Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update to the latest 3.8.4 beta from upstream. |
---|---|
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
8e0f0b0fc29b04b0847d9392d41a57d1 |
User & Date: | drh 2014-03-06 20:18:40.526 |
Context
2014-06-03
| ||
11:45 | Update to the 3.8.5 beta under test. check-in: 6950594f20 user: drh tags: trunk | |
2014-03-06
| ||
20:18 | Update to the latest 3.8.4 beta from upstream. check-in: 8e0f0b0fc2 user: drh tags: trunk | |
2014-03-05
| ||
19:27 | Update the built-in SQLite to 3.8.4 beta. check-in: ba3a2680e0 user: drh tags: trunk | |
Changes
Changes to src/sqlite3.c.
︙ | ︙ | |||
71 72 73 74 75 76 77 78 | # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > | 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | # define _LARGE_FILE 1 # ifndef _FILE_OFFSET_BITS # define _FILE_OFFSET_BITS 64 # endif # define _LARGEFILE_SOURCE 1 #endif /* ** For MinGW, check to see if we can include the header file containing its ** version information, among other things. Normally, this internal MinGW ** header file would [only] be included automatically by other MinGW header ** files; however, the contained version information is now required by this ** header file to work around binary compatibility issues (see below) and ** this is the only known way to reliably obtain it. This entire #if block ** would be completely unnecessary if there was any other way of detecting ** MinGW via their preprocessor (e.g. if they customized their GCC to define ** some MinGW-specific macros). When compiling for MinGW, either the ** _HAVE_MINGW_H or _HAVE__MINGW_H (note the extra underscore) macro must be ** defined; otherwise, detection of conditions specific to MinGW will be ** disabled. */ #if defined(_HAVE_MINGW_H) # include "mingw.h" #elif defined(_HAVE__MINGW_H) # include "_mingw.h" #endif /* ** For MinGW version 4.x (and higher), check to see if the _USE_32BIT_TIME_T ** define is required to maintain binary compatibility with the MSVC runtime ** library in use (e.g. for Windows XP). */ #if !defined(_USE_32BIT_TIME_T) && !defined(_USE_64BIT_TIME_T) && \ defined(_WIN32) && !defined(_WIN64) && \ defined(__MINGW_MAJOR_VERSION) && __MINGW_MAJOR_VERSION >= 4 && \ defined(__MSVCRT__) # define _USE_32BIT_TIME_T #endif /* The public SQLite interface. The _FILE_OFFSET_BITS macro must appear ** first in QNX. Also, the _USE_32BIT_TIME_T macro must appear first for ** MinGW. */ /************** Include sqlite3.h in the middle of sqliteInt.h ***************/ /************** Begin file sqlite3.h *****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
187 188 189 190 191 192 193 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.4" #define SQLITE_VERSION_NUMBER 3008004 | | | 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.4" #define SQLITE_VERSION_NUMBER 3008004 #define SQLITE_SOURCE_ID "2014-03-06 18:16:45 c0d54b4e41cba84dc5934e0fcd03fe422fe5c92b" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 | #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); | > > > > > > > > > > > > > > > > > | 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 | #ifndef SQLITE_OMIT_LOAD_EXTENSION /* ** Interfaces for opening a shared library, finding entry points ** within the shared library, and closing the shared library. */ static void *winDlOpen(sqlite3_vfs *pVfs, const char *zFilename){ HANDLE h; #if defined(__CYGWIN__) int nFull = pVfs->mxPathname+1; char *zFull = sqlite3MallocZero( nFull ); void *zConverted = 0; if( zFull==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( winFullPathname(pVfs, zFilename, nFull, zFull)!=SQLITE_OK ){ sqlite3_free(zFull); OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } zConverted = winConvertFromUtf8Filename(zFull); sqlite3_free(zFull); #else void *zConverted = winConvertFromUtf8Filename(zFilename); UNUSED_PARAMETER(pVfs); #endif if( zConverted==0 ){ OSTRACE(("DLOPEN name=%s, handle=%p\n", zFilename, (void*)0)); return 0; } if( osIsNT() ){ #if SQLITE_OS_WINRT h = osLoadPackagedLibrary((LPCWSTR)zConverted, 0); |
︙ | ︙ | |||
55336 55337 55338 55339 55340 55341 55342 | if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); }else{ | | | 55386 55387 55388 55389 55390 55391 55392 55393 55394 55395 55396 55397 55398 55399 55400 | if( pIdxKey ){ xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); assert( pIdxKey->default_rc==1 || pIdxKey->default_rc==0 || pIdxKey->default_rc==-1 ); }else{ xRecordCompare = 0; /* All keys are integers */ } rc = moveToRoot(pCur); if( rc ){ return rc; } assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); |
︙ | ︙ | |||
62526 62527 62528 62529 62530 62531 62532 62533 62534 62535 62536 62537 62538 62539 | ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } | > > > > | 62576 62577 62578 62579 62580 62581 62582 62583 62584 62585 62586 62587 62588 62589 62590 62591 62592 62593 | ** callgrind, this causes a certain test case to hit the CPU 4.7 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if ** sqlite3MemRelease() were called from here. With -O2, this jumps ** to 6.6 percent. The test case is inserting 1000 rows into a table ** with no indexes using a single prepared INSERT statement, bind() ** and reset(). Inserts are grouped into a transaction. */ testcase( p->flags & MEM_Agg ); testcase( p->flags & MEM_Dyn ); testcase( p->flags & MEM_Frame ); testcase( p->flags & MEM_RowSet ); if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ sqlite3VdbeMemRelease(p); }else if( p->zMalloc ){ sqlite3DbFree(db, p->zMalloc); p->zMalloc = 0; } |
︙ | ︙ | |||
64254 64255 64256 64257 64258 64259 64260 64261 64262 64263 64264 64265 64266 64267 64268 64269 64270 64271 64272 64273 64274 64275 64276 64277 64278 64279 64280 64281 64282 64283 64284 64285 64286 64287 64288 | case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(buf); pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is | > > > > > | 64308 64309 64310 64311 64312 64313 64314 64315 64316 64317 64318 64319 64320 64321 64322 64323 64324 64325 64326 64327 64328 64329 64330 64331 64332 64333 64334 64335 64336 64337 64338 64339 64340 64341 64342 64343 64344 64345 64346 64347 | case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = ONE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 1; } case 2: { /* 2-byte signed integer */ pMem->u.i = TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 2; } case 3: { /* 3-byte signed integer */ pMem->u.i = THREE_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 3; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(buf); pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 4; } case 5: { /* 6-byte signed integer */ pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf); pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
︙ | ︙ | |||
64297 64298 64299 64300 64301 64302 64303 64304 64305 64306 64307 64308 64309 64310 | #endif x = FOUR_BYTE_UINT(buf); y = FOUR_BYTE_UINT(buf+4); x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->r, &x, sizeof(x)); pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; } return 8; | > | 64356 64357 64358 64359 64360 64361 64362 64363 64364 64365 64366 64367 64368 64369 64370 | #endif x = FOUR_BYTE_UINT(buf); y = FOUR_BYTE_UINT(buf+4); x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; testcase( pMem->u.i<0 ); }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); memcpy(&pMem->r, &x, sizeof(x)); pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; } return 8; |
︙ | ︙ | |||
64642 64643 64644 64645 64646 64647 64648 64649 64650 64651 64652 64653 64654 64655 64656 64657 64658 64659 64660 64661 64662 64663 64664 64665 64666 64667 64668 64669 | */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: return ONE_BYTE_INT(aKey); case 2: return TWO_BYTE_INT(aKey); case 3: return THREE_BYTE_INT(aKey); case 4: { y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } | > > > > > > | 64702 64703 64704 64705 64706 64707 64708 64709 64710 64711 64712 64713 64714 64715 64716 64717 64718 64719 64720 64721 64722 64723 64724 64725 64726 64727 64728 64729 64730 64731 64732 64733 64734 64735 | */ static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){ u32 y; assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) ); switch( serial_type ){ case 0: case 1: testcase( aKey[0]&0x80 ); return ONE_BYTE_INT(aKey); case 2: testcase( aKey[0]&0x80 ); return TWO_BYTE_INT(aKey); case 3: testcase( aKey[0]&0x80 ); return THREE_BYTE_INT(aKey); case 4: { testcase( aKey[0]&0x80 ); y = FOUR_BYTE_UINT(aKey); return (i64)*(int*)&y; } case 5: { testcase( aKey[0]&0x80 ); return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); } case 6: { u64 x = FOUR_BYTE_UINT(aKey); testcase( aKey[0]&0x80 ); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); return (i64)*(i64*)&x; } } return (serial_type - 8); } |
︙ | ︙ | |||
64723 64724 64725 64726 64727 64728 64729 64730 64731 64732 64733 64734 64735 64736 | assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & MEM_Int ){ serial_type = aKey1[idx1]; if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ double rhs = (double)pRhs->u.i; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); | > | 64789 64790 64791 64792 64793 64794 64795 64796 64797 64798 64799 64800 64801 64802 64803 | assert( idx1<=szHdr1 || CORRUPT_DB ); do{ u32 serial_type; /* RHS is an integer */ if( pRhs->flags & MEM_Int ){ serial_type = aKey1[idx1]; testcase( serial_type==12 ); if( serial_type>=12 ){ rc = +1; }else if( serial_type==0 ){ rc = -1; }else if( serial_type==7 ){ double rhs = (double)pRhs->u.i; sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1); |
︙ | ︙ | |||
64773 64774 64775 64776 64777 64778 64779 64780 64781 64782 64783 64784 64785 64786 64787 64788 64789 64790 64791 64792 64793 64794 64795 64796 64797 64798 64799 64800 64801 64802 64803 64804 64805 64806 64807 64808 64809 64810 64811 64812 64813 64814 64815 | } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; if( (d1+mem1.n) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ getVarint32(&aKey1[idx1], serial_type); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; if( (d1+nStr) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } | > > > > > > | 64840 64841 64842 64843 64844 64845 64846 64847 64848 64849 64850 64851 64852 64853 64854 64855 64856 64857 64858 64859 64860 64861 64862 64863 64864 64865 64866 64867 64868 64869 64870 64871 64872 64873 64874 64875 64876 64877 64878 64879 64880 64881 64882 64883 64884 64885 64886 64887 64888 | } } } /* RHS is a string */ else if( pRhs->flags & MEM_Str ){ getVarint32(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 ){ rc = -1; }else if( !(serial_type & 0x01) ){ rc = +1; }else{ mem1.n = (serial_type - 12) / 2; testcase( (d1+mem1.n)==(unsigned)nKey1 ); testcase( (d1+mem1.n+1)==(unsigned)nKey1 ); if( (d1+mem1.n) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else if( pKeyInfo->aColl[i] ){ mem1.enc = pKeyInfo->enc; mem1.db = pKeyInfo->db; mem1.flags = MEM_Str; mem1.z = (char*)&aKey1[d1]; rc = vdbeCompareMemString(&mem1, pRhs, pKeyInfo->aColl[i]); }else{ int nCmp = MIN(mem1.n, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = mem1.n - pRhs->n; } } } /* RHS is a blob */ else if( pRhs->flags & MEM_Blob ){ getVarint32(&aKey1[idx1], serial_type); testcase( serial_type==12 ); if( serial_type<12 || (serial_type & 0x01) ){ rc = -1; }else{ int nStr = (serial_type - 12) / 2; testcase( (d1+nStr)==(unsigned)nKey1 ); testcase( (d1+nStr+1)==(unsigned)nKey1 ); if( (d1+nStr) > (unsigned)nKey1 ){ rc = 1; /* Corruption */ }else{ int nCmp = MIN(nStr, pRhs->n); rc = memcmp(&aKey1[d1], pRhs->z, nCmp); if( rc==0 ) rc = nStr - pRhs->n; } |
︙ | ︙ | |||
64875 64876 64877 64878 64879 64880 64881 64882 64883 64884 64885 64886 64887 64888 64889 64890 64891 64892 64893 64894 64895 64896 64897 64898 64899 64900 64901 64902 64903 64904 64905 64906 64907 64908 64909 64910 64911 | i64 lhs; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; break; } case 8: lhs = 0; break; case 9: lhs = 1; | > > > > > > | 64948 64949 64950 64951 64952 64953 64954 64955 64956 64957 64958 64959 64960 64961 64962 64963 64964 64965 64966 64967 64968 64969 64970 64971 64972 64973 64974 64975 64976 64977 64978 64979 64980 64981 64982 64983 64984 64985 64986 64987 64988 64989 64990 | i64 lhs; UNUSED_PARAMETER(bSkip); assert( bSkip==0 ); switch( serial_type ){ case 1: { /* 1-byte signed integer */ lhs = ONE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 2: { /* 2-byte signed integer */ lhs = TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 3: { /* 3-byte signed integer */ lhs = THREE_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 4: { /* 4-byte signed integer */ y = FOUR_BYTE_UINT(aKey); lhs = (i64)*(int*)&y; testcase( lhs<0 ); break; } case 5: { /* 6-byte signed integer */ lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey); testcase( lhs<0 ); break; } case 6: { /* 8-byte signed integer */ x = FOUR_BYTE_UINT(aKey); x = (x<<32) | FOUR_BYTE_UINT(aKey+4); lhs = *(i64*)&x; testcase( lhs<0 ); break; } case 8: lhs = 0; break; case 9: lhs = 1; |
︙ | ︙ | |||
65034 65035 65036 65037 65038 65039 65040 | }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } | | > > | < > | 65113 65114 65115 65116 65117 65118 65119 65120 65121 65122 65123 65124 65125 65126 65127 65128 65129 65130 65131 | }else{ p->r1 = -1; p->r2 = 1; } if( (flags & MEM_Int) ){ return vdbeRecordCompareInt; } testcase( flags & MEM_Real ); testcase( flags & MEM_Null ); testcase( flags & MEM_Blob ); if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){ assert( flags & MEM_Str ); return vdbeRecordCompareString; } } return sqlite3VdbeRecordCompare; } |
︙ | ︙ | |||
66943 66944 66945 66946 66947 66948 66949 | /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing | | | 67024 67025 67026 67027 67028 67029 67030 67031 67032 67033 67034 67035 67036 67037 67038 | /* ** Invoke this macro on memory cells just prior to changing the ** value of the cell. This macro verifies that shallow copies are ** not misused. A shallow copy of a string or blob just copies a ** pointer to the string or blob, not the content. If the original ** is changed while the copy is still in use, the string or blob might ** be changed out from under the copy. This macro verifies that nothing ** like that ever happens. */ #ifdef SQLITE_DEBUG # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M) #else # define memAboutToChange(P,M) #endif |
︙ | ︙ | |||
67675 67676 67677 67678 67679 67680 67681 67682 67683 67684 67685 67686 67687 67688 | /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { /* jump */ pc = pOp->p2 - 1; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called | > > > > > | 67756 67757 67758 67759 67760 67761 67762 67763 67764 67765 67766 67767 67768 67769 67770 67771 67772 67773 67774 | /* Opcode: Goto * P2 * * * ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. ** ** The P1 parameter is not actually used by this opcode. However, it ** is sometimes set to 1 instead of 0 as a hint to the command-line shell ** that this Goto is the bottom of a loop and that the lines from P2 down ** to the current line should be indented for EXPLAIN output. */ case OP_Goto: { /* jump */ pc = pOp->p2 - 1; /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev, ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon ** completion. Check to see if sqlite3_interrupt() has been called |
︙ | ︙ | |||
69170 69171 69172 69173 69174 69175 69176 | break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, | | | | 69256 69257 69258 69259 69260 69261 69262 69263 69264 69265 69266 69267 69268 69269 69270 69271 | break; } /* Opcode: Once P1 P2 * * * ** ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise, ** set the flag and fall through to the next instruction. In other words, ** this opcode causes all following opcodes up through P2 (but not including ** P2) to run just once and to be skipped on subsequent times through the loop. */ case OP_Once: { /* jump */ assert( pOp->p1<p->nOnceFlag ); VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2); if( p->aOnceFlag[pOp->p1] ){ pc = pOp->p2-1; }else{ |
︙ | ︙ | |||
83264 83265 83266 83267 83268 83269 83270 | callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); | > > > | | | 83350 83351 83352 83353 83354 83355 83356 83357 83358 83359 83360 83361 83362 83363 83364 83365 83366 83367 83368 83369 83370 83371 83372 83373 83374 83375 83376 83377 83378 83379 83380 83381 | callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); VdbeCoverage(v); callStatGet(v, regStat4, STAT_GET_NEQ, regEq); callStatGet(v, regStat4, STAT_GET_NLT, regLt); callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); /* We know that the regSampleRowid row exists because it was read by ** the previous loop. Thus the not-found jump of seekOp will never ** be taken */ VdbeCoverageNeverTaken(v); #ifdef SQLITE_ENABLE_STAT3 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, pIdx->aiColumn[0], regSample); #else for(i=0; i<nCol; i++){ i16 iCol = pIdx->aiColumn[i]; sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); } sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol+1, regSample); #endif sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ sqlite3VdbeJumpHere(v, addrIsNull); } #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ /* End of analysis */ sqlite3VdbeJumpHere(v, addrRewind); sqlite3DbFree(db, aGotoChng); |
︙ | ︙ | |||
93444 93445 93446 93447 93448 93449 93450 | return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. ** | | | | 93533 93534 93535 93536 93537 93538 93539 93540 93541 93542 93543 93544 93545 93546 93547 93548 93549 93550 93551 93552 93553 | return pIdx->zColAff; } /* ** Compute the affinity string for table pTab, if it has not already been ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. ** ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and ** if iReg>0 then code an OP_Affinity opcode that will set the affinities ** for register iReg and following. Or if affinities exists and iReg==0, ** then just set the P4 operand of the previous opcode (which should be ** an OP_MakeRecord) to the affinity string. ** ** A column affinity string has one character per column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER |
︙ | ︙ | |||
93491 93492 93493 93494 93495 93496 93497 | sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices | | < | | 93580 93581 93582 93583 93584 93585 93586 93587 93588 93589 93590 93591 93592 93593 93594 93595 93596 | sqlite3VdbeChangeP4(v, -1, zColAff, i); } } } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program. This is used to see if ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can ** run without using a temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; |
︙ | ︙ | |||
112349 112350 112351 112352 112353 112354 112355 | pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 | < > | 112437 112438 112439 112440 112441 112442 112443 112444 112445 112446 112447 112448 112449 112450 112451 112452 112453 112454 112455 112456 112457 | pRangeStart = pLoop->aLTerm[j++]; nExtraReg = 1; } if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = pLoop->aLTerm[j++]; nExtraReg = 1; if( pRangeStart==0 && (j = pIdx->aiColumn[nEq])>=0 && pIdx->pTable->aCol[j].notNull==0 ){ bSeekPastNull = 1; } } assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); |
︙ | ︙ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
105 106 107 108 109 110 111 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.4" #define SQLITE_VERSION_NUMBER 3008004 | | | 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.8.4" #define SQLITE_VERSION_NUMBER 3008004 #define SQLITE_SOURCE_ID "2014-03-06 18:16:45 c0d54b4e41cba84dc5934e0fcd03fe422fe5c92b" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ |