst = walExternalEncode(iA, 1+walidxGetMxFrame(&pWal->hdr, iA));
            mxFrame = walExternalEncode(iA, walidxGetMxFrame(&head, iA));
          }else{
            iFirst = walExternalEncode(!iA, 1);
            mxFrame = walExternalEncode(!iA, walidxGetMxFrame(&head, !iA));
          }
        }
        iLastHash = walFramePage(mxFrame);

        for(iHash=walFramePage(iFirst); iHash<=iLastHash; iHash += (1+bWal2)){
          WalHashLoc sLoc;

          rc = walHashGet(pWal, iHash, &sLoc);
          if( rc==SQLITE_OK ){
            u32 i, iMin, iMax;
            assert( mxFrame>=sLoc.iZero );
            iMin = (sLoc.iZero >= iFirst) ? 1 : (iFirst - sLoc.iZero);
            iMax = (iHash==0) ? HASHTABLE_NPAGE_ONE : HASHTABLE_NPAGE;
            if( iMax>(mxFrame-sLoc.iZero) ) iMax = (mxFrame-sLoc.iZero);
            for(i=iMin; rc==SQLITE_OK && i<=iMax; i++){
              PgHdr *pPg;
              if( sLoc.aPgno[i]==1 ){
                /* Check that the schema cookie has not been modified. If
                ** it has not, the commit can proceed. */
                u8 aNew[4];
                u8 *aOld = &((u8*)pPage1->pData)[40];
                int sz;
                i64 iOff;
                int iFrame = sLoc.iZero + i;
                int iWal = 0;
                if( bWal2 ){
                  iWal = walExternalDecode(iFrame, &iFrame);
                }
                sz = pWal->hdr.szPage;
                sz = (sz&0xfe00) + ((sz&0x0001)<<16);
                iOff = walFrameOffset(iFrame, sz) + WAL_FRAME_HDRSIZE + 40;
                rc = sqlite3OsRead(pWal->apWalFd[iWal],aNew,sizeof(aNew),iOff);
                if( rc==SQLITE_OK && memcmp(aOld, aNew, sizeof(aNew)) ){
                  rc = SQLITE_BUSY_SNAPSHOT;
                }
              }else if( sqlite3BitvecTestNotNull(pAllRead, sLoc.aPgno[i]) ){
                *piConflict = sLoc.aPgno[i];
                rc = SQLITE_BUSY_SNAPSHOT;
              }else if( (pPg = sqlite3PagerLookup(pPager, sLoc.aPgno[i])) ){
                /* Page aPgno[i], which is present in the pager cache, has been
                ** modified since the current CONCURRENT transaction was
                ** started.  However it was not read by the current
                ** transaction, so is not a conflict. There are two
                ** possibilities: (a) the page was allocated at the of the file
                ** by the current transaction or (b) was present in the cache
                ** at the start of the transaction.
                **
                ** For case (a), do nothing. This page will be moved within the
                ** database file by the commit code to avoid the conflict. The
                ** call to PagerUnref() is to release the reference grabbed by
                ** the sqlite3PagerLookup() above.  
                **
                ** In case (b), drop the page from the cache - otherwise
                ** following the snapshot upgrade the cache would be
                ** inconsistent with the database as stored on disk. */
                if( sqlite3PagerIswriteable(pPg) ){
                  sqlite3PagerUnref(pPg);
                }else{
                  sqlite3PcacheDrop(pPg);
                }
              }
            }
          }
          if( rc!=SQLITE_OK ) break;
        }
      }
    }
  }

  pWal->nPriorFrame = pWal->hdr.mxFrame;
  return rc;
}

/* !defined(SQLITE_OMIT_CONCURRENT)
**
** This function is called as part of committing an CONCURRENT transaction.
** It is assumed that sqlite3WalLockForCommit() has already been successfully
** called and so (a) the WRITER lock is held and (b) it is known that the
** wal-index-header stored in shared memory is not corrupt.
**
** Before returning, this function upgrades the client so that it is 
** operating on the database snapshot currently at the head of the wal file
** (even if the CONCURRENT transaction ran against an older snapshot).
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
int sqlite3WalUpgradeSnapshot(Wal *pWal){
  int rc = SQLITE_OK;
  assert( pWal->writeLock );
  memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));

  /* If this client has its read-lock on slot aReadmark[0] and the entire
  ** wal has not been checkpointed, switch it to a different slot. Otherwise
  ** any reads performed between now and committing the transaction will
  ** read from the old snapshot - not the one just upgraded to.  */
  if( pWal->readLock==0 && pWal->hdr.mxFrame!=walCkptInfo(pWal)->nBackfill ){
    assert( isWalMode2(pWal)==0 );
    rc = walUpgradeReadlock(pWal);
  }
  return rc;
}
#endif   /* SQLITE_OMIT_CONCURRENT */

/*
** End a write transaction.  The commit has already been done.  This
** routine merely releases the lock.
*/
int sqlite3WalEndWriteTransaction(Wal *pWal){
  if( pWal->writeLock ){
    walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
    pWal->writeLock = 0;
    pWal->iReCksum = 0;
    pWal->truncateOnCommit = 0;
  }
  return SQLITE_OK;
}

/*
** If any data has been written (but not committed) to the log file, this
** function moves the write-pointer back to the start of the transaction.
**
** Additionally, the callback function is invoked for each frame written
** to the WAL since the start of the transaction. If the callback returns
** other than SQLITE_OK, it is not invoked again and the error code is
** returned to the caller.
**
** Otherwise, if the callback function does not return an error, this
** function returns SQLITE_OK.
*/
int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
  int rc = SQLITE_OK;
  if( pWal->writeLock ){
    int iWal = walidxGetFile(&pWal->hdr);
    Pgno iMax = walidxGetMxFrame(&pWal->hdr, iWal);
    Pgno iNew;
    Pgno iFrame;

    assert( isWalMode2(pWal) || iWal==0 );

    /* Restore the clients cache of the wal-index header to the state it
    ** was in before the client began writing to the database. 
    */
    memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
    assert( walidxGetFile(&pWal->hdr)==iWal );
    iNew = walidxGetMxFrame(&pWal->hdr, walidxGetFile(&pWal->hdr));

    for(iFrame=iNew+1; ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++){
      /* This call cannot fail. Unless the page for which the page number
      ** is passed as the second argument is (a) in the cache and 
      ** (b) has an outstanding reference, then xUndo is either a no-op
      ** (if (a) is false) or simply expels the page from the cache (if (b)
      ** is false).
      **
      ** If the upper layer is doing a rollback, it is guaranteed that there
      ** are no outstanding references to any page other than page 1. And
      ** page 1 is never written to the log until the transaction is
      ** committed. As a result, the call to xUndo may not fail.
      */
      Pgno pgno;
      if( isWalMode2(pWal) ){
        pgno = walFramePgno2(pWal, iWal, iFrame);
      }else{
        pgno = walFramePgno(pWal, iFrame);
      }
      assert( pgno!=1 );
      rc = xUndo(pUndoCtx, pgno);
    }
    if( iMax!=iNew ) walCleanupHash(pWal);
  }
  return rc;
}

/* 
** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 
** values. This function populates the array with values required to 
** "rollback" the write position of the WAL handle back to the current 
** point in the event of a savepoint rollback (via WalSavepointUndo()).
*/
void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
  int iWal = walidxGetFile(&pWal->hdr);
  assert( isWalMode2(pWal) || iWal==0 );
  aWalData[0] = walidxGetMxFrame(&pWal->hdr, iWal);
  aWalData[1] = pWal->hdr.aFrameCksum[0];
  aWalData[2] = pWal->hdr.aFrameCksum[1];
  aWalData[3] = isWalMode2(pWal) ? iWal : pWal->nCkpt;
}

/* 
** Move the write position of the WAL back to the point identified by
** the values in the aWalData[] array. aWalData must point to an array
** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
** by a call to WalSavepoint().
*/
int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
  int rc = SQLITE_OK;
  int iWal = walidxGetFile(&pWal->hdr);
  int iCmp = isWalMode2(pWal) ? iWal : pWal->nCkpt;

  assert( pWal->writeLock || aWalData[0]==pWal->hdr.mxFrame );
  assert( isWalMode2(pWal) || iWal==0 );
  assert( aWalData[3]!=iCmp || aWalData[0]<=walidxGetMxFrame(&pWal->hdr,iWal) );

  if( aWalData[3]!=iCmp ){
    /* This savepoint was opened immediately after the write-transaction
    ** was started. Right after that, the writer decided to wrap around
    ** to the start of the log. Update the savepoint values to match.
    */
    aWalData[0] = 0;
    aWalData[3] = iCmp;
  }

  if( aWalData[0]<walidxGetMxFrame(&pWal->hdr, iWal) ){
    walidxSetMxFrame(&pWal->hdr, iWal, aWalData[0]);
    pWal->hdr.aFrameCksum[0] = aWalData[1];
    pWal->hdr.aFrameCksum[1] = aWalData[2];
    walCleanupHash(pWal);
  }

  return rc;
}

/*
** This function is called just before writing a set of frames to the log
** file (see sqlite3WalFrames()). It checks to see if, instead of appending
** to the current log file, it is possible and desirable to switch to the
** other log file and write the new transaction to the start of it.
** If so, the wal-index header is updated accordingly - both in heap memory
** and in the *-shm file.
**
** SQLITE_OK is returned if no error is encountered (regardless of whether
** or not the wal-index header is modified). An SQLite error code is returned
** if an error occurs.
*/
static int walRestartLog(Wal *pWal){
  int rc = SQLITE_OK;

  if( isWalMode2(pWal) ){
    int iApp = walidxGetFile(&pWal->hdr);
    int nWalSize = WAL_DEFAULT_WALSIZE;
    if( pWal->mxWalSize>0 ){
      nWalSize = (pWal->mxWalSize-WAL_HDRSIZE+pWal->szPage+WAL_FRAME_HDRSIZE-1) 
        / (pWal->szPage+WAL_FRAME_HDRSIZE);
      nWalSize = MAX(nWalSize, 1);
    }

    if( walidxGetMxFrame(&pWal->hdr, iApp)>=nWalSize ){
      volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
      if( walidxGetMxFrame(&pWal->hdr, !iApp)==0 || pInfo->nBackfill ){
        rc = wal2RestartOk(pWal, iApp);
        if( rc==SQLITE_OK ){
          int iNew = !iApp;
          pWal->nCkpt++;
          walidxSetFile(&pWal->hdr, iNew);
          walidxSetMxFrame(&pWal->hdr, iNew, 0);
          sqlite3Put4byte((u8*)&pWal->hdr.aSalt[0], pWal->hdr.aFrameCksum[0]);
          sqlite3Put4byte((u8*)&pWal->hdr.aSalt[1], pWal->hdr.aFrameCksum[1]);
          walIndexWriteHdr(pWal);
          pInfo->nBackfill = 0;
          wal2RestartFinished(pWal, iApp);
          walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
          pWal->readLock = iNew ? WAL_LOCK_PART2_FULL1 : WAL_LOCK_PART1_FULL2;
          rc = walLockShared(pWal, WAL_READ_LOCK(pWal->readLock));
        }else if( rc==SQLITE_BUSY ){
          rc = SQLITE_OK;
        }
      }
    }
  }else if( pWal->readLock==0 ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    assert( pInfo->nBackfill==pWal->hdr.mxFrame );
    if( pInfo->nBackfill>0 ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        /* If all readers are using WAL_READ_LOCK(0) (in other words if no
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only
        ** at this point. But updating the actual wal-index header is also
        ** safe and means there is no special case for sqlite3WalUndo()
        ** to handle if this transaction is rolled back.  */
        walRestartHdr(pWal, salt1);
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
        pWal->nPriorFrame = 0;
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }

    /* Regardless of whether or not the wal file was restarted, change the
    ** read-lock held by this client to a slot other than aReadmark[0]. 
    ** Clients with a lock on aReadmark[0] read from the database file 
    ** only - never from the wal file. This means that if a writer holding
    ** a lock on aReadmark[0] were to commit a transaction but not close the
    ** read-transaction, subsequent read operations would read directly from
    ** the database file - ignoring the new pages just appended
    ** to the wal file. */
    rc = walUpgradeReadlock(pWal);
  }

  return rc;
}

/*
** Information about the current state of the WAL file and where
** the next fsync should occur - passed from sqlite3WalFrames() into
** walWriteToLog().
*/
typedef struct WalWriter {
  Wal *pWal;                   /* The complete WAL information */
  sqlite3_file *pFd;           /* The WAL file to which we write */
  sqlite3_int64 iSyncPoint;    /* Fsync at this offset */
  int syncFlags;               /* Flags for the fsync */
  int szPage;                  /* Size of one page */
} WalWriter;

/*
** Write iAmt bytes of content into the WAL file beginning at iOffset.
** Do a sync when crossing the p->iSyncPoint boundary.
**
** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
** first write the part before iSyncPoint, then sync, then write the
** rest.
*/
static int walWriteToLog(
  WalWriter *p,              /* WAL to write to */
  void *pContent,            /* Content to be written */
  int iAmt,                  /* Number of bytes to write */
  sqlite3_int64 iOffset      /* Start writing at this offset */
){
  int rc;
  if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
    int iFirstAmt = (int)(p->iSyncPoint - iOffset);
    rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
    if( rc ) return rc;
    iOffset += iFirstAmt;
    iAmt -= iFirstAmt;
    pContent = (void*)(iFirstAmt + (char*)pContent);
    assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
    rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
    if( iAmt==0 || rc ) return rc;
  }
  rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
  return rc;
}

/*
** Write out a single frame of the WAL
*/
static int walWriteOneFrame(
  WalWriter *p,               /* Where to write the frame */
  PgHdr *pPage,               /* The page of the frame to be written */
  int nTruncate,              /* The commit flag.  Usually 0.  >0 for commit */
  sqlite3_int64 iOffset       /* Byte offset at which to write */
){
  int rc;                         /* Result code from subfunctions */
  void *pData;                    /* Data actually written */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-header in */

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { 
    int iWal = walidxGetFile(&p->pWal->hdr);
    int iFrame = 1 + (iOffset / (WAL_FRAME_HDRSIZE + p->pWal->szPage));
    assert( p->pWal->apWalFd[iWal]==p->pFd );
    WALTRACE(("WAL%p: page %d written to frame %d of wal %d\n",
          p->pWal, (int)pPage->pgno, iFrame, iWal
    ));
  }
#endif

#if defined(SQLITE_HAS_CODEC)
  if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
#else
  pData = pPage->pData;
#endif
  walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
  rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
  if( rc ) return rc;
  /* Write the page data */
  rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
  return rc;
}

/*
** This function is called as part of committing a transaction within which
** one or more frames have been overwritten. It updates the checksums for
** all frames written to the wal file by the current transaction starting
** with the earliest to have been overwritten.
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
static int walRewriteChecksums(Wal *pWal, u32 iLast){
  int rc = SQLITE_OK;             /* Return code */
  const int szPage = pWal->szPage;/* Database page size */
  u8 *aBuf;                       /* Buffer to load data from wal file into */
  u8 aFrame[WAL_FRAME_HDRSIZE];   /* Buffer to assemble frame-headers in */
  u32 iRead;                      /* Next frame to read from wal file */
  i64 iCksumOff;
  sqlite3_file *pWalFd = pWal->apWalFd[walidxGetFile(&pWal->hdr)];

  aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
  if( aBuf==0 ) return SQLITE_NOMEM_BKPT;

  /* Find the checksum values to use as input for the recalculating the
  ** first checksum. If the first frame is frame 1 (implying that the current
  ** transaction restarted the wal file), these values must be read from the
  ** wal-file header. Otherwise, read them from the frame header of the
  ** previous frame.  */
  assert( pWal->iReCksum>0 );
  if( pWal->iReCksum==1 ){
    iCksumOff = 24;
  }else{
    iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
  }
  rc = sqlite3OsRead(pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
  pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
  pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);

  iRead = pWal->iReCksum;
  pWal->iReCksum = 0;
  for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
    i64 iOff = walFrameOffset(iRead, szPage);
    rc = sqlite3OsRead(pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
    if( rc==SQLITE_OK ){
      u32 iPgno, nDbSize;
      iPgno = sqlite3Get4byte(aBuf);
      nDbSize = sqlite3Get4byte(&aBuf[4]);

      walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
      rc = sqlite3OsWrite(pWalFd, aFrame, sizeof(aFrame), iOff);
    }
  }

  sqlite3_free(aBuf);
  return rc;
}

/* 
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
int sqlite3WalFrames(
  Wal *pWal,                      /* Wal handle to write to */
  int szPage,                     /* Database page-size in bytes */
  PgHdr *pList,                   /* List of dirty pages to write */
  Pgno nTruncate,                 /* Database size after this commit */
  int isCommit,                   /* True if this is a commit */
  int sync_flags                  /* Flags to pass to OsSync() (or 0) */
){
  int rc;                         /* Used to catch return codes */
  u32 iFrame;                     /* Next frame address */
  PgHdr *p;                       /* Iterator to run through pList with. */
  PgHdr *pLast = 0;               /* Last frame in list */
  int nExtra = 0;                 /* Number of extra copies of last page */
  int szFrame;                    /* The size of a single frame */
  i64 iOffset;                    /* Next byte to write in WAL file */
  WalWriter w;                    /* The writer */
  u32 iFirst = 0;                 /* First frame that may be overwritten */
  WalIndexHdr *pLive;             /* Pointer to shared header */
  int iApp;
  int bWal2 = isWalMode2(pWal);

  assert( pList );
  assert( pWal->writeLock );

  /* If this frame set completes a transaction, then nTruncate>0.  If
  ** nTruncate==0 then this frame set does not complete the transaction. */
  assert( (isCommit!=0)==(nTruncate!=0) );

  pLive = (WalIndexHdr*)walIndexHdr(pWal);
  if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
    /* if( isWalMode2(pWal)==0 ) */
    iFirst = walidxGetMxFrame(pLive, walidxGetFile(pLive))+1;
  }

  /* See if it is possible to write these frames into the start of the
  ** log file, instead of appending to it at pWal->hdr.mxFrame.
  */
  else if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
    return rc;
  }

  /* If this is the first frame written into the log, write the WAL
  ** header to the start of the WAL file. See comments at the top of
  ** this source file for a description of the WAL header format.
  */
  iApp = walidxGetFile(&pWal->hdr);
  iFrame = walidxGetMxFrame(&pWal->hdr, iApp);
  assert( iApp==0 || bWal2 );

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
  { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
    WALTRACE(("WAL%p: frame write begin. %d frames. iWal=%d. mxFrame=%d. %s\n",
              pWal, cnt, iApp, iFrame, isCommit ? "Commit" : "Spill"));
  }
#endif

  if( iFrame==0 ){
    u32 iCkpt = 0;
    u8 aWalHdr[WAL_HDRSIZE];      /* Buffer to assemble wal-header in */
    u32 aCksum[2];                /* Checksum for wal-header */

    sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
    sqlite3Put4byte(&aWalHdr[4], pWal->hdr.iVersion);
    sqlite3Put4byte(&aWalHdr[8], szPage);
    if( bWal2 ){
      if( walidxGetMxFrame(&pWal->hdr, !iApp)>0 ){
        u8 aPrev[4];
        rc = sqlite3OsRead(pWal->apWalFd[!iApp], aPrev, 4, 12);
        if( rc!=SQLITE_OK ){
          return rc;
        }
        iCkpt = (sqlite3Get4byte(aPrev) + 1) & 0x0F;
      }
    }else{
      iCkpt = pWal->nCkpt;
    }
    sqlite3Put4byte(&aWalHdr[12], iCkpt);
    memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
    walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
    sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
    sqlite3Put4byte(&aWalHdr[28], aCksum[1]);

    pWal->szPage = szPage;
    pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
    pWal->hdr.aFrameCksum[0] = aCksum[0];
    pWal->hdr.aFrameCksum[1] = aCksum[1];
    pWal->truncateOnCommit = 1;

    rc = sqlite3OsWrite(pWal->apWalFd[iApp], aWalHdr, sizeof(aWalHdr), 0);
    WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
    if( rc!=SQLITE_OK ){
      return rc;
    }

    /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
    ** all syncing is turned off by PRAGMA synchronous=OFF).  Otherwise
    ** an out-of-order write following a WAL restart could result in
    ** database corruption.  See the ticket:
    **
    **     https://sqlite.org/src/info/ff5be73dee
    */
    if( pWal->syncHeader ){
      rc = sqlite3OsSync(pWal->apWalFd[iApp], CKPT_SYNC_FLAGS(sync_flags));
      if( rc ) return rc;
    }
  }
  assert( (int)pWal->szPage==szPage );

  /* Setup information needed to write frames into the WAL */
  w.pWal = pWal;
  w.pFd = pWal->apWalFd[iApp];
  w.iSyncPoint = 0;
  w.syncFlags = sync_flags;
  w.szPage = szPage;
  iOffset = walFrameOffset(iFrame+1, szPage);
  szFrame = szPage + WAL_FRAME_HDRSIZE;

  /* Write all frames into the log file exactly once */
  for(p=pList; p; p=p->pDirty){
    int nDbSize;   /* 0 normally.  Positive == commit flag */

    /* Check if this page has already been written into the wal file by
    ** the current transaction. If so, overwrite the existing frame and
    ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that 
    ** checksums must be recomputed when the transaction is committed.  */
    if( iFirst && (p->pDirty || isCommit==0) ){
      u32 iWrite = 0;
      VVA_ONLY(rc =) walSearchWal(pWal, iApp, p->pgno, &iWrite);
      assert( rc==SQLITE_OK || iWrite==0 );
      if( iWrite && bWal2 ){
        walExternalDecode(iWrite, &iWrite);
      }
      if( iWrite>=iFirst ){
        i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
        void *pData;
        if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
          pWal->iReCksum = iWrite;
        }
#if defined(SQLITE_HAS_CODEC)
        if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
#else
        pData = p->pData;
#endif
        rc = sqlite3OsWrite(pWal->apWalFd[iApp], pData, szPage, iOff);
        if( rc ) return rc;
        p->flags &= ~PGHDR_WAL_APPEND;
        continue;
      }
    }

    iFrame++;
    assert( iOffset==walFrameOffset(iFrame, szPage) );
    nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
    rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
    if( rc ) return rc;
    pLast = p;
    iOffset += szFrame;
    p->flags |= PGHDR_WAL_APPEND;
  }


  /* Recalculate checksums within the wal file if required. */
  if( isCommit && pWal->iReCksum ){
    rc = walRewriteChecksums(pWal, iFrame);
    if( rc ) return rc;
  }

  /* If this is the end of a transaction, then we might need to pad
  ** the transaction and/or sync the WAL file.
  **
  ** Padding and syncing only occur if this set of frames complete a
  ** transaction and if PRAGMA synchronous=FULL.  If synchronous==NORMAL
  ** or synchronous==OFF, then no padding or syncing are needed.
  **
  ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
  ** needed and only the sync is done.  If padding is needed, then the
  ** final frame is repeated (with its commit mark) until the next sector
  ** boundary is crossed.  Only the part of the WAL prior to the last
  ** sector boundary is synced; the part of the last frame that extends
  ** past the sector boundary is written after the sync.
  */
  if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
    int bSync = 1;
    if( pWal->padToSectorBoundary ){
      int sectorSize = sqlite3SectorSize(w.pFd);
      w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
      bSync = (w.iSyncPoint==iOffset);
      testcase( bSync );
      while( iOffset<w.iSyncPoint ){
        rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
        if( rc ) return rc;
        iOffset += szFrame;
        nExtra++;
      }
    }
    if( bSync ){
      assert( rc==SQLITE_OK );
      rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
    }
  }

  /* If this frame set completes the first transaction in the WAL and
  ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
  ** journal size limit, if possible.
  */
  if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
    i64 sz = pWal->mxWalSize;
    if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
      sz = walFrameOffset(iFrame+nExtra+1, szPage);
    }
    walLimitSize(pWal, sz);
    pWal->truncateOnCommit = 0;
  }

  /* Append data to the wal-index. It is not necessary to lock the 
  ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
  ** guarantees that there are no other writers, and no data that may
  ** be in use by existing readers is being overwritten.
  */
  iFrame = walidxGetMxFrame(&pWal->hdr, iApp);
  for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
    if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
    iFrame++;
    rc = walIndexAppend(pWal, iApp, iFrame, p->pgno);
  }
  while( rc==SQLITE_OK && nExtra>0 ){
    iFrame++;
    nExtra--;
    rc = walIndexAppend(pWal, iApp, iFrame, pLast->pgno);
  }

  if( rc==SQLITE_OK ){
    /* Update the private copy of the header. */
    pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
    testcase( szPage<=32768 );
    testcase( szPage>=65536 );
    walidxSetMxFrame(&pWal->hdr, iApp, iFrame);
    if( isCommit ){
      pWal->hdr.iChange++;
      pWal->hdr.nPage = nTruncate;
    }
    /* If this is a commit, update the wal-index header too. */
    if( isCommit ){
      walIndexWriteHdr(pWal);
      if( bWal2 ){
        int iOther = !walidxGetFile(&pWal->hdr);
        if( walidxGetMxFrame(&pWal->hdr, iOther) 
            && !walCkptInfo(pWal)->nBackfill 
        ){
          pWal->iCallback = walidxGetMxFrame(&pWal->hdr, 0);
          pWal->iCallback += walidxGetMxFrame(&pWal->hdr, 1);
        }
      }else{
        pWal->iCallback = iFrame;
      }
    }
  }

  WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
  return rc;
}

/* 
** This routine is called to implement sqlite3_wal_checkpoint() and
** related interfaces.
**
** Obtain a CHECKPOINT lock and then backfill as much information as
** we can from WAL into the database.
**
** If parameter xBusy is not NULL, it is a pointer to a busy-handler
** callback. In this case this function runs a blocking checkpoint.
*/
int sqlite3WalCheckpoint(
  Wal *pWal,                      /* Wal connection */
  sqlite3 *db,                    /* Check this handle's interrupt flag */
  int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags to sync db file with (or 0) */
  int nBuf,                       /* Size of temporary buffer */
  u8 *zBuf,                       /* Temporary buffer to use */
  int *pnLog,                     /* OUT: Number of frames in WAL */
  int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
){
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
  int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );

  /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
  ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 
  ** "checkpoint" lock on the database file. */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* EVIDENCE-OF: R-10421-19736 If any other process is running a
    ** checkpoint operation at the same time, the lock cannot be obtained and
    ** SQLITE_BUSY is returned.
    ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
    ** it will not be invoked in this case.
    */
    testcase( rc==SQLITE_BUSY );
    testcase( xBusy!=0 );
    return rc;
  }
  pWal->ckptLock = 1;

  /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
  ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
  ** file.
  **
  ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
  ** immediately, and a busy-handler is configured, it is invoked and the
  ** writer lock retried until either the busy-handler returns 0 or the
  ** lock is successfully obtained.
  */
  if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
    if( rc==SQLITE_OK ){
      pWal->writeLock = 1;
    }else if( rc==SQLITE_BUSY ){
      eMode2 = SQLITE_CHECKPOINT_PASSIVE;
      xBusy2 = 0;
      rc = SQLITE_OK;
    }
  }

  /* Read the wal-index header. */
  if( rc==SQLITE_OK ){
    rc = walIndexReadHdr(pWal, &isChanged);
    if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
      sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
    }
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){
    if( (walPagesize(pWal)!=nBuf) 
     && (walidxGetMxFrame(&pWal->hdr, 0) || walidxGetMxFrame(&pWal->hdr, 1))
    ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */
    if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
      if( pnLog ){
        *pnLog = walidxGetMxFrame(&pWal->hdr,0)+walidxGetMxFrame(&pWal->hdr,1);
      }
      if( pnCkpt ){
        if( isWalMode2(pWal) ){
          if( (int)(walCkptInfo(pWal)->nBackfill) ){
            *pnCkpt = walidxGetMxFrame(&pWal->hdr, !walidxGetFile(&pWal->hdr));
          }else{
            *pnCkpt = 0;
          }
        }else{
          *pnCkpt = walCkptInfo(pWal)->nBackfill;
        }
      }
    }
  }

  if( isChanged ){
    /* If a new wal-index header was loaded before the checkpoint was 
    ** performed, then the pager-cache associated with pWal is now
    ** out of date. So zero the cached wal-index header to ensure that
    ** next time the pager opens a snapshot on this database it knows that
    ** the cache needs to be reset.
    */
    memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
  }

  /* Release the locks. */
  sqlite3WalEndWriteTransaction(pWal);
  walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
  pWal->ckptLock = 0;
  WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
  return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
}

/* Return the value to pass to a sqlite3_wal_hook callback, the
** number of frames in the WAL at the point of the last commit since
** sqlite3WalCallback() was called.  If no commits have occurred since
** the last call, then return 0.
*/
int sqlite3WalCallback(Wal *pWal){
  u32 ret = 0;
  if( pWal ){
    ret = pWal->iCallback;
    pWal->iCallback = 0;
  }
  return (int)ret;
}

/*
** This function is called to change the WAL subsystem into or out
** of locking_mode=EXCLUSIVE.
**
** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
** into locking_mode=NORMAL.  This means that we must acquire a lock
** on the pWal->readLock byte.  If the WAL is already in locking_mode=NORMAL
** or if the acquisition of the lock fails, then return 0.  If the
** transition out of exclusive-mode is successful, return 1.  This
** operation must occur while the pager is still holding the exclusive
** lock on the main database file.
**
** If op is one, then change from locking_mode=NORMAL into 
** locking_mode=EXCLUSIVE.  This means that the pWal->readLock must
** be released.  Return 1 if the transition is made and 0 if the
** WAL is already in exclusive-locking mode - meaning that this
** routine is a no-op.  The pager must already hold the exclusive lock
** on the main database file before invoking this operation.
**
** If op is negative, then do a dry-run of the op==1 case but do
** not actually change anything. The pager uses this to see if it
** should acquire the database exclusive lock prior to invoking
** the op==1 case.
*/
int sqlite3WalExclusiveMode(Wal *pWal, int op){
  int rc;

  assert( pWal->writeLock==0 );
  assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );

  /* pWal->readLock is usually set, but might be -1 if there was a 
  ** prior error while attempting to acquire are read-lock. This cannot 
  ** happen if the connection is actually in exclusive mode (as no xShmLock
  ** locks are taken in this case). Nor should the pager attempt to
  ** upgrade to exclusive-mode following such an error.
  */
  assert( pWal->readLock!=WAL_LOCK_NONE || pWal->lockError );
  assert( pWal->readLock!=WAL_LOCK_NONE || (op<=0 && pWal->exclusiveMode==0) );

  if( op==0 ){
    if( pWal->exclusiveMode ){
      pWal->exclusiveMode = WAL_NORMAL_MODE;
      rc = walLockShared(pWal, WAL_READ_LOCK(pWal->readLock));
      if( rc!=SQLITE_OK ){
        pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
      }
      rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
    }else{
      /* Already in locking_mode=NORMAL */
      rc = 0;
    }
  }else if( op>0 ){
    assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
    assert( pWal->readLock>=0 );
    walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
    pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
    rc = 1;
  }else{
    rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
  }
  return rc;
}

/* 
** Return true if the argument is non-NULL and the WAL module is using
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false. 
*/
int sqlite3WalHeapMemory(Wal *pWal){
  return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/* Create a snapshot object.  The content of a snapshot is opaque to
** every other subsystem, so the WAL module can put whatever it needs
** in the object.
*/
int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
  int rc = SQLITE_OK;
  WalIndexHdr *pRet;
  static const u32 aZero[4] = { 0, 0, 0, 0 };

  /* Snapshots may not be used with wal2 mode databases. */
  if( isWalMode2(pWal) ) return SQLITE_ERROR;

  assert( pWal->readLock>=0 && pWal->writeLock==0 );

  if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,8)==0 ){
    *ppSnapshot = 0;
    return SQLITE_ERROR;
  }
  pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
  if( pRet==0 ){
    rc = SQLITE_NOMEM_BKPT;
  }else{
    memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
    *ppSnapshot = (sqlite3_snapshot*)pRet;
  }

  return rc;
}

/* Try to open on pSnapshot when the next read-transaction starts
*/
void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
  pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
}

/* 
** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
*/
int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
  WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
  WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;

  /* aSalt[0] is a copy of the value stored in the wal file header. It
  ** is incremented each time the wal file is restarted.  */
  if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
  if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
  if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
  if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
  return 0;
}

/*
** The caller currently has a read transaction open on the database.
** This function takes a SHARED lock on the CHECKPOINTER slot and then
** checks if the snapshot passed as the second argument is still 
** available. If so, SQLITE_OK is returned.
**
** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
** lock is released before returning.
*/
int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
  int rc;

  /* Snapshots may not be used with wal2 mode databases. */
  if( isWalMode2(pWal) ) return SQLITE_ERROR;

  rc = walLockShared(pWal, WAL_CKPT_LOCK);
  if( rc==SQLITE_OK ){
    WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
    if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
     || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
    ){
      rc = SQLITE_ERROR_SNAPSHOT;
      walUnlockShared(pWal, WAL_CKPT_LOCK);
    }
  }
  return rc;
}

/*
** Release a lock obtained by an earlier successful call to
** sqlite3WalSnapshotCheck().
*/
void sqlite3WalSnapshotUnlock(Wal *pWal){
  assert( pWal );
  walUnlockShared(pWal, WAL_CKPT_LOCK);
}


#endif /* SQLITE_ENABLE_SNAPSHOT */

#ifdef SQLITE_ENABLE_ZIPVFS
/*
** If the argument is not NULL, it points to a Wal object that holds a
** read-lock. This function returns the database page-size if it is known,
** or zero if it is not (or if pWal is NULL).
*/
int sqlite3WalFramesize(Wal *pWal){
  assert( pWal==0 || pWal->readLock>=0 );
  return (pWal ? pWal->szPage : 0);
}
#endif

/* Return the sqlite3_file object for the WAL file
*/
sqlite3_file *sqlite3WalFile(Wal *pWal){
  return pWal->apWalFd[0];
}

/* 
** Return the values required by sqlite3_wal_info().
*/
int sqlite3WalInfo(Wal *pWal, u32 *pnPrior, u32 *pnFrame){
  int rc = SQLITE_OK;
  if( pWal ){
    *pnFrame = pWal->hdr.mxFrame;
    *pnPrior = pWal->nPriorFrame;
  }
  return rc;
}

/* 
** Return the journal mode used by this Wal object.
*/
int sqlite3WalJournalMode(Wal *pWal){
  assert( pWal );
  return (isWalMode2(pWal) ? PAGER_JOURNALMODE_WAL2 : PAGER_JOURNALMODE_WAL);
}

#endif /* #ifndef SQLITE_OMIT_WAL */