sqllogictest
Check-in [f7c7ebfb61]
Not logged in

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite code to version 3.8.8 alpha.
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1:f7c7ebfb615e2e8d1af56712d0b7644846bbd26b
User & Date: drh 2015-01-06 16:11:02
Context
2015-01-15
19:43
Update SQLite to the latest 3.8.8 release candidate. check-in: 22f3649555 user: drh tags: trunk
2015-01-06
16:11
Update the built-in SQLite code to version 3.8.8 alpha. check-in: f7c7ebfb61 user: drh tags: trunk
2014-11-18
16:07
Update the built-in SQLite to the 3.8.7.2 beta. check-in: c3054e4bf8 user: drh tags: trunk
Changes
Hide Diffs Unified Diffs Ignore Whitespace Patch

Changes to src/sqlite3.c.

1
2
3
4
5
6
7
8
9
10
...
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
...
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
...
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
....
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
....
1624
1625
1626
1627
1628
1629
1630
1631
1632

1633
1634
1635
1636
1637
1638
1639
1640

1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675
1676






1677
1678
1679
1680

1681
1682

1683

1684
1685
1686
1687



1688
1689


1690

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701

1702




1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
....
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786

1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

1798
1799
1800
1801
1802
1803
1804
1805
....
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850




















1851
1852
1853
1854
1855
1856
1857
....
1868
1869
1870
1871
1872
1873
1874


1875
1876
1877
1878
1879
1880
1881
....
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

2010
2011



2012
2013
2014
2015
2016
2017
2018



2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057


2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
....
2149
2150
2151
2152
2153
2154
2155

2156
2157
2158
2159
2160
2161
2162
....
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
....
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550

2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
....
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
....
4619
4620
4621
4622
4623
4624
4625
4626

4627
4628
4629
4630
4631
4632
4633
....
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260








5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
....
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295

5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
....
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779




5780
5781


5782


















5783
5784
5785
5786
5787

5788
5789
5790
5791
5792
5793
5794
....
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811

5812
5813
5814
5815
5816
5817
5818
....
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
....
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922






5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934

5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
....
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037

6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089

6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
....
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
....
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
....
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
....
6938
6939
6940
6941
6942
6943
6944




6945
6946
6947
6948
6949
6950
6951
....
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
....
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363

7364
7365
7366
7367
7368
7369
7370
7371


7372
7373
7374
7375
7376
7377
7378
7379

7380
7381
7382
7383
7384
7385
7386
7387
7388






7389
7390
7391
7392


7393
7394
7395
7396
7397





7398
7399
7400
7401
7402
7403
7404

7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416

7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429








7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440

7441
7442


7443
7444
7445

7446
7447
7448
7449

7450
7451
7452
7453
7454
7455
7456
....
7531
7532
7533
7534
7535
7536
7537




























































































7538
7539
7540
7541
7542
7543
7544
....
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
....
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
....
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
....
9060
9061
9062
9063
9064
9065
9066





9067
9068
9069
9070
9071
9072
9073
9074
9075
9076

9077
9078
9079
9080
9081
9082
9083
....
9122
9123
9124
9125
9126
9127
9128

9129
9130
9131
9132
9133
9134
9135
....
9664
9665
9666
9667
9668
9669
9670






9671
9672
9673
9674
9675
9676
9677
....
9844
9845
9846
9847
9848
9849
9850

9851
9852
9853
9854
9855
9856
9857
....
9859
9860
9861
9862
9863
9864
9865


9866
9867
9868
9869
9870
9871
9872
.....
10047
10048
10049
10050
10051
10052
10053




10054
10055
10056
10057
10058
10059
10060
.....
10579
10580
10581
10582
10583
10584
10585

10586
10587
10588
10589
10590
10591
10592
.....
10680
10681
10682
10683
10684
10685
10686
10687

10688
10689
10690
10691
10692
10693
10694
.....
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
.....
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321

11322
11323
11324
11325
11326
11327

11328
11329
11330
11331
11332
11333
11334
.....
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
.....
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
.....
11553
11554
11555
11556
11557
11558
11559

11560
11561
11562
11563
11564
11565
11566
.....
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
.....
12355
12356
12357
12358
12359
12360
12361

12362
12363
12364
12365
12366
12367
12368
.....
12410
12411
12412
12413
12414
12415
12416

12417
12418
12419

12420
12421
12422
12423
12424
12425
12426
.....
12813
12814
12815
12816
12817
12818
12819

12820
12821
12822
12823
12824
12825
12826
.....
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
.....
13470
13471
13472
13473
13474
13475
13476




13477
13478
13479
13480
13481




13482
13483
13484







13485
13486
13487
13488
13489
13490
13491
.....
13509
13510
13511
13512
13513
13514
13515

13516
13517
13518
13519
13520
13521
13522
.....
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
.....
13644
13645
13646
13647
13648
13649
13650



13651
13652
13653
13654
13655
13656
13657
.....
13970
13971
13972
13973
13974
13975
13976







13977
13978
13979
13980
13981
13982
13983
.....
14151
14152
14153
14154
14155
14156
14157

14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170

14171
14172
14173
14174
14175
14176
14177
.....
14314
14315
14316
14317
14318
14319
14320










14321
14322
14323
14324
14325
14326
14327
.....
14386
14387
14388
14389
14390
14391
14392





14393
14394
14395
14396
14397
14398
14399
.....
14575
14576
14577
14578
14579
14580
14581



14582
14583
14584
14585
14586
14587
14588
.....
14594
14595
14596
14597
14598
14599
14600





14601
14602
14603
14604
14605
14606
14607
.....
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
.....
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
.....
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
.....
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
.....
16255
16256
16257
16258
16259
16260
16261




16262
16263
16264
16265
16266
16267
16268
.....
18612
18613
18614
18615
18616
18617
18618

18619
18620
18621
18622
18623
18624
18625
.....
19068
19069
19070
19071
19072
19073
19074
19075
19076




19077
19078
19079
19080
19081
19082
19083
.....
19750
19751
19752
19753
19754
19755
19756






19757
19758
19759
19760
19761
19762
19763
.....
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301

20302
20303
20304
20305
20306
20307
20308
20309
.....
20954
20955
20956
20957
20958
20959
20960







20961
20962
20963
20964
20965
20966
20967
.....
21494
21495
21496
21497
21498
21499
21500





21501
21502
21503
21504
21505
21506
21507
.....
21510
21511
21512
21513
21514
21515
21516

21517
21518
21519
21520
21521
21522
21523
.....
21679
21680
21681
21682
21683
21684
21685







21686
21687
21688
21689
21690
21691
21692
.....
21721
21722
21723
21724
21725
21726
21727







21728
21729
21730
21731
21732
21733
21734
.....
21912
21913
21914
21915
21916
21917
21918








21919
21920
21921
21922

21923
21924
21925
21926
21927
21928
21929
21930
.....
23038
23039
23040
23041
23042
23043
23044





23045
23046
23047
23048
23049
23050
23051





23052
23053
23054
23055
23056
23057
23058
.....
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521

28522
28523
28524
28525
28526
28527
28528
28529
28530
28531



28532
28533
28534

28535


28536
28537
28538
28539
28540
28541
28542
.....
32577
32578
32579
32580
32581
32582
32583





32584
32585
32586
32587
32588
32589
32590
.....
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716

32717
32718
32719
32720
32721
32722
32723
.....
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
.....
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
.....
33380
33381
33382
33383
33384
33385
33386
33387

33388
33389
33390
33391
33392
33393
33394
.....
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
.....
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
.....
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
.....
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
.....
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
.....
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
.....
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
.....
38699
38700
38701
38702
38703
38704
38705
38706

38707
38708
38709
38710
38711
38712
38713
.....
39153
39154
39155
39156
39157
39158
39159







39160
39161
39162
39163
39164
39165
39166
.....
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
.....
40152
40153
40154
40155
40156
40157
40158





40159
40160
40161
40162
40163
40164
40165
.....
41508
41509
41510
41511
41512
41513
41514


41515
41516
41517
41518
41519
41520
41521
.....
41525
41526
41527
41528
41529
41530
41531

41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
.....
42543
42544
42545
42546
42547
42548
42549

42550
42551
42552








42553
42554
42555
42556
42557
42558
42559
.....
43761
43762
43763
43764
43765
43766
43767
43768
43769
43770
43771
43772
43773
43774
43775
.....
44749
44750
44751
44752
44753
44754
44755
44756
44757
44758
44759
44760
44761
44762
44763
.....
45980
45981
45982
45983
45984
45985
45986
45987
45988
45989
45990
45991
45992
45993
45994
45995
45996
45997
45998
45999
46000
46001
46002
46003
.....
46154
46155
46156
46157
46158
46159
46160

46161
46162
46163
46164
46165
46166
46167
.....
46303
46304
46305
46306
46307
46308
46309

46310
46311
46312
46313
46314
46315
46316
.....
47169
47170
47171
47172
47173
47174
47175

47176
47177
47178
47179
47180
47181
47182
.....
47708
47709
47710
47711
47712
47713
47714












47715
47716
47717
47718
47719
47720
47721
.....
47925
47926
47927
47928
47929
47930
47931

47932
47933
47934
47935
47936
47937
47938
47939
.....
48106
48107
48108
48109
48110
48111
48112

48113
48114
48115
48116
48117
48118
48119
.....
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
49627
49628
49629
49630
.....
49651
49652
49653
49654
49655
49656
49657
49658
49659
49660
49661
49662
49663
49664
49665
49666
49667
49668
49669
49670
49671
49672
49673
49674
49675
.....
49698
49699
49700
49701
49702
49703
49704
49705
49706
49707
49708
49709
49710
49711
49712
.....
49734
49735
49736
49737
49738
49739
49740
































49741
49742
49743
49744
49745
49746
49747
.....
49769
49770
49771
49772
49773
49774
49775
49776
49777
49778
49779
49780
49781
49782
49783
49784
49785
49786
49787
49788
49789
49790
49791
49792
49793
49794
49795
49796
49797
.....
49798
49799
49800
49801
49802
49803
49804


49805
49806
49807
49808
49809
49810
49811
49812
.....
49887
49888
49889
49890
49891
49892
49893
49894
49895
49896
49897
49898
49899
49900
49901
49902
49903


49904
49905
49906

















49907
49908
49909
49910
49911
49912
49913
.....
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
.....
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
.....
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738

50739
50740
50741
50742
50743
50744
50745
.....
51019
51020
51021
51022
51023
51024
51025
51026
51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037

51038
51039
51040
51041




51042
51043



51044
51045
51046
51047
51048








51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
51066
51067

51068
51069
51070
51071
51072
51073
51074
.....
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
.....
51577
51578
51579
51580
51581
51582
51583

51584
51585
51586
51587
51588
51589
51590
.....
53329
53330
53331
53332
53333
53334
53335





53336
53337
53338
53339
53340
53341
53342
53343
53344
53345
53346
53347

53348
53349
53350
53351
53352
53353
53354
53355
53356
53357
53358
53359
53360
53361
53362
53363
53364
53365
53366
53367
53368
53369
53370
53371
53372
.....
53377
53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388
53389
53390
53391
53392
53393
53394
53395
53396
53397
53398
53399









53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
53410
53411
53412































































53413
53414
53415
53416
53417
53418
53419
.....
53424
53425
53426
53427
53428
53429
53430

53431
53432
53433
53434
53435
53436
53437
53438
53439
53440
53441
53442
53443
53444
53445
53446
53447
53448
53449
53450
53451
53452
53453
53454
53455
53456
53457
53458
53459
53460
53461
53462
53463
53464
53465
53466
53467
53468
53469
53470
53471
53472
53473
53474
53475
53476
53477
53478
53479
53480
53481
53482
53483
53484
53485
53486
53487


53488
53489
53490
53491
53492
53493
53494
53495
53496
53497
53498
53499
53500
53501
53502
53503
53504
53505
53506
53507
.....
53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554
.....
53635
53636
53637
53638
53639
53640
53641






53642
53643
53644
53645
53646
53647






53648
53649
53650
53651
53652
53653


53654
53655
53656
53657
53658
53659
53660
.....
53686
53687
53688
53689
53690
53691
53692


53693
53694
53695
53696
53697
53698
53699
53700



53701


53702
53703
53704
53705
53706
53707





53708
53709
53710
53711
53712
53713
53714
.....
53734
53735
53736
53737
53738
53739
53740
53741



53742
53743
53744
53745
53746



53747

53748
53749
53750
53751
53752
53753
53754
.....
54146
54147
54148
54149
54150
54151
54152



54153
54154
54155
54156
54157
54158
54159
.....
54164
54165
54166
54167
54168
54169
54170



54171
54172
54173
54174
54175
54176
54177
.....
54673
54674
54675
54676
54677
54678
54679



54680
54681
54682
54683
54684
54685
54686
.....
54713
54714
54715
54716
54717
54718
54719
54720
54721

54722
54723
54724
54725
54726
54727



54728


54729
54730
54731
54732
54733
54734
54735







54736
54737
54738
54739
54740
54741
54742
.....
54749
54750
54751
54752
54753
54754
54755



54756
54757
54758
54759
54760
54761
54762
.....
55629
55630
55631
55632
55633
55634
55635

55636
55637
55638
55639
55640
55641
55642
.....
55992
55993
55994
55995
55996
55997
55998
55999
56000
56001
56002
56003
56004
56005
56006
.....
56286
56287
56288
56289
56290
56291
56292

56293
56294
56295
56296
56297
56298
56299
.....
56304
56305
56306
56307
56308
56309
56310
56311
56312
56313
56314
56315
56316
56317
56318
56319
.....
56352
56353
56354
56355
56356
56357
56358

56359
56360
56361
56362
56363
56364
56365
.....
57326
57327
57328
57329
57330
57331
57332


57333
57334
57335
57336
57337
57338
57339
.....
57372
57373
57374
57375
57376
57377
57378



57379
57380



57381
57382
57383
57384
57385
57386
57387
.....
57388
57389
57390
57391
57392
57393
57394
57395
57396

57397
57398
57399
57400
57401
57402
57403
.....
57707
57708
57709
57710
57711
57712
57713





57714
57715
57716
57717
57718
57719
57720
.....
58058
58059
58060
58061
58062
58063
58064







58065
58066
58067

58068
58069
58070
58071
58072
58073
58074
.....
58155
58156
58157
58158
58159
58160
58161
58162
58163









58164
58165
58166
58167


58168
58169

58170
58171
58172
58173
58174
58175
58176








58177


















58178
58179
58180
58181
58182
58183
58184
58185
58186




58187
58188
58189
58190
58191



















































58192






































58193








































58194
58195



58196
58197
58198
58199
























































58200




















58201
58202
58203
58204
58205
58206
58207
.....
58247
58248
58249
58250
58251
58252
58253
58254
58255
58256
58257
58258
58259
58260
58261
.....
58265
58266
58267
58268
58269
58270
58271
58272

58273
58274
58275
58276
58277
58278
58279
.....
58484
58485
58486
58487
58488
58489
58490
58491
58492
58493
58494
58495

58496
58497
58498
58499
58500




58501

58502
58503
58504
58505
58506
58507
58508
.....
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
58615




58616
58617
58618
58619
58620
58621
58622
58623
58624
58625
58626
58627
58628
58629
58630
58631
58632
58633
58634
58635
58636
.....
58638
58639
58640
58641
58642
58643
58644
58645
58646
58647
58648
58649
58650
58651
58652
58653
58654
58655
58656
58657
58658
58659
58660
.....
58667
58668
58669
58670
58671
58672
58673

58674
58675
58676
58677
58678
58679
58680
.....
58689
58690
58691
58692
58693
58694
58695
58696




58697
58698
58699
58700
58701
58702
58703
.....
58718
58719
58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740

58741
58742
58743
58744
58745
58746
58747
58748
.....
58763
58764
58765
58766
58767
58768
58769


58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
.....
58801
58802
58803
58804
58805
58806
58807

58808
58809

58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832

58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845

58846









58847
58848
58849
58850
58851
58852
58853



58854
58855








58856
58857
58858
58859
58860
58861



58862
58863

58864

58865

58866


58867
58868
58869
58870












58871
58872
58873










58874
58875
58876
58877

58878
58879
58880
58881
58882

58883



58884







58885


58886
58887
58888
58889
58890
58891
























58892
58893
58894


58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
































58942
58943




























58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965

58966


58967
58968

58969
58970
58971
58972
58973
58974
58975
58976
58977
58978
58979
58980
58981
58982
58983
58984
58985
58986
58987
58988
58989
58990
58991
58992
58993
58994
58995
58996
58997
58998
58999
59000
59001
59002
59003
59004
59005
59006
59007
59008
59009
59010


59011
59012
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023


59024
59025
59026
59027
59028
59029
59030
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046


59047
59048
59049
59050
59051
59052
59053
59054




59055
59056
59057
59058
59059
59060
59061
59062
59063
59064
59065
59066
59067
59068
59069

59070
59071
59072
59073
59074
59075
59076
59077
59078
59079
59080
59081

59082
59083
59084
59085
59086
59087
59088
.....
59966
59967
59968
59969
59970
59971
59972







59973
59974
59975
59976
59977
59978
59979
59980
59981
59982



59983

59984
59985
59986
59987
59988
59989
59990
.....
60067
60068
60069
60070
60071
60072
60073
60074
60075
60076
60077
60078
60079
60080
60081
.....
60459
60460
60461
60462
60463
60464
60465


60466


60467


60468
60469
60470
60471
60472
60473
60474
.....
60476
60477
60478
60479
60480
60481
60482



60483
60484
60485
60486
60487
60488
60489




60490


60491
60492
60493
60494
60495
60496
60497
60498
60499
60500
60501
60502
60503





60504
60505
60506
60507
60508
60509
60510
.....
60900
60901
60902
60903
60904
60905
60906





60907
60908
60909
60910
60911
60912
60913
.....
61023
61024
61025
61026
61027
61028
61029














61030
61031
61032
61033
61034
61035
61036
.....
61039
61040
61041
61042
61043
61044
61045







61046
61047
61048
61049
61050
61051
61052
.....
61076
61077
61078
61079
61080
61081
61082

61083


61084

61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
.....
61236
61237
61238
61239
61240
61241
61242



61243
61244
61245
61246
61247
61248
61249
.....
61525
61526
61527
61528
61529
61530
61531






61532
61533
61534
61535
61536
61537
61538
61539






61540
61541
61542
61543
61544
61545
61546
.....
63623
63624
63625
63626
63627
63628
63629

63630
63631
63632
63633
63634
63635
63636
63637
63638
63639
63640
63641
63642
63643
63644
63645
63646





63647
63648
63649
63650
63651
63652
63653
63654
63655
63656
63657
63658
63659
63660
63661
63662
.....
63823
63824
63825
63826
63827
63828
63829




























63830
63831
63832
63833
63834
63835
63836
.....
64922
64923
64924
64925
64926
64927
64928



64929
64930
64931
64932
64933
64934
64935
.....
64938
64939
64940
64941
64942
64943
64944
64945
64946
64947
64948
64949
64950
64951
64952
.....
64989
64990
64991
64992
64993
64994
64995



64996
64997
64998
64999
65000
65001
65002
65003
65004
65005

65006
65007
65008
65009
65010
65011
65012
.....
65566
65567
65568
65569
65570
65571
65572

65573
65574
65575
65576
65577
65578
65579
.....
65606
65607
65608
65609
65610
65611
65612

65613
65614
65615
65616
65617
65618
65619
65620

65621
65622
65623
65624
65625
65626
65627
65628
65629
65630
65631

65632
65633
65634
65635
65636
65637
65638
.....
65645
65646
65647
65648
65649
65650
65651

65652
65653
65654
65655
65656
65657
65658
.....
65906
65907
65908
65909
65910
65911
65912






65913
65914
65915
65916
65917
65918
65919
.....
66064
66065
66066
66067
66068
66069
66070
66071
66072
66073
66074
66075
66076
66077
66078
66079
66080
.....
66232
66233
66234
66235
66236
66237
66238


66239
66240
66241
66242


66243
66244
66245
66246
66247
66248
66249
.....
66263
66264
66265
66266
66267
66268
66269
66270

66271
66272
66273
66274


66275
66276
66277
66278
66279
66280


66281
66282
66283
66284
66285
66286


66287
66288
66289
66290
66291
66292


66293
66294
66295
66296
66297
66298


66299
66300
66301
66302
66303
66304
66305
66306
66307
66308
66309
66310
66311


66312
66313
66314
66315
66316




66317
66318
66319
66320
66321
66322
66323
.....
67707
67708
67709
67710
67711
67712
67713


67714

67715
67716
67717
67718
67719
67720
67721
.....
67887
67888
67889
67890
67891
67892
67893
67894
67895
67896
67897
67898
67899
67900
67901
.....
68273
68274
68275
68276
68277
68278
68279
68280
68281
68282
68283




68284




68285
68286
68287
68288
68289
68290
68291
.....
68742
68743
68744
68745
68746
68747
68748






68749
68750
68751
68752
68753
68754
68755
.....
68757
68758
68759
68760
68761
68762
68763







68764
68765
68766
68767
68768





































































68769
68770
68771
68772
68773
68774
68775
.....
69647
69648
69649
69650
69651
69652
69653



69654
69655
69656
69657
69658
69659
69660
.....
71672
71673
71674
71675
71676
71677
71678
71679



71680
71681
71682
71683
71684
71685
71686
.....
71706
71707
71708
71709
71710
71711
71712


71713


71714
71715
71716
71717
71718
71719
71720
.....
72841
72842
72843
72844
72845
72846
72847
72848
72849
72850
72851
72852
72853
72854
72855
72856
72857
72858
.....
73538
73539
73540
73541
73542
73543
73544
73545
73546
73547
73548
73549
73550
73551
73552
73553
73554
.....
74456
74457
74458
74459
74460
74461
74462



74463
74464
74465
74466
74467
74468
74469
.....
74473
74474
74475
74476
74477
74478
74479

74480
74481
74482
74483
74484
74485
74486
74487
74488
74489



74490
74491
74492
74493
74494
74495
74496
.....
74727
74728
74729
74730
74731
74732
74733
74734
74735
74736
74737
74738
74739
74740
74741
74742
.....
74746
74747
74748
74749
74750
74751
74752

74753
74754
74755
74756
74757
74758
74759
.....
75671
75672
75673
75674
75675
75676
75677





75678
75679
75680
75681
75682
75683
75684
.....
75889
75890
75891
75892
75893
75894
75895
75896
75897
75898
75899
75900
75901
75902
75903
.....
75907
75908
75909
75910
75911
75912
75913
75914
75915
75916
75917

75918
75919
75920
75921
75922
75923
75924
.....
76087
76088
76089
76090
76091
76092
76093
76094
76095
76096
76097
76098
76099
76100
76101
.....
76132
76133
76134
76135
76136
76137
76138







76139
76140
76141
76142
76143
76144
76145
.....
76426
76427
76428
76429
76430
76431
76432
76433
76434
76435
76436
76437
76438
76439
76440
76441
76442
.....
76827
76828
76829
76830
76831
76832
76833

76834
76835
76836

76837
76838
76839
76840
76841
76842
76843
76844
76845
76846
76847
76848
76849
76850
.....
77110
77111
77112
77113
77114
77115
77116
77117
77118
77119



77120
77121
77122
77123
77124
77125
77126
77127
77128
77129
.....
79208
79209
79210
79211
79212
79213
79214
79215
79216
79217
79218
79219
79220
79221
79222
79223
79224
79225
79226
79227
79228
79229
79230
.....
79500
79501
79502
79503
79504
79505
79506




79507
79508
79509
79510
79511
79512
79513
.....
79764
79765
79766
79767
79768
79769
79770
79771
79772
79773
79774
79775
79776
79777
79778
.....
79896
79897
79898
79899
79900
79901
79902
79903
79904
79905
79906
79907
79908
79909
79910
.....
81853
81854
81855
81856
81857
81858
81859
81860
81861
81862
81863
81864
81865
81866
81867
81868

81869
81870



81871
81872
81873
81874
81875
81876
81877
81878
81879
81880
81881
81882
81883
81884
81885
81886
81887
81888
81889
81890
81891
81892
81893
81894
81895
81896



81897
81898
81899
81900
81901
81902
81903
81904
81905
81906



81907
81908

81909
81910
81911
81912
81913
81914
81915
81916
81917
81918
81919
81920
81921
81922
81923
81924
81925
81926
81927
81928
81929
81930
81931
81932
81933
81934
81935
81936
81937
81938

81939
81940
81941
81942
81943
81944
81945
81946
81947
81948
81949
81950
81951
81952
81953
81954
81955
81956
81957
81958
81959
81960
81961
81962
81963
81964
81965
81966










81967
81968
81969
81970
81971
81972
81973
81974
81975
81976
81977
81978
81979
81980
81981
81982
81983
.....
82036
82037
82038
82039
82040
82041
82042

82043
82044
82045
82046
82047
82048
82049
82050
.....
83625
83626
83627
83628
83629
83630
83631
83632



83633
83634
83635
83636
83637
83638
83639
.....
86268
86269
86270
86271
86272
86273
86274
86275
86276
86277
86278
86279
86280
86281
86282
.....
87277
87278
87279
87280
87281
87282
87283
87284
87285
87286
87287


87288
87289
87290
87291
87292


87293
87294
87295
87296
87297
87298
87299
87300

87301
87302
87303
87304
87305
87306
87307
.....
87411
87412
87413
87414
87415
87416
87417
87418
87419
87420
87421
87422
87423
87424
87425

87426
87427
87428
87429
87430
87431
87432
.....
87680
87681
87682
87683
87684
87685
87686
87687
87688
87689
87690
87691
87692
87693
87694
.....
87855
87856
87857
87858
87859
87860
87861

87862
87863
87864
87865
87866
87867
87868

87869
87870
87871
87872
87873
87874
87875
.....
88362
88363
88364
88365
88366
88367
88368



88369
88370
88371
88372
88373
88374
88375
.....
88856
88857
88858
88859
88860
88861
88862
88863





88864
88865
88866
88867
88868
88869
88870
.....
88980
88981
88982
88983
88984
88985
88986
88987
88988
88989
88990
88991
88992
88993
88994
.....
90259
90260
90261
90262
90263
90264
90265













90266
90267
90268
90269
90270
90271
90272
.....
92735
92736
92737
92738
92739
92740
92741
92742
92743
92744
92745
92746
92747
92748
92749
92750
92751
92752
92753

92754
92755
92756
92757
92758
92759
92760
92761
92762
92763
92764
92765
92766
92767
92768
92769
92770
92771

92772
92773
92774
92775

92776
92777
92778
92779
92780
92781
92782
.....
94320
94321
94322
94323
94324
94325
94326
94327
94328
94329
94330
94331
94332
94333
94334
94335
.....
96389
96390
96391
96392
96393
96394
96395
96396
96397
96398
96399
96400
96401
96402
96403
.....
96460
96461
96462
96463
96464
96465
96466




96467
96468
96469
96470
96471
96472
96473
.....
96577
96578
96579
96580
96581
96582
96583
96584
96585
96586
96587
96588
96589
96590
96591
96592
96593
96594
96595
96596
96597
.....
96761
96762
96763
96764
96765
96766
96767


















96768
96769
96770
96771
96772
96773
96774
.....
96814
96815
96816
96817
96818
96819
96820
96821
96822
96823
96824
96825
96826
96827
96828
.....
96873
96874
96875
96876
96877
96878
96879
96880
96881
96882
96883
96884
96885
96886
96887
.....
96888
96889
96890
96891
96892
96893
96894
96895
96896
96897
96898
96899






96900
96901
96902
96903
96904
96905
96906
96907
.....
96914
96915
96916
96917
96918
96919
96920
96921
96922
96923
96924
96925
96926
96927
96928
96929
.....
96939
96940
96941
96942
96943
96944
96945
96946
96947
96948
96949
96950
96951
96952




















96953
96954
96955
96956
96957
96958
96959
......
100039
100040
100041
100042
100043
100044
100045
100046
100047
100048
100049
100050
100051
100052
100053
......
100849
100850
100851
100852
100853
100854
100855

100856
100857
100858
100859
100860
100861
100862
......
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
......
100931
100932
100933
100934
100935
100936
100937






100938
100939
100940
100941
100942
100943
100944
......
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
101000
101001
......
101139
101140
101141
101142
101143
101144
101145
101146
101147
101148
101149
101150
101151
101152
101153
......
101205
101206
101207
101208
101209
101210
101211
101212
101213
101214
101215
101216
101217
101218
101219
......
101248
101249
101250
101251
101252
101253
101254
101255
101256
101257
101258
101259
101260
101261
101262
......
102858
102859
102860
102861
102862
102863
102864

102865
102866
102867
102868
102869
102870
102871
102872
......
102903
102904
102905
102906
102907
102908
102909
102910
102911
102912
102913
102914
102915
102916
102917
102918
102919
102920
102921
102922
102923
102924
102925
102926
102927
102928
102929
102930
102931
102932
102933
102934
......
102973
102974
102975
102976
102977
102978
102979
102980
102981
102982
102983
102984
102985
102986
102987
102988
102989
102990
102991


102992
102993
102994
102995
102996
102997
102998
......
103564
103565
103566
103567
103568
103569
103570

103571
103572
103573

103574
103575
103576
103577
103578
103579
103580
......
103879
103880
103881
103882
103883
103884
103885
103886




103887
103888
103889
103890
103891
103892
103893
103894
103895
......
103988
103989
103990
103991
103992
103993
103994
103995


103996
103997
103998
103999
104000
104001
104002
104003
104004
......
104116
104117
104118
104119
104120
104121
104122
104123
104124
104125
104126


104127
104128
104129
104130
104131
104132
104133
104134
104135
104136




104137
104138
104139
104140
104141
104142
104143
......
104188
104189
104190
104191
104192
104193
104194
104195
104196
104197
104198
104199
104200
104201
104202
104203
......
104214
104215
104216
104217
104218
104219
104220
104221
104222
104223
104224
104225
104226
104227
104228
104229
104230
104231
......
106133
106134
106135
106136
106137
106138
106139




























































106140
106141
106142
106143
106144
106145
106146
......
106213
106214
106215
106216
106217
106218
106219







106220
106221
106222
106223
106224
106225
106226
106227
106228
106229
106230
106231
106232
106233
106234
106235
106236
106237
106238
......
108110
108111
108112
108113
108114
108115
108116

108117

108118
108119
108120
108121
108122
108123
108124
......
108401
108402
108403
108404
108405
108406
108407

108408

108409
108410
108411
108412
108413
108414
108415
......
108887
108888
108889
108890
108891
108892
108893
108894
108895
108896
108897
108898
108899
108900
108901
108902
108903
108904
108905
108906
108907
108908
108909
108910
108911
108912
108913
108914
......
109703
109704
109705
109706
109707
109708
109709



109710
109711
109712
109713
109714
109715
109716
......
111766
111767
111768
111769
111770
111771
111772
111773
111774
111775
111776
111777
111778
111779
111780
......
112124
112125
112126
112127
112128
112129
112130



112131
112132
112133
112134
112135
112136
112137
112138
112139
112140
112141
112142
112143



112144
112145
112146
112147
112148
112149
112150
......
112369
112370
112371
112372
112373
112374
112375



112376


112377
112378
112379
112380
112381
112382
112383
......
112741
112742
112743
112744
112745
112746
112747



112748
112749
112750
112751
112752
112753
112754
......
113097
113098
113099
113100
113101
113102
113103



113104
113105
113106
113107
113108
113109
113110
......
113112
113113
113114
113115
113116
113117
113118



113119
113120
113121
113122
113123
113124
113125
113126
113127
......
113248
113249
113250
113251
113252
113253
113254



113255
113256
113257
113258
113259
113260
113261
......
113278
113279
113280
113281
113282
113283
113284
113285
113286
113287
113288
113289
113290
113291
113292
113293
113294
113295
113296
113297

113298
113299
113300
113301
113302
113303
113304
113305
113306
113307
113308
113309
113310
......
113622
113623
113624
113625
113626
113627
113628

113629
113630
113631
113632
113633
113634
113635
......
113829
113830
113831
113832
113833
113834
113835

113836
113837
113838
113839
113840
113841
113842
113843
113844
113845
113846
......
114362
114363
114364
114365
114366
114367
114368









114369
114370
114371
114372
114373
114374
114375
......
114660
114661
114662
114663
114664
114665
114666
114667
114668
114669
114670
114671
114672
114673
114674
114675
......
114763
114764
114765
114766
114767
114768
114769
114770
114771
114772
114773
114774
114775
114776
114777
114778
114779
......
114822
114823
114824
114825
114826
114827
114828
114829
114830
114831
114832
114833
114834
114835
114836
114837
114838
......
114899
114900
114901
114902
114903
114904
114905
114906
114907
114908
114909
114910
114911
114912
114913
114914
114915
......
114934
114935
114936
114937
114938
114939
114940
114941
114942
114943
114944
114945
114946
114947
114948
114949
114950
......
114957
114958
114959
114960
114961
114962
114963
114964
114965
114966
114967
114968
114969
114970
114971
......
114976
114977
114978
114979
114980
114981
114982
114983
114984
114985
114986
114987
114988
114989
114990
114991
114992
......
115198
115199
115200
115201
115202
115203
115204


115205
115206
115207
115208
115209
115210
115211
......
115213
115214
115215
115216
115217
115218
115219






115220
115221
115222
115223
115224
115225
115226
115227
115228
115229
115230
115231
115232


115233
115234
115235
115236
115237
115238
115239
......
115245
115246
115247
115248
115249
115250
115251
115252
115253
115254
115255
115256
115257
115258
115259
115260
115261
115262
115263
115264
115265
115266
115267
115268
115269
115270
115271
115272
......
115310
115311
115312
115313
115314
115315
115316

115317





115318
115319
115320
115321

115322
115323
115324
115325

115326
115327
115328



115329
115330
115331
115332
115333
115334
115335
......
115481
115482
115483
115484
115485
115486
115487
115488
115489
115490
115491
115492
115493
115494
115495
115496
115497

115498
115499
115500
115501
115502
115503
115504
115505
115506
......
115574
115575
115576
115577
115578
115579
115580

115581
115582
115583
115584
115585
115586
115587
......
115724
115725
115726
115727
115728
115729
115730
115731
115732
115733
115734
115735
115736
115737
115738
......
115740
115741
115742
115743
115744
115745
115746
115747
115748
115749
115750
115751
115752
115753
115754
......
115764
115765
115766
115767
115768
115769
115770
115771
115772
115773
115774
115775
115776
115777
115778
115779
115780
115781
......
115783
115784
115785
115786
115787
115788
115789
115790
115791
115792
115793
115794
115795


115796
115797
115798


115799
115800
115801
115802
115803
115804
115805
115806
115807
115808
115809
115810
115811
115812
115813
115814
115815
115816
115817
115818
115819
......
115829
115830
115831
115832
115833
115834
115835
115836
115837
115838
115839
115840
115841
115842
115843
......
115844
115845
115846
115847
115848
115849
115850
115851
115852
115853
115854
115855
115856
115857
115858
115859
115860
115861
115862





115863
115864
115865
115866
115867
115868
115869
......
115880
115881
115882
115883
115884
115885
115886
115887

115888
115889
115890
115891

115892

115893
115894
115895
115896
115897
115898
115899
......
116245
116246
116247
116248
116249
116250
116251
116252
116253
116254
116255
116256
116257
116258
116259
......
116359
116360
116361
116362
116363
116364
116365
116366
116367
116368
116369
116370
116371
116372
116373
......
116390
116391
116392
116393
116394
116395
116396
116397

116398
116399



116400
116401
116402
116403
116404
116405
116406
116407
116408
116409

116410
116411
116412
116413
116414
116415
116416
......
116419
116420
116421
116422
116423
116424
116425
116426
116427
116428
116429
116430
116431
116432
116433
......
116448
116449
116450
116451
116452
116453
116454


116455
116456
116457
116458
116459
116460
116461
......
116489
116490
116491
116492
116493
116494
116495
116496
116497

116498
116499
116500
116501
































116502
116503
116504
116505
116506
116507
116508
......
116796
116797
116798
116799
116800
116801
116802
116803
116804
116805
116806
116807
116808
116809
116810
......
116813
116814
116815
116816
116817
116818
116819
116820
116821
116822
116823
116824
116825
116826
116827
......
117126
117127
117128
117129
117130
117131
117132
117133
117134
117135
117136

117137
117138
117139
117140
117141
117142
117143
......
117162
117163
117164
117165
117166
117167
117168
117169
117170
117171


117172
117173
117174
117175
117176
117177
117178
......
117294
117295
117296
117297
117298
117299
117300




117301
117302
117303
117304
117305
117306
117307
......
117434
117435
117436
117437
117438
117439
117440
117441
117442
117443
117444
117445
117446
117447
117448
......
117470
117471
117472
117473
117474
117475
117476
117477
117478
117479
117480
117481
117482
117483
117484
......
117545
117546
117547
117548
117549
117550
117551
117552
117553
117554
117555

117556
117557
117558
117559
117560
117561
117562
117563


117564
117565
117566
117567
117568
117569

117570


117571
117572
117573
117574
117575

117576
117577
117578
117579
117580
117581
117582
......
117590
117591
117592
117593
117594
117595
117596
117597
117598
117599
117600
117601
117602
117603
117604
117605
117606
117607
117608
117609
117610
117611
117612
117613
117614
117615
117616
117617
117618


117619
117620
117621
117622
117623


117624
117625
117626
117627
117628
117629
117630
......
117661
117662
117663
117664
117665
117666
117667
117668
117669

117670
117671
117672
117673
117674
117675
117676
......
117821
117822
117823
117824
117825
117826
117827





117828
117829
117830
117831


















117832
117833
117834
117835
117836
117837
117838
117839
117840
117841
117842

117843
117844
117845
117846
117847
117848
117849
117850
117851
117852
117853
117854


117855
117856


117857
117858








117859
117860
117861
117862
117863
117864
117865
117866
117867
117868
117869
117870
117871
117872
117873
117874
117875
......
117902
117903
117904
117905
117906
117907
117908
117909
117910
117911
117912
117913
117914
117915
117916
......
117931
117932
117933
117934
117935
117936
117937
117938
117939
117940
117941
117942
117943
117944
117945
117946
117947
117948
117949
117950
117951
117952
117953
117954
117955
117956
117957
117958
117959
117960
117961
117962
117963
117964
117965
117966
117967
117968
117969
117970
117971
117972
117973
117974
117975
117976
117977
117978
117979
117980
117981
117982
117983
117984
117985
117986
117987
117988
117989
117990
......
118071
118072
118073
118074
118075
118076
118077
118078
118079
118080
118081
118082
118083
118084
118085
......
118139
118140
118141
118142
118143
118144
118145
118146
118147
118148
118149



































118150
118151
118152
118153
118154
118155
118156
......
118321
118322
118323
118324
118325
118326
118327
118328
118329
118330
118331
118332
118333
118334
118335
......
118362
118363
118364
118365
118366
118367
118368
118369
118370
118371
118372
118373
118374
118375
118376
......
118912
118913
118914
118915
118916
118917
118918
118919
118920
118921
118922
118923
118924
118925
118926
......
119366
119367
119368
119369
119370
119371
119372
119373
119374
119375
119376
119377
119378
119379
119380
......
119485
119486
119487
119488
119489
119490
119491
119492
119493
119494
119495
119496
119497
119498
119499
119500
119501
119502
119503
119504
119505
119506
119507
119508
119509
119510
119511
......
120006
120007
120008
120009
120010
120011
120012


120013

120014
120015
120016
120017
120018
120019
120020

120021

120022
120023
120024



120025
120026
120027
120028
120029
120030
120031
......
122598
122599
122600
122601
122602
122603
122604

122605
122606
122607
122608

122609



122610
122611

122612
122613
122614
122615
122616
122617
122618
......
124448
124449
124450
124451
124452
124453
124454



124455
124456
124457
124458
124459
124460
124461
......
124714
124715
124716
124717
124718
124719
124720







124721
124722
124723
124724
124725
124726
124727
......
125016
125017
125018
125019
125020
125021
125022
125023
125024
125025
125026
125027
125028
125029
125030
......
125225
125226
125227
125228
125229
125230
125231







125232
125233
125234
125235
125236
125237
125238
......
125283
125284
125285
125286
125287
125288
125289
125290
125291
125292
125293
125294
125295
125296
125297
125298


125299
125300
125301
125302
125303
125304
125305


125306
125307
125308
125309
125310
125311


125312
125313
125314
125315
125316


125317
125318
125319
125320
125321
125322
125323
125324
125325

125326



125327
125328
125329
125330
125331



125332
125333
125334
125335
125336
125337


125338
125339
125340
125341
125342



125343
125344
125345
125346
125347
125348
125349


125350
125351
125352
125353











125354
125355
125356
125357
125358
125359
125360
125361
125362
125363
125364
125365
125366



125367
125368
125369
125370
125371




125372
125373
125374
125375
125376
125377
125378



125379
125380
125381



125382
125383
125384
125385
125386
125387
125388
125389
125390
125391
125392
125393
125394
125395




125396
125397
125398
125399
125400
125401
125402
125403
125404
125405
125406
125407
125408
125409
125410
125411
......
125436
125437
125438
125439
125440
125441
125442




125443
125444
125445
125446
125447




125448
125449
125450
125451
125452
125453
125454
......
125455
125456
125457
125458
125459
125460
125461




125462
125463





125464


125465
125466
125467
125468
125469

125470
125471
125472
125473
125474
125475



125476
125477
125478
125479





125480
125481
125482
125483
125484
125485
125486
......
125552
125553
125554
125555
125556
125557
125558






125559
125560
125561
125562
125563
125564
125565
125566
125567




125568
125569
125570
125571
125572
125573
125574
......
125650
125651
125652
125653
125654
125655
125656



125657
125658
125659
125660
125661
125662
125663




125664
125665
125666
125667
125668
125669
125670
......
125691
125692
125693
125694
125695
125696
125697






125698
125699
125700
125701
125702
125703
125704






125705
125706
125707
125708
125709
125710
125711






125712
125713
125714
125715
125716
125717
125718
......
126253
126254
126255
126256
126257
126258
126259



126260
126261
126262
126263
126264
126265
126266
......
126274
126275
126276
126277
126278
126279
126280






126281
126282
126283
126284
126285
126286
126287
......
126294
126295
126296
126297
126298
126299
126300



126301
126302
126303
126304
126305
126306
126307
126308
126309
126310
126311
126312
126313






126314
126315
126316
126317
126318
126319
126320
......
126444
126445
126446
126447
126448
126449
126450






126451
126452
126453
126454
126455
126456
126457
......
126480
126481
126482
126483
126484
126485
126486




126487
126488
126489
126490
126491
126492
126493
......
126511
126512
126513
126514
126515
126516
126517






126518
126519
126520
126521
126522
126523
126524
......
126532
126533
126534
126535
126536
126537
126538







126539
126540
126541
126542
126543
126544
126545
......
126553
126554
126555
126556
126557
126558
126559







126560
126561
126562
126563
126564
126565
126566
......
126573
126574
126575
126576
126577
126578
126579







126580
126581
126582
126583
126584
126585
126586
......
126591
126592
126593
126594
126595
126596
126597







126598
126599
126600
126601
126602
126603
126604
......
126609
126610
126611
126612
126613
126614
126615







126616
126617
126618
126619
126620
126621
126622
......
126655
126656
126657
126658
126659
126660
126661



126662
126663
126664
126665
126666
126667
126668
......
126675
126676
126677
126678
126679
126680
126681






126682
126683
126684
126685
126686
126687
126688
......
126701
126702
126703
126704
126705
126706
126707




126708
126709
126710
126711
126712
126713
126714
126715

126716


126717
126718
126719
126720
126721
126722
126723
......
126737
126738
126739
126740
126741
126742
126743


126744
126745
126746
126747
126748
126749
126750
126751
......
126924
126925
126926
126927
126928
126929
126930
126931
126932
126933
126934
126935
126936
126937
126938
126939
126940
126941
126942
126943
126944
126945
126946
126947
126948
126949
126950
126951
126952
126953
126954
126955
126956
126957
126958
126959
126960
126961
126962
126963
......
126993
126994
126995
126996
126997
126998
126999
127000
127001
127002
127003
127004
127005
127006
127007
......
127098
127099
127100
127101
127102
127103
127104






127105
127106
127107
127108
127109
127110
127111
......
127174
127175
127176
127177
127178
127179
127180

127181
127182
127183
127184
127185
127186
127187
127188
......
127383
127384
127385
127386
127387
127388
127389



127390
127391
127392
127393
127394
127395
127396
......
127488
127489
127490
127491
127492
127493
127494



127495
127496
127497
127498
127499
127500
127501
127502
127503



127504
127505
127506
127507

127508
127509
127510
127511



127512
127513
127514
127515
127516
127517
127518
127519
127520
127521
127522
127523
127524
......
127531
127532
127533
127534
127535
127536
127537

127538


127539
127540
127541
127542
127543
127544
127545
......
127672
127673
127674
127675
127676
127677
127678
127679
127680

127681
127682
127683
127684
127685

127686
127687
127688
127689
127690
127691
127692
127693
127694
127695
127696
127697
127698
127699
127700
127701
......
127708
127709
127710
127711
127712
127713
127714
127715
127716
127717
127718
127719
127720
127721
127722
127723
127724
127725
127726
127727
127728
......
127729
127730
127731
127732
127733
127734
127735




127736
127737
127738
127739
127740
127741
127742
......
127750
127751
127752
127753
127754
127755
127756




127757
127758
127759
127760
127761
127762
127763
......
127772
127773
127774
127775
127776
127777
127778



127779
127780
127781
127782
127783
127784
127785
......
127790
127791
127792
127793
127794
127795
127796



127797
127798
127799
127800
127801
127802
127803
......
127816
127817
127818
127819
127820
127821
127822






127823
127824
127825
127826
127827
127828
127829
......
127869
127870
127871
127872
127873
127874
127875
127876
127877
127878
127879
127880
127881
127882
127883
......
127909
127910
127911
127912
127913
127914
127915
127916
127917
127918
127919
127920
127921
127922
127923
127924
127925
127926
127927
127928




127929
127930

127931
127932
127933
127934
127935
127936
127937
......
127976
127977
127978
127979
127980
127981
127982
127983
127984
127985
127986
127987
127988
127989
127990
......
127998
127999
128000
128001
128002
128003
128004



128005
128006
128007
128008
128009
128010
128011
128012
128013
128014
128015
128016
128017



128018
128019
128020
128021
128022
128023
128024
......
128353
128354
128355
128356
128357
128358
128359
128360
128361
128362
128363
128364
128365
128366
128367
......
128409
128410
128411
128412
128413
128414
128415







128416
128417
128418
128419
128420
128421
128422
128423
128424







128425
128426
128427
128428
128429
128430
128431
128432
......
137839
137840
137841
137842
137843
137844
137845
137846
137847
137848
137849
137850
137851
137852
137853
......
148629
148630
148631
148632
148633
148634
148635
148636
148637
148638
148639
148640
148641
148642
148643
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.8.7.2.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
................................................................................
# define SQLITE_API
#endif


/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple
................................................................................
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.7.2"
#define SQLITE_VERSION_NUMBER 3008007
#define SQLITE_SOURCE_ID      "2014-11-18 12:28:52 945a9e687fdfee5f7103d85d131024e85d594ac3"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
** or [SQLITE_CONFIG_MUTEX].  ^(The return value of the
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
................................................................................
** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
** </ul>
**
** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
** was given no the corresponding lock.  
**
** The xShmLock method can transition between unlocked and SHARED or
** between unlocked and EXCLUSIVE.  It cannot transition between SHARED
** and EXCLUSIVE.
*/
#define SQLITE_SHM_UNLOCK       1
#define SQLITE_SHM_LOCK         2
................................................................................
** ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Serialized [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
**
** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The argument specifies

** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.)^ ^SQLite makes
** its own private copy of the content of the [sqlite3_mem_methods] structure
** before the [sqlite3_config()] call returns.</dd>
**
** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The [sqlite3_mem_methods]

** structure is filled with the currently defined memory allocation routines.)^
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example. </dd>
**
** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd> ^This option takes single argument of type int, interpreted as a 
** boolean, which enables or disables the collection of memory allocation 
** statistics. ^(When memory allocation statistics are disabled, the 
** following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for

** scratch memory.  There are three arguments:  A pointer an 8-byte
** aligned memory buffer from which the scratch allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).  The sz
** argument must be a multiple of 16.
** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** ^SQLite will use no more than two scratch buffers per thread.  So
** N should be set to twice the expected maximum number of threads.
** ^SQLite will never require a scratch buffer that is more than 6

** times the database page size. ^If SQLite needs needs additional
** scratch memory beyond what is provided by this configuration option, then 
** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>






**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implementation.  

** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option.

** There are three arguments to this option: A pointer to 8-byte aligned

** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus a little extra for each
** page header.  ^The page header size is 20 to 40 bytes depending on



** the host architecture.  ^It is harmless, apart from the wasted memory,
** to make sz a little too large.  The first


** argument should point to an allocation of at least sz*N bytes of memory.

** ^SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided

** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].




** There are three arguments: An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.
** The minimum allocation size is capped at 2**12. Reasonable values
** for the minimum allocation size are 2**5 through 2**8.</dd>
**
** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.)^  ^SQLite makes a copy of the
** content of the [sqlite3_mutex_methods] structure before the call to
** [sqlite3_config()] returns. ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.)^
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd> ^(This option takes two arguments that determine the default
** memory allocation for the lookaside memory allocator on each
** [database connection].  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.)^  ^(This option sets the
** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.)^ </dd>
**
** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
** <dd> ^(This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods2] object.  This object specifies the interface
** to a custom page cache implementation.)^  ^SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** [sqlite3_pcache_methods2] object.  SQLite copies of the current
** page cache implementation into that object.)^ </dd>
**
** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
** global [error log].
** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
** function with a call signature of void(*)(void*,int,const char*), 
** and a pointer to void. ^If the function pointer is not NULL, it is
................................................................................
** log message after formatting via [sqlite3_snprintf()].
** The SQLite logging interface is not reentrant; the logger function
** supplied by the application must not invoke any SQLite interface.
** In a multi-threaded application, the application-defined logger
** function must be threadsafe. </dd>
**
** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
** <dd>^(This option takes a single argument of type int. If non-zero, then
** URI handling is globally enabled. If the parameter is zero, then URI handling
** is globally disabled.)^ ^If URI handling is globally enabled, all filenames
** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or

** specified as part of [ATTACH] commands are interpreted as URIs, regardless
** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
** connection is opened. ^If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. ^(By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.)^
**
** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
** <dd>^This option takes a single integer argument which is interpreted as
** a boolean in order to enable or disable the use of covering indices for

** full table scans in the query optimizer.  ^The default setting is determined
** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
** if that compile-time option is omitted.
** The ability to disable the use of covering indices for full table scans
** is because some incorrectly coded legacy applications might malfunction
** when the optimization is enabled.  Providing the ability to
** disable the optimization allows the older, buggy application code to work
** without change even with newer versions of SQLite.
................................................................................
** <dt>SQLITE_CONFIG_MMAP_SIZE
** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
** that are the default mmap size limit (the default setting for
** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
** ^The default setting can be overridden by each database connection using
** either the [PRAGMA mmap_size] command, or by using the
** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
** cannot be changed at run-time.  Nor may the maximum allowed mmap size
** exceed the compile-time maximum mmap size set by the
** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
** ^If either argument to this option is negative, then that argument is
** changed to its compile-time default.
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^This option is only available if SQLite is compiled for Windows
** with the [SQLITE_WIN32_MALLOC] pre-processor macro defined.
** SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>




















*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_SCRATCH       6  /* void*, int sz, int N */
................................................................................
#define SQLITE_CONFIG_URI          17  /* int */
#define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */



/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
................................................................................
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the [database connection] specified by the first parameter.
** ^(Only changes that are directly specified by the [INSERT], [UPDATE],
** or [DELETE] statement are counted.  Auxiliary changes caused by
** triggers or [foreign key actions] are not counted.)^ Use the
** [sqlite3_total_changes()] function to find the total number of changes
** including changes caused by triggers and foreign key actions.

**
** ^Changes to a view that are simulated by an [INSTEAD OF trigger]



** are not counted.  Only real table changes are counted.
**
** ^(A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
** are changed as side effects of [REPLACE] constraint resolution,
** rollback, ABORT processing, [DROP TABLE], or by any other
** mechanisms do not count as direct row changes.)^



**
** A "trigger context" is a scope of execution that begins and
** ends with the script of a [CREATE TRIGGER | trigger]. 
** Most SQL statements are
** evaluated outside of any trigger.  This is the "top level"
** trigger context.  If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger.  Subtriggers create subcontexts for their duration.
**
** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
**
** ^This function returns the number of direct row changes in the
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
** ^Thus, when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
** that also occurred at the top level.  ^(Within the body of a trigger,
** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include changes
** caused by subtriggers since those have their own context.)^
**
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the number of row changes caused by [INSERT],
** [UPDATE] or [DELETE] statements since the [database connection] was opened.


** ^(The count returned by sqlite3_total_changes() includes all changes
** from all [CREATE TRIGGER | trigger] contexts and changes made by
** [foreign key actions]. However,
** the count does not include changes used to implement [REPLACE] constraints,
** do rollbacks or ABORT processing, or [DROP TABLE] processing.  The
** count does not include rows of views that fire an [INSTEAD OF trigger],
** though if the INSTEAD OF trigger makes changes of its own, those changes 
** are counted.)^
** ^The sqlite3_total_changes() function counts the changes as soon as
** the statement that makes them is completed (when the statement handle
** is passed to [sqlite3_reset()] or [sqlite3_finalize()]).
**
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
................................................................................
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors

**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever
** an attempt is made to access a database table associated with
** [database connection] D when another thread
** or process has the table locked.
** The sqlite3_busy_handler() interface is used to implement
................................................................................
** ^If the busy callback is NULL, then [SQLITE_BUSY]
** is returned immediately upon encountering the lock.  ^If the busy callback
** is not NULL, then the callback might be invoked with two arguments.
**
** ^The first argument to the busy handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  ^The second argument to
** the busy handler callback is the number of times that the busy handler has
** been invoked for the same locking event.  ^If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] is returned
** to the application.
** ^If the callback returns non-zero, then another attempt
** is made to access the database and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
................................................................................
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
** the build-in random() and randomblob() SQL functions.  This interface allows
** applications to access the same PRNG for other purposes.
**
** ^A call to this routine stores N bytes of randomness into buffer P.
** ^If N is less than one, then P can be a NULL pointer.
**
** ^If this routine has not been previously called or if the previous
** call had N less than one, then the PRNG is seeded using randomness

** obtained from the xRandomness method of the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more then
** the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
................................................................................

/*
** CAPI3REF: Text Encodings
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1
#define SQLITE_UTF16LE        2
#define SQLITE_UTF16BE        3
#define SQLITE_UTF16          4    /* Use native byte order */
#define SQLITE_ANY            5    /* Deprecated */
#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */

/*
** CAPI3REF: Function Flags
**
................................................................................
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,sqlite3_uint64,void(*)(void*));

SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
................................................................................
*/
SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);


/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^This routine returns metadata about a specific column of a specific
** database table accessible using the [database connection] handle
** passed as the first function argument.








**
** ^The column is identified by the second, third and fourth parameters to
** this function. ^The second parameter is either the name of the database
** (i.e. "main", "temp", or an attached database) containing the specified
** table or NULL. ^If it is NULL, then all attached databases are searched
** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
** ^The third and fourth parameters to this function are the table and column
** name of the desired column, respectively. Neither of these parameters
** may be NULL.
**
** ^Metadata is returned by writing to the memory locations passed as the 5th
** and subsequent parameters to this function. ^Any of these arguments may be
** NULL, in which case the corresponding element of metadata is omitted.
**
** ^(<blockquote>
** <table border="1">
................................................................................
** <tr><td> 7th <td> int         <td> True if column has a NOT NULL constraint
** <tr><td> 8th <td> int         <td> True if column is part of the PRIMARY KEY
** <tr><td> 9th <td> int         <td> True if column is [AUTOINCREMENT]
** </table>
** </blockquote>)^
**
** ^The memory pointed to by the character pointers returned for the
** declaration type and collation sequence is valid only until the next
** call to any SQLite API function.
**
** ^If the specified table is actually a view, an [error code] is returned.
**
** ^If the specified column is "rowid", "oid" or "_rowid_" and an

** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. ^(If there is no
** explicitly declared [INTEGER PRIMARY KEY] column, then the output
** parameters are set as follows:
**
** <pre>
**     data type: "INTEGER"
**     collation sequence: "BINARY"
**     not null: 0
**     primary key: 1
**     auto increment: 0
** </pre>)^
**
** ^(This function may load one or more schemas from database files. If an
** error occurs during this process, or if the requested table or column
** cannot be found, an [error code] is returned and an error message left
** in the [database connection] (to be retrieved using sqlite3_errmsg()).)^
**
** ^This API is only available if the library was compiled with the
** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol defined.
*/
SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
................................................................................
** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre>)^
**
** ^If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. ^If it is zero, the BLOB is opened for read access.
** ^It is not possible to open a column that is part of an index or primary 
** key for writing. ^If [foreign key constraints] are enabled, it is 
** not possible to open a column that is part of a [child key] for writing.
**
** ^Note that the database name is not the filename that contains
** the database but rather the symbolic name of the database that
** appears after the AS keyword when the database is connected using [ATTACH].
** ^For the main database file, the database name is "main".
** ^For TEMP tables, the database name is "temp".
**




** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is written
** to *ppBlob. Otherwise an [error code] is returned and *ppBlob is set


** to be a null pointer.)^


















** ^This function sets the [database connection] error code and message
** accessible via [sqlite3_errcode()] and [sqlite3_errmsg()] and related
** functions. ^Note that the *ppBlob variable is always initialized in a
** way that makes it safe to invoke [sqlite3_blob_close()] on *ppBlob
** regardless of the success or failure of this routine.

**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
................................................................................
** commit if the transaction continues to completion.)^
**
** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  ^The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**
** ^The [sqlite3_blob_open()] interface will fail for a [WITHOUT ROWID]
** table.  Incremental BLOB I/O is not possible on [WITHOUT ROWID] tables.
**
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function can be used, if desired,
** to create an empty, zero-filled blob in which to read or write using
** this interface.

**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
................................................................................
** ^This function sets the database handle error code and message.
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^Closes an open [BLOB handle].
**
** ^Closing a BLOB shall cause the current transaction to commit
** if there are no other BLOBs, no pending prepared statements, and the
** database connection is in [autocommit mode].
** ^If any writes were made to the BLOB, they might be held in cache
** until the close operation if they will fit.
**
** ^(Closing the BLOB often forces the changes
** out to disk and so if any I/O errors occur, they will likely occur
** at the time when the BLOB is closed.  Any errors that occur during
** closing are reported as a non-zero return value.)^
**
** ^(The BLOB is closed unconditionally.  Even if this routine returns
** an error code, the BLOB is still closed.)^
**
** ^Calling this routine with a null pointer (such as would be returned
** by a failed call to [sqlite3_blob_open()]) is a harmless no-op.
*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
................................................................................
** See also: [sqlite3_blob_write()].
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. ^N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.






**
** ^If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite3_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** ^This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written.  ^If N is
** less than zero [SQLITE_ERROR] is returned and no data is written.
** The size of the BLOB (and hence the maximum value of N+iOffset)
** can be determined using the [sqlite3_blob_bytes()] interface.

**
** ^An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**
** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
** Otherwise, an  [error code] or an [extended error code] is returned.)^
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
................................................................................
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_PTHREADS and
** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
** and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
** function that calls sqlite3_initialize().)^
**
** ^The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. ^If it returns NULL
** that means that a mutex could not be allocated.  ^SQLite
** will unwind its stack and return an error.  ^(The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2

** </ul>)^
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  ^SQLite will only request a recursive mutex in
** cases where it really needs one.  ^If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
** a pointer to a static preexisting mutex.  ^Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  ^But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
**
** ^The sqlite3_mutex_free() routine deallocates a previously
** allocated dynamic mutex.  ^SQLite is careful to deallocate every
** dynamic mutex that it allocates.  The dynamic mutexes must not be in
** use when they are deallocated.  Attempting to deallocate a static
** mutex results in undefined behavior.  ^SQLite never deallocates
** a static mutex.
**
** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  ^If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
** upon successful entry.  ^(Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.)^  ^(If the same thread tries to enter any other
** kind of mutex more than once, the behavior is undefined.
** SQLite will never exhibit
** such behavior in its own use of mutexes.)^
**
** ^(Some systems (for example, Windows 95) do not support the operation
** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
** will always return SQLITE_BUSY.  The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable behavior.)^

**
** ^The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.   ^(The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated.  SQLite will
** never do either.)^
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
................................................................................
/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
** Usually, the default mutex implementations provided by SQLite are
** sufficient, however the user has the option of substituting a custom
** implementation for specialized deployments or systems for which SQLite
** does not provide a suitable implementation. In this case, the user
** creates and populates an instance of this structure to pass
** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
** Additionally, an instance of this structure can be used as an
** output variable when querying the system for the current mutex
** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
**
** ^The xMutexInit method defined by this structure is invoked as
................................................................................
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  ^It must be harmless to
** invoke xMutexInit() multiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** ^xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  ^Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
................................................................................
  int (*xMutexNotheld)(sqlite3_mutex *);
};

/*
** CAPI3REF: Mutex Verification Routines
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements.  ^The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core.  ^The SQLite core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag.  ^External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** ^These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread.
**
** ^The implementation is not required to provide versions of these
** routines that actually work. If the implementation does not provide working
** versions of these routines, it should at least provide stubs that always
** return true so that one does not get spurious assertion failures.
**
** ^If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1.   This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist.  But
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  ^The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

................................................................................
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite3_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.
** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
** an error.




**
** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are stored in the
** destination [database connection] D.
** ^The error code and message for the failed call to sqlite3_backup_init()
** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
** [sqlite3_errmsg16()] functions.
................................................................................
*/
SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** will be invoked each time a database connection commits data to a
** [write-ahead log] (i.e. whenever a transaction is committed in
** [journal_mode | journal_mode=WAL mode]). 
**
** ^The callback is invoked by SQLite after the commit has taken place and 
** the associated write-lock on the database released, so the implementation 
** may read, write or [checkpoint] the database as required.
**
** ^The first parameter passed to the callback function when it is invoked
** is a copy of the third parameter passed to sqlite3_wal_hook() when
** registering the callback. ^The second is a copy of the database handle.
** ^The third parameter is the name of the database that was written to -
** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
................................................................................
** for a particular application.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^The [sqlite3_wal_checkpoint(D,X)] interface causes database named X
** on [database connection] D to be [checkpointed].  ^If X is NULL or an
** empty string, then a checkpoint is run on all databases of
** connection D.  ^If the database connection D is not in
** [WAL | write-ahead log mode] then this interface is a harmless no-op.
** ^The [sqlite3_wal_checkpoint(D,X)] interface initiates a
** [sqlite3_wal_checkpoint_v2|PASSIVE] checkpoint.
** Use the [sqlite3_wal_checkpoint_v2()] interface to get a FULL
** or RESET checkpoint.
**
** ^The [wal_checkpoint pragma] can be used to invoke this interface
** from SQL.  ^The [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] can be used to cause this interface to be
** run whenever the WAL reaches a certain size threshold.
**
** See also: [sqlite3_wal_checkpoint_v2()]
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** Run a checkpoint operation on WAL database zDb attached to database 
** handle db. The specific operation is determined by the value of the 
** eMode parameter:

**
** <dl>
** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
**   Checkpoint as many frames as possible without waiting for any database 
**   readers or writers to finish. Sync the db file if all frames in the log
**   are checkpointed. This mode is the same as calling 
**   sqlite3_wal_checkpoint(). The [sqlite3_busy_handler|busy-handler callback]
**   is never invoked.


**
** <dt>SQLITE_CHECKPOINT_FULL<dd>
**   This mode blocks (it invokes the
**   [sqlite3_busy_handler|busy-handler callback]) until there is no
**   database writer and all readers are reading from the most recent database
**   snapshot. It then checkpoints all frames in the log file and syncs the
**   database file. This call blocks database writers while it is running,
**   but not database readers.

**
** <dt>SQLITE_CHECKPOINT_RESTART<dd>
**   This mode works the same way as SQLITE_CHECKPOINT_FULL, except after 
**   checkpointing the log file it blocks (calls the 
**   [sqlite3_busy_handler|busy-handler callback])
**   until all readers are reading from the database file only. This ensures 
**   that the next client to write to the database file restarts the log file 
**   from the beginning. This call blocks database writers while it is running,
**   but not database readers.






** </dl>
**
** If pnLog is not NULL, then *pnLog is set to the total number of frames in
** the log file before returning. If pnCkpt is not NULL, then *pnCkpt is set to


** the total number of checkpointed frames (including any that were already
** checkpointed when this function is called). *pnLog and *pnCkpt may be
** populated even if sqlite3_wal_checkpoint_v2() returns other than SQLITE_OK.
** If no values are available because of an error, they are both set to -1
** before returning to communicate this to the caller.





**
** All calls obtain an exclusive "checkpoint" lock on the database file. If
** any other process is running a checkpoint operation at the same time, the 
** lock cannot be obtained and SQLITE_BUSY is returned. Even if there is a 
** busy-handler configured, it will not be invoked in this case.
**
** The SQLITE_CHECKPOINT_FULL and RESTART modes also obtain the exclusive 

** "writer" lock on the database file. If the writer lock cannot be obtained
** immediately, and a busy-handler is configured, it is invoked and the writer
** lock retried until either the busy-handler returns 0 or the lock is
** successfully obtained. The busy-handler is also invoked while waiting for
** database readers as described above. If the busy-handler returns 0 before
** the writer lock is obtained or while waiting for database readers, the
** checkpoint operation proceeds from that point in the same way as 
** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible 
** without blocking any further. SQLITE_BUSY is returned in this case.
**
** If parameter zDb is NULL or points to a zero length string, then the
** specified operation is attempted on all WAL databases. In this case the

** values written to output parameters *pnLog and *pnCkpt are undefined. If 
** an SQLITE_BUSY error is encountered when processing one or more of the 
** attached WAL databases, the operation is still attempted on any remaining 
** attached databases and SQLITE_BUSY is returned to the caller. If any other 
** error occurs while processing an attached database, processing is abandoned 
** and the error code returned to the caller immediately. If no error 
** (SQLITE_BUSY or otherwise) is encountered while processing the attached 
** databases, SQLITE_OK is returned.
**
** If database zDb is the name of an attached database that is not in WAL
** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. If
** zDb is not NULL (or a zero length string) and is not the name of any
** attached database, SQLITE_ERROR is returned to the caller.








*/
SQLITE_API int sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);

/*
** CAPI3REF: Checkpoint operation parameters

**
** These constants can be used as the 3rd parameter to


** [sqlite3_wal_checkpoint_v2()].  See the [sqlite3_wal_checkpoint_v2()]
** documentation for additional information about the meaning and use of
** each of these values.

*/
#define SQLITE_CHECKPOINT_PASSIVE 0
#define SQLITE_CHECKPOINT_FULL    1
#define SQLITE_CHECKPOINT_RESTART 2


/*
** CAPI3REF: Virtual Table Interface Configuration
**
** This function may be called by either the [xConnect] or [xCreate] method
** of a [virtual table] implementation to configure
** various facets of the virtual table interface.
................................................................................
*/
#define SQLITE_ROLLBACK 1
/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
#define SQLITE_FAIL     3
/* #define SQLITE_ABORT 4  // Also an error code */
#define SQLITE_REPLACE  5































































































/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
................................................................................
** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
*/
#ifndef SQLITE_POWERSAFE_OVERWRITE
# define SQLITE_POWERSAFE_OVERWRITE 1
#endif

/*
** The SQLITE_DEFAULT_MEMSTATUS macro must be defined as either 0 or 1.
** It determines whether or not the features related to 
** SQLITE_CONFIG_MEMSTATUS are available by default or not. This value can
** be overridden at runtime using the sqlite3_config() API.
*/
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
# define SQLITE_DEFAULT_MEMSTATUS 1
#endif

/*
** Exactly one of the following macros must be defined in order to
................................................................................

/*
** Estimated quantities used for query planning are stored as 16-bit
** logarithms.  For quantity X, the value stored is 10*log2(X).  This
** gives a possible range of values of approximately 1.0e986 to 1e-986.
** But the allowed values are "grainy".  Not every value is representable.
** For example, quantities 16 and 17 are both represented by a LogEst
** of 40.  However, since LogEst quantaties are suppose to be estimates,
** not exact values, this imprecision is not a problem.
**
** "LogEst" is short for "Logarithmic Estimate".
**
** Examples:
**      1 -> 0              20 -> 43          10000 -> 132
**      2 -> 10             25 -> 46          25000 -> 146
................................................................................
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
#define SQLITE_N_BTREE_META 10

/*
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
*/
#ifndef SQLITE_DEFAULT_AUTOVACUUM
  #define SQLITE_DEFAULT_AUTOVACUUM 0
................................................................................
** SQLite database header may be found using the following formula:
**
**   offset = 36 + (idx * 4)
**
** For example, the free-page-count field is located at byte offset 36 of
** the database file header. The incr-vacuum-flag field is located at
** byte offset 64 (== 36+4*7).





*/
#define BTREE_FREE_PAGE_COUNT     0
#define BTREE_SCHEMA_VERSION      1
#define BTREE_FILE_FORMAT         2
#define BTREE_DEFAULT_CACHE_SIZE  3
#define BTREE_LARGEST_ROOT_PAGE   4
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7
#define BTREE_APPLICATION_ID      8


/*
** Values that may be OR'd together to form the second argument of an
** sqlite3BtreeCursorHints() call.
*/
#define BTREE_BULKLOAD 0x00000001

................................................................................

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);


#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
................................................................................
# define VdbeCoverage(v)
# define VdbeCoverageIf(v,x)
# define VdbeCoverageAlwaysTaken(v)
# define VdbeCoverageNeverTaken(v)
# define VDBE_OFFSET_LINENO(x) 0
#endif







#endif

/************** End of vdbe.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include pager.h in the middle of sqliteInt.h *****************/
/************** Begin file pager.h *******************************************/
/*
................................................................................

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);

SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int);
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
................................................................................
SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *);
SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *);

/* Functions used to truncate the database file. */
SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);



#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
SQLITE_PRIVATE void *sqlite3PagerCodec(DbPage *);
#endif

/* Functions to support testing and debugging. */
#if !defined(NDEBUG) || defined(SQLITE_TEST)
................................................................................

#ifdef SQLITE_TEST
SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
#endif

SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);





#endif /* _PCACHE_H_ */

/************** End of pcache.h **********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/************** Include os.h in the middle of sqliteInt.h ********************/
/************** Begin file os.h **********************************************/
................................................................................
  int flags;                    /* Miscellaneous flags. See below */
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
  i64 szMmap;                   /* Default mmap_size setting */
  unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
  int errCode;                  /* Most recent error code (SQLITE_*) */
  int errMask;                  /* & result codes with this before returning */
  u16 dbOptFlags;               /* Flags to enable/disable optimizations */

  u8 autoCommit;                /* The auto-commit flag. */
  u8 temp_store;                /* 1: file 2: memory 0: default */
  u8 mallocFailed;              /* True if we have seen a malloc failure */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
................................................................................
  sqlite3_userauth auth;        /* User authentication information */
#endif
};

/*
** A macro to discover the encoding of a database.
*/
#define ENC(db) ((db)->aDb[0].pSchema->enc)


/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
#define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
................................................................................
/*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat3          0x0800   /* Use the SQLITE_STAT3 table */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
................................................................................
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  KeyInfo *pKeyInfo;       /* A KeyInfo object suitable for this index */
  int tnum;                /* DB Page containing root of this index */
  LogEst szIdxRow;         /* Estimated average row size in bytes */
  u16 nKeyCol;             /* Number of columns forming the key */
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
  unsigned isResized:1;    /* True if resizeIndexObject() has been called */
  unsigned isCovering:1;   /* True if this is a covering index */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
  tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this table */

#endif
};

/*
** Allowed values for Index.idxType
*/
#define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
................................................................................

#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old
                         ** EP_Unlikely:  1000 times likelihood */
  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
                         ** TK_VARIABLE: variable number (always >= 1). */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
................................................................................
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
};

/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin  0x000001 /* Originated in ON or USING clause of a join */
#define EP_Agg       0x000002 /* Contains one or more aggregate functions */
#define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
#define EP_Error     0x000008 /* Expression contains one or more errors */
#define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
#define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
#define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
#define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
................................................................................
#define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_Constant  0x080000 /* Node is a constant */


/*
** These macros can be used to test, set, or clear bits in the 
** Expr.flags field.
*/
#define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
#define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
................................................................................
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_Compound        0x0040  /* Part of a compound query */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
                    /*     0x0100  NOT USED */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */


/*
................................................................................
  int szScratch;                    /* Size of each scratch buffer */
  int nScratch;                     /* Number of scratch buffers */
  void *pPage;                      /* Page cache memory */
  int szPage;                       /* Size of each page in pPage[] */
  int nPage;                        /* Number of pages in pPage[] */
  int mxParserStack;                /* maximum depth of the parser stack */
  int sharedCacheEnabled;           /* true if shared-cache mode enabled */

  /* The above might be initialized to non-zero.  The following need to always
  ** initially be zero, however. */
  int isInit;                       /* True after initialization has finished */
  int inProgress;                   /* True while initialization in progress */
  int isMutexInit;                  /* True after mutexes are initialized */
  int isMallocInit;                 /* True after malloc is initialized */
  int isPCacheInit;                 /* True after malloc is initialized */
................................................................................
*/
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  int walkerDepth;                          /* Number of subqueries */

  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */

    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
................................................................................
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);

SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
................................................................................
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages. 
*/
#ifdef SQLITE_ENABLE_IOTRACE
# define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
SQLITE_PRIVATE   void sqlite3VdbeIOTraceSql(Vdbe*);
SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*,...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif

/*
** These routines are available for the mem2.c debugging memory allocator
................................................................................

/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
** compatibility for legacy applications, the URI filename capability is
** disabled by default.
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.




*/
#ifndef SQLITE_USE_URI
# define  SQLITE_USE_URI 0
#endif





#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
#endif








/*
** The following singleton contains the global configuration for
** the SQLite library.
*/
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
   SQLITE_DEFAULT_MEMSTATUS,  /* bMemstat */
................................................................................
   0,                         /* szScratch */
   0,                         /* nScratch */
   (void*)0,                  /* pPage */
   0,                         /* szPage */
   0,                         /* nPage */
   0,                         /* mxParserStack */
   0,                         /* sharedCacheEnabled */

   /* All the rest should always be initialized to zero */
   0,                         /* isInit */
   0,                         /* inProgress */
   0,                         /* isMutexInit */
   0,                         /* isMallocInit */
   0,                         /* isPCacheInit */
   0,                         /* nRefInitMutex */
................................................................................
** a different position in the file.  This allows code that has to
** deal with the pending byte to run on files that are much smaller
** than 1 GiB.  The sqlite3_test_control() interface can be used to
** move the pending byte.
**
** IMPORTANT:  Changing the pending byte to any value other than
** 0x40000000 results in an incompatible database file format!
** Changing the pending byte during operating results in undefined
** and dileterious behavior.
*/
#ifndef SQLITE_OMIT_WSD
SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
#endif

/*
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
................................................................................
  "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
#endif
#ifdef SQLITE_DISABLE_DIRSYNC
  "DISABLE_DIRSYNC",
#endif
#ifdef SQLITE_DISABLE_LFS
  "DISABLE_LFS",



#endif
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  "ENABLE_ATOMIC_WRITE",
#endif
#ifdef SQLITE_ENABLE_CEROD
  "ENABLE_CEROD",
#endif
................................................................................
** was used and false if not.
**
** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
** is not required for a match.
*/
SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
  int i, n;







  if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
  n = sqlite3Strlen30(zOptName);

  /* Since ArraySize(azCompileOpt) is normally in single digits, a
  ** linear search is adequate.  No need for a binary search. */
  for(i=0; i<ArraySize(azCompileOpt); i++){
    if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
................................................................................
** set to NULL if the currently executing frame is the main program.
*/
typedef struct VdbeFrame VdbeFrame;
struct VdbeFrame {
  Vdbe *v;                /* VM this frame belongs to */
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */

  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
  int nOp;                /* Size of aOp array */
  int nMem;               /* Number of entries in aMem */
  int nOnceFlag;          /* Number of entries in aOnceFlag */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  int nChange;            /* Statement changes (Vdbe.nChanges)     */

};

#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** A value for VdbeCursor.cacheValid that means the cache is always invalid.
*/
................................................................................
};

/* A bitfield type for use inside of structures.  Always follow with :N where
** N is the number of bits.
*/
typedef unsigned bft;  /* Bit Field Type */











/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
**
................................................................................
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */





};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
................................................................................
** then this routine is not threadsafe.
*/
SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
  wsdStatInit;
  if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
    return SQLITE_MISUSE_BKPT;
  }



  *pCurrent = wsdStat.nowValue[op];
  *pHighwater = wsdStat.mxValue[op];
  if( resetFlag ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
  return SQLITE_OK;
}
................................................................................
  sqlite3 *db,          /* The database connection whose status is desired */
  int op,               /* Status verb */
  int *pCurrent,        /* Write current value here */
  int *pHighwater,      /* Write high-water mark here */
  int resetFlag         /* Reset high-water mark if true */
){
  int rc = SQLITE_OK;   /* Return code */





  sqlite3_mutex_enter(db->mutex);
  switch( op ){
    case SQLITE_DBSTATUS_LOOKASIDE_USED: {
      *pCurrent = db->lookaside.nOut;
      *pHighwater = db->lookaside.mxOut;
      if( resetFlag ){
        db->lookaside.mxOut = db->lookaside.nOut;
................................................................................
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** SQLite processes all times and dates as Julian Day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
................................................................................
** This implementation requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar.  Historians usually
** use the Julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale.  Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
**      Jean Meeus
**      Astronomical Algorithms, 2nd Edition, 1998
................................................................................
    return 0;
  }else{
    return 1;
  }
}

/*
** Attempt to parse the given string into a Julian Day Number.  Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
**      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
**      DDDD.DD 
**      now
................................................................................
**
** Return a string described by FORMAT.  Conversions as follows:
**
**   %d  day of month
**   %f  ** fractional seconds  SS.SSS
**   %H  hour 00-24
**   %j  day of year 000-366
**   %J  ** Julian day number
**   %m  month 01-12
**   %M  minute 00-59
**   %s  seconds since 1970-01-01
**   %S  seconds 00-59
**   %w  day of week 0-6  sunday==0
**   %W  week of year 00-53
**   %Y  year 0000-9999
................................................................................
*/
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
  MUTEX_LOGIC(sqlite3_mutex *mutex;)
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif




  MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
  sqlite3_mutex_enter(mutex);
  vfsUnlink(pVfs);
  if( makeDflt || vfsList==0 ){
    pVfs->pNext = vfsList;
    vfsList = pVfs;
  }else{
................................................................................

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;

#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
................................................................................
        p->id = iType;
#endif
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(staticMutexes) );




      p = &staticMutexes[iType-2];
#if SQLITE_MUTEX_NREF
      p->id = iType;
#endif
      break;
    }
  }
................................................................................
#else
        InitializeCriticalSection(&p->mutex);
#endif
      }
      break;
    }
    default: {






      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(winMutex_staticMutexes) );
      assert( winMutex_isInit==1 );
      p = &winMutex_staticMutexes[iType-2];
#ifdef SQLITE_DEBUG
      p->id = iType;
#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
................................................................................
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  /* Verify that no more than two scratch allocations per thread
  ** are outstanding at one time.  (This is only checked in the
  ** single-threaded case since checking in the multi-threaded case
  ** would be much more complicated.) */

  assert( scratchAllocOut<=1 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}
SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
  if( p ){
................................................................................
  double rounder;            /* Used for rounding floating point values */
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */








  bufpt = 0;
  if( bFlags ){
    if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
................................................................................
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = (p->zText==p->zBase ? 0 : p->zText);
    i64 szNew = p->nChar;
    szNew += N + 1;





    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
................................................................................
    }else{
      zNew = sqlite3_realloc(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;

    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
................................................................................
** Print into memory obtained from sqlite3_malloc().  Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;







#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
  acc.useMalloc = 2;
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
................................................................................
** mistake.
**
** sqlite3_vsnprintf() is the varargs version.
*/
SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
  StrAccum acc;
  if( n<=0 ) return zBuf;







  sqlite3StrAccumInit(&acc, zBuf, n, 0);
  acc.useMalloc = 0;
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  return sqlite3StrAccumFinish(&acc);
}
SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
................................................................................
  struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
# define wsdPrng p[0]
#else
# define wsdPrng sqlite3Prng
#endif

#if SQLITE_THREADSAFE








  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);
  sqlite3_mutex_enter(mutex);
#endif


  if( N<=0 ){
    wsdPrng.isInit = 0;
    sqlite3_mutex_leave(mutex);
    return;
  }

  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
................................................................................
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;





  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];
}
SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
  register unsigned char *a, *b;





  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}

/*
................................................................................
      ** or an error number on  failure". See the manpage for details. */
      int err;
      do{
        err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
      }while( err==EINTR );
      if( err ) return SQLITE_IOERR_WRITE;
#else
      /* If the OS does not have posix_fallocate(), fake it. First use
      ** ftruncate() to set the file size, then write a single byte to
      ** the last byte in each block within the extended region. This
      ** is the same technique used by glibc to implement posix_fallocate()

      ** on systems that do not have a real fallocate() system call.
      */
      int nBlk = buf.st_blksize;  /* File-system block size */
      i64 iWrite;                 /* Next offset to write to */

      if( robust_ftruncate(pFile->h, nSize) ){
        pFile->lastErrno = errno;
        return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
      }
      iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;



      while( iWrite<nSize ){
        int nWrite = seekAndWrite(pFile, iWrite, "", 1);
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;

        iWrite += nBlk;


      }
#endif
    }
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
................................................................................
** available in Windows platforms based on the NT kernel.
*/
#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
#  error "WAL mode requires support from the Windows NT kernel, compile\
 with SQLITE_OMIT_WAL."
#endif






/*
** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
#  define SQLITE_WIN32_HAS_ANSI
#endif
................................................................................
*/
#ifndef winGetDirSep
#  define winGetDirSep()                '\\'
#endif

/*
** Do we need to manually define the Win32 file mapping APIs for use with WAL
** mode (e.g. these APIs are available in the Windows CE SDK; however, they
** are not present in the header file)?
*/
#if SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL)

/*
** Two of the file mapping APIs are different under WinRT.  Figure out which
** set we need.
*/
#if SQLITE_OS_WINRT
WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
        LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
................................................................................
WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
#endif /* SQLITE_OS_WINRT */

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
................................................................................
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
        !defined(SQLITE_OMIT_WAL))
  { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
#else
  { "CreateFileMappingA",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        !defined(SQLITE_OMIT_WAL))
  { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
#else
  { "CreateFileMappingW",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
................................................................................
#endif

#ifndef osLockFileEx
#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[48].pCurrent)
#endif

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL))

  { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
#else
  { "MapViewOfFile",           (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        SIZE_T))aSyscall[49].pCurrent)
................................................................................
#else
  { "UnlockFileEx",            (SYSCALL)0,                       0 },
#endif

#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[58].pCurrent)

#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL)
  { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },
#else
  { "UnmapViewOfFile",         (SYSCALL)0,                       0 },
#endif

#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)

................................................................................
#else
  { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
#endif

#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
        FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)

#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
  { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
#else
  { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
        SIZE_T))aSyscall[67].pCurrent)
................................................................................

#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)

  { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },

#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)

#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
................................................................................
** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
** be returned and no changes will be made to the Win32 native heap.
*/
SQLITE_API int sqlite3_win32_reset_heap(){
  int rc;
  MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */
  MUTEX_LOGIC( sqlite3_mutex *pMem; )    /* The memsys static mutex */
  MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
  MUTEX_LOGIC( pMem = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); )
  sqlite3_mutex_enter(pMaster);
  sqlite3_mutex_enter(pMem);
  winMemAssertMagic();
  if( winMemGetHeap()!=NULL && winMemGetOwned() && sqlite3_memory_used()==0 ){
    /*
    ** At this point, there should be no outstanding memory allocations on
    ** the heap.  Also, since both the master and memsys locks are currently
................................................................................
*/
static int winRead(
  sqlite3_file *id,          /* File to read from */
  void *pBuf,                /* Write content into this buffer */
  int amt,                   /* Number of bytes to read */
  sqlite3_int64 offset       /* Begin reading at this offset */
){
#if !SQLITE_OS_WINCE
  OVERLAPPED overlapped;          /* The offset for ReadFile. */
#endif
  winFile *pFile = (winFile*)id;  /* file handle */
  DWORD nRead;                    /* Number of bytes actually read from file */
  int nRetry = 0;                 /* Number of retrys */

  assert( id!=0 );
................................................................................
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE
  if( winSeekFile(pFile, offset) ){
    OSTRACE(("READ file=%p, rc=SQLITE_FULL\n", pFile->h));
    return SQLITE_FULL;
  }
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
#else
  memset(&overlapped, 0, sizeof(OVERLAPPED));
................................................................................
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE
  rc = winSeekFile(pFile, offset);
  if( rc==0 ){
#else
  {
#endif
#if !SQLITE_OS_WINCE
    OVERLAPPED overlapped;        /* The offset for WriteFile. */
#endif
    u8 *aRem = (u8 *)pBuf;        /* Data yet to be written */
    int nRem = amt;               /* Number of bytes yet to be written */
    DWORD nWrite;                 /* Bytes written by each WriteFile() call */
    DWORD lastErrno = NO_ERROR;   /* Value returned by GetLastError() */

#if !SQLITE_OS_WINCE
    memset(&overlapped, 0, sizeof(OVERLAPPED));
    overlapped.Offset = (LONG)(offset & 0xffffffff);
    overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
#endif

    while( nRem>0 ){
#if SQLITE_OS_WINCE
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
#else
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
#endif
        if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
        break;
      }
      assert( nWrite==0 || nWrite<=(DWORD)nRem );
      if( nWrite==0 || nWrite>(DWORD)nRem ){
        lastErrno = osGetLastError();
        break;
      }
#if !SQLITE_OS_WINCE
      offset += nWrite;
      overlapped.Offset = (LONG)(offset & 0xffffffff);
      overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
#endif
      aRem += nWrite;
      nRem -= nWrite;
    }
................................................................................
** are no outstanding page references when this function is called.
*/
SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
  assert( pCache->nRef==0 && pCache->pDirty==0 );
  if( pCache->szPage ){
    sqlite3_pcache *pNew;
    pNew = sqlite3GlobalConfig.pcache2.xCreate(
                szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable

    );
    if( pNew==0 ) return SQLITE_NOMEM;
    sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
    if( pCache->pCache ){
      sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
    }
    pCache->pCache = pNew;
................................................................................
/*
** Free up as much memory as possible from the page cache.
*/
SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
  assert( pCache->pCache!=0 );
  sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
}








#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/
................................................................................
  p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
  if( !pPg || !p ){
    pcache1Free(pPg);
    sqlite3_free(p);
    pPg = 0;
  }
#else
  pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
  p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
#endif
  pcache1EnterMutex(pCache->pGroup);

  if( pPg ){
    p->page.pBuf = pPg;
    p->page.pExtra = &p[1];
................................................................................
    pcache1Truncate,         /* xTruncate */
    pcache1Destroy,          /* xDestroy */
    pcache1Shrink            /* xShrink */
  };
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}






#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
................................................................................
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */
  u8 subjInMemory;            /* True to use in-memory sub-journals */


  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
................................................................................
  sqlite3_file *jfd;          /* File descriptor for main journal */
  sqlite3_file *sjfd;         /* File descriptor for sub-journal */
  i64 journalOff;             /* Current write offset in the journal file */
  i64 journalHdr;             /* Byte offset to previous journal header */
  sqlite3_backup *pBackup;    /* Pointer to list of ongoing backup processes */
  PagerSavepoint *aSavepoint; /* Array of active savepoints */
  int nSavepoint;             /* Number of elements in aSavepoint[] */

  char dbFileVers[16];        /* Changes whenever database file changes */

  u8 bUseFetch;               /* True to use xFetch() */
  int nMmapOut;               /* Number of mmap pages currently outstanding */
  sqlite3_int64 szMmap;       /* Desired maximum mmap size */
  PgHdr *pMmapFreelist;       /* List of free mmap page headers (pDirty) */
  /*
  ** End of the routinely-changing class members
  ***************************************************************************/

................................................................................
  return rc;
}

/*
** Discard the entire contents of the in-memory page-cache.
*/
static void pager_reset(Pager *pPager){

  sqlite3BackupRestart(pPager->pBackup);
  sqlite3PcacheClear(pPager->pPCache);
}









/*
** Free all structures in the Pager.aSavepoint[] array and set both
** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
** if it is open and the pager is not in exclusive mode.
*/
static void releaseAllSavepoints(Pager *pPager){
................................................................................
      ** of bytes 24..39 of the database.  Bytes 28..31 should always be
      ** zero or the size of the database in page. Bytes 32..35 and 35..39
      ** should be page numbers which are never 0xffffffff.  So filling
      ** pPager->dbFileVers[] with all 0xff bytes should suffice.
      **
      ** For an encrypted database, the situation is more complex:  bytes
      ** 24..39 of the database are white noise.  But the probability of
      ** white noising equaling 16 bytes of 0xff is vanishingly small so
      ** we should still be ok.
      */
      memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
    }else{
      u8 *dbFileVers = &((u8*)pPg->pData)[24];
      memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
    }
................................................................................
static int pagerAcquireMapPage(
  Pager *pPager,                  /* Pager object */
  Pgno pgno,                      /* Page number */
  void *pData,                    /* xFetch()'d data for this page */
  PgHdr **ppPage                  /* OUT: Acquired page object */
){
  PgHdr *p;                       /* Memory mapped page to return */

  if( pPager->pMmapFreelist ){
    *ppPage = p = pPager->pMmapFreelist;
    pPager->pMmapFreelist = p->pDirty;
    p->pDirty = 0;
    memset(p->pExtra, 0, pPager->nExtra);
  }else{
    *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra);
................................................................................

      assert( pPager->eState==PAGER_OPEN );
      assert( (pPager->eLock==SHARED_LOCK)
           || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
      );
    }

    if( !pPager->tempFile && (
        pPager->pBackup 
     || sqlite3PcachePagecount(pPager->pPCache)>0 
     || USEFETCH(pPager)
    )){
      /* The shared-lock has just been acquired on the database file
      ** and there are already pages in the cache (from a previous
      ** read or write transaction).  Check to see if the database
      ** has been modified.  If the database has changed, flush the
      ** cache.
      **
      ** Database changes is detected by looking at 15 bytes beginning
      ** at offset 24 into the file.  The first 4 of these 16 bytes are
      ** a 32-bit counter that is incremented with each change.  The
      ** other bytes change randomly with each file change when
      ** a codec is in use.
      ** 
................................................................................
  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );
  assert( noContent==0 || bMmapOk==0 );

  if( pgno==0 ){
    return SQLITE_CORRUPT_BKPT;
  }


  /* If the pager is in the error state, return an error immediately. 
  ** Otherwise, request the page from the PCache layer. */
  if( pPager->errCode!=SQLITE_OK ){
    rc = pPager->errCode;
  }else{
    if( bMmapOk && pagerUseWal(pPager) ){
................................................................................
*/
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
  sqlite3_pcache_page *pPage;
  assert( pPager!=0 );
  assert( pgno!=0 );
  assert( pPager->pPCache!=0 );
  pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);

  return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
}

/*
** Release a page reference.
**
** If the number of references to the page drop to zero, then the
................................................................................
  ){
    assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
    pPager->eState = PAGER_READER;
    return SQLITE_OK;
  }

  PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));

  rc = pager_end_transaction(pPager, pPager->setMaster, 1);
  return pager_error(pPager, rc);
}

/*
** If a write transaction is open, then all changes made within the 
** transaction are reverted and the current write-transaction is closed.
................................................................................
    sqlite3PcacheMakeDirty(pPgHdr);
    sqlite3PagerUnrefNotNull(pPgHdr);
  }

  return SQLITE_OK;
}
#endif













/*
** Return a pointer to the data for the specified page.
*/
SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
  assert( pPg->nRef>0 || pPg->pPager->memDb );
  return pPg->pData;
................................................................................
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){
  int rc = SQLITE_OK;
  if( pPager->pWal ){
    rc = sqlite3WalCheckpoint(pPager->pWal, eMode,

        pPager->xBusyHandler, pPager->pBusyHandlerArg,
        pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
        pnLog, pnCkpt
    );
  }
  return rc;
}

................................................................................
** is empty, return 0.
*/
SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){
  assert( pPager->eState>=PAGER_READER );
  return sqlite3WalFramesize(pPager->pWal);
}
#endif


#endif /* SQLITE_OMIT_DISKIO */

/************** End of pager.c ***********************************************/
/************** Begin file wal.c *********************************************/
/*
** 2010 February 1
................................................................................
#endif
}

/* 
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3ScratchFree(p);
}

/*
** Construct a WalInterator object that can be used to loop over all 
** pages in the WAL in ascending order. The caller must hold the checkpoint
** lock.
**
................................................................................
  iLast = pWal->hdr.mxFrame;

  /* Allocate space for the WalIterator object. */
  nSegment = walFramePage(iLast) + 1;
  nByte = sizeof(WalIterator) 
        + (nSegment-1)*sizeof(struct WalSegment)
        + iLast*sizeof(ht_slot);
  p = (WalIterator *)sqlite3ScratchMalloc(nByte);
  if( !p ){
    return SQLITE_NOMEM;
  }
  memset(p, 0, nByte);
  p->nSegment = nSegment;

  /* Allocate temporary space used by the merge-sort routine. This block
  ** of memory will be freed before this function returns.
  */
  aTmp = (ht_slot *)sqlite3ScratchMalloc(
      sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
  );
  if( !aTmp ){
    rc = SQLITE_NOMEM;
  }

  for(i=0; rc==SQLITE_OK && i<nSegment; i++){
................................................................................
      walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
      p->aSegment[i].iZero = iZero;
      p->aSegment[i].nEntry = nEntry;
      p->aSegment[i].aIndex = aIndex;
      p->aSegment[i].aPgno = (u32 *)aPgno;
    }
  }
  sqlite3ScratchFree(aTmp);

  if( rc!=SQLITE_OK ){
    walIteratorFree(p);
  }
  *pp = p;
  return rc;
}
................................................................................
/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
*/
static int walPagesize(Wal *pWal){
  return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
}

































/*
** Copy as much content as we can from the WAL back into the database file
** in response to an sqlite3_wal_checkpoint() request or the equivalent.
**
** The amount of information copies from WAL to database might be limited
** by active readers.  This routine will never overwrite a database page
................................................................................
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
static int walCheckpoint(
  Wal *pWal,                      /* Wal connection */
  int eMode,                      /* One of PASSIVE, FULL or RESTART */
  int (*xBusyCall)(void*),        /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc;                         /* Return code */
  int szPage;                     /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  u32 mxPage;                     /* Max database page to write */
  int i;                          /* Loop counter */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */
  int (*xBusy)(void*) = 0;        /* Function to call when waiting for locks */

  szPage = walPagesize(pWal);
  testcase( szPage<=32768 );
  testcase( szPage>=65536 );
  pInfo = walCkptInfo(pWal);
  if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;

................................................................................
  /* Allocate the iterator */
  rc = walIteratorInit(pWal, &pIter);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pIter );



  if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall;

  /* Compute in mxSafeFrame the index of the last frame of the WAL that is
  ** safe to write into the database.  Frames beyond mxSafeFrame might
  ** overwrite database pages that are in use by active readers and thus
  ** cannot be backfilled from the WAL.
  */
  mxSafeFrame = pWal->hdr.mxFrame;
................................................................................

  if( rc==SQLITE_BUSY ){
    /* Reset the return code so as not to report a checkpoint failure
    ** just because there are active readers.  */
    rc = SQLITE_OK;
  }

  /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal
  ** file has been copied into the database file, then block until all
  ** readers have finished using the wal file. This ensures that the next
  ** process to write to the database restarts the wal file.
  */
  if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    assert( pWal->writeLock );
    if( pInfo->nBackfill<pWal->hdr.mxFrame ){
      rc = SQLITE_BUSY;
    }else if( eMode==SQLITE_CHECKPOINT_RESTART ){


      assert( mxSafeFrame==pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){

















        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }
    }
  }

 walcheckpoint_out:
  walIteratorFree(pIter);
................................................................................
    if( rc!=SQLITE_OK ){
      return rc;
    }
    nCollide = HASHTABLE_NSLOT;
    for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
      u32 iFrame = aHash[iKey] + iZero;
      if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
        /* assert( iFrame>iRead ); -- not true if there is corruption */
        iRead = iFrame;
      }
      if( (nCollide--)==0 ){
        return SQLITE_CORRUPT_BKPT;
      }
    }
  }
................................................................................
    pWal->hdr.aFrameCksum[1] = aWalData[2];
    walCleanupHash(pWal);
  }

  return rc;
}


/*
** This function is called just before writing a set of frames to the log
** file (see sqlite3WalFrames()). It checks to see if, instead of appending
** to the current log file, it is possible to overwrite the start of the
** existing log file with the new frames (i.e. "reset" the log). If so,
** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
** unchanged.
................................................................................
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only
        ** at this point. But updating the actual wal-index header is also
        ** safe and means there is no special case for sqlite3WalUndo()
        ** to handle if this transaction is rolled back.
        */
        int i;                    /* Loop counter */
        u32 *aSalt = pWal->hdr.aSalt;       /* Big-endian salt values */

        pWal->nCkpt++;
        pWal->hdr.mxFrame = 0;
        sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
        aSalt[1] = salt1;
        walIndexWriteHdr(pWal);
        pInfo->nBackfill = 0;
        pInfo->aReadMark[1] = 0;
        for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
        assert( pInfo->aReadMark[0]==0 );

        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
    walUnlockShared(pWal, WAL_READ_LOCK(0));
    pWal->readLock = -1;
................................................................................
** we can from WAL into the database.
**
** If parameter xBusy is not NULL, it is a pointer to a busy-handler
** callback. In this case this function runs a blocking checkpoint.
*/
SQLITE_PRIVATE int sqlite3WalCheckpoint(
  Wal *pWal,                      /* Wal connection */
  int eMode,                      /* PASSIVE, FULL or RESTART */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags to sync db file with (or 0) */
  int nBuf,                       /* Size of temporary buffer */
  u8 *zBuf,                       /* Temporary buffer to use */
  int *pnLog,                     /* OUT: Number of frames in WAL */
  int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
){
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */


  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );





  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));



  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* Usually this is SQLITE_BUSY meaning that another thread or process
    ** is already running a checkpoint, or maybe a recovery.  But it might
    ** also be SQLITE_IOERR. */








    return rc;
  }
  pWal->ckptLock = 1;

  /* If this is a blocking-checkpoint, then obtain the write-lock as well
  ** to prevent any writers from running while the checkpoint is underway.
  ** This has to be done before the call to walIndexReadHdr() below.
  **
  ** If the writer lock cannot be obtained, then a passive checkpoint is
  ** run instead. Since the checkpointer is not holding the writer lock,
  ** there is no point in blocking waiting for any readers. Assuming no 
  ** other error occurs, this function will return SQLITE_BUSY to the caller.
  */
  if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
    if( rc==SQLITE_OK ){
      pWal->writeLock = 1;
    }else if( rc==SQLITE_BUSY ){
      eMode2 = SQLITE_CHECKPOINT_PASSIVE;

      rc = SQLITE_OK;
    }
  }

  /* Read the wal-index header. */
  if( rc==SQLITE_OK ){
    rc = walIndexReadHdr(pWal, &isChanged);
................................................................................
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){
    if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */
    if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
      if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
      if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
    }
................................................................................
  sqlite3 *db;       /* The database connection holding this btree */
  BtShared *pBt;     /* Sharable content of this btree */
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  u8 sharable;       /* True if we can share pBt with another db */
  u8 locked;         /* True if db currently has pBt locked */
  int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
  int nBackup;       /* Number of backup operations reading this btree */

  Btree *pNext;      /* List of other sharable Btrees from the same db */
  Btree *pPrev;      /* Back pointer of the same list */
#ifndef SQLITE_OMIT_SHARED_CACHE
  BtLock lock;       /* Object used to lock page 1 */
#endif
};

................................................................................


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.





*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
  unsigned char *temp;       /* Temp area for cell content */

  int iCellFirst;            /* First allowable cell index */
  int iCellLast;             /* Last possible cell index */


  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt!=0 );
  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
  data = pPage->aData;
  hdr = pPage->hdrOffset;
  cellOffset = pPage->cellOffset;
  nCell = pPage->nCell;
  assert( nCell==get2byte(&data[hdr+3]) );
  usableSize = pPage->pBt->usableSize;
  cbrk = get2byte(&data[hdr+5]);
  memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
  cbrk = usableSize;
  iCellFirst = cellOffset + 2*nCell;
  iCellLast = usableSize - 4;
  for(i=0; i<nCell; i++){
    u8 *pAddr;     /* The i-th cell pointer */
    pAddr = &data[cellOffset + i*2];
    pc = get2byte(pAddr);
................................................................................
    ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined 
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_BKPT;
    }
#endif
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = cellSizePtr(pPage, &temp[pc]);
    cbrk -= size;
#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
    if( cbrk<iCellFirst ){
      return SQLITE_CORRUPT_BKPT;
    }
#else
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_BKPT;
    }
#endif
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );
    memcpy(&data[cbrk], &temp[pc], size);
    put2byte(pAddr, cbrk);









  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  data[hdr+7] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}
































































/*
** Allocate nByte bytes of space from within the B-Tree page passed
** as the first argument. Write into *pIdx the index into pPage->aData[]
** of the first byte of allocated space. Return either SQLITE_OK or
** an error code (usually SQLITE_CORRUPT).
**
................................................................................
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int top;                             /* First byte of cell content area */

  int gap;        /* First byte of gap between cell pointers and cell content */
  int rc;         /* Integer return code */
  int usableSize; /* Usable size of the page */
  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  usableSize = pPage->pBt->usableSize;
  assert( nByte < usableSize-8 );

  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  assert( gap<=65536 );
  top = get2byte(&data[hdr+5]);
  if( gap>top ){
    if( top==0 ){
      top = 65536;
    }else{
      return SQLITE_CORRUPT_BKPT;
    }
  }

  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );
  if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
    int pc, addr;
    for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
      int size;            /* Size of the free slot */
      if( pc>usableSize-4 || pc<addr+4 ){
        return SQLITE_CORRUPT_BKPT;
      }
      size = get2byte(&data[pc+2]);
      if( size>=nByte ){
        int x = size - nByte;
        testcase( x==4 );
        testcase( x==3 );
        if( x<4 ){
          if( data[hdr+7]>=60 ) goto defragment_page;
          /* Remove the slot from the free-list. Update the number of
          ** fragmented bytes within the page. */
          memcpy(&data[addr], &data[pc], 2);
          data[hdr+7] += (u8)x;
        }else if( size+pc > usableSize ){
          return SQLITE_CORRUPT_BKPT;
        }else{
          /* The slot remains on the free-list. Reduce its size to account
          ** for the portion used by the new allocation. */
          put2byte(&data[pc+2], x);
        }


        *pIdx = pc + x;
        return SQLITE_OK;
      }
    }
  }

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
defragment_page:
    testcase( pPage->nCell==0 );
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


................................................................................
  u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
  u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
  unsigned char *data = pPage->aData;   /* Page content */

  assert( pPage->pBt!=0 );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
  assert( iEnd <= pPage->pBt->usableSize );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( iSize>=4 );   /* Minimum cell size is 4 */
  assert( iStart<=iLast );

  /* Overwrite deleted information with zeros when the secure_delete
  ** option is enabled */
  if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
................................................................................
  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){






    pPage->intKey = 1;
    pPage->intKeyLeaf = pPage->leaf;
    pPage->noPayload = !pPage->leaf;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){






    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->noPayload = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{


    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
................................................................................
    int iCellFirst;    /* First allowable cell or freeblock offset */
    int iCellLast;     /* Last possible cell or freeblock offset */

    pBt = pPage->pBt;

    hdr = pPage->hdrOffset;
    data = pPage->aData;


    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];



    top = get2byteNotZero(&data[hdr+5]);


    pPage->nCell = get2byte(&data[hdr+3]);
    if( pPage->nCell>MX_CELL(pBt) ){
      /* To many cells for a single page.  The page must be corrupt */
      return SQLITE_CORRUPT_BKPT;
    }
    testcase( pPage->nCell==MX_CELL(pBt) );






    /* A malformed database page might cause us to read past the end
    ** of page when parsing a cell.  
    **
    ** The following block of code checks early to see if a cell extends
    ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
    ** returned if it does.
................................................................................
          return SQLITE_CORRUPT_BKPT;
        }
      }
      if( !pPage->leaf ) iCellLast++;
    }  
#endif

    /* Compute the total free space on the page */



    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){



        /* Start of free block is off the page */

        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
        ** the free-block must lie on the database page.  */
................................................................................
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#ifdef SQLITE_SECURE_DELETE
    pBt->btsFlags |= BTS_SECURE_DELETE;
#endif



    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
................................................................................
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{



      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
................................................................................
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;



    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
................................................................................
        releasePage(pPage1);
        return SQLITE_OK;
      }
      rc = SQLITE_NOTADB;
    }
#endif

    /* The maximum embedded fraction must be exactly 25%.  And the minimum
    ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.

    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }



    pageSize = (page1[16]<<8) | (page1[17]<<16);


    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );







    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
................................................................................
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }



    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
................................................................................
    assert( pBt->inTransaction==TRANS_WRITE );
    assert( pBt->nTransaction>0 );
    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
    if( rc!=SQLITE_OK && bCleanup==0 ){
      sqlite3BtreeLeave(p);
      return rc;
    }

    pBt->inTransaction = TRANS_READ;
    btreeClearHasContent(pBt);
  }

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
................................................................................
    if( pCur->pNext ){
      pCur->pNext->pPrev = pCur->pPrev;
    }
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    unlockBtreeIfUnused(pBt);
    sqlite3DbFree(pBtree->db, pCur->aOverflow);
    /* sqlite3_free(pCur); */
    sqlite3BtreeLeave(pBtree);
  }
  return SQLITE_OK;
}

/*
................................................................................
    rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }


  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

................................................................................
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
    if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( nOvfl>pCur->nOvflAlloc ){
        Pgno *aNew = (Pgno*)sqlite3DbRealloc(
            pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
        }else{
          pCur->nOvflAlloc = nOvfl*2;
          pCur->aOverflow = aNew;
        }
................................................................................
        ** function.
        **
        ** Note that the aOverflow[] array must be allocated because eOp!=2
        ** here.  If eOp==2, then offset==0 and this branch is never taken.
        */
        assert( eOp!=2 );
        assert( pCur->curFlags & BTCF_ValidOvfl );

        if( pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        }else{
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
................................................................................
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);


  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
................................................................................
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){



        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{



        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
................................................................................
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );

      k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */

      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
................................................................................
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".





      */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite3PagerDontWrite(pPage->pDbPage);
................................................................................
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  pPage->nCell--;







  memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
  put2byte(&data[hdr+3], pPage->nCell);
  pPage->nFree += 2;

}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
................................................................................
      ptrmapPutOvflPtr(pPage, pCell, pRC);
    }
#endif
  }
}

/*
** Add a list of cells to a page.  The page should be initially empty.
** The cells are guaranteed to fit on the page.









*/
static void assemblePage(
  MemPage *pPage,   /* The page to be assembled */
  int nCell,        /* The number of cells to add to this page */


  u8 **apCell,      /* Pointers to cell bodies */
  u16 *aSize        /* Sizes of the cells */

){
  int i;            /* Loop counter */
  u8 *pCellptr;     /* Address of next cell pointer */
  int cellbody;     /* Address of next cell body */
  u8 * const data = pPage->aData;             /* Pointer to data for pPage */
  const int hdr = pPage->hdrOffset;           /* Offset of header on pPage */
  const int nUsable = pPage->pBt->usableSize; /* Usable size of page */



























  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
            && (int)MX_CELL(pPage->pBt)<=10921);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );

  /* Check that the page has just been zeroed by zeroPage() */
  assert( pPage->nCell==0 );
  assert( get2byteNotZero(&data[hdr+5])==nUsable );





  pCellptr = &pPage->aCellIdx[nCell*2];
  cellbody = nUsable;
  for(i=nCell-1; i>=0; i--){
    u16 sz = aSize[i];



















































    pCellptr -= 2;






































    cellbody -= sz;








































    put2byte(pCellptr, cellbody);
    memcpy(&data[cellbody], apCell[i], sz);



  }
  put2byte(&data[hdr+3], nCell);
  put2byte(&data[hdr+5], cellbody);
  pPage->nFree -= (nCell*2 + nUsable - cellbody);
























































  pPage->nCell = (u16)nCell;




















}

/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation.  NN is the number of neighbors on either side
** of the page that participate in the balancing operation.  NB is the
** total number of pages that participate, including the target page and
................................................................................
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

................................................................................
    u8 *pCell = pPage->apOvfl[0];
    u16 szCell = cellSizePtr(pPage, pCell);
    u8 *pStop;

    assert( sqlite3PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    assemblePage(pNew, 1, &pCell, &szCell);


    /* If this is an auto-vacuum database, update the pointer map
    ** with entries for the new page, and any pointer from the 
    ** cell on the page to an overflow page. If either of these
    ** operations fails, the return code is set, but the contents
    ** of the parent page are still manipulated by thh code below.
    ** That is Ok, at this point the parent page is guaranteed to
................................................................................
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
  int szScratch;               /* Size of scratch memory requested */
  MemPage *apOld[NB];          /* pPage and up to two siblings */
  MemPage *apCopy[NB];         /* Private copies of apOld[] pages */
  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  u8 *pRight;                  /* Location in parent of right-sibling pointer */
  u8 *apDiv[NB-1];             /* Divider cells in pParent */
  int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */

  int szNew[NB+2];             /* Combined size of cells place on i-th page */
  u8 **apCell = 0;             /* All cells begin balanced */
  u16 *szCell;                 /* Local size of all cells in apCell[] */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */






  pBt = pParent->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );

#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif
................................................................................
  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  ** alignment */
  nMaxCells = (nMaxCells + 3)&~3;

  /*
  ** Allocate space for memory structures
  */
  k = pBt->pageSize + ROUND8(sizeof(MemPage));
  szScratch =
       nMaxCells*sizeof(u8*)                       /* apCell */
     + nMaxCells*sizeof(u16)                       /* szCell */
     + pBt->pageSize                               /* aSpace1 */
     + k*nOld;                                     /* Page copies (apCopy) */




  apCell = sqlite3ScratchMalloc( szScratch ); 
  if( apCell==0 ){
    rc = SQLITE_NOMEM;
    goto balance_cleanup;
  }
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[] and remove the divider cells
  ** from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  ** are alike.
................................................................................
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  leafCorrection = apOld[0]->leaf*4;
  leafData = apOld[0]->intKeyLeaf;
  for(i=0; i<nOld; i++){
    int limit;
    
    /* Before doing anything else, take a copy of the i'th original sibling
    ** The rest of this function will use data from the copies rather
    ** that the original pages since the original pages will be in the
    ** process of being overwritten.  */
    MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
    memcpy(pOld, apOld[i], sizeof(MemPage));
    pOld->aData = (void*)&pOld[1];
    memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);

    limit = pOld->nCell+pOld->nOverflow;
    if( pOld->nOverflow>0 ){
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findOverflowCell(pOld, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
................................................................................
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }       

    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
................................................................................
        assert( pOld->hdrOffset==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(apCell[nCell], &pOld->aData[8], 4);
      }else{
        assert( leafCorrection==4 );
        if( szCell[nCell]<4 ){
          /* Do not allow any cells smaller than 4 bytes. */




          szCell[nCell] = 4;
        }
      }
      nCell++;
    }
  }

................................................................................
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(subtotal=k=i=0; i<nCell; i++){
    assert( i<nMaxCells );
    subtotal += szCell[i] + 2;
    if( subtotal > usableSpace ){
      szNew[k] = subtotal - szCell[i];
      cntNew[k] = i;
      if( leafData ){ i--; }
      subtotal = 0;
      k++;
      if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
    }
  }
  szNew[k] = subtotal;
  cntNew[k] = nCell;
  k++;

  /*
  ** The packing computed by the previous block is biased toward the siblings
  ** on the left side.  The left siblings are always nearly full, while the
  ** right-most sibling might be nearly empty.  This block of code attempts

  ** to adjust the packing of siblings to get a better balance.
  **
  ** This adjustment is more than an optimization.  The packing above might
  ** be so out of balance as to be illegal.  For example, the right-most
  ** sibling might be completely empty.  This adjustment is not optional.
  */
  for(i=k-1; i>0; i--){
    int szRight = szNew[i];  /* Size of sibling on the right */
................................................................................
      r = cntNew[i-1] - 1;
      d = r + 1 - leafData;
    }
    szNew[i] = szRight;
    szNew[i-1] = szLeft;
  }



  /* Either we found one or more cells (cntnew[0])>0) or pPage is
  ** a virtual root page.  A virtual root page is when the real root
  ** page is page 1 and we are the only child of that page.
  **
  ** UPDATE:  The assert() below is not necessarily true if the database
  ** file is corrupt.  The corruption will be detected and reported later
  ** in this procedure so there is no need to act upon it now.
  */
#if 0
  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
#endif

  TRACE(("BALANCE: old: %d %d %d  ",
    apOld[0]->pgno, 
    nOld>=2 ? apOld[1]->pgno : 0,
    nOld>=3 ? apOld[2]->pgno : 0
  ));

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  if( apOld[0]->pgno<=1 ){
    rc = SQLITE_CORRUPT_BKPT;
................................................................................
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
      if( rc ) goto balance_cleanup;

      apNew[i] = pNew;
      nNew++;


      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
        if( rc!=SQLITE_OK ){
          goto balance_cleanup;
        }
      }
    }
  }

  /* Free any old pages that were not reused as new pages.
  */
  while( i<nOld ){
    freePage(apOld[i], &rc);
    if( rc ) goto balance_cleanup;
    releasePage(apOld[i]);
    apOld[i] = 0;
    i++;
  }

  /*
  ** Put the new pages in ascending order.  This helps to

  ** keep entries in the disk file in order so that a scan
  ** of the table is a linear scan through the file.  That
  ** in turn helps the operating system to deliver pages
  ** from the disk more rapidly.
  **
  ** An O(n^2) insertion sort algorithm is used, but since
  ** n is never more than NB (a small constant), that should
  ** not be a problem.
  **
  ** When NB==3, this one optimization makes the database
  ** about 25% faster for large insertions and deletions.
  */
  for(i=0; i<k-1; i++){

    int minV = apNew[i]->pgno;









    int minI = i;
    for(j=i+1; j<k; j++){
      if( apNew[j]->pgno<(unsigned)minV ){
        minI = j;
        minV = apNew[j]->pgno;
      }
    }



    if( minI>i ){
      MemPage *pT;








      pT = apNew[i];
      apNew[i] = apNew[minI];
      apNew[minI] = pT;
    }
  }
  TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",



    apNew[0]->pgno, szNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,

    nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,

    nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,

    nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));



  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  put4byte(pRight, apNew[nNew-1]->pgno);













  /*
  ** Evenly distribute the data in apCell[] across the new pages.
  ** Insert divider cells into pParent as necessary.










  */
  j = 0;
  for(i=0; i<nNew; i++){
    /* Assemble the new sibling page. */

    MemPage *pNew = apNew[i];
    assert( j<nMaxCells );
    zeroPage(pNew, pageFlags);
    assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
    assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );

    assert( pNew->nOverflow==0 );











    j = cntNew[i];



    /* If the sibling page assembled above was not the right-most sibling,
    ** insert a divider cell into the parent page.
    */
    assert( i<nNew-1 || j==nCell );
    if( j<nCell ){
























      u8 *pCell;
      u8 *pTemp;
      int sz;



      assert( j<nMaxCells );
      pCell = apCell[j];
      sz = szCell[j] + leafCorrection;
      pTemp = &aOvflSpace[iOvflSpace];
      if( !pNew->leaf ){
        memcpy(&pNew->aData[8], pCell, 4);
      }else if( leafData ){
        /* If the tree is a leaf-data tree, and the siblings are leaves, 
        ** then there is no divider cell in apCell[]. Instead, the divider 
        ** cell consists of the integer key for the right-most cell of 
        ** the sibling-page assembled above only.
        */
        CellInfo info;
        j--;
        btreeParseCellPtr(pNew, apCell[j], &info);
        pCell = pTemp;
        sz = 4 + putVarint(&pCell[4], info.nKey);
        pTemp = 0;
      }else{
        pCell -= 4;
        /* Obscure case for non-leaf-data trees: If the cell at pCell was
        ** previously stored on a leaf node, and its reported size was 4
        ** bytes, then it may actually be smaller than this 
        ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
        ** any cell). But it is important to pass the correct size to 
        ** insertCell(), so reparse the cell now.
        **
        ** Note that this can never happen in an SQLite data file, as all
        ** cells are at least 4 bytes. It only happens in b-trees used
        ** to evaluate "IN (SELECT ...)" and similar clauses.
        */
        if( szCell[j]==4 ){
          assert(leafCorrection==4);
          sz = cellSizePtr(pParent, pCell);
        }
      }
      iOvflSpace += sz;
      assert( sz<=pBt->maxLocal+23 );
      assert( iOvflSpace <= (int)pBt->pageSize );
      insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
      if( rc!=SQLITE_OK ) goto balance_cleanup;
      assert( sqlite3PagerIswriteable(pParent->pDbPage) );

      j++;
      nxDiv++;
    }
































  }
  assert( j==nCell );




























  assert( nOld>0 );
  assert( nNew>0 );
  if( (pageFlags & PTF_LEAF)==0 ){
    u8 *zChild = &apCopy[nOld-1]->aData[8];
    memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
  }

  if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
    /* The root page of the b-tree now contains no cells. The only sibling
    ** page is the right-child of the parent. Copy the contents of the
    ** child page into the parent, decreasing the overall height of the
    ** b-tree structure by one. This is described as the "balance-shallower"
    ** sub-algorithm in some documentation.
    **
    ** If this is an auto-vacuum database, the call to copyNodeContent() 
    ** sets all pointer-map entries corresponding to database image pages 
    ** for which the pointer is stored within the content being copied.
    **
    ** The second assert below verifies that the child page is defragmented
    ** (it must be, as it was just reconstructed using assemblePage()). This
    ** is important if the parent page happens to be page 1 of the database
    ** image.  */

    assert( nNew==1 );


    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) 

    );
    copyNodeContent(apNew[0], pParent, &rc);
    freePage(apNew[0], &rc);
  }else if( ISAUTOVACUUM ){
    /* Fix the pointer-map entries for all the cells that were shifted around. 
    ** There are several different types of pointer-map entries that need to
    ** be dealt with by this routine. Some of these have been set already, but
    ** many have not. The following is a summary:
    **
    **   1) The entries associated with new sibling pages that were not
    **      siblings when this function was called. These have already
    **      been set. We don't need to worry about old siblings that were
    **      moved to the free-list - the freePage() code has taken care
    **      of those.
    **
    **   2) The pointer-map entries associated with the first overflow
    **      page in any overflow chains used by new divider cells. These 
    **      have also already been taken care of by the insertCell() code.
    **
    **   3) If the sibling pages are not leaves, then the child pages of
    **      cells stored on the sibling pages may need to be updated.
    **
    **   4) If the sibling pages are not internal intkey nodes, then any
    **      overflow pages used by these cells may need to be updated
    **      (internal intkey nodes never contain pointers to overflow pages).
    **
    **   5) If the sibling pages are not leaves, then the pointer-map
    **      entries for the right-child pages of each sibling may need
    **      to be updated.
    **
    ** Cases 1 and 2 are dealt with above by other code. The next
    ** block deals with cases 3 and 4 and the one after that, case 5. Since
    ** setting a pointer map entry is a relatively expensive operation, this
    ** code only sets pointer map entries for child or overflow pages that have
    ** actually moved between pages.  */
    MemPage *pNew = apNew[0];
    MemPage *pOld = apCopy[0];
    int nOverflow = pOld->nOverflow;
    int iNextOld = pOld->nCell + nOverflow;
    int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
    j = 0;                             /* Current 'old' sibling page */
    k = 0;                             /* Current 'new' sibling page */


    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        assert( j+1 < ArraySize(apCopy) );
        assert( j+1 < nOld );
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
        if( pOld->nOverflow ){
          nOverflow = pOld->nOverflow;
          iOverflow = i + !leafData + pOld->aiOvfl[0];


        }
        isDivider = !leafData;  
      }

      assert(nOverflow>0 || iOverflow<i );
      assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
      assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
      if( i==iOverflow ){
        isDivider = 1;
        if( (--nOverflow)>0 ){
          iOverflow++;
        }
      }

      if( i==cntNew[k] ){
        /* Cell i is the cell immediately following the last cell on new
        ** sibling page k. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i is a divider cell.  */
        pNew = apNew[++k];
        if( !leafData ) continue;
      }
      assert( j<nOld );
      assert( k<nNew );



      /* If the cell was originally divider cell (and is not now) or
      ** an overflow cell, or if the cell was located on a different sibling
      ** page before the balancing, then the pointer map entries associated
      ** with any child or overflow pages need to be updated.  */
      if( isDivider || pOld->pgno!=pNew->pgno ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);




        }
        if( szCell[i]>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, apCell[i], &rc);
        }
      }
    }

    if( !leafCorrection ){
      for(i=0; i<nNew; i++){
        u32 key = get4byte(&apNew[i]->aData[8]);
        ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
      }
    }

#if 0

    /* The ptrmapCheckPages() contains assert() statements that verify that
    ** all pointer map pages are set correctly. This is helpful while 
    ** debugging. This is usually disabled because a corrupt database may
    ** cause an assert() statement to fail.  */
    ptrmapCheckPages(apNew, nNew);
    ptrmapCheckPages(&pParent, 1);
#endif
  }

  assert( pParent->isInit );
  TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
          nOld, nNew, nCell));


  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  sqlite3ScratchFree(apCell);
  for(i=0; i<nOld; i++){
................................................................................
** is the number of free pages currently in the database.  Meta[1]
** through meta[15] are available for use by higher layers.  Meta[0]
** is read-only, the others are read/write.
** 
** The schema layer numbers meta values differently.  At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].







*/
SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE );
  assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
  assert( pBt->pPage1 );
  assert( idx>=0 && idx<=15 );




  *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);


  /* If auto-vacuum is disabled in this build and this is an auto-vacuum
  ** database, mark the database as read-only.  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
    pBt->btsFlags |= BTS_READ_ONLY;
  }
................................................................................
    ** caller.
    */
    if( pPage->leaf ){
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return SQLITE_OK;
        }
        moveToParent(pCur);
      }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );

      pCur->aiIdx[pCur->iPage]++;
      pPage = pCur->apPage[pCur->iPage];
    }
................................................................................
  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);


    nCell = get2byte(&data[hdr+3]);


    cellStart = hdr + 12 - 4*pPage->leaf;


    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
................................................................................
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }



    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
      for(j=i+size-1; j>=i; j--) hit[j]++;




      j = get2byte(&data[i]);


      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }





    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(hit);
................................................................................
/*
** Return true if the given Btree is read-only.
*/
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}






/************** End of btree.c ***********************************************/
/************** Begin file backup.c ******************************************/
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
................................................................................
** of the source.
*/
static int setDestPgsz(sqlite3_backup *p){
  int rc;
  rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0);
  return rc;
}















/*
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
................................................................................
SQLITE_API sqlite3_backup *sqlite3_backup_init(
  sqlite3* pDestDb,                     /* Database to write to */
  const char *zDestDb,                  /* Name of database within pDestDb */
  sqlite3* pSrcDb,                      /* Database connection to read from */
  const char *zSrcDb                    /* Name of database within pSrcDb */
){
  sqlite3_backup *p;                    /* Value to return */








  /* Lock the source database handle. The destination database
  ** handle is not locked in this routine, but it is locked in
  ** sqlite3_backup_step(). The user is required to ensure that no
  ** other thread accesses the destination handle for the duration
  ** of the backup operation.  Any attempt to use the destination
  ** database connection while a backup is in progress may cause
................................................................................
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;


    if( 0==p->pSrc || 0==p->pDest || setDestPgsz(p)==SQLITE_NOMEM ){


      /* One (or both) of the named databases did not exist or an OOM

      ** error was hit.  The error has already been written into the
      ** pDestDb handle.  All that is left to do here is free the
      ** sqlite3_backup structure.
      */
      sqlite3_free(p);
      p = 0;
    }
  }
  if( p ){
    p->pSrc->nBackup++;
  }
................................................................................
*/
SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
  int rc;
  int destMode;       /* Destination journal mode */
  int pgszSrc = 0;    /* Source page size */
  int pgszDest = 0;   /* Destination page size */




  sqlite3_mutex_enter(p->pSrcDb->mutex);
  sqlite3BtreeEnter(p->pSrc);
  if( p->pDestDb ){
    sqlite3_mutex_enter(p->pDestDb->mutex);
  }

  rc = p->rc;
................................................................................
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite3_backup_step().
*/
SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){






  return p->nRemaining;
}

/*
** Return the total number of pages in the source database as of the most 
** recent call to sqlite3_backup_step().
*/
SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){






  return p->nPagecount;
}

/*
** This function is called after the contents of page iPage of the
** source database have been modified. If page iPage has already been 
** copied into the destination database, then the data written to the
................................................................................
** match, or false otherwise. This function is intended to be used as
** part of an assert statement in the compiler. Similar to:
**
**   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
*/
SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
  int hasAbort = 0;

  Op *pOp;
  VdbeOpIter sIter;
  memset(&sIter, 0, sizeof(sIter));
  sIter.v = v;

  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 
#ifndef SQLITE_OMIT_FOREIGN_KEY
     || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) 
#endif
     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }





  }
  sqlite3DbFree(v->db, sIter.apSub);

  /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
  ** If malloc failed, then the while() loop above may not have iterated
  ** through all opcodes and hasAbort may be set incorrectly. Return
  ** true for this case to prevent the assert() in the callers frame
  ** from failing.  */
  return ( v->db->mallocFailed || hasAbort==mayAbort );
}
#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */

/*
** Loop through the program looking for P2 values that are negative
** on jump instructions.  Each such value is a label.  Resolve the
** label by setting the P2 value to its correct non-zero value.
................................................................................
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
}





























/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/
................................................................................
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);



    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

................................................................................
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
................................................................................
/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
  Vdbe *v = pFrame->v;



  v->aOnceFlag = pFrame->aOnceFlag;
  v->nOnceFlag = pFrame->nOnceFlag;
  v->aOp = pFrame->aOp;
  v->nOp = pFrame->nOp;
  v->aMem = pFrame->aMem;
  v->nMem = pFrame->nMem;
  v->apCsr = pFrame->apCsr;
  v->nCursor = pFrame->nCursor;
  v->db->lastRowid = pFrame->lastRowid;
  v->nChange = pFrame->nChange;

  return pFrame->pc;
}

/*
** Close all cursors.
**
** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 
................................................................................
        }else{
          /* We are forced to roll back the active transaction. Before doing
          ** so, abort any other statements this handle currently has active.
          */
          sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
          sqlite3CloseSavepoints(db);
          db->autoCommit = 1;

        }
      }
    }

    /* Check for immediate foreign key violations. */
    if( p->rc==SQLITE_OK ){
      sqlite3VdbeCheckFk(p, 0);
................................................................................
        }
        if( rc==SQLITE_BUSY && p->readOnly ){
          sqlite3VdbeLeave(p);
          return SQLITE_BUSY;
        }else if( rc!=SQLITE_OK ){
          p->rc = rc;
          sqlite3RollbackAll(db, SQLITE_OK);

        }else{
          db->nDeferredCons = 0;
          db->nDeferredImmCons = 0;
          db->flags &= ~SQLITE_DeferFKs;
          sqlite3CommitInternalChanges(db);
        }
      }else{
        sqlite3RollbackAll(db, SQLITE_OK);

      }
      db->nStatement = 0;
    }else if( eStatementOp==0 ){
      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
        eStatementOp = SAVEPOINT_RELEASE;
      }else if( p->errorAction==OE_Abort ){
        eStatementOp = SAVEPOINT_ROLLBACK;
      }else{
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;

      }
    }
  
    /* If eStatementOp is non-zero, then a statement transaction needs to
    ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
................................................................................
          p->rc = rc;
          sqlite3DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;

      }
    }
  
    /* If this was an INSERT, UPDATE or DELETE and no statement transaction
    ** has been rolled back, update the database connection change-counter. 
    */
    if( p->changeCntOn ){
................................................................................
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);






}

/*
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;
................................................................................
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
    i64 i = pMem->u.i;
    u64 u;
    if( i<0 ){
      if( i<(-MAX_6BYTE) ) return 6;
      /* Previous test prevents:  u = -(-9223372036854775808) */
      u = -i;
    }else{
      u = i;
    }
    if( u<=127 ){
      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
    }
    if( u<=32767 ) return 2;
................................................................................
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x = FOUR_BYTE_UINT(buf);
  u32 y = FOUR_BYTE_UINT(buf+4);
  x = (x<<32) + y;
  if( serial_type==6 ){


    pMem->u.i = *(i64*)&x;
    pMem->flags = MEM_Int;
    testcase( pMem->u.i<0 );
  }else{


#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
    /* Verify that integers and floating point values use the same
    ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
    ** defined that 64-bit floating point values really are mixed
    ** endian.
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
................................................................................
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* NULL */

      pMem->flags = MEM_Null;
      break;
    }
    case 1: { /* 1-byte signed integer */


      pMem->u.i = ONE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 1;
    }
    case 2: { /* 2-byte signed integer */


      pMem->u.i = TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 2;
    }
    case 3: { /* 3-byte signed integer */


      pMem->u.i = THREE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 3;
    }
    case 4: { /* 4-byte signed integer */


      pMem->u.i = FOUR_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 4;
    }
    case 5: { /* 6-byte signed integer */


      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
      /* These use local variables, so do them in a separate routine
      ** to avoid having to move the frame pointer in the common case */
      return serialGet(buf,serial_type,pMem);
    }
    case 8:    /* Integer 0 */
    case 9: {  /* Integer 1 */


      pMem->u.i = serial_type-8;
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {




      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;
      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }
................................................................................
static int doWalCallbacks(sqlite3 *db){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_WAL
  int i;
  for(i=0; i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){


      int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));

      if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
        rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
      }
    }
  }
#endif
  return rc;
................................................................................
    ** into the database handle. This block copies the error message 
    ** from the database handle into the statement and sets the statement
    ** program counter to 0 to ensure that when the statement is 
    ** finalized or reset the parser error message is available via
    ** sqlite3_errmsg() and sqlite3_errcode().
    */
    const char *zErr = (const char *)sqlite3_value_text(db->pErr); 
    assert( zErr!=0 || db->mallocFailed );
    sqlite3DbFree(db, v->zErrMsg);
    if( !db->mallocFailed ){
      v->zErrMsg = sqlite3DbStrDup(db, zErr);
      v->rc = rc2;
    } else {
      v->zErrMsg = 0;
      v->rc = rc = SQLITE_NOMEM;
................................................................................
*/
static const void *columnName(
  sqlite3_stmt *pStmt,
  int N,
  const void *(*xFunc)(Mem*),
  int useType
){
  const void *ret = 0;
  Vdbe *p = (Vdbe *)pStmt;
  int n;
  sqlite3 *db = p->db;




  




  assert( db!=0 );
  n = sqlite3_column_count(pStmt);
  if( N<n && N>=0 ){
    N += useType*n;
    sqlite3_mutex_enter(db->mutex);
    assert( db->mallocFailed==0 );
    ret = xFunc(&p->aColName[N]);
................................................................................
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb.  If pStmt is NULL, return the first
** prepared statement for the database connection.  Return NULL if there
** are no more.
*/
SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
  sqlite3_stmt *pNext;






  sqlite3_mutex_enter(pDb->mutex);
  if( pStmt==0 ){
    pNext = (sqlite3_stmt*)pDb->pVdbe;
  }else{
    pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
  }
  sqlite3_mutex_leave(pDb->mutex);
................................................................................
}

/*
** Return the value of a status counter for a prepared statement
*/
SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  Vdbe *pVdbe = (Vdbe*)pStmt;







  u32 v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}






































































/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbetrace.c ***************************************/
/*
** 2009 November 25
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
................................................................................
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    start = sqlite3Hwtime();
#endif
    nVmStep++;
    pOp = &aOp[pc];




    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( db->flags & SQLITE_VdbeTrace ){
      sqlite3VdbePrintOp(stdout, pc, pOp);
    }
................................................................................
    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
  }while( (--pRec)>=pData0 );

  /* Add the initial header varint and total the size */



  testcase( nHdr==126 );
  testcase( nHdr==127 );
  if( nHdr<=126 ){
    /* The common case */
    nHdr += 1;
  }else{
    /* Rare case of a really large header */
................................................................................
  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = pRec->uTemp;


    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */


    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
................................................................................
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
    }
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    ); 
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    assert( (pIn3->flags & MEM_Zero)==0 );  /* zeroblobs already expanded */
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
................................................................................
  p->aCounter[SQLITE_STMTSTATUS_SORT]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty and P2>0, then jump immediately to P2.
** If P2 is 0 or if the table or index is not empty, fall through
** to the following instruction.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
................................................................................
    pFrame->apCsr = p->apCsr;
    pFrame->nCursor = p->nCursor;
    pFrame->aOp = p->aOp;
    pFrame->nOp = p->nOp;
    pFrame->token = pProgram->token;
    pFrame->aOnceFlag = p->aOnceFlag;
    pFrame->nOnceFlag = p->nOnceFlag;




    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
      pMem->flags = MEM_Undefined;
      pMem->db = db;
    }
  }else{
................................................................................
    assert( pc==pFrame->pc );
  }

  p->nFrame++;
  pFrame->pParent = p->pFrame;
  pFrame->lastRowid = lastRowid;
  pFrame->nChange = p->nChange;

  p->nChange = 0;
  p->pFrame = pFrame;
  p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
  p->nMem = pFrame->nChildMem;
  p->nCursor = (u16)pFrame->nChildCsr;
  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
  p->aOp = aOp = pProgram->aOp;
  p->nOp = pProgram->nOp;
  p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
  p->nOnceFlag = pProgram->nOnce;



  pc = -1;
  memset(p->aOnceFlag, 0, p->nOnceFlag);

  break;
}

/* Opcode: Param P1 P2 * * *
................................................................................
  break;
}

#ifndef SQLITE_OMIT_WAL
/* Opcode: Checkpoint P1 P2 P3 * *
**
** Checkpoint database P1. This is a no-op if P1 is not currently in
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
** or RESTART.  Write 1 or 0 into mem[P3] if the checkpoint returns
** SQLITE_BUSY or not, respectively.  Write the number of pages in the
** WAL after the checkpoint into mem[P3+1] and the number of pages
** in the WAL that have been checkpointed after the checkpoint
** completes into mem[P3+2].  However on an error, mem[P3+1] and
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
................................................................................

  assert( p->readOnly==0 );
  aRes[0] = 0;
  aRes[1] = aRes[2] = -1;
  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
       || pOp->p2==SQLITE_CHECKPOINT_FULL
       || pOp->p2==SQLITE_CHECKPOINT_RESTART

  );
  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
  if( rc==SQLITE_BUSY ){
    rc = SQLITE_OK;
    aRes[0] = 1;
  }
  for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
................................................................................

  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;






  flags = !!flags;                /* flags = (flags ? 1 : 0); */
  *ppBlob = 0;

  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
................................................................................
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
    sqlite3Error(db, SQLITE_ERROR);
  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
................................................................................
    sqlite3BtreeEnterCursor(p->pCsr);
    rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
    sqlite3BtreeLeaveCursor(p->pCsr);
    if( rc==SQLITE_ABORT ){
      sqlite3VdbeFinalize(v);
      p->pStmt = 0;
    }else{
      db->errCode = rc;
      v->rc = rc;
    }
  }

  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.
................................................................................
** calling thread usually launches a worker thread to do so. Except, if
** there are already N worker threads running, the main thread does the work
** itself.
**
** The sorter is running in multi-threaded mode if (a) the library was built
** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
** than zero, and (b) worker threads have been enabled at runtime by calling
** sqlite3_config(SQLITE_CONFIG_WORKER_THREADS, ...).
**
** When Rewind() is called, any data remaining in memory is flushed to a 
** final PMA. So at this point the data is stored in some number of sorted
** PMAs within temporary files on disk.
**
** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
** sorter is running in single-threaded mode, then these PMAs are merged
................................................................................
** messages to stderr that may be helpful in understanding the performance
** characteristics of the sorter in multi-threaded mode.
*/
#if 0
# define SQLITE_DEBUG_SORTER_THREADS 1
#endif








/*
** Private objects used by the sorter
*/
typedef struct MergeEngine MergeEngine;     /* Merge PMAs together */
typedef struct PmaReader PmaReader;         /* Incrementally read one PMA */
typedef struct PmaWriter PmaWriter;         /* Incrementally write one PMA */
typedef struct SorterRecord SorterRecord;   /* A record being sorted */
................................................................................
/* Return a pointer to the buffer containing the record data for SorterRecord
** object p. Should be used as if:
**
**   void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
*/
#define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))

/* The minimum PMA size is set to this value multiplied by the database
** page size in bytes.  */
#define SORTER_MIN_WORKING 10

/* Maximum number of PMAs that a single MergeEngine can merge */
#define SORTER_MAX_MERGE_COUNT 16

static int vdbeIncrSwap(IncrMerger*);
static void vdbeIncrFree(IncrMerger *);

................................................................................
    pSorter->db = db;
    for(i=0; i<pSorter->nTask; i++){
      SortSubtask *pTask = &pSorter->aTask[i];
      pTask->pSorter = pSorter;
    }

    if( !sqlite3TempInMemory(db) ){

      pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
      mxCache = db->aDb[0].pSchema->cache_size;
      if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;

      pSorter->mxPmaSize = mxCache * pgsz;

      /* If the application has not configure scratch memory using
      ** SQLITE_CONFIG_SCRATCH then we assume it is OK to do large memory
      ** allocations.  If scratch memory has been configured, then assume
      ** large memory allocations should be avoided to prevent heap
      ** fragmentation.
      */
      if( sqlite3GlobalConfig.pScratch==0 ){
        assert( pSorter->iMemory==0 );
        pSorter->nMemory = pgsz;
        pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
        if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM;
      }
................................................................................
** the VFS has memory mapped it.
**
** Whether or not the file does end up memory mapped of course depends on
** the specific VFS implementation.
*/
static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
  if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
    int rc = sqlite3OsTruncate(pFd, nByte);
    if( rc==SQLITE_OK ){
      void *p = 0;



      sqlite3OsFetch(pFd, 0, (int)nByte, &p);
      sqlite3OsUnfetch(pFd, 0, p);
    }
  }
}
#else
# define vdbeSorterExtendFile(x,y,z)
#endif

/*
................................................................................
** This needs to occur when copying a TK_AGG_FUNCTION node from an
** outer query into an inner subquery.
**
** incrAggFunctionDepth(pExpr,n) is the main routine.  incrAggDepth(..)
** is a helper function - a callback for the tree walker.
*/
static int incrAggDepth(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.i;
  return WRC_Continue;
}
static void incrAggFunctionDepth(Expr *pExpr, int N){
  if( N>0 ){
    Walker w;
    memset(&w, 0, sizeof(w));
    w.xExprCallback = incrAggDepth;
    w.u.i = N;
    sqlite3WalkExpr(&w, pExpr);
  }
}

/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
................................................................................
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;




        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
................................................................................
*/
static int exprProbability(Expr *p){
  double r = -1.0;
  if( p->op!=TK_FLOAT ) return -1;
  sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8);
  assert( r>=0.0 );
  if( r>1.0 ) return -1;
  return (int)(r*1000.0);
}

/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
................................................................................
            ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for
            ** likelihood(X,0.0625).
            ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand for
            ** likelihood(X,0.9375).
            ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to
            ** likelihood(X,0.9375). */
            /* TUNING: unlikely() probability is 0.0625.  likely() is 0.9375 */
            pExpr->iTable = pDef->zName[0]=='u' ? 62 : 938;
          }             
        }
#ifndef SQLITE_OMIT_AUTHORIZATION
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
................................................................................
    sqlite3DbFree(db, pItem->zSpan);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** These routines are Walker callbacks.  Walker.u.pi is a pointer
** to an integer.  These routines are checking an expression to see
** if it is a constant.  Set *Walker.u.i to 0 if the expression is
** not constant.
**
** These callback routines are used to implement the following:
**
**     sqlite3ExprIsConstant()                  pWalker->u.i==1
**     sqlite3ExprIsConstantNotJoin()           pWalker->u.i==2

**     sqlite3ExprIsConstantOrFunction()        pWalker->u.i==3 or 4
**



** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
** in a CREATE TABLE statement.  The Walker.u.i value is 4 when parsing
** an existing schema and 3 when processing a new statement.  A bound
** parameter raises an error for new statements, but is silently converted
** to NULL for existing schemas.  This allows sqlite_master tables that 
** contain a bound parameter because they were generated by older versions
** of SQLite to be parsed by newer versions of SQLite without raising a
** malformed schema error.
*/
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){

  /* If pWalker->u.i is 2 then any term of the expression that comes from
  ** the ON or USING clauses of a join disqualifies the expression
  ** from being considered constant. */
  if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
    pWalker->u.i = 0;
    return WRC_Abort;
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST
    ** flag. */
    case TK_FUNCTION:
      if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){
        return WRC_Continue;



      }
      /* Fall through */
    case TK_ID:
    case TK_COLUMN:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
      testcase( pExpr->op==TK_ID );
      testcase( pExpr->op==TK_COLUMN );
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );



      pWalker->u.i = 0;
      return WRC_Abort;

    case TK_VARIABLE:
      if( pWalker->u.i==4 ){
        /* Silently convert bound parameters that appear inside of CREATE
        ** statements into a NULL when parsing the CREATE statement text out
        ** of the sqlite_master table */
        pExpr->op = TK_NULL;
      }else if( pWalker->u.i==3 ){
        /* A bound parameter in a CREATE statement that originates from
        ** sqlite3_prepare() causes an error */
        pWalker->u.i = 0;
        return WRC_Abort;
      }
      /* Fall through */
    default:
      testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
      testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
      return WRC_Continue;
  }
}
static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  pWalker->u.i = 0;
  return WRC_Abort;
}
static int exprIsConst(Expr *p, int initFlag){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.u.i = initFlag;
  w.xExprCallback = exprNodeIsConstant;
  w.xSelectCallback = selectNodeIsConstant;

  sqlite3WalkExpr(&w, p);
  return w.u.i;
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** and 0 if it involves variables or function calls.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
  return exprIsConst(p, 1);
}

/*
** Walk an expression tree.  Return 1 if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
  return exprIsConst(p, 2);
}

/*
** Walk an expression tree.  Return 1 if the expression is constant










** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
  assert( isInit==0 || isInit==1 );
  return exprIsConst(p, 3+isInit);
}

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
................................................................................
    case TK_INTEGER:
    case TK_STRING:
    case TK_FLOAT:
    case TK_BLOB:
      return 0;
    case TK_COLUMN:
      assert( p->pTab!=0 );

      return p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0;
    default:
      return 1;
  }
}

/*
** Return TRUE if the given expression is a constant which would be
................................................................................
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
        target
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.  */



      if( pExpr->iColumn>=0 
       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
#endif
      break;
................................................................................
    u8 *pSpace;                     /* Allocated space not yet assigned */
    int i;                          /* Used to iterate through p->aSample[] */

    p->iGet = -1;
    p->mxSample = mxSample;
    p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
    p->current.anLt = &p->current.anEq[nColUp];
    p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565;
  
    /* Set up the Stat4Accum.a[] and aBest[] arrays */
    p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
    p->aBest = &p->a[mxSample];
    pSpace = (u8*)(&p->a[mxSample+nCol]);
    for(i=0; i<(mxSample+nCol); i++){
      p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
................................................................................
    UNUSED_PARAMETER(aOut);
    assert( aLog!=0 );
    aLog[i] = sqlite3LogEst(v);
#endif
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 );
#else
  if( pIndex )
#endif


  while( z[0] ){
    if( sqlite3_strglob("unordered*", z)==0 ){
      pIndex->bUnordered = 1;
    }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
      pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));


    }
#ifdef SQLITE_ENABLE_COSTMULT
    else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
      pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
    }
#endif
    while( z[0]!=0 && z[0]!=' ' ) z++;
    while( z[0]==' ' ) z++;

  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
................................................................................
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt avgEq = 0;
      tRowcnt nRow;             /* Number of rows in index */
      i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
      i64 nDist100;             /* Number of distinct values in index */

      if( pIdx->aiRowEst==0 || pIdx->aiRowEst[iCol+1]==0 ){
        nRow = pFinal->anLt[iCol];
        nDist100 = (i64)100 * pFinal->anDLt[iCol];
        nSample--;
      }else{
        nRow = pIdx->aiRowEst[0];
        nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
      }


      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index. Set sumEq to the sum of 
      ** the nEq values for column iCol for the same set (adding the value 
      ** only once where there exist duplicate prefixes).  */
      for(i=0; i<nSample; i++){
        if( i==(pIdx->nSample-1)
................................................................................
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
................................................................................
    if( !aNew->pSchema ){
      rc = SQLITE_NOMEM;
    }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
      zErrDyn = sqlite3MPrintf(db, 
        "attached databases must use the same text encoding as main database");
      rc = SQLITE_ERROR;
    }

    pPager = sqlite3BtreePager(aNew->pBt);
    sqlite3PagerLockingMode(pPager, db->dfltLockMode);
    sqlite3BtreeSecureDelete(aNew->pBt,
                             sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    sqlite3BtreeSetPagerFlags(aNew->pBt, 3 | (db->flags & PAGER_FLAGS_MASK));
#endif

  }
  aNew->safety_level = 3;
  aNew->zName = sqlite3DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
  }

................................................................................
** setting of the auth function is NULL.
*/
SQLITE_API int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){



  sqlite3_mutex_enter(db->mutex);
  db->xAuth = (sqlite3_xauth)xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
................................................................................
** auxiliary databases added using the ATTACH command.
**
** See also sqlite3LocateTable().
*/
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;
  assert( zName!=0 );





  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
#if SQLITE_USER_AUTHENTICATION
  /* Only the admin user is allowed to know that the sqlite_user table
  ** exists */
  if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
    return 0;
................................................................................
/*
** Reclaim the memory used by an index
*/
static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif
  if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo);
  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3DbFree(db, p->zColAff);
  if( p->isResized ) sqlite3DbFree(db, p->azColl);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3_free(p->aiRowEst);
#endif
  sqlite3DbFree(db, p);
................................................................................
    assert( pParse->pNewTable==pTab );
    pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
    if( pPk==0 ) return;
    pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
    pTab->iPKey = -1;
  }else{
    pPk = sqlite3PrimaryKeyIndex(pTab);













  }
  pPk->isCovering = 1;
  assert( pPk!=0 );
  nPk = pPk->nKeyCol;

  /* Make sure every column of the PRIMARY KEY is NOT NULL */
  for(i=0; i<nPk; i++){
................................................................................
** So there might be multiple references to the returned pointer.  The
** caller should not try to modify the KeyInfo object.
**
** The caller should invoke sqlite3KeyInfoUnref() on the returned object
** when it has finished using it.
*/
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
  if( pParse->nErr ) return 0;
#ifndef SQLITE_OMIT_SHARED_CACHE
  if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){
    sqlite3KeyInfoUnref(pIdx->pKeyInfo);
    pIdx->pKeyInfo = 0;
  }
#endif
  if( pIdx->pKeyInfo==0 ){
    int i;
    int nCol = pIdx->nColumn;
    int nKey = pIdx->nKeyCol;
    KeyInfo *pKey;

    if( pIdx->uniqNotNull ){
      pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
    }else{
      pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
    }
    if( pKey ){
      assert( sqlite3KeyInfoIsWriteable(pKey) );
      for(i=0; i<nCol; i++){
        char *zColl = pIdx->azColl[i];
        assert( zColl!=0 );
        pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
                          sqlite3LocateCollSeq(pParse, zColl);
        pKey->aSortOrder[i] = pIdx->aSortOrder[i];
      }
      if( pParse->nErr ){
        sqlite3KeyInfoUnref(pKey);
      }else{
        pIdx->pKeyInfo = pKey;

      }
    }
  }
  return sqlite3KeyInfoRef(pIdx->pKeyInfo);

}

#ifndef SQLITE_OMIT_CTE
/* 
** This routine is invoked once per CTE by the parser while parsing a 
** WITH clause. 
*/
................................................................................
      /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
      sqlite3_result_null(context);
      break;
    }
    default: {
      /* Because sqlite3_value_double() returns 0.0 if the argument is not
      ** something that can be converted into a number, we have:
      ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
      ** cannot be converted to a numeric value. 
      */
      double rVal = sqlite3_value_double(argv[0]);
      if( rVal<0 ) rVal = -rVal;
      sqlite3_result_double(context, rVal);
      break;
    }
  }
................................................................................
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
  }else{
    if( nIncr>0 && pFKey->isDeferred==0 ){
      sqlite3ParseToplevel(pParse)->mayAbort = 1;
    }
    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  }

  sqlite3VdbeResolveLabel(v, iOk);
  sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
................................................................................

/*
** This function is called to generate code executed when a row is deleted
** from the parent table of foreign key constraint pFKey and, if pFKey is 
** deferred, when a row is inserted into the same table. When generating
** code for an SQL UPDATE operation, this function may be called twice -
** once to "delete" the old row and once to "insert" the new row.




**
** The code generated by this function scans through the rows in the child
** table that correspond to the parent table row being deleted or inserted.
** For each child row found, one of the following actions is taken:
**
**   Operation | FK type   | Action taken
**   --------------------------------------------------------------------------
................................................................................
  /* Resolve the references in the WHERE clause. */
  memset(&sNameContext, 0, sizeof(NameContext));
  sNameContext.pSrcList = pSrc;
  sNameContext.pParse = pParse;
  sqlite3ResolveExprNames(&sNameContext, pWhere);

  /* Create VDBE to loop through the entries in pSrc that match the WHERE
  ** clause. If the constraint is not deferred, throw an exception for
  ** each row found. Otherwise, for deferred constraints, increment the
  ** deferred constraint counter by nIncr for each row selected.  */
  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
  if( nIncr>0 && pFKey->isDeferred==0 ){
    sqlite3ParseToplevel(pParse)->mayAbort = 1;
  }
  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  if( pWInfo ){
    sqlite3WhereEnd(pWInfo);
  }

  /* Clean up the WHERE clause constructed above. */
  sqlite3ExprDelete(db, pWhere);
................................................................................
          return 1;
        }
      }
    }
  }
  return 0;
}



















/*
** This function is called when inserting, deleting or updating a row of
** table pTab to generate VDBE code to perform foreign key constraint 
** processing for the operation.
**
** For a DELETE operation, parameter regOld is passed the index of the
................................................................................
  for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
    Table *pTo;                   /* Parent table of foreign key pFKey */
    Index *pIdx = 0;              /* Index on key columns in pTo */
    int *aiFree = 0;
    int *aiCol;
    int iCol;
    int i;
    int isIgnore = 0;

    if( aChange 
     && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
     && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 
    ){
      continue;
    }
................................................................................
      /* Request permission to read the parent key columns. If the 
      ** authorization callback returns SQLITE_IGNORE, behave as if any
      ** values read from the parent table are NULL. */
      if( db->xAuth ){
        int rcauth;
        char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
        rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
        isIgnore = (rcauth==SQLITE_IGNORE);
      }
#endif
    }

    /* Take a shared-cache advisory read-lock on the parent table. Allocate 
    ** a cursor to use to search the unique index on the parent key columns 
    ** in the parent table.  */
................................................................................
    sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
    pParse->nTab++;

    if( regOld!=0 ){
      /* A row is being removed from the child table. Search for the parent.
      ** If the parent does not exist, removing the child row resolves an 
      ** outstanding foreign key constraint violation. */
      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
    }
    if( regNew!=0 ){
      /* A row is being added to the child table. If a parent row cannot
      ** be found, adding the child row has violated the FK constraint. */ 






      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
    }

    sqlite3DbFree(db, aiFree);
  }

  /* Loop through all the foreign key constraints that refer to this table.
  ** (the "child" constraints) */
................................................................................
      continue;
    }

    if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 
     && !pParse->pToplevel && !pParse->isMultiWrite 
    ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause an immediate
      ** foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
................................................................................
      pItem->pTab->nRef++;
      pItem->iCursor = pParse->nTab++;
  
      if( regNew!=0 ){
        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
      }
      if( regOld!=0 ){
        /* If there is a RESTRICT action configured for the current operation
        ** on the parent table of this FK, then throw an exception 
        ** immediately if the FK constraint is violated, even if this is a
        ** deferred trigger. That's what RESTRICT means. To defer checking
        ** the constraint, the FK should specify NO ACTION (represented
        ** using OE_None). NO ACTION is the default.  */
        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);




















      }
      pItem->zName = 0;
      sqlite3SrcListDelete(db, pSrc);
    }
    sqlite3DbFree(db, aiCol);
  }
}
................................................................................
#ifndef SQLITE_ENABLE_COLUMN_METADATA
# define sqlite3_column_database_name   0
# define sqlite3_column_database_name16 0
# define sqlite3_column_table_name      0
# define sqlite3_column_table_name16    0
# define sqlite3_column_origin_name     0
# define sqlite3_column_origin_name16   0
# define sqlite3_table_column_metadata  0
#endif

#ifdef SQLITE_OMIT_AUTHORIZATION
# define sqlite3_set_authorizer         0
#endif

#ifdef SQLITE_OMIT_UTF16
................................................................................
#define PragTyp_ACTIVATE_EXTENSIONS           36
#define PragTyp_HEXKEY                        37
#define PragTyp_KEY                           38
#define PragTyp_REKEY                         39
#define PragTyp_LOCK_STATUS                   40
#define PragTyp_PARSER_TRACE                  41
#define PragFlag_NeedSchema           0x01

static const struct sPragmaNames {
  const char *const zName;  /* Name of pragma */
  u8 ePragTyp;              /* PragTyp_XXX value */
  u8 mPragFlag;             /* Zero or more PragFlag_XXX values */
  u32 iArg;                 /* Extra argument */
} aPragmaNames[] = {
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
................................................................................
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "application_id",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_AUTOVACUUM)
  { /* zName:     */ "auto_vacuum",
    /* ePragTyp:  */ PragTyp_AUTO_VACUUM,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
................................................................................
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN
  { /* zName:     */ "data_store_directory",
    /* ePragTyp:  */ PragTyp_DATA_STORE_DIRECTORY,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif






#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
  { /* zName:     */ "database_list",
    /* ePragTyp:  */ PragTyp_DATABASE_LIST,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
................................................................................
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_ForeignKeys },
#endif
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "freelist_count",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "full_column_names",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_FullColNames },
  { /* zName:     */ "fullfsync",
................................................................................
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_ReverseOrder },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "schema_version",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  { /* zName:     */ "secure_delete",
    /* ePragTyp:  */ PragTyp_SECURE_DELETE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
................................................................................
    /* ePragTyp:  */ PragTyp_THREADS,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "user_version",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if defined(SQLITE_DEBUG)
  { /* zName:     */ "vdbe_addoptrace",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_VdbeAddopTrace },
................................................................................
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "writable_schema",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_WriteSchema|SQLITE_RecoveryMode },
#endif
};
/* Number of pragmas: 57 on by default, 70 total. */
/* End of the automatically generated pragma table.
***************************************************************************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.  The FULL option is disallowed
................................................................................
      */
      if( 
        !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 
        DbHasProperty(db, 0, DB_Empty) 
      ){
        for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
          if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){

            ENC(pParse->db) = pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
            break;
          }
        }
        if( !pEnc->zName ){
          sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
................................................................................
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  case PragTyp_HEADER_VALUE: {
    int iCookie;   /* Cookie index. 1 for schema-cookie, 6 for user-cookie. */
    sqlite3VdbeUsesBtree(v, iDb);
    switch( zLeft[0] ){
      case 'a': case 'A':
        iCookie = BTREE_APPLICATION_ID;
        break;
      case 'f': case 'F':
        iCookie = BTREE_FREE_PAGE_COUNT;
        break;
      case 's': case 'S':
        iCookie = BTREE_SCHEMA_VERSION;
        break;
      default:
        iCookie = BTREE_USER_VERSION;
        break;
    }

    if( zRight && iCookie!=BTREE_FREE_PAGE_COUNT ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
................................................................................
    }
  }
  break;
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */

#ifndef SQLITE_OMIT_WAL
  /*
  **   PRAGMA [database.]wal_checkpoint = passive|full|restart
  **
  ** Checkpoint the database.
  */
  case PragTyp_WAL_CHECKPOINT: {
    int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
    int eMode = SQLITE_CHECKPOINT_PASSIVE;
    if( zRight ){
      if( sqlite3StrICmp(zRight, "full")==0 ){
        eMode = SQLITE_CHECKPOINT_FULL;
      }else if( sqlite3StrICmp(zRight, "restart")==0 ){
        eMode = SQLITE_CHECKPOINT_RESTART;


      }
    }
    sqlite3VdbeSetNumCols(v, 3);
    pParse->nMem = 3;
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC);
................................................................................
** file was of zero-length, then the DB_Empty flag is also set.
*/
SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
  int i, rc;
  int commit_internal = !(db->flags&SQLITE_InternChanges);
  
  assert( sqlite3_mutex_held(db->mutex) );

  assert( db->init.busy==0 );
  rc = SQLITE_OK;
  db->init.busy = 1;

  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
    rc = sqlite3InitOne(db, i, pzErrMsg);
    if( rc ){
      sqlite3ResetOneSchema(db, i);
    }
  }
................................................................................
  int nBytes,               /* Length of zSql in bytes. */
  int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
  Vdbe *pOld,               /* VM being reprepared */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;
  assert( ppStmt!=0 );




  *ppStmt = 0;
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
  if( rc==SQLITE_SCHEMA ){
    sqlite3_finalize(*ppStmt);
................................................................................
  ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
  ** tricky bit is figuring out the pointer to return in *pzTail.
  */
  char *zSql8;
  const char *zTail8 = 0;
  int rc = SQLITE_OK;

  assert( ppStmt );


  *ppStmt = 0;
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  if( nBytes>=0 ){
    int sz;
    const char *z = (const char*)zSql;
    for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
    nBytes = sz;
................................................................................
  int labelBkOut;       /* Start label for the block-output subroutine */
  int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
  u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure but do not deallocate
** the select structure itself.
*/
static void clearSelect(sqlite3 *db, Select *p){


  sqlite3ExprListDelete(db, p->pEList);
  sqlite3SrcListDelete(db, p->pSrc);
  sqlite3ExprDelete(db, p->pWhere);
  sqlite3ExprListDelete(db, p->pGroupBy);
  sqlite3ExprDelete(db, p->pHaving);
  sqlite3ExprListDelete(db, p->pOrderBy);
  sqlite3SelectDelete(db, p->pPrior);
  sqlite3ExprDelete(db, p->pLimit);
  sqlite3ExprDelete(db, p->pOffset);
  sqlite3WithDelete(db, p->pWith);




}

/*
** Initialize a SelectDest structure.
*/
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
................................................................................
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  if( db->mallocFailed ) {
    clearSelect(db, pNew);
    if( pNew!=&standin ) sqlite3DbFree(db, pNew);
    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}
................................................................................
#endif


/*
** Delete the given Select structure and all of its substructures.
*/
SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){
  if( p ){
    clearSelect(db, p);
    sqlite3DbFree(db, p);
  }
}

/*
** Return a pointer to the right-most SELECT statement in a compound.
*/
static Select *findRightmost(Select *p){
  while( p->pNext ) p = p->pNext;
................................................................................
/* Forward references */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);






























































/*
** This routine is called to process a compound query form from
** two or more separate queries using UNION, UNION ALL, EXCEPT, or
** INTERSECT
**
** "p" points to the right-most of the two queries.  the query on the
................................................................................
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    dest.eDest = SRT_Table;
  }








  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
  assert( p->pEList && pPrior->pEList );
  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
    if( p->selFlags & SF_Values ){
      sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
    }else{
      sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
        " do not have the same number of result columns", selectOpName(p->op));
    }
    rc = 1;
    goto multi_select_end;
  }

#ifndef SQLITE_OMIT_CTE
  if( p->selFlags & SF_Recursive ){
    generateWithRecursiveQuery(pParse, p, &dest);
................................................................................
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;

  sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);


  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);

  /* Look up every table named in the FROM clause of the select.  If
................................................................................
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;

  w.xSelectCallback2 = selectPopWith;

  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
................................................................................
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;
    sSort.pOrderBy = 0;
    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
    ** original setting of the SF_Distinct flag, not the current setting */
    assert( sDistinct.isTnct );
  }

  /* If there is an ORDER BY clause, then this sorting
................................................................................
  int *pnRow,                 /* Write the number of rows in the result here */
  int *pnColumn,              /* Write the number of columns of result here */
  char **pzErrMsg             /* Write error messages here */
){
  int rc;
  TabResult res;




  *pazResult = 0;
  if( pnColumn ) *pnColumn = 0;
  if( pnRow ) *pnRow = 0;
  if( pzErrMsg ) *pzErrMsg = 0;
  res.zErrMsg = 0;
  res.nRow = 0;
  res.nColumn = 0;
................................................................................
** original database is required.  Every page of the database is written
** approximately 3 times:  Once for step (2) and twice for step (3).
** Two writes per page are required in step (3) because the original
** database content must be written into the rollback journal prior to
** overwriting the database with the vacuumed content.
**
** Only 1x temporary space and only 1x writes would be required if
** the copy of step (3) were replace by deleting the original database
** and renaming the transient database as the original.  But that will
** not work if other processes are attached to the original database.
** And a power loss in between deleting the original and renaming the
** transient would cause the database file to appear to be deleted
** following reboot.
*/
SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
................................................................................
*/
SQLITE_API int sqlite3_create_module(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux                      /* Context pointer for xCreate/xConnect */
){



  return createModule(db, zName, pModule, pAux, 0);
}

/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int sqlite3_create_module_v2(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux,                     /* Context pointer for xCreate/xConnect */
  void (*xDestroy)(void *)        /* Module destructor function */
){



  return createModule(db, zName, pModule, pAux, xDestroy);
}

/*
** Lock the virtual table so that it cannot be disconnected.
** Locks nest.  Every lock should have a corresponding unlock.
** If an unlock is omitted, resources leaks will occur.  
................................................................................
  assert( iDb>=0 );

  pTable->tabFlags |= TF_Virtual;
  pTable->nModuleArg = 0;
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, 0);
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));



  pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);



#ifndef SQLITE_OMIT_AUTHORIZATION
  /* Creating a virtual table invokes the authorization callback twice.
  ** The first invocation, to obtain permission to INSERT a row into the
  ** sqlite_master table, has already been made by sqlite3StartTable().
  ** The second call, to obtain permission to create the table, is made now.
  */
................................................................................
SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
  Parse *pParse;

  int rc = SQLITE_OK;
  Table *pTab;
  char *zErr = 0;




  sqlite3_mutex_enter(db->mutex);
  if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
    sqlite3Error(db, SQLITE_MISUSE);
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_MISUSE_BKPT;
  }
  assert( (pTab->tabFlags & TF_Virtual)!=0 );
................................................................................
** The results of this routine are undefined unless it is called from
** within an xUpdate method.
*/
SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){
  static const unsigned char aMap[] = { 
    SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 
  };



  assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
  assert( OE_Ignore==4 && OE_Replace==5 );
  assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
  return (int)aMap[db->vtabOnConflict-1];
}

/*
................................................................................
** the SQLite core with additional information about the behavior
** of the virtual table being implemented.
*/
SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc = SQLITE_OK;




  sqlite3_mutex_enter(db->mutex);

  va_start(ap, op);
  switch( op ){
    case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
      VtabCtx *p = db->pVtabCtx;
      if( !p ){
        rc = SQLITE_MISUSE_BKPT;
      }else{
................................................................................
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
  Bitmask notReady;          /* FROM entries not usable at this level */



};

/*
** Each instance of this object represents an algorithm for evaluating one
** term of a join.  Every term of the FROM clause will have at least
** one corresponding WhereLoop object (unless INDEXED BY constraints
** prevent a query solution - which is an error) and many terms of the
................................................................................
  u8 iSortIdx;          /* Sorting index number.  0==None */
  LogEst rSetup;        /* One-time setup cost (ex: create transient index) */
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */
      u16 nSkip;             /* Number of initial index columns to skip */
      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
      char *idxStr;          /* Index identifier string */
    } vtab;
  } u;
  u32 wsFlags;          /* WHERE_* flags describing the plan */
  u16 nLTerm;           /* Number of entries in aLTerm[] */

  /**** whereLoopXfer() copies fields above ***********************/
# define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
  u16 nLSlot;           /* Number of slots allocated for aLTerm[] */
  WhereTerm **aLTerm;   /* WhereTerms used */
  WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
  WhereTerm *aLTermSpace[4];  /* Initial aLTerm[] space */
};

/* This object holds the prerequisites and the cost of running a
** subquery on one operand of an OR operator in the WHERE clause.
** See WhereOrSet for additional information 
*/
struct WhereOrCost {
................................................................................
#define WHERE_VIRTUALTABLE 0x00000400  /* WhereLoop.u.vtab is valid */
#define WHERE_IN_ABLE      0x00000800  /* Able to support an IN operator */
#define WHERE_ONEROW       0x00001000  /* Selects no more than one row */
#define WHERE_MULTI_OR     0x00002000  /* OR using multiple indices */
#define WHERE_AUTO_INDEX   0x00004000  /* Uses an ephemeral index */
#define WHERE_SKIPSCAN     0x00008000  /* Uses the skip-scan algorithm */
#define WHERE_UNQ_WANTED   0x00010000  /* WHERE_ONEROW would have been helpful*/


/************** End of whereInt.h ********************************************/
/************** Continuing where we left off in where.c **********************/

/*
** Return the estimated number of output rows from a WHERE clause
*/
................................................................................
      return 0;
    }
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqlite3DbFree(db, pOld);
    }
    pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);

  }
  pTerm = &pWC->a[idx = pWC->nTerm++];
  if( p && ExprHasProperty(p, EP_Unlikely) ){
    pTerm->truthProb = sqlite3LogEst(p->iTable) - 99;
  }else{
    pTerm->truthProb = 1;
  }
  pTerm->pExpr = sqlite3ExprSkipCollate(p);
  pTerm->wtFlags = wtFlags;
  pTerm->pWC = pWC;
  pTerm->iParent = -1;
................................................................................
*/
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
  if( pDerived ){
    pDerived->flags |= pBase->flags & EP_FromJoin;
    pDerived->iRightJoinTable = pBase->iRightJoinTable;
  }
}










#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**
**     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
................................................................................
        transferJoinMarkings(pNew, pExpr);
        assert( !ExprHasProperty(pNew, EP_xIsSelect) );
        pNew->x.pList = pList;
        idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        pWC->a[idxNew].iParent = idxTerm;
        pTerm->nChild = 1;
      }else{
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
................................................................................
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        pNew->iParent = idxTerm;
        pTerm = &pWC->a[idxTerm];
        pTerm->nChild = 1;
        pTerm->wtFlags |= TERM_COPIED;
        if( pExpr->op==TK_EQ
         && !ExprHasProperty(pExpr, EP_FromJoin)
         && OptimizationEnabled(db, SQLITE_Transitive)
        ){
          pTerm->eOperator |= WO_EQUIV;
          eExtraOp = WO_EQUIV;
................................................................................
                             sqlite3ExprDup(db, pExpr->pLeft, 0),
                             sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
      transferJoinMarkings(pNewExpr, pExpr);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      pWC->a[idxNew].iParent = idxTerm;
    }
    pTerm->nChild = 2;
  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
  /* Analyze a term that is composed of two or more subterms connected by
  ** an OR operator.
  */
................................................................................
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      pWC->a[idxNew1].iParent = idxTerm;
      pWC->a[idxNew2].iParent = idxTerm;
      pTerm->nChild = 2;
    }
  }
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */

#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Add a WO_MATCH auxiliary term to the constraint set if the
  ** current expression is of the form:  column MATCH expr.
................................................................................
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = prereqExpr;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_MATCH;
      pNewTerm->iParent = idxTerm;
      pTerm = &pWC->a[idxTerm];
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
................................................................................
  ** TERM_VNULL tag will suppress the not-null check at the beginning
  ** of the loop.  Without the TERM_VNULL flag, the not-null check at
  ** the start of the loop will prevent any results from being returned.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0
   && OptimizationEnabled(db, SQLITE_Stat3)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

    pNewExpr = sqlite3PExpr(pParse, TK_GT,
................................................................................
                              TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
    if( idxNew ){
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = 0;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_GT;
      pNewTerm->iParent = idxTerm;
      pTerm = &pWC->a[idxTerm];
      pTerm->nChild = 1;
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
................................................................................
  int mxBitCol;               /* Maximum column in pSrc->colUsed */
  CollSeq *pColl;             /* Collating sequence to on a column */
  WhereLoop *pLoop;           /* The Loop object */
  char *zNotUsed;             /* Extra space on the end of pIdx */
  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */
  u8 sentWarning = 0;         /* True if a warnning has been issued */



  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
  addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);

................................................................................
  ** and used to match WHERE clause constraints */
  nKeyCol = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];
  pLoop = pLevel->pWLoop;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){






    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( !sentWarning ){
        sqlite3_log(SQLITE_WARNING_AUTOINDEX,
            "automatic index on %s(%s)", pTable->zName,
            pTable->aCol[iCol].zName);
        sentWarning = 1;
      }
      if( (idxCols & cMask)==0 ){
        if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return;


        pLoop->aLTerm[nKeyCol++] = pTerm;
        idxCols |= cMask;
      }
    }
  }
  assert( nKeyCol>0 );
  pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
................................................................................
  ** columns that are needed by the query.  With a covering index, the
  ** original table never needs to be accessed.  Automatic indices must
  ** be a covering index because the index will not be updated if the
  ** original table changes and the index and table cannot both be used
  ** if they go out of sync.
  */
  extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
  mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
  testcase( pTable->nCol==BMS-1 );
  testcase( pTable->nCol==BMS-2 );
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ) nKeyCol++;
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    nKeyCol += pTable->nCol - BMS + 1;
  }
  pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;

  /* Construct the Index object to describe this index */
  pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
  if( pIdx==0 ) return;
  pLoop->u.btree.pIndex = pIdx;
  pIdx->zName = "auto-index";
  pIdx->pTable = pTable;
  n = 0;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
................................................................................
  assert( pLevel->iIdxCur>=0 );
  pLevel->iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
  sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */

  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);





  regRecord = sqlite3GetTempReg(pParse);
  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);

  sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
  sqlite3ReleaseTempReg(pParse, regRecord);

  
  /* Jump here when skipping the initialization */
  sqlite3VdbeJumpHere(v, addrInit);



}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
................................................................................
    }
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */


#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return SQLITE_OK on success.

*/
static void whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  IndexSample *aSample = pIdx->aSample;
................................................................................
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }

}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated 
** that the scan will visit nNew rows. This function returns the number
................................................................................
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second 
................................................................................
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, this is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4. 
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.
................................................................................
  int nOut = pLoop->nOut;
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;

  if( p->nSample>0
   && nEq<p->nSampleCol
   && OptimizationEnabled(pParse->db, SQLITE_Stat3) 
  ){
    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      u8 aff;

      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
................................................................................
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **
      ** Or, if pLower is NULL or $L cannot be extracted from it (because it
      ** is not a simple variable or literal value), the lower bound of the
      ** range is $P. Due to a quirk in the way whereKeyStats() works, even
      ** if $L is available, whereKeyStats() is called for both ($P) and 
      ** ($P:$L) and the larger of the two returned values used.
      **
      ** Similarly, iUpper is to be set to the estimate of the number of rows
      ** less than the upper bound of the range query. Where the upper bound
      ** is either ($P) or ($P:$U). Again, even if $U is available, both values
      ** of iUpper are requested of whereKeyStats() and the smaller used.


      */
      tRowcnt iLower;
      tRowcnt iUpper;



      if( pRec ){
        testcase( pRec->nField!=pBuilder->nRecValid );
        pRec->nField = pBuilder->nRecValid;
      }
      if( nEq==p->nKeyCol ){
        aff = SQLITE_AFF_INTEGER;
      }else{
        aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
      }
      /* Determine iLower and iUpper using ($P) only. */
      if( nEq==0 ){
        iLower = 0;
        iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }
................................................................................
      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

................................................................................
      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
      if( rc==SQLITE_OK ){
        if( iUpper>iLower ){
          nNew = sqlite3LogEst(iUpper - iLower);





        }else{
          nNew = 10;        assert( 10==sqlite3LogEst(2) );
        }
        if( nNew<nOut ){
          nOut = nNew;
        }
        WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
................................................................................
  UNUSED_PARAMETER(pBuilder);
  assert( pLower || pUpper );
#endif
  assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
  nNew = whereRangeAdjust(pLower, nOut);
  nNew = whereRangeAdjust(pUpper, nNew);

  /* TUNING: If there is both an upper and lower limit, assume the range is

  ** reduced by an additional 75%. This means that, by default, an open-ended
  ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
  ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
  ** match 1/64 of the index. */ 

  if( pLower && pUpper ) nNew -= 20;


  nOut -= (pLower!=0) + (pUpper!=0);
  if( nNew<10 ) nNew = 10;
  if( nNew<nOut ) nOut = nNew;
#if defined(WHERETRACE_ENABLED)
  if( pLoop->nOut>nOut ){
    WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
................................................................................
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */
  pLoop = pLevel->pWLoop;
  assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
  nEq = pLoop->u.btree.nEq;
  nSkip = pLoop->u.btree.nSkip;
  pIdx = pLoop->u.btree.pIndex;
  assert( pIdx!=0 );

  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLoop->u.btree.nEq + nExtraReg;
................................................................................
** string similar to:
**
**   "a=? AND b>?"
*/
static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
  Index *pIndex = pLoop->u.btree.pIndex;
  u16 nEq = pLoop->u.btree.nEq;
  u16 nSkip = pLoop->u.btree.nSkip;
  int i, j;
  Column *aCol = pTab->aCol;
  i16 *aiColumn = pIndex->aiColumn;

  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
  sqlite3StrAccumAppend(pStr, " (", 2);
  for(i=0; i<nEq; i++){
................................................................................
    explainAppendTerm(pStr, i, z, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single

** record is added to the output to describe the table scan strategy in 
** pLevel.



*/
static void explainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
#ifndef SQLITE_DEBUG

  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
................................................................................
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    str.db = db;
................................................................................
      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;
      assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
      if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
        if( isSearch ){
          zFmt = "PRIMARY KEY";
        }


      }else if( flags & WHERE_AUTO_INDEX ){
        zFmt = "AUTOMATIC COVERING INDEX";
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{
        zFmt = "INDEX %s";
      }
................................................................................
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
  }

}
#else
# define explainOneScan(u,v,w,x,y,z)
#endif /* SQLITE_OMIT_EXPLAIN */


































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
................................................................................
    char *zStartAff;             /* Affinity for start of range constraint */
    char cEndAff = 0;            /* Affinity for end of range constraint */
    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */

    pIdx = pLoop->u.btree.pIndex;
    iIdxCur = pLevel->iIdxCur;
    assert( nEq>=pLoop->u.btree.nSkip );

    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
................................................................................
    assert( pWInfo->pOrderBy==0
         || pWInfo->pOrderBy->nExpr==1
         || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && pWInfo->nOBSat>0
     && (pIdx->nKeyCol>nEq)
    ){
      assert( pLoop->u.btree.nSkip==0 );
      bSeekPastNull = 1;
      nExtraReg = 1;
    }

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
................................................................................
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
        if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;

        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }
................................................................................
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );


          /* This is the sub-WHERE clause body.  First skip over
          ** duplicate rows from prior sub-WHERE clauses, and record the
          ** rowid (or PRIMARY KEY) for the current row so that the same
          ** row will be skipped in subsequent sub-WHERE clauses.
          */
          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int r;
................................................................................
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }
  }





  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
................................................................................
    }else{
      z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
    }
    sqlite3DebugPrintf(" %-19s", z);
    sqlite3_free(z);
  }
  if( p->wsFlags & WHERE_SKIPSCAN ){
    sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->u.btree.nSkip);
  }else{
    sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
  }
  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
  if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
    int i;
    for(i=0; i<p->nLTerm; i++){
................................................................................
  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
      sqlite3_free(p->u.vtab.idxStr);
      p->u.vtab.needFree = 0;
      p->u.vtab.idxStr = 0;
    }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
      sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
      sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo);
      sqlite3DbFree(db, p->u.btree.pIndex);
      p->u.btree.pIndex = 0;
    }
  }
}

/*
................................................................................
      whereLoopDelete(db, p);
    }
    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Return TRUE if both of the following are true:
**
**   (1)  X has the same or lower cost that Y
**   (2)  X is a proper subset of Y

**
** By "proper subset" we mean that X uses fewer WHERE clause terms
** than Y and that every WHERE clause term used by X is also used
** by Y.
**
** If X is a proper subset of Y then Y is a better choice and ought
** to have a lower cost.  This routine returns TRUE when that cost 
** relationship is inverted and needs to be adjusted.


*/
static int whereLoopCheaperProperSubset(
  const WhereLoop *pX,       /* First WhereLoop to compare */
  const WhereLoop *pY        /* Compare against this WhereLoop */
){
  int i, j;

  if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */


  if( pX->rRun >= pY->rRun ){
    if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
    if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
  }
  for(i=pX->nLTerm-1; i>=0; i--){

    for(j=pY->nLTerm-1; j>=0; j--){
      if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
    }
    if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
  }
  return 1;  /* All conditions meet */
}
................................................................................
**
**   (2) pTemplate costs more than any other WhereLoops for which pTemplate
**       is a proper subset.
**
** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
** WHERE clause terms than Y and that every WHERE clause term used by X is
** also used by Y.
**
** This adjustment is omitted for SKIPSCAN loops.  In a SKIPSCAN loop, the
** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE
** clause terms covered, since some of the first nLTerm entries in aLTerm[]
** will be NULL (because they are skipped).  That makes it more difficult
** to compare the loops.  We could add extra code to do the comparison, and
** perhaps we will someday.  But SKIPSCAN is sufficiently uncommon, and this
** adjustment is sufficient minor, that it is very difficult to construct
** a test case where the extra code would improve the query plan.  Better
** to avoid the added complexity and just omit cost adjustments to SKIPSCAN
** loops.
*/
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
  if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
  if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return;
  for(; p; p=p->pNextLoop){
    if( p->iTab!=pTemplate->iTab ) continue;
    if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
    if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue;
    if( whereLoopCheaperProperSubset(p, pTemplate) ){
      /* Adjust pTemplate cost downward so that it is cheaper than its 
      ** subset p */


      pTemplate->rRun = p->rRun;
      pTemplate->nOut = p->nOut - 1;
    }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
      /* Adjust pTemplate cost upward so that it is costlier than p since
      ** pTemplate is a proper subset of p */


      pTemplate->rRun = p->rRun;
      pTemplate->nOut = p->nOut + 1;
    }
  }
}

/*
................................................................................
    /* whereLoopAddBtree() always generates and inserts the automatic index
    ** case first.  Hence compatible candidate WhereLoops never have a larger
    ** rSetup. Call this SETUP-INVARIANT */
    assert( p->rSetup>=pTemplate->rSetup );

    /* Any loop using an appliation-defined index (or PRIMARY KEY or
    ** UNIQUE constraint) with one or more == constraints is better
    ** than an automatic index. */
    if( (p->wsFlags & WHERE_AUTO_INDEX)!=0

     && (pTemplate->wsFlags & WHERE_INDEXED)!=0
     && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
     && (p->prereq & pTemplate->prereq)==pTemplate->prereq
    ){
      break;
    }

................................................................................
  return SQLITE_OK;
}

/*
** Adjust the WhereLoop.nOut value downward to account for terms of the
** WHERE clause that reference the loop but which are not used by an
** index.





**
** In the current implementation, the first extra WHERE clause term reduces
** the number of output rows by a factor of 10 and each additional term
** reduces the number of output rows by sqrt(2).


















*/
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j;
  int nEq = 0;    /* Number of = constraints not within likely()/unlikely() */


  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
    if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
    for(j=pLoop->nLTerm-1; j>=0; j--){
      pX = pLoop->aLTerm[j];
      if( pX==0 ) continue;
      if( pX==pTerm ) break;
      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
    }
    if( j<0 ){
      if( pTerm->truthProb<=0 ){


        pLoop->nOut += pTerm->truthProb;
      }else{


        pLoop->nOut--;
        if( pTerm->eOperator&WO_EQ ) nEq++;








      }
    }
  }
  /* TUNING:  If there is at least one equality constraint in the WHERE
  ** clause that does not have a likelihood() explicitly assigned to it
  ** then do not let the estimated number of output rows exceed half 
  ** the number of rows in the table. */
  if( nEq && pLoop->nOut>nRow-10 ){
    pLoop->nOut = nRow - 10;
  }
}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
................................................................................
  WhereLoop *pNew;                /* Template WhereLoop under construction */
  WhereTerm *pTerm;               /* A WhereTerm under consideration */
  int opMask;                     /* Valid operators for constraints */
  WhereScan scan;                 /* Iterator for WHERE terms */
  Bitmask saved_prereq;           /* Original value of pNew->prereq */
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u16 saved_nSkip;                /* Original value of pNew->u.btree.nSkip */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  LogEst saved_nOut;              /* Original value of pNew->nOut */
  int iCol;                       /* Index of the column in the table */
  int rc = SQLITE_OK;             /* Return code */
  LogEst rSize;                   /* Number of rows in the table */
  LogEst rLogSize;                /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
................................................................................

  assert( pNew->u.btree.nEq<pProbe->nColumn );
  iCol = pProbe->aiColumn[pNew->u.btree.nEq];

  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
                        opMask, pProbe);
  saved_nEq = pNew->u.btree.nEq;
  saved_nSkip = pNew->u.btree.nSkip;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rSize = pProbe->aiRowLogEst[0];
  rLogSize = estLog(rSize);

  /* Consider using a skip-scan if there are no WHERE clause constraints
  ** available for the left-most terms of the index, and if the average
  ** number of repeats in the left-most terms is at least 18. 
  **
  ** The magic number 18 is selected on the basis that scanning 17 rows
  ** is almost always quicker than an index seek (even though if the index
  ** contains fewer than 2^17 rows we assume otherwise in other parts of
  ** the code). And, even if it is not, it should not be too much slower. 
  ** On the other hand, the extra seeks could end up being significantly
  ** more expensive.  */
  assert( 42==sqlite3LogEst(18) );
  if( saved_nEq==saved_nSkip
   && saved_nEq+1<pProbe->nKeyCol
   && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
   && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
  ){
    LogEst nIter;
    pNew->u.btree.nEq++;
    pNew->u.btree.nSkip++;
    pNew->aLTerm[pNew->nLTerm++] = 0;
    pNew->wsFlags |= WHERE_SKIPSCAN;
    nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
    if( pTerm ){
      /* TUNING:  When estimating skip-scan for a term that is also indexable,
      ** multiply the cost of the skip-scan by 2.0, to make it a little less
      ** desirable than the regular index lookup. */
      nIter += 10;  assert( 10==sqlite3LogEst(2) );
    }
    pNew->nOut -= nIter;
    /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
    ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
    nIter += 5;
    whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
    pNew->nOut = saved_nOut;
    pNew->u.btree.nEq = saved_nEq;
    pNew->u.btree.nSkip = saved_nSkip;
  }
  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
    LogEst rCostIdx;
    LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
    int nIn = 0;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    int nRecValid = pBuilder->nRecValid;
................................................................................
        pNew->nOut -= nIn;
      }else{
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
        tRowcnt nOut = 0;
        if( nInMul==0 
         && pProbe->nSample 
         && pNew->u.btree.nEq<=pProbe->nSampleCol
         && OptimizationEnabled(db, SQLITE_Stat3) 
         && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
        ){
          Expr *pExpr = pTerm->pExpr;
          if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
            testcase( eOp & WO_EQ );
            testcase( eOp & WO_ISNULL );
            rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
................................................................................
    pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    pBuilder->nRecValid = nRecValid;
#endif
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->u.btree.nSkip = saved_nSkip;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;



































  return rc;
}

/*
** Return True if it is possible that pIndex might be useful in
** implementing the ORDER BY clause in pBuilder.
**
................................................................................
    /* Generate auto-index WhereLoops */
    WhereTerm *pTerm;
    WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
    for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
      if( pTerm->prereqRight & pNew->maskSelf ) continue;
      if( termCanDriveIndex(pTerm, pSrc, 0) ){
        pNew->u.btree.nEq = 1;
        pNew->u.btree.nSkip = 0;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** estimated to be X*N*log2(N) where N is the number of rows in
        ** the table being indexed and where X is 7 (LogEst=28) for normal
        ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
................................................................................
    if( pProbe->pPartIdxWhere!=0
     && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
      testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
      continue;  /* Partial index inappropriate for this query */
    }
    rSize = pProbe->aiRowLogEst[0];
    pNew->u.btree.nEq = 0;
    pNew->u.btree.nSkip = 0;
    pNew->nLTerm = 0;
    pNew->iSortIdx = 0;
    pNew->rSetup = 0;
    pNew->prereq = mExtra;
    pNew->nOut = rSize;
    pNew->u.btree.pIndex = pProbe;
    b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
................................................................................
      rev = revSet = 0;
      distinctColumns = 0;
      for(j=0; j<nColumn; j++){
        u8 bOnce;   /* True to run the ORDER BY search loop */

        /* Skip over == and IS NULL terms */
        if( j<pLoop->u.btree.nEq
         && pLoop->u.btree.nSkip==0
         && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
        ){
          if( i & WO_ISNULL ){
            testcase( isOrderDistinct );
            isOrderDistinct = 0;
          }
          continue;  
................................................................................
            }
          }
        }
      }
    }

#ifdef WHERETRACE_ENABLED  /* >=2 */
    if( sqlite3WhereTrace>=2 ){
      sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
           pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
        if( pTo->isOrdered>0 ){
          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
................................................................................
  pTab = pItem->pTab;
  if( IsVirtual(pTab) ) return 0;
  if( pItem->zIndex ) return 0;
  iCur = pItem->iCursor;
  pWC = &pWInfo->sWC;
  pLoop = pBuilder->pNew;
  pLoop->wsFlags = 0;
  pLoop->u.btree.nSkip = 0;
  pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
  if( pTerm ){
    pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
    pLoop->aLTerm[0] = pTerm;
    pLoop->nLTerm = 1;
    pLoop->u.btree.nEq = 1;
    /* TUNING: Cost of a rowid lookup is 10 */
    pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pLoop->aLTermSpace==pLoop->aLTerm );
      assert( ArraySize(pLoop->aLTermSpace)==4 );
      if( !IsUniqueIndex(pIdx)
       || pIdx->pPartIdxWhere!=0 
       || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 
      ) continue;
      for(j=0; j<pIdx->nKeyCol; j++){
        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
        if( pTerm==0 ) break;
................................................................................

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){


    pLevel = &pWInfo->a[ii];

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif

    explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);

    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;



  }

  /* Done. */
  VdbeModuleComment((v, "Begin WHERE-core"));
  return pWInfo;

  /* Jump here if malloc fails */
................................................................................
      case 112: /* select ::= with selectnowith */
{
  Select *p = yymsp[0].minor.yy3, *pNext, *pLoop;
  if( p ){
    int cnt = 0, mxSelect;
    p->pWith = yymsp[-1].minor.yy59;
    if( p->pPrior ){

      pNext = 0;
      for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
        pLoop->pNext = pNext;
        pLoop->selFlags |= SF_Compound;

      }



      mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT];
      if( mxSelect && cnt>mxSelect ){

        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
      }
    }
  }else{
    sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy59);
  }
  yygotominor.yy3 = p;
................................................................................
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */





  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
................................................................................
                     /* Token:           */
     /* State:       **  SEMI  WS  OTHER */
     /* 0 INVALID: */ {    1,  0,     2, },
     /* 1   START: */ {    1,  1,     2, },
     /* 2  NORMAL: */ {    1,  2,     2, },
  };
#endif /* SQLITE_OMIT_TRIGGER */








  while( *zSql ){
    switch( *zSql ){
      case ';': {  /* A semicolon */
        token = tkSEMI;
        break;
      }
................................................................................
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function.  These messages
** are intended for debugging activity only.
*/
SQLITE_PRIVATE void (*sqlite3IoTrace)(const char*, ...) = 0;
#endif

/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**
................................................................................
** there are outstanding database connections or memory allocations or
** while any part of SQLite is otherwise in use in any thread.  This
** routine is not threadsafe.  But it is safe to invoke this routine
** on when SQLite is already shut down.  If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
SQLITE_API int sqlite3_shutdown(void){







  if( sqlite3GlobalConfig.isInit ){
#ifdef SQLITE_EXTRA_SHUTDOWN
    void SQLITE_EXTRA_SHUTDOWN(void);
    SQLITE_EXTRA_SHUTDOWN();
#endif
    sqlite3_os_end();
    sqlite3_reset_auto_extension();
................................................................................
  ** the SQLite library is in use. */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile. 
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }


    case SQLITE_CONFIG_MULTITHREAD: {
      /* Disable mutexing of database connections */
      /* Enable mutexing of core data structures */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }


    case SQLITE_CONFIG_SERIALIZED: {
      /* Enable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 1;
      break;
    }


    case SQLITE_CONFIG_MUTEX: {
      /* Specify an alternative mutex implementation */
      sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
      break;
    }


    case SQLITE_CONFIG_GETMUTEX: {
      /* Retrieve the current mutex implementation */
      *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
      break;
    }
#endif


    case SQLITE_CONFIG_MALLOC: {

      /* Specify an alternative malloc implementation */



      sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
      break;
    }
    case SQLITE_CONFIG_GETMALLOC: {
      /* Retrieve the current malloc() implementation */



      if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
      *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
      break;
    }
    case SQLITE_CONFIG_MEMSTATUS: {
      /* Enable or disable the malloc status collection */


      sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_SCRATCH: {
      /* Designate a buffer for scratch memory space */



      sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite3GlobalConfig.szScratch = va_arg(ap, int);
      sqlite3GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {
      /* Designate a buffer for page cache memory space */


      sqlite3GlobalConfig.pPage = va_arg(ap, void*);
      sqlite3GlobalConfig.szPage = va_arg(ap, int);
      sqlite3GlobalConfig.nPage = va_arg(ap, int);
      break;











    }

    case SQLITE_CONFIG_PCACHE: {
      /* no-op */
      break;
    }
    case SQLITE_CONFIG_GETPCACHE: {
      /* now an error */
      rc = SQLITE_ERROR;
      break;
    }

    case SQLITE_CONFIG_PCACHE2: {



      /* Specify an alternative page cache implementation */
      sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
      break;
    }
    case SQLITE_CONFIG_GETPCACHE2: {




      if( sqlite3GlobalConfig.pcache2.xInit==0 ){
        sqlite3PCacheSetDefault();
      }
      *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
      break;
    }




#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {
      /* Designate a buffer for heap memory space */



      sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      sqlite3GlobalConfig.mnReq = va_arg(ap, int);

      if( sqlite3GlobalConfig.mnReq<1 ){
        sqlite3GlobalConfig.mnReq = 1;
      }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
        /* cap min request size at 2^12 */
        sqlite3GlobalConfig.mnReq = (1<<12);
      }

      if( sqlite3GlobalConfig.pHeap==0 ){
        /* If the heap pointer is NULL, then restore the malloc implementation
        ** back to NULL pointers too.  This will cause the malloc to go




        ** back to its default implementation when sqlite3_initialize() is
        ** run.
        */
        memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
      }else{
        /* The heap pointer is not NULL, then install one of the
        ** mem5.c/mem3.c methods.  The enclosing #if guarantees at
        ** least one of these methods is currently enabled.
        */
#ifdef SQLITE_ENABLE_MEMSYS3
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
      }
................................................................................

    /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
    ** can be changed at start-time using the
    ** sqlite3_config(SQLITE_CONFIG_URI,1) or
    ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
    */
    case SQLITE_CONFIG_URI: {




      sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_COVERING_INDEX_SCAN: {




      sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
      break;
    }

#ifdef SQLITE_ENABLE_SQLLOG
    case SQLITE_CONFIG_SQLLOG: {
      typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
................................................................................
      sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
      sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
      break;
    }
#endif

    case SQLITE_CONFIG_MMAP_SIZE: {




      sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
      sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);





      if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){


        mxMmap = SQLITE_MAX_MMAP_SIZE;
      }
      sqlite3GlobalConfig.mxMmap = mxMmap;
      if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
      if( szMmap>mxMmap) szMmap = mxMmap;

      sqlite3GlobalConfig.szMmap = szMmap;
      break;
    }

#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC)
    case SQLITE_CONFIG_WIN32_HEAPSIZE: {



      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      break;
    }
#endif






    default: {
      rc = SQLITE_ERROR;
      break;
    }
  }
  va_end(ap);
................................................................................
  return SQLITE_OK;
}

/*
** Return the mutex associated with a database connection.
*/
SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){






  return db->mutex;
}

/*
** Free up as much memory as we can from the given database
** connection.
*/
SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){
  int i;




  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  for(i=0; i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      Pager *pPager = sqlite3BtreePager(pBt);
      sqlite3PagerShrink(pPager);
................................................................................
static int binCollFunc(
  void *padFlag,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;



  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ){
    if( padFlag
     && allSpaces(((char*)pKey1)+n, nKey1-n)
     && allSpaces(((char*)pKey2)+n, nKey2-n)
    ){
      /* Leave rc unchanged at 0 */




    }else{
      rc = nKey1 - nKey2;
    }
  }
  return rc;
}

................................................................................
  return r;
}

/*
** Return the ROWID of the most recent insert
*/
SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){






  return db->lastRowid;
}

/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
SQLITE_API int sqlite3_changes(sqlite3 *db){






  return db->nChange;
}

/*
** Return the number of changes since the database handle was opened.
*/
SQLITE_API int sqlite3_total_changes(sqlite3 *db){






  return db->nTotalChange;
}

/*
** Close all open savepoints. This function only manipulates fields of the
** database handle object, it does not close any savepoints that may be open
** at the b-tree/pager level.
................................................................................
** given callback function with the given argument.
*/
SQLITE_API int sqlite3_busy_handler(
  sqlite3 *db,
  int (*xBusy)(void*,int),
  void *pArg
){



  sqlite3_mutex_enter(db->mutex);
  db->busyHandler.xFunc = xBusy;
  db->busyHandler.pArg = pArg;
  db->busyHandler.nBusy = 0;
  db->busyTimeout = 0;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
................................................................................
*/
SQLITE_API void sqlite3_progress_handler(
  sqlite3 *db, 
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){






  sqlite3_mutex_enter(db->mutex);
  if( nOps>0 ){
    db->xProgress = xProgress;
    db->nProgressOps = (unsigned)nOps;
    db->pProgressArg = pArg;
  }else{
    db->xProgress = 0;
................................................................................


/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){



  if( ms>0 ){
    sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
    db->busyTimeout = ms;
  }else{
    sqlite3_busy_handler(db, 0, 0);
  }
  return SQLITE_OK;
}

/*
** Cause any pending operation to stop at its earliest opportunity.
*/
SQLITE_API void sqlite3_interrupt(sqlite3 *db){






  db->u1.isInterrupted = 1;
}


/*
** This function is exactly the same as sqlite3_create_function(), except
** that it is designed to be called by internal code. The difference is
................................................................................
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*),
  void (*xDestroy)(void *)
){
  int rc = SQLITE_ERROR;
  FuncDestructor *pArg = 0;






  sqlite3_mutex_enter(db->mutex);
  if( xDestroy ){
    pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
    if( !pArg ){
      xDestroy(p);
      goto out;
    }
................................................................................
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
){
  int rc;
  char *zFunc8;




  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
  rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
  sqlite3DbFree(db, zFunc8);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
................................................................................
SQLITE_API int sqlite3_overload_function(
  sqlite3 *db,
  const char *zName,
  int nArg
){
  int nName = sqlite3Strlen30(zName);
  int rc = SQLITE_OK;






  sqlite3_mutex_enter(db->mutex);
  if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
    rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
                           0, sqlite3InvalidFunction, 0, 0, 0);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
................................................................................
**
** A NULL trace function means that no tracing is executes.  A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
  void *pOld;







  sqlite3_mutex_enter(db->mutex);
  pOld = db->pTraceArg;
  db->xTrace = xTrace;
  db->pTraceArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pOld;
}
................................................................................
*/
SQLITE_API void *sqlite3_profile(
  sqlite3 *db,
  void (*xProfile)(void*,const char*,sqlite_uint64),
  void *pArg
){
  void *pOld;







  sqlite3_mutex_enter(db->mutex);
  pOld = db->pProfileArg;
  db->xProfile = xProfile;
  db->pProfileArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pOld;
}
................................................................................
*/
SQLITE_API void *sqlite3_commit_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  int (*xCallback)(void*),  /* Function to invoke on each commit */
  void *pArg                /* Argument to the function */
){
  void *pOld;







  sqlite3_mutex_enter(db->mutex);
  pOld = db->pCommitArg;
  db->xCommitCallback = xCallback;
  db->pCommitArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pOld;
}
................................................................................
*/
SQLITE_API void *sqlite3_update_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
  void *pArg                /* Argument to the function */
){
  void *pRet;







  sqlite3_mutex_enter(db->mutex);
  pRet = db->pUpdateArg;
  db->xUpdateCallback = xCallback;
  db->pUpdateArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pRet;
}
................................................................................
*/
SQLITE_API void *sqlite3_rollback_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*), /* Callback function */
  void *pArg                /* Argument to the function */
){
  void *pRet;







  sqlite3_mutex_enter(db->mutex);
  pRet = db->pRollbackArg;
  db->xRollbackCallback = xCallback;
  db->pRollbackArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pRet;
}
................................................................................
** configured by this function.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
#ifdef SQLITE_OMIT_WAL
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(nFrame);
#else



  if( nFrame>0 ){
    sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
  }else{
    sqlite3_wal_hook(db, 0, 0);
  }
#endif
  return SQLITE_OK;
................................................................................
SQLITE_API void *sqlite3_wal_hook(
  sqlite3 *db,                    /* Attach the hook to this db handle */
  int(*xCallback)(void *, sqlite3*, const char*, int),
  void *pArg                      /* First argument passed to xCallback() */
){
#ifndef SQLITE_OMIT_WAL
  void *pRet;






  sqlite3_mutex_enter(db->mutex);
  pRet = db->pWalArg;
  db->xWalCallback = xCallback;
  db->pWalArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pRet;
#else
................................................................................
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
){
#ifdef SQLITE_OMIT_WAL
  return SQLITE_OK;
#else
  int rc;                         /* Return code */
  int iDb = SQLITE_MAX_ATTACHED;  /* sqlite3.aDb[] index of db to checkpoint */





  /* Initialize the output variables to -1 in case an error occurs. */
  if( pnLog ) *pnLog = -1;
  if( pnCkpt ) *pnCkpt = -1;

  assert( SQLITE_CHECKPOINT_FULL>SQLITE_CHECKPOINT_PASSIVE );
  assert( SQLITE_CHECKPOINT_FULL<SQLITE_CHECKPOINT_RESTART );
  assert( SQLITE_CHECKPOINT_PASSIVE+2==SQLITE_CHECKPOINT_RESTART );

  if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_RESTART ){


    return SQLITE_MISUSE;
  }

  sqlite3_mutex_enter(db->mutex);
  if( zDb && zDb[0] ){
    iDb = sqlite3FindDbName(db, zDb);
  }
................................................................................

/*
** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
** to contains a zero-length string, all attached databases are 
** checkpointed.
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){


  return sqlite3_wal_checkpoint_v2(db, zDb, SQLITE_CHECKPOINT_PASSIVE, 0, 0);
}

#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on database iDb. This is a no-op if database iDb is
** not currently open in WAL mode.
**
................................................................................
** argument.  For now, this simply calls the internal sqlite3ErrStr()
** function.
*/
SQLITE_API const char *sqlite3_errstr(int rc){
  return sqlite3ErrStr(rc);
}

/*
** Invalidate all cached KeyInfo objects for database connection "db"
*/
static void invalidateCachedKeyInfo(sqlite3 *db){
  Db *pDb;                    /* A single database */
  int iDb;                    /* The database index number */
  HashElem *k;                /* For looping over tables in pDb */
  Table *pTab;                /* A table in the database */
  Index *pIdx;                /* Each index */

  for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
    if( pDb->pBt==0 ) continue;
    sqlite3BtreeEnter(pDb->pBt);
    for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
      pTab = (Table*)sqliteHashData(k);
      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
        if( pIdx->pKeyInfo && pIdx->pKeyInfo->db==db ){
          sqlite3KeyInfoUnref(pIdx->pKeyInfo);
          pIdx->pKeyInfo = 0;
        }
      }
    }
    sqlite3BtreeLeave(pDb->pBt);
  }
}

/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
static int createCollation(
  sqlite3* db,
  const char *zName, 
................................................................................
  if( pColl && pColl->xCmp ){
    if( db->nVdbeActive ){
      sqlite3ErrorWithMsg(db, SQLITE_BUSY, 
        "unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);
    invalidateCachedKeyInfo(db);

    /* If collation sequence pColl was created directly by a call to
    ** sqlite3_create_collation, and not generated by synthCollSeq(),
    ** then any copies made by synthCollSeq() need to be invalidated.
    ** Also, collation destructor - CollSeq.xDel() - function may need
    ** to be called.
    */ 
................................................................................
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
  int oldLimit;








  /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
  ** there is a hard upper bound set at compile-time by a C preprocessor
  ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
  ** "_MAX_".)
  */
  assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
................................................................................
  const char *zVfs = zDefaultVfs;
  char *zFile;
  char c;
  int nUri = sqlite3Strlen30(zUri);

  assert( *pzErrMsg==0 );


  if( ((flags & SQLITE_OPEN_URI) || sqlite3GlobalConfig.bOpenUri) 
   && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
  ){
    char *zOpt;
    int eState;                   /* Parser state when parsing URI */
    int iIn;                      /* Input character index */
    int iOut = 0;                 /* Output character index */
    int nByte = nUri+2;           /* Bytes of space to allocate */
................................................................................
){
  sqlite3 *db;                    /* Store allocated handle here */
  int rc;                         /* Return code */
  int isThreadsafe;               /* True for threadsafe connections */
  char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
  char *zErrMsg = 0;              /* Error message from sqlite3ParseUri() */




  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif

  /* Only allow sensible combinations of bits in the flags argument.  
................................................................................
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
                 | SQLITE_RecTriggers
#endif
#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
                 | SQLITE_ForeignKeys
#endif



      ;
  sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.



  */
  createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);

  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }



  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );

  /* Also add a UTF-8 case-insensitive collation sequence. */
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);

  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite3_free(zErrMsg);
................................................................................
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_IOERR_NOMEM ){
      rc = SQLITE_NOMEM;
    }
    sqlite3Error(db, rc);
    goto opendb_out;
  }

  db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);


  db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);

  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
................................................................................
  const void *zFilename, 
  sqlite3 **ppDb
){
  char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
  sqlite3_value *pVal;
  int rc;

  assert( zFilename );
  assert( ppDb );

  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif

  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
  if( zFilename8 ){
    rc = openDatabase(zFilename8, ppDb,
                      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
    assert( *ppDb || rc==SQLITE_NOMEM );
    if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
      ENC(*ppDb) = SQLITE_UTF16NATIVE;
    }
  }else{
    rc = SQLITE_NOMEM;
  }
  sqlite3ValueFree(pVal);

  return sqlite3ApiExit(0, rc);
................................................................................
SQLITE_API int sqlite3_create_collation(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, 0);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3* db, 
................................................................................
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  int rc;




  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
................................................................................
  const void *zName,
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc = SQLITE_OK;
  char *zName8;




  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
  if( zName8 ){
    rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
    sqlite3DbFree(db, zName8);
  }
................................................................................
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int sqlite3_collation_needed(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){



  sqlite3_mutex_enter(db->mutex);
  db->xCollNeeded = xCollNeeded;
  db->xCollNeeded16 = 0;
  db->pCollNeededArg = pCollNeededArg;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
................................................................................
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int sqlite3_collation_needed16(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){



  sqlite3_mutex_enter(db->mutex);
  db->xCollNeeded = 0;
  db->xCollNeeded16 = xCollNeeded16;
  db->pCollNeededArg = pCollNeededArg;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
................................................................................
/*
** Test to see whether or not the database connection is in autocommit
** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
** by default.  Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){






  return db->autoCommit;
}

/*
** The following routines are substitutes for constants SQLITE_CORRUPT,
** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
** constants.  They serve two purposes:
................................................................................
}
#endif

/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
#ifdef SQLITE_ENABLE_COLUMN_METADATA
SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
................................................................................
  pTab = sqlite3FindTable(db, zTableName, zDbName);
  if( !pTab || pTab->pSelect ){
    pTab = 0;
    goto error_out;
  }

  /* Find the column for which info is requested */
  if( sqlite3IsRowid(zColumnName) ){
    iCol = pTab->iPKey;
    if( iCol>=0 ){
      pCol = &pTab->aCol[iCol];
    }
  }else{
    for(iCol=0; iCol<pTab->nCol; iCol++){
      pCol = &pTab->aCol[iCol];
      if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
        break;
      }
    }
    if( iCol==pTab->nCol ){




      pTab = 0;
      goto error_out;

    }
  }

  /* The following block stores the meta information that will be returned
  ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
  ** and autoinc. At this point there are two possibilities:
  ** 
................................................................................
  }
  sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg);
  sqlite3DbFree(db, zErrMsg);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
#endif

/*
** Sleep for a little while.  Return the amount of time slept.
*/
SQLITE_API int sqlite3_sleep(int ms){
  sqlite3_vfs *pVfs;
  int rc;
................................................................................
  return rc;
}

/*
** Enable or disable the extended result codes.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){



  sqlite3_mutex_enter(db->mutex);
  db->errMask = onoff ? 0xffffffff : 0xff;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Invoke the xFileControl method on a particular database.
*/
SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;
  Btree *pBtree;




  sqlite3_mutex_enter(db->mutex);
  pBtree = sqlite3DbNameToBtree(db, zDbName);
  if( pBtree ){
    Pager *pPager;
    sqlite3_file *fd;
    sqlite3BtreeEnter(pBtree);
    pPager = sqlite3BtreePager(pBtree);
................................................................................
** The zFilename argument is the filename pointer passed into the xOpen()
** method of a VFS implementation.  The zParam argument is the name of the
** query parameter we seek.  This routine returns the value of the zParam
** parameter if it exists.  If the parameter does not exist, this routine
** returns a NULL pointer.
*/
SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
  if( zFilename==0 ) return 0;
  zFilename += sqlite3Strlen30(zFilename) + 1;
  while( zFilename[0] ){
    int x = strcmp(zFilename, zParam);
    zFilename += sqlite3Strlen30(zFilename) + 1;
    if( x==0 ) return zFilename;
    zFilename += sqlite3Strlen30(zFilename) + 1;
  }
................................................................................
}

/*
** Return the filename of the database associated with a database
** connection.
*/
SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){







  Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
}

/*
** Return 1 if database is read-only or 0 if read/write.  Return -1 if
** no such database exists.
*/
SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){







  Btree *pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
}

/************** End of main.c ************************************************/
/************** Begin file notify.c ******************************************/
/*
** 2009 March 3
................................................................................
** of m for the first i bytes of a word.
**
** Return true if the m-value for z is 1 or more.  In other words,
** return true if z contains at least one vowel that is followed
** by a consonant.
**
** In this routine z[] is in reverse order.  So we are really looking
** for an instance of of a consonant followed by a vowel.
*/
static int m_gt_0(const char *z){
  while( isVowel(z) ){ z++; }
  if( *z==0 ) return 0;
  while( isConsonant(z) ){ z++; }
  return *z!=0;
}
................................................................................
    pCur->aPoint = pNew;
    pCur->nPointAlloc = nNew;
  }
  i = pCur->nPoint++;
  pNew = pCur->aPoint + i;
  pNew->rScore = rScore;
  pNew->iLevel = iLevel;
  assert( iLevel>=0 && iLevel<=RTREE_MAX_DEPTH );
  while( i>0 ){
    RtreeSearchPoint *pParent;
    j = (i-1)/2;
    pParent = pCur->aPoint + j;
    if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
    rtreeSearchPointSwap(pCur, j, i);
    i = j;


|







 







|







 







|
|
|







 







|







 







|







 







|
|
>






|
|
>






|
|
|
|












|
>
|


|
<


|
<
|
>
|

|
>
>
>
>
>
>


|
|
>

|
>
|
>


|
<
>
>
>
|
<
>
>
|
>



|
<
<
<


|
|
>
|
>
>
>
>
|




|
<







|
|
|
|
|







|
|











|
|
|

|
|
|



|
|
|
|


|
|
|







 







|
|
|
|
>









|
|
>
|







 







|
|






|
|
|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>







 







|
|
|
|
|
|
|
|
>
|
|
>
>
>
|

<
<
<
<
|
>
>
>
|
<
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<













|
|
>
>
|
|
|
|
|
<
<
|
<
<
<
|







 







>







 







|







 







|


|
>
|
|
|







 







|
|
|







 







|
>







 







|
|
|
>
>
>
>
>
>
>
>


|

|




|
<







 







|




|
>


|
|









|
|
|
<
<
<
<







 








<
<
<
<
<
<
|
|
|
|
|

>
>
>
>
|
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
<
<
<
>







 







<
<
<

|
<
<
>







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<







 







|
|
|
>
>
>
>
>
>





|


|
<
|
|
>








<
<
<







 







|






|

|

|



|





|


|
|
|
|












>
|







|
|





|








|




<
<
|
|
<







|

|
|
<
<



|
|
>


|

|
<







 







|

|







 







|




|
|







 







|

|

|



|


|




|





|







 







>
>
>
>







 







|
<
<

|
|







 







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<






|
|
|
>



|
|
|
<
|
>
>


|


|
<
|
>


|
|
|
|
<
|
|
>
>
>
>
>
>


|
<
>
>
|
<
<
<
<
>
>
>
>
>

|

|


<
>
|
|
|
|
|



|

|
|
>
|


|

|



|
|


>
>
>
>
>
>
>
>










|
>

<
>
>
|
<
<
>

|
|
|
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|
|
|
<







 







|







 







|







 







>
>
>
>
>










>







 







>







 







>
>
>
>
>
>







 







>







 







>
>







 







>
>
>
>







 







>







 







|
>







 







|







 







<










>





|
>







 







|







 







|







 







>







 







|







 







>







 







>


|
>







 







>







 







|







 







>
>
>
>





>
>
>
>



>
>
>
>
>
>
>







 







>







 







|
|







 







>
>
>







 







>
>
>
>
>
>
>







 







>












|
>







 







>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>







 







>
>
>







 







>
>
>
>
>







 







|







 







|







 







|







 







|







 







>
>
>
>







 







>







 







|
|
>
>
>
>







 







>
>
>
>
>
>







 







|
|
|
|
>
|







 







>
>
>
>
>
>
>







 







>
>
>
>
>







 







>







 







>
>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
>
>
>
>
>
>
>
|
<


>
|







 







>
>
>
>
>







>
>
>
>
>







 







|
|
|
|
>
|




<
<
<
<

>
>
>
|


>
|
>
>







 







>
>
>
>
>







 







|
|

|
>







 







|







 







|









|







 







|
>







 







|







 







|







 







|







 







|
|







 







|







 







|







 







|





|







|






|












|







 







|
>







 







>
>
>
>
>
>
>







 







|







 







>
>
>
>
>







 







>
>







 







>


<







 







>



>
>
>
>
>
>
>
>







 







|







 







|







 







|
|
|
|
|
|
<
<
<
<







 







>







 







>







 







>







 







>
>
>
>
>
>
>
>
>
>
>
>







 







>
|







 







>







 







|







 







|









|







 







|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|













<







 







>
>
|







 







|
|
|
|





|
>
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







<







 







|
<
<
<
<
<
<
<
<
<
<
<
<
<
>







 







|











>




>
>
>
>


>
>
>


<
<
<
>
>
>
>
>
>
>
>




|
|
|

|
|
|
|







>







 







|







 







>







 







>
>
>
>
>












>









|
|





<
<







 







|













<

>
>
>
>
>
>
>
>
>













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>

<
<







|
<




|
|
|
|
|
|
|
<









|
|
|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
>
>
|
|
<








|
|







 







|







 







>
>
>
>
>
>






>
>
>
>
>
>






>
>







 







>
>





|


>
>
>

>
>






>
>
>
>
>







 







|
>
>
>

|



>
>
>
|
>







 







>
>
>







 







>
>
>







 







>
>
>







 







|
|
>






>
>
>

>
>







>
>
>
>
>
>
>







 







>
>
>







 







>







 







|







 







>







 







|
|







 







>







 







>
>







 







>
>
>


>
>
>







 







|
|
>







 







>
>
>
>
>







 







>
>
>
>
>
>
>
|
|
|
>







 







|
|
>
>
>
>
>
>
>
>
>

|
<
<
>
>
|
<
>

<
<
<
<
<
<
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
<
<
<

<
<
<
>
>
>
>
|
<
<
<
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
|
<
<
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|
>







 







<




>
|




>
>
>
>

>







 







<



<
|
>
>
>
>












|
|







 







<
<
<
<
<
|
<
<
<







 







>







 







|
>
>
>
>







 







|













|
|
>
|







 







>
>
|
|
|
<
<
|
<

<
|
<
<
|
|
|
|







 







>


>











<
<
<
<
<
<
<
<
<
<

<
>
|
|
|
<

|
|
<

|
|

|
>
|
>
>
>
>
>
>
>
>
>
|
|
<
<
<


>
>
>
|
|
>
>
>
>
>
>
>
>
|
<
<


<
>
>
>
|

>

>

>
|
>
>




>
>
>
>
>
>
>
>
>
>
>
>
|
<
<
>
>
>
>
>
>
>
>
>
>

<
<
<
>
|
<
<
<
<
>
|
>
>
>

>
>
>
>
>
>
>
|
>
>
|
<
<
<
<
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
>

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


<
<
<
<












|
|
|
|
>

>
>

|
>



|
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
>
>
|
<
<
<
<
<
<
<
<
<
<
<
<
>
>
|
<
|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
>
>

<
<
<
<
<
<
<
>
>
>
>
|
<
<
|
<
<
<
<
<
<
<
<
<
<

>






<

<
<
<
<
>







 







>
>
>
>
>
>
>










>
>
>
|
>







 







|







 







>
>

>
>

>
>







 







>
>
>







>
>
>
>

>
>













>
>
>
>
>







 







>
>
>
>
>







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
|
>
>

>
|
|
|
<







 







>
>
>







 







>
>
>
>
>
>








>
>
>
>
>
>







 







>








<
<
<






>
>
>
>
>








|







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>







 







|







 







>
>
>










>







 







>







 







>








>











>







 







>







 







>
>
>
>
>
>







 







<
<
|







 







>
>




>
>







 







|
>



|
>
>






>
>






>
>






>
>






>
>













>
>





>
>
>
>







 







>
>
|
>







 







<







 







|
|

|
>
>
>
>
|
>
>
>
>







 







>
>
>
>
>
>







 







>
>
>
>
>
>
>
|




>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>







 







|
>
>
>







 







>
>

>
>







 







|


|







 







|
|
|







 







>
>
>







 







>










>
>
>







 







|
|







 







>







 







>
>
>
>
>







 







<







 







<



>







 







|







 







>
>
>
>
>
>
>







 







<
<
<







 







>
|

<
>
|

<
|
|
|
<







 







<
<
|
>
>
>
|
|
<







 







|







|







 







>
>
>
>







 







|







 







|







 







|
|
|
|



|
|
>
|

>
>
>

|
|








|
|

|
|





|
|

|

>
>
>

<








>
>
>
|
|
>

|




|


|











|


|


|


>

|



|







|



|





|



|
>
>
>
>
>
>
>
>
>
>









|







 







>
|







 







|
>
>
>







 







|







 







|

|

>
>
|
|
|
|
|
>
>
|

|
|
|

|
|
>







 







|







>







 







|







 







>







>







 







>
>
>







 







<
>
>
>
>
>







 







<







 







>
>
>
>
>
>
>
>
>
>
>
>
>







 







<
<
<
<
<
<
<
<
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
<
>
|
|
<
<
>







 







|
|







 







|







 







>
>
>
>







 







|
|
<

<
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|







 







|

|

|
>
>
>
>
>
>
|







 







|
|







 







|
<
<
<
<
<

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







<







 







>







 







|







 







>
>
>
>
>
>







 







|
|







 







|







 







|







 







|







 







>
|







 







|

|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







|











>
>







 







>



>







 







<
>
>
>
>

|







 







|
>
>

|







 







|
|

|
>
>
|
|
|
|
|
|
<
|
|
|
>
>
>
>







 







|
<







 







<
|
<
<







 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







>
>
>
>
>
>
>






|
<
<
<
<
<







 







>
|
>







 







>
|
>







 







|












<







 







>
>
>







 







|







 







>
>
>













>
>
>







 







>
>
>
|
>
>







 







>
>
>







 







>
>
>







 







>
>
>

<







 







>
>
>







 







<












>





|







 







>







 







>



|







 







>
>
>
>
>
>
>
>
>







 







|
<







 







|

<







 







|

<







 







|
|
<







 







|

<







 







|







 







|

<







 







>
>







 







>
>
>
>
>
>












|
>
>







 







|








<



|







 







>

>
>
>
>
>




>




>



>
>
>







 







<








|
>

|







 







>







 







|







 







|







 







<
|
<
<







 







|





>
>

|
|
>
>













|







 







|







 







|











>
>
>
>
>







 







|
>




>
|
>







 







|







 







|







 







|
>
|
<
>
>
>

|







|
>







 







|







 







>
>







 







|

>


|

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|







 







<
|
<

>







 







|


>
>







 







>
>
>
>







 







|







 







<







 







|



>







|
>
>






>
|
>
>





>







 







<
<
<
<
<
<
<
<
<
<
<



<



<


|
>
>





>
>







 







|

>







 







>
>
>
>
>

<
<
<
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








|
|

>












>
>


>
>

|
>
>
>
>
>
>
>
>



|
<
<
<
<
<
<







 







|







 







|







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







<







 







|



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







 







|







 







|







 







|







 







|







 







|











<







 







>
>

>







>
|
>



>
>
>







 







>




>

>
>
>
|
|
>







 







>
>
>







 







>
>
>
>
>
>
>







 







|







 







>
>
>
>
>
>
>







 







|

|






>
>







>
>






>
>





>
>







<

>
|
>
>
>




|
>
>
>





|
>
>




|
>
>
>






|
>
>




>
>
>
>
>
>
>
>
>
>
>













>
>
>
|




>
>
>
>







>
>
>


<
>
>
>












|
|
>
>
>
>
|
<



|
|
|
<







 







>
>
>
>





>
>
>
>







 







>
>
>
>


>
>
>
>
>
|
>
>
|
<
<


>




|

>
>
>




>
>
>
>
>







 







>
>
>
>
>
>









>
>
>
>







 







>
>
>






|
>
>
>
>







 







>
>
>
>
>
>







>
>
>
>
>
>







>
>
>
>
>
>







 







>
>
>







 







>
>
>
>
>
>







 







>
>
>













>
>
>
>
>
>







 







>
>
>
>
>
>







 







>
>
>
>







 







>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
>
>
>
>
>
>







 







>
>
>







 







>
>
>
>
>
>







 







>
>
>
>





|
|
|
>
|
>
>







 







>
>
|







 







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







 







<







 







>
>
>
>
>
>







 







>
|







 







>
>
>







 







>
>
>









>
>
>




>




>
>
>



<
<
<







 







>

>
>







 







|
|
>





>








|







 







|
<
<
<
<
<
<







 







>
>
>
>







 







>
>
>
>







 







>
>
>







 







>
>
>







 







>
>
>
>
>
>







 







<







 







|
|
<
<
<








>
>
>
>
|
|
>







 







<







 







>
>
>













>
>
>







 







|







 







>
>
>
>
>
>
>
|








>
>
>
>
>
>
>
|







 







|







 







|







1
2
3
4
5
6
7
8
9
10
...
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
...
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
...
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
....
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
....
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670

1671
1672
1673

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697

1698
1699
1700
1701

1702
1703
1704
1705
1706
1707
1708
1709



1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
....
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
....
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
....
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
....
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057




2058
2059
2060
2061
2062



2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080


2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102


2103



2104
2105
2106
2107
2108
2109
2110
2111
....
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
....
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
....
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
....
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
....
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
....
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316

5317
5318
5319
5320
5321
5322
5323
....
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357




5358
5359
5360
5361
5362
5363
5364
....
5802
5803
5804
5805
5806
5807
5808
5809






5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844



5845
5846
5847
5848
5849
5850
5851
5852
....
5856
5857
5858
5859
5860
5861
5862



5863
5864


5865
5866
5867
5868
5869
5870
5871
5872
....
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922


5923
5924
5925
5926
5927
5928
5929
....
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989

5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000



6001
6002
6003
6004
6005
6006
6007
....
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122


6123
6124

6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135


6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146

6147
6148
6149
6150
6151
6152
6153
....
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
....
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
....
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
....
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
....
7317
7318
7319
7320
7321
7322
7323
7324


7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
....
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406

7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422

7423
7424
7425
7426
7427
7428
7429
7430
7431

7432
7433
7434
7435
7436
7437
7438
7439

7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450

7451
7452
7453




7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464

7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512

7513
7514
7515


7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
....
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
....
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149

8150
8151
8152
8153
8154
8155
8156
....
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
....
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
....
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
....
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
....
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
.....
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
.....
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
.....
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
.....
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
.....
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
.....
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
.....
11489
11490
11491
11492
11493
11494
11495

11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
.....
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
.....
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
.....
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
.....
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
.....
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
.....
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
.....
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
.....
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
.....
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
.....
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
.....
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
.....
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
.....
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
.....
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
.....
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
.....
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
.....
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
.....
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
.....
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
.....
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
.....
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
.....
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
.....
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
.....
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
.....
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
.....
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
.....
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
.....
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
.....
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
.....
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
.....
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
.....
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
.....
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212

22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
.....
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
.....
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830




28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
.....
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
.....
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
.....
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
.....
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
.....
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
.....
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
.....
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
.....
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
.....
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
.....
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
.....
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
.....
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
.....
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
.....
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
.....
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
.....
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
.....
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
.....
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862

41863
41864
41865
41866
41867
41868
41869
.....
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
.....
44098
44099
44100
44101
44102
44103
44104
44105
44106
44107
44108
44109
44110
44111
44112
.....
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
45096
45097
45098
45099
45100
.....
46317
46318
46319
46320
46321
46322
46323
46324
46325
46326
46327
46328
46329




46330
46331
46332
46333
46334
46335
46336
.....
46487
46488
46489
46490
46491
46492
46493
46494
46495
46496
46497
46498
46499
46500
46501
.....
46637
46638
46639
46640
46641
46642
46643
46644
46645
46646
46647
46648
46649
46650
46651
.....
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
47514
47515
47516
47517
47518
.....
48044
48045
48046
48047
48048
48049
48050
48051
48052
48053
48054
48055
48056
48057
48058
48059
48060
48061
48062
48063
48064
48065
48066
48067
48068
48069
.....
48273
48274
48275
48276
48277
48278
48279
48280
48281
48282
48283
48284
48285
48286
48287
48288
.....
48455
48456
48457
48458
48459
48460
48461
48462
48463
48464
48465
48466
48467
48468
48469
.....
49966
49967
49968
49969
49970
49971
49972
49973
49974
49975
49976
49977
49978
49979
49980
.....
50001
50002
50003
50004
50005
50006
50007
50008
50009
50010
50011
50012
50013
50014
50015
50016
50017
50018
50019
50020
50021
50022
50023
50024
50025
.....
50048
50049
50050
50051
50052
50053
50054
50055
50056
50057
50058
50059
50060
50061
50062
.....
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
50097
50098
50099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
.....
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171

50172
50173
50174
50175
50176
50177
50178
.....
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
.....
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
.....
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
.....
51087
51088
51089
51090
51091
51092
51093

51094
51095
51096
51097
51098
51099
51100
.....
51119
51120
51121
51122
51123
51124
51125
51126













51127
51128
51129
51130
51131
51132
51133
51134
.....
51408
51409
51410
51411
51412
51413
51414
51415
51416
51417
51418
51419
51420
51421
51422
51423
51424
51425
51426
51427
51428
51429
51430
51431
51432
51433
51434
51435
51436
51437
51438
51439
51440
51441
51442



51443
51444
51445
51446
51447
51448
51449
51450
51451
51452
51453
51454
51455
51456
51457
51458
51459
51460
51461
51462
51463
51464
51465
51466
51467
51468
51469
51470
51471
51472
51473
51474
51475
51476
51477
.....
51481
51482
51483
51484
51485
51486
51487
51488
51489
51490
51491
51492
51493
51494
51495
.....
51980
51981
51982
51983
51984
51985
51986
51987
51988
51989
51990
51991
51992
51993
51994
.....
53733
53734
53735
53736
53737
53738
53739
53740
53741
53742
53743
53744
53745
53746
53747
53748
53749
53750
53751
53752
53753
53754
53755
53756
53757
53758
53759
53760
53761
53762
53763
53764
53765
53766
53767
53768
53769
53770
53771
53772
53773


53774
53775
53776
53777
53778
53779
53780
.....
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
53795
53796
53797
53798
53799
53800
53801
53802
53803
53804
53805

53806
53807
53808
53809
53810
53811
53812
53813
53814
53815
53816
53817
53818
53819
53820
53821
53822
53823
53824
53825
53826
53827
53828
53829
53830
53831
53832
53833
53834
53835
53836
53837
53838
53839
53840
53841
53842
53843
53844
53845
53846
53847
53848
53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
53880
53881
53882
53883
53884
53885
53886
53887
53888
53889
53890
53891
53892
53893
53894
53895
53896
53897
53898
.....
53903
53904
53905
53906
53907
53908
53909
53910
53911


53912
53913
53914
53915
53916
53917
53918
53919

53920
53921
53922
53923
53924
53925
53926
53927
53928
53929
53930

53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
53941
53942









53943











53944
53945
53946
53947

53948
53949
53950
53951
53952
53953
53954
53955
53956
53957
53958
53959
53960
53961
53962
53963
53964
.....
53997
53998
53999
54000
54001
54002
54003
54004
54005
54006
54007
54008
54009
54010
54011
.....
54092
54093
54094
54095
54096
54097
54098
54099
54100
54101
54102
54103
54104
54105
54106
54107
54108
54109
54110
54111
54112
54113
54114
54115
54116
54117
54118
54119
54120
54121
54122
54123
54124
54125
54126
54127
54128
54129
54130
54131
.....
54157
54158
54159
54160
54161
54162
54163
54164
54165
54166
54167
54168
54169
54170
54171
54172
54173
54174
54175
54176
54177
54178
54179
54180
54181
54182
54183
54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
.....
54217
54218
54219
54220
54221
54222
54223
54224
54225
54226
54227
54228
54229
54230
54231
54232
54233
54234
54235
54236
54237
54238
54239
54240
54241
54242
54243
54244
.....
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
.....
54657
54658
54659
54660
54661
54662
54663
54664
54665
54666
54667
54668
54669
54670
54671
54672
54673
.....
55169
55170
55171
55172
55173
55174
55175
55176
55177
55178
55179
55180
55181
55182
55183
55184
55185
.....
55212
55213
55214
55215
55216
55217
55218
55219
55220
55221
55222
55223
55224
55225
55226
55227
55228
55229
55230
55231
55232
55233
55234
55235
55236
55237
55238
55239
55240
55241
55242
55243
55244
55245
55246
55247
55248
55249
55250
55251
55252
55253
55254
.....
55261
55262
55263
55264
55265
55266
55267
55268
55269
55270
55271
55272
55273
55274
55275
55276
55277
.....
56144
56145
56146
56147
56148
56149
56150
56151
56152
56153
56154
56155
56156
56157
56158
.....
56508
56509
56510
56511
56512
56513
56514
56515
56516
56517
56518
56519
56520
56521
56522
.....
56802
56803
56804
56805
56806
56807
56808
56809
56810
56811
56812
56813
56814
56815
56816
.....
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832
56833
56834
56835
56836
.....
56869
56870
56871
56872
56873
56874
56875
56876
56877
56878
56879
56880
56881
56882
56883
.....
57844
57845
57846
57847
57848
57849
57850
57851
57852
57853
57854
57855
57856
57857
57858
57859
.....
57892
57893
57894
57895
57896
57897
57898
57899
57900
57901
57902
57903
57904
57905
57906
57907
57908
57909
57910
57911
57912
57913
.....
57914
57915
57916
57917
57918
57919
57920
57921
57922
57923
57924
57925
57926
57927
57928
57929
57930
.....
58234
58235
58236
58237
58238
58239
58240
58241
58242
58243
58244
58245
58246
58247
58248
58249
58250
58251
58252
.....
58590
58591
58592
58593
58594
58595
58596
58597
58598
58599
58600
58601
58602
58603
58604
58605
58606
58607
58608
58609
58610
58611
58612
58613
58614
.....
58695
58696
58697
58698
58699
58700
58701
58702
58703
58704
58705
58706
58707
58708
58709
58710
58711
58712
58713
58714


58715
58716
58717

58718
58719






58720
58721
58722
58723
58724
58725
58726
58727
58728
58729
58730
58731
58732
58733
58734
58735
58736
58737
58738
58739
58740
58741
58742
58743
58744
58745
58746
58747




58748



58749
58750
58751
58752
58753




58754
58755
58756
58757
58758
58759
58760
58761
58762
58763
58764
58765
58766
58767
58768
58769
58770
58771
58772
58773
58774
58775
58776
58777
58778
58779
58780
58781
58782
58783
58784
58785
58786
58787
58788
58789
58790
58791
58792
58793
58794
58795
58796
58797
58798
58799
58800
58801
58802
58803
58804
58805
58806
58807
58808
58809
58810
58811
58812
58813
58814
58815
58816
58817
58818
58819
58820
58821
58822
58823
58824
58825
58826
58827
58828
58829
58830
58831
58832
58833
58834
58835
58836
58837
58838
58839
58840
58841
58842
58843
58844
58845
58846
58847
58848
58849
58850
58851
58852
58853
58854
58855
58856
58857
58858
58859
58860
58861
58862
58863
58864
58865
58866
58867
58868
58869
58870
58871
58872
58873
58874
58875
58876
58877
58878
58879
58880
58881
58882
58883
58884
58885

58886
58887
58888
58889



58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
58902
58903
58904
58905
58906
58907
58908
58909
58910
58911
58912
58913
58914
58915
58916
58917
58918
58919
58920
58921
58922
58923
58924
58925
58926
58927
58928
58929
58930
58931
58932
58933
58934
58935
58936
58937
58938
58939
58940
58941
58942
58943
58944
58945
58946
58947
58948
58949
58950
58951
58952
58953
58954
58955
58956
58957
58958
58959
58960
58961
58962
58963
58964
58965
58966
58967
58968
58969
58970
58971
58972
58973
.....
59013
59014
59015
59016
59017
59018
59019
59020
59021
59022
59023
59024
59025
59026
59027
.....
59031
59032
59033
59034
59035
59036
59037
59038
59039
59040
59041
59042
59043
59044
59045
59046
.....
59251
59252
59253
59254
59255
59256
59257

59258
59259
59260
59261
59262
59263
59264
59265
59266
59267
59268
59269
59270
59271
59272
59273
59274
59275
59276
59277
59278
59279
59280
.....
59375
59376
59377
59378
59379
59380
59381

59382
59383
59384

59385
59386
59387
59388
59389
59390
59391
59392
59393
59394
59395
59396
59397
59398
59399
59400
59401
59402
59403
59404
59405
59406
59407
59408
59409
59410
.....
59412
59413
59414
59415
59416
59417
59418





59419



59420
59421
59422
59423
59424
59425
59426
.....
59433
59434
59435
59436
59437
59438
59439
59440
59441
59442
59443
59444
59445
59446
59447
.....
59456
59457
59458
59459
59460
59461
59462
59463
59464
59465
59466
59467
59468
59469
59470
59471
59472
59473
59474
.....
59489
59490
59491
59492
59493
59494
59495
59496
59497
59498
59499
59500
59501
59502
59503
59504
59505
59506
59507
59508
59509
59510
59511
59512
59513
59514
59515
59516
59517
59518
59519
59520
.....
59535
59536
59537
59538
59539
59540
59541
59542
59543
59544
59545
59546


59547

59548

59549


59550
59551
59552
59553
59554
59555
59556
59557
59558
59559
59560
.....
59569
59570
59571
59572
59573
59574
59575
59576
59577
59578
59579
59580
59581
59582
59583
59584
59585
59586
59587
59588
59589
59590










59591

59592
59593
59594
59595

59596
59597
59598

59599
59600
59601
59602
59603
59604
59605
59606
59607
59608
59609
59610
59611
59612
59613
59614
59615
59616



59617
59618
59619
59620
59621
59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632


59633
59634

59635
59636
59637
59638
59639
59640
59641
59642
59643
59644
59645
59646
59647
59648
59649
59650
59651
59652
59653
59654
59655
59656
59657
59658
59659
59660
59661
59662
59663
59664


59665
59666
59667
59668
59669
59670
59671
59672
59673
59674
59675



59676
59677




59678
59679
59680
59681
59682
59683
59684
59685
59686
59687
59688
59689
59690
59691
59692
59693
59694





59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
59709
59710
59711
59712
59713
59714
59715
59716
59717
59718
59719
59720
59721
59722
59723
59724
59725
59726
59727
59728
59729
59730
59731
59732
59733
59734
59735
59736
59737
59738
59739
59740
59741
59742
59743
59744
59745
59746
59747
59748
59749
59750
59751
59752
59753
59754
59755
59756
59757
59758
59759
59760
59761
59762
59763
59764
59765
59766
59767


59768
59769
59770
59771
59772
59773
59774
59775
59776
59777
59778
59779
59780
59781
59782
59783
59784
59785
59786
59787
59788
59789
59790
59791
59792
59793
59794
59795
59796
59797
59798
59799
59800
59801

59802
59803
59804
59805
59806
59807
59808
59809
59810
59811
59812
59813
59814
59815
59816
59817
59818
59819
59820
59821
59822
59823
59824
59825
59826
59827
59828
59829
59830
59831




59832
59833
59834
59835
59836
59837
59838
59839
59840
59841
59842
59843
59844
59845
59846
59847
59848
59849
59850
59851
59852
59853
59854
59855
59856
59857
59858











59859


























59860
59861
59862












59863
59864
59865

59866
59867

















59868

59869
59870
59871







59872
59873
59874
59875
59876


59877










59878
59879
59880
59881
59882
59883
59884
59885

59886




59887
59888
59889
59890
59891
59892
59893
59894
.....
60772
60773
60774
60775
60776
60777
60778
60779
60780
60781
60782
60783
60784
60785
60786
60787
60788
60789
60790
60791
60792
60793
60794
60795
60796
60797
60798
60799
60800
60801
60802
60803
60804
60805
60806
60807
.....
60884
60885
60886
60887
60888
60889
60890
60891
60892
60893
60894
60895
60896
60897
60898
.....
61276
61277
61278
61279
61280
61281
61282
61283
61284
61285
61286
61287
61288
61289
61290
61291
61292
61293
61294
61295
61296
61297
.....
61299
61300
61301
61302
61303
61304
61305
61306
61307
61308
61309
61310
61311
61312
61313
61314
61315
61316
61317
61318
61319
61320
61321
61322
61323
61324
61325
61326
61327
61328
61329
61330
61331
61332
61333
61334
61335
61336
61337
61338
61339
61340
61341
61342
61343
61344
61345
61346
61347
.....
61737
61738
61739
61740
61741
61742
61743
61744
61745
61746
61747
61748
61749
61750
61751
61752
61753
61754
61755
.....
61865
61866
61867
61868
61869
61870
61871
61872
61873
61874
61875
61876
61877
61878
61879
61880
61881
61882
61883
61884
61885
61886
61887
61888
61889
61890
61891
61892
.....
61895
61896
61897
61898
61899
61900
61901
61902
61903
61904
61905
61906
61907
61908
61909
61910
61911
61912
61913
61914
61915
.....
61939
61940
61941
61942
61943
61944
61945
61946
61947
61948
61949
61950
61951
61952
61953
61954

61955
61956
61957
61958
61959
61960
61961
.....
62102
62103
62104
62105
62106
62107
62108
62109
62110
62111
62112
62113
62114
62115
62116
62117
62118
.....
62394
62395
62396
62397
62398
62399
62400
62401
62402
62403
62404
62405
62406
62407
62408
62409
62410
62411
62412
62413
62414
62415
62416
62417
62418
62419
62420
62421
62422
62423
62424
62425
62426
62427
.....
64504
64505
64506
64507
64508
64509
64510
64511
64512
64513
64514
64515
64516
64517
64518
64519



64520
64521
64522
64523
64524
64525
64526
64527
64528
64529
64530
64531
64532
64533
64534
64535
64536
64537
64538
64539
64540
64541
64542
64543
64544
64545
64546
.....
64707
64708
64709
64710
64711
64712
64713
64714
64715
64716
64717
64718
64719
64720
64721
64722
64723
64724
64725
64726
64727
64728
64729
64730
64731
64732
64733
64734
64735
64736
64737
64738
64739
64740
64741
64742
64743
64744
64745
64746
64747
64748
.....
65834
65835
65836
65837
65838
65839
65840
65841
65842
65843
65844
65845
65846
65847
65848
65849
65850
.....
65853
65854
65855
65856
65857
65858
65859
65860
65861
65862
65863
65864
65865
65866
65867
.....
65904
65905
65906
65907
65908
65909
65910
65911
65912
65913
65914
65915
65916
65917
65918
65919
65920
65921
65922
65923
65924
65925
65926
65927
65928
65929
65930
65931
.....
66485
66486
66487
66488
66489
66490
66491
66492
66493
66494
66495
66496
66497
66498
66499
.....
66526
66527
66528
66529
66530
66531
66532
66533
66534
66535
66536
66537
66538
66539
66540
66541
66542
66543
66544
66545
66546
66547
66548
66549
66550
66551
66552
66553
66554
66555
66556
66557
66558
66559
66560
66561
.....
66568
66569
66570
66571
66572
66573
66574
66575
66576
66577
66578
66579
66580
66581
66582
.....
66830
66831
66832
66833
66834
66835
66836
66837
66838
66839
66840
66841
66842
66843
66844
66845
66846
66847
66848
66849
.....
66994
66995
66996
66997
66998
66999
67000


67001
67002
67003
67004
67005
67006
67007
67008
.....
67160
67161
67162
67163
67164
67165
67166
67167
67168
67169
67170
67171
67172
67173
67174
67175
67176
67177
67178
67179
67180
67181
.....
67195
67196
67197
67198
67199
67200
67201
67202
67203
67204
67205
67206
67207
67208
67209
67210
67211
67212
67213
67214
67215
67216
67217
67218
67219
67220
67221
67222
67223
67224
67225
67226
67227
67228
67229
67230
67231
67232
67233
67234
67235
67236
67237
67238
67239
67240
67241
67242
67243
67244
67245
67246
67247
67248
67249
67250
67251
67252
67253
67254
67255
67256
67257
67258
67259
67260
67261
67262
67263
67264
67265
67266
67267
67268
67269
67270
67271
67272
.....
68656
68657
68658
68659
68660
68661
68662
68663
68664
68665
68666
68667
68668
68669
68670
68671
68672
68673
.....
68839
68840
68841
68842
68843
68844
68845

68846
68847
68848
68849
68850
68851
68852
.....
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233
69234
69235
69236
69237
69238
69239
69240
69241
69242
69243
69244
69245
69246
69247
69248
69249
69250
.....
69701
69702
69703
69704
69705
69706
69707
69708
69709
69710
69711
69712
69713
69714
69715
69716
69717
69718
69719
69720
.....
69722
69723
69724
69725
69726
69727
69728
69729
69730
69731
69732
69733
69734
69735
69736
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
69773
69774
69775
69776
69777
69778
69779
69780
69781
69782
69783
69784
69785
69786
69787
69788
69789
69790
69791
69792
69793
69794
69795
69796
69797
69798
69799
69800
69801
69802
69803
69804
69805
69806
69807
69808
69809
69810
69811
69812
69813
69814
69815
69816
.....
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
70700
70701
70702
70703
70704
.....
72716
72717
72718
72719
72720
72721
72722
72723
72724
72725
72726
72727
72728
72729
72730
72731
72732
72733
.....
72753
72754
72755
72756
72757
72758
72759
72760
72761
72762
72763
72764
72765
72766
72767
72768
72769
72770
72771
.....
73892
73893
73894
73895
73896
73897
73898
73899
73900
73901
73902
73903
73904
73905
73906
73907
73908
73909
.....
74589
74590
74591
74592
74593
74594
74595
74596
74597
74598
74599
74600
74601
74602
74603
74604
74605
.....
75507
75508
75509
75510
75511
75512
75513
75514
75515
75516
75517
75518
75519
75520
75521
75522
75523
.....
75527
75528
75529
75530
75531
75532
75533
75534
75535
75536
75537
75538
75539
75540
75541
75542
75543
75544
75545
75546
75547
75548
75549
75550
75551
75552
75553
75554
.....
75785
75786
75787
75788
75789
75790
75791
75792
75793
75794
75795
75796
75797
75798
75799
75800
.....
75804
75805
75806
75807
75808
75809
75810
75811
75812
75813
75814
75815
75816
75817
75818
.....
76730
76731
76732
76733
76734
76735
76736
76737
76738
76739
76740
76741
76742
76743
76744
76745
76746
76747
76748
.....
76953
76954
76955
76956
76957
76958
76959

76960
76961
76962
76963
76964
76965
76966
.....
76970
76971
76972
76973
76974
76975
76976

76977
76978
76979
76980
76981
76982
76983
76984
76985
76986
76987
.....
77150
77151
77152
77153
77154
77155
77156
77157
77158
77159
77160
77161
77162
77163
77164
.....
77195
77196
77197
77198
77199
77200
77201
77202
77203
77204
77205
77206
77207
77208
77209
77210
77211
77212
77213
77214
77215
.....
77496
77497
77498
77499
77500
77501
77502



77503
77504
77505
77506
77507
77508
77509
.....
77894
77895
77896
77897
77898
77899
77900
77901
77902
77903

77904
77905
77906

77907
77908
77909

77910
77911
77912
77913
77914
77915
77916
.....
78176
78177
78178
78179
78180
78181
78182


78183
78184
78185
78186
78187
78188

78189
78190
78191
78192
78193
78194
78195
.....
80274
80275
80276
80277
80278
80279
80280
80281
80282
80283
80284
80285
80286
80287
80288
80289
80290
80291
80292
80293
80294
80295
80296
.....
80566
80567
80568
80569
80570
80571
80572
80573
80574
80575
80576
80577
80578
80579
80580
80581
80582
80583
.....
80834
80835
80836
80837
80838
80839
80840
80841
80842
80843
80844
80845
80846
80847
80848
.....
80966
80967
80968
80969
80970
80971
80972
80973
80974
80975
80976
80977
80978
80979
80980
.....
82923
82924
82925
82926
82927
82928
82929
82930
82931
82932
82933
82934
82935
82936
82937
82938
82939
82940
82941
82942
82943
82944
82945
82946
82947
82948
82949
82950
82951
82952
82953
82954
82955
82956
82957
82958
82959
82960
82961
82962
82963
82964
82965
82966
82967
82968
82969
82970
82971
82972
82973
82974

82975
82976
82977
82978
82979
82980
82981
82982
82983
82984
82985
82986
82987
82988
82989
82990
82991
82992
82993
82994
82995
82996
82997
82998
82999
83000
83001
83002
83003
83004
83005
83006
83007
83008
83009
83010
83011
83012
83013
83014
83015
83016
83017
83018
83019
83020
83021
83022
83023
83024
83025
83026
83027
83028
83029
83030
83031
83032
83033
83034
83035
83036
83037
83038
83039
83040
83041
83042
83043
83044
83045
83046
83047
83048
83049
83050
83051
83052
83053
83054
83055
83056
83057
83058
83059
83060
83061
83062
83063
83064
83065
83066
83067
83068
83069
83070
83071
83072
83073
83074
.....
83127
83128
83129
83130
83131
83132
83133
83134
83135
83136
83137
83138
83139
83140
83141
83142
.....
84717
84718
84719
84720
84721
84722
84723
84724
84725
84726
84727
84728
84729
84730
84731
84732
84733
84734
.....
87363
87364
87365
87366
87367
87368
87369
87370
87371
87372
87373
87374
87375
87376
87377
.....
88372
88373
88374
88375
88376
88377
88378
88379
88380
88381
88382
88383
88384
88385
88386
88387
88388
88389
88390
88391
88392
88393
88394
88395
88396
88397
88398
88399
88400
88401
88402
88403
88404
88405
88406
88407
.....
88511
88512
88513
88514
88515
88516
88517
88518
88519
88520
88521
88522
88523
88524
88525
88526
88527
88528
88529
88530
88531
88532
88533
.....
88781
88782
88783
88784
88785
88786
88787
88788
88789
88790
88791
88792
88793
88794
88795
.....
88956
88957
88958
88959
88960
88961
88962
88963
88964
88965
88966
88967
88968
88969
88970
88971
88972
88973
88974
88975
88976
88977
88978
.....
89465
89466
89467
89468
89469
89470
89471
89472
89473
89474
89475
89476
89477
89478
89479
89480
89481
.....
89962
89963
89964
89965
89966
89967
89968

89969
89970
89971
89972
89973
89974
89975
89976
89977
89978
89979
89980
.....
90090
90091
90092
90093
90094
90095
90096

90097
90098
90099
90100
90101
90102
90103
.....
91368
91369
91370
91371
91372
91373
91374
91375
91376
91377
91378
91379
91380
91381
91382
91383
91384
91385
91386
91387
91388
91389
91390
91391
91392
91393
91394
.....
93857
93858
93859
93860
93861
93862
93863








93864
93865
93866
93867
93868
93869
93870
93871
93872
93873
93874
93875
93876
93877
93878
93879
93880
93881
93882
93883
93884


93885
93886
93887


93888
93889
93890
93891
93892
93893
93894
93895
.....
95433
95434
95435
95436
95437
95438
95439
95440
95441
95442
95443
95444
95445
95446
95447
95448
.....
97502
97503
97504
97505
97506
97507
97508
97509
97510
97511
97512
97513
97514
97515
97516
.....
97573
97574
97575
97576
97577
97578
97579
97580
97581
97582
97583
97584
97585
97586
97587
97588
97589
97590
.....
97694
97695
97696
97697
97698
97699
97700
97701
97702

97703



97704
97705
97706
97707
97708
97709
97710
.....
97874
97875
97876
97877
97878
97879
97880
97881
97882
97883
97884
97885
97886
97887
97888
97889
97890
97891
97892
97893
97894
97895
97896
97897
97898
97899
97900
97901
97902
97903
97904
97905
.....
97945
97946
97947
97948
97949
97950
97951
97952
97953
97954
97955
97956
97957
97958
97959
.....
98004
98005
98006
98007
98008
98009
98010
98011
98012
98013
98014
98015
98016
98017
98018
.....
98019
98020
98021
98022
98023
98024
98025
98026
98027
98028
98029
98030
98031
98032
98033
98034
98035
98036
98037
98038
98039
98040
98041
98042
98043
98044
.....
98051
98052
98053
98054
98055
98056
98057
98058
98059
98060
98061
98062
98063
98064
98065
98066
.....
98076
98077
98078
98079
98080
98081
98082
98083





98084
98085
98086
98087
98088
98089
98090
98091
98092
98093
98094
98095
98096
98097
98098
98099
98100
98101
98102
98103
98104
98105
98106
98107
98108
98109
98110
98111
......
101191
101192
101193
101194
101195
101196
101197

101198
101199
101200
101201
101202
101203
101204
......
102000
102001
102002
102003
102004
102005
102006
102007
102008
102009
102010
102011
102012
102013
102014
......
102017
102018
102019
102020
102021
102022
102023
102024
102025
102026
102027
102028
102029
102030
102031
......
102083
102084
102085
102086
102087
102088
102089
102090
102091
102092
102093
102094
102095
102096
102097
102098
102099
102100
102101
102102
......
102144
102145
102146
102147
102148
102149
102150
102151
102152
102153
102154
102155
102156
102157
102158
102159
......
102297
102298
102299
102300
102301
102302
102303
102304
102305
102306
102307
102308
102309
102310
102311
......
102363
102364
102365
102366
102367
102368
102369
102370
102371
102372
102373
102374
102375
102376
102377
......
102406
102407
102408
102409
102410
102411
102412
102413
102414
102415
102416
102417
102418
102419
102420
......
104016
104017
104018
104019
104020
104021
104022
104023
104024
104025
104026
104027
104028
104029
104030
104031
......
104062
104063
104064
104065
104066
104067
104068
104069
104070
104071















104072
104073
104074
104075
104076
104077
104078
......
104117
104118
104119
104120
104121
104122
104123
104124
104125
104126
104127
104128
104129
104130
104131
104132
104133
104134
104135
104136
104137
104138
104139
104140
104141
104142
104143
104144
......
104710
104711
104712
104713
104714
104715
104716
104717
104718
104719
104720
104721
104722
104723
104724
104725
104726
104727
104728
......
105027
105028
105029
105030
105031
105032
105033

105034
105035
105036
105037
105038
105039
105040
105041
105042
105043
105044
105045
105046
......
105139
105140
105141
105142
105143
105144
105145
105146
105147
105148
105149
105150
105151
105152
105153
105154
105155
105156
105157
......
105269
105270
105271
105272
105273
105274
105275
105276
105277
105278
105279
105280
105281
105282
105283
105284
105285
105286
105287

105288
105289
105290
105291
105292
105293
105294
105295
105296
105297
105298
105299
105300
105301
......
105346
105347
105348
105349
105350
105351
105352
105353

105354
105355
105356
105357
105358
105359
105360
......
105371
105372
105373
105374
105375
105376
105377

105378


105379
105380
105381
105382
105383
105384
105385
......
107287
107288
107289
107290
107291
107292
107293
107294
107295
107296
107297
107298
107299
107300
107301
107302
107303
107304
107305
107306
107307
107308
107309
107310
107311
107312
107313
107314
107315
107316
107317
107318
107319
107320
107321
107322
107323
107324
107325
107326
107327
107328
107329
107330
107331
107332
107333
107334
107335
107336
107337
107338
107339
107340
107341
107342
107343
107344
107345
107346
107347
107348
107349
107350
107351
107352
107353
107354
107355
107356
107357
107358
107359
107360
......
107427
107428
107429
107430
107431
107432
107433
107434
107435
107436
107437
107438
107439
107440
107441
107442
107443
107444
107445
107446
107447





107448
107449
107450
107451
107452
107453
107454
......
109326
109327
109328
109329
109330
109331
109332
109333
109334
109335
109336
109337
109338
109339
109340
109341
109342
......
109619
109620
109621
109622
109623
109624
109625
109626
109627
109628
109629
109630
109631
109632
109633
109634
109635
......
110107
110108
110109
110110
110111
110112
110113
110114
110115
110116
110117
110118
110119
110120
110121
110122
110123
110124
110125
110126

110127
110128
110129
110130
110131
110132
110133
......
110922
110923
110924
110925
110926
110927
110928
110929
110930
110931
110932
110933
110934
110935
110936
110937
110938
......
112988
112989
112990
112991
112992
112993
112994
112995
112996
112997
112998
112999
113000
113001
113002
......
113346
113347
113348
113349
113350
113351
113352
113353
113354
113355
113356
113357
113358
113359
113360
113361
113362
113363
113364
113365
113366
113367
113368
113369
113370
113371
113372
113373
113374
113375
113376
113377
113378
......
113597
113598
113599
113600
113601
113602
113603
113604
113605
113606
113607
113608
113609
113610
113611
113612
113613
113614
113615
113616
......
113974
113975
113976
113977
113978
113979
113980
113981
113982
113983
113984
113985
113986
113987
113988
113989
113990
......
114333
114334
114335
114336
114337
114338
114339
114340
114341
114342
114343
114344
114345
114346
114347
114348
114349
......
114351
114352
114353
114354
114355
114356
114357
114358
114359
114360
114361

114362
114363
114364
114365
114366
114367
114368
......
114489
114490
114491
114492
114493
114494
114495
114496
114497
114498
114499
114500
114501
114502
114503
114504
114505
......
114522
114523
114524
114525
114526
114527
114528

114529
114530
114531
114532
114533
114534
114535
114536
114537
114538
114539
114540
114541
114542
114543
114544
114545
114546
114547
114548
114549
114550
114551
114552
114553
114554
......
114866
114867
114868
114869
114870
114871
114872
114873
114874
114875
114876
114877
114878
114879
114880
......
115074
115075
115076
115077
115078
115079
115080
115081
115082
115083
115084
115085
115086
115087
115088
115089
115090
115091
115092
......
115608
115609
115610
115611
115612
115613
115614
115615
115616
115617
115618
115619
115620
115621
115622
115623
115624
115625
115626
115627
115628
115629
115630
......
115915
115916
115917
115918
115919
115920
115921
115922

115923
115924
115925
115926
115927
115928
115929
......
116017
116018
116019
116020
116021
116022
116023
116024
116025

116026
116027
116028
116029
116030
116031
116032
......
116075
116076
116077
116078
116079
116080
116081
116082
116083

116084
116085
116086
116087
116088
116089
116090
......
116151
116152
116153
116154
116155
116156
116157
116158
116159

116160
116161
116162
116163
116164
116165
116166
......
116185
116186
116187
116188
116189
116190
116191
116192
116193

116194
116195
116196
116197
116198
116199
116200
......
116207
116208
116209
116210
116211
116212
116213
116214
116215
116216
116217
116218
116219
116220
116221
......
116226
116227
116228
116229
116230
116231
116232
116233
116234

116235
116236
116237
116238
116239
116240
116241
......
116447
116448
116449
116450
116451
116452
116453
116454
116455
116456
116457
116458
116459
116460
116461
116462
......
116464
116465
116466
116467
116468
116469
116470
116471
116472
116473
116474
116475
116476
116477
116478
116479
116480
116481
116482
116483
116484
116485
116486
116487
116488
116489
116490
116491
116492
116493
116494
116495
116496
116497
116498
......
116504
116505
116506
116507
116508
116509
116510
116511
116512
116513
116514
116515
116516
116517
116518
116519

116520
116521
116522
116523
116524
116525
116526
116527
116528
116529
116530
......
116568
116569
116570
116571
116572
116573
116574
116575
116576
116577
116578
116579
116580
116581
116582
116583
116584
116585
116586
116587
116588
116589
116590
116591
116592
116593
116594
116595
116596
116597
116598
116599
116600
116601
116602
116603
116604
......
116750
116751
116752
116753
116754
116755
116756

116757
116758
116759
116760
116761
116762
116763
116764
116765
116766
116767
116768
116769
116770
116771
116772
116773
116774
116775
......
116843
116844
116845
116846
116847
116848
116849
116850
116851
116852
116853
116854
116855
116856
116857
......
116994
116995
116996
116997
116998
116999
117000
117001
117002
117003
117004
117005
117006
117007
117008
......
117010
117011
117012
117013
117014
117015
117016
117017
117018
117019
117020
117021
117022
117023
117024
......
117034
117035
117036
117037
117038
117039
117040

117041


117042
117043
117044
117045
117046
117047
117048
......
117050
117051
117052
117053
117054
117055
117056
117057
117058
117059
117060
117061
117062
117063
117064
117065
117066
117067
117068
117069
117070
117071
117072
117073
117074
117075
117076
117077
117078
117079
117080
117081
117082
117083
117084
117085
117086
117087
117088
117089
117090
......
117100
117101
117102
117103
117104
117105
117106
117107
117108
117109
117110
117111
117112
117113
117114
......
117115
117116
117117
117118
117119
117120
117121
117122
117123
117124
117125
117126
117127
117128
117129
117130
117131
117132
117133
117134
117135
117136
117137
117138
117139
117140
117141
117142
117143
117144
117145
......
117156
117157
117158
117159
117160
117161
117162
117163
117164
117165
117166
117167
117168
117169
117170
117171
117172
117173
117174
117175
117176
117177
117178
......
117524
117525
117526
117527
117528
117529
117530
117531
117532
117533
117534
117535
117536
117537
117538
......
117638
117639
117640
117641
117642
117643
117644
117645
117646
117647
117648
117649
117650
117651
117652
......
117669
117670
117671
117672
117673
117674
117675
117676
117677
117678

117679
117680
117681
117682
117683
117684
117685
117686
117687
117688
117689
117690
117691
117692
117693
117694
117695
117696
117697
117698
117699
......
117702
117703
117704
117705
117706
117707
117708
117709
117710
117711
117712
117713
117714
117715
117716
......
117731
117732
117733
117734
117735
117736
117737
117738
117739
117740
117741
117742
117743
117744
117745
117746
......
117774
117775
117776
117777
117778
117779
117780
117781
117782
117783
117784
117785
117786
117787
117788
117789
117790
117791
117792
117793
117794
117795
117796
117797
117798
117799
117800
117801
117802
117803
117804
117805
117806
117807
117808
117809
117810
117811
117812
117813
117814
117815
117816
117817
117818
117819
117820
117821
117822
117823
117824
117825
117826
......
118114
118115
118116
118117
118118
118119
118120
118121
118122
118123
118124
118125
118126
118127
118128
......
118131
118132
118133
118134
118135
118136
118137
118138
118139
118140
118141
118142
118143
118144
118145
......
118444
118445
118446
118447
118448
118449
118450

118451

118452
118453
118454
118455
118456
118457
118458
118459
118460
......
118479
118480
118481
118482
118483
118484
118485
118486
118487
118488
118489
118490
118491
118492
118493
118494
118495
118496
118497
......
118613
118614
118615
118616
118617
118618
118619
118620
118621
118622
118623
118624
118625
118626
118627
118628
118629
118630
......
118757
118758
118759
118760
118761
118762
118763
118764
118765
118766
118767
118768
118769
118770
118771
......
118793
118794
118795
118796
118797
118798
118799

118800
118801
118802
118803
118804
118805
118806
......
118867
118868
118869
118870
118871
118872
118873
118874
118875
118876
118877
118878
118879
118880
118881
118882
118883
118884
118885
118886
118887
118888
118889
118890
118891
118892
118893
118894
118895
118896
118897
118898
118899
118900
118901
118902
118903
118904
118905
118906
118907
118908
118909
118910
118911
......
118919
118920
118921
118922
118923
118924
118925











118926
118927
118928

118929
118930
118931

118932
118933
118934
118935
118936
118937
118938
118939
118940
118941
118942
118943
118944
118945
118946
118947
118948
118949
118950
......
118981
118982
118983
118984
118985
118986
118987
118988
118989
118990
118991
118992
118993
118994
118995
118996
118997
......
119142
119143
119144
119145
119146
119147
119148
119149
119150
119151
119152
119153
119154



119155
119156
119157
119158
119159
119160
119161
119162
119163
119164
119165
119166
119167
119168
119169
119170
119171
119172
119173
119174
119175
119176
119177
119178
119179
119180
119181
119182
119183
119184
119185
119186
119187
119188
119189
119190
119191
119192
119193
119194
119195
119196
119197
119198
119199
119200
119201
119202
119203
119204
119205
119206
119207
119208
119209
119210
119211
119212
119213
119214
119215
119216






119217
119218
119219
119220
119221
119222
119223
......
119250
119251
119252
119253
119254
119255
119256
119257
119258
119259
119260
119261
119262
119263
119264
......
119279
119280
119281
119282
119283
119284
119285
119286
119287
119288
119289
119290
119291
119292
119293






































119294
119295
119296
119297
119298
119299
119300
......
119381
119382
119383
119384
119385
119386
119387

119388
119389
119390
119391
119392
119393
119394
......
119448
119449
119450
119451
119452
119453
119454
119455
119456
119457
119458
119459
119460
119461
119462
119463
119464
119465
119466
119467
119468
119469
119470
119471
119472
119473
119474
119475
119476
119477
119478
119479
119480
119481
119482
119483
119484
119485
119486
119487
119488
119489
119490
119491
119492
119493
119494
119495
119496
119497
119498
119499
119500
......
119665
119666
119667
119668
119669
119670
119671
119672
119673
119674
119675
119676
119677
119678
119679
......
119706
119707
119708
119709
119710
119711
119712
119713
119714
119715
119716
119717
119718
119719
119720
......
120256
120257
120258
120259
120260
120261
120262
120263
120264
120265
120266
120267
120268
120269
120270
......
120710
120711
120712
120713
120714
120715
120716
120717
120718
120719
120720
120721
120722
120723
120724
......
120829
120830
120831
120832
120833
120834
120835
120836
120837
120838
120839
120840
120841
120842
120843
120844
120845
120846
120847

120848
120849
120850
120851
120852
120853
120854
......
121349
121350
121351
121352
121353
121354
121355
121356
121357
121358
121359
121360
121361
121362
121363
121364
121365
121366
121367
121368
121369
121370
121371
121372
121373
121374
121375
121376
121377
121378
121379
121380
121381
121382
......
123949
123950
123951
123952
123953
123954
123955
123956
123957
123958
123959
123960
123961
123962
123963
123964
123965
123966
123967
123968
123969
123970
123971
123972
123973
123974
123975
......
125805
125806
125807
125808
125809
125810
125811
125812
125813
125814
125815
125816
125817
125818
125819
125820
125821
......
126074
126075
126076
126077
126078
126079
126080
126081
126082
126083
126084
126085
126086
126087
126088
126089
126090
126091
126092
126093
126094
......
126383
126384
126385
126386
126387
126388
126389
126390
126391
126392
126393
126394
126395
126396
126397
......
126592
126593
126594
126595
126596
126597
126598
126599
126600
126601
126602
126603
126604
126605
126606
126607
126608
126609
126610
126611
126612
......
126657
126658
126659
126660
126661
126662
126663
126664
126665
126666
126667
126668
126669
126670
126671
126672
126673
126674
126675
126676
126677
126678
126679
126680
126681
126682
126683
126684
126685
126686
126687
126688
126689
126690
126691
126692
126693
126694
126695
126696
126697
126698
126699
126700
126701
126702
126703
126704
126705

126706
126707
126708
126709
126710
126711
126712
126713
126714
126715
126716
126717
126718
126719
126720
126721
126722
126723
126724
126725
126726
126727
126728
126729
126730
126731
126732
126733
126734
126735
126736
126737
126738
126739
126740
126741
126742
126743
126744
126745
126746
126747
126748
126749
126750
126751
126752
126753
126754
126755
126756
126757
126758
126759
126760
126761
126762
126763
126764
126765
126766
126767
126768
126769
126770
126771
126772
126773
126774
126775
126776
126777
126778
126779
126780
126781
126782
126783
126784
126785
126786
126787
126788
126789
126790
126791
126792
126793
126794
126795
126796

126797
126798
126799
126800
126801
126802
126803
126804
126805
126806
126807
126808
126809
126810
126811
126812
126813
126814
126815
126816
126817
126818

126819
126820
126821
126822
126823
126824

126825
126826
126827
126828
126829
126830
126831
......
126856
126857
126858
126859
126860
126861
126862
126863
126864
126865
126866
126867
126868
126869
126870
126871
126872
126873
126874
126875
126876
126877
126878
126879
126880
126881
126882
......
126883
126884
126885
126886
126887
126888
126889
126890
126891
126892
126893
126894
126895
126896
126897
126898
126899
126900
126901
126902
126903
126904


126905
126906
126907
126908
126909
126910
126911
126912
126913
126914
126915
126916
126917
126918
126919
126920
126921
126922
126923
126924
126925
126926
126927
126928
126929
126930
126931
126932
......
126998
126999
127000
127001
127002
127003
127004
127005
127006
127007
127008
127009
127010
127011
127012
127013
127014
127015
127016
127017
127018
127019
127020
127021
127022
127023
127024
127025
127026
127027
127028
127029
127030
......
127106
127107
127108
127109
127110
127111
127112
127113
127114
127115
127116
127117
127118
127119
127120
127121
127122
127123
127124
127125
127126
127127
127128
127129
127130
127131
127132
127133
......
127154
127155
127156
127157
127158
127159
127160
127161
127162
127163
127164
127165
127166
127167
127168
127169
127170
127171
127172
127173
127174
127175
127176
127177
127178
127179
127180
127181
127182
127183
127184
127185
127186
127187
127188
127189
127190
127191
127192
127193
127194
127195
127196
127197
127198
127199
......
127734
127735
127736
127737
127738
127739
127740
127741
127742
127743
127744
127745
127746
127747
127748
127749
127750
......
127758
127759
127760
127761
127762
127763
127764
127765
127766
127767
127768
127769
127770
127771
127772
127773
127774
127775
127776
127777
......
127784
127785
127786
127787
127788
127789
127790
127791
127792
127793
127794
127795
127796
127797
127798
127799
127800
127801
127802
127803
127804
127805
127806
127807
127808
127809
127810
127811
127812
127813
127814
127815
127816
127817
127818
127819
......
127943
127944
127945
127946
127947
127948
127949
127950
127951
127952
127953
127954
127955
127956
127957
127958
127959
127960
127961
127962
......
127985
127986
127987
127988
127989
127990
127991
127992
127993
127994
127995
127996
127997
127998
127999
128000
128001
128002
......
128020
128021
128022
128023
128024
128025
128026
128027
128028
128029
128030
128031
128032
128033
128034
128035
128036
128037
128038
128039
......
128047
128048
128049
128050
128051
128052
128053
128054
128055
128056
128057
128058
128059
128060
128061
128062
128063
128064
128065
128066
128067
......
128075
128076
128077
128078
128079
128080
128081
128082
128083
128084
128085
128086
128087
128088
128089
128090
128091
128092
128093
128094
128095
......
128102
128103
128104
128105
128106
128107
128108
128109
128110
128111
128112
128113
128114
128115
128116
128117
128118
128119
128120
128121
128122
......
128127
128128
128129
128130
128131
128132
128133
128134
128135
128136
128137
128138
128139
128140
128141
128142
128143
128144
128145
128146
128147
......
128152
128153
128154
128155
128156
128157
128158
128159
128160
128161
128162
128163
128164
128165
128166
128167
128168
128169
128170
128171
128172
......
128205
128206
128207
128208
128209
128210
128211
128212
128213
128214
128215
128216
128217
128218
128219
128220
128221
......
128228
128229
128230
128231
128232
128233
128234
128235
128236
128237
128238
128239
128240
128241
128242
128243
128244
128245
128246
128247
......
128260
128261
128262
128263
128264
128265
128266
128267
128268
128269
128270
128271
128272
128273
128274
128275
128276
128277
128278
128279
128280
128281
128282
128283
128284
128285
128286
128287
128288
128289
......
128303
128304
128305
128306
128307
128308
128309
128310
128311
128312
128313
128314
128315
128316
128317
128318
128319
......
128492
128493
128494
128495
128496
128497
128498


























128499
128500
128501
128502
128503
128504
128505
......
128535
128536
128537
128538
128539
128540
128541

128542
128543
128544
128545
128546
128547
128548
......
128639
128640
128641
128642
128643
128644
128645
128646
128647
128648
128649
128650
128651
128652
128653
128654
128655
128656
128657
128658
......
128721
128722
128723
128724
128725
128726
128727
128728
128729
128730
128731
128732
128733
128734
128735
128736
......
128931
128932
128933
128934
128935
128936
128937
128938
128939
128940
128941
128942
128943
128944
128945
128946
128947
......
129039
129040
129041
129042
129043
129044
129045
129046
129047
129048
129049
129050
129051
129052
129053
129054
129055
129056
129057
129058
129059
129060
129061
129062
129063
129064
129065
129066
129067
129068
129069
129070
129071
129072
129073
129074
129075



129076
129077
129078
129079
129080
129081
129082
......
129089
129090
129091
129092
129093
129094
129095
129096
129097
129098
129099
129100
129101
129102
129103
129104
129105
129106
......
129233
129234
129235
129236
129237
129238
129239
129240
129241
129242
129243
129244
129245
129246
129247
129248
129249
129250
129251
129252
129253
129254
129255
129256
129257
129258
129259
129260
129261
129262
129263
129264
......
129271
129272
129273
129274
129275
129276
129277
129278






129279
129280
129281
129282
129283
129284
129285
......
129286
129287
129288
129289
129290
129291
129292
129293
129294
129295
129296
129297
129298
129299
129300
129301
129302
129303
......
129311
129312
129313
129314
129315
129316
129317
129318
129319
129320
129321
129322
129323
129324
129325
129326
129327
129328
......
129337
129338
129339
129340
129341
129342
129343
129344
129345
129346
129347
129348
129349
129350
129351
129352
129353
......
129358
129359
129360
129361
129362
129363
129364
129365
129366
129367
129368
129369
129370
129371
129372
129373
129374
......
129387
129388
129389
129390
129391
129392
129393
129394
129395
129396
129397
129398
129399
129400
129401
129402
129403
129404
129405
129406
......
129446
129447
129448
129449
129450
129451
129452

129453
129454
129455
129456
129457
129458
129459
......
129485
129486
129487
129488
129489
129490
129491
129492
129493



129494
129495
129496
129497
129498
129499
129500
129501
129502
129503
129504
129505
129506
129507
129508
129509
129510
129511
129512
129513
129514
129515
......
129554
129555
129556
129557
129558
129559
129560

129561
129562
129563
129564
129565
129566
129567
......
129575
129576
129577
129578
129579
129580
129581
129582
129583
129584
129585
129586
129587
129588
129589
129590
129591
129592
129593
129594
129595
129596
129597
129598
129599
129600
129601
129602
129603
129604
129605
129606
129607
......
129936
129937
129938
129939
129940
129941
129942
129943
129944
129945
129946
129947
129948
129949
129950
......
129992
129993
129994
129995
129996
129997
129998
129999
130000
130001
130002
130003
130004
130005
130006
130007
130008
130009
130010
130011
130012
130013
130014
130015
130016
130017
130018
130019
130020
130021
130022
130023
130024
130025
130026
130027
130028
130029
......
139436
139437
139438
139439
139440
139441
139442
139443
139444
139445
139446
139447
139448
139449
139450
......
150226
150227
150228
150229
150230
150231
150232
150233
150234
150235
150236
150237
150238
150239
150240
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.8.8.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
................................................................................
# define SQLITE_API
#endif


/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are supported for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple
................................................................................
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.8"
#define SQLITE_VERSION_NUMBER 3008008
#define SQLITE_SOURCE_ID      "2015-01-05 20:13:49 e1c4a359aacfce97eb1652624789e71981e0d263"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
** or [SQLITE_CONFIG_SERIALIZED].  ^(The return value of the
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
................................................................................
** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
** </ul>
**
** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
** was given on the corresponding lock.  
**
** The xShmLock method can transition between unlocked and SHARED or
** between unlocked and EXCLUSIVE.  It cannot transition between SHARED
** and EXCLUSIVE.
*/
#define SQLITE_SHM_UNLOCK       1
#define SQLITE_SHM_LOCK         2
................................................................................
** ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Serialized [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
**
** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is 
** a pointer to an instance of the [sqlite3_mem_methods] structure.
** The argument specifies
** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.)^ ^SQLite makes
** its own private copy of the content of the [sqlite3_mem_methods] structure
** before the [sqlite3_config()] call returns.</dd>
**
** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
** is a pointer to an instance of the [sqlite3_mem_methods] structure.
** The [sqlite3_mem_methods]
** structure is filled with the currently defined memory allocation routines.)^
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example. </dd>
**
** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd> ^The SQLITE_CONFIG_SCRATCH option specifies a static memory buffer
** that SQLite can use for scratch memory.  ^(There are three arguments
** to SQLITE_CONFIG_SCRATCH:  A pointer an 8-byte
** aligned memory buffer from which the scratch allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).)^

** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** ^SQLite will not use more than one scratch buffers per thread.

** ^SQLite will never request a scratch buffer that is more than 6
** times the database page size.
** ^If SQLite needs needs additional
** scratch memory beyond what is provided by this configuration option, then 
** [sqlite3_malloc()] will be used to obtain the memory needed.<p>
** ^When the application provides any amount of scratch memory using
** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
** [sqlite3_malloc|heap allocations].
** This can help [Robson proof|prevent memory allocation failures] due to heap
** fragmentation in low-memory embedded systems.
** </dd>
**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a static memory buffer
** that SQLite can use for the database page cache with the default page
** cache implementation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]
** configuration option.
** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
** 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 65536) plus some extra bytes for each

** page header.  ^The number of extra bytes needed by the page header
** can be determined using the [SQLITE_CONFIG_PCACHE_HDRSZ] option 
** to [sqlite3_config()].
** ^It is harmless, apart from the wasted memory,

** for the sz parameter to be larger than necessary.  The first
** argument should pointer to an 8-byte aligned block of memory that
** is at least sz*N bytes of memory, otherwise subsequent behavior is
** undefined.
** ^SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.</dd>



**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
** that SQLite will use for all of its dynamic memory allocation needs
** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and
** [SQLITE_CONFIG_PAGECACHE].
** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
** [SQLITE_ERROR] if invoked otherwise.
** ^There are three arguments to SQLITE_CONFIG_HEAP:
** An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
** memory pointer is not NULL then the alternative memory

** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.
** The minimum allocation size is capped at 2**12. Reasonable values
** for the minimum allocation size are 2**5 through 2**8.</dd>
**
** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
** pointer to an instance of the [sqlite3_mutex_methods] structure.
** The argument specifies alternative low-level mutex routines to be used
** in place the mutex routines built into SQLite.)^  ^SQLite makes a copy of
** the content of the [sqlite3_mutex_methods] structure before the call to
** [sqlite3_config()] returns. ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
** is a pointer to an instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.)^
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
** the default size of lookaside memory on each [database connection].
** The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.)^  ^(SQLITE_CONFIG_LOOKASIDE
** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
** option to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.)^ </dd>
**
** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is 
** a pointer to an [sqlite3_pcache_methods2] object.  This object specifies
** the interface to a custom page cache implementation.)^
** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
**
** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
** is a pointer to an [sqlite3_pcache_methods2] object.  SQLite copies of
** the current page cache implementation into that object.)^ </dd>
**
** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
** global [error log].
** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
** function with a call signature of void(*)(void*,int,const char*), 
** and a pointer to void. ^If the function pointer is not NULL, it is
................................................................................
** log message after formatting via [sqlite3_snprintf()].
** The SQLite logging interface is not reentrant; the logger function
** supplied by the application must not invoke any SQLite interface.
** In a multi-threaded application, the application-defined logger
** function must be threadsafe. </dd>
**
** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
** If non-zero, then URI handling is globally enabled. If the parameter is zero,
** then URI handling is globally disabled.)^ ^If URI handling is globally
** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
** [sqlite3_open16()] or
** specified as part of [ATTACH] commands are interpreted as URIs, regardless
** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
** connection is opened. ^If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. ^(By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.)^
**
** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
** argument which is interpreted as a boolean in order to enable or disable
** the use of covering indices for full table scans in the query optimizer.
** ^The default setting is determined
** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
** if that compile-time option is omitted.
** The ability to disable the use of covering indices for full table scans
** is because some incorrectly coded legacy applications might malfunction
** when the optimization is enabled.  Providing the ability to
** disable the optimization allows the older, buggy application code to work
** without change even with newer versions of SQLite.
................................................................................
** <dt>SQLITE_CONFIG_MMAP_SIZE
** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
** that are the default mmap size limit (the default setting for
** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
** ^The default setting can be overridden by each database connection using
** either the [PRAGMA mmap_size] command, or by using the
** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
** will be silently truncated if necessary so that it does not exceed the
** compile-time maximum mmap size set by the
** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
** ^If either argument to this option is negative, then that argument is
** changed to its compile-time default.
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>
**
** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
** is a pointer to an integer and writes into that integer the number of extra
** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
** The amount of extra space required can change depending on the compiler,
** target platform, and SQLite version.
**
** [[SQLITE_CONFIG_PMASZ]]
** <dt>SQLITE_CONFIG_PMASZ
** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
** sorter to that integer.  The default minimum PMA Size is set by the
** [SQLITE_SORTER_PMASZ] compile-time option.  New threads are launched
** to help with sort operations when multithreaded sorting
** is enabled (using the [PRAGMA threads] command) and the amount of content
** to be sorted exceeds the page size times the minimum of the
** [PRAGMA cache_size] setting and this value.
** </dl>
*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_SCRATCH       6  /* void*, int sz, int N */
................................................................................
#define SQLITE_CONFIG_URI          17  /* int */
#define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */
#define SQLITE_CONFIG_PCACHE_HDRSZ        24  /* int *psz */
#define SQLITE_CONFIG_PMASZ               25  /* unsigned int szPma */

/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
................................................................................
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of rows modified, inserted or
** deleted by the most recently completed INSERT, UPDATE or DELETE
** statement on the database connection specified by the only parameter.
** ^Executing any other type of SQL statement does not modify the value
** returned by this function.
**
** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
** considered - auxiliary changes caused by [CREATE TRIGGER | triggers], 
** [foreign key actions] or [REPLACE] constraint resolution are not counted.
** 
** Changes to a view that are intercepted by 
** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value 
** returned by sqlite3_changes() immediately after an INSERT, UPDATE or 
** DELETE statement run on a view is always zero. Only changes made to real 
** tables are counted.
**




** Things are more complicated if the sqlite3_changes() function is
** executed while a trigger program is running. This may happen if the
** program uses the [changes() SQL function], or if some other callback
** function invokes sqlite3_changes() directly. Essentially:
** 



** <ul>
**   <li> ^(Before entering a trigger program the value returned by
**        sqlite3_changes() function is saved. After the trigger program 
**        has finished, the original value is restored.)^
** 
**   <li> ^(Within a trigger program each INSERT, UPDATE and DELETE 
**        statement sets the value returned by sqlite3_changes() 
**        upon completion as normal. Of course, this value will not include 
**        any changes performed by sub-triggers, as the sqlite3_changes() 
**        value will be saved and restored after each sub-trigger has run.)^
** </ul>
** 
** ^This means that if the changes() SQL function (or similar) is used
** by the first INSERT, UPDATE or DELETE statement within a trigger, it 
** returns the value as set when the calling statement began executing.
** ^If it is used by the second or subsequent such statement within a trigger 
** program, the value returned reflects the number of rows modified by the 
** previous INSERT, UPDATE or DELETE statement within the same trigger.


**
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the total number of rows inserted, modified or
** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
** since the database connection was opened, including those executed as
** part of trigger programs. ^Executing any other type of SQL statement
** does not affect the value returned by sqlite3_total_changes().
** 
** ^Changes made as part of [foreign key actions] are included in the
** count, but those made as part of REPLACE constraint resolution are
** not. ^Changes to a view that are intercepted by INSTEAD OF triggers 


** are not counted.



** 
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
................................................................................
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
** KEYWORDS: {busy-handler callback} {busy handler}
**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever
** an attempt is made to access a database table associated with
** [database connection] D when another thread
** or process has the table locked.
** The sqlite3_busy_handler() interface is used to implement
................................................................................
** ^If the busy callback is NULL, then [SQLITE_BUSY]
** is returned immediately upon encountering the lock.  ^If the busy callback
** is not NULL, then the callback might be invoked with two arguments.
**
** ^The first argument to the busy handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  ^The second argument to
** the busy handler callback is the number of times that the busy handler has
** been invoked previously for the same locking event.  ^If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] is returned
** to the application.
** ^If the callback returns non-zero, then another attempt
** is made to access the database and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
................................................................................
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
** the build-in random() and randomblob() SQL functions.  This interface allows
** applications to access the same PRNG for other purposes.
**
** ^A call to this routine stores N bytes of randomness into buffer P.
** ^The P parameter can be a NULL pointer.
**
** ^If this routine has not been previously called or if the previous
** call had N less than one or a NULL pointer for P, then the PRNG is
** seeded using randomness obtained from the xRandomness method of
** the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more and a
** non-NULL P then the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
................................................................................

/*
** CAPI3REF: Text Encodings
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1    /* IMP: R-37514-35566 */
#define SQLITE_UTF16LE        2    /* IMP: R-03371-37637 */
#define SQLITE_UTF16BE        3    /* IMP: R-51971-34154 */
#define SQLITE_UTF16          4    /* Use native byte order */
#define SQLITE_ANY            5    /* Deprecated */
#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */

/*
** CAPI3REF: Function Flags
**
................................................................................
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
                           sqlite3_uint64,void(*)(void*));
SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
................................................................................
*/
SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);


/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
** information about column C of table T in database D
** on [database connection] X.)^  ^The sqlite3_table_column_metadata()
** interface returns SQLITE_OK and fills in the non-NULL pointers in
** the final five arguments with appropriate values if the specified
** column exists.  ^The sqlite3_table_column_metadata() interface returns
** SQLITE_ERROR and if the specified column does not exist.
** ^If the column-name parameter to sqlite3_table_column_metadata() is a
** NULL pointer, then this routine simply checks for the existance of the
** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
** does not.
**
** ^The column is identified by the second, third and fourth parameters to
** this function. ^(The second parameter is either the name of the database
** (i.e. "main", "temp", or an attached database) containing the specified
** table or NULL.)^ ^If it is NULL, then all attached databases are searched
** for the table using the same algorithm used by the database engine to
** resolve unqualified table references.
**
** ^The third and fourth parameters to this function are the table and column
** name of the desired column, respectively.

**
** ^Metadata is returned by writing to the memory locations passed as the 5th
** and subsequent parameters to this function. ^Any of these arguments may be
** NULL, in which case the corresponding element of metadata is omitted.
**
** ^(<blockquote>
** <table border="1">
................................................................................
** <tr><td> 7th <td> int         <td> True if column has a NOT NULL constraint
** <tr><td> 8th <td> int         <td> True if column is part of the PRIMARY KEY
** <tr><td> 9th <td> int         <td> True if column is [AUTOINCREMENT]
** </table>
** </blockquote>)^
**
** ^The memory pointed to by the character pointers returned for the
** declaration type and collation sequence is valid until the next
** call to any SQLite API function.
**
** ^If the specified table is actually a view, an [error code] is returned.
**
** ^If the specified column is "rowid", "oid" or "_rowid_" and the table 
** is not a [WITHOUT ROWID] table and an
** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
** parameters are set for the explicitly declared column. ^(If there is no
** [INTEGER PRIMARY KEY] column, then the outputs
** for the [rowid] are set as follows:
**
** <pre>
**     data type: "INTEGER"
**     collation sequence: "BINARY"
**     not null: 0
**     primary key: 1
**     auto increment: 0
** </pre>)^
**
** ^This function causes all database schemas to be read from disk and
** parsed, if that has not already been done, and returns an error if
** any errors are encountered while loading the schema.




*/
SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
................................................................................
** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
** in row iRow, column zColumn, table zTable in database zDb;
** in other words, the same BLOB that would be selected by:
**
** <pre>
**     SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
** </pre>)^
**






** ^(Parameter zDb is not the filename that contains the database, but 
** rather the symbolic name of the database. For attached databases, this is
** the name that appears after the AS keyword in the [ATTACH] statement.
** For the main database file, the database name is "main". For TEMP
** tables, the database name is "temp".)^
**
** ^If the flags parameter is non-zero, then the BLOB is opened for read
** and write access. ^If the flags parameter is zero, the BLOB is opened for
** read-only access.
**
** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
** in *ppBlob. Otherwise an [error code] is returned and, unless the error
** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
** the API is not misused, it is always safe to call [sqlite3_blob_close()] 
** on *ppBlob after this function it returns.
**
** This function fails with SQLITE_ERROR if any of the following are true:
** <ul>
**   <li> ^(Database zDb does not exist)^, 
**   <li> ^(Table zTable does not exist within database zDb)^, 
**   <li> ^(Table zTable is a WITHOUT ROWID table)^, 
**   <li> ^(Column zColumn does not exist)^,
**   <li> ^(Row iRow is not present in the table)^,
**   <li> ^(The specified column of row iRow contains a value that is not
**         a TEXT or BLOB value)^,
**   <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE 
**         constraint and the blob is being opened for read/write access)^,
**   <li> ^([foreign key constraints | Foreign key constraints] are enabled, 
**         column zColumn is part of a [child key] definition and the blob is
**         being opened for read/write access)^.
** </ul>
**
** ^Unless it returns SQLITE_MISUSE, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 



**
**
** ^(If the row that a BLOB handle points to is modified by an
** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
** then the BLOB handle is marked as "expired".
** This is true if any column of the row is changed, even a column
** other than the one the BLOB handle is open on.)^
** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
................................................................................
** commit if the transaction continues to completion.)^
**
** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
** the opened blob.  ^The size of a blob may not be changed by this
** interface.  Use the [UPDATE] SQL command to change the size of a
** blob.
**



** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 


** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
................................................................................
** ^This function sets the database handle error code and message.
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
** handle is still closed.)^
**
** ^If the blob handle being closed was opened for read-write access, and if
** the database is in auto-commit mode and there are no other open read-write
** blob handles or active write statements, the current transaction is
** committed. ^If an error occurs while committing the transaction, an error
** code is returned and the transaction rolled back.
**
** Calling this function with an argument that is not a NULL pointer or an
** open blob handle results in undefined behaviour. ^Calling this routine 
** with a null pointer (such as would be returned by a failed call to 
** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
** is passed a valid open blob handle, the values returned by the 
** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.


*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
................................................................................
** See also: [sqlite3_blob_write()].
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^(This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.)^
**
** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
** Otherwise, an  [error code] or an [extended error code] is returned.)^
** ^Unless SQLITE_MISUSE is returned, this function sets the 
** [database connection] error code and message accessible via 
** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions. 
**
** ^If the [BLOB handle] passed as the first argument was not opened for
** writing (the flags parameter to [sqlite3_blob_open()] was zero),
** this function returns [SQLITE_READONLY].
**
** This function may only modify the contents of the BLOB; it is
** not possible to increase the size of a BLOB using this API.
** ^If offset iOffset is less than N bytes from the end of the BLOB,
** [SQLITE_ERROR] is returned and no data is written. The size of the 

** BLOB (and hence the maximum value of N+iOffset) can be determined 
** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less 
** than zero [SQLITE_ERROR] is returned and no data is written.
**
** ^An attempt to write to an expired [BLOB handle] fails with an
** error code of [SQLITE_ABORT].  ^Writes to the BLOB that occurred
** before the [BLOB handle] expired are not rolled back by the
** expiration of the handle, though of course those changes might
** have been overwritten by the statement that expired the BLOB handle
** or by other independent statements.
**



** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
................................................................................
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
** permitted to use any of these routines.
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>
**
** The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  The SQLITE_MUTEX_PTHREADS and
** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
** and Windows.
**
** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
** function that calls sqlite3_initialize().
**
** ^The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
** routine returns NULL if it is unable to allocate the requested
** mutex.  The argument to sqlite3_mutex_alloc() must one of these
** integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_OPEN
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_PMEM
** <li>  SQLITE_MUTEX_STATIC_APP1
** <li>  SQLITE_MUTEX_STATIC_APP2
** <li>  SQLITE_MUTEX_STATIC_APP3
** </ul>
**
** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
** cause sqlite3_mutex_alloc() to create
** a new mutex.  ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
** a pointer to a static preexisting mutex.  ^Nine static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  ^For the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
**
** ^The sqlite3_mutex_free() routine deallocates a previously


** allocated dynamic mutex.  Attempting to deallocate a static
** mutex results in undefined behavior.

**
** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  ^If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
** upon successful entry.  ^(Mutexes created using
** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
** In such cases, the
** mutex must be exited an equal number of times before another thread
** can enter.)^  If the same thread tries to enter any mutex other
** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.


**
** ^(Some systems (for example, Windows 95) do not support the operation
** implemented by sqlite3_mutex_try().  On those systems, sqlite3_mutex_try()
** will always return SQLITE_BUSY. The SQLite core only ever uses
** sqlite3_mutex_try() as an optimization so this is acceptable 
** behavior.)^
**
** ^The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.   The behavior
** is undefined if the mutex is not currently entered by the
** calling thread or is not currently allocated.

**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
................................................................................
/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
** Usually, the default mutex implementations provided by SQLite are
** sufficient, however the application has the option of substituting a custom
** implementation for specialized deployments or systems for which SQLite
** does not provide a suitable implementation. In this case, the application
** creates and populates an instance of this structure to pass
** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
** Additionally, an instance of this structure can be used as an
** output variable when querying the system for the current mutex
** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
**
** ^The xMutexInit method defined by this structure is invoked as
................................................................................
** above silently ignore any invocations that pass a NULL pointer instead
** of a valid mutex handle. The implementations of the methods defined
** by this structure are not required to handle this case, the results
** of passing a NULL pointer instead of a valid mutex handle are undefined
** (i.e. it is acceptable to provide an implementation that segfaults if
** it is passed a NULL pointer).
**
** The xMutexInit() method must be threadsafe.  It must be harmless to
** invoke xMutexInit() multiple times within the same process and without
** intervening calls to xMutexEnd().  Second and subsequent calls to
** xMutexInit() must be no-ops.
**
** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
** and its associates).  Similarly, xMutexAlloc() must not use SQLite memory
** allocation for a static mutex.  ^However xMutexAlloc() may use SQLite
** memory allocation for a fast or recursive mutex.
**
** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
** called, but only if the prior call to xMutexInit returned SQLITE_OK.
** If xMutexInit fails in any way, it is expected to clean up after itself
** prior to returning.
................................................................................
  int (*xMutexNotheld)(sqlite3_mutex *);
};

/*
** CAPI3REF: Mutex Verification Routines
**
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
** are intended for use inside assert() statements.  The SQLite core
** never uses these routines except inside an assert() and applications
** are advised to follow the lead of the core.  The SQLite core only
** provides implementations for these routines when it is compiled
** with the SQLITE_DEBUG flag.  External mutex implementations
** are only required to provide these routines if SQLITE_DEBUG is
** defined and if NDEBUG is not defined.
**
** These routines should return true if the mutex in their argument
** is held or not held, respectively, by the calling thread.
**
** The implementation is not required to provide versions of these
** routines that actually work. If the implementation does not provide working
** versions of these routines, it should at least provide stubs that always
** return true so that one does not get spurious assertion failures.
**
** If the argument to sqlite3_mutex_held() is a NULL pointer then
** the routine should return 1.   This seems counter-intuitive since
** clearly the mutex cannot be held if it does not exist.  But
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

................................................................................
** an [ATTACH] statement for an attached database.
** ^The S and M arguments passed to 
** sqlite3_backup_init(D,N,S,M) identify the [database connection]
** and database name of the source database, respectively.
** ^The source and destination [database connections] (parameters S and D)
** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
** an error.
**
** ^A call to sqlite3_backup_init() will fail, returning SQLITE_ERROR, if 
** there is already a read or read-write transaction open on the 
** destination database.
**
** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
** returned and an error code and error message are stored in the
** destination [database connection] D.
** ^The error code and message for the failed call to sqlite3_backup_init()
** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
** [sqlite3_errmsg16()] functions.
................................................................................
*/
SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** is invoked each time data is committed to a database in wal mode.


**
** ^(The callback is invoked by SQLite after the commit has taken place and 
** the associated write-lock on the database released)^, so the implementation 
** may read, write or [checkpoint] the database as required.
**
** ^The first parameter passed to the callback function when it is invoked
** is a copy of the third parameter passed to sqlite3_wal_hook() when
** registering the callback. ^The second is a copy of the database handle.
** ^The third parameter is the name of the database that was written to -
** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
................................................................................
** for a particular application.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
**
** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the 
** [write-ahead log] for database X on [database connection] D to be
** transferred into the database file and for the write-ahead log to
** be reset.  See the [checkpointing] documentation for addition
** information.
**
** This interface used to be the only way to cause a checkpoint to
** occur.  But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
** interface was added.  This interface is retained for backwards
** compatibility and as a convenience for applications that need to manually
** start a callback but which do not need the full power (and corresponding
** complication) of [sqlite3_wal_checkpoint_v2()].

*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
** operation on database X of [database connection] D in mode M.  Status
** information is written back into integers pointed to by L and C.)^
** ^(The M parameter must be a valid [checkpoint mode]:)^
**
** <dl>
** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
**   ^Checkpoint as many frames as possible without waiting for any database 
**   readers or writers to finish, then sync the database file if all frames 
**   in the log were checkpointed. ^The [busy-handler callback]

**   is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.  
**   ^On the other hand, passive mode might leave the checkpoint unfinished
**   if there are concurrent readers or writers.
**
** <dt>SQLITE_CHECKPOINT_FULL<dd>
**   ^This mode blocks (it invokes the
**   [sqlite3_busy_handler|busy-handler callback]) until there is no
**   database writer and all readers are reading from the most recent database
**   snapshot. ^It then checkpoints all frames in the log file and syncs the

**   database file. ^This mode blocks new database writers while it is pending,
**   but new database readers are allowed to continue unimpeded.
**
** <dt>SQLITE_CHECKPOINT_RESTART<dd>
**   ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
**   that after checkpointing the log file it blocks (calls the 
**   [busy-handler callback])
**   until all readers are reading from the database file only. ^This ensures 

**   that the next writer will restart the log file from the beginning.
**   ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
**   database writer attempts while it is pending, but does not impede readers.
**
** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
**   ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
**   addition that it also truncates the log file to zero bytes just prior
**   to a successful return.
** </dl>
**
** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in

** the log file or to -1 if the checkpoint could not run because
** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
** NULL,then *pnCkpt is set to the total number of checkpointed frames in the




** log file (including any that were already checkpointed before the function
** was called) or to -1 if the checkpoint could not run due to an error or
** because the database is not in WAL mode. ^Note that upon successful
** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
**
** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
** any other process is running a checkpoint operation at the same time, the 
** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a 
** busy-handler configured, it will not be invoked in this case.
**

** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the 
** exclusive "writer" lock on the database file. ^If the writer lock cannot be
** obtained immediately, and a busy-handler is configured, it is invoked and
** the writer lock retried until either the busy-handler returns 0 or the lock
** is successfully obtained. ^The busy-handler is also invoked while waiting for
** database readers as described above. ^If the busy-handler returns 0 before
** the writer lock is obtained or while waiting for database readers, the
** checkpoint operation proceeds from that point in the same way as 
** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible 
** without blocking any further. ^SQLITE_BUSY is returned in this case.
**
** ^If parameter zDb is NULL or points to a zero length string, then the
** specified operation is attempted on all WAL databases [attached] to 
** [database connection] db.  In this case the
** values written to output parameters *pnLog and *pnCkpt are undefined. ^If 
** an SQLITE_BUSY error is encountered when processing one or more of the 
** attached WAL databases, the operation is still attempted on any remaining 
** attached databases and SQLITE_BUSY is returned at the end. ^If any other 
** error occurs while processing an attached database, processing is abandoned 
** and the error code is returned to the caller immediately. ^If no error 
** (SQLITE_BUSY or otherwise) is encountered while processing the attached 
** databases, SQLITE_OK is returned.
**
** ^If database zDb is the name of an attached database that is not in WAL
** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
** zDb is not NULL (or a zero length string) and is not the name of any
** attached database, SQLITE_ERROR is returned to the caller.
**
** ^Unless it returns SQLITE_MISUSE,
** the sqlite3_wal_checkpoint_v2() interface
** sets the error information that is queried by
** [sqlite3_errcode()] and [sqlite3_errmsg()].
**
** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
** from SQL.
*/
SQLITE_API int sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);

/*
** CAPI3REF: Checkpoint Mode Values
** KEYWORDS: {checkpoint mode}
**

** These constants define all valid values for the "checkpoint mode" passed
** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the


** meaning of each of these checkpoint modes.
*/
#define SQLITE_CHECKPOINT_PASSIVE  0  /* Do as much as possible w/o blocking */
#define SQLITE_CHECKPOINT_FULL     1  /* Wait for writers, then checkpoint */
#define SQLITE_CHECKPOINT_RESTART  2  /* Like FULL but wait for for readers */
#define SQLITE_CHECKPOINT_TRUNCATE 3  /* Like RESTART but also truncate WAL */

/*
** CAPI3REF: Virtual Table Interface Configuration
**
** This function may be called by either the [xConnect] or [xCreate] method
** of a [virtual table] implementation to configure
** various facets of the virtual table interface.
................................................................................
*/
#define SQLITE_ROLLBACK 1
/* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
#define SQLITE_FAIL     3
/* #define SQLITE_ABORT 4  // Also an error code */
#define SQLITE_REPLACE  5

/*
** CAPI3REF: Prepared Statement Scan Status Opcodes
** KEYWORDS: {scanstatus options}
**
** The following constants can be used for the T parameter to the
** [sqlite3_stmt_scanstatus(S,X,T,V)] interface.  Each constant designates a
** different metric for sqlite3_stmt_scanstatus() to return.
**
** <dl>
** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be
** set to the total number of times that the X-th loop has run.</dd>
**
** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set
** to the total number of rows examined by all iterations of the X-th loop.</dd>
**
** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
** <dd>^The "double" variable pointed to by the T parameter will be set to the
** query planner's estimate for the average number of rows output from each
** iteration of the X-th loop.  If the query planner's estimates was accurate,
** then this value will approximate the quotient NVISIT/NLOOP and the
** product of this value for all prior loops with the same SELECTID will
** be the NLOOP value for the current loop.
**
** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
** <dd>^The "const char *" variable pointed to by the T parameter will be set
** to a zero-terminated UTF-8 string containing the name of the index or table
** used for the X-th loop.
**
** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
** <dd>^The "const char *" variable pointed to by the T parameter will be set
** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
** description for the X-th loop.
**
** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt>
** <dd>^The "int" variable pointed to by the T parameter will be set to the
** "select-id" for the X-th loop.  The select-id identifies which query or
** subquery the loop is part of.  The main query has a select-id of zero.
** The select-id is the same value as is output in the first column
** of an [EXPLAIN QUERY PLAN] query.
** </dl>
*/
#define SQLITE_SCANSTAT_NLOOP    0
#define SQLITE_SCANSTAT_NVISIT   1
#define SQLITE_SCANSTAT_EST      2
#define SQLITE_SCANSTAT_NAME     3
#define SQLITE_SCANSTAT_EXPLAIN  4
#define SQLITE_SCANSTAT_SELECTID 5

/*
** CAPI3REF: Prepared Statement Scan Status
**
** Return status data for a single loop within query pStmt.
**
** The "iScanStatusOp" parameter determines which status information to return.
** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
** of this interface is undefined.
** ^The requested measurement is written into a variable pointed to by
** the "pOut" parameter.
** Parameter "idx" identifies the specific loop to retrieve statistics for.
** Loops are numbered starting from zero. ^If idx is out of range - less than
** zero or greater than or equal to the total number of loops used to implement
** the statement - a non-zero value is returned and the variable that pOut
** points to is unchanged.
**
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
................................................................................
** the -DSQLITE_POWERSAFE_OVERWRITE=0 command-line option.
*/
#ifndef SQLITE_POWERSAFE_OVERWRITE
# define SQLITE_POWERSAFE_OVERWRITE 1
#endif

/*
** EVIDENCE-OF: R-25715-37072 Memory allocation statistics are enabled by
** default unless SQLite is compiled with SQLITE_DEFAULT_MEMSTATUS=0 in
** which case memory allocation statistics are disabled by default.

*/
#if !defined(SQLITE_DEFAULT_MEMSTATUS)
# define SQLITE_DEFAULT_MEMSTATUS 1
#endif

/*
** Exactly one of the following macros must be defined in order to
................................................................................

/*
** Estimated quantities used for query planning are stored as 16-bit
** logarithms.  For quantity X, the value stored is 10*log2(X).  This
** gives a possible range of values of approximately 1.0e986 to 1e-986.
** But the allowed values are "grainy".  Not every value is representable.
** For example, quantities 16 and 17 are both represented by a LogEst
** of 40.  However, since LogEst quantities are suppose to be estimates,
** not exact values, this imprecision is not a problem.
**
** "LogEst" is short for "Logarithmic Estimate".
**
** Examples:
**      1 -> 0              20 -> 43          10000 -> 132
**      2 -> 10             25 -> 46          25000 -> 146
................................................................................
*/
#ifndef _BTREE_H_
#define _BTREE_H_

/* TODO: This definition is just included so other modules compile. It
** needs to be revisited.
*/
#define SQLITE_N_BTREE_META 16

/*
** If defined as non-zero, auto-vacuum is enabled by default. Otherwise
** it must be turned on for each database using "PRAGMA auto_vacuum = 1".
*/
#ifndef SQLITE_DEFAULT_AUTOVACUUM
  #define SQLITE_DEFAULT_AUTOVACUUM 0
................................................................................
** SQLite database header may be found using the following formula:
**
**   offset = 36 + (idx * 4)
**
** For example, the free-page-count field is located at byte offset 36 of
** the database file header. The incr-vacuum-flag field is located at
** byte offset 64 (== 36+4*7).
**
** The BTREE_DATA_VERSION value is not really a value stored in the header.
** It is a read-only number computed by the pager.  But we merge it with
** the header value access routines since its access pattern is the same.
** Call it a "virtual meta value".
*/
#define BTREE_FREE_PAGE_COUNT     0
#define BTREE_SCHEMA_VERSION      1
#define BTREE_FILE_FORMAT         2
#define BTREE_DEFAULT_CACHE_SIZE  3
#define BTREE_LARGEST_ROOT_PAGE   4
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7
#define BTREE_APPLICATION_ID      8
#define BTREE_DATA_VERSION        15  /* A virtual meta-value */

/*
** Values that may be OR'd together to form the second argument of an
** sqlite3BtreeCursorHints() call.
*/
#define BTREE_BULKLOAD 0x00000001

................................................................................

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);

#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
................................................................................
# define VdbeCoverage(v)
# define VdbeCoverageIf(v,x)
# define VdbeCoverageAlwaysTaken(v)
# define VdbeCoverageNeverTaken(v)
# define VDBE_OFFSET_LINENO(x) 0
#endif

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
SQLITE_PRIVATE void sqlite3VdbeScanStatus(Vdbe*, int, int, int, LogEst, const char*);
#else
# define sqlite3VdbeScanStatus(a,b,c,d,e)
#endif

#endif

/************** End of vdbe.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include pager.h in the middle of sqliteInt.h *****************/
/************** Begin file pager.h *******************************************/
/*
................................................................................

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*);
SQLITE_PRIVATE int sqlite3PagerRefcount(Pager*);
SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int);
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
................................................................................
SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *);
SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *);

/* Functions used to truncate the database file. */
SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager*,Pgno);

SQLITE_PRIVATE void sqlite3PagerRekey(DbPage*, Pgno, u16);

#if defined(SQLITE_HAS_CODEC) && !defined(SQLITE_OMIT_WAL)
SQLITE_PRIVATE void *sqlite3PagerCodec(DbPage *);
#endif

/* Functions to support testing and debugging. */
#if !defined(NDEBUG) || defined(SQLITE_TEST)
................................................................................

#ifdef SQLITE_TEST
SQLITE_PRIVATE void sqlite3PcacheStats(int*,int*,int*,int*);
#endif

SQLITE_PRIVATE void sqlite3PCacheSetDefault(void);

/* Return the header size */
SQLITE_PRIVATE int sqlite3HeaderSizePcache(void);
SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void);

#endif /* _PCACHE_H_ */

/************** End of pcache.h **********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/************** Include os.h in the middle of sqliteInt.h ********************/
/************** Begin file os.h **********************************************/
................................................................................
  int flags;                    /* Miscellaneous flags. See below */
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
  i64 szMmap;                   /* Default mmap_size setting */
  unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
  int errCode;                  /* Most recent error code (SQLITE_*) */
  int errMask;                  /* & result codes with this before returning */
  u16 dbOptFlags;               /* Flags to enable/disable optimizations */
  u8 enc;                       /* Text encoding */
  u8 autoCommit;                /* The auto-commit flag. */
  u8 temp_store;                /* 1: file 2: memory 0: default */
  u8 mallocFailed;              /* True if we have seen a malloc failure */
  u8 dfltLockMode;              /* Default locking-mode for attached dbs */
  signed char nextAutovac;      /* Autovac setting after VACUUM if >=0 */
  u8 suppressErr;               /* Do not issue error messages if true */
  u8 vtabOnConflict;            /* Value to return for s3_vtab_on_conflict() */
................................................................................
  sqlite3_userauth auth;        /* User authentication information */
#endif
};

/*
** A macro to discover the encoding of a database.
*/
#define SCHEMA_ENC(db) ((db)->aDb[0].pSchema->enc)
#define ENC(db)        ((db)->enc)

/*
** Possible values for the sqlite3.flags.
*/
#define SQLITE_VdbeTrace      0x00000001  /* True to trace VDBE execution */
#define SQLITE_InternChanges  0x00000002  /* Uncommitted Hash table changes */
#define SQLITE_FullFSync      0x00000004  /* Use full fsync on the backend */
................................................................................
/*                not used    0x0010   // Was: SQLITE_IdxRealAsInt */
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
................................................................................
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */

  int tnum;                /* DB Page containing root of this index */
  LogEst szIdxRow;         /* Estimated average row size in bytes */
  u16 nKeyCol;             /* Number of columns forming the key */
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
  unsigned idxType:2;      /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */
  unsigned bUnordered:1;   /* Use this index for == or IN queries only */
  unsigned uniqNotNull:1;  /* True if UNIQUE and NOT NULL for all columns */
  unsigned isResized:1;    /* True if resizeIndexObject() has been called */
  unsigned isCovering:1;   /* True if this is a covering index */
  unsigned noSkipScan:1;   /* Do not try to use skip-scan if true */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  int nSample;             /* Number of elements in aSample[] */
  int nSampleCol;          /* Size of IndexSample.anEq[] and so on */
  tRowcnt *aAvgEq;         /* Average nEq values for keys not in aSample */
  IndexSample *aSample;    /* Samples of the left-most key */
  tRowcnt *aiRowEst;       /* Non-logarithmic stat1 data for this index */
  tRowcnt nRowEst0;        /* Non-logarithmic number of rows in the index */
#endif
};

/*
** Allowed values for Index.idxType
*/
#define SQLITE_IDXTYPE_APPDEF      0   /* Created using CREATE INDEX */
................................................................................

#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
  int iTable;            /* TK_COLUMN: cursor number of table holding column
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old
                         ** EP_Unlikely:  134217728 times likelihood */
  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
                         ** TK_VARIABLE: variable number (always >= 1). */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
................................................................................
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
};

/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
#define EP_Agg       0x000002 /* Contains one or more aggregate functions */
#define EP_Resolved  0x000004 /* IDs have been resolved to COLUMNs */
#define EP_Error     0x000008 /* Expression contains one or more errors */
#define EP_Distinct  0x000010 /* Aggregate function with DISTINCT keyword */
#define EP_VarSelect 0x000020 /* pSelect is correlated, not constant */
#define EP_DblQuoted 0x000040 /* token.z was originally in "..." */
#define EP_InfixFunc 0x000080 /* True for an infix function: LIKE, GLOB, etc */
................................................................................
#define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_Constant  0x080000 /* Node is a constant */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */

/*
** These macros can be used to test, set, or clear bits in the 
** Expr.flags field.
*/
#define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
#define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
................................................................................
#define SF_Resolved        0x0002  /* Identifiers have been resolved */
#define SF_Aggregate       0x0004  /* Contains aggregate functions */
#define SF_UsesEphemeral   0x0008  /* Uses the OpenEphemeral opcode */
#define SF_Expanded        0x0010  /* sqlite3SelectExpand() called on this */
#define SF_HasTypeInfo     0x0020  /* FROM subqueries have Table metadata */
#define SF_Compound        0x0040  /* Part of a compound query */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_AllValues       0x0100  /* All terms of compound are VALUES */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */


/*
................................................................................
  int szScratch;                    /* Size of each scratch buffer */
  int nScratch;                     /* Number of scratch buffers */
  void *pPage;                      /* Page cache memory */
  int szPage;                       /* Size of each page in pPage[] */
  int nPage;                        /* Number of pages in pPage[] */
  int mxParserStack;                /* maximum depth of the parser stack */
  int sharedCacheEnabled;           /* true if shared-cache mode enabled */
  u32 szPma;                        /* Maximum Sorter PMA size */
  /* The above might be initialized to non-zero.  The following need to always
  ** initially be zero, however. */
  int isInit;                       /* True after initialization has finished */
  int inProgress;                   /* True while initialization in progress */
  int isMutexInit;                  /* True after mutexes are initialized */
  int isMallocInit;                 /* True after malloc is initialized */
  int isPCacheInit;                 /* True after malloc is initialized */
................................................................................
*/
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  void (*xSelectCallback2)(Walker*,Select*);/* Second callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  int walkerDepth;                          /* Number of subqueries */
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
................................................................................
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
................................................................................
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages. 
*/
#ifdef SQLITE_ENABLE_IOTRACE
# define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
SQLITE_PRIVATE   void sqlite3VdbeIOTraceSql(Vdbe*);
void (*sqlite3IoTrace)(const char*,...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif

/*
** These routines are available for the mem2.c debugging memory allocator
................................................................................

/* EVIDENCE-OF: R-02982-34736 In order to maintain full backwards
** compatibility for legacy applications, the URI filename capability is
** disabled by default.
**
** EVIDENCE-OF: R-38799-08373 URI filenames can be enabled or disabled
** using the SQLITE_USE_URI=1 or SQLITE_USE_URI=0 compile-time options.
**
** EVIDENCE-OF: R-43642-56306 By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** SQLITE_USE_URI symbol defined.
*/
#ifndef SQLITE_USE_URI
# define  SQLITE_USE_URI 0
#endif

/* EVIDENCE-OF: R-38720-18127 The default setting is determined by the
** SQLITE_ALLOW_COVERING_INDEX_SCAN compile-time option, or is "on" if
** that compile-time option is omitted.
*/
#ifndef SQLITE_ALLOW_COVERING_INDEX_SCAN
# define SQLITE_ALLOW_COVERING_INDEX_SCAN 1
#endif

/* The minimum PMA size is set to this value multiplied by the database
** page size in bytes.
*/
#ifndef SQLITE_SORTER_PMASZ
# define SQLITE_SORTER_PMASZ 250
#endif

/*
** The following singleton contains the global configuration for
** the SQLite library.
*/
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config = {
   SQLITE_DEFAULT_MEMSTATUS,  /* bMemstat */
................................................................................
   0,                         /* szScratch */
   0,                         /* nScratch */
   (void*)0,                  /* pPage */
   0,                         /* szPage */
   0,                         /* nPage */
   0,                         /* mxParserStack */
   0,                         /* sharedCacheEnabled */
   SQLITE_SORTER_PMASZ,       /* szPma */
   /* All the rest should always be initialized to zero */
   0,                         /* isInit */
   0,                         /* inProgress */
   0,                         /* isMutexInit */
   0,                         /* isMallocInit */
   0,                         /* isPCacheInit */
   0,                         /* nRefInitMutex */
................................................................................
** a different position in the file.  This allows code that has to
** deal with the pending byte to run on files that are much smaller
** than 1 GiB.  The sqlite3_test_control() interface can be used to
** move the pending byte.
**
** IMPORTANT:  Changing the pending byte to any value other than
** 0x40000000 results in an incompatible database file format!
** Changing the pending byte during operation will result in undefined
** and incorrect behavior.
*/
#ifndef SQLITE_OMIT_WSD
SQLITE_PRIVATE int sqlite3PendingByte = 0x40000000;
#endif

/*
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
................................................................................
  "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
#endif
#ifdef SQLITE_DISABLE_DIRSYNC
  "DISABLE_DIRSYNC",
#endif
#ifdef SQLITE_DISABLE_LFS
  "DISABLE_LFS",
#endif
#ifdef SQLITE_ENABLE_API_ARMOR
  "ENABLE_API_ARMOR",
#endif
#ifdef SQLITE_ENABLE_ATOMIC_WRITE
  "ENABLE_ATOMIC_WRITE",
#endif
#ifdef SQLITE_ENABLE_CEROD
  "ENABLE_CEROD",
#endif
................................................................................
** was used and false if not.
**
** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
** is not required for a match.
*/
SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
  int i, n;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( zOptName==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  if( sqlite3StrNICmp(zOptName, "SQLITE_", 7)==0 ) zOptName += 7;
  n = sqlite3Strlen30(zOptName);

  /* Since ArraySize(azCompileOpt) is normally in single digits, a
  ** linear search is adequate.  No need for a binary search. */
  for(i=0; i<ArraySize(azCompileOpt); i++){
    if( sqlite3StrNICmp(zOptName, azCompileOpt[i], n)==0
................................................................................
** set to NULL if the currently executing frame is the main program.
*/
typedef struct VdbeFrame VdbeFrame;
struct VdbeFrame {
  Vdbe *v;                /* VM this frame belongs to */
  VdbeFrame *pParent;     /* Parent of this frame, or NULL if parent is main */
  Op *aOp;                /* Program instructions for parent frame */
  i64 *anExec;            /* Event counters from parent frame */
  Mem *aMem;              /* Array of memory cells for parent frame */
  u8 *aOnceFlag;          /* Array of OP_Once flags for parent frame */
  VdbeCursor **apCsr;     /* Array of Vdbe cursors for parent frame */
  void *token;            /* Copy of SubProgram.token */
  i64 lastRowid;          /* Last insert rowid (sqlite3.lastRowid) */
  int nCursor;            /* Number of entries in apCsr */
  int pc;                 /* Program Counter in parent (calling) frame */
  int nOp;                /* Size of aOp array */
  int nMem;               /* Number of entries in aMem */
  int nOnceFlag;          /* Number of entries in aOnceFlag */
  int nChildMem;          /* Number of memory cells for child frame */
  int nChildCsr;          /* Number of cursors for child frame */
  int nChange;            /* Statement changes (Vdbe.nChange)     */
  int nDbChange;          /* Value of db->nChange */
};

#define VdbeFrameMem(p) ((Mem *)&((u8 *)p)[ROUND8(sizeof(VdbeFrame))])

/*
** A value for VdbeCursor.cacheValid that means the cache is always invalid.
*/
................................................................................
};

/* A bitfield type for use inside of structures.  Always follow with :N where
** N is the number of bits.
*/
typedef unsigned bft;  /* Bit Field Type */

typedef struct ScanStatus ScanStatus;
struct ScanStatus {
  int addrExplain;                /* OP_Explain for loop */
  int addrLoop;                   /* Address of "loops" counter */
  int addrVisit;                  /* Address of "rows visited" counter */
  int iSelectID;                  /* The "Select-ID" for this loop */
  LogEst nEst;                    /* Estimated output rows per loop */
  char *zName;                    /* Name of table or index */
};

/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
**
................................................................................
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  int nOnceFlag;          /* Size of array aOnceFlag[] */
  u8 *aOnceFlag;          /* Flags for OP_Once */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  i64 *anExec;            /* Number of times each op has been executed */
  int nScan;              /* Entries in aScan[] */
  ScanStatus *aScan;      /* Scan definitions for sqlite3_stmt_scanstatus() */
#endif
};

/*
** The following are allowed values for Vdbe.magic
*/
#define VDBE_MAGIC_INIT     0x26bceaa5    /* Building a VDBE program */
#define VDBE_MAGIC_RUN      0xbdf20da3    /* VDBE is ready to execute */
................................................................................
** then this routine is not threadsafe.
*/
SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
  wsdStatInit;
  if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
    return SQLITE_MISUSE_BKPT;
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif
  *pCurrent = wsdStat.nowValue[op];
  *pHighwater = wsdStat.mxValue[op];
  if( resetFlag ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
  return SQLITE_OK;
}
................................................................................
  sqlite3 *db,          /* The database connection whose status is desired */
  int op,               /* Status verb */
  int *pCurrent,        /* Write current value here */
  int *pHighwater,      /* Write high-water mark here */
  int resetFlag         /* Reset high-water mark if true */
){
  int rc = SQLITE_OK;   /* Return code */
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || pCurrent==0|| pHighwater==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  switch( op ){
    case SQLITE_DBSTATUS_LOOKASIDE_USED: {
      *pCurrent = db->lookaside.nOut;
      *pHighwater = db->lookaside.mxOut;
      if( resetFlag ){
        db->lookaside.mxOut = db->lookaside.nOut;
................................................................................
** This file contains the C functions that implement date and time
** functions for SQLite.  
**
** There is only one exported symbol in this file - the function
** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
** All other code has file scope.
**
** SQLite processes all times and dates as julian day numbers.  The
** dates and times are stored as the number of days since noon
** in Greenwich on November 24, 4714 B.C. according to the Gregorian
** calendar system. 
**
** 1970-01-01 00:00:00 is JD 2440587.5
** 2000-01-01 00:00:00 is JD 2451544.5
**
................................................................................
** This implementation requires years to be expressed as a 4-digit number
** which means that only dates between 0000-01-01 and 9999-12-31 can
** be represented, even though julian day numbers allow a much wider
** range of dates.
**
** The Gregorian calendar system is used for all dates and times,
** even those that predate the Gregorian calendar.  Historians usually
** use the julian calendar for dates prior to 1582-10-15 and for some
** dates afterwards, depending on locale.  Beware of this difference.
**
** The conversion algorithms are implemented based on descriptions
** in the following text:
**
**      Jean Meeus
**      Astronomical Algorithms, 2nd Edition, 1998
................................................................................
    return 0;
  }else{
    return 1;
  }
}

/*
** Attempt to parse the given string into a julian day number.  Return
** the number of errors.
**
** The following are acceptable forms for the input string:
**
**      YYYY-MM-DD HH:MM:SS.FFF  +/-HH:MM
**      DDDD.DD 
**      now
................................................................................
**
** Return a string described by FORMAT.  Conversions as follows:
**
**   %d  day of month
**   %f  ** fractional seconds  SS.SSS
**   %H  hour 00-24
**   %j  day of year 000-366
**   %J  ** julian day number
**   %m  month 01-12
**   %M  minute 00-59
**   %s  seconds since 1970-01-01
**   %S  seconds 00-59
**   %w  day of week 0-6  sunday==0
**   %W  week of year 00-53
**   %Y  year 0000-9999
................................................................................
*/
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
  MUTEX_LOGIC(sqlite3_mutex *mutex;)
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pVfs==0 ) return SQLITE_MISUSE_BKPT;
#endif

  MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
  sqlite3_mutex_enter(mutex);
  vfsUnlink(pVfs);
  if( makeDflt || vfsList==0 ){
    pVfs->pNext = vfsList;
    vfsList = pVfs;
  }else{
................................................................................

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
  if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
................................................................................
        p->id = iType;
#endif
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      p = &staticMutexes[iType-2];
#if SQLITE_MUTEX_NREF
      p->id = iType;
#endif
      break;
    }
  }
................................................................................
#else
        InitializeCriticalSection(&p->mutex);
#endif
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(winMutex_staticMutexes) );
      assert( winMutex_isInit==1 );
      p = &winMutex_staticMutexes[iType-2];
#ifdef SQLITE_DEBUG
      p->id = iType;
#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
................................................................................
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
  /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch
  ** buffers per thread.
  **
  ** This can only be checked in single-threaded mode.
  */
  assert( scratchAllocOut==0 );
  if( p ) scratchAllocOut++;
#endif

  return p;
}
SQLITE_PRIVATE void sqlite3ScratchFree(void *p){
  if( p ){
................................................................................
  double rounder;            /* Used for rounding floating point values */
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( ap==0 ){
    (void)SQLITE_MISUSE_BKPT;
    sqlite3StrAccumReset(pAccum);
    return;
  }
#endif
  bufpt = 0;
  if( bFlags ){
    if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
................................................................................
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = (p->zText==p->zBase ? 0 : p->zText);
    i64 szNew = p->nChar;
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
................................................................................
    }else{
      zNew = sqlite3_realloc(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
................................................................................
** Print into memory obtained from sqlite3_malloc().  Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;

#ifdef SQLITE_ENABLE_API_ARMOR  
  if( zFormat==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  sqlite3StrAccumInit(&acc, zBase, sizeof(zBase), SQLITE_MAX_LENGTH);
  acc.useMalloc = 2;
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  z = sqlite3StrAccumFinish(&acc);
................................................................................
** mistake.
**
** sqlite3_vsnprintf() is the varargs version.
*/
SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
  StrAccum acc;
  if( n<=0 ) return zBuf;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf && n>0 ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, zBuf, n, 0);
  acc.useMalloc = 0;
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  return sqlite3StrAccumFinish(&acc);
}
SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
................................................................................
  struct sqlite3PrngType *p = &GLOBAL(struct sqlite3PrngType, sqlite3Prng);
# define wsdPrng p[0]
#else
# define wsdPrng sqlite3Prng
#endif

#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex;
#endif

#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return;
#endif

#if SQLITE_THREADSAFE
  mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PRNG);

#endif

  sqlite3_mutex_enter(mutex);
  if( N<=0 || pBuf==0 ){
    wsdPrng.isInit = 0;
    sqlite3_mutex_leave(mutex);
    return;
  }

  /* Initialize the state of the random number generator once,
  ** the first time this routine is called.  The seed value does
................................................................................
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];
}
SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
}

/*
................................................................................
      ** or an error number on  failure". See the manpage for details. */
      int err;
      do{
        err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
      }while( err==EINTR );
      if( err ) return SQLITE_IOERR_WRITE;
#else
      /* If the OS does not have posix_fallocate(), fake it. Write a 
      ** single byte to the last byte in each block that falls entirely
      ** within the extended region. Then, if required, a single byte
      ** at offset (nSize-1), to set the size of the file correctly.
      ** This is a similar technique to that used by glibc on systems
      ** that do not have a real fallocate() call.
      */
      int nBlk = buf.st_blksize;  /* File-system block size */
      i64 iWrite;                 /* Next offset to write to */





      iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
      assert( iWrite>=buf.st_size );
      assert( (iWrite/nBlk)==((buf.st_size+nBlk-1)/nBlk) );
      assert( ((iWrite+1)%nBlk)==0 );
      for(/*no-op*/; iWrite<nSize; iWrite+=nBlk ){
        int nWrite = seekAndWrite(pFile, iWrite, "", 1);
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
      }
      if( nSize%nBlk ){
        int nWrite = seekAndWrite(pFile, nSize-1, "", 1);
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
      }
#endif
    }
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
................................................................................
** available in Windows platforms based on the NT kernel.
*/
#if !SQLITE_OS_WINNT && !defined(SQLITE_OMIT_WAL)
#  error "WAL mode requires support from the Windows NT kernel, compile\
 with SQLITE_OMIT_WAL."
#endif

#if !SQLITE_OS_WINNT && SQLITE_MAX_MMAP_SIZE>0
#  error "Memory mapped files require support from the Windows NT kernel,\
 compile with SQLITE_MAX_MMAP_SIZE=0."
#endif

/*
** Are most of the Win32 ANSI APIs available (i.e. with certain exceptions
** based on the sub-platform)?
*/
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && !defined(SQLITE_WIN32_NO_ANSI)
#  define SQLITE_WIN32_HAS_ANSI
#endif
................................................................................
*/
#ifndef winGetDirSep
#  define winGetDirSep()                '\\'
#endif

/*
** Do we need to manually define the Win32 file mapping APIs for use with WAL
** mode or memory mapped files (e.g. these APIs are available in the Windows
** CE SDK; however, they are not present in the header file)?
*/
#if SQLITE_WIN32_FILEMAPPING_API && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
/*
** Two of the file mapping APIs are different under WinRT.  Figure out which
** set we need.
*/
#if SQLITE_OS_WINRT
WINBASEAPI HANDLE WINAPI CreateFileMappingFromApp(HANDLE, \
        LPSECURITY_ATTRIBUTES, ULONG, ULONG64, LPCWSTR);
................................................................................
WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
#endif /* SQLITE_OS_WINRT */

/*
** This file mapping API is common to both Win32 and WinRT.
*/
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API */

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
# define INVALID_FILE_ATTRIBUTES ((DWORD)-1)
#endif
................................................................................
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_ANSI) && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
  { "CreateFileMappingA",      (SYSCALL)CreateFileMappingA,      0 },
#else
  { "CreateFileMappingA",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingA ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCSTR))aSyscall[6].pCurrent)

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
  { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
#else
  { "CreateFileMappingW",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCWSTR))aSyscall[7].pCurrent)
................................................................................
#endif

#ifndef osLockFileEx
#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[48].pCurrent)
#endif

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && \
        (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0))
  { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
#else
  { "MapViewOfFile",           (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        SIZE_T))aSyscall[49].pCurrent)
................................................................................
#else
  { "UnlockFileEx",            (SYSCALL)0,                       0 },
#endif

#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[58].pCurrent)

#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },
#else
  { "UnmapViewOfFile",         (SYSCALL)0,                       0 },
#endif

#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[59].pCurrent)

................................................................................
#else
  { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
#endif

#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
        FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[66].pCurrent)

#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
  { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
#else
  { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
        SIZE_T))aSyscall[67].pCurrent)
................................................................................

#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[73].pCurrent)

  { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },

#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[74].pCurrent)

#if SQLITE_OS_WINRT && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[75].pCurrent)
................................................................................
** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
** be returned and no changes will be made to the Win32 native heap.
*/
SQLITE_API int sqlite3_win32_reset_heap(){
  int rc;
  MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */
  MUTEX_LOGIC( sqlite3_mutex *pMem; )    /* The memsys static mutex */
  MUTEX_LOGIC( pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); )
  MUTEX_LOGIC( pMem = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); )
  sqlite3_mutex_enter(pMaster);
  sqlite3_mutex_enter(pMem);
  winMemAssertMagic();
  if( winMemGetHeap()!=NULL && winMemGetOwned() && sqlite3_memory_used()==0 ){
    /*
    ** At this point, there should be no outstanding memory allocations on
    ** the heap.  Also, since both the master and memsys locks are currently
................................................................................
*/
static int winRead(
  sqlite3_file *id,          /* File to read from */
  void *pBuf,                /* Write content into this buffer */
  int amt,                   /* Number of bytes to read */
  sqlite3_int64 offset       /* Begin reading at this offset */
){
#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
  OVERLAPPED overlapped;          /* The offset for ReadFile. */
#endif
  winFile *pFile = (winFile*)id;  /* file handle */
  DWORD nRead;                    /* Number of bytes actually read from file */
  int nRetry = 0;                 /* Number of retrys */

  assert( id!=0 );
................................................................................
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
  if( winSeekFile(pFile, offset) ){
    OSTRACE(("READ file=%p, rc=SQLITE_FULL\n", pFile->h));
    return SQLITE_FULL;
  }
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
#else
  memset(&overlapped, 0, sizeof(OVERLAPPED));
................................................................................
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
  rc = winSeekFile(pFile, offset);
  if( rc==0 ){
#else
  {
#endif
#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
    OVERLAPPED overlapped;        /* The offset for WriteFile. */
#endif
    u8 *aRem = (u8 *)pBuf;        /* Data yet to be written */
    int nRem = amt;               /* Number of bytes yet to be written */
    DWORD nWrite;                 /* Bytes written by each WriteFile() call */
    DWORD lastErrno = NO_ERROR;   /* Value returned by GetLastError() */

#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
    memset(&overlapped, 0, sizeof(OVERLAPPED));
    overlapped.Offset = (LONG)(offset & 0xffffffff);
    overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
#endif

    while( nRem>0 ){
#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, 0) ){
#else
      if( !osWriteFile(pFile->h, aRem, nRem, &nWrite, &overlapped) ){
#endif
        if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
        break;
      }
      assert( nWrite==0 || nWrite<=(DWORD)nRem );
      if( nWrite==0 || nWrite>(DWORD)nRem ){
        lastErrno = osGetLastError();
        break;
      }
#if !SQLITE_OS_WINCE && !defined(SQLITE_WIN32_NO_OVERLAPPED)
      offset += nWrite;
      overlapped.Offset = (LONG)(offset & 0xffffffff);
      overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
#endif
      aRem += nWrite;
      nRem -= nWrite;
    }
................................................................................
** are no outstanding page references when this function is called.
*/
SQLITE_PRIVATE int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){
  assert( pCache->nRef==0 && pCache->pDirty==0 );
  if( pCache->szPage ){
    sqlite3_pcache *pNew;
    pNew = sqlite3GlobalConfig.pcache2.xCreate(
                szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)),
                pCache->bPurgeable
    );
    if( pNew==0 ) return SQLITE_NOMEM;
    sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache));
    if( pCache->pCache ){
      sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache);
    }
    pCache->pCache = pNew;
................................................................................
/*
** Free up as much memory as possible from the page cache.
*/
SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
  assert( pCache->pCache!=0 );
  sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
}

/*
** Return the size of the header added by this middleware layer
** in the page-cache hierarchy.
*/
SQLITE_PRIVATE int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); }


#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/
................................................................................
  p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
  if( !pPg || !p ){
    pcache1Free(pPg);
    sqlite3_free(p);
    pPg = 0;
  }
#else
  pPg = pcache1Alloc(ROUND8(sizeof(PgHdr1)) + pCache->szPage + pCache->szExtra);
  p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
#endif
  pcache1EnterMutex(pCache->pGroup);

  if( pPg ){
    p->page.pBuf = pPg;
    p->page.pExtra = &p[1];
................................................................................
    pcache1Truncate,         /* xTruncate */
    pcache1Destroy,          /* xDestroy */
    pcache1Shrink            /* xShrink */
  };
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

/*
** Return the size of the header on each page of this PCACHE implementation.
*/
SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
................................................................................
  */
  u8 eState;                  /* Pager state (OPEN, READER, WRITER_LOCKED..) */
  u8 eLock;                   /* Current lock held on database file */
  u8 changeCountDone;         /* Set after incrementing the change-counter */
  u8 setMaster;               /* True if a m-j name has been written to jrnl */
  u8 doNotSpill;              /* Do not spill the cache when non-zero */
  u8 subjInMemory;            /* True to use in-memory sub-journals */
  u8 bUseFetch;               /* True to use xFetch() */
  u8 hasBeenUsed;             /* True if any content previously read from this pager*/
  Pgno dbSize;                /* Number of pages in the database */
  Pgno dbOrigSize;            /* dbSize before the current transaction */
  Pgno dbFileSize;            /* Number of pages in the database file */
  Pgno dbHintSize;            /* Value passed to FCNTL_SIZE_HINT call */
  int errCode;                /* One of several kinds of errors */
  int nRec;                   /* Pages journalled since last j-header written */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
................................................................................
  sqlite3_file *jfd;          /* File descriptor for main journal */
  sqlite3_file *sjfd;         /* File descriptor for sub-journal */
  i64 journalOff;             /* Current write offset in the journal file */
  i64 journalHdr;             /* Byte offset to previous journal header */
  sqlite3_backup *pBackup;    /* Pointer to list of ongoing backup processes */
  PagerSavepoint *aSavepoint; /* Array of active savepoints */
  int nSavepoint;             /* Number of elements in aSavepoint[] */
  u32 iDataVersion;           /* Changes whenever database content changes */
  char dbFileVers[16];        /* Changes whenever database file changes */


  int nMmapOut;               /* Number of mmap pages currently outstanding */
  sqlite3_int64 szMmap;       /* Desired maximum mmap size */
  PgHdr *pMmapFreelist;       /* List of free mmap page headers (pDirty) */
  /*
  ** End of the routinely-changing class members
  ***************************************************************************/

................................................................................
  return rc;
}

/*
** Discard the entire contents of the in-memory page-cache.
*/
static void pager_reset(Pager *pPager){
  pPager->iDataVersion++;
  sqlite3BackupRestart(pPager->pBackup);
  sqlite3PcacheClear(pPager->pPCache);
}

/*
** Return the pPager->iDataVersion value
*/
SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){
  assert( pPager->eState>PAGER_OPEN );
  return pPager->iDataVersion;
}

/*
** Free all structures in the Pager.aSavepoint[] array and set both
** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
** if it is open and the pager is not in exclusive mode.
*/
static void releaseAllSavepoints(Pager *pPager){
................................................................................
      ** of bytes 24..39 of the database.  Bytes 28..31 should always be
      ** zero or the size of the database in page. Bytes 32..35 and 35..39
      ** should be page numbers which are never 0xffffffff.  So filling
      ** pPager->dbFileVers[] with all 0xff bytes should suffice.
      **
      ** For an encrypted database, the situation is more complex:  bytes
      ** 24..39 of the database are white noise.  But the probability of
      ** white noise equaling 16 bytes of 0xff is vanishingly small so
      ** we should still be ok.
      */
      memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
    }else{
      u8 *dbFileVers = &((u8*)pPg->pData)[24];
      memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
    }
................................................................................
static int pagerAcquireMapPage(
  Pager *pPager,                  /* Pager object */
  Pgno pgno,                      /* Page number */
  void *pData,                    /* xFetch()'d data for this page */
  PgHdr **ppPage                  /* OUT: Acquired page object */
){
  PgHdr *p;                       /* Memory mapped page to return */
  
  if( pPager->pMmapFreelist ){
    *ppPage = p = pPager->pMmapFreelist;
    pPager->pMmapFreelist = p->pDirty;
    p->pDirty = 0;
    memset(p->pExtra, 0, pPager->nExtra);
  }else{
    *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra);
................................................................................

      assert( pPager->eState==PAGER_OPEN );
      assert( (pPager->eLock==SHARED_LOCK)
           || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
      );
    }

    if( !pPager->tempFile && pPager->hasBeenUsed ){
      /* The shared-lock has just been acquired then check to
      ** see if the database has been modified.  If the database has changed,
      ** flush the cache.  The pPager->hasBeenUsed flag prevents this from
      ** occurring on the very first access to a file, in order to save a
      ** single unnecessary sqlite3OsRead() call at the start-up.




      **
      ** Database changes is detected by looking at 15 bytes beginning
      ** at offset 24 into the file.  The first 4 of these 16 bytes are
      ** a 32-bit counter that is incremented with each change.  The
      ** other bytes change randomly with each file change when
      ** a codec is in use.
      ** 
................................................................................
  assert( pPager->eState>=PAGER_READER );
  assert( assert_pager_state(pPager) );
  assert( noContent==0 || bMmapOk==0 );

  if( pgno==0 ){
    return SQLITE_CORRUPT_BKPT;
  }
  pPager->hasBeenUsed = 1;

  /* If the pager is in the error state, return an error immediately. 
  ** Otherwise, request the page from the PCache layer. */
  if( pPager->errCode!=SQLITE_OK ){
    rc = pPager->errCode;
  }else{
    if( bMmapOk && pagerUseWal(pPager) ){
................................................................................
*/
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
  sqlite3_pcache_page *pPage;
  assert( pPager!=0 );
  assert( pgno!=0 );
  assert( pPager->pPCache!=0 );
  pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);
  assert( pPage==0 || pPager->hasBeenUsed );
  return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
}

/*
** Release a page reference.
**
** If the number of references to the page drop to zero, then the
................................................................................
  ){
    assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
    pPager->eState = PAGER_READER;
    return SQLITE_OK;
  }

  PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
  pPager->iDataVersion++;
  rc = pager_end_transaction(pPager, pPager->setMaster, 1);
  return pager_error(pPager, rc);
}

/*
** If a write transaction is open, then all changes made within the 
** transaction are reverted and the current write-transaction is closed.
................................................................................
    sqlite3PcacheMakeDirty(pPgHdr);
    sqlite3PagerUnrefNotNull(pPgHdr);
  }

  return SQLITE_OK;
}
#endif

/*
** The page handle passed as the first argument refers to a dirty page 
** with a page number other than iNew. This function changes the page's 
** page number to iNew and sets the value of the PgHdr.flags field to 
** the value passed as the third parameter.
*/
SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){
  assert( pPg->pgno!=iNew );
  pPg->flags = flags;
  sqlite3PcacheMove(pPg, iNew);
}

/*
** Return a pointer to the data for the specified page.
*/
SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
  assert( pPg->nRef>0 || pPg->pPager->memDb );
  return pPg->pData;
................................................................................
**
** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
*/
SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, int eMode, int *pnLog, int *pnCkpt){
  int rc = SQLITE_OK;
  if( pPager->pWal ){
    rc = sqlite3WalCheckpoint(pPager->pWal, eMode,
        (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler),
        pPager->pBusyHandlerArg,
        pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
        pnLog, pnCkpt
    );
  }
  return rc;
}

................................................................................
** is empty, return 0.
*/
SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){
  assert( pPager->eState>=PAGER_READER );
  return sqlite3WalFramesize(pPager->pWal);
}
#endif


#endif /* SQLITE_OMIT_DISKIO */

/************** End of pager.c ***********************************************/
/************** Begin file wal.c *********************************************/
/*
** 2010 February 1
................................................................................
#endif
}

/* 
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
  sqlite3_free(p);
}

/*
** Construct a WalInterator object that can be used to loop over all 
** pages in the WAL in ascending order. The caller must hold the checkpoint
** lock.
**
................................................................................
  iLast = pWal->hdr.mxFrame;

  /* Allocate space for the WalIterator object. */
  nSegment = walFramePage(iLast) + 1;
  nByte = sizeof(WalIterator) 
        + (nSegment-1)*sizeof(struct WalSegment)
        + iLast*sizeof(ht_slot);
  p = (WalIterator *)sqlite3_malloc(nByte);
  if( !p ){
    return SQLITE_NOMEM;
  }
  memset(p, 0, nByte);
  p->nSegment = nSegment;

  /* Allocate temporary space used by the merge-sort routine. This block
  ** of memory will be freed before this function returns.
  */
  aTmp = (ht_slot *)sqlite3_malloc(
      sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
  );
  if( !aTmp ){
    rc = SQLITE_NOMEM;
  }

  for(i=0; rc==SQLITE_OK && i<nSegment; i++){
................................................................................
      walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
      p->aSegment[i].iZero = iZero;
      p->aSegment[i].nEntry = nEntry;
      p->aSegment[i].aIndex = aIndex;
      p->aSegment[i].aPgno = (u32 *)aPgno;
    }
  }
  sqlite3_free(aTmp);

  if( rc!=SQLITE_OK ){
    walIteratorFree(p);
  }
  *pp = p;
  return rc;
}
................................................................................
/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
*/
static int walPagesize(Wal *pWal){
  return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
}

/*
** The following is guaranteed when this function is called:
**
**   a) the WRITER lock is held,
**   b) the entire log file has been checkpointed, and
**   c) any existing readers are reading exclusively from the database
**      file - there are no readers that may attempt to read a frame from
**      the log file.
**
** This function updates the shared-memory structures so that the next
** client to write to the database (which may be this one) does so by
** writing frames into the start of the log file.
**
** The value of parameter salt1 is used as the aSalt[1] value in the 
** new wal-index header. It should be passed a pseudo-random value (i.e. 
** one obtained from sqlite3_randomness()).
*/
static void walRestartHdr(Wal *pWal, u32 salt1){
  volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
  int i;                          /* Loop counter */
  u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
  pWal->nCkpt++;
  pWal->hdr.mxFrame = 0;
  sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
  memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
  walIndexWriteHdr(pWal);
  pInfo->nBackfill = 0;
  pInfo->aReadMark[1] = 0;
  for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
  assert( pInfo->aReadMark[0]==0 );
}

/*
** Copy as much content as we can from the WAL back into the database file
** in response to an sqlite3_wal_checkpoint() request or the equivalent.
**
** The amount of information copies from WAL to database might be limited
** by active readers.  This routine will never overwrite a database page
................................................................................
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
static int walCheckpoint(
  Wal *pWal,                      /* Wal connection */
  int eMode,                      /* One of PASSIVE, FULL or RESTART */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc;                         /* Return code */
  int szPage;                     /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  u32 mxPage;                     /* Max database page to write */
  int i;                          /* Loop counter */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */


  szPage = walPagesize(pWal);
  testcase( szPage<=32768 );
  testcase( szPage>=65536 );
  pInfo = walCkptInfo(pWal);
  if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;

................................................................................
  /* Allocate the iterator */
  rc = walIteratorInit(pWal, &pIter);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pIter );

  /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
  ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  /* Compute in mxSafeFrame the index of the last frame of the WAL that is
  ** safe to write into the database.  Frames beyond mxSafeFrame might
  ** overwrite database pages that are in use by active readers and thus
  ** cannot be backfilled from the WAL.
  */
  mxSafeFrame = pWal->hdr.mxFrame;
................................................................................

  if( rc==SQLITE_BUSY ){
    /* Reset the return code so as not to report a checkpoint failure
    ** just because there are active readers.  */
    rc = SQLITE_OK;
  }

  /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
  ** entire wal file has been copied into the database file, then block 
  ** until all readers have finished using the wal file. This ensures that 
  ** the next process to write to the database restarts the wal file.
  */
  if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    assert( pWal->writeLock );
    if( pInfo->nBackfill<pWal->hdr.mxFrame ){
      rc = SQLITE_BUSY;
    }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      assert( mxSafeFrame==pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
          /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
          ** SQLITE_CHECKPOINT_RESTART with the addition that it also
          ** truncates the log file to zero bytes just prior to a
          ** successful return.
          **
          ** In theory, it might be safe to do this without updating the
          ** wal-index header in shared memory, as all subsequent reader or
          ** writer clients should see that the entire log file has been
          ** checkpointed and behave accordingly. This seems unsafe though,
          ** as it would leave the system in a state where the contents of
          ** the wal-index header do not match the contents of the 
          ** file-system. To avoid this, update the wal-index header to
          ** indicate that the log file contains zero valid frames.  */
          walRestartHdr(pWal, salt1);
          rc = sqlite3OsTruncate(pWal->pWalFd, 0);
        }
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }
    }
  }

 walcheckpoint_out:
  walIteratorFree(pIter);
................................................................................
    if( rc!=SQLITE_OK ){
      return rc;
    }
    nCollide = HASHTABLE_NSLOT;
    for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
      u32 iFrame = aHash[iKey] + iZero;
      if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){
        assert( iFrame>iRead || CORRUPT_DB );
        iRead = iFrame;
      }
      if( (nCollide--)==0 ){
        return SQLITE_CORRUPT_BKPT;
      }
    }
  }
................................................................................
    pWal->hdr.aFrameCksum[1] = aWalData[2];
    walCleanupHash(pWal);
  }

  return rc;
}


/*
** This function is called just before writing a set of frames to the log
** file (see sqlite3WalFrames()). It checks to see if, instead of appending
** to the current log file, it is possible to overwrite the start of the
** existing log file with the new frames (i.e. "reset" the log). If so,
** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
** unchanged.
................................................................................
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only
        ** at this point. But updating the actual wal-index header is also
        ** safe and means there is no special case for sqlite3WalUndo()
        ** to handle if this transaction is rolled back.  */













        walRestartHdr(pWal, salt1);
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
    walUnlockShared(pWal, WAL_READ_LOCK(0));
    pWal->readLock = -1;
................................................................................
** we can from WAL into the database.
**
** If parameter xBusy is not NULL, it is a pointer to a busy-handler
** callback. In this case this function runs a blocking checkpoint.
*/
SQLITE_PRIVATE int sqlite3WalCheckpoint(
  Wal *pWal,                      /* Wal connection */
  int eMode,                      /* PASSIVE, FULL, RESTART, or TRUNCATE */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags to sync db file with (or 0) */
  int nBuf,                       /* Size of temporary buffer */
  u8 *zBuf,                       /* Temporary buffer to use */
  int *pnLog,                     /* OUT: Number of frames in WAL */
  int *pnCkpt                     /* OUT: Number of backfilled frames in WAL */
){
  int rc;                         /* Return code */
  int isChanged = 0;              /* True if a new wal-index header is loaded */
  int eMode2 = eMode;             /* Mode to pass to walCheckpoint() */
  int (*xBusy2)(void*) = xBusy;   /* Busy handler for eMode2 */

  assert( pWal->ckptLock==0 );
  assert( pWal->writeLock==0 );

  /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
  ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 
  ** "checkpoint" lock on the database file. */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){



    /* EVIDENCE-OF: R-10421-19736 If any other process is running a
    ** checkpoint operation at the same time, the lock cannot be obtained and
    ** SQLITE_BUSY is returned.
    ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
    ** it will not be invoked in this case.
    */
    testcase( rc==SQLITE_BUSY );
    testcase( xBusy!=0 );
    return rc;
  }
  pWal->ckptLock = 1;

  /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
  ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
  ** file.
  **
  ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
  ** immediately, and a busy-handler is configured, it is invoked and the
  ** writer lock retried until either the busy-handler returns 0 or the
  ** lock is successfully obtained.
  */
  if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
    if( rc==SQLITE_OK ){
      pWal->writeLock = 1;
    }else if( rc==SQLITE_BUSY ){
      eMode2 = SQLITE_CHECKPOINT_PASSIVE;
      xBusy2 = 0;
      rc = SQLITE_OK;
    }
  }

  /* Read the wal-index header. */
  if( rc==SQLITE_OK ){
    rc = walIndexReadHdr(pWal, &isChanged);
................................................................................
  }

  /* Copy data from the log to the database file. */
  if( rc==SQLITE_OK ){
    if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
      rc = SQLITE_CORRUPT_BKPT;
    }else{
      rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
    }

    /* If no error occurred, set the output variables. */
    if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
      if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
      if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
    }
................................................................................
  sqlite3 *db;       /* The database connection holding this btree */
  BtShared *pBt;     /* Sharable content of this btree */
  u8 inTrans;        /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
  u8 sharable;       /* True if we can share pBt with another db */
  u8 locked;         /* True if db currently has pBt locked */
  int wantToLock;    /* Number of nested calls to sqlite3BtreeEnter() */
  int nBackup;       /* Number of backup operations reading this btree */
  u32 iDataVersion;  /* Combines with pBt->pPager->iDataVersion */
  Btree *pNext;      /* List of other sharable Btrees from the same db */
  Btree *pPrev;      /* Back pointer of the same list */
#ifndef SQLITE_OMIT_SHARED_CACHE
  BtLock lock;       /* Object used to lock page 1 */
#endif
};

................................................................................


/*
** Defragment the page given.  All Cells are moved to the
** end of the page and all free space is collected into one
** big FreeBlk that occurs in between the header and cell
** pointer array and the cell content area.
**
** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
** b-tree page so that there are no freeblocks or fragment bytes, all
** unused bytes are contained in the unallocated space region, and all
** cells are packed tightly at the end of the page.
*/
static int defragmentPage(MemPage *pPage){
  int i;                     /* Loop counter */
  int pc;                    /* Address of the i-th cell */
  int hdr;                   /* Offset to the page header */
  int size;                  /* Size of a cell */
  int usableSize;            /* Number of usable bytes on a page */
  int cellOffset;            /* Offset to the cell pointer array */
  int cbrk;                  /* Offset to the cell content area */
  int nCell;                 /* Number of cells on the page */
  unsigned char *data;       /* The page data */
  unsigned char *temp;       /* Temp area for cell content */
  unsigned char *src;        /* Source of content */
  int iCellFirst;            /* First allowable cell index */
  int iCellLast;             /* Last possible cell index */


  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt!=0 );
  assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
  assert( pPage->nOverflow==0 );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  temp = 0;
  src = data = pPage->aData;
  hdr = pPage->hdrOffset;
  cellOffset = pPage->cellOffset;
  nCell = pPage->nCell;
  assert( nCell==get2byte(&data[hdr+3]) );
  usableSize = pPage->pBt->usableSize;


  cbrk = usableSize;
  iCellFirst = cellOffset + 2*nCell;
  iCellLast = usableSize - 4;
  for(i=0; i<nCell; i++){
    u8 *pAddr;     /* The i-th cell pointer */
    pAddr = &data[cellOffset + i*2];
    pc = get2byte(pAddr);
................................................................................
    ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined 
    */
    if( pc<iCellFirst || pc>iCellLast ){
      return SQLITE_CORRUPT_BKPT;
    }
#endif
    assert( pc>=iCellFirst && pc<=iCellLast );
    size = cellSizePtr(pPage, &src[pc]);
    cbrk -= size;
#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
    if( cbrk<iCellFirst ){
      return SQLITE_CORRUPT_BKPT;
    }
#else
    if( cbrk<iCellFirst || pc+size>usableSize ){
      return SQLITE_CORRUPT_BKPT;
    }
#endif
    assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
    testcase( cbrk+size==usableSize );
    testcase( pc+size==usableSize );

    put2byte(pAddr, cbrk);
    if( temp==0 ){
      int x;
      if( cbrk==pc ) continue;
      temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
      x = get2byte(&data[hdr+5]);
      memcpy(&temp[x], &data[x], (cbrk+size) - x);
      src = temp;
    }
    memcpy(&data[cbrk], &src[pc], size);
  }
  assert( cbrk>=iCellFirst );
  put2byte(&data[hdr+5], cbrk);
  data[hdr+1] = 0;
  data[hdr+2] = 0;
  data[hdr+7] = 0;
  memset(&data[iCellFirst], 0, cbrk-iCellFirst);
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  if( cbrk-iCellFirst!=pPage->nFree ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

/*
** Search the free-list on page pPg for space to store a cell nByte bytes in
** size. If one can be found, return a pointer to the space and remove it
** from the free-list.
**
** If no suitable space can be found on the free-list, return NULL.
**
** This function may detect corruption within pPg.  If corruption is
** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
**
** If a slot of at least nByte bytes is found but cannot be used because 
** there are already at least 60 fragmented bytes on the page, return NULL.
** In this case, if pbDefrag parameter is not NULL, set *pbDefrag to true.
*/
static u8 *pageFindSlot(MemPage *pPg, int nByte, int *pRc, int *pbDefrag){
  const int hdr = pPg->hdrOffset;
  u8 * const aData = pPg->aData;
  int iAddr;
  int pc;
  int usableSize = pPg->pBt->usableSize;

  for(iAddr=hdr+1; (pc = get2byte(&aData[iAddr]))>0; iAddr=pc){
    int size;            /* Size of the free slot */
    /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
    ** increasing offset. */
    if( pc>usableSize-4 || pc<iAddr+4 ){
      *pRc = SQLITE_CORRUPT_BKPT;
      return 0;
    }
    /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
    ** freeblock form a big-endian integer which is the size of the freeblock
    ** in bytes, including the 4-byte header. */
    size = get2byte(&aData[pc+2]);
    if( size>=nByte ){
      int x = size - nByte;
      testcase( x==4 );
      testcase( x==3 );
      if( x<4 ){
        /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
        ** number of bytes in fragments may not exceed 60. */
        if( aData[hdr+7]>=60 ){
          if( pbDefrag ) *pbDefrag = 1;
          return 0;
        }
        /* Remove the slot from the free-list. Update the number of
        ** fragmented bytes within the page. */
        memcpy(&aData[iAddr], &aData[pc], 2);
        aData[hdr+7] += (u8)x;
      }else if( size+pc > usableSize ){
        *pRc = SQLITE_CORRUPT_BKPT;
        return 0;
      }else{
        /* The slot remains on the free-list. Reduce its size to account
         ** for the portion used by the new allocation. */
        put2byte(&aData[pc+2], x);
      }
      return &aData[pc + x];
    }
  }

  return 0;
}

/*
** Allocate nByte bytes of space from within the B-Tree page passed
** as the first argument. Write into *pIdx the index into pPage->aData[]
** of the first byte of allocated space. Return either SQLITE_OK or
** an error code (usually SQLITE_CORRUPT).
**
................................................................................
** allocation is being made in order to insert a new cell, so we will
** also end up needing a new cell pointer.
*/
static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
  const int hdr = pPage->hdrOffset;    /* Local cache of pPage->hdrOffset */
  u8 * const data = pPage->aData;      /* Local cache of pPage->aData */
  int top;                             /* First byte of cell content area */
  int rc = SQLITE_OK;                  /* Integer return code */
  int gap;        /* First byte of gap between cell pointers and cell content */


  
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( pPage->pBt );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( nByte>=0 );  /* Minimum cell size is 4 */
  assert( pPage->nFree>=nByte );
  assert( pPage->nOverflow==0 );
  assert( nByte < (int)(pPage->pBt->usableSize-8) );


  assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
  gap = pPage->cellOffset + 2*pPage->nCell;
  assert( gap<=65536 );
  /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
  ** and the reserved space is zero (the usual value for reserved space)
  ** then the cell content offset of an empty page wants to be 65536.
  ** However, that integer is too large to be stored in a 2-byte unsigned
  ** integer, so a value of 0 is used in its place. */
  top = get2byteNotZero(&data[hdr+5]);
  if( gap>top ) return SQLITE_CORRUPT_BKPT;


  /* If there is enough space between gap and top for one more cell pointer
  ** array entry offset, and if the freelist is not empty, then search the
  ** freelist looking for a free slot big enough to satisfy the request.
  */
  testcase( gap+2==top );
  testcase( gap+1==top );
  testcase( gap==top );
  if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
    int bDefrag = 0;
    u8 *pSpace = pageFindSlot(pPage, nByte, &rc, &bDefrag);
    if( rc ) return rc;









    if( bDefrag ) goto defragment_page;











    if( pSpace ){
      assert( pSpace>=data && (pSpace - data)<65536 );
      *pIdx = (int)(pSpace - data);
      return SQLITE_OK;

    }
  }

  /* The request could not be fulfilled using a freelist slot.  Check
  ** to see if defragmentation is necessary.
  */
  testcase( gap+2+nByte==top );
  if( gap+2+nByte>top ){
 defragment_page:
    assert( pPage->nCell>0 || CORRUPT_DB );
    rc = defragmentPage(pPage);
    if( rc ) return rc;
    top = get2byteNotZero(&data[hdr+5]);
    assert( gap+nByte<=top );
  }


................................................................................
  u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
  u32 iEnd = iStart + iSize;            /* First byte past the iStart buffer */
  unsigned char *data = pPage->aData;   /* Page content */

  assert( pPage->pBt!=0 );
  assert( sqlite3PagerIswriteable(pPage->pDbPage) );
  assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
  assert( CORRUPT_DB || iEnd <= pPage->pBt->usableSize );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( iSize>=4 );   /* Minimum cell size is 4 */
  assert( iStart<=iLast );

  /* Overwrite deleted information with zeros when the secure_delete
  ** option is enabled */
  if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
................................................................................
  assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->leaf = (u8)(flagByte>>3);  assert( PTF_LEAF == 1<<3 );
  flagByte &= ~PTF_LEAF;
  pPage->childPtrSize = 4-4*pPage->leaf;
  pBt = pPage->pBt;
  if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
    /* EVIDENCE-OF: R-03640-13415 A value of 5 means the page is an interior
    ** table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY)==5 );
    /* EVIDENCE-OF: R-20501-61796 A value of 13 means the page is a leaf
    ** table b-tree page. */
    assert( (PTF_LEAFDATA|PTF_INTKEY|PTF_LEAF)==13 );
    pPage->intKey = 1;
    pPage->intKeyLeaf = pPage->leaf;
    pPage->noPayload = !pPage->leaf;
    pPage->maxLocal = pBt->maxLeaf;
    pPage->minLocal = pBt->minLeaf;
  }else if( flagByte==PTF_ZERODATA ){
    /* EVIDENCE-OF: R-27225-53936 A value of 2 means the page is an interior
    ** index b-tree page. */
    assert( (PTF_ZERODATA)==2 );
    /* EVIDENCE-OF: R-16571-11615 A value of 10 means the page is a leaf
    ** index b-tree page. */
    assert( (PTF_ZERODATA|PTF_LEAF)==10 );
    pPage->intKey = 0;
    pPage->intKeyLeaf = 0;
    pPage->noPayload = 0;
    pPage->maxLocal = pBt->maxLocal;
    pPage->minLocal = pBt->minLocal;
  }else{
    /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
    ** an error. */
    return SQLITE_CORRUPT_BKPT;
  }
  pPage->max1bytePayload = pBt->max1bytePayload;
  return SQLITE_OK;
}

/*
................................................................................
    int iCellFirst;    /* First allowable cell or freeblock offset */
    int iCellLast;     /* Last possible cell or freeblock offset */

    pBt = pPage->pBt;

    hdr = pPage->hdrOffset;
    data = pPage->aData;
    /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
    ** the b-tree page type. */
    if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
    assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
    pPage->maskPage = (u16)(pBt->pageSize - 1);
    pPage->nOverflow = 0;
    usableSize = pBt->usableSize;
    pPage->cellOffset = cellOffset = hdr + 8 + pPage->childPtrSize;
    pPage->aDataEnd = &data[usableSize];
    pPage->aCellIdx = &data[cellOffset];
    /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
    ** the start of the cell content area. A zero value for this integer is
    ** interpreted as 65536. */
    top = get2byteNotZero(&data[hdr+5]);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    pPage->nCell = get2byte(&data[hdr+3]);
    if( pPage->nCell>MX_CELL(pBt) ){
      /* To many cells for a single page.  The page must be corrupt */
      return SQLITE_CORRUPT_BKPT;
    }
    testcase( pPage->nCell==MX_CELL(pBt) );
    /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
    ** possible for a root page of a table that contains no rows) then the
    ** offset to the cell content area will equal the page size minus the
    ** bytes of reserved space. */
    assert( pPage->nCell>0 || top==usableSize || CORRUPT_DB );

    /* A malformed database page might cause us to read past the end
    ** of page when parsing a cell.  
    **
    ** The following block of code checks early to see if a cell extends
    ** past the end of a page boundary and causes SQLITE_CORRUPT to be 
    ** returned if it does.
................................................................................
          return SQLITE_CORRUPT_BKPT;
        }
      }
      if( !pPage->leaf ) iCellLast++;
    }  
#endif

    /* Compute the total free space on the page
    ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
    ** start of the first freeblock on the page, or is zero if there are no
    ** freeblocks. */
    pc = get2byte(&data[hdr+1]);
    nFree = data[hdr+7] + top;  /* Init nFree to non-freeblock free space */
    while( pc>0 ){
      u16 next, size;
      if( pc<iCellFirst || pc>iCellLast ){
        /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
        ** always be at least one cell before the first freeblock.
        **
        ** Or, the freeblock is off the end of the page
        */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
        ** the free-block must lie on the database page.  */
................................................................................
  
    pBt->pCursor = 0;
    pBt->pPage1 = 0;
    if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
#ifdef SQLITE_SECURE_DELETE
    pBt->btsFlags |= BTS_SECURE_DELETE;
#endif
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
    if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
         || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
      pBt->pageSize = 0;
#ifndef SQLITE_OMIT_AUTOVACUUM
      /* If the magic name ":memory:" will create an in-memory database, then
      ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
................................................................................
      if( zFilename && !isMemdb ){
        pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
        pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
      }
#endif
      nReserve = 0;
    }else{
      /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
      ** determined by the one-byte unsigned integer found at an offset of 20
      ** into the database file header. */
      nReserve = zDbHeader[20];
      pBt->btsFlags |= BTS_PAGESIZE_FIXED;
#ifndef SQLITE_OMIT_AUTOVACUUM
      pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
      pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
#endif
    }
................................................................................
    nPage = nPageFile;
  }
  if( nPage>0 ){
    u32 pageSize;
    u32 usableSize;
    u8 *page1 = pPage1->aData;
    rc = SQLITE_NOTADB;
    /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
    ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
    ** 61 74 20 33 00. */
    if( memcmp(page1, zMagicHeader, 16)!=0 ){
      goto page1_init_failed;
    }

#ifdef SQLITE_OMIT_WAL
    if( page1[18]>1 ){
      pBt->btsFlags |= BTS_READ_ONLY;
................................................................................
        releasePage(pPage1);
        return SQLITE_OK;
      }
      rc = SQLITE_NOTADB;
    }
#endif

    /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
    ** fractions and the leaf payload fraction values must be 64, 32, and 32.
    **
    ** The original design allowed these amounts to vary, but as of
    ** version 3.6.0, we require them to be fixed.
    */
    if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
    ** determined by the 2-byte integer located at an offset of 16 bytes from
    ** the beginning of the database file. */
    pageSize = (page1[16]<<8) | (page1[17]<<16);
    /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
    ** between 512 and 65536 inclusive. */
    if( ((pageSize-1)&pageSize)!=0
     || pageSize>SQLITE_MAX_PAGE_SIZE 
     || pageSize<=256 
    ){
      goto page1_init_failed;
    }
    assert( (pageSize & 7)==0 );
    /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
    ** integer at offset 20 is the number of bytes of space at the end of
    ** each page to reserve for extensions. 
    **
    ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
    ** determined by the one-byte unsigned integer found at an offset of 20
    ** into the database file header. */
    usableSize = pageSize - page1[20];
    if( (u32)pageSize!=pBt->pageSize ){
      /* After reading the first page of the database assuming a page size
      ** of BtShared.pageSize, we have discovered that the page-size is
      ** actually pageSize. Unlock the database, leave pBt->pPage1 at
      ** zero and return SQLITE_OK. The caller will call this function
      ** again with the correct page-size.
................................................................................
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
    ** be less than 480. In other words, if the page size is 512, then the
    ** reserved space size cannot exceed 32. */
    if( usableSize<480 ){
      goto page1_init_failed;
    }
    pBt->pageSize = pageSize;
    pBt->usableSize = usableSize;
#ifndef SQLITE_OMIT_AUTOVACUUM
    pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
................................................................................
    assert( pBt->inTransaction==TRANS_WRITE );
    assert( pBt->nTransaction>0 );
    rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
    if( rc!=SQLITE_OK && bCleanup==0 ){
      sqlite3BtreeLeave(p);
      return rc;
    }
    p->iDataVersion--;  /* Compensate for pPager->iDataVersion++; */
    pBt->inTransaction = TRANS_READ;
    btreeClearHasContent(pBt);
  }

  btreeEndTransaction(p);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
................................................................................
    if( pCur->pNext ){
      pCur->pNext->pPrev = pCur->pPrev;
    }
    for(i=0; i<=pCur->iPage; i++){
      releasePage(pCur->apPage[i]);
    }
    unlockBtreeIfUnused(pBt);
    sqlite3_free(pCur->aOverflow);
    /* sqlite3_free(pCur); */
    sqlite3BtreeLeave(pBtree);
  }
  return SQLITE_OK;
}

/*
................................................................................
    rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
    offset = 0;
    pBuf += a;
    amt -= a;
  }else{
    offset -= pCur->info.nLocal;
  }


  if( rc==SQLITE_OK && amt>0 ){
    const u32 ovflSize = pBt->usableSize - 4;  /* Bytes content per ovfl page */
    Pgno nextPage;

    nextPage = get4byte(&aPayload[pCur->info.nLocal]);

................................................................................
    ** in the overflow chain. The page number of the first overflow page is
    ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
    ** means "not yet known" (the cache is lazily populated).
    */
    if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
      int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
      if( nOvfl>pCur->nOvflAlloc ){
        Pgno *aNew = (Pgno*)sqlite3Realloc(
            pCur->aOverflow, nOvfl*2*sizeof(Pgno)
        );
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
        }else{
          pCur->nOvflAlloc = nOvfl*2;
          pCur->aOverflow = aNew;
        }
................................................................................
        ** function.
        **
        ** Note that the aOverflow[] array must be allocated because eOp!=2
        ** here.  If eOp==2, then offset==0 and this branch is never taken.
        */
        assert( eOp!=2 );
        assert( pCur->curFlags & BTCF_ValidOvfl );
        assert( pCur->pBtree->db==pBt->db );
        if( pCur->aOverflow[iIdx+1] ){
          nextPage = pCur->aOverflow[iIdx+1];
        }else{
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
................................................................................
  MemPage *pPrevTrunk = 0;
  Pgno mxPage;     /* Total size of the database file */

  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
  pPage1 = pBt->pPage1;
  mxPage = btreePagecount(pBt);
  /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
  ** stores stores the total number of pages on the freelist. */
  n = get4byte(&pPage1->aData[36]);
  testcase( n==mxPage-1 );
  if( n>=mxPage ){
    return SQLITE_CORRUPT_BKPT;
  }
  if( n>0 ){
    /* There are pages on the freelist.  Reuse one of those pages. */
................................................................................
    ** is not true. Otherwise, it runs once for each trunk-page on the
    ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
    ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
    */
    do {
      pPrevTrunk = pTrunk;
      if( pPrevTrunk ){
        /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
        ** is the page number of the next freelist trunk page in the list or
        ** zero if this is the last freelist trunk page. */
        iTrunk = get4byte(&pPrevTrunk->aData[0]);
      }else{
        /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
        ** stores the page number of the first page of the freelist, or zero if
        ** the freelist is empty. */
        iTrunk = get4byte(&pPage1->aData[32]);
      }
      testcase( iTrunk==mxPage );
      if( iTrunk>mxPage ){
        rc = SQLITE_CORRUPT_BKPT;
      }else{
        rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
................................................................................
      }
      if( rc ){
        pTrunk = 0;
        goto end_allocate_page;
      }
      assert( pTrunk!=0 );
      assert( pTrunk->aData!=0 );
      /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
      ** is the number of leaf page pointers to follow. */
      k = get4byte(&pTrunk->aData[4]);
      if( k==0 && !searchList ){
        /* The trunk has no leaves and the list is not being searched. 
        ** So extract the trunk page itself and use it as the newly 
        ** allocated page */
        assert( pPrevTrunk==0 );
        rc = sqlite3PagerWrite(pTrunk->pDbPage);
        if( rc ){
................................................................................
      ** 3.6.0, databases with freelist trunk pages holding more than
      ** usableSize/4 - 8 entries will be reported as corrupt.  In order
      ** to maintain backwards compatibility with older versions of SQLite,
      ** we will continue to restrict the number of entries to usableSize/4 - 8
      ** for now.  At some point in the future (once everyone has upgraded
      ** to 3.6.0 or later) we should consider fixing the conditional above
      ** to read "usableSize/4-2" instead of "usableSize/4-8".
      **
      ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
      ** avoid using the last six entries in the freelist trunk page array in
      ** order that database files created by newer versions of SQLite can be
      ** read by older versions of SQLite.
      */
      rc = sqlite3PagerWrite(pTrunk->pDbPage);
      if( rc==SQLITE_OK ){
        put4byte(&pTrunk->aData[4], nLeaf+1);
        put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
        if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
          sqlite3PagerDontWrite(pPage->pDbPage);
................................................................................
  }
  rc = freeSpace(pPage, pc, sz);
  if( rc ){
    *pRC = rc;
    return;
  }
  pPage->nCell--;
  if( pPage->nCell==0 ){
    memset(&data[hdr+1], 0, 4);
    data[hdr+7] = 0;
    put2byte(&data[hdr+5], pPage->pBt->usableSize);
    pPage->nFree = pPage->pBt->usableSize - pPage->hdrOffset
                       - pPage->childPtrSize - 8;
  }else{
    memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
    put2byte(&data[hdr+3], pPage->nCell);
    pPage->nFree += 2;
  }
}

/*
** Insert a new cell on pPage at cell index "i".  pCell points to the
** content of the cell.
**
** If the cell content will fit on the page, then put it there.  If it
................................................................................
      ptrmapPutOvflPtr(pPage, pCell, pRC);
    }
#endif
  }
}

/*
** Array apCell[] contains pointers to nCell b-tree page cells. The 
** szCell[] array contains the size in bytes of each cell. This function
** replaces the current contents of page pPg with the contents of the cell
** array.
**
** Some of the cells in apCell[] may currently be stored in pPg. This
** function works around problems caused by this by making a copy of any 
** such cells before overwriting the page data.
**
** The MemPage.nFree field is invalidated by this function. It is the 
** responsibility of the caller to set it correctly.
*/
static void rebuildPage(


  MemPage *pPg,                   /* Edit this page */
  int nCell,                      /* Final number of cells on page */
  u8 **apCell,                    /* Array of cells */

  u16 *szCell                     /* Array of cell sizes */
){






  const int hdr = pPg->hdrOffset;          /* Offset of header on pPg */
  u8 * const aData = pPg->aData;           /* Pointer to data for pPg */
  const int usableSize = pPg->pBt->usableSize;
  u8 * const pEnd = &aData[usableSize];
  int i;
  u8 *pCellptr = pPg->aCellIdx;
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  u8 *pData;

  i = get2byte(&aData[hdr+5]);
  memcpy(&pTmp[i], &aData[i], usableSize - i);

  pData = pEnd;
  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( pCell>aData && pCell<pEnd ){
      pCell = &pTmp[pCell - aData];
    }
    pData -= szCell[i];
    memcpy(pData, pCell, szCell[i]);
    put2byte(pCellptr, (pData - aData));
    pCellptr += 2;
    assert( szCell[i]==cellSizePtr(pPg, pCell) );
  }

  /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
  pPg->nCell = nCell;
  pPg->nOverflow = 0;








  put2byte(&aData[hdr+1], 0);
  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);
  aData[hdr+7] = 0x00;
}





/*
** Array apCell[] contains nCell pointers to b-tree cells. Array szCell
** contains the size in bytes of each such cell. This function attempts to 
** add the cells stored in the array to page pPg. If it cannot (because 
** the page needs to be defragmented before the cells will fit), non-zero
** is returned. Otherwise, if the cells are added successfully, zero is
** returned.
**
** Argument pCellptr points to the first entry in the cell-pointer array
** (part of page pPg) to populate. After cell apCell[0] is written to the
** page body, a 16-bit offset is written to pCellptr. And so on, for each
** cell in the array. It is the responsibility of the caller to ensure
** that it is safe to overwrite this part of the cell-pointer array.
**
** When this function is called, *ppData points to the start of the 
** content area on page pPg. If the size of the content area is extended,
** *ppData is updated to point to the new start of the content area
** before returning.
**
** Finally, argument pBegin points to the byte immediately following the
** end of the space required by this page for the cell-pointer area (for
** all cells - not just those inserted by the current call). If the content
** area must be extended to before this point in order to accomodate all
** cells in apCell[], then the cells do not fit and non-zero is returned.
*/
static int pageInsertArray(
  MemPage *pPg,                   /* Page to add cells to */
  u8 *pBegin,                     /* End of cell-pointer array */
  u8 **ppData,                    /* IN/OUT: Page content -area pointer */
  u8 *pCellptr,                   /* Pointer to cell-pointer area */
  int nCell,                      /* Number of cells to add to pPg */
  u8 **apCell,                    /* Array of cells */
  u16 *szCell                     /* Array of cell sizes */
){
  int i;
  u8 *aData = pPg->aData;
  u8 *pData = *ppData;
  const int bFreelist = aData[1] || aData[2];
  assert( CORRUPT_DB || pPg->hdrOffset==0 );    /* Never called on page 1 */
  for(i=0; i<nCell; i++){
    int sz = szCell[i];
    int rc;
    u8 *pSlot;
    if( bFreelist==0 || (pSlot = pageFindSlot(pPg, sz, &rc, 0))==0 ){
      pData -= sz;
      if( pData<pBegin ) return 1;
      pSlot = pData;
    }
    memcpy(pSlot, apCell[i], sz);
    put2byte(pCellptr, (pSlot - aData));
    pCellptr += 2;
  }
  *ppData = pData;
  return 0;
}

/*
** Array apCell[] contains nCell pointers to b-tree cells. Array szCell 
** contains the size in bytes of each such cell. This function adds the
** space associated with each cell in the array that is currently stored 
** within the body of pPg to the pPg free-list. The cell-pointers and other
** fields of the page are not updated.
**
** This function returns the total number of cells added to the free-list.
*/
static int pageFreeArray(
  MemPage *pPg,                   /* Page to edit */
  int nCell,                      /* Cells to delete */
  u8 **apCell,                    /* Array of cells */
  u16 *szCell                     /* Array of cell sizes */
){
  u8 * const aData = pPg->aData;
  u8 * const pEnd = &aData[pPg->pBt->usableSize];
  u8 * const pStart = &aData[pPg->hdrOffset + 8 + pPg->childPtrSize];
  int nRet = 0;
  int i;
  u8 *pFree = 0;
  int szFree = 0;

  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( pCell>=pStart && pCell<pEnd ){
      int sz = szCell[i];
      if( pFree!=(pCell + sz) ){
        if( pFree ){
          assert( pFree>aData && (pFree - aData)<65536 );
          freeSpace(pPg, (u16)(pFree - aData), szFree);
        }
        pFree = pCell;
        szFree = sz;
        if( pFree+sz>pEnd ) return 0;
      }else{
        pFree = pCell;
        szFree += sz;
      }
      nRet++;
    }
  }
  if( pFree ){
    assert( pFree>aData && (pFree - aData)<65536 );
    freeSpace(pPg, (u16)(pFree - aData), szFree);
  }
  return nRet;
}

/*
** apCell[] and szCell[] contains pointers to and sizes of all cells in the
** pages being balanced.  The current page, pPg, has pPg->nCell cells starting
** with apCell[iOld].  After balancing, this page should hold nNew cells
** starting at apCell[iNew].
**
** This routine makes the necessary adjustments to pPg so that it contains
** the correct cells after being balanced.
**
** The pPg->nFree field is invalid when this function returns. It is the
** responsibility of the caller to set it correctly.
*/
static void editPage(
  MemPage *pPg,                   /* Edit this page */
  int iOld,                       /* Index of first cell currently on page */
  int iNew,                       /* Index of new first cell on page */
  int nNew,                       /* Final number of cells on page */
  u8 **apCell,                    /* Array of cells */
  u16 *szCell                     /* Array of cell sizes */
){
  u8 * const aData = pPg->aData;
  const int hdr = pPg->hdrOffset;
  u8 *pBegin = &pPg->aCellIdx[nNew * 2];
  int nCell = pPg->nCell;       /* Cells stored on pPg */
  u8 *pData;
  u8 *pCellptr;

  int i;
  int iOldEnd = iOld + pPg->nCell + pPg->nOverflow;
  int iNewEnd = iNew + nNew;




#ifdef SQLITE_DEBUG
  u8 *pTmp = sqlite3PagerTempSpace(pPg->pBt->pPager);
  memcpy(pTmp, aData, pPg->pBt->usableSize);
#endif

  /* Remove cells from the start and end of the page */
  if( iOld<iNew ){
    int nShift = pageFreeArray(
        pPg, iNew-iOld, &apCell[iOld], &szCell[iOld]
    );
    memmove(pPg->aCellIdx, &pPg->aCellIdx[nShift*2], nCell*2);
    nCell -= nShift;
  }
  if( iNewEnd < iOldEnd ){
    nCell -= pageFreeArray(
        pPg, iOldEnd-iNewEnd, &apCell[iNewEnd], &szCell[iNewEnd]
    );
  }

  pData = &aData[get2byteNotZero(&aData[hdr+5])];
  if( pData<pBegin ) goto editpage_fail;

  /* Add cells to the start of the page */
  if( iNew<iOld ){
    int nAdd = MIN(nNew,iOld-iNew);
    assert( (iOld-iNew)<nNew || nCell==0 || CORRUPT_DB );
    pCellptr = pPg->aCellIdx;
    memmove(&pCellptr[nAdd*2], pCellptr, nCell*2);
    if( pageInsertArray(
          pPg, pBegin, &pData, pCellptr,
          nAdd, &apCell[iNew], &szCell[iNew]
    ) ) goto editpage_fail;
    nCell += nAdd;
  }

  /* Add any overflow cells */
  for(i=0; i<pPg->nOverflow; i++){
    int iCell = (iOld + pPg->aiOvfl[i]) - iNew;
    if( iCell>=0 && iCell<nNew ){
      pCellptr = &pPg->aCellIdx[iCell * 2];
      memmove(&pCellptr[2], pCellptr, (nCell - iCell) * 2);
      nCell++;
      if( pageInsertArray(
            pPg, pBegin, &pData, pCellptr,
            1, &apCell[iCell + iNew], &szCell[iCell + iNew]
      ) ) goto editpage_fail;
    }
  }

  /* Append cells to the end of the page */
  pCellptr = &pPg->aCellIdx[nCell*2];
  if( pageInsertArray(
        pPg, pBegin, &pData, pCellptr,
        nNew-nCell, &apCell[iNew+nCell], &szCell[iNew+nCell]
  ) ) goto editpage_fail;

  pPg->nCell = nNew;
  pPg->nOverflow = 0;

  put2byte(&aData[hdr+3], pPg->nCell);
  put2byte(&aData[hdr+5], pData - aData);

#ifdef SQLITE_DEBUG
  for(i=0; i<nNew && !CORRUPT_DB; i++){
    u8 *pCell = apCell[i+iNew];
    int iOff = get2byte(&pPg->aCellIdx[i*2]);
    if( pCell>=aData && pCell<&aData[pPg->pBt->usableSize] ){
      pCell = &pTmp[pCell - aData];
    }
    assert( 0==memcmp(pCell, &aData[iOff], szCell[i+iNew]) );
  }
#endif

  return;
 editpage_fail:
  /* Unable to edit this page. Rebuild it from scratch instead. */
  rebuildPage(pPg, nNew, &apCell[iNew], &szCell[iNew]);
}

/*
** The following parameters determine how many adjacent pages get involved
** in a balancing operation.  NN is the number of neighbors on either side
** of the page that participate in the balancing operation.  NB is the
** total number of pages that participate, including the target page and
................................................................................
  Pgno pgnoNew;                        /* Page number of pNew */

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  assert( pPage->nOverflow==1 );

  /* This error condition is now caught prior to reaching this function */
  if( NEVER(pPage->nCell==0) ) return SQLITE_CORRUPT_BKPT;

  /* Allocate a new page. This page will become the right-sibling of 
  ** pPage. Make the parent page writable, so that the new divider cell
  ** may be inserted. If both these operations are successful, proceed.
  */
  rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);

................................................................................
    u8 *pCell = pPage->apOvfl[0];
    u16 szCell = cellSizePtr(pPage, pCell);
    u8 *pStop;

    assert( sqlite3PagerIswriteable(pNew->pDbPage) );
    assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
    zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
    rebuildPage(pNew, 1, &pCell, &szCell);
    pNew->nFree = pBt->usableSize - pNew->cellOffset - 2 - szCell;

    /* If this is an auto-vacuum database, update the pointer map
    ** with entries for the new page, and any pointer from the 
    ** cell on the page to an overflow page. If either of these
    ** operations fails, the return code is set, but the contents
    ** of the parent page are still manipulated by thh code below.
    ** That is Ok, at this point the parent page is guaranteed to
................................................................................
  int usableSpace;             /* Bytes in pPage beyond the header */
  int pageFlags;               /* Value of pPage->aData[0] */
  int subtotal;                /* Subtotal of bytes in cells on one page */
  int iSpace1 = 0;             /* First unused byte of aSpace1[] */
  int iOvflSpace = 0;          /* First unused byte of aOvflSpace[] */
  int szScratch;               /* Size of scratch memory requested */
  MemPage *apOld[NB];          /* pPage and up to two siblings */

  MemPage *apNew[NB+2];        /* pPage and up to NB siblings after balancing */
  u8 *pRight;                  /* Location in parent of right-sibling pointer */
  u8 *apDiv[NB-1];             /* Divider cells in pParent */
  int cntNew[NB+2];            /* Index in aCell[] of cell after i-th page */
  int cntOld[NB+2];            /* Old index in aCell[] after i-th page */
  int szNew[NB+2];             /* Combined size of cells placed on i-th page */
  u8 **apCell = 0;             /* All cells begin balanced */
  u16 *szCell;                 /* Local size of all cells in apCell[] */
  u8 *aSpace1;                 /* Space for copies of dividers cells */
  Pgno pgno;                   /* Temp var to store a page number in */
  u8 abDone[NB+2];             /* True after i'th new page is populated */
  Pgno aPgno[NB+2];            /* Page numbers of new pages before shuffling */
  Pgno aPgOrder[NB+2];         /* Copy of aPgno[] used for sorting pages */
  u16 aPgFlags[NB+2];          /* flags field of new pages before shuffling */

  memset(abDone, 0, sizeof(abDone));
  pBt = pParent->pBt;
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( sqlite3PagerIswriteable(pParent->pDbPage) );

#if 0
  TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
#endif
................................................................................
  /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
  ** alignment */
  nMaxCells = (nMaxCells + 3)&~3;

  /*
  ** Allocate space for memory structures
  */

  szScratch =
       nMaxCells*sizeof(u8*)                       /* apCell */
     + nMaxCells*sizeof(u16)                       /* szCell */

     + pBt->pageSize;                              /* aSpace1 */

  /* EVIDENCE-OF: R-28375-38319 SQLite will never request a scratch buffer
  ** that is more than 6 times the database page size. */
  assert( szScratch<=6*(int)pBt->pageSize );
  apCell = sqlite3ScratchMalloc( szScratch ); 
  if( apCell==0 ){
    rc = SQLITE_NOMEM;
    goto balance_cleanup;
  }
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[]. The divider cells have already
  ** been removed from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
  ** are alike.
................................................................................
  ** leafCorrection:  4 if pPage is a leaf.  0 if pPage is not a leaf.
  **       leafData:  1 if pPage holds key+data and pParent holds only keys.
  */
  leafCorrection = apOld[0]->leaf*4;
  leafData = apOld[0]->intKeyLeaf;
  for(i=0; i<nOld; i++){
    int limit;





    MemPage *pOld = apOld[i];




    limit = pOld->nCell+pOld->nOverflow;
    if( pOld->nOverflow>0 ){
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findOverflowCell(pOld, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
................................................................................
      for(j=0; j<limit; j++){
        assert( nCell<nMaxCells );
        apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
        szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
        nCell++;
      }
    }       
    cntOld[i] = nCell;
    if( i<nOld-1 && !leafData){
      u16 sz = (u16)szNew[i];
      u8 *pTemp;
      assert( nCell<nMaxCells );
      szCell[nCell] = sz;
      pTemp = &aSpace1[iSpace1];
      iSpace1 += sz;
................................................................................
        assert( pOld->hdrOffset==0 );
        /* The right pointer of the child page pOld becomes the left
        ** pointer of the divider cell */
        memcpy(apCell[nCell], &pOld->aData[8], 4);
      }else{
        assert( leafCorrection==4 );
        if( szCell[nCell]<4 ){
          /* Do not allow any cells smaller than 4 bytes. If a smaller cell
          ** does exist, pad it with 0x00 bytes. */
          assert( szCell[nCell]==3 );
          assert( apCell[nCell]==&aSpace1[iSpace1-3] );
          aSpace1[iSpace1++] = 0x00;
          szCell[nCell] = 4;
        }
      }
      nCell++;
    }
  }

................................................................................
  ** 
  */
  usableSpace = pBt->usableSize - 12 + leafCorrection;
  for(subtotal=k=i=0; i<nCell; i++){
    assert( i<nMaxCells );
    subtotal += szCell[i] + 2;
    if( subtotal > usableSpace ){
      szNew[k] = subtotal - szCell[i] - 2;
      cntNew[k] = i;
      if( leafData ){ i--; }
      subtotal = 0;
      k++;
      if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
    }
  }
  szNew[k] = subtotal;
  cntNew[k] = nCell;
  k++;

  /*
  ** The packing computed by the previous block is biased toward the siblings
  ** on the left side (siblings with smaller keys). The left siblings are
  ** always nearly full, while the right-most sibling might be nearly empty.
  ** The next block of code attempts to adjust the packing of siblings to
  ** get a better balance.
  **
  ** This adjustment is more than an optimization.  The packing above might
  ** be so out of balance as to be illegal.  For example, the right-most
  ** sibling might be completely empty.  This adjustment is not optional.
  */
  for(i=k-1; i>0; i--){
    int szRight = szNew[i];  /* Size of sibling on the right */
................................................................................
      r = cntNew[i-1] - 1;
      d = r + 1 - leafData;
    }
    szNew[i] = szRight;
    szNew[i-1] = szLeft;
  }

  /* Sanity check:  For a non-corrupt database file one of the follwing
  ** must be true:
  **    (1) We found one or more cells (cntNew[0])>0), or
  **    (2) pPage is a virtual root page.  A virtual root page is when
  **        the real root page is page 1 and we are the only child of


  **        that page.

  */

  assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) || CORRUPT_DB);


  TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
    apOld[0]->pgno, apOld[0]->nCell,
    nOld>=2 ? apOld[1]->pgno : 0, nOld>=2 ? apOld[1]->nCell : 0,
    nOld>=3 ? apOld[2]->pgno : 0, nOld>=3 ? apOld[2]->nCell : 0
  ));

  /*
  ** Allocate k new pages.  Reuse old pages where possible.
  */
  if( apOld[0]->pgno<=1 ){
    rc = SQLITE_CORRUPT_BKPT;
................................................................................
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
      if( rc ) goto balance_cleanup;
      zeroPage(pNew, pageFlags);
      apNew[i] = pNew;
      nNew++;
      cntOld[i] = nCell;

      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
        if( rc!=SQLITE_OK ){
          goto balance_cleanup;
        }
      }
    }
  }











  /*

  ** Reassign page numbers so that the new pages are in ascending order. 
  ** This helps to keep entries in the disk file in order so that a scan
  ** of the table is closer to a linear scan through the file. That in turn 
  ** helps the operating system to deliver pages from the disk more rapidly.

  **
  ** An O(n^2) insertion sort algorithm is used, but since n is never more 
  ** than (NB+2) (a small constant), that should not be a problem.

  **
  ** When NB==3, this one optimization makes the database about 25% faster 
  ** for large insertions and deletions.
  */
  for(i=0; i<nNew; i++){
    aPgOrder[i] = aPgno[i] = apNew[i]->pgno;
    aPgFlags[i] = apNew[i]->pDbPage->flags;
    for(j=0; j<i; j++){
      if( aPgno[j]==aPgno[i] ){
        /* This branch is taken if the set of sibling pages somehow contains
        ** duplicate entries. This can happen if the database is corrupt. 
        ** It would be simpler to detect this as part of the loop below, but
        ** we do the detection here in order to avoid populating the pager
        ** cache with two separate objects associated with the same
        ** page number.  */
        assert( CORRUPT_DB );
        rc = SQLITE_CORRUPT_BKPT;
        goto balance_cleanup;



      }
    }
  }
  for(i=0; i<nNew; i++){
    int iBest = 0;                /* aPgno[] index of page number to use */
    for(j=1; j<nNew; j++){
      if( aPgOrder[j]<aPgOrder[iBest] ) iBest = j;
    }
    pgno = aPgOrder[iBest];
    aPgOrder[iBest] = 0xffffffff;
    if( iBest!=i ){
      if( iBest>i ){
        sqlite3PagerRekey(apNew[iBest]->pDbPage, pBt->nPage+iBest+1, 0);
      }
      sqlite3PagerRekey(apNew[i]->pDbPage, pgno, aPgFlags[iBest]);
      apNew[i]->pgno = pgno;


    }
  }


  TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
         "%d(%d nc=%d) %d(%d nc=%d)\n",
    apNew[0]->pgno, szNew[0], cntNew[0],
    nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
    nNew>=2 ? cntNew[1] - cntNew[0] - !leafData : 0,
    nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
    nNew>=3 ? cntNew[2] - cntNew[1] - !leafData : 0,
    nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
    nNew>=4 ? cntNew[3] - cntNew[2] - !leafData : 0,
    nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0,
    nNew>=5 ? cntNew[4] - cntNew[3] - !leafData : 0
  ));

  assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  put4byte(pRight, apNew[nNew-1]->pgno);

  /* If the sibling pages are not leaves, ensure that the right-child pointer
  ** of the right-most new sibling page is set to the value that was 
  ** originally in the same field of the right-most old sibling page. */
  if( (pageFlags & PTF_LEAF)==0 && nOld!=nNew ){
    MemPage *pOld = (nNew>nOld ? apNew : apOld)[nOld-1];
    memcpy(&apNew[nNew-1]->aData[8], &pOld->aData[8], 4);
  }

  /* Make any required updates to pointer map entries associated with 
  ** cells stored on sibling pages following the balance operation. Pointer
  ** map entries associated with divider cells are set by the insertCell()
  ** routine. The associated pointer map entries are:
  **


  **   a) if the cell contains a reference to an overflow chain, the
  **      entry associated with the first page in the overflow chain, and
  **
  **   b) if the sibling pages are not leaves, the child page associated
  **      with the cell.
  **
  ** If the sibling pages are not leaves, then the pointer map entry 
  ** associated with the right-child of each sibling may also need to be 
  ** updated. This happens below, after the sibling pages have been 
  ** populated, not here.
  */



  if( ISAUTOVACUUM ){
    MemPage *pNew = apNew[0];




    u8 *aOld = pNew->aData;
    int cntOldNext = pNew->nCell + pNew->nOverflow;
    int usableSize = pBt->usableSize;
    int iNew = 0;
    int iOld = 0;

    for(i=0; i<nCell; i++){
      u8 *pCell = apCell[i];
      if( i==cntOldNext ){
        MemPage *pOld = (++iOld)<nNew ? apNew[iOld] : apOld[iOld];
        cntOldNext += pOld->nCell + pOld->nOverflow + !leafData;
        aOld = pOld->aData;
      }
      if( i==cntNew[iNew] ){
        pNew = apNew[++iNew];
        if( !leafData ) continue;
      }






      /* Cell pCell is destined for new sibling page pNew. Originally, it
      ** was either part of sibling page iOld (possibly an overflow cell), 
      ** or else the divider cell to the left of sibling page iOld. So,
      ** if sibling page iOld had the same page number as pNew, and if
      ** pCell really was a part of sibling page iOld (not a divider or
      ** overflow cell), we can skip updating the pointer map entries.  */
      if( iOld>=nNew
       || pNew->pgno!=aPgno[iOld]
       || pCell<aOld
       || pCell>=&aOld[usableSize]
      ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
        }
        if( szCell[i]>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, pCell, &rc);
        }
      }
    }
  }

  /* Insert new divider cells into pParent. */
  for(i=0; i<nNew-1; i++){
    u8 *pCell;
    u8 *pTemp;
    int sz;
    MemPage *pNew = apNew[i];
    j = cntNew[i];

    assert( j<nMaxCells );
    pCell = apCell[j];
    sz = szCell[j] + leafCorrection;
    pTemp = &aOvflSpace[iOvflSpace];
    if( !pNew->leaf ){
      memcpy(&pNew->aData[8], pCell, 4);
    }else if( leafData ){
      /* If the tree is a leaf-data tree, and the siblings are leaves, 
      ** then there is no divider cell in apCell[]. Instead, the divider 
      ** cell consists of the integer key for the right-most cell of 
      ** the sibling-page assembled above only.
      */
      CellInfo info;
      j--;
      btreeParseCellPtr(pNew, apCell[j], &info);
      pCell = pTemp;
      sz = 4 + putVarint(&pCell[4], info.nKey);
      pTemp = 0;
    }else{
      pCell -= 4;
      /* Obscure case for non-leaf-data trees: If the cell at pCell was
      ** previously stored on a leaf node, and its reported size was 4
      ** bytes, then it may actually be smaller than this 
      ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
      ** any cell). But it is important to pass the correct size to 
      ** insertCell(), so reparse the cell now.
      **
      ** Note that this can never happen in an SQLite data file, as all
      ** cells are at least 4 bytes. It only happens in b-trees used
      ** to evaluate "IN (SELECT ...)" and similar clauses.
      */
      if( szCell[j]==4 ){
        assert(leafCorrection==4);
        sz = cellSizePtr(pParent, pCell);
      }
    }
    iOvflSpace += sz;
    assert( sz<=pBt->maxLocal+23 );
    assert( iOvflSpace <= (int)pBt->pageSize );
    insertCell(pParent, nxDiv+i, pCell, sz, pTemp, pNew->pgno, &rc);
    if( rc!=SQLITE_OK ) goto balance_cleanup;
    assert( sqlite3PagerIswriteable(pParent->pDbPage) );
  }



  /* Now update the actual sibling pages. The order in which they are updated
  ** is important, as this code needs to avoid disrupting any page from which
  ** cells may still to be read. In practice, this means:
  **
  **  (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
  **      then it is not safe to update page apNew[iPg] until after
  **      the left-hand sibling apNew[iPg-1] has been updated.
  **
  **  (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
  **      then it is not safe to update page apNew[iPg] until after
  **      the right-hand sibling apNew[iPg+1] has been updated.
  **
  ** If neither of the above apply, the page is safe to update.
  **
  ** The iPg value in the following loop starts at nNew-1 goes down
  ** to 0, then back up to nNew-1 again, thus making two passes over
  ** the pages.  On the initial downward pass, only condition (1) above
  ** needs to be tested because (2) will always be true from the previous
  ** step.  On the upward pass, both conditions are always true, so the
  ** upwards pass simply processes pages that were missed on the downward
  ** pass.
  */
  for(i=1-nNew; i<nNew; i++){
    int iPg = i<0 ? -i : i;
    assert( iPg>=0 && iPg<nNew );
    if( abDone[iPg] ) continue;         /* Skip pages already processed */
    if( i>=0                            /* On the upwards pass, or... */
     || cntOld[iPg-1]>=cntNew[iPg-1]    /* Condition (1) is true */
    ){
      int iNew;
      int iOld;
      int nNewCell;


      /* Verify condition (1):  If cells are moving left, update iPg
      ** only after iPg-1 has already been updated. */
      assert( iPg==0 || cntOld[iPg-1]>=cntNew[iPg-1] || abDone[iPg-1] );

      /* Verify condition (2):  If cells are moving right, update iPg
      ** only after iPg+1 has already been updated. */
      assert( cntNew[iPg]>=cntOld[iPg] || abDone[iPg+1] );

      if( iPg==0 ){
        iNew = iOld = 0;
        nNewCell = cntNew[0];
      }else{
        iOld = iPg<nOld ? (cntOld[iPg-1] + !leafData) : nCell;
        iNew = cntNew[iPg-1] + !leafData;
        nNewCell = cntNew[iPg] - iNew;
      }

      editPage(apNew[iPg], iOld, iNew, nNewCell, apCell, szCell);
      abDone[iPg]++;
      apNew[iPg]->nFree = usableSpace-szNew[iPg];
      assert( apNew[iPg]->nOverflow==0 );
      assert( apNew[iPg]->nCell==nNewCell );
    }
  }

  /* All pages have been processed exactly once */
  assert( memcmp(abDone, "\01\01\01\01\01", nNew)==0 );

  assert( nOld>0 );
  assert( nNew>0 );





  if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
    /* The root page of the b-tree now contains no cells. The only sibling
    ** page is the right-child of the parent. Copy the contents of the
    ** child page into the parent, decreasing the overall height of the
    ** b-tree structure by one. This is described as the "balance-shallower"
    ** sub-algorithm in some documentation.
    **
    ** If this is an auto-vacuum database, the call to copyNodeContent() 
    ** sets all pointer-map entries corresponding to database image pages 
    ** for which the pointer is stored within the content being copied.
    **
    ** It is critical that the child page be defragmented before being
    ** copied into the parent, because if the parent is page 1 then it will
    ** by smaller than the child due to the database header, and so all the
    ** free space needs to be up front.
    */
    assert( nNew==1 );
    rc = defragmentPage(apNew[0]);
    testcase( rc!=SQLITE_OK );
    assert( apNew[0]->nFree == 
        (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
      || rc!=SQLITE_OK
    );
    copyNodeContent(apNew[0], pParent, &rc);
    freePage(apNew[0], &rc);
  }else if( ISAUTOVACUUM && !leafCorrection ){











    /* Fix the pointer map entries associated with the right-child of each


























    ** sibling page. All other pointer map entries have already been taken
    ** care of.  */
    for(i=0; i<nNew; i++){












      u32 key = get4byte(&apNew[i]->aData[8]);
      ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
    }

  }


















  assert( pParent->isInit );

  TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
          nOld, nNew, nCell));








  /* Free any old pages that were not reused as new pages.
  */
  for(i=nNew; i<nOld; i++){
    freePage(apOld[i], &rc);
  }













#if 0
  if( ISAUTOVACUUM && rc==SQLITE_OK && apNew[0]->isInit ){
    /* The ptrmapCheckPages() contains assert() statements that verify that
    ** all pointer map pages are set correctly. This is helpful while 
    ** debugging. This is usually disabled because a corrupt database may
    ** cause an assert() statement to fail.  */
    ptrmapCheckPages(apNew, nNew);
    ptrmapCheckPages(&pParent, 1);

  }




#endif

  /*
  ** Cleanup before returning.
  */
balance_cleanup:
  sqlite3ScratchFree(apCell);
  for(i=0; i<nOld; i++){
................................................................................
** is the number of free pages currently in the database.  Meta[1]
** through meta[15] are available for use by higher layers.  Meta[0]
** is read-only, the others are read/write.
** 
** The schema layer numbers meta values differently.  At the schema
** layer (and the SetCookie and ReadCookie opcodes) the number of
** free pages is not visible.  So Cookie[0] is the same as Meta[1].
**
** This routine treats Meta[BTREE_DATA_VERSION] as a special case.  Instead
** of reading the value out of the header, it instead loads the "DataVersion"
** from the pager.  The BTREE_DATA_VERSION value is not actually stored in the
** database file.  It is a number computed by the pager.  But its access
** pattern is the same as header meta values, and so it is convenient to
** read it from this routine.
*/
SQLITE_PRIVATE void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
  BtShared *pBt = p->pBt;

  sqlite3BtreeEnter(p);
  assert( p->inTrans>TRANS_NONE );
  assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
  assert( pBt->pPage1 );
  assert( idx>=0 && idx<=15 );

  if( idx==BTREE_DATA_VERSION ){
    *pMeta = sqlite3PagerDataVersion(pBt->pPager) + p->iDataVersion;
  }else{
    *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
  }

  /* If auto-vacuum is disabled in this build and this is an auto-vacuum
  ** database, mark the database as read-only.  */
#ifdef SQLITE_OMIT_AUTOVACUUM
  if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
    pBt->btsFlags |= BTS_READ_ONLY;
  }
................................................................................
    ** caller.
    */
    if( pPage->leaf ){
      do {
        if( pCur->iPage==0 ){
          /* All pages of the b-tree have been visited. Return successfully. */
          *pnEntry = nEntry;
          return moveToRoot(pCur);
        }
        moveToParent(pCur);
      }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );

      pCur->aiIdx[pCur->iPage]++;
      pPage = pCur->apPage[pCur->iPage];
    }
................................................................................
  if( hit==0 ){
    pCheck->mallocFailed = 1;
  }else{
    int contentOffset = get2byteNotZero(&data[hdr+5]);
    assert( contentOffset<=usableSize );  /* Enforced by btreeInitPage() */
    memset(hit+contentOffset, 0, usableSize-contentOffset);
    memset(hit, 1, contentOffset);
    /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
    ** number of cells on the page. */
    nCell = get2byte(&data[hdr+3]);
    /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
    ** immediately follows the b-tree page header. */
    cellStart = hdr + 12 - 4*pPage->leaf;
    /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
    ** integer offsets to the cell contents. */
    for(i=0; i<nCell; i++){
      int pc = get2byte(&data[cellStart+i*2]);
      u32 size = 65536;
      int j;
      if( pc<=usableSize-4 ){
        size = cellSizePtr(pPage, &data[pc]);
      }
................................................................................
        pCheck->zPfx = 0;
        checkAppendMsg(pCheck,
            "Corruption detected in cell %d on page %d",i,iPage);
      }else{
        for(j=pc+size-1; j>=pc; j--) hit[j]++;
      }
    }
    /* EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
    ** is the offset of the first freeblock, or zero if there are no
    ** freeblocks on the page. */
    i = get2byte(&data[hdr+1]);
    while( i>0 ){
      int size, j;
      assert( i<=usableSize-4 );     /* Enforced by btreeInitPage() */
      size = get2byte(&data[i+2]);
      assert( i+size<=usableSize );  /* Enforced by btreeInitPage() */
      for(j=i+size-1; j>=i; j--) hit[j]++;
      /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
      ** big-endian integer which is the offset in the b-tree page of the next
      ** freeblock in the chain, or zero if the freeblock is the last on the
      ** chain. */
      j = get2byte(&data[i]);
      /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
      ** increasing offset. */
      assert( j==0 || j>i+size );  /* Enforced by btreeInitPage() */
      assert( j<=usableSize-4 );   /* Enforced by btreeInitPage() */
      i = j;
    }
    for(i=cnt=0; i<usableSize; i++){
      if( hit[i]==0 ){
        cnt++;
      }else if( hit[i]>1 ){
        checkAppendMsg(pCheck,
          "Multiple uses for byte %d of page %d", i, iPage);
        break;
      }
    }
    /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
    ** is stored in the fifth field of the b-tree page header.
    ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
    ** number of fragmented free bytes within the cell content area.
    */
    if( cnt!=data[hdr+7] ){
      checkAppendMsg(pCheck,
          "Fragmentation of %d bytes reported as %d on page %d",
          cnt, data[hdr+7], iPage);
    }
  }
  sqlite3PageFree(hit);
................................................................................
/*
** Return true if the given Btree is read-only.
*/
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}

/*
** Return the size of the header added to each page by this module.
*/
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage)); }

/************** End of btree.c ***********************************************/
/************** Begin file backup.c ******************************************/
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
................................................................................
** of the source.
*/
static int setDestPgsz(sqlite3_backup *p){
  int rc;
  rc = sqlite3BtreeSetPageSize(p->pDest,sqlite3BtreeGetPageSize(p->pSrc),-1,0);
  return rc;
}

/*
** Check that there is no open read-transaction on the b-tree passed as the
** second argument. If there is not, return SQLITE_OK. Otherwise, if there
** is an open read-transaction, return SQLITE_ERROR and leave an error 
** message in database handle db.
*/
static int checkReadTransaction(sqlite3 *db, Btree *p){
  if( sqlite3BtreeIsInReadTrans(p) ){
    sqlite3ErrorWithMsg(db, SQLITE_ERROR, "destination database is in use");
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}

/*
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
................................................................................
SQLITE_API sqlite3_backup *sqlite3_backup_init(
  sqlite3* pDestDb,                     /* Database to write to */
  const char *zDestDb,                  /* Name of database within pDestDb */
  sqlite3* pSrcDb,                      /* Database connection to read from */
  const char *zSrcDb                    /* Name of database within pSrcDb */
){
  sqlite3_backup *p;                    /* Value to return */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(pSrcDb)||!sqlite3SafetyCheckOk(pDestDb) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif

  /* Lock the source database handle. The destination database
  ** handle is not locked in this routine, but it is locked in
  ** sqlite3_backup_step(). The user is required to ensure that no
  ** other thread accesses the destination handle for the duration
  ** of the backup operation.  Any attempt to use the destination
  ** database connection while a backup is in progress may cause
................................................................................
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;

    if( 0==p->pSrc || 0==p->pDest 
     || setDestPgsz(p)==SQLITE_NOMEM 
     || checkReadTransaction(pDestDb, p->pDest)!=SQLITE_OK 
     ){
      /* One (or both) of the named databases did not exist or an OOM
      ** error was hit. Or there is a transaction open on the destination
      ** database. The error has already been written into the pDestDb 
      ** handle. All that is left to do here is free the sqlite3_backup 
      ** structure.  */

      sqlite3_free(p);
      p = 0;
    }
  }
  if( p ){
    p->pSrc->nBackup++;
  }
................................................................................
*/
SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
  int rc;
  int destMode;       /* Destination journal mode */
  int pgszSrc = 0;    /* Source page size */
  int pgszDest = 0;   /* Destination page size */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(p->pSrcDb->mutex);
  sqlite3BtreeEnter(p->pSrc);
  if( p->pDestDb ){
    sqlite3_mutex_enter(p->pDestDb->mutex);
  }

  rc = p->rc;
................................................................................
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite3_backup_step().
*/
SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return p->nRemaining;
}

/*
** Return the total number of pages in the source database as of the most 
** recent call to sqlite3_backup_step().
*/
SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return p->nPagecount;
}

/*
** This function is called after the contents of page iPage of the
** source database have been modified. If page iPage has already been 
** copied into the destination database, then the data written to the
................................................................................
** match, or false otherwise. This function is intended to be used as
** part of an assert statement in the compiler. Similar to:
**
**   assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
*/
SQLITE_PRIVATE int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
  int hasAbort = 0;
  int hasFkCounter = 0;
  Op *pOp;
  VdbeOpIter sIter;
  memset(&sIter, 0, sizeof(sIter));
  sIter.v = v;

  while( (pOp = opIterNext(&sIter))!=0 ){
    int opcode = pOp->opcode;
    if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename 



     || ((opcode==OP_Halt || opcode==OP_HaltIfNull) 
      && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
    ){
      hasAbort = 1;
      break;
    }
#ifndef SQLITE_OMIT_FOREIGN_KEY
    if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
      hasFkCounter = 1;
    }
#endif
  }
  sqlite3DbFree(v->db, sIter.apSub);

  /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
  ** If malloc failed, then the while() loop above may not have iterated
  ** through all opcodes and hasAbort may be set incorrectly. Return
  ** true for this case to prevent the assert() in the callers frame
  ** from failing.  */
  return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter );
}
#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */

/*
** Loop through the program looking for P2 values that are negative
** on jump instructions.  Each such value is a label.  Resolve the
** label by setting the P2 value to its correct non-zero value.
................................................................................
      }
#endif
    }
    p->nOp += nOp;
  }
  return addr;
}

#if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
/*
** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
*/
SQLITE_PRIVATE void sqlite3VdbeScanStatus(
  Vdbe *p,                        /* VM to add scanstatus() to */
  int addrExplain,                /* Address of OP_Explain (or 0) */
  int addrLoop,                   /* Address of loop counter */ 
  int addrVisit,                  /* Address of rows visited counter */
  LogEst nEst,                    /* Estimated number of output rows */
  const char *zName               /* Name of table or index being scanned */
){
  int nByte = (p->nScan+1) * sizeof(ScanStatus);
  ScanStatus *aNew;
  aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
  if( aNew ){
    ScanStatus *pNew = &aNew[p->nScan++];
    pNew->addrExplain = addrExplain;
    pNew->addrLoop = addrLoop;
    pNew->addrVisit = addrVisit;
    pNew->nEst = nEst;
    pNew->zName = sqlite3DbStrDup(p->db, zName);
    p->aScan = aNew;
  }
}
#endif


/*
** Change the value of the P1 operand for a specific instruction.
** This routine is useful when a large program is loaded from a
** static array using sqlite3VdbeAddOpList but we want to make a
** few minor changes to the program.
*/
................................................................................
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
#endif
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

................................................................................
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
      p->aVar[n].flags = MEM_Null;
      p->aVar[n].db = db;
    }
  }
  if( p->azVar && pParse->nzVar>0 ){
    p->nzVar = pParse->nzVar;
    memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
    memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
  }
  if( p->aMem ){
    p->aMem--;                      /* aMem[] goes from 1..nMem */
    p->nMem = nMem;                 /*       not from 0..nMem-1 */
................................................................................
/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
** control to the main program.
*/
SQLITE_PRIVATE int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
  Vdbe *v = pFrame->v;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  v->anExec = pFrame->anExec;
#endif
  v->aOnceFlag = pFrame->aOnceFlag;
  v->nOnceFlag = pFrame->nOnceFlag;
  v->aOp = pFrame->aOp;
  v->nOp = pFrame->nOp;
  v->aMem = pFrame->aMem;
  v->nMem = pFrame->nMem;
  v->apCsr = pFrame->apCsr;
  v->nCursor = pFrame->nCursor;
  v->db->lastRowid = pFrame->lastRowid;
  v->nChange = pFrame->nChange;
  v->db->nChange = pFrame->nDbChange;
  return pFrame->pc;
}

/*
** Close all cursors.
**
** Also release any dynamic memory held by the VM in the Vdbe.aMem memory 
................................................................................
        }else{
          /* We are forced to roll back the active transaction. Before doing
          ** so, abort any other statements this handle currently has active.
          */
          sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
          sqlite3CloseSavepoints(db);
          db->autoCommit = 1;
          p->nChange = 0;
        }
      }
    }

    /* Check for immediate foreign key violations. */
    if( p->rc==SQLITE_OK ){
      sqlite3VdbeCheckFk(p, 0);
................................................................................
        }
        if( rc==SQLITE_BUSY && p->readOnly ){
          sqlite3VdbeLeave(p);
          return SQLITE_BUSY;
        }else if( rc!=SQLITE_OK ){
          p->rc = rc;
          sqlite3RollbackAll(db, SQLITE_OK);
          p->nChange = 0;
        }else{
          db->nDeferredCons = 0;
          db->nDeferredImmCons = 0;
          db->flags &= ~SQLITE_DeferFKs;
          sqlite3CommitInternalChanges(db);
        }
      }else{
        sqlite3RollbackAll(db, SQLITE_OK);
        p->nChange = 0;
      }
      db->nStatement = 0;
    }else if( eStatementOp==0 ){
      if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
        eStatementOp = SAVEPOINT_RELEASE;
      }else if( p->errorAction==OE_Abort ){
        eStatementOp = SAVEPOINT_ROLLBACK;
      }else{
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;
        p->nChange = 0;
      }
    }
  
    /* If eStatementOp is non-zero, then a statement transaction needs to
    ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
    ** do so. If this operation returns an error, and the current statement
    ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
................................................................................
          p->rc = rc;
          sqlite3DbFree(db, p->zErrMsg);
          p->zErrMsg = 0;
        }
        sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
        sqlite3CloseSavepoints(db);
        db->autoCommit = 1;
        p->nChange = 0;
      }
    }
  
    /* If this was an INSERT, UPDATE or DELETE and no statement transaction
    ** has been rolled back, update the database connection change-counter. 
    */
    if( p->changeCntOn ){
................................................................................
    sqlite3DbFree(db, pSub);
  }
  for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
  sqlite3DbFree(db, p->pFree);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  for(i=0; i<p->nScan; i++){
    sqlite3DbFree(db, p->aScan[i].zName);
  }
  sqlite3DbFree(db, p->aScan);
#endif
}

/*
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;
................................................................................
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
    i64 i = pMem->u.i;
    u64 u;
    if( i<0 ){


      u = ~i;
    }else{
      u = i;
    }
    if( u<=127 ){
      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
    }
    if( u<=32767 ) return 2;
................................................................................
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  u64 x = FOUR_BYTE_UINT(buf);
  u32 y = FOUR_BYTE_UINT(buf+4);
  x = (x<<32) + y;
  if( serial_type==6 ){
    /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
    ** twos-complement integer. */
    pMem->u.i = *(i64*)&x;
    pMem->flags = MEM_Int;
    testcase( pMem->u.i<0 );
  }else{
    /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
    ** floating point number. */
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
    /* Verify that integers and floating point values use the same
    ** byte order.  Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
    ** defined that 64-bit floating point values really are mixed
    ** endian.
    */
    static const u64 t1 = ((u64)0x3ff00000)<<32;
................................................................................
  const unsigned char *buf,     /* Buffer to deserialize from */
  u32 serial_type,              /* Serial type to deserialize */
  Mem *pMem                     /* Memory cell to write value into */
){
  switch( serial_type ){
    case 10:   /* Reserved for future use */
    case 11:   /* Reserved for future use */
    case 0: {  /* Null */
      /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
      pMem->flags = MEM_Null;
      break;
    }
    case 1: {
      /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
      ** integer. */
      pMem->u.i = ONE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 1;
    }
    case 2: { /* 2-byte signed integer */
      /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
      ** twos-complement integer. */
      pMem->u.i = TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 2;
    }
    case 3: { /* 3-byte signed integer */
      /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
      ** twos-complement integer. */
      pMem->u.i = THREE_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
      ** twos-complement integer. */
      pMem->u.i = FOUR_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 4;
    }
    case 5: { /* 6-byte signed integer */
      /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
      ** twos-complement integer. */
      pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 6;
    }
    case 6:   /* 8-byte signed integer */
    case 7: { /* IEEE floating point */
      /* These use local variables, so do them in a separate routine
      ** to avoid having to move the frame pointer in the common case */
      return serialGet(buf,serial_type,pMem);
    }
    case 8:    /* Integer 0 */
    case 9: {  /* Integer 1 */
      /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
      /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
      pMem->u.i = serial_type-8;
      pMem->flags = MEM_Int;
      return 0;
    }
    default: {
      /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
      ** length.
      ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
      ** (N-13)/2 bytes in length. */
      static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
      pMem->z = (char *)buf;
      pMem->n = (serial_type-12)/2;
      pMem->flags = aFlag[serial_type&1];
      return pMem->n;
    }
  }
................................................................................
static int doWalCallbacks(sqlite3 *db){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_WAL
  int i;
  for(i=0; i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      int nEntry;
      sqlite3BtreeEnter(pBt);
      nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
      sqlite3BtreeLeave(pBt);
      if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
        rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
      }
    }
  }
#endif
  return rc;
................................................................................
    ** into the database handle. This block copies the error message 
    ** from the database handle into the statement and sets the statement
    ** program counter to 0 to ensure that when the statement is 
    ** finalized or reset the parser error message is available via
    ** sqlite3_errmsg() and sqlite3_errcode().
    */
    const char *zErr = (const char *)sqlite3_value_text(db->pErr); 

    sqlite3DbFree(db, v->zErrMsg);
    if( !db->mallocFailed ){
      v->zErrMsg = sqlite3DbStrDup(db, zErr);
      v->rc = rc2;
    } else {
      v->zErrMsg = 0;
      v->rc = rc = SQLITE_NOMEM;
................................................................................
*/
static const void *columnName(
  sqlite3_stmt *pStmt,
  int N,
  const void *(*xFunc)(Mem*),
  int useType
){
  const void *ret;
  Vdbe *p;
  int n;
  sqlite3 *db;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pStmt==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  ret = 0;
  p = (Vdbe *)pStmt;
  db = p->db;
  assert( db!=0 );
  n = sqlite3_column_count(pStmt);
  if( N<n && N>=0 ){
    N += useType*n;
    sqlite3_mutex_enter(db->mutex);
    assert( db->mallocFailed==0 );
    ret = xFunc(&p->aColName[N]);
................................................................................
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb.  If pStmt is NULL, return the first
** prepared statement for the database connection.  Return NULL if there
** are no more.
*/
SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
  sqlite3_stmt *pNext;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(pDb) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(pDb->mutex);
  if( pStmt==0 ){
    pNext = (sqlite3_stmt*)pDb->pVdbe;
  }else{
    pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
  }
  sqlite3_mutex_leave(pDb->mutex);
................................................................................
}

/*
** Return the value of a status counter for a prepared statement
*/
SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  Vdbe *pVdbe = (Vdbe*)pStmt;
  u32 v;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !pStmt ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Return status data for a single loop within query pStmt.
*/
SQLITE_API int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,            /* Prepared statement being queried */
  int idx,                        /* Index of loop to report on */
  int iScanStatusOp,              /* Which metric to return */
  void *pOut                      /* OUT: Write the answer here */
){
  Vdbe *p = (Vdbe*)pStmt;
  ScanStatus *pScan;
  if( idx<0 || idx>=p->nScan ) return 1;
  pScan = &p->aScan[idx];
  switch( iScanStatusOp ){
    case SQLITE_SCANSTAT_NLOOP: {
      *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
      break;
    }
    case SQLITE_SCANSTAT_NVISIT: {
      *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
      break;
    }
    case SQLITE_SCANSTAT_EST: {
      double r = 1.0;
      LogEst x = pScan->nEst;
      while( x<100 ){
        x += 10;
        r *= 0.5;
      }
      *(double*)pOut = r*sqlite3LogEstToInt(x);
      break;
    }
    case SQLITE_SCANSTAT_NAME: {
      *(const char**)pOut = pScan->zName;
      break;
    }
    case SQLITE_SCANSTAT_EXPLAIN: {
      if( pScan->addrExplain ){
        *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
      }else{
        *(const char**)pOut = 0;
      }
      break;
    }
    case SQLITE_SCANSTAT_SELECTID: {
      if( pScan->addrExplain ){
        *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
      }else{
        *(int*)pOut = -1;
      }
      break;
    }
    default: {
      return 1;
    }
  }
  return 0;
}

/*
** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
*/
SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  memset(p->anExec, 0, p->nOp * sizeof(i64));
}
#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */

/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbetrace.c ***************************************/
/*
** 2009 November 25
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
................................................................................
    assert( pc>=0 && pc<p->nOp );
    if( db->mallocFailed ) goto no_mem;
#ifdef VDBE_PROFILE
    start = sqlite3Hwtime();
#endif
    nVmStep++;
    pOp = &aOp[pc];
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    if( p->anExec ) p->anExec[pc]++;
#endif

    /* Only allow tracing if SQLITE_DEBUG is defined.
    */
#ifdef SQLITE_DEBUG
    if( db->flags & SQLITE_VdbeTrace ){
      sqlite3VdbePrintOp(stdout, pc, pOp);
    }
................................................................................
    }
    nData += len;
    testcase( serial_type==127 );
    testcase( serial_type==128 );
    nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
  }while( (--pRec)>=pData0 );

  /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
  ** which determines the total number of bytes in the header. The varint
  ** value is the size of the header in bytes including the size varint
  ** itself. */
  testcase( nHdr==126 );
  testcase( nHdr==127 );
  if( nHdr<=126 ){
    /* The common case */
    nHdr += 1;
  }else{
    /* Rare case of a really large header */
................................................................................
  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
  pRec = pData0;
  do{
    serial_type = pRec->uTemp;
    /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
    ** additional varints, one per column. */
    i += putVarint32(&zNewRecord[i], serial_type);            /* serial type */
    /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
    ** immediately follow the header. */
    j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
  }while( (++pRec)<=pLast );
  assert( i==nHdr );
  assert( j==nByte );

  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pOut->n = (int)nByte;
................................................................................
      if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
#endif
    }
    pIdxKey = &r;
  }else{
    pIdxKey = sqlite3VdbeAllocUnpackedRecord(
        pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
    );
    if( pIdxKey==0 ) goto no_mem;
    assert( pIn3->flags & MEM_Blob );
    ExpandBlob(pIn3);
    sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
  }
  pIdxKey->default_rc = 0;
  if( pOp->opcode==OP_NoConflict ){
    /* For the OP_NoConflict opcode, take the jump if any of the
    ** input fields are NULL, since any key with a NULL will not
    ** conflict */
................................................................................
  p->aCounter[SQLITE_STMTSTATUS_SORT]++;
  /* Fall through into OP_Rewind */
}
/* Opcode: Rewind P1 P2 * * *
**
** The next use of the Rowid or Column or Next instruction for P1 
** will refer to the first entry in the database table or index.
** If the table or index is empty, jump immediately to P2.
** If the table or index is not empty, fall through to the following 
** instruction.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
*/
case OP_Rewind: {        /* jump */
  VdbeCursor *pC;
................................................................................
    pFrame->apCsr = p->apCsr;
    pFrame->nCursor = p->nCursor;
    pFrame->aOp = p->aOp;
    pFrame->nOp = p->nOp;
    pFrame->token = pProgram->token;
    pFrame->aOnceFlag = p->aOnceFlag;
    pFrame->nOnceFlag = p->nOnceFlag;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    pFrame->anExec = p->anExec;
#endif

    pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
    for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
      pMem->flags = MEM_Undefined;
      pMem->db = db;
    }
  }else{
................................................................................
    assert( pc==pFrame->pc );
  }

  p->nFrame++;
  pFrame->pParent = p->pFrame;
  pFrame->lastRowid = lastRowid;
  pFrame->nChange = p->nChange;
  pFrame->nDbChange = p->db->nChange;
  p->nChange = 0;
  p->pFrame = pFrame;
  p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
  p->nMem = pFrame->nChildMem;
  p->nCursor = (u16)pFrame->nChildCsr;
  p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
  p->aOp = aOp = pProgram->aOp;
  p->nOp = pProgram->nOp;
  p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
  p->nOnceFlag = pProgram->nOnce;
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  p->anExec = 0;
#endif
  pc = -1;
  memset(p->aOnceFlag, 0, p->nOnceFlag);

  break;
}

/* Opcode: Param P1 P2 * * *
................................................................................
  break;
}

#ifndef SQLITE_OMIT_WAL
/* Opcode: Checkpoint P1 P2 P3 * *
**
** Checkpoint database P1. This is a no-op if P1 is not currently in
** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
** RESTART, or TRUNCATE.  Write 1 or 0 into mem[P3] if the checkpoint returns
** SQLITE_BUSY or not, respectively.  Write the number of pages in the
** WAL after the checkpoint into mem[P3+1] and the number of pages
** in the WAL that have been checkpointed after the checkpoint
** completes into mem[P3+2].  However on an error, mem[P3+1] and
** mem[P3+2] are initialized to -1.
*/
case OP_Checkpoint: {
................................................................................

  assert( p->readOnly==0 );
  aRes[0] = 0;
  aRes[1] = aRes[2] = -1;
  assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
       || pOp->p2==SQLITE_CHECKPOINT_FULL
       || pOp->p2==SQLITE_CHECKPOINT_RESTART
       || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
  );
  rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
  if( rc==SQLITE_BUSY ){
    rc = SQLITE_OK;
    aRes[0] = 1;
  }
  for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
................................................................................

  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || ppBlob==0 || zTable==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  flags = !!flags;                /* flags = (flags ? 1 : 0); */
  *ppBlob = 0;

  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
................................................................................
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;

  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
  }else{
    /* Call either BtreeData() or BtreePutData(). If SQLITE_ABORT is
................................................................................
    sqlite3BtreeEnterCursor(p->pCsr);
    rc = xCall(p->pCsr, iOffset+p->iOffset, n, z);
    sqlite3BtreeLeaveCursor(p->pCsr);
    if( rc==SQLITE_ABORT ){
      sqlite3VdbeFinalize(v);
      p->pStmt = 0;
    }else{

      v->rc = rc;
    }
  }
  sqlite3Error(db, rc);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.
................................................................................
** calling thread usually launches a worker thread to do so. Except, if
** there are already N worker threads running, the main thread does the work
** itself.
**
** The sorter is running in multi-threaded mode if (a) the library was built
** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
** than zero, and (b) worker threads have been enabled at runtime by calling
** "PRAGMA threads=N" with some value of N greater than 0.
**
** When Rewind() is called, any data remaining in memory is flushed to a 
** final PMA. So at this point the data is stored in some number of sorted
** PMAs within temporary files on disk.
**
** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
** sorter is running in single-threaded mode, then these PMAs are merged
................................................................................
** messages to stderr that may be helpful in understanding the performance
** characteristics of the sorter in multi-threaded mode.
*/
#if 0
# define SQLITE_DEBUG_SORTER_THREADS 1
#endif

/*
** Hard-coded maximum amount of data to accumulate in memory before flushing
** to a level 0 PMA. The purpose of this limit is to prevent various integer
** overflows. 512MiB.
*/
#define SQLITE_MAX_PMASZ    (1<<29)

/*
** Private objects used by the sorter
*/
typedef struct MergeEngine MergeEngine;     /* Merge PMAs together */
typedef struct PmaReader PmaReader;         /* Incrementally read one PMA */
typedef struct PmaWriter PmaWriter;         /* Incrementally write one PMA */
typedef struct SorterRecord SorterRecord;   /* A record being sorted */
................................................................................
/* Return a pointer to the buffer containing the record data for SorterRecord
** object p. Should be used as if:
**
**   void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
*/
#define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))





/* Maximum number of PMAs that a single MergeEngine can merge */
#define SORTER_MAX_MERGE_COUNT 16

static int vdbeIncrSwap(IncrMerger*);
static void vdbeIncrFree(IncrMerger *);

................................................................................
    pSorter->db = db;
    for(i=0; i<pSorter->nTask; i++){
      SortSubtask *pTask = &pSorter->aTask[i];
      pTask->pSorter = pSorter;
    }

    if( !sqlite3TempInMemory(db) ){
      u32 szPma = sqlite3GlobalConfig.szPma;
      pSorter->mnPmaSize = szPma * pgsz;
      mxCache = db->aDb[0].pSchema->cache_size;

      if( mxCache<(int)szPma ) mxCache = (int)szPma;
      pSorter->mxPmaSize = MIN((i64)mxCache*pgsz, SQLITE_MAX_PMASZ);


      /* EVIDENCE-OF: R-26747-61719 When the application provides any amount of
      ** scratch memory using SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary
      ** large heap allocations.

      */
      if( sqlite3GlobalConfig.pScratch==0 ){
        assert( pSorter->iMemory==0 );
        pSorter->nMemory = pgsz;
        pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
        if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM;
      }
................................................................................
** the VFS has memory mapped it.
**
** Whether or not the file does end up memory mapped of course depends on
** the specific VFS implementation.
*/
static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
  if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){


    void *p = 0;
    int chunksize = 4*1024;
    sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_CHUNK_SIZE, &chunksize);
    sqlite3OsFileControlHint(pFd, SQLITE_FCNTL_SIZE_HINT, &nByte);
    sqlite3OsFetch(pFd, 0, (int)nByte, &p);
    sqlite3OsUnfetch(pFd, 0, p);

  }
}
#else
# define vdbeSorterExtendFile(x,y,z)
#endif

/*
................................................................................
** This needs to occur when copying a TK_AGG_FUNCTION node from an
** outer query into an inner subquery.
**
** incrAggFunctionDepth(pExpr,n) is the main routine.  incrAggDepth(..)
** is a helper function - a callback for the tree walker.
*/
static int incrAggDepth(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n;
  return WRC_Continue;
}
static void incrAggFunctionDepth(Expr *pExpr, int N){
  if( N>0 ){
    Walker w;
    memset(&w, 0, sizeof(w));
    w.xExprCallback = incrAggDepth;
    w.u.n = N;
    sqlite3WalkExpr(&w, pExpr);
  }
}

/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
................................................................................
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;
        assert( (pMatch->jointype & JT_RIGHT)==0 ); /* RIGHT JOIN not (yet) supported */
        if( (pMatch->jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#ifndef SQLITE_OMIT_TRIGGER
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference
................................................................................
*/
static int exprProbability(Expr *p){
  double r = -1.0;
  if( p->op!=TK_FLOAT ) return -1;
  sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8);
  assert( r>=0.0 );
  if( r>1.0 ) return -1;
  return (int)(r*134217728.0);
}

/*
** This routine is callback for sqlite3WalkExpr().
**
** Resolve symbolic names into TK_COLUMN operators for the current
** node in the expression tree.  Return 0 to continue the search down
................................................................................
            ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for
            ** likelihood(X,0.0625).
            ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand for
            ** likelihood(X,0.9375).
            ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to
            ** likelihood(X,0.9375). */
            /* TUNING: unlikely() probability is 0.0625.  likely() is 0.9375 */
            pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120;
          }             
        }
#ifndef SQLITE_OMIT_AUTHORIZATION
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
................................................................................
    sqlite3DbFree(db, pItem->zSpan);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** These routines are Walker callbacks used to check expressions to
** see if they are "constant" for some definition of constant.  The
** Walker.eCode value determines the type of "constant" we are looking
** for.
**
** These callback routines are used to implement the following:
**
**     sqlite3ExprIsConstant()                  pWalker->eCode==1
**     sqlite3ExprIsConstantNotJoin()           pWalker->eCode==2
**     sqlite3ExprRefOneTableOnly()             pWalker->eCode==3
**     sqlite3ExprIsConstantOrFunction()        pWalker->eCode==4 or 5
**
** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
** is found to not be a constant.
**
** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
** in a CREATE TABLE statement.  The Walker.eCode value is 5 when parsing
** an existing schema and 4 when processing a new statement.  A bound
** parameter raises an error for new statements, but is silently converted
** to NULL for existing schemas.  This allows sqlite_master tables that 
** contain a bound parameter because they were generated by older versions
** of SQLite to be parsed by newer versions of SQLite without raising a
** malformed schema error.
*/
static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){

  /* If pWalker->eCode is 2 then any term of the expression that comes from
  ** the ON or USING clauses of a left join disqualifies the expression
  ** from being considered constant. */
  if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
    pWalker->eCode = 0;
    return WRC_Abort;
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and either pWalker->eCode==4 or 5 or the function has the
    ** SQLITE_FUNC_CONST flag. */
    case TK_FUNCTION:
      if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_Constant) ){
        return WRC_Continue;
      }else{
        pWalker->eCode = 0;
        return WRC_Abort;
      }

    case TK_ID:
    case TK_COLUMN:
    case TK_AGG_FUNCTION:
    case TK_AGG_COLUMN:
      testcase( pExpr->op==TK_ID );
      testcase( pExpr->op==TK_COLUMN );
      testcase( pExpr->op==TK_AGG_FUNCTION );
      testcase( pExpr->op==TK_AGG_COLUMN );
      if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
        return WRC_Continue;
      }else{
        pWalker->eCode = 0;
        return WRC_Abort;
      }
    case TK_VARIABLE:
      if( pWalker->eCode==5 ){
        /* Silently convert bound parameters that appear inside of CREATE
        ** statements into a NULL when parsing the CREATE statement text out
        ** of the sqlite_master table */
        pExpr->op = TK_NULL;
      }else if( pWalker->eCode==4 ){
        /* A bound parameter in a CREATE statement that originates from
        ** sqlite3_prepare() causes an error */
        pWalker->eCode = 0;
        return WRC_Abort;
      }
      /* Fall through */
    default:
      testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
      testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
      return WRC_Continue;
  }
}
static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
  UNUSED_PARAMETER(NotUsed);
  pWalker->eCode = 0;
  return WRC_Abort;
}
static int exprIsConst(Expr *p, int initFlag, int iCur){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = initFlag;
  w.xExprCallback = exprNodeIsConstant;
  w.xSelectCallback = selectNodeIsConstant;
  w.u.iCur = iCur;
  sqlite3WalkExpr(&w, p);
  return w.eCode;
}

/*
** Walk an expression tree.  Return non-zero if the expression is constant
** and 0 if it involves variables or function calls.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr *p){
  return exprIsConst(p, 1, 0);
}

/*
** Walk an expression tree.  Return non-zero if the expression is constant
** that does no originate from the ON or USING clauses of a join.
** Return 0 if it involves variables or function calls or terms from
** an ON or USING clause.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr *p){
  return exprIsConst(p, 2, 0);
}

/*
** Walk an expression tree.  Return non-zero if the expression constant
** for any single row of the table with cursor iCur.  In other words, the
** expression must not refer to any non-deterministic function nor any
** table other than iCur.
*/
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr *p, int iCur){
  return exprIsConst(p, 3, iCur);
}

/*
** Walk an expression tree.  Return non-zero if the expression is constant
** or a function call with constant arguments.  Return and 0 if there
** are any variables.
**
** For the purposes of this function, a double-quoted string (ex: "abc")
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
  assert( isInit==0 || isInit==1 );
  return exprIsConst(p, 4+isInit, 0);
}

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
................................................................................
    case TK_INTEGER:
    case TK_STRING:
    case TK_FLOAT:
    case TK_BLOB:
      return 0;
    case TK_COLUMN:
      assert( p->pTab!=0 );
      return ExprHasProperty(p, EP_CanBeNull) ||
             (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
    default:
      return 1;
  }
}

/*
** Return TRUE if the given expression is a constant which would be
................................................................................
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
        target
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.
      **
      ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
      ** floating point when extracting it from the record.  */
      if( pExpr->iColumn>=0 
       && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
      ){
        sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
      }
#endif
      break;
................................................................................
    u8 *pSpace;                     /* Allocated space not yet assigned */
    int i;                          /* Used to iterate through p->aSample[] */

    p->iGet = -1;
    p->mxSample = mxSample;
    p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1);
    p->current.anLt = &p->current.anEq[nColUp];
    p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
  
    /* Set up the Stat4Accum.a[] and aBest[] arrays */
    p->a = (struct Stat4Sample*)&p->current.anLt[nColUp];
    p->aBest = &p->a[mxSample];
    pSpace = (u8*)(&p->a[mxSample+nCol]);
    for(i=0; i<(mxSample+nCol); i++){
      p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
................................................................................
    UNUSED_PARAMETER(aOut);
    assert( aLog!=0 );
    aLog[i] = sqlite3LogEst(v);
#endif
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  assert( pIndex!=0 ); {
#else
  if( pIndex ){
#endif
    pIndex->bUnordered = 0;
    pIndex->noSkipScan = 0;
    while( z[0] ){
      if( sqlite3_strglob("unordered*", z)==0 ){
        pIndex->bUnordered = 1;
      }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
        pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3));
      }else if( sqlite3_strglob("noskipscan*", z)==0 ){
        pIndex->noSkipScan = 1;
      }
#ifdef SQLITE_ENABLE_COSTMULT
      else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
        pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
      }
#endif
      while( z[0]!=0 && z[0]!=' ' ) z++;
      while( z[0]==' ' ) z++;
    }
  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
................................................................................
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt avgEq = 0;
      tRowcnt nRow;             /* Number of rows in index */
      i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
      i64 nDist100;             /* Number of distinct values in index */

      if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
        nRow = pFinal->anLt[iCol];
        nDist100 = (i64)100 * pFinal->anDLt[iCol];
        nSample--;
      }else{
        nRow = pIdx->aiRowEst[0];
        nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
      }
      pIdx->nRowEst0 = nRow;

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index. Set sumEq to the sum of 
      ** the nEq values for column iCol for the same set (adding the value 
      ** only once where there exist duplicate prefixes).  */
      for(i=0; i<nSample; i++){
        if( i==(pIdx->nSample-1)
................................................................................
    rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
    sqlite3DbFree(db, zSql);
  }


  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( rc==SQLITE_OK && OptimizationEnabled(db, SQLITE_Stat34) ){
    int lookasideEnabled = db->lookaside.bEnabled;
    db->lookaside.bEnabled = 0;
    rc = loadStat4(db, sInfo.zDatabase);
    db->lookaside.bEnabled = lookasideEnabled;
  }
  for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
................................................................................
    if( !aNew->pSchema ){
      rc = SQLITE_NOMEM;
    }else if( aNew->pSchema->file_format && aNew->pSchema->enc!=ENC(db) ){
      zErrDyn = sqlite3MPrintf(db, 
        "attached databases must use the same text encoding as main database");
      rc = SQLITE_ERROR;
    }
    sqlite3BtreeEnter(aNew->pBt);
    pPager = sqlite3BtreePager(aNew->pBt);
    sqlite3PagerLockingMode(pPager, db->dfltLockMode);
    sqlite3BtreeSecureDelete(aNew->pBt,
                             sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) );
#ifndef SQLITE_OMIT_PAGER_PRAGMAS
    sqlite3BtreeSetPagerFlags(aNew->pBt, 3 | (db->flags & PAGER_FLAGS_MASK));
#endif
    sqlite3BtreeLeave(aNew->pBt);
  }
  aNew->safety_level = 3;
  aNew->zName = sqlite3DbStrDup(db, zName);
  if( rc==SQLITE_OK && aNew->zName==0 ){
    rc = SQLITE_NOMEM;
  }

................................................................................
** setting of the auth function is NULL.
*/
SQLITE_API int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->xAuth = (sqlite3_xauth)xAuth;
  db->pAuthArg = pArg;
  sqlite3ExpirePreparedStatements(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
................................................................................
** auxiliary databases added using the ATTACH command.
**
** See also sqlite3LocateTable().
*/
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;


#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return 0;
#endif

  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
#if SQLITE_USER_AUTHENTICATION
  /* Only the admin user is allowed to know that the sqlite_user table
  ** exists */
  if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
    return 0;
................................................................................
/*
** Reclaim the memory used by an index
*/
static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif

  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3DbFree(db, p->zColAff);
  if( p->isResized ) sqlite3DbFree(db, p->azColl);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3_free(p->aiRowEst);
#endif
  sqlite3DbFree(db, p);
................................................................................
    assert( pParse->pNewTable==pTab );
    pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
    if( pPk==0 ) return;
    pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
    pTab->iPKey = -1;
  }else{
    pPk = sqlite3PrimaryKeyIndex(pTab);
    /*
    ** Remove all redundant columns from the PRIMARY KEY.  For example, change
    ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
    ** code assumes the PRIMARY KEY contains no repeated columns.
    */
    for(i=j=1; i<pPk->nKeyCol; i++){
      if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
        pPk->nColumn--;
      }else{
        pPk->aiColumn[j++] = pPk->aiColumn[i];
      }
    }
    pPk->nKeyCol = j;
  }
  pPk->isCovering = 1;
  assert( pPk!=0 );
  nPk = pPk->nKeyCol;

  /* Make sure every column of the PRIMARY KEY is NOT NULL */
  for(i=0; i<nPk; i++){
................................................................................
** So there might be multiple references to the returned pointer.  The
** caller should not try to modify the KeyInfo object.
**
** The caller should invoke sqlite3KeyInfoUnref() on the returned object
** when it has finished using it.
*/
SQLITE_PRIVATE KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){








  int i;
  int nCol = pIdx->nColumn;
  int nKey = pIdx->nKeyCol;
  KeyInfo *pKey;
  if( pParse->nErr ) return 0;
  if( pIdx->uniqNotNull ){
    pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
  }else{
    pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
  }
  if( pKey ){
    assert( sqlite3KeyInfoIsWriteable(pKey) );
    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl!=0 );
      pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
                        sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }
    if( pParse->nErr ){
      sqlite3KeyInfoUnref(pKey);


      pKey = 0;
    }
  }


  return pKey;
}

#ifndef SQLITE_OMIT_CTE
/* 
** This routine is invoked once per CTE by the parser while parsing a 
** WITH clause. 
*/
................................................................................
      /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
      sqlite3_result_null(context);
      break;
    }
    default: {
      /* Because sqlite3_value_double() returns 0.0 if the argument is not
      ** something that can be converted into a number, we have:
      ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
      ** that cannot be converted to a numeric value.
      */
      double rVal = sqlite3_value_double(argv[0]);
      if( rVal<0 ) rVal = -rVal;
      sqlite3_result_double(context, rVal);
      break;
    }
  }
................................................................................
    ** incrementing a counter. This is necessary as the VM code is being
    ** generated for will not open a statement transaction.  */
    assert( nIncr==1 );
    sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
        OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
  }else{
    if( nIncr>0 && pFKey->isDeferred==0 ){
      sqlite3MayAbort(pParse);
    }
    sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  }

  sqlite3VdbeResolveLabel(v, iOk);
  sqlite3VdbeAddOp1(v, OP_Close, iCur);
}
................................................................................

/*
** This function is called to generate code executed when a row is deleted
** from the parent table of foreign key constraint pFKey and, if pFKey is 
** deferred, when a row is inserted into the same table. When generating
** code for an SQL UPDATE operation, this function may be called twice -
** once to "delete" the old row and once to "insert" the new row.
**
** Parameter nIncr is passed -1 when inserting a row (as this may decrease
** the number of FK violations in the db) or +1 when deleting one (as this
** may increase the number of FK constraint problems).
**
** The code generated by this function scans through the rows in the child
** table that correspond to the parent table row being deleted or inserted.
** For each child row found, one of the following actions is taken:
**
**   Operation | FK type   | Action taken
**   --------------------------------------------------------------------------
................................................................................
  /* Resolve the references in the WHERE clause. */
  memset(&sNameContext, 0, sizeof(NameContext));
  sNameContext.pSrcList = pSrc;
  sNameContext.pParse = pParse;
  sqlite3ResolveExprNames(&sNameContext, pWhere);

  /* Create VDBE to loop through the entries in pSrc that match the WHERE
  ** clause. For each row found, increment either the deferred or immediate
  ** foreign key constraint counter. */

  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);



  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  if( pWInfo ){
    sqlite3WhereEnd(pWInfo);
  }

  /* Clean up the WHERE clause constructed above. */
  sqlite3ExprDelete(db, pWhere);
................................................................................
          return 1;
        }
      }
    }
  }
  return 0;
}

/*
** Return true if the parser passed as the first argument is being
** used to code a trigger that is really a "SET NULL" action belonging
** to trigger pFKey.
*/
static int isSetNullAction(Parse *pParse, FKey *pFKey){
  Parse *pTop = sqlite3ParseToplevel(pParse);
  if( pTop->pTriggerPrg ){
    Trigger *p = pTop->pTriggerPrg->pTrigger;
    if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull)
     || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull)
    ){
      return 1;
    }
  }
  return 0;
}

/*
** This function is called when inserting, deleting or updating a row of
** table pTab to generate VDBE code to perform foreign key constraint 
** processing for the operation.
**
** For a DELETE operation, parameter regOld is passed the index of the
................................................................................
  for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
    Table *pTo;                   /* Parent table of foreign key pFKey */
    Index *pIdx = 0;              /* Index on key columns in pTo */
    int *aiFree = 0;
    int *aiCol;
    int iCol;
    int i;
    int bIgnore = 0;

    if( aChange 
     && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
     && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 
    ){
      continue;
    }
................................................................................
      /* Request permission to read the parent key columns. If the 
      ** authorization callback returns SQLITE_IGNORE, behave as if any
      ** values read from the parent table are NULL. */
      if( db->xAuth ){
        int rcauth;
        char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
        rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
        bIgnore = (rcauth==SQLITE_IGNORE);
      }
#endif
    }

    /* Take a shared-cache advisory read-lock on the parent table. Allocate 
    ** a cursor to use to search the unique index on the parent key columns 
    ** in the parent table.  */
................................................................................
    sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
    pParse->nTab++;

    if( regOld!=0 ){
      /* A row is being removed from the child table. Search for the parent.
      ** If the parent does not exist, removing the child row resolves an 
      ** outstanding foreign key constraint violation. */
      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore);
    }
    if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){
      /* A row is being added to the child table. If a parent row cannot
      ** be found, adding the child row has violated the FK constraint. 
      **
      ** If this operation is being performed as part of a trigger program
      ** that is actually a "SET NULL" action belonging to this very 
      ** foreign key, then omit this scan altogether. As all child key
      ** values are guaranteed to be NULL, it is not possible for adding
      ** this row to cause an FK violation.  */
      fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore);
    }

    sqlite3DbFree(db, aiFree);
  }

  /* Loop through all the foreign key constraints that refer to this table.
  ** (the "child" constraints) */
................................................................................
      continue;
    }

    if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) 
     && !pParse->pToplevel && !pParse->isMultiWrite 
    ){
      assert( regOld==0 && regNew!=0 );
      /* Inserting a single row into a parent table cannot cause (or fix)
      ** an immediate foreign key violation. So do nothing in this case.  */
      continue;
    }

    if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
      if( !isIgnoreErrors || db->mallocFailed ) return;
      continue;
    }
................................................................................
      pItem->pTab->nRef++;
      pItem->iCursor = pParse->nTab++;
  
      if( regNew!=0 ){
        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
      }
      if( regOld!=0 ){
        int eAction = pFKey->aAction[aChange!=0];





        fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
        /* If this is a deferred FK constraint, or a CASCADE or SET NULL
        ** action applies, then any foreign key violations caused by
        ** removing the parent key will be rectified by the action trigger.
        ** So do not set the "may-abort" flag in this case.
        **
        ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
        ** may-abort flag will eventually be set on this statement anyway
        ** (when this function is called as part of processing the UPDATE
        ** within the action trigger).
        **
        ** Note 2: At first glance it may seem like SQLite could simply omit
        ** all OP_FkCounter related scans when either CASCADE or SET NULL
        ** applies. The trouble starts if the CASCADE or SET NULL action 
        ** trigger causes other triggers or action rules attached to the 
        ** child table to fire. In these cases the fk constraint counters
        ** might be set incorrectly if any OP_FkCounter related scans are 
        ** omitted.  */
        if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){
          sqlite3MayAbort(pParse);
        }
      }
      pItem->zName = 0;
      sqlite3SrcListDelete(db, pSrc);
    }
    sqlite3DbFree(db, aiCol);
  }
}
................................................................................
#ifndef SQLITE_ENABLE_COLUMN_METADATA
# define sqlite3_column_database_name   0
# define sqlite3_column_database_name16 0
# define sqlite3_column_table_name      0
# define sqlite3_column_table_name16    0
# define sqlite3_column_origin_name     0
# define sqlite3_column_origin_name16   0

#endif

#ifdef SQLITE_OMIT_AUTHORIZATION
# define sqlite3_set_authorizer         0
#endif

#ifdef SQLITE_OMIT_UTF16
................................................................................
#define PragTyp_ACTIVATE_EXTENSIONS           36
#define PragTyp_HEXKEY                        37
#define PragTyp_KEY                           38
#define PragTyp_REKEY                         39
#define PragTyp_LOCK_STATUS                   40
#define PragTyp_PARSER_TRACE                  41
#define PragFlag_NeedSchema           0x01
#define PragFlag_ReadOnly             0x02
static const struct sPragmaNames {
  const char *const zName;  /* Name of pragma */
  u8 ePragTyp;              /* PragTyp_XXX value */
  u8 mPragFlag;             /* Zero or more PragFlag_XXX values */
  u32 iArg;                 /* Extra argument */
} aPragmaNames[] = {
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
................................................................................
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "application_id",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ BTREE_APPLICATION_ID },
#endif
#if !defined(SQLITE_OMIT_AUTOVACUUM)
  { /* zName:     */ "auto_vacuum",
    /* ePragTyp:  */ PragTyp_AUTO_VACUUM,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
................................................................................
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_OS_WIN
  { /* zName:     */ "data_store_directory",
    /* ePragTyp:  */ PragTyp_DATA_STORE_DIRECTORY,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "data_version",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ PragFlag_ReadOnly,
    /* iArg:      */ BTREE_DATA_VERSION },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
  { /* zName:     */ "database_list",
    /* ePragTyp:  */ PragTyp_DATABASE_LIST,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
................................................................................
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_ForeignKeys },
#endif
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "freelist_count",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ PragFlag_ReadOnly,
    /* iArg:      */ BTREE_FREE_PAGE_COUNT },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "full_column_names",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_FullColNames },
  { /* zName:     */ "fullfsync",
................................................................................
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_ReverseOrder },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "schema_version",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ BTREE_SCHEMA_VERSION },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  { /* zName:     */ "secure_delete",
    /* ePragTyp:  */ PragTyp_SECURE_DELETE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
................................................................................
    /* ePragTyp:  */ PragTyp_THREADS,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
  { /* zName:     */ "user_version",
    /* ePragTyp:  */ PragTyp_HEADER_VALUE,
    /* ePragFlag: */ 0,
    /* iArg:      */ BTREE_USER_VERSION },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if defined(SQLITE_DEBUG)
  { /* zName:     */ "vdbe_addoptrace",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_VdbeAddopTrace },
................................................................................
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "writable_schema",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_WriteSchema|SQLITE_RecoveryMode },
#endif
};
/* Number of pragmas: 58 on by default, 71 total. */
/* End of the automatically generated pragma table.
***************************************************************************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.  The FULL option is disallowed
................................................................................
      */
      if( 
        !(DbHasProperty(db, 0, DB_SchemaLoaded)) || 
        DbHasProperty(db, 0, DB_Empty) 
      ){
        for(pEnc=&encnames[0]; pEnc->zName; pEnc++){
          if( 0==sqlite3StrICmp(zRight, pEnc->zName) ){
            SCHEMA_ENC(db) = ENC(db) =
                pEnc->enc ? pEnc->enc : SQLITE_UTF16NATIVE;
            break;
          }
        }
        if( !pEnc->zName ){
          sqlite3ErrorMsg(pParse, "unsupported encoding: %s", zRight);
        }
      }
................................................................................
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  case PragTyp_HEADER_VALUE: {
    int iCookie = aPragmaNames[mid].iArg;  /* Which cookie to read or write */
    sqlite3VdbeUsesBtree(v, iDb);
    if( zRight && (aPragmaNames[mid].mPragFlag & PragFlag_ReadOnly)==0 ){















      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
................................................................................
    }
  }
  break;
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */

#ifndef SQLITE_OMIT_WAL
  /*
  **   PRAGMA [database.]wal_checkpoint = passive|full|restart|truncate
  **
  ** Checkpoint the database.
  */
  case PragTyp_WAL_CHECKPOINT: {
    int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
    int eMode = SQLITE_CHECKPOINT_PASSIVE;
    if( zRight ){
      if( sqlite3StrICmp(zRight, "full")==0 ){
        eMode = SQLITE_CHECKPOINT_FULL;
      }else if( sqlite3StrICmp(zRight, "restart")==0 ){
        eMode = SQLITE_CHECKPOINT_RESTART;
      }else if( sqlite3StrICmp(zRight, "truncate")==0 ){
        eMode = SQLITE_CHECKPOINT_TRUNCATE;
      }
    }
    sqlite3VdbeSetNumCols(v, 3);
    pParse->nMem = 3;
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "busy", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "log", SQLITE_STATIC);
    sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "checkpointed", SQLITE_STATIC);
................................................................................
** file was of zero-length, then the DB_Empty flag is also set.
*/
SQLITE_PRIVATE int sqlite3Init(sqlite3 *db, char **pzErrMsg){
  int i, rc;
  int commit_internal = !(db->flags&SQLITE_InternChanges);
  
  assert( sqlite3_mutex_held(db->mutex) );
  assert( sqlite3BtreeHoldsMutex(db->aDb[0].pBt) );
  assert( db->init.busy==0 );
  rc = SQLITE_OK;
  db->init.busy = 1;
  ENC(db) = SCHEMA_ENC(db);
  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    if( DbHasProperty(db, i, DB_SchemaLoaded) || i==1 ) continue;
    rc = sqlite3InitOne(db, i, pzErrMsg);
    if( rc ){
      sqlite3ResetOneSchema(db, i);
    }
  }
................................................................................
  int nBytes,               /* Length of zSql in bytes. */
  int saveSqlFlag,          /* True to copy SQL text into the sqlite3_stmt */
  Vdbe *pOld,               /* VM being reprepared */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;


#ifdef SQLITE_ENABLE_API_ARMOR
  if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
#endif
  *ppStmt = 0;
  if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
    return SQLITE_MISUSE_BKPT;
  }
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  rc = sqlite3Prepare(db, zSql, nBytes, saveSqlFlag, pOld, ppStmt, pzTail);
  if( rc==SQLITE_SCHEMA ){
    sqlite3_finalize(*ppStmt);
................................................................................
  ** encoded string to UTF-8, then invoking sqlite3_prepare(). The
  ** tricky bit is figuring out the pointer to return in *pzTail.
  */
  char *zSql8;
  const char *zTail8 = 0;
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( ppStmt==0 ) return SQLITE_MISUSE_BKPT;
#endif
  *ppStmt = 0;
  if( !sqlite3SafetyCheckOk(db)||zSql==0 ){
    return SQLITE_MISUSE_BKPT;
  }
  if( nBytes>=0 ){
    int sz;
    const char *z = (const char*)zSql;
    for(sz=0; sz<nBytes && (z[sz]!=0 || z[sz+1]!=0); sz += 2){}
    nBytes = sz;
................................................................................
  int labelBkOut;       /* Start label for the block-output subroutine */
  int addrSortIndex;    /* Address of the OP_SorterOpen or OP_OpenEphemeral */
  u8 sortFlags;         /* Zero or more SORTFLAG_* bits */
};
#define SORTFLAG_UseSorter  0x01   /* Use SorterOpen instead of OpenEphemeral */

/*
** Delete all the content of a Select structure.  Deallocate the structure
** itself only if bFree is true.
*/
static void clearSelect(sqlite3 *db, Select *p, int bFree){
  while( p ){
    Select *pPrior = p->pPrior;
    sqlite3ExprListDelete(db, p->pEList);
    sqlite3SrcListDelete(db, p->pSrc);
    sqlite3ExprDelete(db, p->pWhere);
    sqlite3ExprListDelete(db, p->pGroupBy);
    sqlite3ExprDelete(db, p->pHaving);
    sqlite3ExprListDelete(db, p->pOrderBy);

    sqlite3ExprDelete(db, p->pLimit);
    sqlite3ExprDelete(db, p->pOffset);
    sqlite3WithDelete(db, p->pWith);
    if( bFree ) sqlite3DbFree(db, p);
    p = pPrior;
    bFree = 1;
  }
}

/*
** Initialize a SelectDest structure.
*/
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
................................................................................
  pNew->op = TK_SELECT;
  pNew->pLimit = pLimit;
  pNew->pOffset = pOffset;
  assert( pOffset==0 || pLimit!=0 );
  pNew->addrOpenEphm[0] = -1;
  pNew->addrOpenEphm[1] = -1;
  if( db->mallocFailed ) {
    clearSelect(db, pNew, pNew!=&standin);

    pNew = 0;
  }else{
    assert( pNew->pSrc!=0 || pParse->nErr>0 );
  }
  assert( pNew!=&standin );
  return pNew;
}
................................................................................
#endif


/*
** Delete the given Select structure and all of its substructures.
*/
SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3 *db, Select *p){

  clearSelect(db, p, 1);


}

/*
** Return a pointer to the right-most SELECT statement in a compound.
*/
static Select *findRightmost(Select *p){
  while( p->pNext ) p = p->pNext;
................................................................................
/* Forward references */
static int multiSelectOrderBy(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
);

/*
** Error message for when two or more terms of a compound select have different
** size result sets.
*/
static void selectWrongNumTermsError(Parse *pParse, Select *p){
  if( p->selFlags & SF_Values ){
    sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
  }else{
    sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
      " do not have the same number of result columns", selectOpName(p->op));
  }
}

/*
** Handle the special case of a compound-select that originates from a
** VALUES clause.  By handling this as a special case, we avoid deep
** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
** on a VALUES clause.
**
** Because the Select object originates from a VALUES clause:
**   (1) It has no LIMIT or OFFSET
**   (2) All terms are UNION ALL
**   (3) There is no ORDER BY clause
*/
static int multiSelectValues(
  Parse *pParse,        /* Parsing context */
  Select *p,            /* The right-most of SELECTs to be coded */
  SelectDest *pDest     /* What to do with query results */
){
  Select *pPrior;
  int nExpr = p->pEList->nExpr;
  int nRow = 1;
  int rc = 0;
  assert( p->pNext==0 );
  assert( p->selFlags & SF_AllValues );
  do{
    assert( p->selFlags & SF_Values );
    assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
    assert( p->pLimit==0 );
    assert( p->pOffset==0 );
    if( p->pEList->nExpr!=nExpr ){
      selectWrongNumTermsError(pParse, p);
      return 1;
    }
    if( p->pPrior==0 ) break;
    assert( p->pPrior->pNext==p );
    p = p->pPrior;
    nRow++;
  }while(1);
  while( p ){
    pPrior = p->pPrior;
    p->pPrior = 0;
    rc = sqlite3Select(pParse, p, pDest);
    p->pPrior = pPrior;
    if( rc ) break;
    p->nSelectRow = nRow;
    p = p->pNext;
  }
  return rc;
}

/*
** This routine is called to process a compound query form from
** two or more separate queries using UNION, UNION ALL, EXCEPT, or
** INTERSECT
**
** "p" points to the right-most of the two queries.  the query on the
................................................................................
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    dest.eDest = SRT_Table;
  }

  /* Special handling for a compound-select that originates as a VALUES clause.
  */
  if( p->selFlags & SF_AllValues ){
    rc = multiSelectValues(pParse, p, &dest);
    goto multi_select_end;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
  assert( p->pEList && pPrior->pEList );
  if( p->pEList->nExpr!=pPrior->pEList->nExpr ){
    selectWrongNumTermsError(pParse, p);





    rc = 1;
    goto multi_select_end;
  }

#ifndef SQLITE_OMIT_CTE
  if( p->selFlags & SF_Recursive ){
    generateWithRecursiveQuery(pParse, p, &dest);
................................................................................
    return WRC_Abort;
  }
  if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){
    return WRC_Prune;
  }
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pWalker->xSelectCallback2==selectPopWith ){
    sqlite3WithPush(pParse, findRightmost(p)->pWith, 0);
  }

  /* Make sure cursor numbers have been assigned to all entries in
  ** the FROM clause of the SELECT statement.
  */
  sqlite3SrcListAssignCursors(pParse, pTabList);

  /* Look up every table named in the FROM clause of the select.  If
................................................................................
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  if( (pSelect->selFlags & SF_AllValues)==0 ){
    w.xSelectCallback2 = selectPopWith;
  }
  sqlite3WalkSelect(&w, pSelect);
}


#ifndef SQLITE_OMIT_SUBQUERY
/*
** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
................................................................................
  ** if the select-list is the same as the ORDER BY list, then this query
  ** can be rewritten as a GROUP BY. In other words, this:
  **
  **     SELECT DISTINCT xyz FROM ... ORDER BY xyz
  **
  ** is transformed to:
  **
  **     SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
  **
  ** The second form is preferred as a single index (or temp-table) may be 
  ** used for both the ORDER BY and DISTINCT processing. As originally 
  ** written the query must use a temp-table for at least one of the ORDER 
  ** BY and DISTINCT, and an index or separate temp-table for the other.
  */
  if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct 
   && sqlite3ExprListCompare(sSort.pOrderBy, p->pEList, -1)==0
  ){
    p->selFlags &= ~SF_Distinct;
    p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0);
    pGroupBy = p->pGroupBy;

    /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
    ** the sDistinct.isTnct is still set.  Hence, isTnct represents the
    ** original setting of the SF_Distinct flag, not the current setting */
    assert( sDistinct.isTnct );
  }

  /* If there is an ORDER BY clause, then this sorting
................................................................................
  int *pnRow,                 /* Write the number of rows in the result here */
  int *pnColumn,              /* Write the number of columns of result here */
  char **pzErrMsg             /* Write error messages here */
){
  int rc;
  TabResult res;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || pazResult==0 ) return SQLITE_MISUSE_BKPT;
#endif
  *pazResult = 0;
  if( pnColumn ) *pnColumn = 0;
  if( pnRow ) *pnRow = 0;
  if( pzErrMsg ) *pzErrMsg = 0;
  res.zErrMsg = 0;
  res.nRow = 0;
  res.nColumn = 0;
................................................................................
** original database is required.  Every page of the database is written
** approximately 3 times:  Once for step (2) and twice for step (3).
** Two writes per page are required in step (3) because the original
** database content must be written into the rollback journal prior to
** overwriting the database with the vacuumed content.
**
** Only 1x temporary space and only 1x writes would be required if
** the copy of step (3) were replaced by deleting the original database
** and renaming the transient database as the original.  But that will
** not work if other processes are attached to the original database.
** And a power loss in between deleting the original and renaming the
** transient would cause the database file to appear to be deleted
** following reboot.
*/
SQLITE_PRIVATE void sqlite3Vacuum(Parse *pParse){
................................................................................
*/
SQLITE_API int sqlite3_create_module(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux                      /* Context pointer for xCreate/xConnect */
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  return createModule(db, zName, pModule, pAux, 0);
}

/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int sqlite3_create_module_v2(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux,                     /* Context pointer for xCreate/xConnect */
  void (*xDestroy)(void *)        /* Module destructor function */
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  return createModule(db, zName, pModule, pAux, xDestroy);
}

/*
** Lock the virtual table so that it cannot be disconnected.
** Locks nest.  Every lock should have a corresponding unlock.
** If an unlock is omitted, resources leaks will occur.  
................................................................................
  assert( iDb>=0 );

  pTable->tabFlags |= TF_Virtual;
  pTable->nModuleArg = 0;
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, 0);
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
  assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
       || (pParse->sNameToken.z==pName1->z && pName2->z==0)
  );
  pParse->sNameToken.n = (int)(
      &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
  );

#ifndef SQLITE_OMIT_AUTHORIZATION
  /* Creating a virtual table invokes the authorization callback twice.
  ** The first invocation, to obtain permission to INSERT a row into the
  ** sqlite_master table, has already been made by sqlite3StartTable().
  ** The second call, to obtain permission to create the table, is made now.
  */
................................................................................
SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
  Parse *pParse;

  int rc = SQLITE_OK;
  Table *pTab;
  char *zErr = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
    sqlite3Error(db, SQLITE_MISUSE);
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_MISUSE_BKPT;
  }
  assert( (pTab->tabFlags & TF_Virtual)!=0 );
................................................................................
** The results of this routine are undefined unless it is called from
** within an xUpdate method.
*/
SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){
  static const unsigned char aMap[] = { 
    SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 
  };
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
  assert( OE_Ignore==4 && OE_Replace==5 );
  assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
  return (int)aMap[db->vtabOnConflict-1];
}

/*
................................................................................
** the SQLite core with additional information about the behavior
** of the virtual table being implemented.
*/
SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);

  va_start(ap, op);
  switch( op ){
    case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
      VtabCtx *p = db->pVtabCtx;
      if( !p ){
        rc = SQLITE_MISUSE_BKPT;
      }else{
................................................................................
        u8 eEndLoopOp;         /* IN Loop terminator. OP_Next or OP_Prev */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when pWLoop->wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;
  struct WhereLoop *pWLoop;  /* The selected WhereLoop object */
  Bitmask notReady;          /* FROM entries not usable at this level */
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  int addrVisit;        /* Address at which row is visited */
#endif
};

/*
** Each instance of this object represents an algorithm for evaluating one
** term of a join.  Every term of the FROM clause will have at least
** one corresponding WhereLoop object (unless INDEXED BY constraints
** prevent a query solution - which is an error) and many terms of the
................................................................................
  u8 iSortIdx;          /* Sorting index number.  0==None */
  LogEst rSetup;        /* One-time setup cost (ex: create transient index) */
  LogEst rRun;          /* Cost of running each loop */
  LogEst nOut;          /* Estimated number of output rows */
  union {
    struct {               /* Information for internal btree tables */
      u16 nEq;               /* Number of equality constraints */

      Index *pIndex;         /* Index used, or NULL */
    } btree;
    struct {               /* Information for virtual tables */
      int idxNum;            /* Index number */
      u8 needFree;           /* True if sqlite3_free(idxStr) is needed */
      i8 isOrdered;          /* True if satisfies ORDER BY */
      u16 omitMask;          /* Terms that may be omitted */
      char *idxStr;          /* Index identifier string */
    } vtab;
  } u;
  u32 wsFlags;          /* WHERE_* flags describing the plan */
  u16 nLTerm;           /* Number of entries in aLTerm[] */
  u16 nSkip;            /* Number of NULL aLTerm[] entries */
  /**** whereLoopXfer() copies fields above ***********************/
# define WHERE_LOOP_XFER_SZ offsetof(WhereLoop,nLSlot)
  u16 nLSlot;           /* Number of slots allocated for aLTerm[] */
  WhereTerm **aLTerm;   /* WhereTerms used */
  WhereLoop *pNextLoop; /* Next WhereLoop object in the WhereClause */
  WhereTerm *aLTermSpace[3];  /* Initial aLTerm[] space */
};

/* This object holds the prerequisites and the cost of running a
** subquery on one operand of an OR operator in the WHERE clause.
** See WhereOrSet for additional information 
*/
struct WhereOrCost {
................................................................................
#define WHERE_VIRTUALTABLE 0x00000400  /* WhereLoop.u.vtab is valid */
#define WHERE_IN_ABLE      0x00000800  /* Able to support an IN operator */
#define WHERE_ONEROW       0x00001000  /* Selects no more than one row */
#define WHERE_MULTI_OR     0x00002000  /* OR using multiple indices */
#define WHERE_AUTO_INDEX   0x00004000  /* Uses an ephemeral index */
#define WHERE_SKIPSCAN     0x00008000  /* Uses the skip-scan algorithm */
#define WHERE_UNQ_WANTED   0x00010000  /* WHERE_ONEROW would have been helpful*/
#define WHERE_PARTIALIDX   0x00020000  /* The automatic index is partial */

/************** End of whereInt.h ********************************************/
/************** Continuing where we left off in where.c **********************/

/*
** Return the estimated number of output rows from a WHERE clause
*/
................................................................................
      return 0;
    }
    memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
    if( pOld!=pWC->aStatic ){
      sqlite3DbFree(db, pOld);
    }
    pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
    memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm));
  }
  pTerm = &pWC->a[idx = pWC->nTerm++];
  if( p && ExprHasProperty(p, EP_Unlikely) ){
    pTerm->truthProb = sqlite3LogEst(p->iTable) - 270;
  }else{
    pTerm->truthProb = 1;
  }
  pTerm->pExpr = sqlite3ExprSkipCollate(p);
  pTerm->wtFlags = wtFlags;
  pTerm->pWC = pWC;
  pTerm->iParent = -1;
................................................................................
*/
static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
  if( pDerived ){
    pDerived->flags |= pBase->flags & EP_FromJoin;
    pDerived->iRightJoinTable = pBase->iRightJoinTable;
  }
}

/*
** Mark term iChild as being a child of term iParent
*/
static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
  pWC->a[iChild].iParent = iParent;
  pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
  pWC->a[iParent].nChild++;
}

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**
**     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
................................................................................
        transferJoinMarkings(pNew, pExpr);
        assert( !ExprHasProperty(pNew, EP_xIsSelect) );
        pNew->x.pList = pList;
        idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        markTermAsChild(pWC, idxNew, idxTerm);

      }else{
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
................................................................................
        if( db->mallocFailed ){
          sqlite3ExprDelete(db, pDup);
          return;
        }
        idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
        if( idxNew==0 ) return;
        pNew = &pWC->a[idxNew];
        markTermAsChild(pWC, idxNew, idxTerm);
        pTerm = &pWC->a[idxTerm];

        pTerm->wtFlags |= TERM_COPIED;
        if( pExpr->op==TK_EQ
         && !ExprHasProperty(pExpr, EP_FromJoin)
         && OptimizationEnabled(db, SQLITE_Transitive)
        ){
          pTerm->eOperator |= WO_EQUIV;
          eExtraOp = WO_EQUIV;
................................................................................
                             sqlite3ExprDup(db, pExpr->pLeft, 0),
                             sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
      transferJoinMarkings(pNewExpr, pExpr);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      exprAnalyze(pSrc, pWC, idxNew);
      pTerm = &pWC->a[idxTerm];
      markTermAsChild(pWC, idxNew, idxTerm);
    }

  }
#endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
  /* Analyze a term that is composed of two or more subterms connected by
  ** an OR operator.
  */
................................................................................
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      markTermAsChild(pWC, idxNew1, idxTerm);
      markTermAsChild(pWC, idxNew2, idxTerm);

    }
  }
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */

#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Add a WO_MATCH auxiliary term to the constraint set if the
  ** current expression is of the form:  column MATCH expr.
................................................................................
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = prereqExpr;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_MATCH;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];

      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
................................................................................
  ** TERM_VNULL tag will suppress the not-null check at the beginning
  ** of the loop.  Without the TERM_VNULL flag, the not-null check at
  ** the start of the loop will prevent any results from being returned.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0
   && OptimizationEnabled(db, SQLITE_Stat34)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

    pNewExpr = sqlite3PExpr(pParse, TK_GT,
................................................................................
                              TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
    if( idxNew ){
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = 0;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_GT;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];

      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

  /* Prevent ON clause terms of a LEFT JOIN from being used to drive
................................................................................
  int mxBitCol;               /* Maximum column in pSrc->colUsed */
  CollSeq *pColl;             /* Collating sequence to on a column */
  WhereLoop *pLoop;           /* The Loop object */
  char *zNotUsed;             /* Extra space on the end of pIdx */
  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */
  u8 sentWarning = 0;         /* True if a warnning has been issued */
  Expr *pPartial = 0;         /* Partial Index Expression */
  int iContinue = 0;          /* Jump here to skip excluded rows */

  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
  addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);

................................................................................
  ** and used to match WHERE clause constraints */
  nKeyCol = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];
  pLoop = pLevel->pWLoop;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( pLoop->prereq==0
     && (pTerm->wtFlags & TERM_VIRTUAL)==0
     && sqlite3ExprIsTableConstant(pTerm->pExpr, pSrc->iCursor) ){
      pPartial = sqlite3ExprAnd(pParse->db, pPartial,
                                sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
    }
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( !sentWarning ){
        sqlite3_log(SQLITE_WARNING_AUTOINDEX,
            "automatic index on %s(%s)", pTable->zName,
            pTable->aCol[iCol].zName);
        sentWarning = 1;
      }
      if( (idxCols & cMask)==0 ){
        if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
          goto end_auto_index_create;
        }
        pLoop->aLTerm[nKeyCol++] = pTerm;
        idxCols |= cMask;
      }
    }
  }
  assert( nKeyCol>0 );
  pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
................................................................................
  ** columns that are needed by the query.  With a covering index, the
  ** original table never needs to be accessed.  Automatic indices must
  ** be a covering index because the index will not be updated if the
  ** original table changes and the index and table cannot both be used
  ** if they go out of sync.
  */
  extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
  mxBitCol = MIN(BMS-1,pTable->nCol);
  testcase( pTable->nCol==BMS-1 );
  testcase( pTable->nCol==BMS-2 );
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ) nKeyCol++;
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    nKeyCol += pTable->nCol - BMS + 1;
  }


  /* Construct the Index object to describe this index */
  pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
  if( pIdx==0 ) goto end_auto_index_create;
  pLoop->u.btree.pIndex = pIdx;
  pIdx->zName = "auto-index";
  pIdx->pTable = pTable;
  n = 0;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
................................................................................
  assert( pLevel->iIdxCur>=0 );
  pLevel->iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
  sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  sqlite3ExprCachePush(pParse);
  addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
  if( pPartial ){
    iContinue = sqlite3VdbeMakeLabel(v);
    sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
    pLoop->wsFlags |= WHERE_PARTIALIDX;
  }
  regRecord = sqlite3GetTempReg(pParse);
  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
  sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
  sqlite3ReleaseTempReg(pParse, regRecord);
  sqlite3ExprCachePop(pParse);
  
  /* Jump here when skipping the initialization */
  sqlite3VdbeJumpHere(v, addrInit);

end_auto_index_create:
  sqlite3ExprDelete(pParse->db, pPartial);
}
#endif /* SQLITE_OMIT_AUTOMATIC_INDEX */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Allocate and populate an sqlite3_index_info structure. It is the 
** responsibility of the caller to eventually release the structure
................................................................................
    }
  }

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */


#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return the index of the sample that is the smallest sample that
** is greater than or equal to pRec.
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  IndexSample *aSample = pIdx->aSample;
................................................................................
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
  }
  return i;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated 
** that the scan will visit nNew rows. This function returns the number
................................................................................
**                    |_____|   |_____|
**                       |         |
**                     pLower    pUpper
**
** If either of the upper or lower bound is not present, then NULL is passed in
** place of the corresponding WhereTerm.
**
** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
** column subject to the range constraint. Or, equivalently, the number of
** equality constraints optimized by the proposed index scan. For example,
** assuming index p is on t1(a, b), and the SQL query is:
**
**   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
**
** then nEq is set to 1 (as the range restricted column, b, is the second 
................................................................................
**
**   ... FROM t1 WHERE a > ? AND a < ? ...
**
** then nEq is set to 0.
**
** When this function is called, *pnOut is set to the sqlite3LogEst() of the
** number of rows that the index scan is expected to visit without 
** considering the range constraints. If nEq is 0, then *pnOut is the number of 
** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
** to account for the range constraints pLower and pUpper.
** 
** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
** used, a single range inequality reduces the search space by a factor of 4. 
** and a pair of constraints (x>? AND x<?) reduces the expected number of
** rows visited by a factor of 64.
................................................................................
  int nOut = pLoop->nOut;
  LogEst nNew;

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  Index *p = pLoop->u.btree.pIndex;
  int nEq = pLoop->u.btree.nEq;


  if( p->nSample>0 && nEq<p->nSampleCol ){


    if( nEq==pBuilder->nRecValid ){
      UnpackedRecord *pRec = pBuilder->pRec;
      tRowcnt a[2];
      u8 aff;

      /* Variable iLower will be set to the estimate of the number of rows in 
      ** the index that are less than the lower bound of the range query. The
................................................................................
      ** key-prefix formed by the nEq values matched against the nEq left-most
      ** columns of the index, and $L is the value in pLower.
      **
      ** Or, if pLower is NULL or $L cannot be extracted from it (because it
      ** is not a simple variable or literal value), the lower bound of the
      ** range is $P. Due to a quirk in the way whereKeyStats() works, even
      ** if $L is available, whereKeyStats() is called for both ($P) and 
      ** ($P:$L) and the larger of the two returned values is used.
      **
      ** Similarly, iUpper is to be set to the estimate of the number of rows
      ** less than the upper bound of the range query. Where the upper bound
      ** is either ($P) or ($P:$U). Again, even if $U is available, both values
      ** of iUpper are requested of whereKeyStats() and the smaller used.
      **
      ** The number of rows between the two bounds is then just iUpper-iLower.
      */
      tRowcnt iLower;     /* Rows less than the lower bound */
      tRowcnt iUpper;     /* Rows less than the upper bound */
      int iLwrIdx = -2;   /* aSample[] for the lower bound */
      int iUprIdx = -1;   /* aSample[] for the upper bound */

      if( pRec ){
        testcase( pRec->nField!=pBuilder->nRecValid );
        pRec->nField = pBuilder->nRecValid;
      }
      if( nEq==p->nKeyCol ){
        aff = SQLITE_AFF_INTEGER;
      }else{
        aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
      }
      /* Determine iLower and iUpper using ($P) only. */
      if( nEq==0 ){
        iLower = 0;
        iUpper = p->nRowEst0;
      }else{
        /* Note: this call could be optimized away - since the same values must 
        ** have been requested when testing key $P in whereEqualScanEst().  */
        whereKeyStats(pParse, p, pRec, 0, a);
        iLower = a[0];
        iUpper = a[0] + a[1];
      }
................................................................................
      /* If possible, improve on the iLower estimate using ($P:$L). */
      if( pLower ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pLower->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
          iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew>iLower ) iLower = iNew;
          nOut--;
          pLower = 0;
        }
      }

................................................................................
      /* If possible, improve on the iUpper estimate using ($P:$U). */
      if( pUpper ){
        int bOk;                    /* True if value is extracted from pExpr */
        Expr *pExpr = pUpper->pExpr->pRight;
        rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
        if( rc==SQLITE_OK && bOk ){
          tRowcnt iNew;
          iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
          iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
          if( iNew<iUpper ) iUpper = iNew;
          nOut--;
          pUpper = 0;
        }
      }

      pBuilder->pRec = pRec;
      if( rc==SQLITE_OK ){
        if( iUpper>iLower ){
          nNew = sqlite3LogEst(iUpper - iLower);
          /* TUNING:  If both iUpper and iLower are derived from the same
          ** sample, then assume they are 4x more selective.  This brings
          ** the estimated selectivity more in line with what it would be
          ** if estimated without the use of STAT3/4 tables. */
          if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
        }else{
          nNew = 10;        assert( 10==sqlite3LogEst(2) );
        }
        if( nNew<nOut ){
          nOut = nNew;
        }
        WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
................................................................................
  UNUSED_PARAMETER(pBuilder);
  assert( pLower || pUpper );
#endif
  assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
  nNew = whereRangeAdjust(pLower, nOut);
  nNew = whereRangeAdjust(pUpper, nNew);

  /* TUNING: If there is both an upper and lower limit and neither limit
  ** has an application-defined likelihood(), assume the range is
  ** reduced by an additional 75%. This means that, by default, an open-ended
  ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
  ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
  ** match 1/64 of the index. */ 
  if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
    nNew -= 20;
  }

  nOut -= (pLower!=0) + (pUpper!=0);
  if( nNew<10 ) nNew = 10;
  if( nNew<nOut ) nOut = nNew;
#if defined(WHERETRACE_ENABLED)
  if( pLoop->nOut>nOut ){
    WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
................................................................................
  int nReg;                     /* Number of registers to allocate */
  char *zAff;                   /* Affinity string to return */

  /* This module is only called on query plans that use an index. */
  pLoop = pLevel->pWLoop;
  assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
  nEq = pLoop->u.btree.nEq;
  nSkip = pLoop->nSkip;
  pIdx = pLoop->u.btree.pIndex;
  assert( pIdx!=0 );

  /* Figure out how many memory cells we will need then allocate them.
  */
  regBase = pParse->nMem + 1;
  nReg = pLoop->u.btree.nEq + nExtraReg;
................................................................................
** string similar to:
**
**   "a=? AND b>?"
*/
static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){
  Index *pIndex = pLoop->u.btree.pIndex;
  u16 nEq = pLoop->u.btree.nEq;
  u16 nSkip = pLoop->nSkip;
  int i, j;
  Column *aCol = pTab->aCol;
  i16 *aiColumn = pIndex->aiColumn;

  if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
  sqlite3StrAccumAppend(pStr, " (", 2);
  for(i=0; i<nEq; i++){
................................................................................
    explainAppendTerm(pStr, i, z, "<");
  }
  sqlite3StrAccumAppend(pStr, ")", 1);
}

/*
** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 
** is added to the output to describe the table scan strategy in pLevel.

**
** If an OP_Explain opcode is added to the VM, its address is returned.
** Otherwise, if no OP_Explain is coded, zero is returned.
*/
static int explainOneScan(
  Parse *pParse,                  /* Parse context */
  SrcList *pTabList,              /* Table list this loop refers to */
  WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
  int iLevel,                     /* Value for "level" column of output */
  int iFrom,                      /* Value for "from" column of output */
  u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
){
  int ret = 0;
#if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
  if( pParse->explain==2 )
#endif
  {
    struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
    Vdbe *v = pParse->pVdbe;      /* VM being constructed */
    sqlite3 *db = pParse->db;     /* Database handle */
    int iId = pParse->iSelectId;  /* Select id (left-most output column) */
................................................................................
    u32 flags;                    /* Flags that describe this loop */
    char *zMsg;                   /* Text to add to EQP output */
    StrAccum str;                 /* EQP output string */
    char zBuf[100];               /* Initial space for EQP output string */

    pLoop = pLevel->pWLoop;
    flags = pLoop->wsFlags;
    if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;

    isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
            || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
            || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));

    sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
    str.db = db;
................................................................................
      assert( pLoop->u.btree.pIndex!=0 );
      pIdx = pLoop->u.btree.pIndex;
      assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
      if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
        if( isSearch ){
          zFmt = "PRIMARY KEY";
        }
      }else if( flags & WHERE_PARTIALIDX ){
        zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
      }else if( flags & WHERE_AUTO_INDEX ){
        zFmt = "AUTOMATIC COVERING INDEX";
      }else if( flags & WHERE_IDX_ONLY ){
        zFmt = "COVERING INDEX %s";
      }else{
        zFmt = "INDEX %s";
      }
................................................................................
    if( pLoop->nOut>=10 ){
      sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
    }else{
      sqlite3StrAccumAppend(&str, " (~1 row)", 9);
    }
#endif
    zMsg = sqlite3StrAccumFinish(&str);
    ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
  }
  return ret;
}
#else
# define explainOneScan(u,v,w,x,y,z) 0
#endif /* SQLITE_OMIT_EXPLAIN */

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Configure the VM passed as the first argument with an
** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 
** implement level pLvl. Argument pSrclist is a pointer to the FROM 
** clause that the scan reads data from.
**
** If argument addrExplain is not 0, it must be the address of an 
** OP_Explain instruction that describes the same loop.
*/
static void addScanStatus(
  Vdbe *v,                        /* Vdbe to add scanstatus entry to */
  SrcList *pSrclist,              /* FROM clause pLvl reads data from */
  WhereLevel *pLvl,               /* Level to add scanstatus() entry for */
  int addrExplain                 /* Address of OP_Explain (or 0) */
){
  const char *zObj = 0;
  WhereLoop *pLoop = pLvl->pWLoop;
  if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0  &&  pLoop->u.btree.pIndex!=0 ){
    zObj = pLoop->u.btree.pIndex->zName;
  }else{
    zObj = pSrclist->a[pLvl->iFrom].zName;
  }
  sqlite3VdbeScanStatus(
      v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
  );
}
#else
# define addScanStatus(a, b, c, d) ((void)d)
#endif



/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
................................................................................
    char *zStartAff;             /* Affinity for start of range constraint */
    char cEndAff = 0;            /* Affinity for end of range constraint */
    u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
    u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */

    pIdx = pLoop->u.btree.pIndex;
    iIdxCur = pLevel->iIdxCur;
    assert( nEq>=pLoop->nSkip );

    /* If this loop satisfies a sort order (pOrderBy) request that 
    ** was passed to this function to implement a "SELECT min(x) ..." 
    ** query, then the caller will only allow the loop to run for
    ** a single iteration. This means that the first row returned
    ** should not have a NULL value stored in 'x'. If column 'x' is
    ** the first one after the nEq equality constraints in the index,
................................................................................
    assert( pWInfo->pOrderBy==0
         || pWInfo->pOrderBy->nExpr==1
         || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
    if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
     && pWInfo->nOBSat>0
     && (pIdx->nKeyCol>nEq)
    ){
      assert( pLoop->nSkip==0 );
      bSeekPastNull = 1;
      nExtraReg = 1;
    }

    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
................................................................................
    */
    if( pWC->nTerm>1 ){
      int iTerm;
      for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
        Expr *pExpr = pWC->a[iTerm].pExpr;
        if( &pWC->a[iTerm] == pTerm ) continue;
        if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;

        if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;

        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }
................................................................................
        /* Loop through table entries that match term pOrTerm. */
        WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                                      wctrlFlags, iCovCur);
        assert( pSubWInfo || pParse->nErr || db->mallocFailed );
        if( pSubWInfo ){
          WhereLoop *pSubLoop;
          int addrExplain = explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          addScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);

          /* This is the sub-WHERE clause body.  First skip over
          ** duplicate rows from prior sub-WHERE clauses, and record the
          ** rowid (or PRIMARY KEY) for the current row so that the same
          ** row will be skipped in subsequent sub-WHERE clauses.
          */
          if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int r;
................................................................................
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }
  }

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
#endif

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
................................................................................
    }else{
      z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
    }
    sqlite3DebugPrintf(" %-19s", z);
    sqlite3_free(z);
  }
  if( p->wsFlags & WHERE_SKIPSCAN ){
    sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
  }else{
    sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
  }
  sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
  if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
    int i;
    for(i=0; i<p->nLTerm; i++){
................................................................................
  if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
    if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
      sqlite3_free(p->u.vtab.idxStr);
      p->u.vtab.needFree = 0;
      p->u.vtab.idxStr = 0;
    }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
      sqlite3DbFree(db, p->u.btree.pIndex->zColAff);

      sqlite3DbFree(db, p->u.btree.pIndex);
      p->u.btree.pIndex = 0;
    }
  }
}

/*
................................................................................
      whereLoopDelete(db, p);
    }
    sqlite3DbFree(db, pWInfo);
  }
}

/*
** Return TRUE if all of the following are true:
**
**   (1)  X has the same or lower cost that Y
**   (2)  X is a proper subset of Y
**   (3)  X skips at least as many columns as Y
**
** By "proper subset" we mean that X uses fewer WHERE clause terms
** than Y and that every WHERE clause term used by X is also used
** by Y.
**
** If X is a proper subset of Y then Y is a better choice and ought
** to have a lower cost.  This routine returns TRUE when that cost 
** relationship is inverted and needs to be adjusted.  The third rule
** was added because if X uses skip-scan less than Y it still might
** deserve a lower cost even if it is a proper subset of Y.
*/
static int whereLoopCheaperProperSubset(
  const WhereLoop *pX,       /* First WhereLoop to compare */
  const WhereLoop *pY        /* Compare against this WhereLoop */
){
  int i, j;
  if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
    return 0; /* X is not a subset of Y */
  }
  if( pY->nSkip > pX->nSkip ) return 0;
  if( pX->rRun >= pY->rRun ){
    if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
    if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
  }
  for(i=pX->nLTerm-1; i>=0; i--){
    if( pX->aLTerm[i]==0 ) continue;
    for(j=pY->nLTerm-1; j>=0; j--){
      if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
    }
    if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
  }
  return 1;  /* All conditions meet */
}
................................................................................
**
**   (2) pTemplate costs more than any other WhereLoops for which pTemplate
**       is a proper subset.
**
** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
** WHERE clause terms than Y and that every WHERE clause term used by X is
** also used by Y.











*/
static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
  if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;

  for(; p; p=p->pNextLoop){
    if( p->iTab!=pTemplate->iTab ) continue;
    if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;

    if( whereLoopCheaperProperSubset(p, pTemplate) ){
      /* Adjust pTemplate cost downward so that it is cheaper than its 
      ** subset p. */
      WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
                       pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
      pTemplate->rRun = p->rRun;
      pTemplate->nOut = p->nOut - 1;
    }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
      /* Adjust pTemplate cost upward so that it is costlier than p since
      ** pTemplate is a proper subset of p */
      WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
                       pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
      pTemplate->rRun = p->rRun;
      pTemplate->nOut = p->nOut + 1;
    }
  }
}

/*
................................................................................
    /* whereLoopAddBtree() always generates and inserts the automatic index
    ** case first.  Hence compatible candidate WhereLoops never have a larger
    ** rSetup. Call this SETUP-INVARIANT */
    assert( p->rSetup>=pTemplate->rSetup );

    /* Any loop using an appliation-defined index (or PRIMARY KEY or
    ** UNIQUE constraint) with one or more == constraints is better
    ** than an automatic index. Unless it is a skip-scan. */
    if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
     && (pTemplate->nSkip)==0
     && (pTemplate->wsFlags & WHERE_INDEXED)!=0
     && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
     && (p->prereq & pTemplate->prereq)==pTemplate->prereq
    ){
      break;
    }

................................................................................
  return SQLITE_OK;
}

/*
** Adjust the WhereLoop.nOut value downward to account for terms of the
** WHERE clause that reference the loop but which are not used by an
** index.
*
** For every WHERE clause term that is not used by the index
** and which has a truth probability assigned by one of the likelihood(),
** likely(), or unlikely() SQL functions, reduce the estimated number
** of output rows by the probability specified.
**



** TUNING:  For every WHERE clause term that is not used by the index
** and which does not have an assigned truth probability, heuristics
** described below are used to try to estimate the truth probability.
** TODO --> Perhaps this is something that could be improved by better
** table statistics.
**
** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
** value corresponds to -1 in LogEst notation, so this means decrement
** the WhereLoop.nOut field for every such WHERE clause term.
**
** Heuristic 2:  If there exists one or more WHERE clause terms of the
** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
** final output row estimate is no greater than 1/4 of the total number
** of rows in the table.  In other words, assume that x==EXPR will filter
** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
** "x" column is boolean or else -1 or 0 or 1 is a common default value
** on the "x" column and so in that case only cap the output row estimate
** at 1/2 instead of 1/4.
*/
static void whereLoopOutputAdjust(
  WhereClause *pWC,      /* The WHERE clause */
  WhereLoop *pLoop,      /* The loop to adjust downward */
  LogEst nRow            /* Number of rows in the entire table */
){
  WhereTerm *pTerm, *pX;
  Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
  int i, j, k;
  LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */

  assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
  for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
    if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
    if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
    if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
    for(j=pLoop->nLTerm-1; j>=0; j--){
      pX = pLoop->aLTerm[j];
      if( pX==0 ) continue;
      if( pX==pTerm ) break;
      if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
    }
    if( j<0 ){
      if( pTerm->truthProb<=0 ){
        /* If a truth probability is specified using the likelihood() hints,
        ** then use the probability provided by the application. */
        pLoop->nOut += pTerm->truthProb;
      }else{
        /* In the absence of explicit truth probabilities, use heuristics to
        ** guess a reasonable truth probability. */
        pLoop->nOut--;
        if( pTerm->eOperator&WO_EQ ){
          Expr *pRight = pTerm->pExpr->pRight;
          if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
            k = 10;
          }else{
            k = 20;
          }
          if( iReduce<k ) iReduce = k;
        }
      }
    }
  }
  if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;






}

/*
** Adjust the cost C by the costMult facter T.  This only occurs if
** compiled with -DSQLITE_ENABLE_COSTMULT
*/
#ifdef SQLITE_ENABLE_COSTMULT
................................................................................
  WhereLoop *pNew;                /* Template WhereLoop under construction */
  WhereTerm *pTerm;               /* A WhereTerm under consideration */
  int opMask;                     /* Valid operators for constraints */
  WhereScan scan;                 /* Iterator for WHERE terms */
  Bitmask saved_prereq;           /* Original value of pNew->prereq */
  u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
  u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
  u16 saved_nSkip;                /* Original value of pNew->nSkip */
  u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
  LogEst saved_nOut;              /* Original value of pNew->nOut */
  int iCol;                       /* Index of the column in the table */
  int rc = SQLITE_OK;             /* Return code */
  LogEst rSize;                   /* Number of rows in the table */
  LogEst rLogSize;                /* Logarithm of table size */
  WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
................................................................................

  assert( pNew->u.btree.nEq<pProbe->nColumn );
  iCol = pProbe->aiColumn[pNew->u.btree.nEq];

  pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
                        opMask, pProbe);
  saved_nEq = pNew->u.btree.nEq;
  saved_nSkip = pNew->nSkip;
  saved_nLTerm = pNew->nLTerm;
  saved_wsFlags = pNew->wsFlags;
  saved_prereq = pNew->prereq;
  saved_nOut = pNew->nOut;
  pNew->rSetup = 0;
  rSize = pProbe->aiRowLogEst[0];
  rLogSize = estLog(rSize);






































  for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
    u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
    LogEst rCostIdx;
    LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
    int nIn = 0;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    int nRecValid = pBuilder->nRecValid;
................................................................................
        pNew->nOut -= nIn;
      }else{
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
        tRowcnt nOut = 0;
        if( nInMul==0 
         && pProbe->nSample 
         && pNew->u.btree.nEq<=pProbe->nSampleCol

         && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
        ){
          Expr *pExpr = pTerm->pExpr;
          if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
            testcase( eOp & WO_EQ );
            testcase( eOp & WO_ISNULL );
            rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
................................................................................
    pNew->nOut = saved_nOut;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
    pBuilder->nRecValid = nRecValid;
#endif
  }
  pNew->prereq = saved_prereq;
  pNew->u.btree.nEq = saved_nEq;
  pNew->nSkip = saved_nSkip;
  pNew->wsFlags = saved_wsFlags;
  pNew->nOut = saved_nOut;
  pNew->nLTerm = saved_nLTerm;

  /* Consider using a skip-scan if there are no WHERE clause constraints
  ** available for the left-most terms of the index, and if the average
  ** number of repeats in the left-most terms is at least 18. 
  **
  ** The magic number 18 is selected on the basis that scanning 17 rows
  ** is almost always quicker than an index seek (even though if the index
  ** contains fewer than 2^17 rows we assume otherwise in other parts of
  ** the code). And, even if it is not, it should not be too much slower. 
  ** On the other hand, the extra seeks could end up being significantly
  ** more expensive.  */
  assert( 42==sqlite3LogEst(18) );
  if( saved_nEq==saved_nSkip
   && saved_nEq+1<pProbe->nKeyCol
   && pProbe->noSkipScan==0
   && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
   && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
  ){
    LogEst nIter;
    pNew->u.btree.nEq++;
    pNew->nSkip++;
    pNew->aLTerm[pNew->nLTerm++] = 0;
    pNew->wsFlags |= WHERE_SKIPSCAN;
    nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
    pNew->nOut -= nIter;
    /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
    ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
    nIter += 5;
    whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
    pNew->nOut = saved_nOut;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nSkip = saved_nSkip;
    pNew->wsFlags = saved_wsFlags;
  }

  return rc;
}

/*
** Return True if it is possible that pIndex might be useful in
** implementing the ORDER BY clause in pBuilder.
**
................................................................................
    /* Generate auto-index WhereLoops */
    WhereTerm *pTerm;
    WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
    for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
      if( pTerm->prereqRight & pNew->maskSelf ) continue;
      if( termCanDriveIndex(pTerm, pSrc, 0) ){
        pNew->u.btree.nEq = 1;
        pNew->nSkip = 0;
        pNew->u.btree.pIndex = 0;
        pNew->nLTerm = 1;
        pNew->aLTerm[0] = pTerm;
        /* TUNING: One-time cost for computing the automatic index is
        ** estimated to be X*N*log2(N) where N is the number of rows in
        ** the table being indexed and where X is 7 (LogEst=28) for normal
        ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
................................................................................
    if( pProbe->pPartIdxWhere!=0
     && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
      testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
      continue;  /* Partial index inappropriate for this query */
    }
    rSize = pProbe->aiRowLogEst[0];
    pNew->u.btree.nEq = 0;
    pNew->nSkip = 0;
    pNew->nLTerm = 0;
    pNew->iSortIdx = 0;
    pNew->rSetup = 0;
    pNew->prereq = mExtra;
    pNew->nOut = rSize;
    pNew->u.btree.pIndex = pProbe;
    b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
................................................................................
      rev = revSet = 0;
      distinctColumns = 0;
      for(j=0; j<nColumn; j++){
        u8 bOnce;   /* True to run the ORDER BY search loop */

        /* Skip over == and IS NULL terms */
        if( j<pLoop->u.btree.nEq
         && pLoop->nSkip==0
         && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
        ){
          if( i & WO_ISNULL ){
            testcase( isOrderDistinct );
            isOrderDistinct = 0;
          }
          continue;  
................................................................................
            }
          }
        }
      }
    }

#ifdef WHERETRACE_ENABLED  /* >=2 */
    if( sqlite3WhereTrace & 0x02 ){
      sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
      for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
        sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
           wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
           pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
        if( pTo->isOrdered>0 ){
          sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
................................................................................
  pTab = pItem->pTab;
  if( IsVirtual(pTab) ) return 0;
  if( pItem->zIndex ) return 0;
  iCur = pItem->iCursor;
  pWC = &pWInfo->sWC;
  pLoop = pBuilder->pNew;
  pLoop->wsFlags = 0;
  pLoop->nSkip = 0;
  pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
  if( pTerm ){
    pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
    pLoop->aLTerm[0] = pTerm;
    pLoop->nLTerm = 1;
    pLoop->u.btree.nEq = 1;
    /* TUNING: Cost of a rowid lookup is 10 */
    pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
  }else{
    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
      assert( pLoop->aLTermSpace==pLoop->aLTerm );

      if( !IsUniqueIndex(pIdx)
       || pIdx->pPartIdxWhere!=0 
       || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 
      ) continue;
      for(j=0; j<pIdx->nKeyCol; j++){
        pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
        if( pTerm==0 ) break;
................................................................................

  /* Generate the code to do the search.  Each iteration of the for
  ** loop below generates code for a single nested loop of the VM
  ** program.
  */
  notReady = ~(Bitmask)0;
  for(ii=0; ii<nTabList; ii++){
    int addrExplain;
    int wsFlags;
    pLevel = &pWInfo->a[ii];
    wsFlags = pLevel->pWLoop->wsFlags;
#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
    if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
      constructAutomaticIndex(pParse, &pWInfo->sWC,
                &pTabList->a[pLevel->iFrom], notReady, pLevel);
      if( db->mallocFailed ) goto whereBeginError;
    }
#endif
    addrExplain = explainOneScan(
        pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
    );
    pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
    notReady = codeOneLoopStart(pWInfo, ii, notReady);
    pWInfo->iContinue = pLevel->addrCont;
    if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){
      addScanStatus(v, pTabList, pLevel, addrExplain);
    }
  }

  /* Done. */
  VdbeModuleComment((v, "Begin WHERE-core"));
  return pWInfo;

  /* Jump here if malloc fails */
................................................................................
      case 112: /* select ::= with selectnowith */
{
  Select *p = yymsp[0].minor.yy3, *pNext, *pLoop;
  if( p ){
    int cnt = 0, mxSelect;
    p->pWith = yymsp[-1].minor.yy59;
    if( p->pPrior ){
      u16 allValues = SF_Values;
      pNext = 0;
      for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){
        pLoop->pNext = pNext;
        pLoop->selFlags |= SF_Compound;
        allValues &= pLoop->selFlags;
      }
      if( allValues ){
        p->selFlags |= SF_AllValues;
      }else if(
        (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0
        && cnt>mxSelect
      ){
        sqlite3ErrorMsg(pParse, "too many terms in compound SELECT");
      }
    }
  }else{
    sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy59);
  }
  yygotominor.yy3 = p;
................................................................................
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */


#ifdef SQLITE_ENABLE_API_ARMOR
  if( zSql==0 || pzErrMsg==0 ) return SQLITE_MISUSE_BKPT;
#endif
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
................................................................................
                     /* Token:           */
     /* State:       **  SEMI  WS  OTHER */
     /* 0 INVALID: */ {    1,  0,     2, },
     /* 1   START: */ {    1,  1,     2, },
     /* 2  NORMAL: */ {    1,  2,     2, },
  };
#endif /* SQLITE_OMIT_TRIGGER */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( zSql==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif

  while( *zSql ){
    switch( *zSql ){
      case ';': {  /* A semicolon */
        token = tkSEMI;
        break;
      }
................................................................................
#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function.  These messages
** are intended for debugging activity only.
*/
/* not-private */ void (*sqlite3IoTrace)(const char*, ...) = 0;
#endif

/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**
................................................................................
** there are outstanding database connections or memory allocations or
** while any part of SQLite is otherwise in use in any thread.  This
** routine is not threadsafe.  But it is safe to invoke this routine
** on when SQLite is already shut down.  If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
SQLITE_API int sqlite3_shutdown(void){
#ifdef SQLITE_OMIT_WSD
  int rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif

  if( sqlite3GlobalConfig.isInit ){
#ifdef SQLITE_EXTRA_SHUTDOWN
    void SQLITE_EXTRA_SHUTDOWN(void);
    SQLITE_EXTRA_SHUTDOWN();
#endif
    sqlite3_os_end();
    sqlite3_reset_auto_extension();
................................................................................
  ** the SQLite library is in use. */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile.
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0  /* IMP: R-54466-46756 */
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
    case SQLITE_CONFIG_MULTITHREAD: {
      /* Disable mutexing of database connections */
      /* Enable mutexing of core data structures */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
    case SQLITE_CONFIG_SERIALIZED: {
      /* Enable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 1;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
    case SQLITE_CONFIG_MUTEX: {
      /* Specify an alternative mutex implementation */
      sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-14450-37597 */
    case SQLITE_CONFIG_GETMUTEX: {
      /* Retrieve the current mutex implementation */
      *va_arg(ap, sqlite3_mutex_methods*) = sqlite3GlobalConfig.mutex;
      break;
    }
#endif


    case SQLITE_CONFIG_MALLOC: {
      /* EVIDENCE-OF: R-55594-21030 The SQLITE_CONFIG_MALLOC option takes a
      ** single argument which is a pointer to an instance of the
      ** sqlite3_mem_methods structure. The argument specifies alternative
      ** low-level memory allocation routines to be used in place of the memory
      ** allocation routines built into SQLite. */
      sqlite3GlobalConfig.m = *va_arg(ap, sqlite3_mem_methods*);
      break;
    }
    case SQLITE_CONFIG_GETMALLOC: {
      /* EVIDENCE-OF: R-51213-46414 The SQLITE_CONFIG_GETMALLOC option takes a
      ** single argument which is a pointer to an instance of the
      ** sqlite3_mem_methods structure. The sqlite3_mem_methods structure is
      ** filled with the currently defined memory allocation routines. */
      if( sqlite3GlobalConfig.m.xMalloc==0 ) sqlite3MemSetDefault();
      *va_arg(ap, sqlite3_mem_methods*) = sqlite3GlobalConfig.m;
      break;
    }
    case SQLITE_CONFIG_MEMSTATUS: {
      /* EVIDENCE-OF: R-61275-35157 The SQLITE_CONFIG_MEMSTATUS option takes
      ** single argument of type int, interpreted as a boolean, which enables
      ** or disables the collection of memory allocation statistics. */
      sqlite3GlobalConfig.bMemstat = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_SCRATCH: {
      /* EVIDENCE-OF: R-08404-60887 There are three arguments to
      ** SQLITE_CONFIG_SCRATCH: A pointer an 8-byte aligned memory buffer from
      ** which the scratch allocations will be drawn, the size of each scratch
      ** allocation (sz), and the maximum number of scratch allocations (N). */
      sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite3GlobalConfig.szScratch = va_arg(ap, int);
      sqlite3GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {
      /* EVIDENCE-OF: R-31408-40510 There are three arguments to
      ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size
      ** of each page buffer (sz), and the number of pages (N). */
      sqlite3GlobalConfig.pPage = va_arg(ap, void*);
      sqlite3GlobalConfig.szPage = va_arg(ap, int);
      sqlite3GlobalConfig.nPage = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PCACHE_HDRSZ: {
      /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes
      ** a single parameter which is a pointer to an integer and writes into
      ** that integer the number of extra bytes per page required for each page
      ** in SQLITE_CONFIG_PAGECACHE. */
      *va_arg(ap, int*) = 
          sqlite3HeaderSizeBtree() +
          sqlite3HeaderSizePcache() +
          sqlite3HeaderSizePcache1();
      break;
    }

    case SQLITE_CONFIG_PCACHE: {
      /* no-op */
      break;
    }
    case SQLITE_CONFIG_GETPCACHE: {
      /* now an error */
      rc = SQLITE_ERROR;
      break;
    }

    case SQLITE_CONFIG_PCACHE2: {
      /* EVIDENCE-OF: R-63325-48378 The SQLITE_CONFIG_PCACHE2 option takes a
      ** single argument which is a pointer to an sqlite3_pcache_methods2
      ** object. This object specifies the interface to a custom page cache
      ** implementation. */
      sqlite3GlobalConfig.pcache2 = *va_arg(ap, sqlite3_pcache_methods2*);
      break;
    }
    case SQLITE_CONFIG_GETPCACHE2: {
      /* EVIDENCE-OF: R-22035-46182 The SQLITE_CONFIG_GETPCACHE2 option takes a
      ** single argument which is a pointer to an sqlite3_pcache_methods2
      ** object. SQLite copies of the current page cache implementation into
      ** that object. */
      if( sqlite3GlobalConfig.pcache2.xInit==0 ){
        sqlite3PCacheSetDefault();
      }
      *va_arg(ap, sqlite3_pcache_methods2*) = sqlite3GlobalConfig.pcache2;
      break;
    }

/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {

      /* EVIDENCE-OF: R-19854-42126 There are three arguments to
      ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
      ** number of bytes in the memory buffer, and the minimum allocation size. */
      sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      sqlite3GlobalConfig.mnReq = va_arg(ap, int);

      if( sqlite3GlobalConfig.mnReq<1 ){
        sqlite3GlobalConfig.mnReq = 1;
      }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
        /* cap min request size at 2^12 */
        sqlite3GlobalConfig.mnReq = (1<<12);
      }

      if( sqlite3GlobalConfig.pHeap==0 ){
        /* EVIDENCE-OF: R-49920-60189 If the first pointer (the memory pointer)
        ** is NULL, then SQLite reverts to using its default memory allocator
        ** (the system malloc() implementation), undoing any prior invocation of
        ** SQLITE_CONFIG_MALLOC.
        **
        ** Setting sqlite3GlobalConfig.m to all zeros will cause malloc to
        ** revert to its default implementation when sqlite3_initialize() is run

        */
        memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m));
      }else{
        /* EVIDENCE-OF: R-61006-08918 If the memory pointer is not NULL then the
        ** alternative memory allocator is engaged to handle all of SQLites
        ** memory allocation needs. */

#ifdef SQLITE_ENABLE_MEMSYS3
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3();
#endif
#ifdef SQLITE_ENABLE_MEMSYS5
        sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5();
#endif
      }
................................................................................

    /* EVIDENCE-OF: R-55548-33817 The compile-time setting for URI filenames
    ** can be changed at start-time using the
    ** sqlite3_config(SQLITE_CONFIG_URI,1) or
    ** sqlite3_config(SQLITE_CONFIG_URI,0) configuration calls.
    */
    case SQLITE_CONFIG_URI: {
      /* EVIDENCE-OF: R-25451-61125 The SQLITE_CONFIG_URI option takes a single
      ** argument of type int. If non-zero, then URI handling is globally
      ** enabled. If the parameter is zero, then URI handling is globally
      ** disabled. */
      sqlite3GlobalConfig.bOpenUri = va_arg(ap, int);
      break;
    }

    case SQLITE_CONFIG_COVERING_INDEX_SCAN: {
      /* EVIDENCE-OF: R-36592-02772 The SQLITE_CONFIG_COVERING_INDEX_SCAN
      ** option takes a single integer argument which is interpreted as a
      ** boolean in order to enable or disable the use of covering indices for
      ** full table scans in the query optimizer. */
      sqlite3GlobalConfig.bUseCis = va_arg(ap, int);
      break;
    }

#ifdef SQLITE_ENABLE_SQLLOG
    case SQLITE_CONFIG_SQLLOG: {
      typedef void(*SQLLOGFUNC_t)(void*, sqlite3*, const char*, int);
................................................................................
      sqlite3GlobalConfig.xSqllog = va_arg(ap, SQLLOGFUNC_t);
      sqlite3GlobalConfig.pSqllogArg = va_arg(ap, void *);
      break;
    }
#endif

    case SQLITE_CONFIG_MMAP_SIZE: {
      /* EVIDENCE-OF: R-58063-38258 SQLITE_CONFIG_MMAP_SIZE takes two 64-bit
      ** integer (sqlite3_int64) values that are the default mmap size limit
      ** (the default setting for PRAGMA mmap_size) and the maximum allowed
      ** mmap size limit. */
      sqlite3_int64 szMmap = va_arg(ap, sqlite3_int64);
      sqlite3_int64 mxMmap = va_arg(ap, sqlite3_int64);
      /* EVIDENCE-OF: R-53367-43190 If either argument to this option is
      ** negative, then that argument is changed to its compile-time default.
      **
      ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
      ** silently truncated if necessary so that it does not exceed the
      ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
      ** compile-time option.
      */
      if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ) mxMmap = SQLITE_MAX_MMAP_SIZE;


      if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
      if( szMmap>mxMmap) szMmap = mxMmap;
      sqlite3GlobalConfig.mxMmap = mxMmap;
      sqlite3GlobalConfig.szMmap = szMmap;
      break;
    }

#if SQLITE_OS_WIN && defined(SQLITE_WIN32_MALLOC) /* IMP: R-04780-55815 */
    case SQLITE_CONFIG_WIN32_HEAPSIZE: {
      /* EVIDENCE-OF: R-34926-03360 SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit
      ** unsigned integer value that specifies the maximum size of the created
      ** heap. */
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      break;
    }
#endif

    case SQLITE_CONFIG_PMASZ: {
      sqlite3GlobalConfig.szPma = va_arg(ap, unsigned int);
      break;
    }

    default: {
      rc = SQLITE_ERROR;
      break;
    }
  }
  va_end(ap);
................................................................................
  return SQLITE_OK;
}

/*
** Return the mutex associated with a database connection.
*/
SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->mutex;
}

/*
** Free up as much memory as we can from the given database
** connection.
*/
SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){
  int i;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  for(i=0; i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt ){
      Pager *pPager = sqlite3BtreePager(pBt);
      sqlite3PagerShrink(pPager);
................................................................................
static int binCollFunc(
  void *padFlag,
  int nKey1, const void *pKey1,
  int nKey2, const void *pKey2
){
  int rc, n;
  n = nKey1<nKey2 ? nKey1 : nKey2;
  /* EVIDENCE-OF: R-65033-28449 The built-in BINARY collation compares
  ** strings byte by byte using the memcmp() function from the standard C
  ** library. */
  rc = memcmp(pKey1, pKey2, n);
  if( rc==0 ){
    if( padFlag
     && allSpaces(((char*)pKey1)+n, nKey1-n)
     && allSpaces(((char*)pKey2)+n, nKey2-n)
    ){
      /* EVIDENCE-OF: R-31624-24737 RTRIM is like BINARY except that extra
      ** spaces at the end of either string do not change the result. In other
      ** words, strings will compare equal to one another as long as they
      ** differ only in the number of spaces at the end.
      */
    }else{
      rc = nKey1 - nKey2;
    }
  }
  return rc;
}

................................................................................
  return r;
}

/*
** Return the ROWID of the most recent insert
*/
SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->lastRowid;
}

/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
SQLITE_API int sqlite3_changes(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->nChange;
}

/*
** Return the number of changes since the database handle was opened.
*/
SQLITE_API int sqlite3_total_changes(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->nTotalChange;
}

/*
** Close all open savepoints. This function only manipulates fields of the
** database handle object, it does not close any savepoints that may be open
** at the b-tree/pager level.
................................................................................
** given callback function with the given argument.
*/
SQLITE_API int sqlite3_busy_handler(
  sqlite3 *db,
  int (*xBusy)(void*,int),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->busyHandler.xFunc = xBusy;
  db->busyHandler.pArg = pArg;
  db->busyHandler.nBusy = 0;
  db->busyTimeout = 0;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
................................................................................
*/
SQLITE_API void sqlite3_progress_handler(
  sqlite3 *db, 
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( nOps>0 ){
    db->xProgress = xProgress;
    db->nProgressOps = (unsigned)nOps;
    db->pProgressArg = pArg;
  }else{
    db->xProgress = 0;
................................................................................


/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  if( ms>0 ){
    sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
    db->busyTimeout = ms;
  }else{
    sqlite3_busy_handler(db, 0, 0);
  }
  return SQLITE_OK;
}

/*
** Cause any pending operation to stop at its earliest opportunity.
*/
SQLITE_API void sqlite3_interrupt(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return;
  }
#endif
  db->u1.isInterrupted = 1;
}


/*
** This function is exactly the same as sqlite3_create_function(), except
** that it is designed to be called by internal code. The difference is
................................................................................
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*),
  void (*xDestroy)(void *)
){
  int rc = SQLITE_ERROR;
  FuncDestructor *pArg = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( xDestroy ){
    pArg = (FuncDestructor *)sqlite3DbMallocZero(db, sizeof(FuncDestructor));
    if( !pArg ){
      xDestroy(p);
      goto out;
    }
................................................................................
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
){
  int rc;
  char *zFunc8;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zFunctionName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zFunc8 = sqlite3Utf16to8(db, zFunctionName, -1, SQLITE_UTF16NATIVE);
  rc = sqlite3CreateFunc(db, zFunc8, nArg, eTextRep, p, xFunc, xStep, xFinal,0);
  sqlite3DbFree(db, zFunc8);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
................................................................................
SQLITE_API int sqlite3_overload_function(
  sqlite3 *db,
  const char *zName,
  int nArg
){
  int nName = sqlite3Strlen30(zName);
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 || nArg<-2 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( sqlite3FindFunction(db, zName, nName, nArg, SQLITE_UTF8, 0)==0 ){
    rc = sqlite3CreateFunc(db, zName, nArg, SQLITE_UTF8,
                           0, sqlite3InvalidFunction, 0, 0, 0);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
................................................................................
**
** A NULL trace function means that no tracing is executes.  A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  pOld = db->pTraceArg;
  db->xTrace = xTrace;
  db->pTraceArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pOld;
}
................................................................................
*/
SQLITE_API void *sqlite3_profile(
  sqlite3 *db,
  void (*xProfile)(void*,const char*,sqlite_uint64),
  void *pArg
){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  pOld = db->pProfileArg;
  db->xProfile = xProfile;
  db->pProfileArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pOld;
}
................................................................................
*/
SQLITE_API void *sqlite3_commit_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  int (*xCallback)(void*),  /* Function to invoke on each commit */
  void *pArg                /* Argument to the function */
){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  pOld = db->pCommitArg;
  db->xCommitCallback = xCallback;
  db->pCommitArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pOld;
}
................................................................................
*/
SQLITE_API void *sqlite3_update_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
  void *pArg                /* Argument to the function */
){
  void *pRet;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  pRet = db->pUpdateArg;
  db->xUpdateCallback = xCallback;
  db->pUpdateArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pRet;
}
................................................................................
*/
SQLITE_API void *sqlite3_rollback_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*), /* Callback function */
  void *pArg                /* Argument to the function */
){
  void *pRet;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  pRet = db->pRollbackArg;
  db->xRollbackCallback = xCallback;
  db->pRollbackArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pRet;
}
................................................................................
** configured by this function.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
#ifdef SQLITE_OMIT_WAL
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(nFrame);
#else
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  if( nFrame>0 ){
    sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
  }else{
    sqlite3_wal_hook(db, 0, 0);
  }
#endif
  return SQLITE_OK;
................................................................................
SQLITE_API void *sqlite3_wal_hook(
  sqlite3 *db,                    /* Attach the hook to this db handle */
  int(*xCallback)(void *, sqlite3*, const char*, int),
  void *pArg                      /* First argument passed to xCallback() */
){
#ifndef SQLITE_OMIT_WAL
  void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  pRet = db->pWalArg;
  db->xWalCallback = xCallback;
  db->pWalArg = pArg;
  sqlite3_mutex_leave(db->mutex);
  return pRet;
#else
................................................................................
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
){
#ifdef SQLITE_OMIT_WAL
  return SQLITE_OK;
#else
  int rc;                         /* Return code */
  int iDb = SQLITE_MAX_ATTACHED;  /* sqlite3.aDb[] index of db to checkpoint */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif

  /* Initialize the output variables to -1 in case an error occurs. */
  if( pnLog ) *pnLog = -1;
  if( pnCkpt ) *pnCkpt = -1;

  assert( SQLITE_CHECKPOINT_PASSIVE==0 );
  assert( SQLITE_CHECKPOINT_FULL==1 );
  assert( SQLITE_CHECKPOINT_RESTART==2 );
  assert( SQLITE_CHECKPOINT_TRUNCATE==3 );
  if( eMode<SQLITE_CHECKPOINT_PASSIVE || eMode>SQLITE_CHECKPOINT_TRUNCATE ){
    /* EVIDENCE-OF: R-03996-12088 The M parameter must be a valid checkpoint
    ** mode: */
    return SQLITE_MISUSE;
  }

  sqlite3_mutex_enter(db->mutex);
  if( zDb && zDb[0] ){
    iDb = sqlite3FindDbName(db, zDb);
  }
................................................................................

/*
** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
** to contains a zero-length string, all attached databases are 
** checkpointed.
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
  /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to
  ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */
  return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0);
}

#ifndef SQLITE_OMIT_WAL
/*
** Run a checkpoint on database iDb. This is a no-op if database iDb is
** not currently open in WAL mode.
**
................................................................................
** argument.  For now, this simply calls the internal sqlite3ErrStr()
** function.
*/
SQLITE_API const char *sqlite3_errstr(int rc){
  return sqlite3ErrStr(rc);
}



























/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
static int createCollation(
  sqlite3* db,
  const char *zName, 
................................................................................
  if( pColl && pColl->xCmp ){
    if( db->nVdbeActive ){
      sqlite3ErrorWithMsg(db, SQLITE_BUSY, 
        "unable to delete/modify collation sequence due to active statements");
      return SQLITE_BUSY;
    }
    sqlite3ExpirePreparedStatements(db);


    /* If collation sequence pColl was created directly by a call to
    ** sqlite3_create_collation, and not generated by synthCollSeq(),
    ** then any copies made by synthCollSeq() need to be invalidated.
    ** Also, collation destructor - CollSeq.xDel() - function may need
    ** to be called.
    */ 
................................................................................
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
  int oldLimit;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return -1;
  }
#endif

  /* EVIDENCE-OF: R-30189-54097 For each limit category SQLITE_LIMIT_NAME
  ** there is a hard upper bound set at compile-time by a C preprocessor
  ** macro called SQLITE_MAX_NAME. (The "_LIMIT_" in the name is changed to
  ** "_MAX_".)
  */
  assert( aHardLimit[SQLITE_LIMIT_LENGTH]==SQLITE_MAX_LENGTH );
................................................................................
  const char *zVfs = zDefaultVfs;
  char *zFile;
  char c;
  int nUri = sqlite3Strlen30(zUri);

  assert( *pzErrMsg==0 );

  if( ((flags & SQLITE_OPEN_URI)             /* IMP: R-48725-32206 */
            || sqlite3GlobalConfig.bOpenUri) /* IMP: R-51689-46548 */
   && nUri>=5 && memcmp(zUri, "file:", 5)==0 /* IMP: R-57884-37496 */
  ){
    char *zOpt;
    int eState;                   /* Parser state when parsing URI */
    int iIn;                      /* Input character index */
    int iOut = 0;                 /* Output character index */
    int nByte = nUri+2;           /* Bytes of space to allocate */
................................................................................
){
  sqlite3 *db;                    /* Store allocated handle here */
  int rc;                         /* Return code */
  int isThreadsafe;               /* True for threadsafe connections */
  char *zOpen = 0;                /* Filename argument to pass to BtreeOpen() */
  char *zErrMsg = 0;              /* Error message from sqlite3ParseUri() */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
#endif
  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif

  /* Only allow sensible combinations of bits in the flags argument.  
................................................................................
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
                 | SQLITE_RecTriggers
#endif
#if defined(SQLITE_DEFAULT_FOREIGN_KEYS) && SQLITE_DEFAULT_FOREIGN_KEYS
                 | SQLITE_ForeignKeys
#endif
#if defined(SQLITE_REVERSE_UNORDERED_SELECTS)
                 | SQLITE_ReverseOrder
#endif
      ;
  sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  **
  ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
  ** functions:
  */
  createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }
  /* EVIDENCE-OF: R-08308-17224 The default collating function for all
  ** strings is BINARY. 
  */
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );




  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
    sqlite3ErrorWithMsg(db, rc, zErrMsg ? "%s" : 0, zErrMsg);
    sqlite3_free(zErrMsg);
................................................................................
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_IOERR_NOMEM ){
      rc = SQLITE_NOMEM;
    }
    sqlite3Error(db, rc);
    goto opendb_out;
  }
  sqlite3BtreeEnter(db->aDb[0].pBt);
  db->aDb[0].pSchema = sqlite3SchemaGet(db, db->aDb[0].pBt);
  if( !db->mallocFailed ) ENC(db) = SCHEMA_ENC(db);
  sqlite3BtreeLeave(db->aDb[0].pBt);
  db->aDb[1].pSchema = sqlite3SchemaGet(db, 0);

  /* The default safety_level for the main database is 'full'; for the temp
  ** database it is 'NONE'. This matches the pager layer defaults.  
  */
  db->aDb[0].zName = "main";
  db->aDb[0].safety_level = 3;
................................................................................
  const void *zFilename, 
  sqlite3 **ppDb
){
  char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
  sqlite3_value *pVal;
  int rc;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( ppDb==0 ) return SQLITE_MISUSE_BKPT;
#endif
  *ppDb = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( zFilename==0 ) zFilename = "\000\000";
  pVal = sqlite3ValueNew(0);
  sqlite3ValueSetStr(pVal, -1, zFilename, SQLITE_UTF16NATIVE, SQLITE_STATIC);
  zFilename8 = sqlite3ValueText(pVal, SQLITE_UTF8);
  if( zFilename8 ){
    rc = openDatabase(zFilename8, ppDb,
                      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
    assert( *ppDb || rc==SQLITE_NOMEM );
    if( rc==SQLITE_OK && !DbHasProperty(*ppDb, 0, DB_SchemaLoaded) ){
      SCHEMA_ENC(*ppDb) = ENC(*ppDb) = SQLITE_UTF16NATIVE;
    }
  }else{
    rc = SQLITE_NOMEM;
  }
  sqlite3ValueFree(pVal);

  return sqlite3ApiExit(0, rc);
................................................................................
SQLITE_API int sqlite3_create_collation(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0);






}

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3* db, 
................................................................................
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
  int rc;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  rc = createCollation(db, zName, (u8)enc, pCtx, xCompare, xDel);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}
................................................................................
  const void *zName,
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc = SQLITE_OK;
  char *zName8;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  assert( !db->mallocFailed );
  zName8 = sqlite3Utf16to8(db, zName, -1, SQLITE_UTF16NATIVE);
  if( zName8 ){
    rc = createCollation(db, zName8, (u8)enc, pCtx, xCompare, 0);
    sqlite3DbFree(db, zName8);
  }
................................................................................
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int sqlite3_collation_needed(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->xCollNeeded = xCollNeeded;
  db->xCollNeeded16 = 0;
  db->pCollNeededArg = pCollNeededArg;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
................................................................................
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int sqlite3_collation_needed16(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->xCollNeeded = 0;
  db->xCollNeeded16 = xCollNeeded16;
  db->pCollNeededArg = pCollNeededArg;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}
................................................................................
/*
** Test to see whether or not the database connection is in autocommit
** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
** by default.  Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->autoCommit;
}

/*
** The following routines are substitutes for constants SQLITE_CORRUPT,
** SQLITE_MISUSE, SQLITE_CANTOPEN, SQLITE_IOERR and possibly other error
** constants.  They serve two purposes:
................................................................................
}
#endif

/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/

SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
................................................................................
  pTab = sqlite3FindTable(db, zTableName, zDbName);
  if( !pTab || pTab->pSelect ){
    pTab = 0;
    goto error_out;
  }

  /* Find the column for which info is requested */
  if( zColumnName==0 ){
    /* Query for existance of table only */



  }else{
    for(iCol=0; iCol<pTab->nCol; iCol++){
      pCol = &pTab->aCol[iCol];
      if( 0==sqlite3StrICmp(pCol->zName, zColumnName) ){
        break;
      }
    }
    if( iCol==pTab->nCol ){
      if( HasRowid(pTab) && sqlite3IsRowid(zColumnName) ){
        iCol = pTab->iPKey;
        pCol = iCol>=0 ? &pTab->aCol[iCol] : 0;
      }else{
        pTab = 0;
        goto error_out;
      }
    }
  }

  /* The following block stores the meta information that will be returned
  ** to the caller in local variables zDataType, zCollSeq, notnull, primarykey
  ** and autoinc. At this point there are two possibilities:
  ** 
................................................................................
  }
  sqlite3ErrorWithMsg(db, rc, (zErrMsg?"%s":0), zErrMsg);
  sqlite3DbFree(db, zErrMsg);
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}


/*
** Sleep for a little while.  Return the amount of time slept.
*/
SQLITE_API int sqlite3_sleep(int ms){
  sqlite3_vfs *pVfs;
  int rc;
................................................................................
  return rc;
}

/*
** Enable or disable the extended result codes.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->errMask = onoff ? 0xffffffff : 0xff;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Invoke the xFileControl method on a particular database.
*/
SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;
  Btree *pBtree;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  pBtree = sqlite3DbNameToBtree(db, zDbName);
  if( pBtree ){
    Pager *pPager;
    sqlite3_file *fd;
    sqlite3BtreeEnter(pBtree);
    pPager = sqlite3BtreePager(pBtree);
................................................................................
** The zFilename argument is the filename pointer passed into the xOpen()
** method of a VFS implementation.  The zParam argument is the name of the
** query parameter we seek.  This routine returns the value of the zParam
** parameter if it exists.  If the parameter does not exist, this routine
** returns a NULL pointer.
*/
SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
  if( zFilename==0 || zParam==0 ) return 0;
  zFilename += sqlite3Strlen30(zFilename) + 1;
  while( zFilename[0] ){
    int x = strcmp(zFilename, zParam);
    zFilename += sqlite3Strlen30(zFilename) + 1;
    if( x==0 ) return zFilename;
    zFilename += sqlite3Strlen30(zFilename) + 1;
  }
................................................................................
}

/*
** Return the filename of the database associated with a database
** connection.
*/
SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
  Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
}

/*
** Return 1 if database is read-only or 0 if read/write.  Return -1 if
** no such database exists.
*/
SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
  Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return -1;
  }
#endif
  pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
}

/************** End of main.c ************************************************/
/************** Begin file notify.c ******************************************/
/*
** 2009 March 3
................................................................................
** of m for the first i bytes of a word.
**
** Return true if the m-value for z is 1 or more.  In other words,
** return true if z contains at least one vowel that is followed
** by a consonant.
**
** In this routine z[] is in reverse order.  So we are really looking
** for an instance of a consonant followed by a vowel.
*/
static int m_gt_0(const char *z){
  while( isVowel(z) ){ z++; }
  if( *z==0 ) return 0;
  while( isConsonant(z) ){ z++; }
  return *z!=0;
}
................................................................................
    pCur->aPoint = pNew;
    pCur->nPointAlloc = nNew;
  }
  i = pCur->nPoint++;
  pNew = pCur->aPoint + i;
  pNew->rScore = rScore;
  pNew->iLevel = iLevel;
  assert( iLevel<=RTREE_MAX_DEPTH );
  while( i>0 ){
    RtreeSearchPoint *pParent;
    j = (i-1)/2;
    pParent = pCur->aPoint + j;
    if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break;
    rtreeSearchPointSwap(pCur, j, i);
    i = j;

Changes to src/sqlite3.h.

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
...
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
...
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
....
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
....
1500
1501
1502
1503
1504
1505
1506
1507
1508

1509
1510
1511
1512
1513
1514
1515
1516

1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549

1550
1551
1552






1553
1554
1555
1556

1557
1558

1559

1560
1561
1562
1563



1564
1565


1566

1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577

1578




1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
....
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662

1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674
1675
1676
1677
1678
1679
1680
1681
....
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726




















1727
1728
1729
1730
1731
1732
1733
....
1744
1745
1746
1747
1748
1749
1750


1751
1752
1753
1754
1755
1756
1757
....
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885

1886
1887



1888
1889
1890
1891
1892
1893
1894



1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933


1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
....
2025
2026
2027
2028
2029
2030
2031

2032
2033
2034
2035
2036
2037
2038
....
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
....
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426

2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
....
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
....
4495
4496
4497
4498
4499
4500
4501
4502

4503
4504
4505
4506
4507
4508
4509
....
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136








5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
....
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171

5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
....
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655




5656
5657


5658


















5659
5660
5661
5662
5663

5664
5665
5666
5667
5668
5669
5670
....
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687

5688
5689
5690
5691
5692
5693
5694
....
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
....
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798






5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810

5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
....
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913

5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965

5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
....
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
....
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
....
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
....
6814
6815
6816
6817
6818
6819
6820




6821
6822
6823
6824
6825
6826
6827
....
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
....
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239

7240
7241
7242
7243
7244
7245
7246
7247


7248
7249
7250
7251
7252
7253
7254
7255

7256
7257
7258
7259
7260
7261
7262
7263
7264






7265
7266
7267
7268


7269
7270
7271
7272
7273





7274
7275
7276
7277
7278
7279
7280

7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292

7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305








7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316

7317
7318


7319
7320
7321

7322
7323
7324
7325

7326
7327
7328
7329
7330
7331
7332
....
7407
7408
7409
7410
7411
7412
7413




























































































7414
7415
7416
7417
7418
7419
7420
# define SQLITE_API
#endif


/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are support for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
**
** These macros used to resolve to various kinds of compiler magic that
** would generate warning messages when they were used.  But that
** compiler magic ended up generating such a flurry of bug reports
** that we have taken it all out and gone back to using simple
................................................................................
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.7.2"
#define SQLITE_VERSION_NUMBER 3008007
#define SQLITE_SOURCE_ID      "2014-11-18 12:28:52 945a9e687fdfee5f7103d85d131024e85d594ac3"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
................................................................................
** the desired setting of the [SQLITE_THREADSAFE] macro.
**
** This interface only reports on the compile-time mutex setting
** of the [SQLITE_THREADSAFE] flag.  If SQLite is compiled with
** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
** can be fully or partially disabled using a call to [sqlite3_config()]
** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
** or [SQLITE_CONFIG_MUTEX].  ^(The return value of the
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
................................................................................
** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
** <li>  SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
** <li>  SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
** </ul>
**
** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
** was given no the corresponding lock.  
**
** The xShmLock method can transition between unlocked and SHARED or
** between unlocked and EXCLUSIVE.  It cannot transition between SHARED
** and EXCLUSIVE.
*/
#define SQLITE_SHM_UNLOCK       1
#define SQLITE_SHM_LOCK         2
................................................................................
** ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** it is not possible to set the Serialized [threading mode] and
** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
**
** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The argument specifies

** alternative low-level memory allocation routines to be used in place of
** the memory allocation routines built into SQLite.)^ ^SQLite makes
** its own private copy of the content of the [sqlite3_mem_methods] structure
** before the [sqlite3_config()] call returns.</dd>
**
** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mem_methods] structure.  The [sqlite3_mem_methods]

** structure is filled with the currently defined memory allocation routines.)^
** This option can be used to overload the default memory allocation
** routines with a wrapper that simulations memory allocation failure or
** tracks memory usage, for example. </dd>
**
** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
** <dd> ^This option takes single argument of type int, interpreted as a 
** boolean, which enables or disables the collection of memory allocation 
** statistics. ^(When memory allocation statistics are disabled, the 
** following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for

** scratch memory.  There are three arguments:  A pointer an 8-byte
** aligned memory buffer from which the scratch allocations will be
** drawn, the size of each scratch allocation (sz),
** and the maximum number of scratch allocations (N).  The sz
** argument must be a multiple of 16.
** The first argument must be a pointer to an 8-byte aligned buffer
** of at least sz*N bytes of memory.
** ^SQLite will use no more than two scratch buffers per thread.  So
** N should be set to twice the expected maximum number of threads.
** ^SQLite will never require a scratch buffer that is more than 6

** times the database page size. ^If SQLite needs needs additional
** scratch memory beyond what is provided by this configuration option, then 
** [sqlite3_malloc()] will be used to obtain the memory needed.</dd>






**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^This option specifies a static memory buffer that SQLite can use for
** the database page cache with the default page cache implementation.  

** This configuration should not be used if an application-define page
** cache implementation is loaded using the SQLITE_CONFIG_PCACHE2 option.

** There are three arguments to this option: A pointer to 8-byte aligned

** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 32768) plus a little extra for each
** page header.  ^The page header size is 20 to 40 bytes depending on



** the host architecture.  ^It is harmless, apart from the wasted memory,
** to make sz a little too large.  The first


** argument should point to an allocation of at least sz*N bytes of memory.

** ^SQLite will use the memory provided by the first argument to satisfy its
** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.
** The pointer in the first argument must
** be aligned to an 8-byte boundary or subsequent behavior of SQLite
** will be undefined.</dd>
**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^This option specifies a static memory buffer that SQLite will use
** for all of its dynamic memory allocation needs beyond those provided

** for by [SQLITE_CONFIG_SCRATCH] and [SQLITE_CONFIG_PAGECACHE].




** There are three arguments: An 8-byte aligned pointer to the memory,
** the number of bytes in the memory buffer, and the minimum allocation size.
** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
** to using its default memory allocator (the system malloc() implementation),
** undoing any prior invocation of [SQLITE_CONFIG_MALLOC].  ^If the
** memory pointer is not NULL and either [SQLITE_ENABLE_MEMSYS3] or
** [SQLITE_ENABLE_MEMSYS5] are defined, then the alternative memory
** allocator is engaged to handle all of SQLites memory allocation needs.
** The first pointer (the memory pointer) must be aligned to an 8-byte
** boundary or subsequent behavior of SQLite will be undefined.
** The minimum allocation size is capped at 2**12. Reasonable values
** for the minimum allocation size are 2**5 through 2**8.</dd>
**
** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The argument specifies
** alternative low-level mutex routines to be used in place
** the mutex routines built into SQLite.)^  ^SQLite makes a copy of the
** content of the [sqlite3_mutex_methods] structure before the call to
** [sqlite3_config()] returns. ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** instance of the [sqlite3_mutex_methods] structure.  The
** [sqlite3_mutex_methods]
** structure is filled with the currently defined mutex routines.)^
** This option can be used to overload the default mutex allocation
** routines with a wrapper used to track mutex usage for performance
** profiling or testing, for example.   ^If SQLite is compiled with
** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
** the entire mutexing subsystem is omitted from the build and hence calls to
** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
** return [SQLITE_ERROR].</dd>
**
** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
** <dd> ^(This option takes two arguments that determine the default
** memory allocation for the lookaside memory allocator on each
** [database connection].  The first argument is the
** size of each lookaside buffer slot and the second is the number of
** slots allocated to each database connection.)^  ^(This option sets the
** <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
** verb to [sqlite3_db_config()] can be used to change the lookaside
** configuration on individual connections.)^ </dd>
**
** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
** <dd> ^(This option takes a single argument which is a pointer to
** an [sqlite3_pcache_methods2] object.  This object specifies the interface
** to a custom page cache implementation.)^  ^SQLite makes a copy of the
** object and uses it for page cache memory allocations.</dd>
**
** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
** <dd> ^(This option takes a single argument which is a pointer to an
** [sqlite3_pcache_methods2] object.  SQLite copies of the current
** page cache implementation into that object.)^ </dd>
**
** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
** global [error log].
** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
** function with a call signature of void(*)(void*,int,const char*), 
** and a pointer to void. ^If the function pointer is not NULL, it is
................................................................................
** log message after formatting via [sqlite3_snprintf()].
** The SQLite logging interface is not reentrant; the logger function
** supplied by the application must not invoke any SQLite interface.
** In a multi-threaded application, the application-defined logger
** function must be threadsafe. </dd>
**
** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
** <dd>^(This option takes a single argument of type int. If non-zero, then
** URI handling is globally enabled. If the parameter is zero, then URI handling
** is globally disabled.)^ ^If URI handling is globally enabled, all filenames
** passed to [sqlite3_open()], [sqlite3_open_v2()], [sqlite3_open16()] or

** specified as part of [ATTACH] commands are interpreted as URIs, regardless
** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
** connection is opened. ^If it is globally disabled, filenames are
** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
** database connection is opened. ^(By default, URI handling is globally
** disabled. The default value may be changed by compiling with the
** [SQLITE_USE_URI] symbol defined.)^
**
** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
** <dd>^This option takes a single integer argument which is interpreted as
** a boolean in order to enable or disable the use of covering indices for

** full table scans in the query optimizer.  ^The default setting is determined
** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
** if that compile-time option is omitted.
** The ability to disable the use of covering indices for full table scans
** is because some incorrectly coded legacy applications might malfunction
** when the optimization is enabled.  Providing the ability to
** disable the optimization allows the older, buggy application code to work
** without change even with newer versions of SQLite.
................................................................................
** <dt>SQLITE_CONFIG_MMAP_SIZE
** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
** that are the default mmap size limit (the default setting for
** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
** ^The default setting can be overridden by each database connection using
** either the [PRAGMA mmap_size] command, or by using the
** [SQLITE_FCNTL_MMAP_SIZE] file control.  ^(The maximum allowed mmap size
** cannot be changed at run-time.  Nor may the maximum allowed mmap size
** exceed the compile-time maximum mmap size set by the
** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
** ^If either argument to this option is negative, then that argument is
** changed to its compile-time default.
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^This option is only available if SQLite is compiled for Windows
** with the [SQLITE_WIN32_MALLOC] pre-processor macro defined.
** SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>




















*/
#define SQLITE_CONFIG_SINGLETHREAD  1  /* nil */
#define SQLITE_CONFIG_MULTITHREAD   2  /* nil */
#define SQLITE_CONFIG_SERIALIZED    3  /* nil */
#define SQLITE_CONFIG_MALLOC        4  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_GETMALLOC     5  /* sqlite3_mem_methods* */
#define SQLITE_CONFIG_SCRATCH       6  /* void*, int sz, int N */
................................................................................
#define SQLITE_CONFIG_URI          17  /* int */
#define SQLITE_CONFIG_PCACHE2      18  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_GETPCACHE2   19  /* sqlite3_pcache_methods2* */
#define SQLITE_CONFIG_COVERING_INDEX_SCAN 20  /* int */
#define SQLITE_CONFIG_SQLLOG       21  /* xSqllog, void* */
#define SQLITE_CONFIG_MMAP_SIZE    22  /* sqlite3_int64, sqlite3_int64 */
#define SQLITE_CONFIG_WIN32_HEAPSIZE      23  /* int nByte */



/*
** CAPI3REF: Database Connection Configuration Options
**
** These constants are the available integer configuration options that
** can be passed as the second argument to the [sqlite3_db_config()] interface.
**
................................................................................
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of database rows that were changed
** or inserted or deleted by the most recently completed SQL statement
** on the [database connection] specified by the first parameter.
** ^(Only changes that are directly specified by the [INSERT], [UPDATE],
** or [DELETE] statement are counted.  Auxiliary changes caused by
** triggers or [foreign key actions] are not counted.)^ Use the
** [sqlite3_total_changes()] function to find the total number of changes
** including changes caused by triggers and foreign key actions.

**
** ^Changes to a view that are simulated by an [INSTEAD OF trigger]



** are not counted.  Only real table changes are counted.
**
** ^(A "row change" is a change to a single row of a single table
** caused by an INSERT, DELETE, or UPDATE statement.  Rows that
** are changed as side effects of [REPLACE] constraint resolution,
** rollback, ABORT processing, [DROP TABLE], or by any other
** mechanisms do not count as direct row changes.)^



**
** A "trigger context" is a scope of execution that begins and
** ends with the script of a [CREATE TRIGGER | trigger]. 
** Most SQL statements are
** evaluated outside of any trigger.  This is the "top level"
** trigger context.  If a trigger fires from the top level, a
** new trigger context is entered for the duration of that one
** trigger.  Subtriggers create subcontexts for their duration.
**
** ^Calling [sqlite3_exec()] or [sqlite3_step()] recursively does
** not create a new trigger context.
**
** ^This function returns the number of direct row changes in the
** most recent INSERT, UPDATE, or DELETE statement within the same
** trigger context.
**
** ^Thus, when called from the top level, this function returns the
** number of changes in the most recent INSERT, UPDATE, or DELETE
** that also occurred at the top level.  ^(Within the body of a trigger,
** the sqlite3_changes() interface can be called to find the number of
** changes in the most recently completed INSERT, UPDATE, or DELETE
** statement within the body of the same trigger.
** However, the number returned does not include changes
** caused by subtriggers since those have their own context.)^
**
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the number of row changes caused by [INSERT],
** [UPDATE] or [DELETE] statements since the [database connection] was opened.


** ^(The count returned by sqlite3_total_changes() includes all changes
** from all [CREATE TRIGGER | trigger] contexts and changes made by
** [foreign key actions]. However,
** the count does not include changes used to implement [REPLACE] constraints,
** do rollbacks or ABORT processing, or [DROP TABLE] processing.  The
** count does not include rows of views that fire an [INSTEAD OF trigger],
** though if the INSTEAD OF trigger makes changes of its own, those changes 
** are counted.)^
** ^The sqlite3_total_changes() function counts the changes as soon as
** the statement that makes them is completed (when the statement handle
** is passed to [sqlite3_reset()] or [sqlite3_finalize()]).
**
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
................................................................................
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors

**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever
** an attempt is made to access a database table associated with
** [database connection] D when another thread
** or process has the table locked.
** The sqlite3_busy_handler() interface is used to implement
................................................................................
** ^If the busy callback is NULL, then [SQLITE_BUSY]
** is returned immediately upon encountering the lock.  ^If the busy callback
** is not NULL, then the callback might be invoked with two arguments.
**
** ^The first argument to the busy handler is a copy of the void* pointer which
** is the third argument to sqlite3_busy_handler().  ^The second argument to
** the busy handler callback is the number of times that the busy handler has
** been invoked for the same locking event.  ^If the
** busy callback returns 0, then no additional attempts are made to
** access the database and [SQLITE_BUSY] is returned
** to the application.
** ^If the callback returns non-zero, then another attempt
** is made to access the database and the cycle repeats.
**
** The presence of a busy handler does not guarantee that it will be invoked
................................................................................
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
** the build-in random() and randomblob() SQL functions.  This interface allows
** applications to access the same PRNG for other purposes.
**
** ^A call to this routine stores N bytes of randomness into buffer P.
** ^If N is less than one, then P can be a NULL pointer.
**
** ^If this routine has not been previously called or if the previous
** call had N less than one, then the PRNG is seeded using randomness

** obtained from the xRandomness method of the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more then
** the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
................................................................................

/*
** CAPI3REF: Text Encodings
**
** These constant define integer codes that represent the various
** text encodings supported by SQLite.
*/
#define SQLITE_UTF8           1
#define SQLITE_UTF16LE        2
#define SQLITE_UTF16BE        3
#define SQLITE_UTF16          4    /* Use native byte order */
#define SQLITE_ANY            5    /* Deprecated */
#define SQLITE_UTF16_ALIGNED  8    /* sqlite3_create_collation only */

/*
** CAPI3REF: Function Flags
**
................................................................................
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*)