Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the built-in SQLite to the first 3.8.12 beta. |
---|---|
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
be219301cdfbd0550280330790714f43 |
User & Date: | drh 2015-10-07 20:51:07.608 |
Context
2015-10-10
| ||
13:45 | Update the built-in SQLite to the first 3.9.0 beta. check-in: f0b45ac9a5 user: drh tags: trunk | |
2015-10-07
| ||
20:51 | Update the built-in SQLite to the first 3.8.12 beta. check-in: be219301cd user: drh tags: trunk | |
2015-09-28
| ||
14:58 | Update the built-in SQLite to the 3.8.12 alpha version that includes the ONEPASS bug fix. check-in: c70107362d user: drh tags: trunk | |
Changes
Changes to src/sqlite3.c.
︙ | ︙ | |||
323 324 325 326 327 328 329 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.12" #define SQLITE_VERSION_NUMBER 3008012 | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.12" #define SQLITE_VERSION_NUMBER 3008012 #define SQLITE_SOURCE_ID "2015-10-07 17:06:17 13adcd038fc20dd1b6f344f79b449b4034f8f8f2" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 | ** strategy. A cost of N indicates that the cost of the strategy is similar ** to a linear scan of an SQLite table with N rows. A cost of log(N) ** indicates that the expense of the operation is similar to that of a ** binary search on a unique indexed field of an SQLite table with N rows. ** ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite version 3.8.2. If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to included crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a | > > > > > > > > > > > > > > > | > > > | 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 | ** strategy. A cost of N indicates that the cost of the strategy is similar ** to a linear scan of an SQLite table with N rows. A cost of log(N) ** indicates that the expense of the operation is similar to that of a ** binary search on a unique indexed field of an SQLite table with N rows. ** ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** ** The xBestIndex method may optionally populate the idxFlags field with a ** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag - ** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite ** assumes that the strategy may visit at most one row. ** ** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then ** SQLite also assumes that if a call to the xUpdate() method is made as ** part of the same statement to delete or update a virtual table row and the ** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback ** any database changes. In other words, if the xUpdate() returns ** SQLITE_CONSTRAINT, the database contents must be exactly as they were ** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not ** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by ** the xUpdate method are automatically rolled back by SQLite. ** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite version 3.8.2. If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to included crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a ** value greater than or equal to 3008002. Similarly, the idxFlags field ** was added for version 3.8.12. It may therefore only be used if ** sqlite3_libversion_number() returns a value greater than or equal to ** 3008012. */ struct sqlite3_index_info { /* Inputs */ int nConstraint; /* Number of entries in aConstraint */ struct sqlite3_index_constraint { int iColumn; /* Column on left-hand side of constraint */ unsigned char op; /* Constraint operator */ |
︙ | ︙ | |||
5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 | int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ }; /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the wHERE clause of ** a query that uses a [virtual table]. | > > > > > > > | 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 | int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ /* Fields below are only available in SQLite 3.8.12 and later */ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ }; /* ** CAPI3REF: Virtual Table Scan Flags */ #define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the wHERE clause of ** a query that uses a [virtual table]. |
︙ | ︙ | |||
8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 | */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1300 # if !defined(_WIN32_WCE) # include <intrin.h> # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) # else # include <cmnintrin.h> # endif # endif #endif /* | > | 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 | */ #if !defined(SQLITE_DISABLE_INTRINSIC) # if defined(_MSC_VER) && _MSC_VER>=1300 # if !defined(_WIN32_WCE) # include <intrin.h> # pragma intrinsic(_byteswap_ushort) # pragma intrinsic(_byteswap_ulong) # pragma intrinsic(_ReadWriteBarrier) # else # include <cmnintrin.h> # endif # endif #endif /* |
︙ | ︙ | |||
10020 10021 10022 10023 10024 10025 10026 | #define OP_RowSetTest 131 /* synopsis: if r[P3] in rowset(P1) goto P2 */ #define OP_Program 132 #define OP_Real 133 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_Param 134 #define OP_FkCounter 135 /* synopsis: fkctr[P1]+=P2 */ #define OP_FkIfZero 136 /* synopsis: if fkctr[P1]==0 goto P2 */ #define OP_MemMax 137 /* synopsis: r[P1]=max(r[P1],r[P2]) */ | | | | | 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 | #define OP_RowSetTest 131 /* synopsis: if r[P3] in rowset(P1) goto P2 */ #define OP_Program 132 #define OP_Real 133 /* same as TK_FLOAT, synopsis: r[P2]=P4 */ #define OP_Param 134 #define OP_FkCounter 135 /* synopsis: fkctr[P1]+=P2 */ #define OP_FkIfZero 136 /* synopsis: if fkctr[P1]==0 goto P2 */ #define OP_MemMax 137 /* synopsis: r[P1]=max(r[P1],r[P2]) */ #define OP_IfPos 138 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */ #define OP_SetIfNotPos 139 /* synopsis: if r[P1]<=0 then r[P2]=P3 */ #define OP_IfNotZero 140 /* synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 */ #define OP_DecrJumpZero 141 /* synopsis: if (--r[P1])==0 goto P2 */ #define OP_JumpZeroIncr 142 /* synopsis: if (r[P1]++)==0 ) goto P2 */ #define OP_AggStep0 143 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggStep 144 /* synopsis: accum=r[P3] step(r[P2@P5]) */ #define OP_AggFinal 145 /* synopsis: accum=r[P1] N=P2 */ #define OP_IncrVacuum 146 #define OP_Expire 147 |
︙ | ︙ | |||
10073 10074 10075 10076 10077 10078 10079 | /* 80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\ /* 88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\ /* 96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\ /* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\ /* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\ | | | 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 | /* 80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\ /* 88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\ /* 96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\ /* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\ /* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\ /* 136 */ 0x01, 0x04, 0x03, 0x06, 0x03, 0x03, 0x03, 0x00,\ /* 144 */ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 152 */ 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01, 0x00,\ /* 160 */ 0x00,} /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ |
︙ | ︙ | |||
11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 | /* Return true if index X is a PRIMARY KEY index */ #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) /* Return true if index X is a UNIQUE index */ #define IsUniqueIndex(X) ((X)->onError!=OE_None) /* ** Each sample stored in the sqlite_stat3 table is represented in memory ** using a structure of this type. See documentation at the top of the ** analyze.c source file for additional information. */ struct IndexSample { void *p; /* Pointer to sampled record */ | > > > > > > | 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 | /* Return true if index X is a PRIMARY KEY index */ #define IsPrimaryKeyIndex(X) ((X)->idxType==SQLITE_IDXTYPE_PRIMARYKEY) /* Return true if index X is a UNIQUE index */ #define IsUniqueIndex(X) ((X)->onError!=OE_None) /* The Index.aiColumn[] values are normally positive integer. But ** there are some negative values that have special meaning: */ #define XN_ROWID (-1) /* Indexed column is the rowid */ #define XN_EXPR (-2) /* Indexed column is an expression */ /* ** Each sample stored in the sqlite_stat3 table is represented in memory ** using a structure of this type. See documentation at the top of the ** analyze.c source file for additional information. */ struct IndexSample { void *p; /* Pointer to sampled record */ |
︙ | ︙ | |||
13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 | Select*,u8); SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) #else # define sqlite3TriggersExist(B,C,D,E,F) 0 # define sqlite3DeleteTrigger(A,B) # define sqlite3DropTriggerPtr(A,B) # define sqlite3UnlinkAndDeleteTrigger(A,B,C) # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) # define sqlite3TriggerList(X, Y) 0 # define sqlite3ParseToplevel(p) p # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 #endif SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION | > > | 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 | Select*,u8); SQLITE_PRIVATE TriggerStep *sqlite3TriggerUpdateStep(sqlite3*,Token*,ExprList*, Expr*, u8); SQLITE_PRIVATE TriggerStep *sqlite3TriggerDeleteStep(sqlite3*,Token*, Expr*); SQLITE_PRIVATE void sqlite3DeleteTrigger(sqlite3*, Trigger*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3*,int,const char*); SQLITE_PRIVATE u32 sqlite3TriggerColmask(Parse*,Trigger*,ExprList*,int,int,Table*,int); # define sqlite3ParseToplevel(p) ((p)->pToplevel ? (p)->pToplevel : (p)) # define sqlite3IsToplevel(p) ((p)->pToplevel==0) #else # define sqlite3TriggersExist(B,C,D,E,F) 0 # define sqlite3DeleteTrigger(A,B) # define sqlite3DropTriggerPtr(A,B) # define sqlite3UnlinkAndDeleteTrigger(A,B,C) # define sqlite3CodeRowTrigger(A,B,C,D,E,F,G,H,I) # define sqlite3CodeRowTriggerDirect(A,B,C,D,E,F) # define sqlite3TriggerList(X, Y) 0 # define sqlite3ParseToplevel(p) p # define sqlite3IsToplevel(p) 1 # define sqlite3TriggerColmask(A,B,C,D,E,F,G) 0 #endif SQLITE_PRIVATE int sqlite3JoinType(Parse*, Token*, Token*, Token*); SQLITE_PRIVATE void sqlite3CreateForeignKey(Parse*, ExprList*, Token*, ExprList*, int); SQLITE_PRIVATE void sqlite3DeferForeignKey(Parse*, int); #ifndef SQLITE_OMIT_AUTHORIZATION |
︙ | ︙ | |||
20463 20464 20465 20466 20467 20468 20469 | ** compiled without mutexes (SQLITE_THREADSAFE=0). */ SQLITE_PRIVATE void sqlite3MemoryBarrier(void){ #if defined(SQLITE_MEMORY_BARRIER) SQLITE_MEMORY_BARRIER; #elif defined(__GNUC__) __sync_synchronize(); | > > > | | 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 | ** compiled without mutexes (SQLITE_THREADSAFE=0). */ SQLITE_PRIVATE void sqlite3MemoryBarrier(void){ #if defined(SQLITE_MEMORY_BARRIER) SQLITE_MEMORY_BARRIER; #elif defined(__GNUC__) __sync_synchronize(); #elif !defined(SQLITE_DISABLE_INTRINSIC) && \ defined(_MSC_VER) && _MSC_VER>=1300 _ReadWriteBarrier(); #elif defined(MemoryBarrier) MemoryBarrier(); #endif } /* ** Initialize and deinitialize the mutex subsystem. */ |
︙ | ︙ | |||
25825 25826 25827 25828 25829 25830 25831 | /* 131 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"), /* 132 */ "Program" OpHelp(""), /* 133 */ "Real" OpHelp("r[P2]=P4"), /* 134 */ "Param" OpHelp(""), /* 135 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 136 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 137 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), | | | | | 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 | /* 131 */ "RowSetTest" OpHelp("if r[P3] in rowset(P1) goto P2"), /* 132 */ "Program" OpHelp(""), /* 133 */ "Real" OpHelp("r[P2]=P4"), /* 134 */ "Param" OpHelp(""), /* 135 */ "FkCounter" OpHelp("fkctr[P1]+=P2"), /* 136 */ "FkIfZero" OpHelp("if fkctr[P1]==0 goto P2"), /* 137 */ "MemMax" OpHelp("r[P1]=max(r[P1],r[P2])"), /* 138 */ "IfPos" OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"), /* 139 */ "SetIfNotPos" OpHelp("if r[P1]<=0 then r[P2]=P3"), /* 140 */ "IfNotZero" OpHelp("if r[P1]!=0 then r[P1]-=P3, goto P2"), /* 141 */ "DecrJumpZero" OpHelp("if (--r[P1])==0 goto P2"), /* 142 */ "JumpZeroIncr" OpHelp("if (r[P1]++)==0 ) goto P2"), /* 143 */ "AggStep0" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 144 */ "AggStep" OpHelp("accum=r[P3] step(r[P2@P5])"), /* 145 */ "AggFinal" OpHelp("accum=r[P1] N=P2"), /* 146 */ "IncrVacuum" OpHelp(""), /* 147 */ "Expire" OpHelp(""), |
︙ | ︙ | |||
54597 54598 54599 54600 54601 54602 54603 | rc = saveCursorKey(pCur); if( rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } | | | 54634 54635 54636 54637 54638 54639 54640 54641 54642 54643 54644 54645 54646 54647 54648 | rc = saveCursorKey(pCur); if( rc==SQLITE_OK ){ btreeReleaseAllCursorPages(pCur); pCur->eState = CURSOR_REQUIRESEEK; } pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl|BTCF_AtLast); return rc; } /* Forward reference */ static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); /* |
︙ | ︙ | |||
61560 61561 61562 61563 61564 61565 61566 | ** for which the pointer is stored within the content being copied. ** ** It is critical that the child page be defragmented before being ** copied into the parent, because if the parent is page 1 then it will ** by smaller than the child due to the database header, and so all the ** free space needs to be up front. */ | | | 61597 61598 61599 61600 61601 61602 61603 61604 61605 61606 61607 61608 61609 61610 61611 | ** for which the pointer is stored within the content being copied. ** ** It is critical that the child page be defragmented before being ** copied into the parent, because if the parent is page 1 then it will ** by smaller than the child due to the database header, and so all the ** free space needs to be up front. */ assert( nNew==1 || CORRUPT_DB ); rc = defragmentPage(apNew[0]); testcase( rc!=SQLITE_OK ); assert( apNew[0]->nFree == (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) || rc!=SQLITE_OK ); copyNodeContent(apNew[0], pParent, &rc); |
︙ | ︙ | |||
77997 77998 77999 78000 78001 78002 78003 | if( pIn1->u.i<pIn2->u.i){ pIn1->u.i = pIn2->u.i; } break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ | | | | | | > > > | | | | > | < < | > > > | > | | | | 78034 78035 78036 78037 78038 78039 78040 78041 78042 78043 78044 78045 78046 78047 78048 78049 78050 78051 78052 78053 78054 78055 78056 78057 78058 78059 78060 78061 78062 78063 78064 78065 78066 78067 78068 78069 78070 78071 78072 78073 78074 78075 78076 78077 78078 78079 78080 78081 78082 78083 78084 78085 78086 78087 78088 78089 78090 78091 78092 78093 78094 78095 78096 78097 78098 78099 | if( pIn1->u.i<pIn2->u.i){ pIn1->u.i = pIn2->u.i; } break; } #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Opcode: IfPos P1 P2 P3 * * ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 ** ** Register P1 must contain an integer. ** If the value of register P1 is 1 or greater, subtract P3 from the ** value in P1 and jump to P2. ** ** If the initial value of register P1 is less than 1, then the ** value is unchanged and control passes through to the next instruction. */ case OP_IfPos: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken( pIn1->u.i>0, 2); if( pIn1->u.i>0 ){ pIn1->u.i -= pOp->p3; goto jump_to_p2; } break; } /* Opcode: SetIfNotPos P1 P2 P3 * * ** Synopsis: if r[P1]<=0 then r[P2]=P3 ** ** Register P1 must contain an integer. ** If the value of register P1 is not positive (if it is less than 1) then ** set the value of register P2 to be the integer P3. */ case OP_SetIfNotPos: { /* in1, in2 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); if( pIn1->u.i<=0 ){ pOut = out2Prerelease(p, pOp); pOut->u.i = pOp->p3; } break; } /* Opcode: IfNotZero P1 P2 P3 * * ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 ** ** Register P1 must contain an integer. If the content of register P1 is ** initially nonzero, then subtract P3 from the value in register P1 and ** jump to P2. If register P1 is initially zero, leave it unchanged ** and fall through. */ case OP_IfNotZero: { /* jump, in1 */ pIn1 = &aMem[pOp->p1]; assert( pIn1->flags&MEM_Int ); VdbeBranchTaken(pIn1->u.i<0, 2); if( pIn1->u.i ){ pIn1->u.i -= pOp->p3; goto jump_to_p2; } break; } /* Opcode: DecrJumpZero P1 P2 * * * ** Synopsis: if (--r[P1])==0 goto P2 |
︙ | ︙ | |||
79268 79269 79270 79271 79272 79273 79274 | } } #endif for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int j; for(j=0; j<pIdx->nKeyCol; j++){ /* FIXME: Be smarter about indexes that use expressions */ | | | 79311 79312 79313 79314 79315 79316 79317 79318 79319 79320 79321 79322 79323 79324 79325 | } } #endif for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int j; for(j=0; j<pIdx->nKeyCol; j++){ /* FIXME: Be smarter about indexes that use expressions */ if( pIdx->aiColumn[j]==iCol || pIdx->aiColumn[j]==XN_EXPR ){ zFault = "indexed"; } } } if( zFault ){ sqlite3DbFree(db, zErr); zErr = sqlite3MPrintf(db, "cannot open %s column for writing", zFault); |
︙ | ︙ | |||
86846 86847 86848 86849 86850 86851 86852 | Parse *pParse, /* The parsing context */ Index *pIdx, /* The index whose column is to be loaded */ int iTabCur, /* Cursor pointing to a table row */ int iIdxCol, /* The column of the index to be loaded */ int regOut /* Store the index column value in this register */ ){ i16 iTabCol = pIdx->aiColumn[iIdxCol]; | | < < < < | | | | > > > > | 86889 86890 86891 86892 86893 86894 86895 86896 86897 86898 86899 86900 86901 86902 86903 86904 86905 86906 86907 86908 86909 86910 86911 | Parse *pParse, /* The parsing context */ Index *pIdx, /* The index whose column is to be loaded */ int iTabCur, /* Cursor pointing to a table row */ int iIdxCol, /* The column of the index to be loaded */ int regOut /* Store the index column value in this register */ ){ i16 iTabCol = pIdx->aiColumn[iIdxCol]; if( iTabCol==XN_EXPR ){ assert( pIdx->aColExpr ); assert( pIdx->aColExpr->nExpr>iIdxCol ); pParse->iSelfTab = iTabCur; sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); }else{ sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, iTabCol, regOut); } } /* ** Generate code to extract the value of the iCol-th column of a table. */ SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable( Vdbe *v, /* The VDBE under construction */ |
︙ | ︙ | |||
92377 92378 92379 92380 92381 92382 92383 92384 92385 92386 92387 92388 92389 92390 | OP_Transaction, /* Opcode */ iDb, /* P1 */ DbMaskTest(pParse->writeMask,iDb), /* P2 */ pParse->cookieValue[iDb], /* P3 */ db->aDb[iDb].pSchema->iGeneration /* P4 */ ); if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); } #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; | > > | 92420 92421 92422 92423 92424 92425 92426 92427 92428 92429 92430 92431 92432 92433 92434 92435 | OP_Transaction, /* Opcode */ iDb, /* P1 */ DbMaskTest(pParse->writeMask,iDb), /* P2 */ pParse->cookieValue[iDb], /* P3 */ db->aDb[iDb].pSchema->iGeneration /* P4 */ ); if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1); VdbeComment((v, "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite)); } #ifndef SQLITE_OMIT_VIRTUALTABLE for(i=0; i<pParse->nVtabLock; i++){ char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]); sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB); } pParse->nVtabLock = 0; |
︙ | ︙ | |||
95319 95320 95321 95322 95323 95324 95325 | }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Analyze the list of expressions that form the terms of the index and ** report any errors. In the common case where the expression is exactly ** a table column, store that column in aiColumn[]. For general expressions, | | | 95364 95365 95366 95367 95368 95369 95370 95371 95372 95373 95374 95375 95376 95377 95378 | }else{ sortOrderMask = 0; /* Ignore DESC */ } /* Analyze the list of expressions that form the terms of the index and ** report any errors. In the common case where the expression is exactly ** a table column, store that column in aiColumn[]. For general expressions, ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[]. ** ** TODO: Issue a warning if two or more columns of the index are identical. ** TODO: Issue a warning if the table primary key is used as part of the ** index key. */ for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){ Expr *pCExpr; /* The i-th index expression */ |
︙ | ︙ | |||
95348 95349 95350 95351 95352 95353 95354 | ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); pIndex->aColExpr = pCopy; if( !db->mallocFailed ){ assert( pCopy!=0 ); pListItem = &pCopy->a[i]; } } | | | | 95393 95394 95395 95396 95397 95398 95399 95400 95401 95402 95403 95404 95405 95406 95407 95408 | ExprList *pCopy = sqlite3ExprListDup(db, pList, 0); pIndex->aColExpr = pCopy; if( !db->mallocFailed ){ assert( pCopy!=0 ); pListItem = &pCopy->a[i]; } } j = XN_EXPR; pIndex->aiColumn[i] = XN_EXPR; pIndex->uniqNotNull = 0; }else{ j = pCExpr->iColumn; assert( j<=0x7fff ); if( j<0 ){ j = pTab->iPKey; }else if( pTab->aCol[j].notNull==0 ){ |
︙ | ︙ | |||
95402 95403 95404 95405 95406 95407 95408 | pIndex->azColl[i] = pPk->azColl[j]; pIndex->aSortOrder[i] = pPk->aSortOrder[j]; i++; } } assert( i==pIndex->nColumn ); }else{ | | | 95447 95448 95449 95450 95451 95452 95453 95454 95455 95456 95457 95458 95459 95460 95461 | pIndex->azColl[i] = pPk->azColl[j]; pIndex->aSortOrder[i] = pPk->aSortOrder[j]; i++; } } assert( i==pIndex->nColumn ); }else{ pIndex->aiColumn[i] = XN_ROWID; pIndex->azColl[i] = "BINARY"; } sqlite3DefaultRowEst(pIndex); if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex); if( pTab==pParse->pNewTable ){ /* This routine has been called to create an automatic index as a |
︙ | ︙ | |||
97506 97507 97508 97509 97510 97511 97512 | ** ONEPASS_OFF: Two-pass approach - use a FIFO for rowids/PK values. ** ONEPASS_SINGLE: One-pass approach - at most one row deleted. ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); | | | | 97551 97552 97553 97554 97555 97556 97557 97558 97559 97560 97561 97562 97563 97564 97565 97566 97567 97568 97569 97570 97571 97572 97573 97574 97575 97576 | ** ONEPASS_OFF: Two-pass approach - use a FIFO for rowids/PK values. ** ONEPASS_SINGLE: One-pass approach - at most one row deleted. ** ONEPASS_MULTI: One-pass approach - any number of rows may be deleted. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, wcf, iTabCur+1); if( pWInfo==0 ) goto delete_from_cleanup; eOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); assert( IsVirtual(pTab)==0 || eOnePass!=ONEPASS_MULTI ); assert( IsVirtual(pTab) || bComplex || eOnePass!=ONEPASS_OFF ); /* Keep track of the number of rows to be deleted */ if( db->flags & SQLITE_CountRows ){ sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1); } /* Extract the rowid or primary key for the current row */ if( pPk ){ for(i=0; i<nPk; i++){ assert( pPk->aiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pPk->aiColumn[i], iPk+i); } iKey = iPk; }else{ iKey = pParse->nMem + 1; iKey = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iTabCur, iKey, 0); |
︙ | ︙ | |||
97589 97590 97591 97592 97593 97594 97595 | } /* Set up a loop over the rowids/primary-keys that were found in the ** where-clause loop above. */ if( eOnePass!=ONEPASS_OFF ){ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ | | | 97634 97635 97636 97637 97638 97639 97640 97641 97642 97643 97644 97645 97646 97647 97648 | } /* Set up a loop over the rowids/primary-keys that were found in the ** where-clause loop above. */ if( eOnePass!=ONEPASS_OFF ){ assert( nKey==nPk ); /* OP_Found will use an unpacked key */ if( !IsVirtual(pTab) && aToOpen[iDataCur-iTabCur] ){ assert( pPk!=0 || pTab->pSelect!=0 ); sqlite3VdbeAddOp4Int(v, OP_NotFound, iDataCur, addrBypass, iKey, nKey); VdbeCoverage(v); } }else if( pPk ){ addrLoop = sqlite3VdbeAddOp1(v, OP_Rewind, iEphCur); VdbeCoverage(v); sqlite3VdbeAddOp2(v, OP_RowKey, iEphCur, iKey); |
︙ | ︙ | |||
97611 97612 97613 97614 97615 97616 97617 97618 97619 97620 97621 97622 97623 97624 97625 | /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, OE_Abort); sqlite3MayAbort(pParse); }else #endif { int count = (pParse->nested==0); /* True to count changes */ int iIdxNoSeek = -1; if( bComplex==0 && aiCurOnePass[1]!=iDataCur ){ iIdxNoSeek = aiCurOnePass[1]; | > > > > | 97656 97657 97658 97659 97660 97661 97662 97663 97664 97665 97666 97667 97668 97669 97670 97671 97672 97673 97674 | /* Delete the row */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, 1, iKey, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, OE_Abort); assert( eOnePass==ONEPASS_OFF || eOnePass==ONEPASS_SINGLE ); sqlite3MayAbort(pParse); if( eOnePass==ONEPASS_SINGLE && sqlite3IsToplevel(pParse) ){ pParse->isMultiWrite = 0; } }else #endif { int count = (pParse->nested==0); /* True to count changes */ int iIdxNoSeek = -1; if( bComplex==0 && aiCurOnePass[1]!=iDataCur ){ iIdxNoSeek = aiCurOnePass[1]; |
︙ | ︙ | |||
97949 97950 97951 97952 97953 97954 97955 | } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; regBase = sqlite3GetTempRange(pParse, nCol); if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0; for(j=0; j<nCol; j++){ if( pPrior && pPrior->aiColumn[j]==pIdx->aiColumn[j] | | | 97998 97999 98000 98001 98002 98003 98004 98005 98006 98007 98008 98009 98010 98011 98012 | } nCol = (prefixOnly && pIdx->uniqNotNull) ? pIdx->nKeyCol : pIdx->nColumn; regBase = sqlite3GetTempRange(pParse, nCol); if( pPrior && (regBase!=regPrior || pPrior->pPartIdxWhere) ) pPrior = 0; for(j=0; j<nCol; j++){ if( pPrior && pPrior->aiColumn[j]==pIdx->aiColumn[j] && pPrior->aiColumn[j]!=XN_EXPR ){ /* This column was already computed by the previous index */ continue; } sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iDataCur, j, regBase+j); /* If the column affinity is REAL but the number is an integer, then it ** might be stored in the table as an integer (using a compact |
︙ | ︙ | |||
100037 100038 100039 100040 100041 100042 100043 100044 100045 100046 100047 100048 100049 100050 | ** the default collation sequences for each column. */ int i, j; for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ char *zDfltColl; /* Def. collation for column */ char *zIdxCol; /* Name of indexed column */ /* If the index uses a collation sequence that is different from ** the default collation sequence for the column, this index is ** unusable. Bail out early in this case. */ zDfltColl = pParent->aCol[iCol].zColl; if( !zDfltColl ){ zDfltColl = "BINARY"; } | > > | 100086 100087 100088 100089 100090 100091 100092 100093 100094 100095 100096 100097 100098 100099 100100 100101 | ** the default collation sequences for each column. */ int i, j; for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ char *zDfltColl; /* Def. collation for column */ char *zIdxCol; /* Name of indexed column */ if( iCol<0 ) break; /* No foreign keys against expression indexes */ /* If the index uses a collation sequence that is different from ** the default collation sequence for the column, this index is ** unusable. Bail out early in this case. */ zDfltColl = pParent->aCol[iCol].zColl; if( !zDfltColl ){ zDfltColl = "BINARY"; } |
︙ | ︙ | |||
100189 100190 100191 100192 100193 100194 100195 100196 100197 100198 100199 100200 100201 100202 | ** none of the child key values are). */ if( pTab==pFKey->pFrom && nIncr==1 ){ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; for(i=0; i<nCol; i++){ int iChild = aiCol[i]+1+regData; int iParent = pIdx->aiColumn[i]+1+regData; assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); | > | 100240 100241 100242 100243 100244 100245 100246 100247 100248 100249 100250 100251 100252 100253 100254 | ** none of the child key values are). */ if( pTab==pFKey->pFrom && nIncr==1 ){ int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; for(i=0; i<nCol; i++){ int iChild = aiCol[i]+1+regData; int iParent = pIdx->aiColumn[i]+1+regData; assert( pIdx->aiColumn[i]>=0 ); assert( aiCol[i]!=pTab->iPKey ); if( pIdx->aiColumn[i]==pTab->iPKey ){ /* The parent key is a composite key that includes the IPK column */ iParent = regData; } sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
︙ | ︙ | |||
100397 100398 100399 100400 100401 100402 100403 100404 100405 100406 100407 100408 100409 100410 | pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); }else{ Expr *pEq, *pAll = 0; Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pIdx!=0 ); for(i=0; i<pPk->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); pAll = sqlite3ExprAnd(db, pAll, pEq); } pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); } | > | 100449 100450 100451 100452 100453 100454 100455 100456 100457 100458 100459 100460 100461 100462 100463 | pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); }else{ Expr *pEq, *pAll = 0; Index *pPk = sqlite3PrimaryKeyIndex(pTab); assert( pIdx!=0 ); for(i=0; i<pPk->nKeyCol; i++){ i16 iCol = pIdx->aiColumn[i]; assert( iCol>=0 ); pLeft = exprTableRegister(pParse, pTab, regData, iCol); pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); pAll = sqlite3ExprAnd(db, pAll, pEq); } pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); } |
︙ | ︙ | |||
100716 100717 100718 100719 100720 100721 100722 100723 100724 100725 100726 100727 100728 100729 | iCol = pFKey->aCol[0].iFrom; aiCol = &iCol; } for(i=0; i<pFKey->nCol; i++){ if( aiCol[i]==pTab->iPKey ){ aiCol[i] = -1; } #ifndef SQLITE_OMIT_AUTHORIZATION /* Request permission to read the parent key columns. If the ** authorization callback returns SQLITE_IGNORE, behave as if any ** values read from the parent table are NULL. */ if( db->xAuth ){ int rcauth; char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; | > | 100769 100770 100771 100772 100773 100774 100775 100776 100777 100778 100779 100780 100781 100782 100783 | iCol = pFKey->aCol[0].iFrom; aiCol = &iCol; } for(i=0; i<pFKey->nCol; i++){ if( aiCol[i]==pTab->iPKey ){ aiCol[i] = -1; } assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Request permission to read the parent key columns. If the ** authorization callback returns SQLITE_IGNORE, behave as if any ** values read from the parent table are NULL. */ if( db->xAuth ){ int rcauth; char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; |
︙ | ︙ | |||
100847 100848 100849 100850 100851 100852 100853 | for(p=pTab->pFKey; p; p=p->pNextFrom){ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); } for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ Index *pIdx = 0; sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); if( pIdx ){ | | > > > | 100901 100902 100903 100904 100905 100906 100907 100908 100909 100910 100911 100912 100913 100914 100915 100916 100917 100918 | for(p=pTab->pFKey; p; p=p->pNextFrom){ for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); } for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ Index *pIdx = 0; sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); if( pIdx ){ for(i=0; i<pIdx->nKeyCol; i++){ assert( pIdx->aiColumn[i]>=0 ); mask |= COLUMN_MASK(pIdx->aiColumn[i]); } } } } return mask; } |
︙ | ︙ | |||
100970 100971 100972 100973 100974 100975 100976 100977 100978 100979 100980 100981 100982 100983 | Token tToCol; /* Name of column in parent table */ int iFromCol; /* Idx of column in child table */ Expr *pEq; /* tFromCol = OLD.tToCol */ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iFromCol>=0 ); assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); tToCol.z = pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName; tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; tToCol.n = sqlite3Strlen30(tToCol.z); tFromCol.n = sqlite3Strlen30(tFromCol.z); /* Create the expression "OLD.zToCol = zFromCol". It is important | > | 101027 101028 101029 101030 101031 101032 101033 101034 101035 101036 101037 101038 101039 101040 101041 | Token tToCol; /* Name of column in parent table */ int iFromCol; /* Idx of column in child table */ Expr *pEq; /* tFromCol = OLD.tToCol */ iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; assert( iFromCol>=0 ); assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); tToCol.z = pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName; tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; tToCol.n = sqlite3Strlen30(tToCol.z); tFromCol.n = sqlite3Strlen30(tFromCol.z); /* Create the expression "OLD.zToCol = zFromCol". It is important |
︙ | ︙ | |||
101279 101280 101281 101282 101283 101284 101285 | db->mallocFailed = 1; return 0; } for(n=0; n<pIdx->nColumn; n++){ i16 x = pIdx->aiColumn[n]; if( x>=0 ){ pIdx->zColAff[n] = pTab->aCol[x].affinity; | | | | 101337 101338 101339 101340 101341 101342 101343 101344 101345 101346 101347 101348 101349 101350 101351 101352 101353 101354 101355 | db->mallocFailed = 1; return 0; } for(n=0; n<pIdx->nColumn; n++){ i16 x = pIdx->aiColumn[n]; if( x>=0 ){ pIdx->zColAff[n] = pTab->aCol[x].affinity; }else if( x==XN_ROWID ){ pIdx->zColAff[n] = SQLITE_AFF_INTEGER; }else{ char aff; assert( x==XN_EXPR ); assert( pIdx->aColExpr!=0 ); aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr); if( aff==0 ) aff = SQLITE_AFF_BLOB; pIdx->zColAff[n] = aff; } } pIdx->zColAff[n] = 0; |
︙ | ︙ | |||
101449 101450 101451 101452 101453 101454 101455 | int memId; /* Register holding max rowid */ int addr; /* A VDBE address */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); | | | 101507 101508 101509 101510 101511 101512 101513 101514 101515 101516 101517 101518 101519 101520 101521 | int memId; /* Register holding max rowid */ int addr; /* A VDBE address */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); assert( sqlite3IsToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
︙ | ︙ | |||
102597 102598 102599 102600 102601 102602 102603 | /* Create a record for this index entry as it should appear after ** the insert or update. Store that record in the aRegIdx[ix] register */ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); for(i=0; i<pIdx->nColumn; i++){ int iField = pIdx->aiColumn[i]; int x; | | | | 102655 102656 102657 102658 102659 102660 102661 102662 102663 102664 102665 102666 102667 102668 102669 102670 102671 102672 102673 102674 102675 | /* Create a record for this index entry as it should appear after ** the insert or update. Store that record in the aRegIdx[ix] register */ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); for(i=0; i<pIdx->nColumn; i++){ int iField = pIdx->aiColumn[i]; int x; if( iField==XN_EXPR ){ pParse->ckBase = regNewData+1; sqlite3ExprCode(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i); pParse->ckBase = 0; VdbeComment((v, "%s column %d", pIdx->zName, i)); }else{ if( iField==XN_ROWID || iField==pTab->iPKey ){ if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ x = regNewData; regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; }else{ x = iField + regNewData + 1; } sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); |
︙ | ︙ | |||
102662 102663 102664 102665 102666 102667 102668 102669 102670 102671 102672 102673 102674 102675 | } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; i<pPk->nKeyCol; i++){ x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); VdbeComment((v, "%s.%s", pTab->zName, pTab->aCol[pPk->aiColumn[i]].zName)); } } if( isUpdate ){ | > | 102720 102721 102722 102723 102724 102725 102726 102727 102728 102729 102730 102731 102732 102733 102734 | } }else{ int x; /* Extract the PRIMARY KEY from the end of the index entry and ** store it in registers regR..regR+nPk-1 */ if( pIdx!=pPk ){ for(i=0; i<pPk->nKeyCol; i++){ assert( pPk->aiColumn[i]>=0 ); x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); VdbeComment((v, "%s.%s", pTab->zName, pTab->aCol[pPk->aiColumn[i]].zName)); } } if( isUpdate ){ |
︙ | ︙ | |||
102683 102684 102685 102686 102687 102688 102689 102690 102691 102692 102693 102694 102695 102696 | int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; int op = OP_Ne; int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); for(i=0; i<pPk->nKeyCol; i++){ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); x = pPk->aiColumn[i]; if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); | > | 102742 102743 102744 102745 102746 102747 102748 102749 102750 102751 102752 102753 102754 102755 102756 | int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; int op = OP_Ne; int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); for(i=0; i<pPk->nKeyCol; i++){ char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); x = pPk->aiColumn[i]; assert( x>=0 ); if( i==(pPk->nKeyCol-1) ){ addrJump = addrUniqueOk; op = OP_Eq; } sqlite3VdbeAddOp4(v, op, regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ ); |
︙ | ︙ | |||
102934 102935 102936 102937 102938 102939 102940 | if( pDest->onError!=pSrc->onError ){ return 0; /* Different conflict resolution strategies */ } for(i=0; i<pSrc->nKeyCol; i++){ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ return 0; /* Different columns indexed */ } | | | 102994 102995 102996 102997 102998 102999 103000 103001 103002 103003 103004 103005 103006 103007 103008 | if( pDest->onError!=pSrc->onError ){ return 0; /* Different conflict resolution strategies */ } for(i=0; i<pSrc->nKeyCol; i++){ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ return 0; /* Different columns indexed */ } if( pSrc->aiColumn[i]==XN_EXPR ){ assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 ); if( sqlite3ExprCompare(pSrc->aColExpr->a[i].pExpr, pDest->aColExpr->a[i].pExpr, -1)!=0 ){ return 0; /* Different expressions in the index */ } } if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ |
︙ | ︙ | |||
106576 106577 106578 106579 106580 106581 106582 | /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { | | > | | 106636 106637 106638 106639 106640 106641 106642 106643 106644 106645 106646 106647 106648 106649 106650 106651 106652 | /* Code that appears at the end of the integrity check. If no error ** messages have been generated, output OK. Otherwise output the ** error message */ static const int iLn = VDBE_OFFSET_LINENO(2); static const VdbeOpList endCode[] = { { OP_AddImm, 1, 0, 0}, /* 0 */ { OP_If, 1, 0, 0}, /* 1 */ { OP_String8, 0, 3, 0}, /* 2 */ { OP_ResultRow, 3, 1, 0}, }; int isQuick = (sqlite3Tolower(zLeft[0])=='q'); /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check", ** then iDb is set to the index of the database identified by <db>. |
︙ | ︙ | |||
106739 106740 106741 106742 106743 106744 106745 | ** or (2) the next entry has a different key */ if( IsUniqueIndex(pIdx) ){ int uniqOk = sqlite3VdbeMakeLabel(v); int jmp6; int kk; for(kk=0; kk<pIdx->nKeyCol; kk++){ int iCol = pIdx->aiColumn[kk]; | | | 106800 106801 106802 106803 106804 106805 106806 106807 106808 106809 106810 106811 106812 106813 106814 | ** or (2) the next entry has a different key */ if( IsUniqueIndex(pIdx) ){ int uniqOk = sqlite3VdbeMakeLabel(v); int jmp6; int kk; for(kk=0; kk<pIdx->nKeyCol; kk++){ int iCol = pIdx->aiColumn[kk]; assert( iCol!=XN_ROWID && iCol<pTab->nCol ); if( iCol>=0 && pTab->aCol[iCol].notNull ) continue; sqlite3VdbeAddOp2(v, OP_IsNull, r1+kk, uniqOk); VdbeCoverage(v); } jmp6 = sqlite3VdbeAddOp1(v, OP_Next, iIdxCur+j); VdbeCoverage(v); sqlite3VdbeGoto(v, uniqOk); sqlite3VdbeJumpHere(v, jmp6); |
︙ | ︙ | |||
106778 106779 106780 106781 106782 106783 106784 | sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); } #endif /* SQLITE_OMIT_BTREECOUNT */ } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); | | | | | 106839 106840 106841 106842 106843 106844 106845 106846 106847 106848 106849 106850 106851 106852 106853 106854 106855 | sqlite3VdbeAddOp3(v, OP_Concat, 3, 2, 7); sqlite3VdbeAddOp2(v, OP_ResultRow, 7, 1); } #endif /* SQLITE_OMIT_BTREECOUNT */ } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode, iLn); sqlite3VdbeChangeP2(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr+1); sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); } break; #endif /* SQLITE_OMIT_INTEGRITY_CHECK */ #ifndef SQLITE_OMIT_UTF16 /* ** PRAGMA encoding |
︙ | ︙ | |||
108617 108618 108619 108620 108621 108622 108623 | int addr; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } | | < | < | < | 108678 108679 108680 108681 108682 108683 108684 108685 108686 108687 108688 108689 108690 108691 108692 108693 108694 108695 108696 108697 108698 108699 108700 108701 108702 108703 108704 108705 108706 108707 108708 108709 | int addr; int iLimit; if( pSelect->iOffset ){ iLimit = pSelect->iOffset+1; }else{ iLimit = pSelect->iLimit; } addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); sqlite3VdbeJumpHere(v, addr); } } /* ** Add code to implement the OFFSET */ static void codeOffset( Vdbe *v, /* Generate code into this VM */ int iOffset, /* Register holding the offset counter */ int iContinue /* Jump here to skip the current record */ ){ if( iOffset>0 ){ sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); VdbeComment((v, "OFFSET")); } } /* ** Add code that will check to make sure the N registers starting at iMem ** form a distinct entry. iTab is a sorting index that holds previously ** seen combinations of the N values. A new entry is made in iTab |
︙ | ︙ | |||
109853 109854 109855 109856 109857 109858 109859 | ** the reuse of the same limit and offset registers across multiple ** SELECT statements. */ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ Vdbe *v = 0; int iLimit = 0; int iOffset; | | | 109911 109912 109913 109914 109915 109916 109917 109918 109919 109920 109921 109922 109923 109924 109925 | ** the reuse of the same limit and offset registers across multiple ** SELECT statements. */ static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ Vdbe *v = 0; int iLimit = 0; int iOffset; int n; if( p->iLimit ) return; /* ** "LIMIT -1" always shows all rows. There is some ** controversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. |
︙ | ︙ | |||
109888 109889 109890 109891 109892 109893 109894 | } if( p->pOffset ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, p->pOffset, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); | < | < < | < | 109946 109947 109948 109949 109950 109951 109952 109953 109954 109955 109956 109957 109958 109959 109960 109961 109962 109963 | } if( p->pOffset ){ p->iOffset = iOffset = ++pParse->nMem; pParse->nMem++; /* Allocate an extra register for limit+offset */ sqlite3ExprCode(pParse, p->pOffset, iOffset); sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); VdbeComment((v, "OFFSET counter")); sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iOffset, iOffset, 0); sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); VdbeComment((v, "LIMIT+OFFSET")); sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iLimit, iOffset+1, -1); } } } #ifndef SQLITE_OMIT_COMPOUND_SELECT /* ** Return the appropriate collating sequence for the iCol-th column of |
︙ | ︙ | |||
110311 110312 110313 110314 110315 110316 110317 110318 110319 110320 110321 110322 110323 110324 | } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); } explainSetInteger(iSub2, pParse->iNextSelectId); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow += pPrior->nSelectRow; | > > > > > | 110365 110366 110367 110368 110369 110370 110371 110372 110373 110374 110375 110376 110377 110378 110379 110380 110381 110382 110383 | } p->pPrior = 0; p->iLimit = pPrior->iLimit; p->iOffset = pPrior->iOffset; if( p->iLimit ){ addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); VdbeComment((v, "Jump ahead if LIMIT reached")); if( p->iOffset ){ sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iOffset, p->iOffset, 0); sqlite3VdbeAddOp3(v, OP_Add, p->iLimit, p->iOffset, p->iOffset+1); sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iLimit, p->iOffset+1, -1); } } explainSetInteger(iSub2, pParse->iNextSelectId); rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow += pPrior->nSelectRow; |
︙ | ︙ | |||
112259 112260 112261 112262 112263 112264 112265 | /* Look up every table named in the FROM clause of the select. If ** an entry of the FROM clause is a subquery instead of a table or view, ** then create a transient table structure to describe the subquery. */ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ Table *pTab; | | < < < | < < < < < | 112318 112319 112320 112321 112322 112323 112324 112325 112326 112327 112328 112329 112330 112331 112332 112333 112334 | /* Look up every table named in the FROM clause of the select. If ** an entry of the FROM clause is a subquery instead of a table or view, ** then create a transient table structure to describe the subquery. */ for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ Table *pTab; assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); if( pFrom->fg.isRecursive ) continue; assert( pFrom->pTab==0 ); #ifndef SQLITE_OMIT_CTE if( withExpand(pWalker, pFrom) ) return WRC_Abort; if( pFrom->pTab ) {} else #endif if( pFrom->zName==0 ){ #ifndef SQLITE_OMIT_SUBQUERY Select *pSel = pFrom->pSelect; |
︙ | ︙ | |||
112561 112562 112563 112564 112565 112566 112567 | static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ Parse *pParse; int i; SrcList *pTabList; struct SrcList_item *pFrom; assert( p->selFlags & SF_Resolved ); | | | | | | | > | | | | | | < | 112612 112613 112614 112615 112616 112617 112618 112619 112620 112621 112622 112623 112624 112625 112626 112627 112628 112629 112630 112631 112632 112633 112634 112635 112636 112637 112638 | static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ Parse *pParse; int i; SrcList *pTabList; struct SrcList_item *pFrom; assert( p->selFlags & SF_Resolved ); assert( (p->selFlags & SF_HasTypeInfo)==0 ); p->selFlags |= SF_HasTypeInfo; pParse = pWalker->pParse; pTabList = p->pSrc; for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ Table *pTab = pFrom->pTab; assert( pTab!=0 ); if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ /* A sub-query in the FROM clause of a SELECT */ Select *pSel = pFrom->pSelect; if( pSel ){ while( pSel->pPrior ) pSel = pSel->pPrior; selectAddColumnTypeAndCollation(pParse, pTab, pSel); } } } } #endif |
︙ | ︙ | |||
115131 115132 115133 115134 115135 115136 115137 | int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ int iEph = 0; /* Ephemeral table holding all primary key values */ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ | | | | | 115182 115183 115184 115185 115186 115187 115188 115189 115190 115191 115192 115193 115194 115195 115196 115197 115198 | int newmask; /* Mask of NEW.* columns accessed by BEFORE triggers */ int iEph = 0; /* Ephemeral table holding all primary key values */ int nKey = 0; /* Number of elements in regKey for WITHOUT ROWID */ int aiCurOnePass[2]; /* The write cursors opened by WHERE_ONEPASS */ /* Register Allocations */ int regRowCount = 0; /* A count of rows changed */ int regOldRowid = 0; /* The old rowid */ int regNewRowid = 0; /* The new rowid */ int regNew = 0; /* Content of the NEW.* table in triggers */ int regOld = 0; /* Content of OLD.* table in triggers */ int regRowSet = 0; /* Rowset of rows to be updated */ int regKey = 0; /* composite PRIMARY KEY value */ memset(&sContext, 0, sizeof(sContext)); db = pParse->db; if( pParse->nErr || db->mallocFailed ){ |
︙ | ︙ | |||
115297 115298 115299 115300 115301 115302 115303 | /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); | < < < < < < < < < < < > | | | | | | | | | | | > | 115348 115349 115350 115351 115352 115353 115354 115355 115356 115357 115358 115359 115360 115361 115362 115363 115364 115365 115366 115367 115368 115369 115370 115371 115372 115373 115374 115375 | /* Begin generating code. */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto update_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, 1, iDb); /* Allocate required registers. */ if( !IsVirtual(pTab) ){ regRowSet = ++pParse->nMem; regOldRowid = regNewRowid = ++pParse->nMem; if( chngPk || pTrigger || hasFK ){ regOld = pParse->nMem + 1; pParse->nMem += pTab->nCol; } if( chngKey || pTrigger || hasFK ){ regNewRowid = ++pParse->nMem; } regNew = pParse->nMem + 1; pParse->nMem += pTab->nCol; } /* Start the view context. */ if( isView ){ sqlite3AuthContextPush(pParse, &sContext, pTab->zName); } /* If we are trying to update a view, realize that view into |
︙ | ︙ | |||
115341 115342 115343 115344 115345 115346 115347 115348 115349 115350 115351 115352 115353 115354 | /* Resolve the column names in all the expressions in the ** WHERE clause. */ if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } /* Begin the database scan */ if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur | > > > > > > > > > | 115383 115384 115385 115386 115387 115388 115389 115390 115391 115392 115393 115394 115395 115396 115397 115398 115399 115400 115401 115402 115403 115404 115405 | /* Resolve the column names in all the expressions in the ** WHERE clause. */ if( sqlite3ResolveExprNames(&sNC, pWhere) ){ goto update_cleanup; } #ifndef SQLITE_OMIT_VIRTUALTABLE /* Virtual tables must be handled separately */ if( IsVirtual(pTab) ){ updateVirtualTable(pParse, pTabList, pTab, pChanges, pRowidExpr, aXRef, pWhere, onError); goto update_cleanup; } #endif /* Begin the database scan */ if( HasRowid(pTab) ){ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur |
︙ | ︙ | |||
115381 115382 115383 115384 115385 115386 115387 | addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur); if( pWInfo==0 ) goto update_cleanup; okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); for(i=0; i<nPk; i++){ | | | 115432 115433 115434 115435 115436 115437 115438 115439 115440 115441 115442 115443 115444 115445 115446 | addrOpen = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iEph, nPk); sqlite3VdbeSetP4KeyInfo(pParse, pPk); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, iIdxCur); if( pWInfo==0 ) goto update_cleanup; okOnePass = sqlite3WhereOkOnePass(pWInfo, aiCurOnePass); for(i=0; i<nPk; i++){ assert( pPk->aiColumn[i]>=0 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, pPk->aiColumn[i], iPk+i); } if( okOnePass ){ sqlite3VdbeChangeToNoop(v, addrOpen); nKey = nPk; regKey = iPk; |
︙ | ︙ | |||
115504 115505 115506 115507 115508 115509 115510 | ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); | < | 115555 115556 115557 115558 115559 115560 115561 115562 115563 115564 115565 115566 115567 115568 | ** the database after the BEFORE triggers are fired anyway (as the trigger ** may have modified them). So not loading those that are not going to ** be used eliminates some redundant opcodes. */ newmask = sqlite3TriggerColmask( pParse, pTrigger, pChanges, 1, TRIGGER_BEFORE, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); }else{ j = aXRef[i]; if( j>=0 ){ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); |
︙ | ︙ | |||
115682 115683 115684 115685 115686 115687 115688 | #undef pTrigger #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Generate code for an UPDATE of a virtual table. ** | > > > > | | | < < | > | < | < < < < < < | < > | < < > | < > | > > | < < < < < < < < < < | | | < > > > > > | > > | > > > > > > > > > > > > > > | > | > > > > > > > | > > | > > > > | | > > > | > | | > > | | | > | > > > > | | | > > | < < | 115732 115733 115734 115735 115736 115737 115738 115739 115740 115741 115742 115743 115744 115745 115746 115747 115748 115749 115750 115751 115752 115753 115754 115755 115756 115757 115758 115759 115760 115761 115762 115763 115764 115765 115766 115767 115768 115769 115770 115771 115772 115773 115774 115775 115776 115777 115778 115779 115780 115781 115782 115783 115784 115785 115786 115787 115788 115789 115790 115791 115792 115793 115794 115795 115796 115797 115798 115799 115800 115801 115802 115803 115804 115805 115806 115807 115808 115809 115810 115811 115812 115813 115814 115815 115816 115817 115818 115819 115820 115821 115822 115823 115824 115825 115826 115827 115828 115829 115830 115831 115832 115833 115834 115835 115836 115837 115838 115839 115840 115841 115842 115843 115844 115845 115846 115847 115848 115849 115850 115851 115852 115853 115854 115855 115856 115857 115858 115859 115860 115861 115862 115863 115864 | #undef pTrigger #endif #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Generate code for an UPDATE of a virtual table. ** ** There are two possible strategies - the default and the special ** "onepass" strategy. Onepass is only used if the virtual table ** implementation indicates that pWhere may match at most one row. ** ** The default strategy is to create an ephemeral table that contains ** for each row to be changed: ** ** (A) The original rowid of that row. ** (B) The revised rowid for the row. ** (C) The content of every column in the row. ** ** Then loop through the contents of this ephemeral table executing a ** VUpdate for each row. When finished, drop the ephemeral table. ** ** The "onepass" strategy does not use an ephemeral table. Instead, it ** stores the same values (A, B and C above) in a register array and ** makes a single invocation of VUpdate. */ static void updateVirtualTable( Parse *pParse, /* The parsing context */ SrcList *pSrc, /* The virtual table to be modified */ Table *pTab, /* The virtual table */ ExprList *pChanges, /* The columns to change in the UPDATE statement */ Expr *pRowid, /* Expression used to recompute the rowid */ int *aXRef, /* Mapping from columns of pTab to entries in pChanges */ Expr *pWhere, /* WHERE clause of the UPDATE statement */ int onError /* ON CONFLICT strategy */ ){ Vdbe *v = pParse->pVdbe; /* Virtual machine under construction */ int ephemTab; /* Table holding the result of the SELECT */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* Database connection */ const char *pVTab = (const char*)sqlite3GetVTable(db, pTab); WhereInfo *pWInfo; int nArg = 2 + pTab->nCol; /* Number of arguments to VUpdate */ int regArg; /* First register in VUpdate arg array */ int regRec; /* Register in which to assemble record */ int regRowid; /* Register for ephem table rowid */ int iCsr = pSrc->a[0].iCursor; /* Cursor used for virtual table scan */ int aDummy[2]; /* Unused arg for sqlite3WhereOkOnePass() */ int bOnePass; /* True to use onepass strategy */ int addr; /* Address of OP_OpenEphemeral */ /* Allocate nArg registers to martial the arguments to VUpdate. Then ** create and open the ephemeral table in which the records created from ** these arguments will be temporarily stored. */ assert( v ); ephemTab = pParse->nTab++; addr= sqlite3VdbeAddOp2(v, OP_OpenEphemeral, ephemTab, nArg); regArg = pParse->nMem + 1; pParse->nMem += nArg; regRec = ++pParse->nMem; regRowid = ++pParse->nMem; /* Start scanning the virtual table */ pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0,0,WHERE_ONEPASS_DESIRED,0); if( pWInfo==0 ) return; /* Populate the argument registers. */ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg); if( pRowid ){ sqlite3ExprCode(pParse, pRowid, regArg+1); }else{ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg+1); } for(i=0; i<pTab->nCol; i++){ if( aXRef[i]>=0 ){ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i); }else{ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i); } } bOnePass = sqlite3WhereOkOnePass(pWInfo, aDummy); if( bOnePass ){ /* If using the onepass strategy, no-op out the OP_OpenEphemeral coded ** above. Also, if this is a top-level parse (not a trigger), clear the ** multi-write flag so that the VM does not open a statement journal */ sqlite3VdbeChangeToNoop(v, addr); if( sqlite3IsToplevel(pParse) ){ pParse->isMultiWrite = 0; } }else{ /* Create a record from the argument register contents and insert it into ** the ephemeral table. */ sqlite3VdbeAddOp3(v, OP_MakeRecord, regArg, nArg, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, ephemTab, regRowid); sqlite3VdbeAddOp3(v, OP_Insert, ephemTab, regRec, regRowid); } if( bOnePass==0 ){ /* End the virtual table scan */ sqlite3WhereEnd(pWInfo); /* Begin scannning through the ephemeral table. */ addr = sqlite3VdbeAddOp1(v, OP_Rewind, ephemTab); VdbeCoverage(v); /* Extract arguments from the current row of the ephemeral table and ** invoke the VUpdate method. */ for(i=0; i<nArg; i++){ sqlite3VdbeAddOp3(v, OP_Column, ephemTab, i, regArg+i); } } sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 0, nArg, regArg, pVTab, P4_VTAB); sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); sqlite3MayAbort(pParse); /* End of the ephemeral table scan. Or, if using the onepass strategy, ** jump to here if the scan visited zero rows. */ if( bOnePass==0 ){ sqlite3VdbeAddOp2(v, OP_Next, ephemTab, addr+1); VdbeCoverage(v); sqlite3VdbeJumpHere(v, addr); sqlite3VdbeAddOp2(v, OP_Close, ephemTab, 0); }else{ sqlite3WhereEnd(pWInfo); } } #endif /* SQLITE_OMIT_VIRTUALTABLE */ /************** End of update.c **********************************************/ /************** Begin file vacuum.c ******************************************/ /* ** 2003 April 6 |
︙ | ︙ | |||
117089 117090 117091 117092 117093 117094 117095 117096 117097 117098 117099 117100 117101 117102 117103 | /* Invoke the xBegin method. If successful, add the vtab to the ** sqlite3.aVTrans[] array. */ rc = growVTrans(db); if( rc==SQLITE_OK ){ rc = pModule->xBegin(pVTab->pVtab); if( rc==SQLITE_OK ){ addToVTrans(db, pVTab); } } } return rc; } /* | > > | 117171 117172 117173 117174 117175 117176 117177 117178 117179 117180 117181 117182 117183 117184 117185 117186 117187 | /* Invoke the xBegin method. If successful, add the vtab to the ** sqlite3.aVTrans[] array. */ rc = growVTrans(db); if( rc==SQLITE_OK ){ rc = pModule->xBegin(pVTab->pVtab); if( rc==SQLITE_OK ){ int iSvpt = db->nStatement + db->nSavepoint; addToVTrans(db, pVTab); if( iSvpt ) rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, iSvpt-1); } } } return rc; } /* |
︙ | ︙ | |||
117947 117948 117949 117950 117951 117952 117953 | } /* ** Return the name of the i-th column of the pIdx index. */ static const char *explainIndexColumnName(Index *pIdx, int i){ i = pIdx->aiColumn[i]; | | | | 118031 118032 118033 118034 118035 118036 118037 118038 118039 118040 118041 118042 118043 118044 118045 118046 | } /* ** Return the name of the i-th column of the pIdx index. */ static const char *explainIndexColumnName(Index *pIdx, int i){ i = pIdx->aiColumn[i]; if( i==XN_EXPR ) return "<expr>"; if( i==XN_ROWID ) return "rowid"; return pIdx->pTable->aCol[i].zName; } /* ** Argument pLevel describes a strategy for scanning table pTab. This ** function appends text to pStr that describes the subset of table ** rows scanned by the strategy in the form of an SQL expression. |
︙ | ︙ | |||
118415 118416 118417 118418 118419 118420 118421 | pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); | | | 118499 118500 118501 118502 118503 118504 118505 118506 118507 118508 118509 118510 118511 118512 118513 | pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), iIdxCur, 0, regBase, nSkip); VdbeCoverageIf(v, bRev==0); VdbeCoverageIf(v, bRev!=0); sqlite3VdbeJumpHere(v, j); for(j=0; j<nSkip; j++){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); testcase( pIdx->aiColumn[j]==XN_EXPR ); VdbeComment((v, "%s", explainIndexColumnName(pIdx, j))); } } /* Evaluate the equality constraints */ assert( zAff==0 || (int)strlen(zAff)>=nEq ); |
︙ | ︙ | |||
118601 118602 118603 118604 118605 118606 118607 | VdbeCoverage(v); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } | < > | 118685 118686 118687 118688 118689 118690 118691 118692 118693 118694 118695 118696 118697 118698 118699 118700 | VdbeCoverage(v); pLoop->u.vtab.needFree = 0; for(j=0; j<nConstraint && j<16; j++){ if( (pLoop->u.vtab.omitMask>>j)&1 ){ disableTerm(pLevel, pLoop->aLTerm[j]); } } pLevel->p1 = iCur; pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext; pLevel->p2 = sqlite3VdbeCurrentAddr(v); sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); sqlite3ExprCachePop(pParse); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( (pLoop->wsFlags & WHERE_IPK)!=0 |
︙ | ︙ | |||
120844 120845 120846 120847 120848 120849 120850 120851 120852 120853 120854 120855 120856 120857 | ** Any cursors returned will have been opened for writing. ** ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is ** unable to use the ONEPASS optimization. */ SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); return pWInfo->eOnePass; } /* ** Move the content of pSrc into pDest */ static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ | > > > > > > > | 120928 120929 120930 120931 120932 120933 120934 120935 120936 120937 120938 120939 120940 120941 120942 120943 120944 120945 120946 120947 120948 | ** Any cursors returned will have been opened for writing. ** ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is ** unable to use the ONEPASS optimization. */ SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); #ifdef WHERETRACE_ENABLED if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ sqlite3DebugPrintf("%s cursors: %d %d\n", pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", aiCur[0], aiCur[1]); } #endif return pWInfo->eOnePass; } /* ** Move the content of pSrc into pDest */ static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ |
︙ | ︙ | |||
120939 120940 120941 120942 120943 120944 120945 | WhereClause *pWC; /* Shorthand for pScan->pWC */ WhereTerm *pTerm; /* The term being tested */ int k = pScan->k; /* Where to start scanning */ while( pScan->iEquiv<=pScan->nEquiv ){ iCur = pScan->aiCur[pScan->iEquiv-1]; iColumn = pScan->aiColumn[pScan->iEquiv-1]; | | | | 121030 121031 121032 121033 121034 121035 121036 121037 121038 121039 121040 121041 121042 121043 121044 121045 121046 121047 121048 121049 | WhereClause *pWC; /* Shorthand for pScan->pWC */ WhereTerm *pTerm; /* The term being tested */ int k = pScan->k; /* Where to start scanning */ while( pScan->iEquiv<=pScan->nEquiv ){ iCur = pScan->aiCur[pScan->iEquiv-1]; iColumn = pScan->aiColumn[pScan->iEquiv-1]; if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; while( (pWC = pScan->pWC)!=0 ){ for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ if( pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn && (iColumn!=XN_EXPR || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) ){ if( (pTerm->eOperator & WO_EQUIV)!=0 && pScan->nEquiv<ArraySize(pScan->aiCur) && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN ){ |
︙ | ︙ | |||
121038 121039 121040 121041 121042 121043 121044 | /* memset(pScan, 0, sizeof(*pScan)); */ pScan->pOrigWC = pWC; pScan->pWC = pWC; pScan->pIdxExpr = 0; if( pIdx ){ j = iColumn; iColumn = pIdx->aiColumn[j]; | | | 121129 121130 121131 121132 121133 121134 121135 121136 121137 121138 121139 121140 121141 121142 121143 | /* memset(pScan, 0, sizeof(*pScan)); */ pScan->pOrigWC = pWC; pScan->pWC = pWC; pScan->pIdxExpr = 0; if( pIdx ){ j = iColumn; iColumn = pIdx->aiColumn[j]; if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; } if( pIdx && iColumn>=0 ){ pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; pScan->zCollName = pIdx->azColl[j]; }else{ pScan->idxaff = 0; pScan->zCollName = 0; |
︙ | ︙ | |||
121477 121478 121479 121480 121481 121482 121483 | for(i=BMS-1; i<pTable->nCol; i++){ pIdx->aiColumn[n] = i; pIdx->azColl[n] = "BINARY"; n++; } } assert( n==nKeyCol ); | | | 121568 121569 121570 121571 121572 121573 121574 121575 121576 121577 121578 121579 121580 121581 121582 | for(i=BMS-1; i<pTable->nCol; i++){ pIdx->aiColumn[n] = i; pIdx->azColl[n] = "BINARY"; n++; } } assert( n==nKeyCol ); pIdx->aiColumn[n] = XN_ROWID; pIdx->azColl[n] = "BINARY"; /* Create the automatic index */ assert( pLevel->iIdxCur>=0 ); pLevel->iIdxCur = pParse->nTab++; sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
︙ | ︙ | |||
122992 122993 122994 122995 122996 122997 122998 | assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ }else if( eOp & (WO_EQ|WO_IS) ){ int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); | > | > | 123083 123084 123085 123086 123087 123088 123089 123090 123091 123092 123093 123094 123095 123096 123097 123098 123099 | assert( nIn>0 ); /* RHS always has 2 or more terms... The parser ** changes "x IN (?)" into "x=?". */ }else if( eOp & (WO_EQ|WO_IS) ){ int iCol = pProbe->aiColumn[saved_nEq]; pNew->wsFlags |= WHERE_COLUMN_EQ; assert( saved_nEq==pNew->u.btree.nEq ); if( iCol==XN_ROWID || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) ){ if( iCol>=0 && pProbe->uniqNotNull==0 ){ pNew->wsFlags |= WHERE_UNQ_WANTED; }else{ pNew->wsFlags |= WHERE_ONEROW; } } }else if( eOp & WO_ISNULL ){ |
︙ | ︙ | |||
123192 123193 123194 123195 123196 123197 123198 | if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ if( pExpr->iColumn<0 ) return 1; for(jj=0; jj<pIndex->nKeyCol; jj++){ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; } }else if( (aColExpr = pIndex->aColExpr)!=0 ){ for(jj=0; jj<pIndex->nKeyCol; jj++){ | | | 123285 123286 123287 123288 123289 123290 123291 123292 123293 123294 123295 123296 123297 123298 123299 | if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ if( pExpr->iColumn<0 ) return 1; for(jj=0; jj<pIndex->nKeyCol; jj++){ if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; } }else if( (aColExpr = pIndex->aColExpr)!=0 ){ for(jj=0; jj<pIndex->nKeyCol; jj++){ if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ return 1; } } } } return 0; |
︙ | ︙ | |||
123589 123590 123591 123592 123593 123594 123595 123596 123597 123598 123599 123600 123601 123602 | if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->needToFreeIdxStr = 0; pIdxInfo->orderByConsumed = 0; pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; rc = vtabBestIndex(pParse, pTab, pIdxInfo); if( rc ) goto whereLoopAddVtab_exit; pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pNew->prereq = mExtra; mxTerm = -1; assert( pNew->nLSlot>=nConstraint ); for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; | > | 123682 123683 123684 123685 123686 123687 123688 123689 123690 123691 123692 123693 123694 123695 123696 | if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->needToFreeIdxStr = 0; pIdxInfo->orderByConsumed = 0; pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; pIdxInfo->idxFlags = 0; rc = vtabBestIndex(pParse, pTab, pIdxInfo); if( rc ) goto whereLoopAddVtab_exit; pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pNew->prereq = mExtra; mxTerm = -1; assert( pNew->nLSlot>=nConstraint ); for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; |
︙ | ︙ | |||
123634 123635 123636 123637 123638 123639 123640 123641 123642 123643 123644 123645 123646 123647 123648 123649 123650 123651 123652 123653 123654 123655 123656 123657 123658 123659 123660 123661 123662 | } /* A virtual table that is constrained by an IN clause may not ** consume the ORDER BY clause because (1) the order of IN terms ** is not necessarily related to the order of output terms and ** (2) Multiple outputs from a single IN value will not merge ** together. */ pIdxInfo->orderByConsumed = 0; } } } if( i>=nConstraint ){ pNew->nLTerm = mxTerm+1; assert( pNew->nLTerm<=pNew->nLSlot ); pNew->u.vtab.idxNum = pIdxInfo->idxNum; pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; pIdxInfo->needToFreeIdxStr = 0; pNew->u.vtab.idxStr = pIdxInfo->idxStr; pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? pIdxInfo->nOrderBy : 0); pNew->rSetup = 0; pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); whereLoopInsert(pBuilder, pNew); if( pNew->u.vtab.needFree ){ sqlite3_free(pNew->u.vtab.idxStr); pNew->u.vtab.needFree = 0; } } } | > > > > > > > > > | 123728 123729 123730 123731 123732 123733 123734 123735 123736 123737 123738 123739 123740 123741 123742 123743 123744 123745 123746 123747 123748 123749 123750 123751 123752 123753 123754 123755 123756 123757 123758 123759 123760 123761 123762 123763 123764 123765 | } /* A virtual table that is constrained by an IN clause may not ** consume the ORDER BY clause because (1) the order of IN terms ** is not necessarily related to the order of output terms and ** (2) Multiple outputs from a single IN value will not merge ** together. */ pIdxInfo->orderByConsumed = 0; pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; } } } if( i>=nConstraint ){ pNew->nLTerm = mxTerm+1; assert( pNew->nLTerm<=pNew->nLSlot ); pNew->u.vtab.idxNum = pIdxInfo->idxNum; pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; pIdxInfo->needToFreeIdxStr = 0; pNew->u.vtab.idxStr = pIdxInfo->idxStr; pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? pIdxInfo->nOrderBy : 0); pNew->rSetup = 0; pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated ** that the scan will visit at most one row. Clear it otherwise. */ if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ pNew->wsFlags |= WHERE_ONEROW; }else{ pNew->wsFlags &= ~WHERE_ONEROW; } whereLoopInsert(pBuilder, pNew); if( pNew->u.vtab.needFree ){ sqlite3_free(pNew->u.vtab.idxStr); pNew->u.vtab.needFree = 0; } } } |
︙ | ︙ | |||
123970 123971 123972 123973 123974 123975 123976 | nColumn = 1; }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ return 0; }else{ nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); | | > | 124073 124074 124075 124076 124077 124078 124079 124080 124081 124082 124083 124084 124085 124086 124087 124088 | nColumn = 1; }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ return 0; }else{ nKeyCol = pIndex->nKeyCol; nColumn = pIndex->nColumn; assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); assert( pIndex->aiColumn[nColumn-1]==XN_ROWID || !HasRowid(pIndex->pTable)); isOrderDistinct = IsUniqueIndex(pIndex); } /* Loop through all columns of the index and deal with the ones ** that are not constrained by == or IN. */ rev = revSet = 0; |
︙ | ︙ | |||
124002 124003 124004 124005 124006 124007 124008 | ** (revIdx) for the j-th column of the index. */ if( pIndex ){ iColumn = pIndex->aiColumn[j]; revIdx = pIndex->aSortOrder[j]; if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; }else{ | | | 124106 124107 124108 124109 124110 124111 124112 124113 124114 124115 124116 124117 124118 124119 124120 | ** (revIdx) for the j-th column of the index. */ if( pIndex ){ iColumn = pIndex->aiColumn[j]; revIdx = pIndex->aSortOrder[j]; if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; }else{ iColumn = XN_ROWID; revIdx = 0; } /* An unconstrained column that might be NULL means that this ** WhereLoop is not well-ordered */ if( isOrderDistinct |
︙ | ︙ | |||
124867 124868 124869 124870 124871 124872 124873 | /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ | | > | 124971 124972 124973 124974 124975 124976 124977 124978 124979 124980 124981 124982 124983 124984 124985 124986 | /* Try to ORDER BY the result set to make distinct processing easier */ pWInfo->wctrlFlags |= WHERE_DISTINCTBY; pWInfo->pOrderBy = pResultSet; } } /* Construct the WhereLoop objects */ WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n", wctrlFlags)); #if defined(WHERETRACE_ENABLED) if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ int i; for(i=0; i<sWLB.pWC->nTerm; i++){ whereTermPrint(&sWLB.pWC->a[i], i); } } |
︙ | ︙ | |||
125301 125302 125303 125304 125305 125306 125307 125308 125309 125310 125311 125312 125313 125314 | if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ int x = pOp->p2; assert( pIdx->pTable==pTab ); if( !HasRowid(pTab) ){ Index *pPk = sqlite3PrimaryKeyIndex(pTab); x = pPk->aiColumn[x]; } x = sqlite3ColumnOfIndex(pIdx, x); if( x>=0 ){ pOp->p2 = x; pOp->p1 = pLevel->iIdxCur; } assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); | > | 125406 125407 125408 125409 125410 125411 125412 125413 125414 125415 125416 125417 125418 125419 125420 | if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ int x = pOp->p2; assert( pIdx->pTable==pTab ); if( !HasRowid(pTab) ){ Index *pPk = sqlite3PrimaryKeyIndex(pTab); x = pPk->aiColumn[x]; assert( x>=0 ); } x = sqlite3ColumnOfIndex(pIdx, x); if( x>=0 ){ pOp->p2 = x; pOp->p1 = pLevel->iIdxCur; } assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); |
︙ | ︙ | |||
135125 135126 135127 135128 135129 135130 135131 135132 135133 135134 135135 135136 135137 135138 | int nPrefix; /* Prefix length (0 for main terms index) */ Fts3Hash hPending; /* Pending terms table for this index */ } *aIndex; int nMaxPendingData; /* Max pending data before flush to disk */ int nPendingData; /* Current bytes of pending data */ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */ int iPrevLangid; /* Langid of recently inserted document */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* State variables used for validating that the transaction control ** methods of the virtual table are called at appropriate times. These ** values do not contribute to FTS functionality; they are used for ** verifying the operation of the SQLite core. */ | > | 135231 135232 135233 135234 135235 135236 135237 135238 135239 135240 135241 135242 135243 135244 135245 | int nPrefix; /* Prefix length (0 for main terms index) */ Fts3Hash hPending; /* Pending terms table for this index */ } *aIndex; int nMaxPendingData; /* Max pending data before flush to disk */ int nPendingData; /* Current bytes of pending data */ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */ int iPrevLangid; /* Langid of recently inserted document */ int bPrevDelete; /* True if last operation was a delete */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* State variables used for validating that the transaction control ** methods of the virtual table are called at appropriate times. These ** values do not contribute to FTS functionality; they are used for ** verifying the operation of the SQLite core. */ |
︙ | ︙ | |||
136699 136700 136701 136702 136703 136704 136705 136706 136707 136708 136709 136710 136711 136712 | static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ #if SQLITE_VERSION_NUMBER>=3008002 if( sqlite3_libversion_number()>=3008002 ){ pIdxInfo->estimatedRows = nRow; } #endif } /* ** Implementation of the xBestIndex method for FTS3 tables. There ** are three possible strategies, in order of preference: ** ** 1. Direct lookup by rowid or docid. ** 2. Full-text search using a MATCH operator on a non-docid column. | > > > > > > > > > > > > > | 136806 136807 136808 136809 136810 136811 136812 136813 136814 136815 136816 136817 136818 136819 136820 136821 136822 136823 136824 136825 136826 136827 136828 136829 136830 136831 136832 | static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ #if SQLITE_VERSION_NUMBER>=3008002 if( sqlite3_libversion_number()>=3008002 ){ pIdxInfo->estimatedRows = nRow; } #endif } /* ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this ** extension is currently being used by a version of SQLite too old to ** support index-info flags. In that case this function is a no-op. */ static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){ #if SQLITE_VERSION_NUMBER>=3008012 if( sqlite3_libversion_number()>=3008012 ){ pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE; } #endif } /* ** Implementation of the xBestIndex method for FTS3 tables. There ** are three possible strategies, in order of preference: ** ** 1. Direct lookup by rowid or docid. ** 2. Full-text search using a MATCH operator on a non-docid column. |
︙ | ︙ | |||
136789 136790 136791 136792 136793 136794 136795 136796 136797 136798 136799 136800 136801 136802 | case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: iDocidLe = i; break; } } } iIdx = 1; if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; pInfo->aConstraintUsage[iCons].omit = 1; } if( iLangidCons>=0 ){ | > > > | 136909 136910 136911 136912 136913 136914 136915 136916 136917 136918 136919 136920 136921 136922 136923 136924 136925 | case SQLITE_INDEX_CONSTRAINT_LE: case SQLITE_INDEX_CONSTRAINT_LT: iDocidLe = i; break; } } } /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */ if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo); iIdx = 1; if( iCons>=0 ){ pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; pInfo->aConstraintUsage[iCons].omit = 1; } if( iLangidCons>=0 ){ |
︙ | ︙ | |||
142440 142441 142442 142443 142444 142445 142446 | Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */ int eType = pRoot->eType; /* Type of node in this tree */ if( nMaxDepth==0 ){ rc = SQLITE_ERROR; } | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | | | | | | | | | | | | | | | | | | | > > > | > > > > > > > > > > > > > > > > > > > > > > | 142563 142564 142565 142566 142567 142568 142569 142570 142571 142572 142573 142574 142575 142576 142577 142578 142579 142580 142581 142582 142583 142584 142585 142586 142587 142588 142589 142590 142591 142592 142593 142594 142595 142596 142597 142598 142599 142600 142601 142602 142603 142604 142605 142606 142607 142608 142609 142610 142611 142612 142613 142614 142615 142616 142617 142618 142619 142620 142621 142622 142623 142624 142625 142626 142627 142628 142629 142630 142631 142632 142633 142634 142635 142636 142637 142638 142639 142640 142641 142642 142643 142644 142645 142646 142647 142648 142649 142650 142651 142652 142653 142654 142655 142656 142657 142658 142659 142660 142661 142662 142663 142664 142665 142666 142667 142668 142669 142670 142671 142672 142673 142674 142675 142676 142677 142678 142679 142680 142681 142682 142683 142684 142685 142686 142687 142688 142689 142690 142691 142692 142693 142694 142695 142696 142697 142698 142699 142700 142701 142702 142703 142704 142705 142706 142707 142708 142709 142710 142711 142712 142713 142714 142715 142716 142717 142718 142719 142720 142721 | Fts3Expr *pFree = 0; /* List of free nodes. Linked by pParent. */ int eType = pRoot->eType; /* Type of node in this tree */ if( nMaxDepth==0 ){ rc = SQLITE_ERROR; } if( rc==SQLITE_OK ){ if( (eType==FTSQUERY_AND || eType==FTSQUERY_OR) ){ Fts3Expr **apLeaf; apLeaf = (Fts3Expr **)sqlite3_malloc(sizeof(Fts3Expr *) * nMaxDepth); if( 0==apLeaf ){ rc = SQLITE_NOMEM; }else{ memset(apLeaf, 0, sizeof(Fts3Expr *) * nMaxDepth); } if( rc==SQLITE_OK ){ int i; Fts3Expr *p; /* Set $p to point to the left-most leaf in the tree of eType nodes. */ for(p=pRoot; p->eType==eType; p=p->pLeft){ assert( p->pParent==0 || p->pParent->pLeft==p ); assert( p->pLeft && p->pRight ); } /* This loop runs once for each leaf in the tree of eType nodes. */ while( 1 ){ int iLvl; Fts3Expr *pParent = p->pParent; /* Current parent of p */ assert( pParent==0 || pParent->pLeft==p ); p->pParent = 0; if( pParent ){ pParent->pLeft = 0; }else{ pRoot = 0; } rc = fts3ExprBalance(&p, nMaxDepth-1); if( rc!=SQLITE_OK ) break; for(iLvl=0; p && iLvl<nMaxDepth; iLvl++){ if( apLeaf[iLvl]==0 ){ apLeaf[iLvl] = p; p = 0; }else{ assert( pFree ); pFree->pLeft = apLeaf[iLvl]; pFree->pRight = p; pFree->pLeft->pParent = pFree; pFree->pRight->pParent = pFree; p = pFree; pFree = pFree->pParent; p->pParent = 0; apLeaf[iLvl] = 0; } } if( p ){ sqlite3Fts3ExprFree(p); rc = SQLITE_TOOBIG; break; } /* If that was the last leaf node, break out of the loop */ if( pParent==0 ) break; /* Set $p to point to the next leaf in the tree of eType nodes */ for(p=pParent->pRight; p->eType==eType; p=p->pLeft); /* Remove pParent from the original tree. */ assert( pParent->pParent==0 || pParent->pParent->pLeft==pParent ); pParent->pRight->pParent = pParent->pParent; if( pParent->pParent ){ pParent->pParent->pLeft = pParent->pRight; }else{ assert( pParent==pRoot ); pRoot = pParent->pRight; } /* Link pParent into the free node list. It will be used as an ** internal node of the new tree. */ pParent->pParent = pFree; pFree = pParent; } if( rc==SQLITE_OK ){ p = 0; for(i=0; i<nMaxDepth; i++){ if( apLeaf[i] ){ if( p==0 ){ p = apLeaf[i]; p->pParent = 0; }else{ assert( pFree!=0 ); pFree->pRight = p; pFree->pLeft = apLeaf[i]; pFree->pLeft->pParent = pFree; pFree->pRight->pParent = pFree; p = pFree; pFree = pFree->pParent; p->pParent = 0; } } } pRoot = p; }else{ /* An error occurred. Delete the contents of the apLeaf[] array ** and pFree list. Everything else is cleaned up by the call to ** sqlite3Fts3ExprFree(pRoot) below. */ Fts3Expr *pDel; for(i=0; i<nMaxDepth; i++){ sqlite3Fts3ExprFree(apLeaf[i]); } while( (pDel=pFree)!=0 ){ pFree = pDel->pParent; sqlite3_free(pDel); } } assert( pFree==0 ); sqlite3_free( apLeaf ); } }else if( eType==FTSQUERY_NOT ){ Fts3Expr *pLeft = pRoot->pLeft; Fts3Expr *pRight = pRoot->pRight; pRoot->pLeft = 0; pRoot->pRight = 0; pLeft->pParent = 0; pRight->pParent = 0; rc = fts3ExprBalance(&pLeft, nMaxDepth-1); if( rc==SQLITE_OK ){ rc = fts3ExprBalance(&pRight, nMaxDepth-1); } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRight); sqlite3Fts3ExprFree(pLeft); }else{ assert( pLeft && pRight ); pRoot->pLeft = pLeft; pLeft->pParent = pRoot; pRoot->pRight = pRight; pRight->pParent = pRoot; } } } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(pRoot); pRoot = 0; } *pp = pRoot; return rc; } |
︙ | ︙ | |||
146035 146036 146037 146038 146039 146040 146041 146042 146043 146044 146045 146046 146047 146048 146049 146050 146051 146052 | /* ** Calling this function indicates that subsequent calls to ** fts3PendingTermsAdd() are to add term/position-list pairs for the ** contents of the document with docid iDocid. */ static int fts3PendingTermsDocid( Fts3Table *p, /* Full-text table handle */ int iLangid, /* Language id of row being written */ sqlite_int64 iDocid /* Docid of row being written */ ){ assert( iLangid>=0 ); /* TODO(shess) Explore whether partially flushing the buffer on ** forced-flush would provide better performance. I suspect that if ** we ordered the doclists by size and flushed the largest until the ** buffer was half empty, that would let the less frequent terms ** generate longer doclists. */ | > > | > > | 146184 146185 146186 146187 146188 146189 146190 146191 146192 146193 146194 146195 146196 146197 146198 146199 146200 146201 146202 146203 146204 146205 146206 146207 146208 146209 146210 146211 146212 146213 146214 146215 146216 146217 146218 146219 146220 146221 | /* ** Calling this function indicates that subsequent calls to ** fts3PendingTermsAdd() are to add term/position-list pairs for the ** contents of the document with docid iDocid. */ static int fts3PendingTermsDocid( Fts3Table *p, /* Full-text table handle */ int bDelete, /* True if this op is a delete */ int iLangid, /* Language id of row being written */ sqlite_int64 iDocid /* Docid of row being written */ ){ assert( iLangid>=0 ); assert( bDelete==1 || bDelete==0 ); /* TODO(shess) Explore whether partially flushing the buffer on ** forced-flush would provide better performance. I suspect that if ** we ordered the doclists by size and flushed the largest until the ** buffer was half empty, that would let the less frequent terms ** generate longer doclists. */ if( iDocid<p->iPrevDocid || (iDocid==p->iPrevDocid && p->bPrevDelete==0) || p->iPrevLangid!=iLangid || p->nPendingData>p->nMaxPendingData ){ int rc = sqlite3Fts3PendingTermsFlush(p); if( rc!=SQLITE_OK ) return rc; } p->iPrevDocid = iDocid; p->iPrevLangid = iLangid; p->bPrevDelete = bDelete; return SQLITE_OK; } /* ** Discard the contents of the pending-terms hash tables. */ SQLITE_PRIVATE void sqlite3Fts3PendingTermsClear(Fts3Table *p){ |
︙ | ︙ | |||
146244 146245 146246 146247 146248 146249 146250 | assert( *pbFound==0 ); if( *pRC ) return; rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); | > | | 146397 146398 146399 146400 146401 146402 146403 146404 146405 146406 146407 146408 146409 146410 146411 146412 | assert( *pbFound==0 ); if( *pRC ) return; rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); i64 iDocid = sqlite3_column_int64(pSelect, 0); rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid); for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ int iCol = i-1; if( p->abNotindexed[iCol]==0 ){ const char *zText = (const char *)sqlite3_column_text(pSelect, i); rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); } |
︙ | ︙ | |||
146492 146493 146494 146495 146496 146497 146498 | pNext = &pReader->aDoclist[pReader->nDoclist]; } if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ if( fts3SegReaderIsPending(pReader) ){ Fts3HashElem *pElem = *(pReader->ppNextElem); | | | | > > > > > | | | 146646 146647 146648 146649 146650 146651 146652 146653 146654 146655 146656 146657 146658 146659 146660 146661 146662 146663 146664 146665 146666 146667 146668 146669 146670 146671 146672 | pNext = &pReader->aDoclist[pReader->nDoclist]; } if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ if( fts3SegReaderIsPending(pReader) ){ Fts3HashElem *pElem = *(pReader->ppNextElem); sqlite3_free(pReader->aNode); pReader->aNode = 0; if( pElem ){ char *aCopy; PendingList *pList = (PendingList *)fts3HashData(pElem); int nCopy = pList->nData+1; pReader->zTerm = (char *)fts3HashKey(pElem); pReader->nTerm = fts3HashKeysize(pElem); aCopy = (char*)sqlite3_malloc(nCopy); if( !aCopy ) return SQLITE_NOMEM; memcpy(aCopy, pList->aData, nCopy); pReader->nNode = pReader->nDoclist = nCopy; pReader->aNode = pReader->aDoclist = aCopy; pReader->ppNextElem++; assert( pReader->aNode ); } return SQLITE_OK; } fts3SegReaderSetEof(pReader); |
︙ | ︙ | |||
146739 146740 146741 146742 146743 146744 146745 | } /* ** Free all allocations associated with the iterator passed as the ** second argument. */ SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ | > | | > < > | 146898 146899 146900 146901 146902 146903 146904 146905 146906 146907 146908 146909 146910 146911 146912 146913 146914 146915 146916 146917 146918 146919 | } /* ** Free all allocations associated with the iterator passed as the ** second argument. */ SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ if( pReader ){ if( !fts3SegReaderIsPending(pReader) ){ sqlite3_free(pReader->zTerm); } if( !fts3SegReaderIsRootOnly(pReader) ){ sqlite3_free(pReader->aNode); } sqlite3_blob_close(pReader->pBlob); } sqlite3_free(pReader); } /* ** Allocate a new SegReader object. */ |
︙ | ︙ | |||
148687 148688 148689 148690 148691 148692 148693 | aSzDel = &aSzIns[p->nColumn+1]; } } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); | | | 148848 148849 148850 148851 148852 148853 148854 148855 148856 148857 148858 148859 148860 148861 148862 | aSzDel = &aSzIns[p->nColumn+1]; } } while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0)); memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ if( p->abNotindexed[iCol]==0 ){ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); } |
︙ | ︙ | |||
150792 150793 150794 150795 150796 150797 150798 | if( bInsertDone==0 ){ rc = fts3InsertData(p, apVal, pRowid); if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ | | | 150953 150954 150955 150956 150957 150958 150959 150960 150961 150962 150963 150964 150965 150966 150967 | if( bInsertDone==0 ){ rc = fts3InsertData(p, apVal, pRowid); if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ rc = FTS_CORRUPT_VTAB; } } if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid); } if( rc==SQLITE_OK ){ assert( p->iPrevDocid==*pRowid ); rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSzIns); |
︙ | ︙ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
109 110 111 112 113 114 115 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.12" #define SQLITE_VERSION_NUMBER 3008012 | | | 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.12" #define SQLITE_VERSION_NUMBER 3008012 #define SQLITE_SOURCE_ID "2015-10-07 17:06:17 13adcd038fc20dd1b6f344f79b449b4034f8f8f2" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 | ** strategy. A cost of N indicates that the cost of the strategy is similar ** to a linear scan of an SQLite table with N rows. A cost of log(N) ** indicates that the expense of the operation is similar to that of a ** binary search on a unique indexed field of an SQLite table with N rows. ** ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite version 3.8.2. If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to included crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a | > > > > > > > > > > > > > > > | > > > | 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 | ** strategy. A cost of N indicates that the cost of the strategy is similar ** to a linear scan of an SQLite table with N rows. A cost of log(N) ** indicates that the expense of the operation is similar to that of a ** binary search on a unique indexed field of an SQLite table with N rows. ** ** ^The estimatedRows value is an estimate of the number of rows that ** will be returned by the strategy. ** ** The xBestIndex method may optionally populate the idxFlags field with a ** mask of SQLITE_INDEX_SCAN_* flags. Currently there is only one such flag - ** SQLITE_INDEX_SCAN_UNIQUE. If the xBestIndex method sets this flag, SQLite ** assumes that the strategy may visit at most one row. ** ** Additionally, if xBestIndex sets the SQLITE_INDEX_SCAN_UNIQUE flag, then ** SQLite also assumes that if a call to the xUpdate() method is made as ** part of the same statement to delete or update a virtual table row and the ** implementation returns SQLITE_CONSTRAINT, then there is no need to rollback ** any database changes. In other words, if the xUpdate() returns ** SQLITE_CONSTRAINT, the database contents must be exactly as they were ** before xUpdate was called. By contrast, if SQLITE_INDEX_SCAN_UNIQUE is not ** set and xUpdate returns SQLITE_CONSTRAINT, any database changes made by ** the xUpdate method are automatically rolled back by SQLite. ** ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info ** structure for SQLite version 3.8.2. If a virtual table extension is ** used with an SQLite version earlier than 3.8.2, the results of attempting ** to read or write the estimatedRows field are undefined (but are likely ** to included crashing the application). The estimatedRows field should ** therefore only be used if [sqlite3_libversion_number()] returns a ** value greater than or equal to 3008002. Similarly, the idxFlags field ** was added for version 3.8.12. It may therefore only be used if ** sqlite3_libversion_number() returns a value greater than or equal to ** 3008012. */ struct sqlite3_index_info { /* Inputs */ int nConstraint; /* Number of entries in aConstraint */ struct sqlite3_index_constraint { int iColumn; /* Column on left-hand side of constraint */ unsigned char op; /* Constraint operator */ |
︙ | ︙ | |||
5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 | int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ }; /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the wHERE clause of ** a query that uses a [virtual table]. | > > > > > > > | 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 | int idxNum; /* Number used to identify the index */ char *idxStr; /* String, possibly obtained from sqlite3_malloc */ int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */ int orderByConsumed; /* True if output is already ordered */ double estimatedCost; /* Estimated cost of using this index */ /* Fields below are only available in SQLite 3.8.2 and later */ sqlite3_int64 estimatedRows; /* Estimated number of rows returned */ /* Fields below are only available in SQLite 3.8.12 and later */ int idxFlags; /* Mask of SQLITE_INDEX_SCAN_* flags */ }; /* ** CAPI3REF: Virtual Table Scan Flags */ #define SQLITE_INDEX_SCAN_UNIQUE 1 /* Scan visits at most 1 row */ /* ** CAPI3REF: Virtual Table Constraint Operator Codes ** ** These macros defined the allowed values for the ** [sqlite3_index_info].aConstraint[].op field. Each value represents ** an operator that is part of a constraint term in the wHERE clause of ** a query that uses a [virtual table]. |
︙ | ︙ |