Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Update the built-in SQLite to the latest 3.26.0 beta. |
---|---|
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
7ecd9f43d7ed057b7d59999753b37ce8 |
User & Date: | drh 2018-11-27 22:13:02.521 |
Context
2019-02-06
| ||
16:28 | Update the built-in SQLite to the latest 3.27.0 beta. check-in: 40b4bc94f8 user: drh tags: trunk | |
2018-11-27
| ||
22:13 | Update the built-in SQLite to the latest 3.26.0 beta. check-in: 7ecd9f43d7 user: drh tags: trunk | |
2018-09-12
| ||
14:31 | Update the built-in SQLite to the first 3.25.0 release candidate. check-in: 0756e950c1 user: drh tags: trunk | |
Changes
Changes to src/sqlite3.c.
1 2 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite | | | 1 2 3 4 5 6 7 8 9 10 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.26.0. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other |
︙ | ︙ | |||
255 256 257 258 259 260 261 262 263 264 265 266 267 268 | "ENABLE_FTS3_TOKENIZER", #endif #if SQLITE_ENABLE_FTS4 "ENABLE_FTS4", #endif #if SQLITE_ENABLE_FTS5 "ENABLE_FTS5", #endif #if SQLITE_ENABLE_HIDDEN_COLUMNS "ENABLE_HIDDEN_COLUMNS", #endif #if SQLITE_ENABLE_ICU "ENABLE_ICU", #endif | > > > | 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | "ENABLE_FTS3_TOKENIZER", #endif #if SQLITE_ENABLE_FTS4 "ENABLE_FTS4", #endif #if SQLITE_ENABLE_FTS5 "ENABLE_FTS5", #endif #if SQLITE_ENABLE_GEOPOLY "ENABLE_GEOPOLY", #endif #if SQLITE_ENABLE_HIDDEN_COLUMNS "ENABLE_HIDDEN_COLUMNS", #endif #if SQLITE_ENABLE_ICU "ENABLE_ICU", #endif |
︙ | ︙ | |||
285 286 287 288 289 290 291 292 293 294 295 296 297 298 | "ENABLE_MEMSYS3", #endif #if SQLITE_ENABLE_MEMSYS5 "ENABLE_MEMSYS5", #endif #if SQLITE_ENABLE_MULTIPLEX "ENABLE_MULTIPLEX", #endif #if SQLITE_ENABLE_NULL_TRIM "ENABLE_NULL_TRIM", #endif #if SQLITE_ENABLE_OVERSIZE_CELL_CHECK "ENABLE_OVERSIZE_CELL_CHECK", #endif | > > > | 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | "ENABLE_MEMSYS3", #endif #if SQLITE_ENABLE_MEMSYS5 "ENABLE_MEMSYS5", #endif #if SQLITE_ENABLE_MULTIPLEX "ENABLE_MULTIPLEX", #endif #if SQLITE_ENABLE_NORMALIZE "ENABLE_NORMALIZE", #endif #if SQLITE_ENABLE_NULL_TRIM "ENABLE_NULL_TRIM", #endif #if SQLITE_ENABLE_OVERSIZE_CELL_CHECK "ENABLE_OVERSIZE_CELL_CHECK", #endif |
︙ | ︙ | |||
1152 1153 1154 1155 1156 1157 1158 | ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 | ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.26.0" #define SQLITE_VERSION_NUMBER 3026000 #define SQLITE_SOURCE_ID "2018-11-27 19:47:55 0ea049f342d11c676e148239e45d252164081362e921a4beb735d6899eb77344" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
2111 2112 2113 2114 2115 2116 2117 | ** ** <li>[[SQLITE_FCNTL_DATA_VERSION]] ** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to ** a database file. The argument is a pointer to a 32-bit unsigned integer. ** The "data version" for the pager is written into the pointer. The ** "data version" changes whenever any change occurs to the corresponding ** database file, either through SQL statements on the same database | | | | | | > | 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 | ** ** <li>[[SQLITE_FCNTL_DATA_VERSION]] ** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to ** a database file. The argument is a pointer to a 32-bit unsigned integer. ** The "data version" for the pager is written into the pointer. The ** "data version" changes whenever any change occurs to the corresponding ** database file, either through SQL statements on the same database ** connection or through transactions committed by separate database ** connections possibly in other processes. The [sqlite3_total_changes()] ** interface can be used to find if any database on the connection has changed, ** but that interface responds to changes on TEMP as well as MAIN and does ** not provide a mechanism to detect changes to MAIN only. Also, the ** [sqlite3_total_changes()] interface responds to internal changes only and ** omits changes made by other database connections. The ** [PRAGMA data_version] command provide a mechanism to detect changes to ** a single attached database that occur due to other database connections, ** but omits changes implemented by the database connection on which it is ** called. This file control is the only mechanism to detect changes that ** happen either internally or externally and that are associated with ** a particular attached database. ** </ul> */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 #define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 |
︙ | ︙ | |||
3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 | ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that ** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the | > | 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 | ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that ** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** ** <dl> ** [[SQLITE_DBCONFIG_LOOKASIDE]] ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the |
︙ | ︙ | |||
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 | ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^</dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> ** <dd> ^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt> ** <dd> ^This option is used to enable or disable the two-argument ** version of the [fts3_tokenizer()] function which is part of the ** [FTS3] full-text search engine extension. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable fts3_tokenizer() or ** positive to enable fts3_tokenizer() or negative to leave the setting ** unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the new setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt> ** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()] ** interface independently of the [load_extension()] SQL function. ** The [sqlite3_enable_load_extension()] API enables or disables both the ** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. ** There should be two additional arguments. ** When the first argument to this interface is 1, then only the C-API is ** enabled and the SQL function remains disabled. If the first argument to ** this interface is 0, then both the C-API and the SQL function are disabled. ** If the first argument is -1, then no changes are made to state of either the ** C-API or the SQL function. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface ** is disabled or enabled following this call. The second parameter may ** be a NULL pointer, in which case the new setting is not reported back. ** </dd> ** | > > > > | > | | | > > > > > > > > > > > > > | | 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 | ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^</dd> ** ** [[SQLITE_DBCONFIG_ENABLE_FKEY]] ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> ** <dd> ^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back. </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]] ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]] ** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt> ** <dd> ^This option is used to enable or disable the two-argument ** version of the [fts3_tokenizer()] function which is part of the ** [FTS3] full-text search engine extension. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable fts3_tokenizer() or ** positive to enable fts3_tokenizer() or negative to leave the setting ** unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the new setting is not reported back. </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]] ** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt> ** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()] ** interface independently of the [load_extension()] SQL function. ** The [sqlite3_enable_load_extension()] API enables or disables both the ** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. ** There should be two additional arguments. ** When the first argument to this interface is 1, then only the C-API is ** enabled and the SQL function remains disabled. If the first argument to ** this interface is 0, then both the C-API and the SQL function are disabled. ** If the first argument is -1, then no changes are made to state of either the ** C-API or the SQL function. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface ** is disabled or enabled following this call. The second parameter may ** be a NULL pointer, in which case the new setting is not reported back. ** </dd> ** ** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt> ** <dd> ^This option is used to change the name of the "main" database ** schema. ^The sole argument is a pointer to a constant UTF8 string ** which will become the new schema name in place of "main". ^SQLite ** does not make a copy of the new main schema name string, so the application ** must ensure that the argument passed into this DBCONFIG option is unchanged ** until after the database connection closes. ** </dd> ** ** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] ** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt> ** <dd> Usually, when a database in wal mode is closed or detached from a ** database handle, SQLite checks if this will mean that there are now no ** connections at all to the database. If so, it performs a checkpoint ** operation before closing the connection. This option may be used to ** override this behaviour. The first parameter passed to this operation ** is an integer - positive to disable checkpoints-on-close, or zero (the ** default) to enable them, and negative to leave the setting unchanged. ** The second parameter is a pointer to an integer ** into which is written 0 or 1 to indicate whether checkpoints-on-close ** have been disabled - 0 if they are not disabled, 1 if they are. ** </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt> ** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates ** the [query planner stability guarantee] (QPSG). When the QPSG is active, ** a single SQL query statement will always use the same algorithm regardless ** of values of [bound parameters].)^ The QPSG disables some query optimizations ** that look at the values of bound parameters, which can make some queries ** slower. But the QPSG has the advantage of more predictable behavior. With ** the QPSG active, SQLite will always use the same query plan in the field as ** was used during testing in the lab. ** The first argument to this setting is an integer which is 0 to disable ** the QPSG, positive to enable QPSG, or negative to leave the setting ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether the QPSG is disabled or enabled ** following this call. ** </dd> ** ** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt> ** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not ** include output for any operations performed by trigger programs. This ** option is used to set or clear (the default) a flag that governs this ** behavior. The first parameter passed to this operation is an integer - ** positive to enable output for trigger programs, or zero to disable it, ** or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which is written ** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if ** it is not disabled, 1 if it is. ** </dd> ** ** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt> ** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run ** [VACUUM] in order to reset a database back to an empty database ** with no schema and no content. The following process works even for ** a badly corrupted database file: ** <ol> ** <li> If the database connection is newly opened, make sure it has read the ** database schema by preparing then discarding some query against the ** database, or calling sqlite3_table_column_metadata(), ignoring any ** errors. This step is only necessary if the application desires to keep ** the database in WAL mode after the reset if it was in WAL mode before ** the reset. ** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0); ** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0); ** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0); ** </ol> ** Because resetting a database is destructive and irreversible, the ** process requires the use of this obscure API and multiple steps to help ** ensure that it does not happen by accident. ** ** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt> ** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the ** "defensive" flag for a database connection. When the defensive ** flag is enabled, language features that allow ordinary SQL to ** deliberately corrupt the database file are disabled. The disabled ** features include but are not limited to the following: ** <ul> ** <li> The [PRAGMA writable_schema=ON] statement. ** <li> Writes to the [sqlite_dbpage] virtual table. ** <li> Direct writes to [shadow tables]. ** </ul> ** </dd> ** </dl> */ #define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ #define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */ #define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */ #define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */ #define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */ #define SQLITE_DBCONFIG_MAX 1010 /* Largest DBCONFIG */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result |
︙ | ︙ | |||
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 | ** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()] ** and [sqlite3_prepare16_v3()] assume that the prepared statement will ** be used just once or at most a few times and then destroyed using ** [sqlite3_finalize()] relatively soon. The current implementation acts ** on this hint by avoiding the use of [lookaside memory] so as not to ** deplete the limited store of lookaside memory. Future versions of ** SQLite may act on this hint differently. ** </dl> */ #define SQLITE_PREPARE_PERSISTENT 0x01 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** | > > > > > > > > > > | 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 | ** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()] ** and [sqlite3_prepare16_v3()] assume that the prepared statement will ** be used just once or at most a few times and then destroyed using ** [sqlite3_finalize()] relatively soon. The current implementation acts ** on this hint by avoiding the use of [lookaside memory] so as not to ** deplete the limited store of lookaside memory. Future versions of ** SQLite may act on this hint differently. ** ** [[SQLITE_PREPARE_NORMALIZE]] ^(<dt>SQLITE_PREPARE_NORMALIZE</dt> ** <dd>The SQLITE_PREPARE_NORMALIZE flag indicates that a normalized ** representation of the SQL statement should be calculated and then ** associated with the prepared statement, which can be obtained via ** the [sqlite3_normalized_sql()] interface. The semantics used to ** normalize a SQL statement are unspecified and subject to change. ** At a minimum, literal values will be replaced with suitable ** placeholders. ** </dl> */ #define SQLITE_PREPARE_PERSISTENT 0x01 #define SQLITE_PREPARE_NORMALIZE 0x02 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** |
︙ | ︙ | |||
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 | ** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 ** SQL text used to create [prepared statement] P if P was ** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 ** string containing the SQL text of prepared statement P with ** [bound parameters] expanded. ** ** ^(For example, if a prepared statement is created using the SQL ** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 ** and parameter :xyz is unbound, then sqlite3_sql() will return ** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() ** will return "SELECT 2345,NULL".)^ ** ** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory ** is available to hold the result, or if the result would exceed the ** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. ** ** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of ** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time ** option causes sqlite3_expanded_sql() to always return NULL. ** | > > > > > | | > > | 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 | ** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 ** SQL text used to create [prepared statement] P if P was ** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 ** string containing the SQL text of prepared statement P with ** [bound parameters] expanded. ** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8 ** string containing the normalized SQL text of prepared statement P. The ** semantics used to normalize a SQL statement are unspecified and subject ** to change. At a minimum, literal values will be replaced with suitable ** placeholders. ** ** ^(For example, if a prepared statement is created using the SQL ** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 ** and parameter :xyz is unbound, then sqlite3_sql() will return ** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() ** will return "SELECT 2345,NULL".)^ ** ** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory ** is available to hold the result, or if the result would exceed the ** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. ** ** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of ** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time ** option causes sqlite3_expanded_sql() to always return NULL. ** ** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P) ** are managed by SQLite and are automatically freed when the prepared ** statement is finalized. ** ^The string returned by sqlite3_expanded_sql(P), on the other hand, ** is obtained from [sqlite3_malloc()] and must be free by the application ** by passing it to [sqlite3_free()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt); SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to |
︙ | ︙ | |||
5760 5761 5762 5763 5764 5765 5766 | ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue ** and xInverse) passed to sqlite3_create_window_function are pointers to | | | 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 | ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue ** and xInverse) passed to sqlite3_create_window_function are pointers to ** C-language callbacks that implement the new function. xStep and xFinal ** must both be non-NULL. xValue and xInverse may either both be NULL, in ** which case a regular aggregate function is created, or must both be ** non-NULL, in which case the new function may be used as either an aggregate ** or aggregate window function. More details regarding the implementation ** of aggregate window functions are ** [user-defined window functions|available here]. ** |
︙ | ︙ | |||
7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 | void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 1 of the sqlite_module object. Those ** below are for version 2 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part | > > > | 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 | void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 1 of the sqlite_module object. Those ** below are for version 2 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); /* The methods above are in versions 1 and 2 of the sqlite_module object. ** Those below are for version 3 and greater. */ int (*xShadowName)(const char*); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part |
︙ | ︙ | |||
8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 | #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 | > | 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 | #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 |
︙ | ︙ | |||
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 | ** CAPI3REF: Virtual Table Configuration Options ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** ** <dl> ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, ** where X is an integer. If X is zero, then the [virtual table] whose ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not ** support constraints. In this configuration (which is the default) if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire | > | 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 | ** CAPI3REF: Virtual Table Configuration Options ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** ** <dl> ** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]] ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, ** where X is an integer. If X is zero, then the [virtual table] whose ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not ** support constraints. In this configuration (which is the default) if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire |
︙ | ︙ | |||
10286 10287 10288 10289 10290 10291 10292 | ** The following are allowed values for 6th argument (the F argument) to ** the [sqlite3_deserialize(D,S,P,N,M,F)] interface. ** ** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization ** in the P argument is held in memory obtained from [sqlite3_malloc64()] ** and that SQLite should take ownership of this memory and automatically ** free it when it has finished using it. Without this flag, the caller | | | 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 | ** The following are allowed values for 6th argument (the F argument) to ** the [sqlite3_deserialize(D,S,P,N,M,F)] interface. ** ** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization ** in the P argument is held in memory obtained from [sqlite3_malloc64()] ** and that SQLite should take ownership of this memory and automatically ** free it when it has finished using it. Without this flag, the caller ** is responsible for freeing any dynamically allocated memory. ** ** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to ** grow the size of the database using calls to [sqlite3_realloc64()]. This ** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used. ** Without this flag, the deserialized database cannot increase in size beyond ** the number of bytes specified by the M parameter. ** |
︙ | ︙ | |||
10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 | ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visited ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); /* ** CAPI3REF: Advance A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function may only be used with iterators created by function | > > > > > > > > > > > > > > > > > > > > > > > > > > | 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 | ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visited ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. ** ** The behavior of sqlite3changeset_start_v2() and its streaming equivalent ** may be modified by passing a combination of ** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter. ** ** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b> ** and therefore subject to change. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); SQLITE_API int sqlite3changeset_start_v2( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset, /* Pointer to blob containing changeset */ int flags /* SESSION_CHANGESETSTART_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_start_v2 ** ** The following flags may passed via the 4th parameter to ** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]: ** ** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd> ** Invert the changeset while iterating through it. This is equivalent to ** inverting a changeset using sqlite3changeset_invert() before applying it. ** It is an error to specify this flag with a patchset. */ #define SQLITE_CHANGESETSTART_INVERT 0x0002 /* ** CAPI3REF: Advance A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function may only be used with iterators created by function |
︙ | ︙ | |||
11568 11569 11570 11571 11572 11573 11574 | int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, /* OUT: Rebase data */ | | > > > > > > | 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 | int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, /* OUT: Rebase data */ int flags /* SESSION_CHANGESETAPPLY_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_apply_v2 ** ** The following flags may passed via the 9th parameter to ** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]: ** ** <dl> ** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd> ** Usually, the sessions module encloses all operations performed by ** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The ** SAVEPOINT is committed if the changeset or patchset is successfully ** applied, or rolled back if an error occurs. Specifying this flag ** causes the sessions module to omit this savepoint. In this case, if the ** caller has an open transaction or savepoint when apply_v2() is called, ** it may revert the partially applied changeset by rolling it back. ** ** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd> ** Invert the changeset before applying it. This is equivalent to inverting ** a changeset using sqlite3changeset_invert() before applying it. It is ** an error to specify this flag with a patchset. */ #define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001 #define SQLITE_CHANGESETAPPLY_INVERT 0x0002 /* ** CAPI3REF: Constants Passed To The Conflict Handler ** ** Values that may be passed as the second argument to a conflict-handler. ** ** <dl> |
︙ | ︙ | |||
11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 | int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3session_changeset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3session_patchset_strm( | > > > > > > | 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 | int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3changeset_start_v2_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int flags ); SQLITE_API int sqlite3session_changeset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3session_patchset_strm( |
︙ | ︙ | |||
12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 | sqlite3_rebaser *pRebaser, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** Make sure we can call this stuff from C++. */ #if 0 } #endif | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 | sqlite3_rebaser *pRebaser, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Configure global parameters ** ** The sqlite3session_config() interface is used to make global configuration ** changes to the sessions module in order to tune it to the specific needs ** of the application. ** ** The sqlite3session_config() interface is not threadsafe. If it is invoked ** while any other thread is inside any other sessions method then the ** results are undefined. Furthermore, if it is invoked after any sessions ** related objects have been created, the results are also undefined. ** ** The first argument to the sqlite3session_config() function must be one ** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The ** interpretation of the (void*) value passed as the second parameter and ** the effect of calling this function depends on the value of the first ** parameter. ** ** <dl> ** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd> ** By default, the sessions module streaming interfaces attempt to input ** and output data in approximately 1 KiB chunks. This operand may be used ** to set and query the value of this configuration setting. The pointer ** passed as the second argument must point to a value of type (int). ** If this value is greater than 0, it is used as the new streaming data ** chunk size for both input and output. Before returning, the (int) value ** pointed to by pArg is set to the final value of the streaming interface ** chunk size. ** </dl> ** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ SQLITE_API int sqlite3session_config(int op, void *pArg); /* ** CAPI3REF: Values for sqlite3session_config(). */ #define SQLITE_SESSION_CONFIG_STRMSIZE 1 /* ** Make sure we can call this stuff from C++. */ #if 0 } #endif |
︙ | ︙ | |||
12464 12465 12466 12467 12468 12469 12470 | ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do would be ** inefficient), it doesn't matter if the user queries for | | | 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 | ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do would be ** inefficient), it doesn't matter if the user queries for ** 'first + place' or '1st + place', as there are entries in the ** FTS index corresponding to both forms of the first token. ** </ol> ** ** Whether it is parsing document or query text, any call to xToken that ** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit ** is considered to supply a synonym for the previous token. For example, ** when parsing the document "I won first place", a tokenizer that supports |
︙ | ︙ | |||
12492 12493 12494 12495 12496 12497 12498 | ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the | | | 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 | ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the ** token "first" is substituted for "1st" by the tokenizer, then the query: ** ** <codeblock> ** ... MATCH '1s*'</codeblock> ** ** will not match documents that contain the token "1st" (as the tokenizer ** will probably not map "1s" to any prefix of "first"). ** |
︙ | ︙ | |||
15272 15273 15274 15275 15276 15277 15278 | #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*); SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); | < < < | | > > | 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 | #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*); SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen); SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3*); # ifdef SQLITE_ENABLE_SNAPSHOT SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager); SQLITE_PRIVATE int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot); SQLITE_PRIVATE void sqlite3PagerSnapshotUnlock(Pager *pPager); # endif #endif #ifdef SQLITE_DIRECT_OVERFLOW_READ SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno); #endif #ifdef SQLITE_ENABLE_ZIPVFS SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager); #endif /* Functions used to query pager state and configuration. */ |
︙ | ︙ | |||
15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 | /* Return the header size */ SQLITE_PRIVATE int sqlite3HeaderSizePcache(void); SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void); /* Number of dirty pages as a percentage of the configured cache size */ SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*); #endif /* _PCACHE_H_ */ /************** End of pcache.h **********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include os.h in the middle of sqliteInt.h ********************/ /************** Begin file os.h **********************************************/ | > > > > | 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 | /* Return the header size */ SQLITE_PRIVATE int sqlite3HeaderSizePcache(void); SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void); /* Number of dirty pages as a percentage of the configured cache size */ SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*); #ifdef SQLITE_DIRECT_OVERFLOW_READ SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache); #endif #endif /* _PCACHE_H_ */ /************** End of pcache.h **********************************************/ /************** Continuing where we left off in sqliteInt.h ******************/ /************** Include os.h in the middle of sqliteInt.h ********************/ /************** Begin file os.h **********************************************/ |
︙ | ︙ | |||
16033 16034 16035 16036 16037 16038 16039 | }; /* ** A hash table for built-in function definitions. (Application-defined ** functions use a regular table table from hash.h.) ** ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. | | > > | 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 | }; /* ** A hash table for built-in function definitions. (Application-defined ** functions use a regular table table from hash.h.) ** ** Hash each FuncDef structure into one of the FuncDefHash.a[] slots. ** Collisions are on the FuncDef.u.pHash chain. Use the SQLITE_FUNC_HASH() ** macro to compute a hash on the function name. */ #define SQLITE_FUNC_HASH_SZ 23 struct FuncDefHash { FuncDef *a[SQLITE_FUNC_HASH_SZ]; /* Hash table for functions */ }; #define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ) #ifdef SQLITE_USER_AUTHENTICATION /* ** Information held in the "sqlite3" database connection object and used ** to manage user authentication. */ typedef struct sqlite3_userauth sqlite3_userauth; |
︙ | ︙ | |||
16099 16100 16101 16102 16103 16104 16105 | sqlite3_vfs *pVfs; /* OS Interface */ struct Vdbe *pVdbe; /* List of active virtual machines */ CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ sqlite3_mutex *mutex; /* Connection mutex */ Db *aDb; /* All backends */ int nDb; /* Number of backends currently in use */ u32 mDbFlags; /* flags recording internal state */ | | | 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 | sqlite3_vfs *pVfs; /* OS Interface */ struct Vdbe *pVdbe; /* List of active virtual machines */ CollSeq *pDfltColl; /* The default collating sequence (BINARY) */ sqlite3_mutex *mutex; /* Connection mutex */ Db *aDb; /* All backends */ int nDb; /* Number of backends currently in use */ u32 mDbFlags; /* flags recording internal state */ u64 flags; /* flags settable by pragmas. See below */ i64 lastRowid; /* ROWID of most recent insert (see above) */ i64 szMmap; /* Default mmap_size setting */ u32 nSchemaLock; /* Do not reset the schema when non-zero */ unsigned int openFlags; /* Flags passed to sqlite3_vfs.xOpen() */ int errCode; /* Most recent error code (SQLITE_*) */ int errMask; /* & result codes with this before returning */ int iSysErrno; /* Errno value from last system error */ |
︙ | ︙ | |||
16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 | #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/ #define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */ #define SQLITE_ResetDatabase 0x02000000 /* Reset the database */ /* Flags used only if debugging */ #ifdef SQLITE_DEBUG | > > > > | | | | | | 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 | #define SQLITE_DeferFKs 0x00080000 /* Defer all FK constraints */ #define SQLITE_QueryOnly 0x00100000 /* Disable database changes */ #define SQLITE_CellSizeCk 0x00200000 /* Check btree cell sizes on load */ #define SQLITE_Fts3Tokenizer 0x00400000 /* Enable fts3_tokenizer(2) */ #define SQLITE_EnableQPSG 0x00800000 /* Query Planner Stability Guarantee*/ #define SQLITE_TriggerEQP 0x01000000 /* Show trigger EXPLAIN QUERY PLAN */ #define SQLITE_ResetDatabase 0x02000000 /* Reset the database */ #define SQLITE_LegacyAlter 0x04000000 /* Legacy ALTER TABLE behaviour */ #define SQLITE_NoSchemaError 0x08000000 /* Do not report schema parse errors*/ #define SQLITE_Defensive 0x10000000 /* Input SQL is likely hostile */ /* Flags used only if debugging */ #define HI(X) ((u64)(X)<<32) #ifdef SQLITE_DEBUG #define SQLITE_SqlTrace HI(0x0001) /* Debug print SQL as it executes */ #define SQLITE_VdbeListing HI(0x0002) /* Debug listings of VDBE progs */ #define SQLITE_VdbeTrace HI(0x0004) /* True to trace VDBE execution */ #define SQLITE_VdbeAddopTrace HI(0x0008) /* Trace sqlite3VdbeAddOp() calls */ #define SQLITE_VdbeEQP HI(0x0010) /* Debug EXPLAIN QUERY PLAN */ #endif /* ** Allowed values for sqlite3.mDbFlags */ #define DBFLAG_SchemaChange 0x0001 /* Uncommitted Hash table changes */ #define DBFLAG_PreferBuiltin 0x0002 /* Preference to built-in funcs */ |
︙ | ︙ | |||
16405 16406 16407 16408 16409 16410 16411 | #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a ** single query - might change over time */ #define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */ #define SQLITE_FUNC_OFFSET 0x8000 /* Built-in sqlite_offset() function */ | | | > | 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 | #define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */ #define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */ #define SQLITE_FUNC_MINMAX 0x1000 /* True for min() and max() aggregates */ #define SQLITE_FUNC_SLOCHNG 0x2000 /* "Slow Change". Value constant during a ** single query - might change over time */ #define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */ #define SQLITE_FUNC_OFFSET 0x8000 /* Built-in sqlite_offset() function */ #define SQLITE_FUNC_WINDOW 0x00010000 /* Built-in window-only function */ #define SQLITE_FUNC_WINDOW_SIZE 0x20000 /* Requires partition size as arg. */ #define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */ /* ** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are ** used to create the initializers for the FuncDef structures. ** ** FUNCTION(zName, nArg, iArg, bNC, xFunc) ** Used to create a scalar function definition of a function zName |
︙ | ︙ | |||
16482 16483 16484 16485 16486 16487 16488 | (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} } #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,0,#zName, {0}} #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xFinal,0,#zName, {0}} | < > > > > | 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 | (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} } #define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,0,#zName, {0}} #define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xFinal,0,#zName, {0}} #define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \ {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \ SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}} #define INTERNAL_FUNCTION(zName, nArg, xFunc) \ {nArg, SQLITE_FUNC_INTERNAL|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \ 0, 0, xFunc, 0, 0, 0, #zName, {0} } /* ** All current savepoints are stored in a linked list starting at ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. */ |
︙ | ︙ | |||
16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 | /* ** The schema for each SQL table and view is represented in memory ** by an instance of the following structure. */ struct Table { char *zName; /* Name of the table or view */ Column *aCol; /* Information about each column */ Index *pIndex; /* List of SQL indexes on this table. */ Select *pSelect; /* NULL for tables. Points to definition if a view. */ FKey *pFKey; /* Linked list of all foreign keys in this table */ char *zColAff; /* String defining the affinity of each column */ ExprList *pCheck; /* All CHECK constraints */ /* ... also used as column name list in a VIEW */ int tnum; /* Root BTree page for this table */ | > > > | 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 | /* ** The schema for each SQL table and view is represented in memory ** by an instance of the following structure. */ struct Table { char *zName; /* Name of the table or view */ Column *aCol; /* Information about each column */ #ifdef SQLITE_ENABLE_NORMALIZE Hash *pColHash; /* All columns indexed by name */ #endif Index *pIndex; /* List of SQL indexes on this table. */ Select *pSelect; /* NULL for tables. Points to definition if a view. */ FKey *pFKey; /* Linked list of all foreign keys in this table */ char *zColAff; /* String defining the affinity of each column */ ExprList *pCheck; /* All CHECK constraints */ /* ... also used as column name list in a VIEW */ int tnum; /* Root BTree page for this table */ |
︙ | ︙ | |||
16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 | #define TF_HasStat1 0x0010 /* nRowLogEst set from sqlite_stat1 */ #define TF_WithoutRowid 0x0020 /* No rowid. PRIMARY KEY is the key */ #define TF_NoVisibleRowid 0x0040 /* No user-visible "rowid" column */ #define TF_OOOHidden 0x0080 /* Out-of-Order hidden columns */ #define TF_StatsUsed 0x0100 /* Query planner decisions affected by ** Index.aiRowLogEst[] values */ #define TF_HasNotNull 0x0200 /* Contains NOT NULL constraints */ /* ** Test to see whether or not a table is a virtual table. This is ** done as a macro so that it will be optimized out when virtual ** table support is omitted from the build. */ #ifndef SQLITE_OMIT_VIRTUALTABLE | > | 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 | #define TF_HasStat1 0x0010 /* nRowLogEst set from sqlite_stat1 */ #define TF_WithoutRowid 0x0020 /* No rowid. PRIMARY KEY is the key */ #define TF_NoVisibleRowid 0x0040 /* No user-visible "rowid" column */ #define TF_OOOHidden 0x0080 /* Out-of-Order hidden columns */ #define TF_StatsUsed 0x0100 /* Query planner decisions affected by ** Index.aiRowLogEst[] values */ #define TF_HasNotNull 0x0200 /* Contains NOT NULL constraints */ #define TF_Shadow 0x0400 /* True for a shadow table */ /* ** Test to see whether or not a table is a virtual table. This is ** done as a macro so that it will be optimized out when virtual ** table support is omitted from the build. */ #ifndef SQLITE_OMIT_VIRTUALTABLE |
︙ | ︙ | |||
17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 | void *p; /* Pointer to sampled record */ int n; /* Size of record in bytes */ tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ }; /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** The memory that "z" points to is owned by other objects. Take care ** that the owner of the "z" string does not deallocate the string before ** the Token goes out of scope! Very often, the "z" points to some place | > > > > > > | 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 | void *p; /* Pointer to sampled record */ int n; /* Size of record in bytes */ tRowcnt *anEq; /* Est. number of rows where the key equals this sample */ tRowcnt *anLt; /* Est. number of rows where key is less than this sample */ tRowcnt *anDLt; /* Est. number of distinct keys less than this sample */ }; /* ** Possible values to use within the flags argument to sqlite3GetToken(). */ #define SQLITE_TOKEN_QUOTED 0x1 /* Token is a quoted identifier. */ #define SQLITE_TOKEN_KEYWORD 0x2 /* Token is a keyword. */ /* ** Each token coming out of the lexer is an instance of ** this structure. Tokens are also used as part of an expression. ** ** The memory that "z" points to is owned by other objects. Take care ** that the owner of the "z" string does not deallocate the string before ** the Token goes out of scope! Very often, the "z" points to some place |
︙ | ︙ | |||
17187 17188 17189 17190 17191 17192 17193 | ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 op2; /* TK_REGISTER: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ | > | | < | < > | 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 | ** TK_SELECT_COLUMN: column of the result vector */ i16 iAgg; /* Which entry in pAggInfo->aCol[] or ->aFunc[] */ i16 iRightJoinTable; /* If EP_FromJoin, the right table of the join */ u8 op2; /* TK_REGISTER: original value of Expr.op ** TK_COLUMN: the value of p5 for OP_Column ** TK_AGG_FUNCTION: nesting depth */ AggInfo *pAggInfo; /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */ union { Table *pTab; /* TK_COLUMN: Table containing column. Can be NULL ** for a column of an index on an expression */ Window *pWin; /* TK_FUNCTION: Window definition for the func */ } y; }; /* ** The following are the meanings of bits in the Expr.flags field. */ #define EP_FromJoin 0x000001 /* Originates in ON/USING clause of outer join */ #define EP_Agg 0x000002 /* Contains one or more aggregate functions */ |
︙ | ︙ | |||
17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 | #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ #define EP_Alias 0x400000 /* Is an alias for a result set column */ #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ /* ** The EP_Propagate mask is a set of properties that automatically propagate ** upwards into parent nodes. */ #define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc) | > | 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 | #define EP_NoReduce 0x020000 /* Cannot EXPRDUP_REDUCE this Expr */ #define EP_Unlikely 0x040000 /* unlikely() or likelihood() function */ #define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */ #define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */ #define EP_Subquery 0x200000 /* Tree contains a TK_SELECT operator */ #define EP_Alias 0x400000 /* Is an alias for a result set column */ #define EP_Leaf 0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */ #define EP_WinFunc 0x1000000 /* TK_FUNCTION with Expr.y.pWin set */ /* ** The EP_Propagate mask is a set of properties that automatically propagate ** upwards into parent nodes. */ #define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc) |
︙ | ︙ | |||
17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 | ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ ** OPFLAG_FORDELETE == BTREE_FORDELETE ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION ** OPFLAG_AUXDELETE == BTREE_AUXDELETE */ #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ /* Also used in P2 (not P5) of OP_Delete */ #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ | > | 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 | ** OPFLAG_SEEKEQ == BTREE_SEEK_EQ ** OPFLAG_FORDELETE == BTREE_FORDELETE ** OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION ** OPFLAG_AUXDELETE == BTREE_AUXDELETE */ #define OPFLAG_NCHANGE 0x01 /* OP_Insert: Set to update db->nChange */ /* Also used in P2 (not P5) of OP_Delete */ #define OPFLAG_NOCHNG 0x01 /* OP_VColumn nochange for UPDATE */ #define OPFLAG_EPHEM 0x01 /* OP_Column: Ephemeral output is ok */ #define OPFLAG_LASTROWID 0x20 /* Set to update db->lastRowid */ #define OPFLAG_ISUPDATE 0x04 /* This OP_Insert is an sql UPDATE */ #define OPFLAG_APPEND 0x08 /* This is likely to be an append */ #define OPFLAG_USESEEKRESULT 0x10 /* Try to avoid a seek in BtreeInsert() */ #define OPFLAG_ISNOOP 0x40 /* OP_Delete does pre-update-hook only */ #define OPFLAG_LENGTHARG 0x40 /* OP_Column only used for length() */ |
︙ | ︙ | |||
18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 | void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int iOnceResetThreshold; /* When to reset OP_Once counters */ u32 szSorterRef; /* Min size in bytes to use sorter-refs */ }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: | > | 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 | void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx); /* Callback */ void *pVdbeBranchArg; /* 1st argument */ #endif #ifndef SQLITE_UNTESTABLE int (*xTestCallback)(int); /* Invoked by sqlite3FaultSim() */ #endif int bLocaltimeFault; /* True to fail localtime() calls */ int bInternalFunctions; /* Internal SQL functions are visible */ int iOnceResetThreshold; /* When to reset OP_Once counters */ u32 szSorterRef; /* Min size in bytes to use sorter-refs */ }; /* ** This macro is used inside of assert() statements to indicate that ** the assert is only valid on a well-formed database. Instead of: |
︙ | ︙ | |||
18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 | SQLITE_PRIVATE int sqlite3IsIdChar(u8); /* ** Internal function prototypes */ SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*); SQLITE_PRIVATE int sqlite3Strlen30(const char*); SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*); #define sqlite3StrNICmp sqlite3_strnicmp SQLITE_PRIVATE int sqlite3MallocInit(void); SQLITE_PRIVATE void sqlite3MallocEnd(void); SQLITE_PRIVATE void *sqlite3Malloc(u64); SQLITE_PRIVATE void *sqlite3MallocZero(u64); | > | 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 | SQLITE_PRIVATE int sqlite3IsIdChar(u8); /* ** Internal function prototypes */ SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*); SQLITE_PRIVATE int sqlite3Strlen30(const char*); #define sqlite3Strlen30NN(C) (strlen(C)&0x3fffffff) SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*); #define sqlite3StrNICmp sqlite3_strnicmp SQLITE_PRIVATE int sqlite3MallocInit(void); SQLITE_PRIVATE void sqlite3MallocEnd(void); SQLITE_PRIVATE void *sqlite3Malloc(u64); SQLITE_PRIVATE void *sqlite3MallocZero(u64); |
︙ | ︙ | |||
18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 | SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); SQLITE_PRIVATE void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8); SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView*, const With*, u8); #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView*, const Window*, u8); SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8); #endif #endif | > | 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 | SQLITE_PRIVATE void *sqlite3TestTextToPtr(const char*); #endif #if defined(SQLITE_DEBUG) SQLITE_PRIVATE void sqlite3TreeViewExpr(TreeView*, const Expr*, u8); SQLITE_PRIVATE void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*); SQLITE_PRIVATE void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*); SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView*, const SrcList*); SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView*, const Select*, u8); SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView*, const With*, u8); #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE void sqlite3TreeViewWindow(TreeView*, const Window*, u8); SQLITE_PRIVATE void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8); #endif #endif |
︙ | ︙ | |||
18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 | #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*); #endif SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*,int*,Upsert*); #ifdef SQLITE_ENABLE_NULL_TRIM SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe*,Table*); #else # define sqlite3SetMakeRecordP5(A,B) #endif SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); SQLITE_PRIVATE void sqlite3MultiWrite(Parse*); SQLITE_PRIVATE void sqlite3MayAbort(Parse*); SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*); SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*); SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int); SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*); SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int); SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int); SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void); SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void); SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*); SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*); | > > > > > > > | 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 | #ifdef SQLITE_ENABLE_CURSOR_HINTS SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*); #endif SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE int sqlite3IsRowidN(const char*, int); #endif SQLITE_PRIVATE void sqlite3GenerateRowDelete( Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int); SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int); SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(Expr*,int*,int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int, u8,u8,int,int*,int*,Upsert*); #ifdef SQLITE_ENABLE_NULL_TRIM SQLITE_PRIVATE void sqlite3SetMakeRecordP5(Vdbe*,Table*); #else # define sqlite3SetMakeRecordP5(A,B) #endif SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int); SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*); SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); SQLITE_PRIVATE void sqlite3MultiWrite(Parse*); SQLITE_PRIVATE void sqlite3MayAbort(Parse*); SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8); SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*); SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*); SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int); SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int); SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int); SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*); SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE FuncDef *sqlite3FunctionSearchN(int,const char*,int); #endif SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int); SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8); SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void); SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void); SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*); SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*); SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*); |
︙ | ︙ | |||
18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 | SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,Expr*,Expr*); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*); SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *); SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int); SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64); SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64); SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64); SQLITE_PRIVATE int sqlite3AbsInt32(int); #ifdef SQLITE_ENABLE_8_3_NAMES | > | 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 | SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr); SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr); SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,Expr*,Expr*); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int); SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*); SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*); SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *); SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3*); SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *); SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int); SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64); SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64); SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64); SQLITE_PRIVATE int sqlite3AbsInt32(int); #ifdef SQLITE_ENABLE_8_3_NAMES |
︙ | ︙ | |||
18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 | #endif SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int); SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr *, int, int); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); | > > > | 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 | #endif SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int); SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*); SQLITE_PRIVATE void sqlite3AlterFunctions(void); SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*); SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*); SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE int sqlite3GetTokenNormalized(const unsigned char *, int *, int *); #endif SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr *, int, int); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p); SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); |
︙ | ︙ | |||
19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 | SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *); SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *); SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); SQLITE_PRIVATE void sqlite3ParserReset(Parse*); SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); SQLITE_PRIVATE const char *sqlite3JournalModename(int); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); | > > > | 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 | SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *); SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *); SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*); SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*); SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int); SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *); SQLITE_PRIVATE void sqlite3ParserReset(Parse*); #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE void sqlite3Normalize(Vdbe*, const char*, int, u8); #endif SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*); SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*); SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *); SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*); SQLITE_PRIVATE const char *sqlite3JournalModename(int); #ifndef SQLITE_OMIT_WAL SQLITE_PRIVATE int sqlite3Checkpoint(sqlite3*, int, int, int*, int*); |
︙ | ︙ | |||
19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 | 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif 0, /* bLocaltimeFault */ 0x7ffffffe, /* iOnceResetThreshold */ SQLITE_DEFAULT_SORTERREF_SIZE /* szSorterRef */ }; /* ** Hash table for global functions - functions common to all ** database connections. After initialization, this table is | > | 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 | 0, /* xVdbeBranch */ 0, /* pVbeBranchArg */ #endif #ifndef SQLITE_UNTESTABLE 0, /* xTestCallback */ #endif 0, /* bLocaltimeFault */ 0, /* bInternalFunctions */ 0x7ffffffe, /* iOnceResetThreshold */ SQLITE_DEFAULT_SORTERREF_SIZE /* szSorterRef */ }; /* ** Hash table for global functions - functions common to all ** database connections. After initialization, this table is |
︙ | ︙ | |||
20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 | bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for statements that do not write */ bft bIsReader:1; /* True for statements that read */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ u32 aCounter[7]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ AuxData *pAuxData; /* Linked list of auxdata allocations */ | > > > | 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 | bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for statements that do not write */ bft bIsReader:1; /* True for statements that read */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ u32 aCounter[7]; /* Counters used by sqlite3_stmt_status() */ char *zSql; /* Text of the SQL statement that generated this */ #ifdef SQLITE_ENABLE_NORMALIZE char *zNormSql; /* Normalization of the associated SQL statement */ #endif void *pFree; /* Free this when deleting the vdbe */ VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ AuxData *pAuxData; /* Linked list of auxdata allocations */ |
︙ | ︙ | |||
20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 | SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*); SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*); SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*); SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*); | > > | 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 | SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*); SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*); SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); #endif SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int); SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*); SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*); SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int); SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*); SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*); |
︙ | ︙ | |||
20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 | SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*); #endif SQLITE_PRIVATE const char *sqlite3OpcodeName(int); SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*); #endif SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*); /* Destructor on Mem */ | > > | 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 | SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8); SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*); SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p); SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*); #ifndef SQLITE_OMIT_WINDOWFUNC SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*); #endif #ifndef SQLITE_OMIT_EXPLAIN SQLITE_PRIVATE const char *sqlite3OpcodeName(int); #endif SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve); SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n); SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int); #ifdef SQLITE_DEBUG SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*); #endif SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*); /* Destructor on Mem */ |
︙ | ︙ | |||
27605 27606 27607 27608 27609 27610 27611 | xtype = etSTRING; }else{ bufpt = va_arg(ap,char*); } if( bufpt==0 ){ bufpt = ""; }else if( xtype==etDYNSTRING ){ | | > > > > > | 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 | xtype = etSTRING; }else{ bufpt = va_arg(ap,char*); } if( bufpt==0 ){ bufpt = ""; }else if( xtype==etDYNSTRING ){ if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 && pAccum->accError==0 ){ /* Special optimization for sqlite3_mprintf("%z..."): ** Extend an existing memory allocation rather than creating ** a new one. */ assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 ); pAccum->zText = bufpt; pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt); pAccum->nChar = 0x7fffffff & (int)strlen(bufpt); |
︙ | ︙ | |||
28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 | sqlite3TreeViewSelect(pView, pCte->pSelect, 0); sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } } /* ** Generate a human-readable description of a Select object. */ SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ int n = 0; int cnt = 0; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 | sqlite3TreeViewSelect(pView, pCte->pSelect, 0); sqlite3TreeViewPop(pView); } sqlite3TreeViewPop(pView); } } /* ** Generate a human-readable description of a SrcList object. */ SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView *pView, const SrcList *pSrc){ int i; for(i=0; i<pSrc->nSrc; i++){ const struct SrcList_item *pItem = &pSrc->a[i]; StrAccum x; char zLine[100]; sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0); sqlite3_str_appendf(&x, "{%d,*}", pItem->iCursor); if( pItem->zDatabase ){ sqlite3_str_appendf(&x, " %s.%s", pItem->zDatabase, pItem->zName); }else if( pItem->zName ){ sqlite3_str_appendf(&x, " %s", pItem->zName); } if( pItem->pTab ){ sqlite3_str_appendf(&x, " tabname=%Q", pItem->pTab->zName); } if( pItem->zAlias ){ sqlite3_str_appendf(&x, " (AS %s)", pItem->zAlias); } if( pItem->fg.jointype & JT_LEFT ){ sqlite3_str_appendf(&x, " LEFT-JOIN"); } sqlite3StrAccumFinish(&x); sqlite3TreeViewItem(pView, zLine, i<pSrc->nSrc-1); if( pItem->pSelect ){ sqlite3TreeViewSelect(pView, pItem->pSelect, 0); } if( pItem->fg.isTabFunc ){ sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:"); } sqlite3TreeViewPop(pView); } } /* ** Generate a human-readable description of a Select object. */ SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){ int n = 0; int cnt = 0; |
︙ | ︙ | |||
28339 28340 28341 28342 28343 28344 28345 | for(pX=p->pWin; pX; pX=pX->pNextWin){ sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0); } sqlite3TreeViewPop(pView); } #endif if( p->pSrc && p->pSrc->nSrc ){ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | < | 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 | for(pX=p->pWin; pX; pX=pX->pNextWin){ sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0); } sqlite3TreeViewPop(pView); } #endif if( p->pSrc && p->pSrc->nSrc ){ pView = sqlite3TreeViewPush(pView, (n--)>0); sqlite3TreeViewLine(pView, "FROM"); sqlite3TreeViewSrcList(pView, p->pSrc); sqlite3TreeViewPop(pView); } if( p->pWhere ){ sqlite3TreeViewItem(pView, "WHERE", (n--)>0); sqlite3TreeViewExpr(pView, p->pWhere, 0); sqlite3TreeViewPop(pView); } |
︙ | ︙ | |||
28661 28662 28663 28664 28665 28666 28667 | Window *pWin; if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; pWin = 0; }else{ pFarg = pExpr->x.pList; #ifndef SQLITE_OMIT_WINDOWFUNC | | | 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 | Window *pWin; if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; pWin = 0; }else{ pFarg = pExpr->x.pList; #ifndef SQLITE_OMIT_WINDOWFUNC pWin = pExpr->y.pWin; #else pWin = 0; #endif } if( pExpr->op==TK_AGG_FUNCTION ){ sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", pExpr->op2, pExpr->u.zToken); |
︙ | ︙ | |||
31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 | ** 0x9e3779b1 is 2654435761 which is the closest prime number to ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */ h += sqlite3UpperToLower[c]; h *= 0x9e3779b1; } return h; } /* Link pNew element into the hash table pH. If pEntry!=0 then also ** insert pNew into the pEntry hash bucket. */ static void insertElement( Hash *pH, /* The complete hash table */ | > > > > > > > > > > > > > > | 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 | ** 0x9e3779b1 is 2654435761 which is the closest prime number to ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */ h += sqlite3UpperToLower[c]; h *= 0x9e3779b1; } return h; } #ifdef SQLITE_ENABLE_NORMALIZE static unsigned int strHashN(const char *z, int n){ unsigned int h = 0; int i; for(i=0; i<n; i++){ /* Knuth multiplicative hashing. (Sorting & Searching, p. 510). ** 0x9e3779b1 is 2654435761 which is the closest prime number to ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */ h += sqlite3UpperToLower[z[i]]; h *= 0x9e3779b1; } return h; } #endif /* SQLITE_ENABLE_NORMALIZE */ /* Link pNew element into the hash table pH. If pEntry!=0 then also ** insert pNew into the pEntry hash bucket. */ static void insertElement( Hash *pH, /* The complete hash table */ |
︙ | ︙ | |||
31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 | if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ return elem; } elem = elem->next; } return &nullElement; } /* Remove a single entry from the hash table given a pointer to that ** element and a hash on the element's key. */ static void removeElementGivenHash( Hash *pH, /* The pH containing "elem" */ HashElem* elem, /* The element to be removed from the pH */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 | if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ return elem; } elem = elem->next; } return &nullElement; } #ifdef SQLITE_ENABLE_NORMALIZE static HashElem *findElementWithHashN( const Hash *pH, /* The pH to be searched */ const char *pKey, /* The key we are searching for */ int nKey, /* Number of key bytes to use */ unsigned int *pHash /* Write the hash value here */ ){ HashElem *elem; /* Used to loop thru the element list */ int count; /* Number of elements left to test */ unsigned int h; /* The computed hash */ static HashElem nullElement = { 0, 0, 0, 0 }; if( pH->ht ){ /*OPTIMIZATION-IF-TRUE*/ struct _ht *pEntry; h = strHashN(pKey, nKey) % pH->htsize; pEntry = &pH->ht[h]; elem = pEntry->chain; count = pEntry->count; }else{ h = 0; elem = pH->first; count = pH->count; } if( pHash ) *pHash = h; while( count-- ){ assert( elem!=0 ); if( sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){ return elem; } elem = elem->next; } return &nullElement; } #endif /* SQLITE_ENABLE_NORMALIZE */ /* Remove a single entry from the hash table given a pointer to that ** element and a hash on the element's key. */ static void removeElementGivenHash( Hash *pH, /* The pH containing "elem" */ HashElem* elem, /* The element to be removed from the pH */ |
︙ | ︙ | |||
31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 | ** found, or NULL if there is no match. */ SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){ assert( pH!=0 ); assert( pKey!=0 ); return findElementWithHash(pH, pKey, 0)->data; } /* Insert an element into the hash table pH. The key is pKey ** and the data is "data". ** ** If no element exists with a matching key, then a new ** element is created and NULL is returned. ** | > > > > > > > > | 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 | ** found, or NULL if there is no match. */ SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){ assert( pH!=0 ); assert( pKey!=0 ); return findElementWithHash(pH, pKey, 0)->data; } #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE void *sqlite3HashFindN(const Hash *pH, const char *pKey, int nKey){ assert( pH!=0 ); assert( pKey!=0 ); assert( nKey>=0 ); return findElementWithHashN(pH, pKey, nKey, 0)->data; } #endif /* SQLITE_ENABLE_NORMALIZE */ /* Insert an element into the hash table pH. The key is pKey ** and the data is "data". ** ** If no element exists with a matching key, then a new ** element is created and NULL is returned. ** |
︙ | ︙ | |||
32026 32027 32028 32029 32030 32031 32032 | /* ** Allowed values of unixFile.fsFlags */ #define SQLITE_FSFLAGS_IS_MSDOS 0x1 /* | | < < | 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 | /* ** Allowed values of unixFile.fsFlags */ #define SQLITE_FSFLAGS_IS_MSDOS 0x1 /* ** If we are to be thread-safe, include the pthreads header. */ #if SQLITE_THREADSAFE /* # include <pthread.h> */ #endif /* ** Default permissions when creating a new file */ #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 |
︙ | ︙ | |||
32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 | { "lstat", (sqlite3_syscall_ptr)lstat, 0 }, #else { "lstat", (sqlite3_syscall_ptr)0, 0 }, #endif #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent) #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 }, #else { "ioctl", (sqlite3_syscall_ptr)0, 0 }, #endif #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent) }; /* End of the overrideable system calls */ | > > > > | 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 | { "lstat", (sqlite3_syscall_ptr)lstat, 0 }, #else { "lstat", (sqlite3_syscall_ptr)0, 0 }, #endif #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent) #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE) # ifdef __ANDROID__ { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 }, # else { "ioctl", (sqlite3_syscall_ptr)ioctl, 0 }, # endif #else { "ioctl", (sqlite3_syscall_ptr)0, 0 }, #endif #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent) }; /* End of the overrideable system calls */ |
︙ | ︙ | |||
33203 33204 33205 33206 33207 33208 33209 | /* WAS: ino_t ino; */ u64 ino; /* Inode number */ #endif }; /* ** An instance of the following structure is allocated for each open | | < | 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 | /* WAS: ino_t ino; */ u64 ino; /* Inode number */ #endif }; /* ** An instance of the following structure is allocated for each open ** inode. ** ** A single inode can have multiple file descriptors, so each unixFile ** structure contains a pointer to an instance of this object and this ** object keeps a count of the number of unixFile pointing to it. ** ** Mutex rules: ** |
︙ | ︙ | |||
33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 | sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif }; /* ** A lists of all unixInodeInfo objects. */ static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */ #ifdef SQLITE_DEBUG /* | > > | | > | 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 | sem_t *pSem; /* Named POSIX semaphore */ char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ #endif }; /* ** A lists of all unixInodeInfo objects. ** ** Must hold unixBigLock in order to read or write this variable. */ static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */ #ifdef SQLITE_DEBUG /* ** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not. ** This routine is used only within assert() to help verify correct mutex ** usage. */ int unixFileMutexHeld(unixFile *pFile){ assert( pFile->pInode ); return sqlite3_mutex_held(pFile->pInode->pLockMutex); } int unixFileMutexNotheld(unixFile *pFile){ assert( pFile->pInode ); |
︙ | ︙ | |||
33384 33385 33386 33387 33388 33389 33390 | } pInode->pUnused = 0; } /* ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). ** | | | | 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 | } pInode->pUnused = 0; } /* ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). ** ** The global mutex must be held when this routine is called, but the mutex ** on the inode being deleted must NOT be held. */ static void releaseInodeInfo(unixFile *pFile){ unixInodeInfo *pInode = pFile->pInode; assert( unixMutexHeld() ); assert( unixFileMutexNotheld(pFile) ); if( ALWAYS(pInode) ){ pInode->nRef--; |
︙ | ︙ | |||
33420 33421 33422 33423 33424 33425 33426 | } /* ** Given a file descriptor, locate the unixInodeInfo object that ** describes that file descriptor. Create a new one if necessary. The ** return value might be uninitialized if an error occurs. ** | | < | 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 | } /* ** Given a file descriptor, locate the unixInodeInfo object that ** describes that file descriptor. Create a new one if necessary. The ** return value might be uninitialized if an error occurs. ** ** The global mutex must held when calling this routine. ** ** Return an appropriate error code. */ static int findInodeInfo( unixFile *pFile, /* Unix file with file desc used in the key */ unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ ){ |
︙ | ︙ | |||
33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 | memset(&fileId, 0, sizeof(fileId)); fileId.dev = statbuf.st_dev; #if OS_VXWORKS fileId.pId = pFile->pId; #else fileId.ino = (u64)statbuf.st_ino; #endif pInode = inodeList; while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ pInode = pInode->pNext; } if( pInode==0 ){ pInode = sqlite3_malloc64( sizeof(*pInode) ); if( pInode==0 ){ return SQLITE_NOMEM_BKPT; } memset(pInode, 0, sizeof(*pInode)); memcpy(&pInode->fileId, &fileId, sizeof(fileId)); if( sqlite3GlobalConfig.bCoreMutex ){ pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pInode->pLockMutex==0 ){ sqlite3_free(pInode); return SQLITE_NOMEM_BKPT; } } pInode->nRef = 1; pInode->pNext = inodeList; pInode->pPrev = 0; if( inodeList ) inodeList->pPrev = pInode; inodeList = pInode; }else{ pInode->nRef++; } | > > | 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 | memset(&fileId, 0, sizeof(fileId)); fileId.dev = statbuf.st_dev; #if OS_VXWORKS fileId.pId = pFile->pId; #else fileId.ino = (u64)statbuf.st_ino; #endif assert( unixMutexHeld() ); pInode = inodeList; while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ pInode = pInode->pNext; } if( pInode==0 ){ pInode = sqlite3_malloc64( sizeof(*pInode) ); if( pInode==0 ){ return SQLITE_NOMEM_BKPT; } memset(pInode, 0, sizeof(*pInode)); memcpy(&pInode->fileId, &fileId, sizeof(fileId)); if( sqlite3GlobalConfig.bCoreMutex ){ pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pInode->pLockMutex==0 ){ sqlite3_free(pInode); return SQLITE_NOMEM_BKPT; } } pInode->nRef = 1; assert( unixMutexHeld() ); pInode->pNext = inodeList; pInode->pPrev = 0; if( inodeList ) inodeList->pPrev = pInode; inodeList = pInode; }else{ pInode->nRef++; } |
︙ | ︙ | |||
36298 36299 36300 36301 36302 36303 36304 | ** unixMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** ** The following fields are read-only after the object is created: ** | | | | | | 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 | ** unixMutexHeld() must be true when creating or destroying ** this object or while reading or writing the following fields: ** ** nRef ** ** The following fields are read-only after the object is created: ** ** hShm ** zFilename ** ** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and ** unixMutexHeld() is true when reading or writing any other field ** in this structure. */ struct unixShmNode { unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ sqlite3_mutex *pShmMutex; /* Mutex to access this object */ char *zFilename; /* Name of the mmapped file */ int hShm; /* Open file descriptor */ int szRegion; /* Size of shared-memory regions */ u16 nRegion; /* Size of array apRegion */ u8 isReadonly; /* True if read-only */ u8 isUnlocked; /* True if no DMS lock held */ char **apRegion; /* Array of mapped shared-memory regions */ int nRef; /* Number of unixShm objects pointing to this */ unixShm *pFirst; /* All unixShm objects pointing to this */ |
︙ | ︙ | |||
36331 36332 36333 36334 36335 36336 36337 | /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** | | | | | | 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 | /* ** Structure used internally by this VFS to record the state of an ** open shared memory connection. ** ** The following fields are initialized when this object is created and ** are read-only thereafter: ** ** unixShm.pShmNode ** unixShm.id ** ** All other fields are read/write. The unixShm.pShmNode->pShmMutex must ** be held while accessing any read/write fields. */ struct unixShm { unixShmNode *pShmNode; /* The underlying unixShmNode object */ unixShm *pNext; /* Next unixShm with the same unixShmNode */ u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */ u8 id; /* Id of this connection within its unixShmNode */ u16 sharedMask; /* Mask of shared locks held */ u16 exclMask; /* Mask of exclusive locks held */ }; /* ** Constants used for locking |
︙ | ︙ | |||
36370 36371 36372 36373 36374 36375 36376 | ){ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ struct flock f; /* The posix advisory locking structure */ int rc = SQLITE_OK; /* Result code form fcntl() */ /* Access to the unixShmNode object is serialized by the caller */ pShmNode = pFile->pInode->pShmNode; | | > | | | 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 | ){ unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */ struct flock f; /* The posix advisory locking structure */ int rc = SQLITE_OK; /* Result code form fcntl() */ /* Access to the unixShmNode object is serialized by the caller */ pShmNode = pFile->pInode->pShmNode; assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) ); assert( pShmNode->nRef>0 || unixMutexHeld() ); /* Shared locks never span more than one byte */ assert( n==1 || lockType!=F_RDLCK ); /* Locks are within range */ assert( n>=1 && n<=SQLITE_SHM_NLOCK ); if( pShmNode->hShm>=0 ){ /* Initialize the locking parameters */ f.l_type = lockType; f.l_whence = SEEK_SET; f.l_start = ofst; f.l_len = n; rc = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile); rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; } /* Update the global lock state and do debug tracing */ #ifdef SQLITE_DEBUG { u16 mask; OSTRACE(("SHM-LOCK ")); |
︙ | ︙ | |||
36456 36457 36458 36459 36460 36461 36462 | static void unixShmPurge(unixFile *pFd){ unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && ALWAYS(p->nRef==0) ){ int nShmPerMap = unixShmRegionPerMap(); int i; assert( p->pInode==pFd->pInode ); | | | | | | | 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 | static void unixShmPurge(unixFile *pFd){ unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && ALWAYS(p->nRef==0) ){ int nShmPerMap = unixShmRegionPerMap(); int i; assert( p->pInode==pFd->pInode ); sqlite3_mutex_free(p->pShmMutex); for(i=0; i<p->nRegion; i+=nShmPerMap){ if( p->hShm>=0 ){ osMunmap(p->apRegion[i], p->szRegion); }else{ sqlite3_free(p->apRegion[i]); } } sqlite3_free(p->apRegion); if( p->hShm>=0 ){ robust_close(pFd, p->hShm, __LINE__); p->hShm = -1; } p->pInode->pShmNode = 0; sqlite3_free(p); } } /* |
︙ | ︙ | |||
36509 36510 36511 36512 36513 36514 36515 | ** process might open and use the *-shm file without truncating it. ** And if the *-shm file has been corrupted by a power failure or ** system crash, the database itself may also become corrupt. */ lock.l_whence = SEEK_SET; lock.l_start = UNIX_SHM_DMS; lock.l_len = 1; lock.l_type = F_WRLCK; | | > > > > > | | 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 | ** process might open and use the *-shm file without truncating it. ** And if the *-shm file has been corrupted by a power failure or ** system crash, the database itself may also become corrupt. */ lock.l_whence = SEEK_SET; lock.l_start = UNIX_SHM_DMS; lock.l_len = 1; lock.l_type = F_WRLCK; if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) { rc = SQLITE_IOERR_LOCK; }else if( lock.l_type==F_UNLCK ){ if( pShmNode->isReadonly ){ pShmNode->isUnlocked = 1; rc = SQLITE_READONLY_CANTINIT; }else{ rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1); /* The first connection to attach must truncate the -shm file. We ** truncate to 3 bytes (an arbitrary small number, less than the ** -shm header size) rather than 0 as a system debugging aid, to ** help detect if a -shm file truncation is legitimate or is the work ** or a rogue process. */ if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){ rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename); } } }else if( lock.l_type==F_WRLCK ){ rc = SQLITE_BUSY; } |
︙ | ︙ | |||
36623 36624 36625 36626 36627 36628 36629 | sqlite3_snprintf(nShmFilename, zShm, SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", (u32)sStat.st_ino, (u32)sStat.st_dev); #else sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath); sqlite3FileSuffix3(pDbFd->zPath, zShm); #endif | | | | | | | | | | | | | | 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 | sqlite3_snprintf(nShmFilename, zShm, SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", (u32)sStat.st_ino, (u32)sStat.st_dev); #else sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath); sqlite3FileSuffix3(pDbFd->zPath, zShm); #endif pShmNode->hShm = -1; pDbFd->pInode->pShmNode = pShmNode; pShmNode->pInode = pDbFd->pInode; if( sqlite3GlobalConfig.bCoreMutex ){ pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->pShmMutex==0 ){ rc = SQLITE_NOMEM_BKPT; goto shm_open_err; } } if( pInode->bProcessLock==0 ){ if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT,(sStat.st_mode&0777)); } if( pShmNode->hShm<0 ){ pShmNode->hShm = robust_open(zShm, O_RDONLY, (sStat.st_mode&0777)); if( pShmNode->hShm<0 ){ rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm); goto shm_open_err; } pShmNode->isReadonly = 1; } /* If this process is running as root, make sure that the SHM file ** is owned by the same user that owns the original database. Otherwise, ** the original owner will not be able to connect. */ robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid); rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err; } } /* Make the new connection a child of the unixShmNode */ p->pShmNode = pShmNode; #ifdef SQLITE_DEBUG p->id = pShmNode->nextShmId++; #endif pShmNode->nRef++; pDbFd->pShm = p; unixLeaveMutex(); /* The reference count on pShmNode has already been incremented under ** the cover of the unixEnterMutex() mutex and the pointer from the ** new (struct unixShm) object to the pShmNode has been set. All that is ** left to do is to link the new object into the linked list starting ** at pShmNode->pFirst. This must be done while holding the ** pShmNode->pShmMutex. */ sqlite3_mutex_enter(pShmNode->pShmMutex); p->pNext = pShmNode->pFirst; pShmNode->pFirst = p; sqlite3_mutex_leave(pShmNode->pShmMutex); return rc; /* Jump here on any error */ shm_open_err: unixShmPurge(pDbFd); /* This call frees pShmNode if required */ sqlite3_free(p); unixLeaveMutex(); |
︙ | ︙ | |||
36729 36730 36731 36732 36733 36734 36735 | if( pDbFd->pShm==0 ){ rc = unixOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; | | | | | | | 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 | if( pDbFd->pShm==0 ){ rc = unixOpenSharedMemory(pDbFd); if( rc!=SQLITE_OK ) return rc; } p = pDbFd->pShm; pShmNode = p->pShmNode; sqlite3_mutex_enter(pShmNode->pShmMutex); if( pShmNode->isUnlocked ){ rc = unixLockSharedMemory(pDbFd, pShmNode); if( rc!=SQLITE_OK ) goto shmpage_out; pShmNode->isUnlocked = 0; } assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); assert( pShmNode->pInode==pDbFd->pInode ); assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); /* Minimum number of regions required to be mapped. */ nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; if( pShmNode->nRegion<nReqRegion ){ char **apNew; /* New apRegion[] array */ int nByte = nReqRegion*szRegion; /* Minimum required file size */ struct stat sStat; /* Used by fstat() */ pShmNode->szRegion = szRegion; if( pShmNode->hShm>=0 ){ /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ if( osFstat(pShmNode->hShm, &sStat) ){ rc = SQLITE_IOERR_SHMSIZE; goto shmpage_out; } if( sStat.st_size<nByte ){ /* The requested memory region does not exist. If bExtend is set to ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. |
︙ | ︙ | |||
36783 36784 36785 36786 36787 36788 36789 | static const int pgsz = 4096; int iPg; /* Write to the last byte of each newly allocated or extended page */ assert( (nByte % pgsz)==0 ); for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){ int x = 0; | | | 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 | static const int pgsz = 4096; int iPg; /* Write to the last byte of each newly allocated or extended page */ assert( (nByte % pgsz)==0 ); for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){ int x = 0; if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){ const char *zFile = pShmNode->zFilename; rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); goto shmpage_out; } } } } |
︙ | ︙ | |||
36806 36807 36808 36809 36810 36811 36812 | goto shmpage_out; } pShmNode->apRegion = apNew; while( pShmNode->nRegion<nReqRegion ){ int nMap = szRegion*nShmPerMap; int i; void *pMem; | | | | | | | 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 | goto shmpage_out; } pShmNode->apRegion = apNew; while( pShmNode->nRegion<nReqRegion ){ int nMap = szRegion*nShmPerMap; int i; void *pMem; if( pShmNode->hShm>=0 ){ pMem = osMmap(0, nMap, pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion ); if( pMem==MAP_FAILED ){ rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); goto shmpage_out; } }else{ pMem = sqlite3_malloc64(nMap); if( pMem==0 ){ rc = SQLITE_NOMEM_BKPT; goto shmpage_out; } memset(pMem, 0, nMap); } for(i=0; i<nShmPerMap; i++){ pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; } pShmNode->nRegion += nShmPerMap; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ *pp = pShmNode->apRegion[iRegion]; }else{ *pp = 0; } if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; sqlite3_mutex_leave(pShmNode->pShmMutex); return rc; } /* ** Change the lock state for a shared-memory segment. ** ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little |
︙ | ︙ | |||
36872 36873 36874 36875 36876 36877 36878 | assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); | | | | | 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 | assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); assert( n>=1 ); assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 ); assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 ); mask = (1<<(ofst+n)) - (1<<ofst); assert( n>1 || mask==(1<<ofst) ); sqlite3_mutex_enter(pShmNode->pShmMutex); if( flags & SQLITE_SHM_UNLOCK ){ u16 allMask = 0; /* Mask of locks held by siblings */ /* See if any siblings hold this same lock */ for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ if( pX==p ) continue; assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); |
︙ | ︙ | |||
36950 36951 36952 36953 36954 36955 36956 | rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n); if( rc==SQLITE_OK ){ assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } | | > | > | 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 | rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n); if( rc==SQLITE_OK ){ assert( (p->sharedMask & mask)==0 ); p->exclMask |= mask; } } } sqlite3_mutex_leave(pShmNode->pShmMutex); OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", p->id, osGetpid(0), p->sharedMask, p->exclMask)); return rc; } /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void unixShmBarrier( sqlite3_file *fd /* Database file holding the shared memory */ ){ UNUSED_PARAMETER(fd); sqlite3MemoryBarrier(); /* compiler-defined memory barrier */ assert( fd->pMethods->xLock==nolockLock || unixFileMutexNotheld((unixFile*)fd) ); unixEnterMutex(); /* Also mutex, for redundancy */ unixLeaveMutex(); } /* ** Close a connection to shared-memory. Delete the underlying ** storage if deleteFlag is true. |
︙ | ︙ | |||
36998 36999 37000 37001 37002 37003 37004 | pShmNode = p->pShmNode; assert( pShmNode==pDbFd->pInode->pShmNode ); assert( pShmNode->pInode==pDbFd->pInode ); /* Remove connection p from the set of connections associated ** with pShmNode */ | | | | | 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 | pShmNode = p->pShmNode; assert( pShmNode==pDbFd->pInode->pShmNode ); assert( pShmNode->pInode==pDbFd->pInode ); /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->pShmMutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ sqlite3_free(p); pDbFd->pShm = 0; sqlite3_mutex_leave(pShmNode->pShmMutex); /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ assert( unixFileMutexNotheld(pDbFd) ); unixEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ if( deleteFlag && pShmNode->hShm>=0 ){ osUnlink(pShmNode->zFilename); } unixShmPurge(pDbFd); } unixLeaveMutex(); return SQLITE_OK; |
︙ | ︙ | |||
40432 40433 40434 40435 40436 40437 40438 | winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif #if SQLITE_MAX_MMAP_SIZE>0 int nFetchOut; /* Number of outstanding xFetch references */ HANDLE hMap; /* Handle for accessing memory mapping */ void *pMapRegion; /* Area memory mapped */ | | < | 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 | winceLock local; /* Locks obtained by this instance of winFile */ winceLock *shared; /* Global shared lock memory for the file */ #endif #if SQLITE_MAX_MMAP_SIZE>0 int nFetchOut; /* Number of outstanding xFetch references */ HANDLE hMap; /* Handle for accessing memory mapping */ void *pMapRegion; /* Area memory mapped */ sqlite3_int64 mmapSize; /* Size of mapped region */ sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ #endif }; /* ** The winVfsAppData structure is used for the pAppData member for all of the ** Win32 VFS variants. |
︙ | ︙ | |||
43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 | */ static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ winFile *pFile = (winFile*)id; /* File handle object */ int rc = SQLITE_OK; /* Return code for this function */ DWORD lastErrno; #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_int64 oldMmapSize; #endif assert( pFile ); SimulateIOError(return SQLITE_IOERR_TRUNCATE); OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype)); | > > > > > > > > > > > > > > > > > > > > | 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 | */ static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){ winFile *pFile = (winFile*)id; /* File handle object */ int rc = SQLITE_OK; /* Return code for this function */ DWORD lastErrno; #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_int64 oldMmapSize; if( pFile->nFetchOut>0 ){ /* File truncation is a no-op if there are outstanding memory mapped ** pages. This is because truncating the file means temporarily unmapping ** the file, and that might delete memory out from under existing cursors. ** ** This can result in incremental vacuum not truncating the file, ** if there is an active read cursor when the incremental vacuum occurs. ** No real harm comes of this - the database file is not corrupted, ** though some folks might complain that the file is bigger than it ** needs to be. ** ** The only feasible work-around is to defer the truncation until after ** all references to memory-mapped content are closed. That is doable, ** but involves adding a few branches in the common write code path which ** could slow down normal operations slightly. Hence, we have decided for ** now to simply make trancations a no-op if there are pending reads. We ** can maybe revisit this decision in the future. */ return SQLITE_OK; } #endif assert( pFile ); SimulateIOError(return SQLITE_IOERR_TRUNCATE); OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n", osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype)); |
︙ | ︙ | |||
44482 44483 44484 44485 44486 44487 44488 | /* ** Cleans up the mapped region of the specified file, if any. */ #if SQLITE_MAX_MMAP_SIZE>0 static int winUnmapfile(winFile *pFile){ assert( pFile!=0 ); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, " | | | < | 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 | /* ** Cleans up the mapped region of the specified file, if any. */ #if SQLITE_MAX_MMAP_SIZE>0 static int winUnmapfile(winFile *pFile){ assert( pFile!=0 ); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, " "mmapSize=%lld, mmapSizeMax=%lld\n", osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion, pFile->mmapSize, pFile->mmapSizeMax)); if( pFile->pMapRegion ){ if( !osUnmapViewOfFile(pFile->pMapRegion) ){ pFile->lastErrno = osGetLastError(); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, " "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->pMapRegion)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, "winUnmapfile1", pFile->zPath); } pFile->pMapRegion = 0; pFile->mmapSize = 0; } if( pFile->hMap!=NULL ){ if( !osCloseHandle(pFile->hMap) ){ pFile->lastErrno = osGetLastError(); OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile, pFile->hMap)); return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno, |
︙ | ︙ | |||
44607 44608 44609 44610 44611 44612 44613 | /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return SQLITE_OK; } pFd->pMapRegion = pNew; pFd->mmapSize = nMap; | < | 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 | /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n", osGetCurrentProcessId(), pFd, sqlite3ErrName(rc))); return SQLITE_OK; } pFd->pMapRegion = pNew; pFd->mmapSize = nMap; } OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n", osGetCurrentProcessId(), pFd)); return SQLITE_OK; } #endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
︙ | ︙ | |||
45409 45410 45411 45412 45413 45414 45415 | } pFile->lastErrno = NO_ERROR; pFile->zPath = zName; #if SQLITE_MAX_MMAP_SIZE>0 pFile->hMap = NULL; pFile->pMapRegion = 0; pFile->mmapSize = 0; | < | 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 | } pFile->lastErrno = NO_ERROR; pFile->zPath = zName; #if SQLITE_MAX_MMAP_SIZE>0 pFile->hMap = NULL; pFile->pMapRegion = 0; pFile->mmapSize = 0; pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap; #endif OpenCounter(+1); return rc; } |
︙ | ︙ | |||
47306 47307 47308 47309 47310 47311 47312 | ** such that p was added to the list more recently than p->pDirtyNext. ** PCache.pDirty points to the first (newest) element in the list and ** pDirtyTail to the last (oldest). ** ** The PCache.pSynced variable is used to optimize searching for a dirty ** page to eject from the cache mid-transaction. It is better to eject ** a page that does not require a journal sync than one that does. | | | 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 | ** such that p was added to the list more recently than p->pDirtyNext. ** PCache.pDirty points to the first (newest) element in the list and ** pDirtyTail to the last (oldest). ** ** The PCache.pSynced variable is used to optimize searching for a dirty ** page to eject from the cache mid-transaction. It is better to eject ** a page that does not require a journal sync than one that does. ** Therefore, pSynced is maintained so that it *almost* always points ** to either the oldest page in the pDirty/pDirtyTail list that has a ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one ** (so that the right page to eject can be found by following pDirtyPrev ** pointers). */ struct PCache { PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ |
︙ | ︙ | |||
48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 | SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){ PgHdr *pDirty; int nDirty = 0; int nCache = numberOfCachePages(pCache); for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; } #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ | > > > > > > > > > | 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 | SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){ PgHdr *pDirty; int nDirty = 0; int nCache = numberOfCachePages(pCache); for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++; return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if there are one or more dirty pages in the cache. Else false. */ SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache){ return (pCache->pDirty!=0); } #endif #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) /* ** For all dirty pages currently in the cache, invoke the specified ** callback. This is only used if the SQLITE_CHECK_PAGES macro is ** defined. */ |
︙ | ︙ | |||
50893 50894 50895 50896 50897 50898 50899 50900 | ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods!=0) /* | > | > > | > > > > > | | | | < | > > > | > | 51173 51174 51175 51176 51177 51178 51179 51180 51181 51182 51183 51184 51185 51186 51187 51188 51189 51190 51191 51192 51193 51194 51195 51196 51197 51198 51199 51200 51201 51202 51203 51204 51205 51206 51207 51208 51209 51210 | ** ** instead of ** ** if( pPager->jfd->pMethods ){ ... */ #define isOpen(pFd) ((pFd)->pMethods!=0) #ifdef SQLITE_DIRECT_OVERFLOW_READ /* ** Return true if page pgno can be read directly from the database file ** by the b-tree layer. This is the case if: ** ** * the database file is open, ** * there are no dirty pages in the cache, and ** * the desired page is not currently in the wal file. */ SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){ if( pPager->fd->pMethods==0 ) return 0; if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0; #ifndef SQLITE_OMIT_WAL if( pPager->pWal ){ u32 iRead = 0; int rc; rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead); return (rc==SQLITE_OK && iRead==0); } #endif return 1; } #endif #ifndef SQLITE_OMIT_WAL # define pagerUseWal(x) ((x)->pWal!=0) #else # define pagerUseWal(x) 0 # define pagerRollbackWal(x) 0 # define pagerWalFrames(v,w,x,y) 0 # define pagerOpenWalIfPresent(z) SQLITE_OK |
︙ | ︙ | |||
57089 57090 57091 57092 57093 57094 57095 57096 57097 57098 57099 57100 57101 57102 | SQLITE_PRIVATE void sqlite3PagerSetCodec( Pager *pPager, void *(*xCodec)(void*,void*,Pgno,int), void (*xCodecSizeChng)(void*,int,int), void (*xCodecFree)(void*), void *pCodec ){ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); pPager->xCodec = pPager->memDb ? 0 : xCodec; pPager->xCodecSizeChng = xCodecSizeChng; pPager->xCodecFree = xCodecFree; pPager->pCodec = pCodec; setGetterMethod(pPager); pagerReportSize(pPager); | > | 57380 57381 57382 57383 57384 57385 57386 57387 57388 57389 57390 57391 57392 57393 57394 | SQLITE_PRIVATE void sqlite3PagerSetCodec( Pager *pPager, void *(*xCodec)(void*,void*,Pgno,int), void (*xCodecSizeChng)(void*,int,int), void (*xCodecFree)(void*), void *pCodec ){ pager_reset(pPager); if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec); pPager->xCodec = pPager->memDb ? 0 : xCodec; pPager->xCodecSizeChng = xCodecSizeChng; pPager->xCodecFree = xCodecFree; pPager->pCodec = pCodec; setGetterMethod(pPager); pagerReportSize(pPager); |
︙ | ︙ | |||
65749 65750 65751 65752 65753 65754 65755 | pBt->usableSize = usableSize; pBt->pageSize = pageSize; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } | | | 66041 66042 66043 66044 66045 66046 66047 66048 66049 66050 66051 66052 66053 66054 66055 | pBt->usableSize = usableSize; pBt->pageSize = pageSize; freeTempSpace(pBt); rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, pageSize-usableSize); return rc; } if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){ rc = SQLITE_CORRUPT_BKPT; goto page1_init_failed; } /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to ** be less than 480. In other words, if the page size is 512, then the ** reserved space size cannot exceed 32. */ if( usableSize<480 ){ |
︙ | ︙ | |||
66223 66224 66225 66226 66227 66228 66229 66230 66231 66232 66233 66234 66235 66236 | Pager *pPager = pBt->pPager; int rc; assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( pDbPage->pBt==pBt ); /* Move page iDbPage from its current location to page number iFreePage */ TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", iDbPage, iFreePage, iPtrPage, eType)); rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); if( rc!=SQLITE_OK ){ return rc; | > | 66515 66516 66517 66518 66519 66520 66521 66522 66523 66524 66525 66526 66527 66528 66529 | Pager *pPager = pBt->pPager; int rc; assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); assert( sqlite3_mutex_held(pBt->mutex) ); assert( pDbPage->pBt==pBt ); if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT; /* Move page iDbPage from its current location to page number iFreePage */ TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", iDbPage, iFreePage, iPtrPage, eType)); rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); if( rc!=SQLITE_OK ){ return rc; |
︙ | ︙ | |||
67394 67395 67396 67397 67398 67399 67400 | rc = getOverflowPage(pBt, nextPage, 0, &nextPage); } offset -= ovflSize; }else{ /* Need to read this page properly. It contains some of the ** range of data that is being read (eOp==0) or written (eOp!=0). */ | < < < | < < | > | 67687 67688 67689 67690 67691 67692 67693 67694 67695 67696 67697 67698 67699 67700 67701 67702 67703 67704 67705 67706 67707 67708 67709 67710 67711 67712 67713 67714 67715 67716 67717 67718 67719 67720 67721 67722 67723 67724 67725 | rc = getOverflowPage(pBt, nextPage, 0, &nextPage); } offset -= ovflSize; }else{ /* Need to read this page properly. It contains some of the ** range of data that is being read (eOp==0) or written (eOp!=0). */ int a = amt; if( a + offset > ovflSize ){ a = ovflSize - offset; } #ifdef SQLITE_DIRECT_OVERFLOW_READ /* If all the following are true: ** ** 1) this is a read operation, and ** 2) data is required from the start of this overflow page, and ** 3) there are no dirty pages in the page-cache ** 4) the database is file-backed, and ** 5) the page is not in the WAL file ** 6) at least 4 bytes have already been read into the output buffer ** ** then data can be read directly from the database file into the ** output buffer, bypassing the page-cache altogether. This speeds ** up loading large records that span many overflow pages. */ if( eOp==0 /* (1) */ && offset==0 /* (2) */ && sqlite3PagerDirectReadOk(pBt->pPager, nextPage) /* (3,4,5) */ && &pBuf[-4]>=pBufStart /* (6) */ ){ sqlite3_file *fd = sqlite3PagerFile(pBt->pPager); u8 aSave[4]; u8 *aWrite = &pBuf[-4]; assert( aWrite>=pBufStart ); /* due to (6) */ memcpy(aSave, aWrite, 4); rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); nextPage = get4byte(aWrite); memcpy(aWrite, aSave, 4); |
︙ | ︙ | |||
74018 74019 74020 74021 74022 74023 74024 | */ if( fg & MEM_Int ){ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); } | > | | 74307 74308 74309 74310 74311 74312 74313 74314 74315 74316 74317 74318 74319 74320 74321 74322 | */ if( fg & MEM_Int ){ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); } assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30NN(pMem->z); pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str|MEM_Term; if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); sqlite3VdbeChangeEncoding(pMem, enc); return SQLITE_OK; } |
︙ | ︙ | |||
75593 75594 75595 75596 75597 75598 75599 75600 75601 75602 75603 75604 75605 75606 | if( p==0 ) return; p->prepFlags = prepFlags; if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ p->expmask = 0; } assert( p->zSql==0 ); p->zSql = sqlite3DbStrNDup(p->db, z, n); } /* ** Swap all content between two VDBE structures. */ SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ Vdbe tmp, *pTmp; | > > > > > > > | 75883 75884 75885 75886 75887 75888 75889 75890 75891 75892 75893 75894 75895 75896 75897 75898 75899 75900 75901 75902 75903 | if( p==0 ) return; p->prepFlags = prepFlags; if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){ p->expmask = 0; } assert( p->zSql==0 ); p->zSql = sqlite3DbStrNDup(p->db, z, n); #ifdef SQLITE_ENABLE_NORMALIZE assert( p->zNormSql==0 ); if( p->zSql && (prepFlags & SQLITE_PREPARE_NORMALIZE)!=0 ){ sqlite3Normalize(p, p->zSql, n, prepFlags); assert( p->zNormSql!=0 || p->db->mallocFailed ); } #endif } /* ** Swap all content between two VDBE structures. */ SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ Vdbe tmp, *pTmp; |
︙ | ︙ | |||
75614 75615 75616 75617 75618 75619 75620 75621 75622 75623 75624 75625 75626 75627 | pB->pNext = pTmp; pTmp = pA->pPrev; pA->pPrev = pB->pPrev; pB->pPrev = pTmp; zTmp = pA->zSql; pA->zSql = pB->zSql; pB->zSql = zTmp; pB->expmask = pA->expmask; pB->prepFlags = pA->prepFlags; memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; } /* | > > > > > | 75911 75912 75913 75914 75915 75916 75917 75918 75919 75920 75921 75922 75923 75924 75925 75926 75927 75928 75929 | pB->pNext = pTmp; pTmp = pA->pPrev; pA->pPrev = pB->pPrev; pB->pPrev = pTmp; zTmp = pA->zSql; pA->zSql = pB->zSql; pB->zSql = zTmp; #ifdef SQLITE_ENABLE_NORMALIZE zTmp = pA->zNormSql; pA->zNormSql = pB->zNormSql; pB->zNormSql = zTmp; #endif pB->expmask = pA->expmask; pB->prepFlags = pA->prepFlags; memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter)); pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++; } /* |
︙ | ︙ | |||
78685 78686 78687 78688 78689 78690 78691 78692 78693 78694 78695 78696 78697 78698 | releaseMemArray(p->aVar, p->nVar); sqlite3DbFree(db, p->pVList); sqlite3DbFree(db, p->pFree); } vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); #ifdef SQLITE_ENABLE_STMT_SCANSTATUS { int i; for(i=0; i<p->nScan; i++){ sqlite3DbFree(db, p->aScan[i].zName); } sqlite3DbFree(db, p->aScan); | > > > | 78987 78988 78989 78990 78991 78992 78993 78994 78995 78996 78997 78998 78999 79000 79001 79002 79003 | releaseMemArray(p->aVar, p->nVar); sqlite3DbFree(db, p->pVList); sqlite3DbFree(db, p->pFree); } vdbeFreeOpArray(db, p->aOp, p->nOp); sqlite3DbFree(db, p->aColName); sqlite3DbFree(db, p->zSql); #ifdef SQLITE_ENABLE_NORMALIZE sqlite3DbFree(db, p->zNormSql); #endif #ifdef SQLITE_ENABLE_STMT_SCANSTATUS { int i; for(i=0; i<p->nScan; i++){ sqlite3DbFree(db, p->aScan[i].zName); } sqlite3DbFree(db, p->aScan); |
︙ | ︙ | |||
80086 80087 80088 80089 80090 80091 80092 | return rc; } /* The index entry must begin with a header size */ (void)getVarint32((u8*)m.z, szHdr); testcase( szHdr==3 ); testcase( szHdr==m.n ); | > > | | 80391 80392 80393 80394 80395 80396 80397 80398 80399 80400 80401 80402 80403 80404 80405 80406 80407 | return rc; } /* The index entry must begin with a header size */ (void)getVarint32((u8*)m.z, szHdr); testcase( szHdr==3 ); testcase( szHdr==m.n ); testcase( szHdr>0x7fffffff ); assert( m.n>=0 ); if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){ goto idx_rowid_corruption; } /* The last field of the index should be an integer - the ROWID. ** Verify that the last entry really is an integer. */ (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); testcase( typeRowid==1 ); |
︙ | ︙ | |||
82097 82098 82099 82100 82101 82102 82103 82104 82105 82106 82107 82108 82109 82110 | z = sqlite3VdbeExpandSql(p, zSql); sqlite3_mutex_leave(p->db->mutex); } return z; #endif } #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Allocate and populate an UnpackedRecord structure based on the serialized ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure ** if successful, or a NULL pointer if an OOM error is encountered. */ static UnpackedRecord *vdbeUnpackRecord( | > > > > > > > > > > | 82404 82405 82406 82407 82408 82409 82410 82411 82412 82413 82414 82415 82416 82417 82418 82419 82420 82421 82422 82423 82424 82425 82426 82427 | z = sqlite3VdbeExpandSql(p, zSql); sqlite3_mutex_leave(p->db->mutex); } return z; #endif } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Return the normalized SQL associated with a prepared statement. */ SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe *)pStmt; return p ? p->zNormSql : 0; } #endif /* SQLITE_ENABLE_NORMALIZE */ #ifdef SQLITE_ENABLE_PREUPDATE_HOOK /* ** Allocate and populate an UnpackedRecord structure based on the serialized ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure ** if successful, or a NULL pointer if an OOM error is encountered. */ static UnpackedRecord *vdbeUnpackRecord( |
︙ | ︙ | |||
85536 85537 85538 85539 85540 85541 85542 | }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; } nByte = nHdr+nData; | < < < > > > > > > > > > > | | > | 85853 85854 85855 85856 85857 85858 85859 85860 85861 85862 85863 85864 85865 85866 85867 85868 85869 85870 85871 85872 85873 85874 85875 85876 85877 85878 85879 85880 85881 85882 85883 85884 85885 | }else{ /* Rare case of a really large header */ nVarint = sqlite3VarintLen(nHdr); nHdr += nVarint; if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++; } nByte = nHdr+nData; /* Make sure the output register has a buffer large enough to store ** the new record. The output register (pOp->p3) is not allowed to ** be one of the input registers (because the following call to ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used). */ if( nByte+nZero<=pOut->szMalloc ){ /* The output register is already large enough to hold the record. ** No error checks or buffer enlargement is required */ pOut->z = pOut->zMalloc; }else{ /* Need to make sure that the output is not too big and then enlarge ** the output register to hold the full result */ if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){ goto too_big; } if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){ goto no_mem; } } zNewRecord = (u8 *)pOut->z; /* Write the record */ i = putVarint32(zNewRecord, nHdr); j = nHdr; assert( pData0<=pLast ); |
︙ | ︙ | |||
88402 88403 88404 88405 88406 88407 88408 | db->mDbFlags |= DBFLAG_SchemaChange; p->expired = 0; }else #endif { zMaster = MASTER_NAME; initData.db = db; | | | 88727 88728 88729 88730 88731 88732 88733 88734 88735 88736 88737 88738 88739 88740 88741 | db->mDbFlags |= DBFLAG_SchemaChange; p->expired = 0; }else #endif { zMaster = MASTER_NAME; initData.db = db; initData.iDb = iDb; initData.pzErrMsg = &p->zErrMsg; initData.mInitFlags = 0; zSql = sqlite3MPrintf(db, "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid", db->aDb[iDb].zDbSName, zMaster, pOp->p4.z); if( zSql==0 ){ rc = SQLITE_NOMEM_BKPT; |
︙ | ︙ | |||
89599 89600 89601 89602 89603 89604 89605 | ** Synopsis: r[P3]=vcolumn(P2) ** ** Store in register P3 the value of the P2-th column of ** the current row of the virtual-table of cursor P1. ** ** If the VColumn opcode is being used to fetch the value of ** an unchanging column during an UPDATE operation, then the P5 | < | > | | > | 89924 89925 89926 89927 89928 89929 89930 89931 89932 89933 89934 89935 89936 89937 89938 89939 89940 89941 89942 | ** Synopsis: r[P3]=vcolumn(P2) ** ** Store in register P3 the value of the P2-th column of ** the current row of the virtual-table of cursor P1. ** ** If the VColumn opcode is being used to fetch the value of ** an unchanging column during an UPDATE operation, then the P5 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange() ** function to return true inside the xColumn method of the virtual ** table implementation. The P5 column might also contain other ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are ** unused by OP_VColumn. */ case OP_VColumn: { sqlite3_vtab *pVtab; const sqlite3_module *pModule; Mem *pDest; sqlite3_context sContext; |
︙ | ︙ | |||
89624 89625 89626 89627 89628 89629 89630 | break; } pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); sContext.pOut = pDest; | > | | 89950 89951 89952 89953 89954 89955 89956 89957 89958 89959 89960 89961 89962 89963 89964 89965 | break; } pVtab = pCur->uc.pVCur->pVtab; pModule = pVtab->pModule; assert( pModule->xColumn ); memset(&sContext, 0, sizeof(sContext)); sContext.pOut = pDest; testcase( (pOp->p5 & OPFLAG_NOCHNG)==0 && pOp->p5!=0 ); if( pOp->p5 & OPFLAG_NOCHNG ){ sqlite3VdbeMemSetNull(pDest); pDest->flags = MEM_Null|MEM_Zero; pDest->u.nZero = 0; }else{ MemSetTypeFlag(pDest, MEM_Null); } rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2); |
︙ | ︙ | |||
89701 89702 89703 89704 89705 89706 89707 | ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; | > | > > > | 90028 90029 90030 90031 90032 90033 90034 90035 90036 90037 90038 90039 90040 90041 90042 90043 90044 90045 90046 90047 90048 90049 90050 90051 90052 90053 90054 90055 90056 90057 90058 90059 | ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { sqlite3_vtab *pVtab; Mem *pName; int isLegacy; isLegacy = (db->flags & SQLITE_LegacyAlter); db->flags |= SQLITE_LegacyAlter; pVtab = pOp->p4.pVtab->pVtab; pName = &aMem[pOp->p1]; assert( pVtab->pModule->xRename ); assert( memIsValid(pName) ); assert( p->readOnly==0 ); REGISTER_TRACE(pOp->p1, pName); assert( pName->flags & MEM_Str ); testcase( pName->enc==SQLITE_UTF8 ); testcase( pName->enc==SQLITE_UTF16BE ); testcase( pName->enc==SQLITE_UTF16LE ); rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8); if( rc ) goto abort_due_to_error; rc = pVtab->pModule->xRename(pVtab, pName->z); if( isLegacy==0 ) db->flags &= ~SQLITE_LegacyAlter; sqlite3VtabImportErrmsg(p, pVtab); p->expired = 0; if( rc ) goto abort_due_to_error; break; } #endif |
︙ | ︙ | |||
93979 93980 93981 93982 93983 93984 93985 | continue; }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort; }else if( pExpr->x.pList ){ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort; } #ifndef SQLITE_OMIT_WINDOWFUNC | | | | 94310 94311 94312 94313 94314 94315 94316 94317 94318 94319 94320 94321 94322 94323 94324 94325 | continue; }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort; }else if( pExpr->x.pList ){ if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort; } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ Window *pWin = pExpr->y.pWin; if( sqlite3WalkExprList(pWalker, pWin->pPartition) ) return WRC_Abort; if( sqlite3WalkExprList(pWalker, pWin->pOrderBy) ) return WRC_Abort; if( sqlite3WalkExpr(pWalker, pWin->pFilter) ) return WRC_Abort; } #endif } break; |
︙ | ︙ | |||
94253 94254 94255 94256 94257 94258 94259 | ** expression node refer back to that source column. The following changes ** are made to pExpr: ** ** pExpr->iDb Set the index in db->aDb[] of the database X ** (even if X is implied). ** pExpr->iTable Set to the cursor number for the table obtained ** from pSrcList. | | | 94584 94585 94586 94587 94588 94589 94590 94591 94592 94593 94594 94595 94596 94597 94598 | ** expression node refer back to that source column. The following changes ** are made to pExpr: ** ** pExpr->iDb Set the index in db->aDb[] of the database X ** (even if X is implied). ** pExpr->iTable Set to the cursor number for the table obtained ** from pSrcList. ** pExpr->y.pTab Points to the Table structure of X.Y (even if ** X and/or Y are implied.) ** pExpr->iColumn Set to the column number within the table. ** pExpr->op Set to TK_COLUMN. ** pExpr->pLeft Any expression this points to is deleted ** pExpr->pRight Any expression this points to is deleted. ** ** The zDb variable is the name of the database (the "X"). This value may be |
︙ | ︙ | |||
94297 94298 94299 94300 94301 94302 94303 | assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); /* Initialize the node to no-match */ pExpr->iTable = -1; | < | 94628 94629 94630 94631 94632 94633 94634 94635 94636 94637 94638 94639 94640 94641 | assert( pNC ); /* the name context cannot be NULL. */ assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); /* Initialize the node to no-match */ pExpr->iTable = -1; ExprSetVVAProperty(pExpr, EP_NoReduce); /* Translate the schema name in zDb into a pointer to the corresponding ** schema. If not found, pSchema will remain NULL and nothing will match ** resulting in an appropriate error message toward the end of this routine */ if( zDb ){ |
︙ | ︙ | |||
94359 94360 94361 94362 94363 94364 94365 | if( zTab ){ const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName; assert( zTabName!=0 ); if( sqlite3StrICmp(zTabName, zTab)!=0 ){ continue; } if( IN_RENAME_OBJECT && pItem->zAlias ){ | | | 94689 94690 94691 94692 94693 94694 94695 94696 94697 94698 94699 94700 94701 94702 94703 | if( zTab ){ const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName; assert( zTabName!=0 ); if( sqlite3StrICmp(zTabName, zTab)!=0 ){ continue; } if( IN_RENAME_OBJECT && pItem->zAlias ){ sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->y.pTab); } } if( 0==(cntTab++) ){ pMatch = pItem; } for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ |
︙ | ︙ | |||
94385 94386 94387 94388 94389 94390 94391 | pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; break; } } } if( pMatch ){ pExpr->iTable = pMatch->iCursor; | | | | 94715 94716 94717 94718 94719 94720 94721 94722 94723 94724 94725 94726 94727 94728 94729 94730 94731 94732 94733 94734 94735 | pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; break; } } } if( pMatch ){ pExpr->iTable = pMatch->iCursor; pExpr->y.pTab = pMatch->pTab; /* RIGHT JOIN not (yet) supported */ assert( (pMatch->fg.jointype & JT_RIGHT)==0 ); if( (pMatch->fg.jointype & JT_LEFT)!=0 ){ ExprSetProperty(pExpr, EP_CanBeNull); } pSchema = pExpr->y.pTab->pSchema; } } /* if( pSrcList ) */ #if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT) /* If we have not already resolved the name, then maybe ** it is a new.* or old.* trigger argument reference. Or ** maybe it is an excluded.* from an upsert. |
︙ | ︙ | |||
94448 94449 94450 94451 94452 94453 94454 | if( iCol<pTab->nCol ){ cnt++; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==2 ){ testcase( iCol==(-1) ); if( IN_RENAME_OBJECT ){ pExpr->iColumn = iCol; | | | 94778 94779 94780 94781 94782 94783 94784 94785 94786 94787 94788 94789 94790 94791 94792 | if( iCol<pTab->nCol ){ cnt++; #ifndef SQLITE_OMIT_UPSERT if( pExpr->iTable==2 ){ testcase( iCol==(-1) ); if( IN_RENAME_OBJECT ){ pExpr->iColumn = iCol; pExpr->y.pTab = pTab; eNewExprOp = TK_COLUMN; }else{ pExpr->iTable = pNC->uNC.pUpsert->regData + iCol; eNewExprOp = TK_REGISTER; ExprSetProperty(pExpr, EP_Alias); } }else |
︙ | ︙ | |||
94470 94471 94472 94473 94474 94475 94476 | testcase( iCol==32 ); pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); }else{ testcase( iCol==31 ); testcase( iCol==32 ); pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); } | | | 94800 94801 94802 94803 94804 94805 94806 94807 94808 94809 94810 94811 94812 94813 94814 | testcase( iCol==32 ); pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); }else{ testcase( iCol==31 ); testcase( iCol==32 ); pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); } pExpr->y.pTab = pTab; pExpr->iColumn = (i16)iCol; eNewExprOp = TK_TRIGGER; #endif /* SQLITE_OMIT_TRIGGER */ } } } } |
︙ | ︙ | |||
94570 94571 94572 94573 94574 94575 94576 | ** Because no reference was made to outer contexts, the pNC->nRef ** fields are not changed in any context. */ if( cnt==0 && zTab==0 ){ assert( pExpr->op==TK_ID ); if( ExprHasProperty(pExpr,EP_DblQuoted) ){ pExpr->op = TK_STRING; | | | 94900 94901 94902 94903 94904 94905 94906 94907 94908 94909 94910 94911 94912 94913 94914 | ** Because no reference was made to outer contexts, the pNC->nRef ** fields are not changed in any context. */ if( cnt==0 && zTab==0 ){ assert( pExpr->op==TK_ID ); if( ExprHasProperty(pExpr,EP_DblQuoted) ){ pExpr->op = TK_STRING; pExpr->y.pTab = 0; return WRC_Prune; } if( sqlite3ExprIdToTrueFalse(pExpr) ){ return WRC_Prune; } } |
︙ | ︙ | |||
94648 94649 94650 94651 94652 94653 94654 | ** Allocate and return a pointer to an expression to load the column iCol ** from datasource iSrc in SrcList pSrc. */ SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); if( p ){ struct SrcList_item *pItem = &pSrc->a[iSrc]; | | | | 94978 94979 94980 94981 94982 94983 94984 94985 94986 94987 94988 94989 94990 94991 94992 94993 94994 | ** Allocate and return a pointer to an expression to load the column iCol ** from datasource iSrc in SrcList pSrc. */ SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); if( p ){ struct SrcList_item *pItem = &pSrc->a[iSrc]; p->y.pTab = pItem->pTab; p->iTable = pItem->iCursor; if( p->y.pTab->iPKey==iCol ){ p->iColumn = -1; }else{ p->iColumn = (ynVar)iCol; testcase( iCol==BMS ); testcase( iCol==BMS-1 ); pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } |
︙ | ︙ | |||
94740 94741 94742 94743 94744 94745 94746 | case TK_ROW: { SrcList *pSrcList = pNC->pSrcList; struct SrcList_item *pItem; assert( pSrcList && pSrcList->nSrc==1 ); pItem = pSrcList->a; assert( HasRowid(pItem->pTab) && pItem->pTab->pSelect==0 ); pExpr->op = TK_COLUMN; | | | 95070 95071 95072 95073 95074 95075 95076 95077 95078 95079 95080 95081 95082 95083 95084 | case TK_ROW: { SrcList *pSrcList = pNC->pSrcList; struct SrcList_item *pItem; assert( pSrcList && pSrcList->nSrc==1 ); pItem = pSrcList->a; assert( HasRowid(pItem->pTab) && pItem->pTab->pSelect==0 ); pExpr->op = TK_COLUMN; pExpr->y.pTab = pItem->pTab; pExpr->iTable = pItem->iCursor; pExpr->iColumn = -1; pExpr->affinity = SQLITE_AFF_INTEGER; break; } #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */ |
︙ | ︙ | |||
94784 94785 94786 94787 94788 94789 94790 | pLeft = pRight->pLeft; pRight = pRight->pRight; } zTable = pLeft->u.zToken; zColumn = pRight->u.zToken; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight); | < < | | 95114 95115 95116 95117 95118 95119 95120 95121 95122 95123 95124 95125 95126 95127 95128 | pLeft = pRight->pLeft; pRight = pRight->pRight; } zTable = pLeft->u.zToken; zColumn = pRight->u.zToken; if( IN_RENAME_OBJECT ){ sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight); sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft); } } return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); } /* Resolve function names */ |
︙ | ︙ | |||
94868 94869 94870 94871 94872 94873 94874 94875 94876 94877 94878 94879 94880 94881 94882 | if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){ /* Date/time functions that use 'now', and other functions like ** sqlite_version() that might change over time cannot be used ** in an index. */ notValid(pParse, pNC, "non-deterministic functions", NC_IdxExpr|NC_PartIdx); } } if( 0==IN_RENAME_OBJECT ){ #ifndef SQLITE_OMIT_WINDOWFUNC assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX) || (pDef->xValue==0 && pDef->xInverse==0) || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize) ); | > > > > > > > > > | | | | | 95196 95197 95198 95199 95200 95201 95202 95203 95204 95205 95206 95207 95208 95209 95210 95211 95212 95213 95214 95215 95216 95217 95218 95219 95220 95221 95222 95223 95224 95225 95226 95227 95228 95229 95230 95231 95232 95233 95234 95235 95236 95237 95238 | if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){ /* Date/time functions that use 'now', and other functions like ** sqlite_version() that might change over time cannot be used ** in an index. */ notValid(pParse, pNC, "non-deterministic functions", NC_IdxExpr|NC_PartIdx); } if( (pDef->funcFlags & SQLITE_FUNC_INTERNAL)!=0 && pParse->nested==0 && sqlite3Config.bInternalFunctions==0 ){ /* Internal-use-only functions are disallowed unless the ** SQL is being compiled using sqlite3NestedParse() */ no_such_func = 1; pDef = 0; } } if( 0==IN_RENAME_OBJECT ){ #ifndef SQLITE_OMIT_WINDOWFUNC assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX) || (pDef->xValue==0 && pDef->xInverse==0) || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize) ); if( pDef && pDef->xValue==0 && ExprHasProperty(pExpr, EP_WinFunc) ){ sqlite3ErrorMsg(pParse, "%.*s() may not be used as a window function", nId, zId ); pNC->nErr++; }else if( (is_agg && (pNC->ncFlags & NC_AllowAgg)==0) || (is_agg && (pDef->funcFlags&SQLITE_FUNC_WINDOW) && !pExpr->y.pWin) || (is_agg && pExpr->y.pWin && (pNC->ncFlags & NC_AllowWin)==0) ){ const char *zType; if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pExpr->y.pWin ){ zType = "window"; }else{ zType = "aggregate"; } sqlite3ErrorMsg(pParse, "misuse of %s function %.*s()",zType,nId,zId); pNC->nErr++; is_agg = 0; |
︙ | ︙ | |||
94917 94918 94919 94920 94921 94922 94923 | }else if( wrong_num_args ){ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", nId, zId); pNC->nErr++; } if( is_agg ){ #ifndef SQLITE_OMIT_WINDOWFUNC | | | | | | | | | | | 95254 95255 95256 95257 95258 95259 95260 95261 95262 95263 95264 95265 95266 95267 95268 95269 95270 95271 95272 95273 95274 95275 95276 95277 95278 95279 95280 95281 95282 95283 95284 95285 95286 95287 | }else if( wrong_num_args ){ sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", nId, zId); pNC->nErr++; } if( is_agg ){ #ifndef SQLITE_OMIT_WINDOWFUNC pNC->ncFlags &= ~(pExpr->y.pWin ? NC_AllowWin : NC_AllowAgg); #else pNC->ncFlags &= ~NC_AllowAgg; #endif } } sqlite3WalkExprList(pWalker, pList); if( is_agg ){ #ifndef SQLITE_OMIT_WINDOWFUNC if( pExpr->y.pWin ){ Select *pSel = pNC->pWinSelect; sqlite3WalkExprList(pWalker, pExpr->y.pWin->pPartition); sqlite3WalkExprList(pWalker, pExpr->y.pWin->pOrderBy); sqlite3WalkExpr(pWalker, pExpr->y.pWin->pFilter); sqlite3WindowUpdate(pParse, pSel->pWinDefn, pExpr->y.pWin, pDef); if( 0==pSel->pWin || 0==sqlite3WindowCompare(pParse, pSel->pWin, pExpr->y.pWin) ){ pExpr->y.pWin->pNextWin = pSel->pWin; pSel->pWin = pExpr->y.pWin; } pNC->ncFlags |= NC_AllowWin; }else #endif /* SQLITE_OMIT_WINDOWFUNC */ { NameContext *pNC2 = pNC; pExpr->op = TK_AGG_FUNCTION; |
︙ | ︙ | |||
95359 95360 95361 95362 95363 95364 95365 | pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; j<pSelect->pEList->nExpr; j++){ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ #ifndef SQLITE_OMIT_WINDOWFUNC | | | | 95696 95697 95698 95699 95700 95701 95702 95703 95704 95705 95706 95707 95708 95709 95710 95711 95712 95713 95714 95715 95716 | pItem->u.x.iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; j<pSelect->pEList->nExpr; j++){ if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pE, EP_WinFunc) ){ /* Since this window function is being changed into a reference ** to the same window function the result set, remove the instance ** of this window function from the Select.pWin list. */ Window **pp; for(pp=&pSelect->pWin; *pp; pp=&(*pp)->pNextWin){ if( *pp==pE->y.pWin ){ *pp = (*pp)->pNextWin; } } } #endif pItem->u.x.iOrderByCol = j+1; } |
︙ | ︙ | |||
95828 95829 95830 95831 95832 95833 95834 | if( op==TK_REGISTER ) op = pExpr->op2; #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken, 0); } #endif | | | | 96165 96166 96167 96168 96169 96170 96171 96172 96173 96174 96175 96176 96177 96178 96179 96180 | if( op==TK_REGISTER ) op = pExpr->op2; #ifndef SQLITE_OMIT_CAST if( op==TK_CAST ){ assert( !ExprHasProperty(pExpr, EP_IntValue) ); return sqlite3AffinityType(pExpr->u.zToken, 0); } #endif if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); } if( op==TK_SELECT_COLUMN ){ assert( pExpr->pLeft->flags&EP_xIsSelect ); return sqlite3ExprAffinity( pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr ); } |
︙ | ︙ | |||
95913 95914 95915 95916 95917 95918 95919 | CollSeq *pColl = 0; Expr *p = pExpr; while( p ){ int op = p->op; if( p->flags & EP_Generic ) break; if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER) | | | | | 96250 96251 96252 96253 96254 96255 96256 96257 96258 96259 96260 96261 96262 96263 96264 96265 96266 96267 96268 96269 96270 | CollSeq *pColl = 0; Expr *p = pExpr; while( p ){ int op = p->op; if( p->flags & EP_Generic ) break; if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER || op==TK_TRIGGER) && p->y.pTab!=0 ){ /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally ** a TK_COLUMN but was previously evaluated and cached in a register */ int j = p->iColumn; if( j>=0 ){ const char *zColl = p->y.pTab->aCol[j].zColl; pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); } break; } if( op==TK_CAST || op==TK_UPLUS ){ p = p->pLeft; continue; |
︙ | ︙ | |||
96822 96823 96824 96825 96826 96827 96828 96829 96830 96831 96832 96833 96834 96835 96836 96837 96838 96839 96840 96841 96842 96843 96844 96845 96846 | /* ** Recursively delete an expression tree. */ static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ assert( p!=0 ); /* Sanity check: Assert that the IntValue is non-negative if it exists */ assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); #ifdef SQLITE_DEBUG if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ assert( p->pLeft==0 ); assert( p->pRight==0 ); assert( p->x.pSelect==0 ); } #endif if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ /* The Expr.x union is never used at the same time as Expr.pRight */ assert( p->x.pList==0 || p->pRight==0 ); if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); if( p->pRight ){ sqlite3ExprDeleteNN(db, p->pRight); }else if( ExprHasProperty(p, EP_xIsSelect) ){ sqlite3SelectDelete(db, p->x.pSelect); }else{ sqlite3ExprListDelete(db, p->x.pList); } | > > > > | > | | 97159 97160 97161 97162 97163 97164 97165 97166 97167 97168 97169 97170 97171 97172 97173 97174 97175 97176 97177 97178 97179 97180 97181 97182 97183 97184 97185 97186 97187 97188 97189 97190 97191 97192 97193 97194 97195 97196 97197 | /* ** Recursively delete an expression tree. */ static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ assert( p!=0 ); /* Sanity check: Assert that the IntValue is non-negative if it exists */ assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); #ifdef SQLITE_DEBUG if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ assert( p->pLeft==0 ); assert( p->pRight==0 ); assert( p->x.pSelect==0 ); } #endif if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ /* The Expr.x union is never used at the same time as Expr.pRight */ assert( p->x.pList==0 || p->pRight==0 ); if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); if( p->pRight ){ sqlite3ExprDeleteNN(db, p->pRight); }else if( ExprHasProperty(p, EP_xIsSelect) ){ sqlite3SelectDelete(db, p->x.pSelect); }else{ sqlite3ExprListDelete(db, p->x.pList); } if( ExprHasProperty(p, EP_WinFunc) ){ assert( p->op==TK_FUNCTION ); sqlite3WindowDelete(db, p->y.pWin); } } if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); if( !ExprHasProperty(p, EP_Static) ){ sqlite3DbFreeNN(db, p); } } |
︙ | ︙ | |||
96905 96906 96907 96908 96909 96910 96911 | static int dupedExprStructSize(Expr *p, int flags){ int nSize; assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ assert( EXPR_FULLSIZE<=0xfff ); assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); if( 0==flags || p->op==TK_SELECT_COLUMN #ifndef SQLITE_OMIT_WINDOWFUNC | | | 97247 97248 97249 97250 97251 97252 97253 97254 97255 97256 97257 97258 97259 97260 97261 | static int dupedExprStructSize(Expr *p, int flags){ int nSize; assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ assert( EXPR_FULLSIZE<=0xfff ); assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); if( 0==flags || p->op==TK_SELECT_COLUMN #ifndef SQLITE_OMIT_WINDOWFUNC || ExprHasProperty(p, EP_WinFunc) #endif ){ nSize = EXPR_FULLSIZE; }else{ assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasProperty(p, EP_FromJoin) ); assert( !ExprHasProperty(p, EP_MemToken) ); |
︙ | ︙ | |||
96932 96933 96934 96935 96936 96937 96938 | ** This function returns the space in bytes required to store the copy ** of the Expr structure and a copy of the Expr.u.zToken string (if that ** string is defined.) */ static int dupedExprNodeSize(Expr *p, int flags){ int nByte = dupedExprStructSize(p, flags) & 0xfff; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ | | | 97274 97275 97276 97277 97278 97279 97280 97281 97282 97283 97284 97285 97286 97287 97288 | ** This function returns the space in bytes required to store the copy ** of the Expr structure and a copy of the Expr.u.zToken string (if that ** string is defined.) */ static int dupedExprNodeSize(Expr *p, int flags){ int nByte = dupedExprStructSize(p, flags) & 0xfff; if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ nByte += sqlite3Strlen30NN(p->u.zToken)+1; } return ROUND8(nByte); } /* ** Return the number of bytes required to create a duplicate of the ** expression passed as the first argument. The second argument is a |
︙ | ︙ | |||
97035 97036 97037 97038 97039 97040 97041 | pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); }else{ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); } } /* Fill in pNew->pLeft and pNew->pRight. */ | | > > > > > > < < < < < < < | 97377 97378 97379 97380 97381 97382 97383 97384 97385 97386 97387 97388 97389 97390 97391 97392 97393 97394 97395 97396 97397 97398 97399 97400 97401 97402 97403 97404 97405 97406 97407 97408 | pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); }else{ pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); } } /* Fill in pNew->pLeft and pNew->pRight. */ if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ zAlloc += dupedExprNodeSize(p, dupFlags); if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ pNew->pLeft = p->pLeft ? exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; pNew->pRight = p->pRight ? exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; } #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(p, EP_WinFunc) ){ pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); assert( ExprHasProperty(pNew, EP_WinFunc) ); } #endif /* SQLITE_OMIT_WINDOWFUNC */ if( pzBuffer ){ *pzBuffer = zAlloc; } }else{ if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ if( pNew->op==TK_SELECT_COLUMN ){ pNew->pLeft = p->pLeft; assert( p->iColumn==0 || p->pRight==0 ); assert( p->pRight==0 || p->pRight==p->pLeft ); }else{ pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
︙ | ︙ | |||
97859 97860 97861 97862 97863 97864 97865 | case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: return ExprHasProperty(p, EP_CanBeNull) || | | | | 98200 98201 98202 98203 98204 98205 98206 98207 98208 98209 98210 98211 98212 98213 98214 98215 | case TK_INTEGER: case TK_STRING: case TK_FLOAT: case TK_BLOB: return 0; case TK_COLUMN: return ExprHasProperty(p, EP_CanBeNull) || p->y.pTab==0 || /* Reference to column of index on expression */ (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0); default: return 1; } } /* ** Return TRUE if the given expression is a constant which would be |
︙ | ︙ | |||
97915 97916 97917 97918 97919 97920 97921 97922 97923 97924 97925 97926 97927 97928 | */ SQLITE_PRIVATE int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } /* ** pX is the RHS of an IN operator. If pX is a SELECT statement ** that can be simplified to a direct table access, then return ** a pointer to the SELECT statement. If pX is not a SELECT statement, ** or if the SELECT statement needs to be manifested into a transient ** table, then return NULL. | > > > > > > > > | 98256 98257 98258 98259 98260 98261 98262 98263 98264 98265 98266 98267 98268 98269 98270 98271 98272 98273 98274 98275 98276 98277 | */ SQLITE_PRIVATE int sqlite3IsRowid(const char *z){ if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; if( sqlite3StrICmp(z, "OID")==0 ) return 1; return 0; } #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE int sqlite3IsRowidN(const char *z, int n){ if( sqlite3StrNICmp(z, "_ROWID_", n)==0 ) return 1; if( sqlite3StrNICmp(z, "ROWID", n)==0 ) return 1; if( sqlite3StrNICmp(z, "OID", n)==0 ) return 1; return 0; } #endif /* ** pX is the RHS of an IN operator. If pX is a SELECT statement ** that can be simplified to a direct table access, then return ** a pointer to the SELECT statement. If pX is not a SELECT statement, ** or if the SELECT statement needs to be manifested into a transient ** table, then return NULL. |
︙ | ︙ | |||
99148 99149 99150 99151 99152 99153 99154 | /* This COLUMN expression is really a constant due to WHERE clause ** constraints, and that constant is coded by the pExpr->pLeft ** expresssion. However, make sure the constant has the correct ** datatype by applying the Affinity of the table column to the ** constant. */ int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); | | | 99497 99498 99499 99500 99501 99502 99503 99504 99505 99506 99507 99508 99509 99510 99511 | /* This COLUMN expression is really a constant due to WHERE clause ** constraints, and that constant is coded by the pExpr->pLeft ** expresssion. However, make sure the constant has the correct ** datatype by applying the Affinity of the table column to the ** constant. */ int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target); int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); if( aff!=SQLITE_AFF_BLOB ){ static const char zAff[] = "B\000C\000D\000E"; assert( SQLITE_AFF_BLOB=='A' ); assert( SQLITE_AFF_TEXT=='B' ); if( iReg!=target ){ sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target); iReg = target; |
︙ | ︙ | |||
99172 99173 99174 99175 99176 99177 99178 | return pExpr->iColumn - pParse->iSelfTab; }else{ /* Coding an expression that is part of an index where column names ** in the index refer to the table to which the index belongs */ iTab = pParse->iSelfTab - 1; } } | | | 99521 99522 99523 99524 99525 99526 99527 99528 99529 99530 99531 99532 99533 99534 99535 | return pExpr->iColumn - pParse->iSelfTab; }else{ /* Coding an expression that is part of an index where column names ** in the index refer to the table to which the index belongs */ iTab = pParse->iSelfTab - 1; } } return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab, pExpr->iColumn, iTab, target, pExpr->op2); } case TK_INTEGER: { codeInteger(pParse, pExpr, 0, target); return target; } |
︙ | ︙ | |||
99386 99387 99388 99389 99390 99391 99392 | u32 constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* The database connection */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ #ifndef SQLITE_OMIT_WINDOWFUNC | | | | 99735 99736 99737 99738 99739 99740 99741 99742 99743 99744 99745 99746 99747 99748 99749 99750 | u32 constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ sqlite3 *db = pParse->db; /* The database connection */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ #ifndef SQLITE_OMIT_WINDOWFUNC if( ExprHasProperty(pExpr, EP_WinFunc) ){ return pExpr->y.pWin->regResult; } #endif if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){ /* SQL functions can be expensive. So try to move constant functions ** out of the inner loop, even if that means an extra OP_Copy. */ return sqlite3ExprCodeAtInit(pParse, pExpr, -1); |
︙ | ︙ | |||
99630 99631 99632 99633 99634 99635 99636 | ** ** Then p1 is interpreted as follows: ** ** p1==0 -> old.rowid p1==3 -> new.rowid ** p1==1 -> old.a p1==4 -> new.a ** p1==2 -> old.b p1==5 -> new.b */ | | | | 99979 99980 99981 99982 99983 99984 99985 99986 99987 99988 99989 99990 99991 99992 99993 99994 99995 99996 99997 99998 99999 100000 100001 100002 100003 100004 | ** ** Then p1 is interpreted as follows: ** ** p1==0 -> old.rowid p1==3 -> new.rowid ** p1==1 -> old.a p1==4 -> new.a ** p1==2 -> old.b p1==5 -> new.b */ Table *pTab = pExpr->y.pTab; int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; assert( pExpr->iTable==0 || pExpr->iTable==1 ); assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); assert( p1>=0 && p1<(pTab->nCol*2+2) ); sqlite3VdbeAddOp2(v, OP_Param, p1, target); VdbeComment((v, "r[%d]=%s.%s", target, (pExpr->iTable ? "new" : "old"), (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName) )); #ifndef SQLITE_OMIT_FLOATING_POINT /* If the column has REAL affinity, it may currently be stored as an ** integer. Use OP_RealAffinity to make sure it is really real. ** ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to |
︙ | ︙ | |||
100492 100493 100494 100495 100496 100497 100498 100499 100500 100501 100502 100503 100504 100505 100506 100507 100508 100509 100510 100511 100512 100513 100514 100515 100516 100517 | return 1; } return 2; } if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ if( pA->op==TK_FUNCTION ){ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( pA->op==TK_COLLATE ){ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return 2; } } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( (combinedFlags & EP_FixedCol)==0 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; assert( (combinedFlags & EP_Reduced)==0 ); if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->iTable!=pB->iTable && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; } | > > > > > > > > > > > > > > < < < < < < < < < < < < < < < | 100841 100842 100843 100844 100845 100846 100847 100848 100849 100850 100851 100852 100853 100854 100855 100856 100857 100858 100859 100860 100861 100862 100863 100864 100865 100866 100867 100868 100869 100870 100871 100872 100873 100874 100875 100876 100877 100878 100879 100880 100881 100882 100883 100884 100885 100886 100887 | return 1; } return 2; } if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ if( pA->op==TK_FUNCTION ){ if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; #ifndef SQLITE_OMIT_WINDOWFUNC /* Justification for the assert(): ** window functions have p->op==TK_FUNCTION but aggregate functions ** have p->op==TK_AGG_FUNCTION. So any comparison between an aggregate ** function and a window function should have failed before reaching ** this point. And, it is not possible to have a window function and ** a scalar function with the same name and number of arguments. So ** if we reach this point, either A and B both window functions or ** neither are a window functions. */ assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) ); if( ExprHasProperty(pA,EP_WinFunc) ){ if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2; } #endif }else if( pA->op==TK_COLLATE ){ if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return 2; } } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ if( combinedFlags & EP_xIsSelect ) return 2; if( (combinedFlags & EP_FixedCol)==0 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2; if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; assert( (combinedFlags & EP_Reduced)==0 ); if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){ if( pA->iColumn!=pB->iColumn ) return 2; if( pA->iTable!=pB->iTable && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical and ** non-zero if they differ in any way. |
︙ | ︙ | |||
100616 100617 100618 100619 100620 100621 100622 | } return 0; } /* ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). ** If the expression node requires that the table at pWalker->iCur | | > > > > < < < < < < | < | 100964 100965 100966 100967 100968 100969 100970 100971 100972 100973 100974 100975 100976 100977 100978 100979 100980 100981 100982 100983 100984 100985 100986 | } return 0; } /* ** This is the Expr node callback for sqlite3ExprImpliesNotNullRow(). ** If the expression node requires that the table at pWalker->iCur ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort. ** ** This routine controls an optimization. False positives (setting ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives ** (never setting pWalker->eCode) is a harmless missed optimization. */ static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){ testcase( pExpr->op==TK_AGG_COLUMN ); testcase( pExpr->op==TK_AGG_FUNCTION ); if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune; switch( pExpr->op ){ case TK_ISNOT: case TK_NOT: case TK_ISNULL: case TK_IS: case TK_OR: |
︙ | ︙ | |||
100669 100670 100671 100672 100673 100674 100675 | case TK_GE: testcase( pExpr->op==TK_EQ ); testcase( pExpr->op==TK_NE ); testcase( pExpr->op==TK_LT ); testcase( pExpr->op==TK_LE ); testcase( pExpr->op==TK_GT ); testcase( pExpr->op==TK_GE ); | | | | 101014 101015 101016 101017 101018 101019 101020 101021 101022 101023 101024 101025 101026 101027 101028 101029 | case TK_GE: testcase( pExpr->op==TK_EQ ); testcase( pExpr->op==TK_NE ); testcase( pExpr->op==TK_LT ); testcase( pExpr->op==TK_LE ); testcase( pExpr->op==TK_GT ); testcase( pExpr->op==TK_GE ); if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab)) || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab)) ){ return WRC_Prune; } default: return WRC_Continue; } } |
︙ | ︙ | |||
100901 100902 100903 100904 100905 100906 100907 | break; } } if( (k>=pAggInfo->nColumn) && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 ){ pCol = &pAggInfo->aCol[k]; | | | 101246 101247 101248 101249 101250 101251 101252 101253 101254 101255 101256 101257 101258 101259 101260 | break; } } if( (k>=pAggInfo->nColumn) && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 ){ pCol = &pAggInfo->aCol[k]; pCol->pTab = pExpr->y.pTab; pCol->iTable = pExpr->iTable; pCol->iColumn = pExpr->iColumn; pCol->iMem = ++pParse->nMem; pCol->iSorterColumn = -1; pCol->pExpr = pExpr; if( pAggInfo->pGroupBy ){ int j, n; |
︙ | ︙ | |||
101160 101161 101162 101163 101164 101165 101166 | /* ** Generate code to verify that the schemas of database zDb and, if ** bTemp is not true, database "temp", can still be parsed. This is ** called at the end of the generation of an ALTER TABLE ... RENAME ... ** statement to ensure that the operation has not rendered any schema ** objects unusable. */ | | | 101505 101506 101507 101508 101509 101510 101511 101512 101513 101514 101515 101516 101517 101518 101519 | /* ** Generate code to verify that the schemas of database zDb and, if ** bTemp is not true, database "temp", can still be parsed. This is ** called at the end of the generation of an ALTER TABLE ... RENAME ... ** statement to ensure that the operation has not rendered any schema ** objects unusable. */ static void renameTestSchema(Parse *pParse, const char *zDb, int bTemp){ sqlite3NestedParse(pParse, "SELECT 1 " "FROM \"%w\".%s " "WHERE name NOT LIKE 'sqlite_%%'" " AND sql NOT LIKE 'create virtual%%'" " AND sqlite_rename_test(%Q, sql, type, name, %d)=NULL ", zDb, MASTER_NAME, |
︙ | ︙ | |||
101187 101188 101189 101190 101191 101192 101193 | } } /* ** Generate code to reload the schema for database iDb. And, if iDb!=1, for ** the temp database as well. */ | | | 101532 101533 101534 101535 101536 101537 101538 101539 101540 101541 101542 101543 101544 101545 101546 | } } /* ** Generate code to reload the schema for database iDb. And, if iDb!=1, for ** the temp database as well. */ static void renameReloadSchema(Parse *pParse, int iDb){ Vdbe *v = pParse->pVdbe; if( v ){ sqlite3ChangeCookie(pParse, iDb); sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0); if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0); } } |
︙ | ︙ | |||
101286 101287 101288 101289 101290 101291 101292 | ** table. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto exit_rename_table; } | < < < < < < < < < < < < < < | 101631 101632 101633 101634 101635 101636 101637 101638 101639 101640 101641 101642 101643 101644 | ** table. */ v = sqlite3GetVdbe(pParse); if( v==0 ){ goto exit_rename_table; } /* figure out how many UTF-8 characters are in zName */ zTabName = pTab->zName; nTabName = sqlite3Utf8CharLen(zTabName, -1); /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in ** the schema to use the new table name. */ sqlite3NestedParse(pParse, |
︙ | ︙ | |||
101356 101357 101358 101359 101360 101361 101362 101363 101364 101365 101366 101367 101368 101369 | "tbl_name = " "CASE WHEN tbl_name=%Q COLLATE nocase AND " " sqlite_rename_test(%Q, sql, type, name, 1) " "THEN %Q ELSE tbl_name END " "WHERE type IN ('view', 'trigger')" , zDb, zTabName, zName, zTabName, zDb, zName); } renameReloadSchema(pParse, iDb); renameTestSchema(pParse, zDb, iDb==1); exit_rename_table: sqlite3SrcListDelete(db, pSrc); sqlite3DbFree(db, zName); | > > > > > > > > > > > > > > | 101687 101688 101689 101690 101691 101692 101693 101694 101695 101696 101697 101698 101699 101700 101701 101702 101703 101704 101705 101706 101707 101708 101709 101710 101711 101712 101713 101714 | "tbl_name = " "CASE WHEN tbl_name=%Q COLLATE nocase AND " " sqlite_rename_test(%Q, sql, type, name, 1) " "THEN %Q ELSE tbl_name END " "WHERE type IN ('view', 'trigger')" , zDb, zTabName, zName, zTabName, zDb, zName); } /* If this is a virtual table, invoke the xRename() function if ** one is defined. The xRename() callback will modify the names ** of any resources used by the v-table implementation (including other ** SQLite tables) that are identified by the name of the virtual table. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( pVTab ){ int i = ++pParse->nMem; sqlite3VdbeLoadString(v, i, zName); sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB); sqlite3MayAbort(pParse); } #endif renameReloadSchema(pParse, iDb); renameTestSchema(pParse, zDb, iDb==1); exit_rename_table: sqlite3SrcListDelete(db, pSrc); sqlite3DbFree(db, zName); |
︙ | ︙ | |||
101767 101768 101769 101770 101771 101772 101773 | ** ** sqlite3_free(x); ** if( x==y ) ... ** ** Technically, as x no longer points into a valid object or to the byte ** following a valid object, it may not be used in comparison operations. */ | | > > > | | > > > | | 102112 102113 102114 102115 102116 102117 102118 102119 102120 102121 102122 102123 102124 102125 102126 102127 102128 102129 102130 102131 102132 102133 102134 102135 102136 102137 102138 102139 102140 102141 102142 102143 102144 102145 102146 102147 102148 102149 102150 102151 102152 | ** ** sqlite3_free(x); ** if( x==y ) ... ** ** Technically, as x no longer points into a valid object or to the byte ** following a valid object, it may not be used in comparison operations. */ static void renameTokenCheckAll(Parse *pParse, void *pPtr){ if( pParse->nErr==0 && pParse->db->mallocFailed==0 ){ RenameToken *p; u8 i = 0; for(p=pParse->pRename; p; p=p->pNext){ if( p->p ){ assert( p->p!=pPtr ); i += *(u8*)(p->p); } } } } #else # define renameTokenCheckAll(x,y) #endif /* ** Remember that the parser tree element pPtr was created using ** the token pToken. ** ** In other words, construct a new RenameToken object and add it ** to the list of RenameToken objects currently being built up ** in pParse->pRename. ** ** The pPtr argument is returned so that this routine can be used ** with tail recursion in tokenExpr() routine, for a small performance ** improvement. */ SQLITE_PRIVATE void *sqlite3RenameTokenMap(Parse *pParse, void *pPtr, Token *pToken){ RenameToken *pNew; assert( pPtr || pParse->db->mallocFailed ); renameTokenCheckAll(pParse, pPtr); pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken)); if( pNew ){ |
︙ | ︙ | |||
101920 101921 101922 101923 101924 101925 101926 | if( pExpr->op==TK_TRIGGER && pExpr->iColumn==p->iCol && pWalker->pParse->pTriggerTab==p->pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); }else if( pExpr->op==TK_COLUMN && pExpr->iColumn==p->iCol | | | 102271 102272 102273 102274 102275 102276 102277 102278 102279 102280 102281 102282 102283 102284 102285 | if( pExpr->op==TK_TRIGGER && pExpr->iColumn==p->iCol && pWalker->pParse->pTriggerTab==p->pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); }else if( pExpr->op==TK_COLUMN && pExpr->iColumn==p->iCol && p->pTab==pExpr->y.pTab ){ renameTokenFind(pWalker->pParse, p, (void*)pExpr); } return WRC_Continue; } /* |
︙ | ︙ | |||
102178 102179 102180 102181 102182 102183 102184 | memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; assert( pNew->pTabSchema ); pParse->pTriggerTab = sqlite3FindTable(db, pNew->table, db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName ); pParse->eTriggerOp = pNew->op; | > > > > | > | | | 102529 102530 102531 102532 102533 102534 102535 102536 102537 102538 102539 102540 102541 102542 102543 102544 102545 102546 102547 102548 102549 102550 102551 102552 102553 102554 102555 102556 102557 102558 102559 102560 102561 102562 102563 | memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; assert( pNew->pTabSchema ); pParse->pTriggerTab = sqlite3FindTable(db, pNew->table, db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName ); pParse->eTriggerOp = pNew->op; /* ALWAYS() because if the table of the trigger does not exist, the ** error would have been hit before this point */ if( ALWAYS(pParse->pTriggerTab) ){ rc = sqlite3ViewGetColumnNames(pParse, pParse->pTriggerTab); } /* Resolve symbols in WHEN clause */ if( rc==SQLITE_OK && pNew->pWhen ){ rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen); } for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){ if( pStep->pSelect ){ sqlite3SelectPrep(pParse, pStep->pSelect, &sNC); if( pParse->nErr ) rc = pParse->rc; } if( rc==SQLITE_OK && pStep->zTarget ){ Table *pTarget = sqlite3LocateTable(pParse, 0, pStep->zTarget, zDb); if( pTarget==0 ){ rc = SQLITE_ERROR; }else if( SQLITE_OK==(rc = sqlite3ViewGetColumnNames(pParse, pTarget)) ){ SrcList sSrc; memset(&sSrc, 0, sizeof(sSrc)); sSrc.nSrc = 1; sSrc.a[0].zName = pStep->zTarget; sSrc.a[0].pTab = pTarget; sNC.pSrcList = &sSrc; if( pStep->pWhere ){ |
︙ | ︙ | |||
102294 102295 102296 102297 102298 102299 102300 | ** 8. bTemp: True if zSql comes from temp schema ** ** Do a column rename operation on the CREATE statement given in zSql. ** The iCol-th column (left-most is 0) of table zTable is renamed from zCol ** into zNew. The name should be quoted if bQuote is true. ** ** This function is used internally by the ALTER TABLE RENAME COLUMN command. | | | < < < < < < < | 102650 102651 102652 102653 102654 102655 102656 102657 102658 102659 102660 102661 102662 102663 102664 102665 | ** 8. bTemp: True if zSql comes from temp schema ** ** Do a column rename operation on the CREATE statement given in zSql. ** The iCol-th column (left-most is 0) of table zTable is renamed from zCol ** into zNew. The name should be quoted if bQuote is true. ** ** This function is used internally by the ALTER TABLE RENAME COLUMN command. ** It is only accessible to SQL created using sqlite3NestedParse(). It is ** not reachable from ordinary SQL passed into sqlite3_prepare(). */ static void renameColumnFunc( sqlite3_context *context, int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); |
︙ | ︙ | |||
102458 102459 102460 102461 102462 102463 102464 | } /* ** Walker expression callback used by "RENAME TABLE". */ static int renameTableExprCb(Walker *pWalker, Expr *pExpr){ RenameCtx *p = pWalker->u.pRename; | | | | 102807 102808 102809 102810 102811 102812 102813 102814 102815 102816 102817 102818 102819 102820 102821 102822 | } /* ** Walker expression callback used by "RENAME TABLE". */ static int renameTableExprCb(Walker *pWalker, Expr *pExpr){ RenameCtx *p = pWalker->u.pRename; if( pExpr->op==TK_COLUMN && p->pTab==pExpr->y.pTab ){ renameTokenFind(pWalker->pParse, p, (void*)&pExpr->y.pTab); } return WRC_Continue; } /* ** Walker select callback used by "RENAME TABLE". */ |
︙ | ︙ | |||
102539 102540 102541 102542 102543 102544 102545 102546 102547 102548 102549 | sWalker.xExprCallback = renameTableExprCb; sWalker.xSelectCallback = renameTableSelectCb; sWalker.u.pRename = &sCtx; rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp); if( rc==SQLITE_OK ){ if( sParse.pNewTable ){ Table *pTab = sParse.pNewTable; if( pTab->pSelect ){ | > > | | | | | | > | > | > > | > > | | | | | | > | 102888 102889 102890 102891 102892 102893 102894 102895 102896 102897 102898 102899 102900 102901 102902 102903 102904 102905 102906 102907 102908 102909 102910 102911 102912 102913 102914 102915 102916 102917 102918 102919 102920 102921 102922 102923 102924 102925 102926 102927 102928 102929 102930 102931 102932 102933 102934 102935 102936 102937 102938 102939 102940 102941 102942 102943 102944 102945 102946 102947 102948 102949 102950 102951 102952 102953 102954 102955 102956 102957 102958 102959 102960 102961 102962 102963 102964 102965 102966 | sWalker.xExprCallback = renameTableExprCb; sWalker.xSelectCallback = renameTableSelectCb; sWalker.u.pRename = &sCtx; rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp); if( rc==SQLITE_OK ){ int isLegacy = (db->flags & SQLITE_LegacyAlter); if( sParse.pNewTable ){ Table *pTab = sParse.pNewTable; if( pTab->pSelect ){ if( isLegacy==0 ){ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sParse; sqlite3SelectPrep(&sParse, pTab->pSelect, &sNC); if( sParse.nErr ) rc = sParse.rc; sqlite3WalkSelect(&sWalker, pTab->pSelect); } }else{ /* Modify any FK definitions to point to the new table. */ #ifndef SQLITE_OMIT_FOREIGN_KEY if( isLegacy==0 || (db->flags & SQLITE_ForeignKeys) ){ FKey *pFKey; for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){ renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo); } } } #endif /* If this is the table being altered, fix any table refs in CHECK ** expressions. Also update the name that appears right after the ** "CREATE [VIRTUAL] TABLE" bit. */ if( sqlite3_stricmp(zOld, pTab->zName)==0 ){ sCtx.pTab = pTab; if( isLegacy==0 ){ sqlite3WalkExprList(&sWalker, pTab->pCheck); } renameTokenFind(&sParse, &sCtx, pTab->zName); } } } else if( sParse.pNewIndex ){ renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName); if( isLegacy==0 ){ sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere); } } #ifndef SQLITE_OMIT_TRIGGER else{ Trigger *pTrigger = sParse.pNewTrigger; TriggerStep *pStep; if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld) && sCtx.pTab->pSchema==pTrigger->pTabSchema ){ renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table); } if( isLegacy==0 ){ rc = renameResolveTrigger(&sParse, bTemp ? 0 : zDb); if( rc==SQLITE_OK ){ renameWalkTrigger(&sWalker, pTrigger); for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){ if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){ renameTokenFind(&sParse, &sCtx, pStep->zTarget); } } } } } #endif } |
︙ | ︙ | |||
102652 102653 102654 102655 102656 102657 102658 102659 102660 102661 102662 102663 102664 102665 102666 102667 102668 102669 102670 | int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); char const *zDb = (const char*)sqlite3_value_text(argv[0]); char const *zInput = (const char*)sqlite3_value_text(argv[1]); int bTemp = sqlite3_value_int(argv[4]); #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif UNUSED_PARAMETER(NotUsed); if( zDb && zInput ){ int rc; Parse sParse; rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp); if( rc==SQLITE_OK ){ | > | > | > | 103010 103011 103012 103013 103014 103015 103016 103017 103018 103019 103020 103021 103022 103023 103024 103025 103026 103027 103028 103029 103030 103031 103032 103033 103034 103035 103036 103037 103038 103039 103040 103041 103042 103043 103044 103045 103046 103047 103048 | int NotUsed, sqlite3_value **argv ){ sqlite3 *db = sqlite3_context_db_handle(context); char const *zDb = (const char*)sqlite3_value_text(argv[0]); char const *zInput = (const char*)sqlite3_value_text(argv[1]); int bTemp = sqlite3_value_int(argv[4]); int isLegacy = (db->flags & SQLITE_LegacyAlter); #ifndef SQLITE_OMIT_AUTHORIZATION sqlite3_xauth xAuth = db->xAuth; db->xAuth = 0; #endif UNUSED_PARAMETER(NotUsed); if( zDb && zInput ){ int rc; Parse sParse; rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp); if( rc==SQLITE_OK ){ if( isLegacy==0 && sParse.pNewTable && sParse.pNewTable->pSelect ){ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = &sParse; sqlite3SelectPrep(&sParse, sParse.pNewTable->pSelect, &sNC); if( sParse.nErr ) rc = sParse.rc; } else if( sParse.pNewTrigger ){ if( isLegacy==0 ){ rc = renameResolveTrigger(&sParse, bTemp ? 0 : zDb); } if( rc==SQLITE_OK ){ int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema); int i2 = sqlite3FindDbName(db, zDb); if( i1==i2 ) sqlite3_result_int(context, 1); } } } |
︙ | ︙ | |||
102698 102699 102700 102701 102702 102703 102704 | } /* ** Register built-in functions used to help implement ALTER TABLE */ SQLITE_PRIVATE void sqlite3AlterFunctions(void){ static FuncDef aAlterTableFuncs[] = { | | | | | 103059 103060 103061 103062 103063 103064 103065 103066 103067 103068 103069 103070 103071 103072 103073 103074 103075 | } /* ** Register built-in functions used to help implement ALTER TABLE */ SQLITE_PRIVATE void sqlite3AlterFunctions(void){ static FuncDef aAlterTableFuncs[] = { INTERNAL_FUNCTION(sqlite_rename_column, 9, renameColumnFunc), INTERNAL_FUNCTION(sqlite_rename_table, 7, renameTableFunc), INTERNAL_FUNCTION(sqlite_rename_test, 5, renameTableTest), }; sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs)); } #endif /* SQLITE_ALTER_TABLE */ /************** End of alter.c ***********************************************/ /************** Begin file analyze.c *****************************************/ |
︙ | ︙ | |||
104749 104750 104751 104752 104753 104754 104755 | ** reopen it as a MemDB */ pVfs = sqlite3_vfs_find("memdb"); if( pVfs==0 ) return; pNew = &db->aDb[db->init.iDb]; if( pNew->pBt ) sqlite3BtreeClose(pNew->pBt); pNew->pBt = 0; pNew->pSchema = 0; | | | 105110 105111 105112 105113 105114 105115 105116 105117 105118 105119 105120 105121 105122 105123 105124 | ** reopen it as a MemDB */ pVfs = sqlite3_vfs_find("memdb"); if( pVfs==0 ) return; pNew = &db->aDb[db->init.iDb]; if( pNew->pBt ) sqlite3BtreeClose(pNew->pBt); pNew->pBt = 0; pNew->pSchema = 0; rc = sqlite3BtreeOpen(pVfs, "x\0", db, &pNew->pBt, 0, SQLITE_OPEN_MAIN_DB); }else{ /* This is a real ATTACH ** ** Check for the following errors: ** ** * Too many attached databases, ** * Transaction currently open |
︙ | ︙ | |||
105429 105430 105431 105432 105433 105434 105435 105436 105437 105438 105439 105440 105441 105442 | Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); if( db->xAuth==0 ) return; iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } | > | 105790 105791 105792 105793 105794 105795 105796 105797 105798 105799 105800 105801 105802 105803 105804 | Table *pTab = 0; /* The table being read */ const char *zCol; /* Name of the column of the table */ int iSrc; /* Index in pTabList->a[] of table being read */ int iDb; /* The index of the database the expression refers to */ int iCol; /* Index of column in table */ assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER ); assert( !IN_RENAME_OBJECT || db->xAuth==0 ); if( db->xAuth==0 ) return; iDb = sqlite3SchemaToIndex(pParse->db, pSchema); if( iDb<0 ){ /* An attempt to read a column out of a subquery or other ** temporary table. */ return; } |
︙ | ︙ | |||
105485 105486 105487 105488 105489 105490 105491 105492 105493 105494 105495 105496 105497 105498 | ){ sqlite3 *db = pParse->db; int rc; /* Don't do any authorization checks if the database is initialising ** or if the parser is being invoked from within sqlite3_declare_vtab. */ if( db->init.busy || IN_SPECIAL_PARSE ){ return SQLITE_OK; } if( db->xAuth==0 ){ return SQLITE_OK; } | > | 105847 105848 105849 105850 105851 105852 105853 105854 105855 105856 105857 105858 105859 105860 105861 | ){ sqlite3 *db = pParse->db; int rc; /* Don't do any authorization checks if the database is initialising ** or if the parser is being invoked from within sqlite3_declare_vtab. */ assert( !IN_RENAME_OBJECT || db->xAuth==0 ); if( db->init.busy || IN_SPECIAL_PARSE ){ return SQLITE_OK; } if( db->xAuth==0 ){ return SQLITE_OK; } |
︙ | ︙ | |||
105908 105909 105910 105911 105912 105913 105914 | return 0; } p = sqlite3FindTable(db, zName, zDbase); if( p==0 ){ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; #ifndef SQLITE_OMIT_VIRTUALTABLE | < | | | | | | | | | < | 106271 106272 106273 106274 106275 106276 106277 106278 106279 106280 106281 106282 106283 106284 106285 106286 106287 106288 106289 106290 106291 106292 106293 | return 0; } p = sqlite3FindTable(db, zName, zDbase); if( p==0 ){ const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table"; #ifndef SQLITE_OMIT_VIRTUALTABLE /* If zName is the not the name of a table in the schema created using ** CREATE, then check to see if it is the name of an virtual table that ** can be an eponymous virtual table. */ Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName); if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){ pMod = sqlite3PragmaVtabRegister(db, zName); } if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){ return pMod->pEpoTab; } #endif if( (flags & LOCATE_NOERR)==0 ){ if( zDbase ){ sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName); }else{ sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName); |
︙ | ︙ | |||
106098 106099 106100 106101 106102 106103 106104 | /* ** Erase all schema information from all attached databases (including ** "main" and "temp") for a single database connection. */ SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ int i; sqlite3BtreeEnterAll(db); | < > | > > > > | > | 106459 106460 106461 106462 106463 106464 106465 106466 106467 106468 106469 106470 106471 106472 106473 106474 106475 106476 106477 106478 106479 106480 106481 106482 106483 106484 106485 106486 106487 106488 | /* ** Erase all schema information from all attached databases (including ** "main" and "temp") for a single database connection. */ SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){ int i; sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Db *pDb = &db->aDb[i]; if( pDb->pSchema ){ if( db->nSchemaLock==0 ){ sqlite3SchemaClear(pDb->pSchema); }else{ DbSetProperty(db, i, DB_ResetWanted); } } } db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk); sqlite3VtabUnlockList(db); sqlite3BtreeLeaveAll(db); if( db->nSchemaLock==0 ){ sqlite3CollapseDatabaseArray(db); } } /* ** This routine is called when a commit occurs. */ SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){ db->mDbFlags &= ~DBFLAG_SchemaChange; |
︙ | ︙ | |||
106185 106186 106187 106188 106189 106190 106191 106192 106193 106194 106195 106196 106197 106198 | } /* Delete any foreign keys attached to this table. */ sqlite3FkDelete(db, pTable); /* Delete the Table structure itself. */ sqlite3DeleteColumnNames(db, pTable); sqlite3DbFree(db, pTable->zName); sqlite3DbFree(db, pTable->zColAff); sqlite3SelectDelete(db, pTable->pSelect); sqlite3ExprListDelete(db, pTable->pCheck); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3VtabClear(db, pTable); | > > > > > > | 106551 106552 106553 106554 106555 106556 106557 106558 106559 106560 106561 106562 106563 106564 106565 106566 106567 106568 106569 106570 | } /* Delete any foreign keys attached to this table. */ sqlite3FkDelete(db, pTable); /* Delete the Table structure itself. */ #ifdef SQLITE_ENABLE_NORMALIZE if( pTable->pColHash ){ sqlite3HashClear(pTable->pColHash); sqlite3_free(pTable->pColHash); } #endif sqlite3DeleteColumnNames(db, pTable); sqlite3DbFree(db, pTable->zName); sqlite3DbFree(db, pTable->zColAff); sqlite3SelectDelete(db, pTable->pSelect); sqlite3ExprListDelete(db, pTable->pCheck); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3VtabClear(db, pTable); |
︙ | ︙ | |||
106342 106343 106344 106345 106346 106347 106348 106349 106350 106351 106352 106353 106354 106355 106356 106357 106358 | assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT || (db->mDbFlags & DBFLAG_Vacuum)!=0); iDb = db->init.iDb; *pUnqual = pName1; } return iDb; } /* ** This routine is used to check if the UTF-8 string zName is a legal ** unqualified name for a new schema object (table, index, view or ** trigger). All names are legal except those that begin with the string ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace ** is reserved for internal use. */ SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){ if( !pParse->db->init.busy && pParse->nested==0 | > > > > > > > > > > > > > > | | 106714 106715 106716 106717 106718 106719 106720 106721 106722 106723 106724 106725 106726 106727 106728 106729 106730 106731 106732 106733 106734 106735 106736 106737 106738 106739 106740 106741 106742 106743 106744 106745 106746 106747 106748 106749 106750 106751 106752 | assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT || (db->mDbFlags & DBFLAG_Vacuum)!=0); iDb = db->init.iDb; *pUnqual = pName1; } return iDb; } /* ** True if PRAGMA writable_schema is ON */ SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3 *db){ testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_WriteSchema ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== SQLITE_Defensive ); testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))== (SQLITE_WriteSchema|SQLITE_Defensive) ); return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema; } /* ** This routine is used to check if the UTF-8 string zName is a legal ** unqualified name for a new schema object (table, index, view or ** trigger). All names are legal except those that begin with the string ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace ** is reserved for internal use. */ SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){ if( !pParse->db->init.busy && pParse->nested==0 && sqlite3WritableSchema(pParse->db)==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){ sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName); return SQLITE_ERROR; } return SQLITE_OK; } |
︙ | ︙ | |||
107323 107324 107325 107326 107327 107328 107329 | for(i=0; i<pTab->nCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ pTab->aCol[i].notNull = OE_Abort; } } } | < < < < | 107709 107710 107711 107712 107713 107714 107715 107716 107717 107718 107719 107720 107721 107722 | for(i=0; i<pTab->nCol; i++){ if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ pTab->aCol[i].notNull = OE_Abort; } } } /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY ** into BTREE_BLOBKEY. */ if( pParse->addrCrTab ){ assert( v ); sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY); } |
︙ | ︙ | |||
107431 107432 107433 107434 107435 107436 107437 107438 107439 107440 107441 107442 107443 107444 | assert( pPk->nColumn==j ); assert( pTab->nCol==j ); }else{ pPk->nColumn = pTab->nCol; } recomputeColumnsNotIndexed(pPk); } /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have | > > > > > > > > > > > > > > > > > > > > > > > > > > | 107813 107814 107815 107816 107817 107818 107819 107820 107821 107822 107823 107824 107825 107826 107827 107828 107829 107830 107831 107832 107833 107834 107835 107836 107837 107838 107839 107840 107841 107842 107843 107844 107845 107846 107847 107848 107849 107850 107851 107852 | assert( pPk->nColumn==j ); assert( pTab->nCol==j ); }else{ pPk->nColumn = pTab->nCol; } recomputeColumnsNotIndexed(pPk); } /* ** Return true if zName is a shadow table name in the current database ** connection. ** ** zName is temporarily modified while this routine is running, but is ** restored to its original value prior to this routine returning. */ static int isShadowTableName(sqlite3 *db, char *zName){ char *zTail; /* Pointer to the last "_" in zName */ Table *pTab; /* Table that zName is a shadow of */ Module *pMod; /* Module for the virtual table */ zTail = strrchr(zName, '_'); if( zTail==0 ) return 0; *zTail = 0; pTab = sqlite3FindTable(db, zName, 0); *zTail = '_'; if( pTab==0 ) return 0; if( !IsVirtual(pTab) ) return 0; pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]); if( pMod==0 ) return 0; if( pMod->pModule->iVersion<3 ) return 0; if( pMod->pModule->xShadowName==0 ) return 0; return pMod->pModule->xShadowName(zTail+1); } /* ** This routine is called to report the final ")" that terminates ** a CREATE TABLE statement. ** ** The table structure that other action routines have been building ** is added to the internal hash tables, assuming no errors have |
︙ | ︙ | |||
107470 107471 107472 107473 107474 107475 107476 107477 107478 107479 107480 107481 107482 107483 | if( pEnd==0 && pSelect==0 ){ return; } assert( !db->mallocFailed ); p = pParse->pNewTable; if( p==0 ) return; /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_master" or "sqlite_temp_master" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) ** | > > > > | 107878 107879 107880 107881 107882 107883 107884 107885 107886 107887 107888 107889 107890 107891 107892 107893 107894 107895 | if( pEnd==0 && pSelect==0 ){ return; } assert( !db->mallocFailed ); p = pParse->pNewTable; if( p==0 ) return; if( pSelect==0 && isShadowTableName(db, p->zName) ){ p->tabFlags |= TF_Shadow; } /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_master" or "sqlite_temp_master" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number ** should have been put there by the sqliteOpenCb routine.) ** |
︙ | ︙ | |||
107839 107840 107841 107842 107843 107844 107845 107846 107847 107848 107849 107850 107851 107852 | ** to the elements of the FROM clause. But we do not want these changes ** to be permanent. So the computation is done on a copy of the SELECT ** statement that defines the view. */ assert( pTable->pSelect ); pSel = sqlite3SelectDup(db, pTable->pSelect, 0); if( pSel ){ n = pParse->nTab; sqlite3SrcListAssignCursors(pParse, pSel->pSrc); pTable->nCol = -1; db->lookaside.bDisable++; #ifndef SQLITE_OMIT_AUTHORIZATION xAuth = db->xAuth; db->xAuth = 0; | > > > > | 108251 108252 108253 108254 108255 108256 108257 108258 108259 108260 108261 108262 108263 108264 108265 108266 108267 108268 | ** to the elements of the FROM clause. But we do not want these changes ** to be permanent. So the computation is done on a copy of the SELECT ** statement that defines the view. */ assert( pTable->pSelect ); pSel = sqlite3SelectDup(db, pTable->pSelect, 0); if( pSel ){ #ifndef SQLITE_OMIT_ALTERTABLE u8 eParseMode = pParse->eParseMode; pParse->eParseMode = PARSE_MODE_NORMAL; #endif n = pParse->nTab; sqlite3SrcListAssignCursors(pParse, pSel->pSrc); pTable->nCol = -1; db->lookaside.bDisable++; #ifndef SQLITE_OMIT_AUTHORIZATION xAuth = db->xAuth; db->xAuth = 0; |
︙ | ︙ | |||
107884 107885 107886 107887 107888 107889 107890 107891 107892 107893 107894 107895 107896 107897 | }else{ pTable->nCol = 0; nErr++; } sqlite3DeleteTable(db, pSelTab); sqlite3SelectDelete(db, pSel); db->lookaside.bDisable--; } else { nErr++; } pTable->pSchema->schemaFlags |= DB_UnresetViews; if( db->mallocFailed ){ sqlite3DeleteColumnNames(db, pTable); pTable->aCol = 0; | > > > | 108300 108301 108302 108303 108304 108305 108306 108307 108308 108309 108310 108311 108312 108313 108314 108315 108316 | }else{ pTable->nCol = 0; nErr++; } sqlite3DeleteTable(db, pSelTab); sqlite3SelectDelete(db, pSel); db->lookaside.bDisable--; #ifndef SQLITE_OMIT_ALTERTABLE pParse->eParseMode = eParseMode; #endif } else { nErr++; } pTable->pSchema->schemaFlags |= DB_UnresetViews; if( db->mallocFailed ){ sqlite3DeleteColumnNames(db, pTable); pTable->aCol = 0; |
︙ | ︙ | |||
107971 107972 107973 107974 107975 107976 107977 | ** Also write code to modify the sqlite_master table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); | | | 108390 108391 108392 108393 108394 108395 108396 108397 108398 108399 108400 108401 108402 108403 108404 | ** Also write code to modify the sqlite_master table and internal schema ** if a root-page of another table is moved by the btree-layer whilst ** erasing iTable (this can happen with an auto-vacuum database). */ static void destroyRootPage(Parse *pParse, int iTable, int iDb){ Vdbe *v = sqlite3GetVdbe(pParse); int r1 = sqlite3GetTempReg(pParse); if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema"); sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb); sqlite3MayAbort(pParse); #ifndef SQLITE_OMIT_AUTOVACUUM /* OP_Destroy stores an in integer r1. If this integer ** is non-zero, then it is the root page number of a table moved to ** location iTable. The following code modifies the sqlite_master table to ** reflect this. |
︙ | ︙ | |||
110426 110427 110428 110429 110430 110431 110432 110433 110434 110435 110436 110437 110438 110439 110440 110441 110442 110443 110444 110445 | for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){ if( sqlite3StrICmp(p->zName, zFunc)==0 ){ return p; } } return 0; } /* ** Insert a new FuncDef into a FuncDefHash hash table. */ SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs( FuncDef *aDef, /* List of global functions to be inserted */ int nDef /* Length of the apDef[] list */ ){ int i; for(i=0; i<nDef; i++){ FuncDef *pOther; const char *zName = aDef[i].zName; int nName = sqlite3Strlen30(zName); | > > > > > > > > > > > > > > > | | 110845 110846 110847 110848 110849 110850 110851 110852 110853 110854 110855 110856 110857 110858 110859 110860 110861 110862 110863 110864 110865 110866 110867 110868 110869 110870 110871 110872 110873 110874 110875 110876 110877 110878 110879 110880 110881 110882 110883 110884 110885 110886 110887 | for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){ if( sqlite3StrICmp(p->zName, zFunc)==0 ){ return p; } } return 0; } #ifdef SQLITE_ENABLE_NORMALIZE SQLITE_PRIVATE FuncDef *sqlite3FunctionSearchN( int h, /* Hash of the name */ const char *zFunc, /* Name of function */ int nFunc /* Length of the name */ ){ FuncDef *p; for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){ if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 ){ return p; } } return 0; } #endif /* SQLITE_ENABLE_NORMALIZE */ /* ** Insert a new FuncDef into a FuncDefHash hash table. */ SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs( FuncDef *aDef, /* List of global functions to be inserted */ int nDef /* Length of the apDef[] list */ ){ int i; for(i=0; i<nDef; i++){ FuncDef *pOther; const char *zName = aDef[i].zName; int nName = sqlite3Strlen30(zName); int h = SQLITE_FUNC_HASH(zName[0], nName); assert( zName[0]>='a' && zName[0]<='z' ); pOther = functionSearch(h, zName); if( pOther ){ assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] ); aDef[i].pNext = pOther->pNext; pOther->pNext = &aDef[i]; }else{ |
︙ | ︙ | |||
110518 110519 110520 110521 110522 110523 110524 | ** install a new function. Whatever FuncDef structure is returned it will ** have fields overwritten with new information appropriate for the ** new function. But the FuncDefs for built-in functions are read-only. ** So we must not search for built-ins when creating a new function. */ if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){ bestScore = 0; | | | 110952 110953 110954 110955 110956 110957 110958 110959 110960 110961 110962 110963 110964 110965 110966 | ** install a new function. Whatever FuncDef structure is returned it will ** have fields overwritten with new information appropriate for the ** new function. But the FuncDefs for built-in functions are read-only. ** So we must not search for built-ins when creating a new function. */ if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){ bestScore = 0; h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName); p = functionSearch(h, zName); while( p ){ int score = matchQuality(p, nArg, enc); if( score>bestScore ){ pBest = p; bestScore = score; } |
︙ | ︙ | |||
110665 110666 110667 110668 110669 110670 110671 110672 110673 110674 110675 110676 110677 110678 | pTab->nTabRef++; } if( sqlite3IndexedByLookup(pParse, pItem) ){ pTab = 0; } return pTab; } /* ** Check to make sure the given table is writable. If it is not ** writable, generate an error message and return 1. If it is ** writable return 0; */ SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < < < < < < < < < < < < | < < | 111099 111100 111101 111102 111103 111104 111105 111106 111107 111108 111109 111110 111111 111112 111113 111114 111115 111116 111117 111118 111119 111120 111121 111122 111123 111124 111125 111126 111127 111128 111129 111130 111131 111132 111133 111134 111135 111136 111137 111138 111139 111140 111141 111142 111143 111144 111145 111146 111147 111148 111149 111150 111151 111152 111153 111154 | pTab->nTabRef++; } if( sqlite3IndexedByLookup(pParse, pItem) ){ pTab = 0; } return pTab; } /* Return true if table pTab is read-only. ** ** A table is read-only if any of the following are true: ** ** 1) It is a virtual table and no implementation of the xUpdate method ** has been provided ** ** 2) It is a system table (i.e. sqlite_master), this call is not ** part of a nested parse and writable_schema pragma has not ** been specified ** ** 3) The table is a shadow table, the database connection is in ** defensive mode, and the current sqlite3_prepare() ** is for a top-level SQL statement. */ static int tabIsReadOnly(Parse *pParse, Table *pTab){ sqlite3 *db; if( IsVirtual(pTab) ){ return sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0; } if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0; db = pParse->db; if( (pTab->tabFlags & TF_Readonly)!=0 ){ return sqlite3WritableSchema(db)==0 && pParse->nested==0; } assert( pTab->tabFlags & TF_Shadow ); return (db->flags & SQLITE_Defensive)!=0 && db->nVdbeExec==0 && db->pVtabCtx==0; } /* ** Check to make sure the given table is writable. If it is not ** writable, generate an error message and return 1. If it is ** writable return 0; */ SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){ if( tabIsReadOnly(pParse, pTab) ){ sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName); return 1; } #ifndef SQLITE_OMIT_VIEW if( !viewOk && pTab->pSelect ){ sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName); return 1; } #endif return 0; |
︙ | ︙ | |||
114095 114096 114097 114098 114099 114100 114101 | sqlite3 *db, /* The database connection */ Table *pTab, /* The table whose column is desired */ int iCursor, /* The open cursor on the table */ i16 iCol /* The column that is wanted */ ){ Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); if( pExpr ){ | | | 114544 114545 114546 114547 114548 114549 114550 114551 114552 114553 114554 114555 114556 114557 114558 | sqlite3 *db, /* The database connection */ Table *pTab, /* The table whose column is desired */ int iCursor, /* The open cursor on the table */ i16 iCol /* The column that is wanted */ ){ Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); if( pExpr ){ pExpr->y.pTab = pTab; pExpr->iTable = iCursor; pExpr->iColumn = iCol; } return pExpr; } /* |
︙ | ︙ | |||
115171 115172 115173 115174 115175 115176 115177 | zColAff[i] = pTab->aCol[i].affinity; } do{ zColAff[i--] = 0; }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); pTab->zColAff = zColAff; } | > | | 115620 115621 115622 115623 115624 115625 115626 115627 115628 115629 115630 115631 115632 115633 115634 115635 | zColAff[i] = pTab->aCol[i].affinity; } do{ zColAff[i--] = 0; }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB ); pTab->zColAff = zColAff; } assert( zColAff!=0 ); i = sqlite3Strlen30NN(zColAff); if( i ){ if( iReg ){ sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); }else{ sqlite3VdbeChangeP4(v, -1, zColAff, i); } } |
︙ | ︙ | |||
116151 116152 116153 116154 116155 116156 116157 | #undef pTrigger #endif #ifdef tmask #undef tmask #endif /* | | > | | | | 116601 116602 116603 116604 116605 116606 116607 116608 116609 116610 116611 116612 116613 116614 116615 116616 116617 116618 116619 116620 116621 116622 116623 | #undef pTrigger #endif #ifdef tmask #undef tmask #endif /* ** Meanings of bits in of pWalker->eCode for ** sqlite3ExprReferencesUpdatedColumn() */ #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */ #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */ /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn(). * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this ** expression node references any of the ** columns that are being modifed by an UPDATE statement. */ static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){ if( pExpr->op==TK_COLUMN ){ assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 ); if( pExpr->iColumn>=0 ){ if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){ |
︙ | ︙ | |||
116180 116181 116182 116183 116184 116185 116186 | } /* ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The ** only columns that are modified by the UPDATE are those for which ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. ** | | | > > > > > > | > > > | | 116631 116632 116633 116634 116635 116636 116637 116638 116639 116640 116641 116642 116643 116644 116645 116646 116647 116648 116649 116650 116651 116652 116653 116654 116655 116656 116657 116658 116659 116660 116661 116662 116663 116664 116665 116666 116667 116668 116669 116670 116671 116672 116673 116674 | } /* ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The ** only columns that are modified by the UPDATE are those for which ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true. ** ** Return true if CHECK constraint pExpr uses any of the ** changing columns (or the rowid if it is changing). In other words, ** return true if this CHECK constraint must be validated for ** the new row in the UPDATE statement. ** ** 2018-09-15: pExpr might also be an expression for an index-on-expressions. ** The operation of this routine is the same - return true if an only if ** the expression uses one or more of columns identified by the second and ** third arguments. */ SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn( Expr *pExpr, /* The expression to be checked */ int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */ int chngRowid /* True if UPDATE changes the rowid */ ){ Walker w; memset(&w, 0, sizeof(w)); w.eCode = 0; w.xExprCallback = checkConstraintExprNode; w.u.aiCol = aiChng; sqlite3WalkExpr(&w, pExpr); if( !chngRowid ){ testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 ); w.eCode &= ~CKCNSTRNT_ROWID; } testcase( w.eCode==0 ); testcase( w.eCode==CKCNSTRNT_COLUMN ); testcase( w.eCode==CKCNSTRNT_ROWID ); testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) ); return w.eCode!=0; } /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE ** on table pTab. ** ** The regNewData parameter is the first register in a range that contains |
︙ | ︙ | |||
116406 116407 116408 116409 116410 116411 116412 | if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; i<pCheck->nExpr; i++){ int allOk; Expr *pExpr = pCheck->a[i].pExpr; | | > > > > > > | 116866 116867 116868 116869 116870 116871 116872 116873 116874 116875 116876 116877 116878 116879 116880 116881 116882 116883 116884 116885 116886 | if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ ExprList *pCheck = pTab->pCheck; pParse->iSelfTab = -(regNewData+1); onError = overrideError!=OE_Default ? overrideError : OE_Abort; for(i=0; i<pCheck->nExpr; i++){ int allOk; Expr *pExpr = pCheck->a[i].pExpr; if( aiChng && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng) ){ /* The check constraints do not reference any of the columns being ** updated so there is no point it verifying the check constraint */ continue; } allOk = sqlite3VdbeMakeLabel(v); sqlite3VdbeVerifyAbortable(v, onError); sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL); if( onError==OE_Ignore ){ sqlite3VdbeGoto(v, ignoreDest); }else{ char *zName = pCheck->a[i].zName; |
︙ | ︙ | |||
117907 117908 117909 117910 117911 117912 117913 117914 117915 117916 117917 117918 117919 117920 117921 117922 117923 117924 117925 117926 | void (*str_append)(sqlite3_str*, const char *zIn, int N); void (*str_appendall)(sqlite3_str*, const char *zIn); void (*str_appendchar)(sqlite3_str*, int N, char C); void (*str_reset)(sqlite3_str*); int (*str_errcode)(sqlite3_str*); int (*str_length)(sqlite3_str*); char *(*str_value)(sqlite3_str*); int (*create_window_function)(sqlite3*,const char*,int,int,void*, void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInv)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*)); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( | > > > | 118373 118374 118375 118376 118377 118378 118379 118380 118381 118382 118383 118384 118385 118386 118387 118388 118389 118390 118391 118392 118393 118394 118395 | void (*str_append)(sqlite3_str*, const char *zIn, int N); void (*str_appendall)(sqlite3_str*, const char *zIn); void (*str_appendchar)(sqlite3_str*, int N, char C); void (*str_reset)(sqlite3_str*); int (*str_errcode)(sqlite3_str*); int (*str_length)(sqlite3_str*); char *(*str_value)(sqlite3_str*); /* Version 3.25.0 and later */ int (*create_window_function)(sqlite3*,const char*,int,int,void*, void (*xStep)(sqlite3_context*,int,sqlite3_value**), void (*xFinal)(sqlite3_context*), void (*xValue)(sqlite3_context*), void (*xInv)(sqlite3_context*,int,sqlite3_value**), void(*xDestroy)(void*)); /* Version 3.26.0 and later */ const char *(*normalized_sql)(sqlite3_stmt*); }; /* ** This is the function signature used for all extension entry points. It ** is also defined in the file "loadext.c". */ typedef int (*sqlite3_loadext_entry)( |
︙ | ︙ | |||
118200 118201 118202 118203 118204 118205 118206 118207 118208 118209 118210 118211 118212 118213 | #define sqlite3_str_appendchar sqlite3_api->str_appendchar #define sqlite3_str_reset sqlite3_api->str_reset #define sqlite3_str_errcode sqlite3_api->str_errcode #define sqlite3_str_length sqlite3_api->str_length #define sqlite3_str_value sqlite3_api->str_value /* Version 3.25.0 and later */ #define sqlite3_create_window_function sqlite3_api->create_window_function #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; | > > | 118669 118670 118671 118672 118673 118674 118675 118676 118677 118678 118679 118680 118681 118682 118683 118684 | #define sqlite3_str_appendchar sqlite3_api->str_appendchar #define sqlite3_str_reset sqlite3_api->str_reset #define sqlite3_str_errcode sqlite3_api->str_errcode #define sqlite3_str_length sqlite3_api->str_length #define sqlite3_str_value sqlite3_api->str_value /* Version 3.25.0 and later */ #define sqlite3_create_window_function sqlite3_api->create_window_function /* Version 3.26.0 and later */ #define sqlite3_normalized_sql sqlite3_api->normalized_sql #endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */ #if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; |
︙ | ︙ | |||
118655 118656 118657 118658 118659 118660 118661 | sqlite3_str_appendall, sqlite3_str_appendchar, sqlite3_str_reset, sqlite3_str_errcode, sqlite3_str_length, sqlite3_str_value, /* Version 3.25.0 and later */ | | > > > > > > | 119126 119127 119128 119129 119130 119131 119132 119133 119134 119135 119136 119137 119138 119139 119140 119141 119142 119143 119144 119145 119146 | sqlite3_str_appendall, sqlite3_str_appendchar, sqlite3_str_reset, sqlite3_str_errcode, sqlite3_str_length, sqlite3_str_value, /* Version 3.25.0 and later */ sqlite3_create_window_function, /* Version 3.26.0 and later */ #ifdef SQLITE_ENABLE_NORMALIZE sqlite3_normalized_sql #else 0 #endif }; /* ** Attempt to load an SQLite extension library contained in the file ** zFile. The entry point is zProc. zProc may be 0 in which case a ** default entry point name (sqlite3_extension_init) is used. Use ** of the default name is recommended. |
︙ | ︙ | |||
119105 119106 119107 119108 119109 119110 119111 | #define PragTyp_TEMP_STORE_DIRECTORY 36 #define PragTyp_THREADS 37 #define PragTyp_WAL_AUTOCHECKPOINT 38 #define PragTyp_WAL_CHECKPOINT 39 #define PragTyp_ACTIVATE_EXTENSIONS 40 #define PragTyp_HEXKEY 41 #define PragTyp_KEY 42 | < | | | | | | | | | | | | | | | | | | > | | | | | | | | | | | | | > | | | | | | | | > | | | < | < | < < | | 119582 119583 119584 119585 119586 119587 119588 119589 119590 119591 119592 119593 119594 119595 119596 119597 119598 119599 119600 119601 119602 119603 119604 119605 119606 119607 119608 119609 119610 119611 119612 119613 119614 119615 119616 119617 119618 119619 119620 119621 119622 119623 119624 119625 119626 119627 119628 119629 119630 119631 119632 119633 119634 119635 119636 119637 119638 119639 119640 119641 119642 119643 119644 119645 119646 119647 119648 119649 119650 119651 119652 119653 119654 119655 119656 119657 119658 119659 119660 119661 119662 119663 119664 119665 119666 119667 119668 119669 119670 119671 119672 119673 119674 119675 | #define PragTyp_TEMP_STORE_DIRECTORY 36 #define PragTyp_THREADS 37 #define PragTyp_WAL_AUTOCHECKPOINT 38 #define PragTyp_WAL_CHECKPOINT 39 #define PragTyp_ACTIVATE_EXTENSIONS 40 #define PragTyp_HEXKEY 41 #define PragTyp_KEY 42 #define PragTyp_LOCK_STATUS 43 #define PragTyp_PARSER_TRACE 44 #define PragTyp_STATS 45 /* Property flags associated with various pragma. */ #define PragFlg_NeedSchema 0x01 /* Force schema load before running */ #define PragFlg_NoColumns 0x02 /* OP_ResultRow called with zero columns */ #define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */ #define PragFlg_ReadOnly 0x08 /* Read-only HEADER_VALUE */ #define PragFlg_Result0 0x10 /* Acts as query when no argument */ #define PragFlg_Result1 0x20 /* Acts as query when has one argument */ #define PragFlg_SchemaOpt 0x40 /* Schema restricts name search if present */ #define PragFlg_SchemaReq 0x80 /* Schema required - "main" is default */ /* Names of columns for pragmas that return multi-column result ** or that return single-column results where the name of the ** result column is different from the name of the pragma */ static const char *const pragCName[] = { /* 0 */ "id", /* Used by: foreign_key_list */ /* 1 */ "seq", /* 2 */ "table", /* 3 */ "from", /* 4 */ "to", /* 5 */ "on_update", /* 6 */ "on_delete", /* 7 */ "match", /* 8 */ "cid", /* Used by: table_xinfo */ /* 9 */ "name", /* 10 */ "type", /* 11 */ "notnull", /* 12 */ "dflt_value", /* 13 */ "pk", /* 14 */ "hidden", /* table_info reuses 8 */ /* 15 */ "seqno", /* Used by: index_xinfo */ /* 16 */ "cid", /* 17 */ "name", /* 18 */ "desc", /* 19 */ "coll", /* 20 */ "key", /* 21 */ "tbl", /* Used by: stats */ /* 22 */ "idx", /* 23 */ "wdth", /* 24 */ "hght", /* 25 */ "flgs", /* 26 */ "seq", /* Used by: index_list */ /* 27 */ "name", /* 28 */ "unique", /* 29 */ "origin", /* 30 */ "partial", /* 31 */ "table", /* Used by: foreign_key_check */ /* 32 */ "rowid", /* 33 */ "parent", /* 34 */ "fkid", /* index_info reuses 15 */ /* 35 */ "seq", /* Used by: database_list */ /* 36 */ "name", /* 37 */ "file", /* 38 */ "busy", /* Used by: wal_checkpoint */ /* 39 */ "log", /* 40 */ "checkpointed", /* 41 */ "name", /* Used by: function_list */ /* 42 */ "builtin", /* collation_list reuses 26 */ /* 43 */ "database", /* Used by: lock_status */ /* 44 */ "status", /* 45 */ "cache_size", /* Used by: default_cache_size */ /* module_list pragma_list reuses 9 */ /* 46 */ "timeout", /* Used by: busy_timeout */ }; /* Definitions of all built-in pragmas */ typedef struct PragmaName { const char *const zName; /* Name of pragma */ u8 ePragTyp; /* PragTyp_XXX value */ u8 mPragFlg; /* Zero or more PragFlg_XXX values */ u8 iPragCName; /* Start of column names in pragCName[] */ u8 nPragCName; /* Num of col names. 0 means use pragma name */ u64 iArg; /* Extra argument */ } PragmaName; static const PragmaName aPragmaName[] = { #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) {/* zName: */ "activate_extensions", /* ePragTyp: */ PragTyp_ACTIVATE_EXTENSIONS, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, |
︙ | ︙ | |||
119222 119223 119224 119225 119226 119227 119228 | /* ColNames: */ 0, 0, /* iArg: */ SQLITE_AutoIndex }, #endif #endif {/* zName: */ "busy_timeout", /* ePragTyp: */ PragTyp_BUSY_TIMEOUT, /* ePragFlg: */ PragFlg_Result0, | | | 119697 119698 119699 119700 119701 119702 119703 119704 119705 119706 119707 119708 119709 119710 119711 | /* ColNames: */ 0, 0, /* iArg: */ SQLITE_AutoIndex }, #endif #endif {/* zName: */ "busy_timeout", /* ePragTyp: */ PragTyp_BUSY_TIMEOUT, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 46, 1, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "cache_size", /* ePragTyp: */ PragTyp_CACHE_SIZE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, |
︙ | ︙ | |||
119259 119260 119261 119262 119263 119264 119265 | /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CkptFullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "collation_list", /* ePragTyp: */ PragTyp_COLLATION_LIST, /* ePragFlg: */ PragFlg_Result0, | | | 119734 119735 119736 119737 119738 119739 119740 119741 119742 119743 119744 119745 119746 119747 119748 | /* ColNames: */ 0, 0, /* iArg: */ SQLITE_CkptFullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "collation_list", /* ePragTyp: */ PragTyp_COLLATION_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 26, 2, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS) {/* zName: */ "compile_options", /* ePragTyp: */ PragTyp_COMPILE_OPTIONS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, |
︙ | ︙ | |||
119294 119295 119296 119297 119298 119299 119300 | /* ColNames: */ 0, 0, /* iArg: */ BTREE_DATA_VERSION }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "database_list", /* ePragTyp: */ PragTyp_DATABASE_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0, | | | | 119769 119770 119771 119772 119773 119774 119775 119776 119777 119778 119779 119780 119781 119782 119783 119784 119785 119786 119787 119788 119789 119790 | /* ColNames: */ 0, 0, /* iArg: */ BTREE_DATA_VERSION }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "database_list", /* ePragTyp: */ PragTyp_DATABASE_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0, /* ColNames: */ 35, 3, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED) {/* zName: */ "default_cache_size", /* ePragTyp: */ PragTyp_DEFAULT_CACHE_SIZE, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 45, 1, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "defer_foreign_keys", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, |
︙ | ︙ | |||
119331 119332 119333 119334 119335 119336 119337 | /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_key_check", /* ePragTyp: */ PragTyp_FOREIGN_KEY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0, | | | | 119806 119807 119808 119809 119810 119811 119812 119813 119814 119815 119816 119817 119818 119819 119820 119821 119822 119823 119824 119825 119826 119827 | /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_key_check", /* ePragTyp: */ PragTyp_FOREIGN_KEY_CHECK, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0, /* ColNames: */ 31, 4, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FOREIGN_KEY) {/* zName: */ "foreign_key_list", /* ePragTyp: */ PragTyp_FOREIGN_KEY_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 0, 8, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) {/* zName: */ "foreign_keys", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, |
︙ | ︙ | |||
119374 119375 119376 119377 119378 119379 119380 | /* iArg: */ SQLITE_FullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if defined(SQLITE_INTROSPECTION_PRAGMAS) {/* zName: */ "function_list", /* ePragTyp: */ PragTyp_FUNCTION_LIST, /* ePragFlg: */ PragFlg_Result0, | | | | | 119849 119850 119851 119852 119853 119854 119855 119856 119857 119858 119859 119860 119861 119862 119863 119864 119865 119866 119867 119868 119869 119870 119871 119872 119873 119874 119875 119876 119877 | /* iArg: */ SQLITE_FullFSync }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if defined(SQLITE_INTROSPECTION_PRAGMAS) {/* zName: */ "function_list", /* ePragTyp: */ PragTyp_FUNCTION_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 41, 2, /* iArg: */ 0 }, #endif #endif #if defined(SQLITE_HAS_CODEC) {/* zName: */ "hexkey", /* ePragTyp: */ PragTyp_HEXKEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 2 }, {/* zName: */ "hexrekey", /* ePragTyp: */ PragTyp_HEXKEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 3 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) #if !defined(SQLITE_OMIT_CHECK) {/* zName: */ "ignore_check_constraints", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, |
︙ | ︙ | |||
119410 119411 119412 119413 119414 119415 119416 | /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "index_info", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, | | | | 119885 119886 119887 119888 119889 119890 119891 119892 119893 119894 119895 119896 119897 119898 119899 119900 119901 119902 119903 119904 | /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "index_info", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 15, 3, /* iArg: */ 0 }, {/* zName: */ "index_list", /* ePragTyp: */ PragTyp_INDEX_LIST, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 26, 5, /* iArg: */ 0 }, {/* zName: */ "index_xinfo", /* ePragTyp: */ PragTyp_INDEX_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 15, 6, /* iArg: */ 1 }, #endif |
︙ | ︙ | |||
119450 119451 119452 119453 119454 119455 119456 119457 119458 119459 119460 119461 119462 119463 119464 119465 119466 119467 119468 119469 119470 119471 119472 119473 | {/* zName: */ "key", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "legacy_file_format", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_LegacyFileFmt }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE {/* zName: */ "lock_proxy_file", /* ePragTyp: */ PragTyp_LOCK_PROXY_FILE, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) {/* zName: */ "lock_status", /* ePragTyp: */ PragTyp_LOCK_STATUS, /* ePragFlg: */ PragFlg_Result0, | > > > > > | | 119925 119926 119927 119928 119929 119930 119931 119932 119933 119934 119935 119936 119937 119938 119939 119940 119941 119942 119943 119944 119945 119946 119947 119948 119949 119950 119951 119952 119953 119954 119955 119956 119957 119958 119959 119960 119961 | {/* zName: */ "key", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "legacy_alter_table", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_LegacyAlter }, {/* zName: */ "legacy_file_format", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_LegacyFileFmt }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE {/* zName: */ "lock_proxy_file", /* ePragTyp: */ PragTyp_LOCK_PROXY_FILE, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST) {/* zName: */ "lock_status", /* ePragTyp: */ PragTyp_LOCK_STATUS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 43, 2, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "locking_mode", /* ePragTyp: */ PragTyp_LOCKING_MODE, /* ePragFlg: */ PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 0, 0, |
︙ | ︙ | |||
119493 119494 119495 119496 119497 119498 119499 | #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if !defined(SQLITE_OMIT_VIRTUALTABLE) #if defined(SQLITE_INTROSPECTION_PRAGMAS) {/* zName: */ "module_list", /* ePragTyp: */ PragTyp_MODULE_LIST, /* ePragFlg: */ PragFlg_Result0, | | | 119973 119974 119975 119976 119977 119978 119979 119980 119981 119982 119983 119984 119985 119986 119987 | #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) #if !defined(SQLITE_OMIT_VIRTUALTABLE) #if defined(SQLITE_INTROSPECTION_PRAGMAS) {/* zName: */ "module_list", /* ePragTyp: */ PragTyp_MODULE_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 9, 1, /* iArg: */ 0 }, #endif #endif #endif {/* zName: */ "optimize", /* ePragTyp: */ PragTyp_OPTIMIZE, /* ePragFlg: */ PragFlg_Result1|PragFlg_NeedSchema, |
︙ | ︙ | |||
119526 119527 119528 119529 119530 119531 119532 | /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_INTROSPECTION_PRAGMAS) {/* zName: */ "pragma_list", /* ePragTyp: */ PragTyp_PRAGMA_LIST, /* ePragFlg: */ PragFlg_Result0, | | | 120006 120007 120008 120009 120010 120011 120012 120013 120014 120015 120016 120017 120018 120019 120020 | /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_INTROSPECTION_PRAGMAS) {/* zName: */ "pragma_list", /* ePragTyp: */ PragTyp_PRAGMA_LIST, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 9, 1, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "query_only", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, |
︙ | ︙ | |||
119557 119558 119559 119560 119561 119562 119563 | /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_RecTriggers }, #endif #if defined(SQLITE_HAS_CODEC) {/* zName: */ "rekey", | | | | 120037 120038 120039 120040 120041 120042 120043 120044 120045 120046 120047 120048 120049 120050 120051 120052 120053 120054 | /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_RecTriggers }, #endif #if defined(SQLITE_HAS_CODEC) {/* zName: */ "rekey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 1 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "reverse_unordered_selects", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_ReverseOrder }, |
︙ | ︙ | |||
119613 119614 119615 119616 119617 119618 119619 | /* iArg: */ SQLITE_SqlTrace }, #endif #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG) {/* zName: */ "stats", /* ePragTyp: */ PragTyp_STATS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, | | | > > > > > > > > > > > > > > > > > | 120093 120094 120095 120096 120097 120098 120099 120100 120101 120102 120103 120104 120105 120106 120107 120108 120109 120110 120111 120112 120113 120114 120115 120116 120117 120118 120119 120120 120121 120122 120123 120124 120125 120126 120127 120128 120129 120130 120131 120132 120133 120134 120135 120136 120137 120138 120139 120140 120141 120142 120143 120144 120145 120146 120147 120148 120149 120150 120151 | /* iArg: */ SQLITE_SqlTrace }, #endif #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG) {/* zName: */ "stats", /* ePragTyp: */ PragTyp_STATS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq, /* ColNames: */ 21, 5, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "synchronous", /* ePragTyp: */ PragTyp_SYNCHRONOUS, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) {/* zName: */ "table_info", /* ePragTyp: */ PragTyp_TABLE_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 8, 6, /* iArg: */ 0 }, {/* zName: */ "table_xinfo", /* ePragTyp: */ PragTyp_TABLE_INFO, /* ePragFlg: */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt, /* ColNames: */ 8, 7, /* iArg: */ 1 }, #endif #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) {/* zName: */ "temp_store", /* ePragTyp: */ PragTyp_TEMP_STORE, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "temp_store_directory", /* ePragTyp: */ PragTyp_TEMP_STORE_DIRECTORY, /* ePragFlg: */ PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #endif #if defined(SQLITE_HAS_CODEC) {/* zName: */ "textkey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 4 }, {/* zName: */ "textrekey", /* ePragTyp: */ PragTyp_KEY, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 5 }, #endif {/* zName: */ "threads", /* ePragTyp: */ PragTyp_THREADS, /* ePragFlg: */ PragFlg_Result0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, #if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS) |
︙ | ︙ | |||
119692 119693 119694 119695 119696 119697 119698 | /* ePragTyp: */ PragTyp_WAL_AUTOCHECKPOINT, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "wal_checkpoint", /* ePragTyp: */ PragTyp_WAL_CHECKPOINT, /* ePragFlg: */ PragFlg_NeedSchema, | | | | | 120189 120190 120191 120192 120193 120194 120195 120196 120197 120198 120199 120200 120201 120202 120203 120204 120205 120206 120207 120208 120209 120210 120211 120212 120213 120214 | /* ePragTyp: */ PragTyp_WAL_AUTOCHECKPOINT, /* ePragFlg: */ 0, /* ColNames: */ 0, 0, /* iArg: */ 0 }, {/* zName: */ "wal_checkpoint", /* ePragTyp: */ PragTyp_WAL_CHECKPOINT, /* ePragFlg: */ PragFlg_NeedSchema, /* ColNames: */ 38, 3, /* iArg: */ 0 }, #endif #if !defined(SQLITE_OMIT_FLAG_PRAGMAS) {/* zName: */ "writable_schema", /* ePragTyp: */ PragTyp_FLAG, /* ePragFlg: */ PragFlg_Result0|PragFlg_NoColumns1, /* ColNames: */ 0, 0, /* iArg: */ SQLITE_WriteSchema|SQLITE_NoSchemaError }, #endif }; /* Number of pragmas: 62 on by default, 81 total. */ /************** End of pragma.h **********************************************/ /************** Continuing where we left off in pragma.c *********************/ /* ** Interpret the given string as a safety level. Return 0 for OFF, ** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA. Return 1 for an empty or |
︙ | ︙ | |||
120715 120716 120717 120718 120719 120720 120721 | #ifndef SQLITE_OMIT_FLAG_PRAGMAS case PragTyp_FLAG: { if( zRight==0 ){ setPragmaResultColumnNames(v, pPragma); returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); }else{ | | | 121212 121213 121214 121215 121216 121217 121218 121219 121220 121221 121222 121223 121224 121225 121226 | #ifndef SQLITE_OMIT_FLAG_PRAGMAS case PragTyp_FLAG: { if( zRight==0 ){ setPragmaResultColumnNames(v, pPragma); returnSingleInt(v, (db->flags & pPragma->iArg)!=0 ); }else{ u64 mask = pPragma->iArg; /* Mask of bits to set or clear. */ if( db->autoCommit==0 ){ /* Foreign key support may not be enabled or disabled while not ** in auto-commit mode. */ mask &= ~(SQLITE_ForeignKeys); } #if SQLITE_USER_AUTHENTICATION if( db->auth.authLevel==UAUTH_User ){ |
︙ | ︙ | |||
120764 120765 120766 120767 120768 120769 120770 120771 120772 120773 120774 | ** dflt_value: The default value for the column, if any. ** pk: Non-zero for PK fields. */ case PragTyp_TABLE_INFO: if( zRight ){ Table *pTab; pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); if( pTab ){ int i, k; int nHidden = 0; Column *pCol; Index *pPk = sqlite3PrimaryKeyIndex(pTab); | > | | | > | | > | 121261 121262 121263 121264 121265 121266 121267 121268 121269 121270 121271 121272 121273 121274 121275 121276 121277 121278 121279 121280 121281 121282 121283 121284 121285 121286 121287 121288 121289 121290 121291 121292 121293 121294 121295 121296 121297 121298 121299 121300 121301 121302 121303 121304 | ** dflt_value: The default value for the column, if any. ** pk: Non-zero for PK fields. */ case PragTyp_TABLE_INFO: if( zRight ){ Table *pTab; pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb); if( pTab ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); int i, k; int nHidden = 0; Column *pCol; Index *pPk = sqlite3PrimaryKeyIndex(pTab); pParse->nMem = 7; sqlite3CodeVerifySchema(pParse, iTabDb); sqlite3ViewGetColumnNames(pParse, pTab); for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ int isHidden = IsHiddenColumn(pCol); if( isHidden && pPragma->iArg==0 ){ nHidden++; continue; } if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){ k = 0; }else if( pPk==0 ){ k = 1; }else{ for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){} } assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN ); sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi", i-nHidden, pCol->zName, sqlite3ColumnType(pCol,""), pCol->notNull ? 1 : 0, pCol->pDflt ? pCol->pDflt->u.zToken : 0, k, isHidden); } } } break; #ifdef SQLITE_DEBUG case PragTyp_STATS: { |
︙ | ︙ | |||
120828 120829 120830 120831 120832 120833 120834 120835 120836 120837 120838 120839 120840 120841 120842 120843 120844 120845 120846 | #endif case PragTyp_INDEX_INFO: if( zRight ){ Index *pIdx; Table *pTab; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int i; int mx; if( pPragma->iArg ){ /* PRAGMA index_xinfo (newer version with more rows and columns) */ mx = pIdx->nColumn; pParse->nMem = 6; }else{ /* PRAGMA index_info (legacy version) */ mx = pIdx->nKeyCol; pParse->nMem = 3; } pTab = pIdx->pTable; | > | | 121328 121329 121330 121331 121332 121333 121334 121335 121336 121337 121338 121339 121340 121341 121342 121343 121344 121345 121346 121347 121348 121349 121350 121351 121352 121353 121354 121355 | #endif case PragTyp_INDEX_INFO: if( zRight ){ Index *pIdx; Table *pTab; pIdx = sqlite3FindIndex(db, zRight, zDb); if( pIdx ){ int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema); int i; int mx; if( pPragma->iArg ){ /* PRAGMA index_xinfo (newer version with more rows and columns) */ mx = pIdx->nColumn; pParse->nMem = 6; }else{ /* PRAGMA index_info (legacy version) */ mx = pIdx->nKeyCol; pParse->nMem = 3; } pTab = pIdx->pTable; sqlite3CodeVerifySchema(pParse, iIdxDb); assert( pParse->nMem<=pPragma->nPragCName ); for(i=0; i<mx; i++){ i16 cnum = pIdx->aiColumn[i]; sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum, cnum<0 ? 0 : pTab->aCol[cnum].zName); if( pPragma->iArg ){ sqlite3VdbeMultiLoad(v, 4, "isiX", |
︙ | ︙ | |||
120864 120865 120866 120867 120868 120869 120870 120871 | case PragTyp_INDEX_LIST: if( zRight ){ Index *pIdx; Table *pTab; int i; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ pParse->nMem = 5; | > | | 121365 121366 121367 121368 121369 121370 121371 121372 121373 121374 121375 121376 121377 121378 121379 121380 121381 | case PragTyp_INDEX_LIST: if( zRight ){ Index *pIdx; Table *pTab; int i; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); pParse->nMem = 5; sqlite3CodeVerifySchema(pParse, iTabDb); for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){ const char *azOrigin[] = { "c", "u", "pk" }; sqlite3VdbeMultiLoad(v, 1, "isisi", i, pIdx->zName, IsUniqueIndex(pIdx), azOrigin[pIdx->idxType], |
︙ | ︙ | |||
120912 120913 120914 120915 120916 120917 120918 120919 120920 120921 120922 120923 120924 120925 | case PragTyp_FUNCTION_LIST: { int i; HashElem *j; FuncDef *p; pParse->nMem = 2; for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1); } } for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ p = (FuncDef*)sqliteHashData(j); sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0); } | > | 121414 121415 121416 121417 121418 121419 121420 121421 121422 121423 121424 121425 121426 121427 121428 | case PragTyp_FUNCTION_LIST: { int i; HashElem *j; FuncDef *p; pParse->nMem = 2; for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){ if( p->funcFlags & SQLITE_FUNC_INTERNAL ) continue; sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1); } } for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){ p = (FuncDef*)sqliteHashData(j); sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0); } |
︙ | ︙ | |||
120953 120954 120955 120956 120957 120958 120959 120960 120961 | case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ FKey *pFK; Table *pTab; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ pFK = pTab->pFKey; if( pFK ){ int i = 0; pParse->nMem = 8; | > | | 121456 121457 121458 121459 121460 121461 121462 121463 121464 121465 121466 121467 121468 121469 121470 121471 121472 121473 | case PragTyp_FOREIGN_KEY_LIST: if( zRight ){ FKey *pFK; Table *pTab; pTab = sqlite3FindTable(db, zRight, zDb); if( pTab ){ pFK = pTab->pFKey; if( pFK ){ int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); int i = 0; pParse->nMem = 8; sqlite3CodeVerifySchema(pParse, iTabDb); while(pFK){ int j; for(j=0; j<pFK->nCol; j++){ sqlite3VdbeMultiLoad(v, 1, "iissssss", i, j, pFK->zTo, |
︙ | ︙ | |||
121000 121001 121002 121003 121004 121005 121006 | int addrOk; /* Jump here if the key is OK */ int *aiCols; /* child to parent column mapping */ regResult = pParse->nMem+1; pParse->nMem += 4; regKey = ++pParse->nMem; regRow = ++pParse->nMem; | < > > > | | | | | | 121504 121505 121506 121507 121508 121509 121510 121511 121512 121513 121514 121515 121516 121517 121518 121519 121520 121521 121522 121523 121524 121525 121526 121527 121528 121529 121530 121531 121532 121533 121534 121535 121536 121537 121538 121539 121540 121541 121542 121543 121544 121545 | int addrOk; /* Jump here if the key is OK */ int *aiCols; /* child to parent column mapping */ regResult = pParse->nMem+1; pParse->nMem += 4; regKey = ++pParse->nMem; regRow = ++pParse->nMem; k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash); while( k ){ int iTabDb; if( zRight ){ pTab = sqlite3LocateTable(pParse, 0, zRight, zDb); k = 0; }else{ pTab = (Table*)sqliteHashData(k); k = sqliteHashNext(k); } if( pTab==0 || pTab->pFKey==0 ) continue; iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema); sqlite3CodeVerifySchema(pParse, iTabDb); sqlite3TableLock(pParse, iTabDb, pTab->tnum, 0, pTab->zName); if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow; sqlite3OpenTable(pParse, 0, iTabDb, pTab, OP_OpenRead); sqlite3VdbeLoadString(v, regResult, pTab->zName); for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){ pParent = sqlite3FindTable(db, pFK->zTo, zDb); if( pParent==0 ) continue; pIdx = 0; sqlite3TableLock(pParse, iTabDb, pParent->tnum, 0, pParent->zName); x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0); if( x==0 ){ if( pIdx==0 ){ sqlite3OpenTable(pParse, i, iTabDb, pParent, OP_OpenRead); }else{ sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iTabDb); sqlite3VdbeSetP4KeyInfo(pParse, pIdx); } }else{ k = 0; break; } } |
︙ | ︙ | |||
121794 121795 121796 121797 121798 121799 121800 121801 | sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); } break; } #endif #ifdef SQLITE_HAS_CODEC case PragTyp_KEY: { | > > > > > > > > > > > > | | > | < < > | | 122300 122301 122302 122303 122304 122305 122306 122307 122308 122309 122310 122311 122312 122313 122314 122315 122316 122317 122318 122319 122320 122321 122322 122323 122324 122325 122326 122327 122328 122329 122330 122331 122332 122333 122334 122335 122336 122337 122338 122339 122340 122341 122342 122343 | sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState); } break; } #endif #ifdef SQLITE_HAS_CODEC /* Pragma iArg ** ---------- ------ ** key 0 ** rekey 1 ** hexkey 2 ** hexrekey 3 ** textkey 4 ** textrekey 5 */ case PragTyp_KEY: { if( zRight ){ int n = pPragma->iArg<4 ? sqlite3Strlen30(zRight) : -1; if( (pPragma->iArg & 1)==0 ){ sqlite3_key_v2(db, zDb, zRight, n); }else{ sqlite3_rekey_v2(db, zDb, zRight, n); } } break; } case PragTyp_HEXKEY: { if( zRight ){ u8 iByte; int i; char zKey[40]; for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){ iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]); if( (i&1)!=0 ) zKey[i/2] = iByte; } if( (pPragma->iArg & 1)==0 ){ sqlite3_key_v2(db, zDb, zKey, i/2); }else{ sqlite3_rekey_v2(db, zDb, zKey, i/2); } } break; } |
︙ | ︙ | |||
122141 122142 122143 122144 122145 122146 122147 | 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ 0, /* xRename - rename the table */ 0, /* xSavepoint */ 0, /* xRelease */ | | > | 122659 122660 122661 122662 122663 122664 122665 122666 122667 122668 122669 122670 122671 122672 122673 122674 | 0, /* xSync - sync transaction */ 0, /* xCommit - commit transaction */ 0, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ 0, /* xRename - rename the table */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; /* ** Check to see if zTabName is really the name of a pragma. If it is, ** then register an eponymous virtual table for that pragma and return ** a pointer to the Module object for the new virtual table. */ |
︙ | ︙ | |||
122494 122495 122496 122497 122498 122499 122500 | } #endif } if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; sqlite3ResetAllSchemasOfConnection(db); } | | | | 123013 123014 123015 123016 123017 123018 123019 123020 123021 123022 123023 123024 123025 123026 123027 123028 | } #endif } if( db->mallocFailed ){ rc = SQLITE_NOMEM_BKPT; sqlite3ResetAllSchemasOfConnection(db); } if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){ /* Black magic: If the SQLITE_NoSchemaError flag is set, then consider ** the schema loaded, even if errors occurred. In this situation the ** current sqlite3_prepare() operation will fail, but the following one ** will attempt to compile the supplied statement against whatever subset ** of the schema was loaded before the error occurred. The primary ** purpose of this is to allow access to the sqlite_master table ** even when its contents have been corrupted. */ |
︙ | ︙ | |||
122876 122877 122878 122879 122880 122881 122882 122883 122884 122885 122886 122887 122888 122889 | sqlite3BtreeLeaveAll(db); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; } /* ** Rerun the compilation of a statement after a schema change. ** ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, ** if the statement cannot be recompiled because another connection has ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error ** occurs, return SQLITE_SCHEMA. | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 123395 123396 123397 123398 123399 123400 123401 123402 123403 123404 123405 123406 123407 123408 123409 123410 123411 123412 123413 123414 123415 123416 123417 123418 123419 123420 123421 123422 123423 123424 123425 123426 123427 123428 123429 123430 123431 123432 123433 123434 123435 123436 123437 123438 123439 123440 123441 123442 123443 123444 123445 123446 123447 123448 123449 123450 123451 123452 123453 123454 123455 123456 123457 123458 123459 123460 123461 123462 123463 123464 123465 123466 123467 123468 123469 123470 123471 123472 123473 123474 123475 123476 123477 123478 123479 123480 123481 123482 123483 123484 123485 123486 123487 123488 123489 123490 123491 123492 123493 123494 123495 123496 123497 123498 123499 123500 123501 123502 123503 123504 123505 123506 123507 123508 123509 123510 123511 123512 123513 123514 123515 123516 123517 123518 123519 123520 123521 123522 123523 123524 123525 123526 123527 123528 123529 123530 123531 123532 123533 123534 123535 123536 123537 123538 123539 123540 123541 123542 123543 123544 123545 123546 123547 123548 123549 123550 123551 123552 123553 123554 123555 123556 123557 123558 123559 123560 123561 123562 123563 123564 123565 123566 123567 123568 123569 123570 123571 123572 123573 123574 123575 123576 123577 123578 123579 123580 123581 123582 123583 123584 123585 123586 123587 123588 123589 123590 123591 123592 123593 123594 123595 123596 123597 123598 123599 123600 123601 123602 123603 123604 123605 123606 123607 123608 123609 123610 123611 123612 123613 123614 123615 123616 123617 123618 123619 123620 123621 123622 123623 123624 123625 123626 123627 123628 123629 123630 123631 123632 123633 123634 123635 123636 123637 123638 123639 123640 123641 123642 123643 123644 123645 123646 123647 123648 123649 123650 123651 123652 123653 123654 123655 123656 123657 123658 123659 123660 123661 123662 123663 123664 123665 123666 123667 123668 123669 123670 123671 123672 123673 123674 123675 123676 123677 123678 123679 123680 123681 123682 123683 123684 123685 123686 123687 123688 123689 123690 123691 123692 123693 123694 123695 123696 | sqlite3BtreeLeaveAll(db); rc = sqlite3ApiExit(db, rc); assert( (rc&db->errMask)==rc ); sqlite3_mutex_leave(db->mutex); return rc; } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Checks if the specified token is a table, column, or function name, ** based on the databases associated with the statement being prepared. ** If the function fails, zero is returned and pRc is filled with the ** error code. */ static int shouldTreatAsIdentifier( sqlite3 *db, /* Database handle. */ const char *zToken, /* Pointer to start of token to be checked */ int nToken, /* Length of token to be checked */ int *pRc /* Pointer to error code upon failure */ ){ int bFound = 0; /* Non-zero if token is an identifier name. */ int i, j; /* Database and column loop indexes. */ Schema *pSchema; /* Schema for current database. */ Hash *pHash; /* Hash table of tables for current database. */ HashElem *e; /* Hash element for hash table iteration. */ Table *pTab; /* Database table for columns being checked. */ if( sqlite3IsRowidN(zToken, nToken) ){ return 1; } if( nToken>0 ){ int hash = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zToken[0]], nToken); if( sqlite3FunctionSearchN(hash, zToken, nToken) ) return 1; } assert( db!=0 ); sqlite3_mutex_enter(db->mutex); sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ pHash = &db->aFunc; if( sqlite3HashFindN(pHash, zToken, nToken) ){ bFound = 1; break; } pSchema = db->aDb[i].pSchema; if( pSchema==0 ) continue; pHash = &pSchema->tblHash; if( sqlite3HashFindN(pHash, zToken, nToken) ){ bFound = 1; break; } for(e=sqliteHashFirst(pHash); e; e=sqliteHashNext(e)){ pTab = sqliteHashData(e); if( pTab==0 ) continue; pHash = pTab->pColHash; if( pHash==0 ){ pTab->pColHash = pHash = sqlite3_malloc(sizeof(Hash)); if( pHash ){ sqlite3HashInit(pHash); for(j=0; j<pTab->nCol; j++){ Column *pCol = &pTab->aCol[j]; sqlite3HashInsert(pHash, pCol->zName, pCol); } }else{ *pRc = SQLITE_NOMEM_BKPT; bFound = 0; goto done; } } if( pHash && sqlite3HashFindN(pHash, zToken, nToken) ){ bFound = 1; goto done; } } } done: sqlite3BtreeLeaveAll(db); sqlite3_mutex_leave(db->mutex); return bFound; } /* ** Attempt to estimate the final output buffer size needed for the fully ** normalized version of the specified SQL string. This should take into ** account any potential expansion that could occur (e.g. via IN clauses ** being expanded, etc). This size returned is the total number of bytes ** including the NUL terminator. */ static int estimateNormalizedSize( const char *zSql, /* The original SQL string */ int nSql, /* Length of original SQL string */ u8 prepFlags /* The flags passed to sqlite3_prepare_v3() */ ){ int nOut = nSql + 4; const char *z = zSql; while( nOut<nSql*5 ){ while( z[0]!=0 && z[0]!='I' && z[0]!='i' ){ z++; } if( z[0]==0 ) break; z++; if( z[0]!='N' && z[0]!='n' ) break; z++; while( sqlite3Isspace(z[0]) ){ z++; } if( z[0]!='(' ) break; z++; nOut += 5; /* ?,?,? */ } return nOut; } /* ** Copy the current token into the output buffer while dealing with quoted ** identifiers. By default, all letters will be converted into lowercase. ** If the bUpper flag is set, uppercase will be used. The piOut argument ** will be used to update the target index into the output string. */ static void copyNormalizedToken( const char *zSql, /* The original SQL string */ int iIn, /* Current index into the original SQL string */ int nToken, /* Number of bytes in the current token */ int tokenFlags, /* Flags returned by the tokenizer */ char *zOut, /* The output string */ int *piOut /* Pointer to target index into the output string */ ){ int bQuoted = tokenFlags & SQLITE_TOKEN_QUOTED; int bKeyword = tokenFlags & SQLITE_TOKEN_KEYWORD; int j = *piOut, k = 0; for(; k<nToken; k++){ if( bQuoted ){ if( k==0 && iIn>0 ){ zOut[j++] = '"'; continue; }else if( k==nToken-1 ){ zOut[j++] = '"'; continue; } } if( bKeyword ){ zOut[j++] = sqlite3Toupper(zSql[iIn+k]); }else{ zOut[j++] = sqlite3Tolower(zSql[iIn+k]); } } *piOut = j; } /* ** Perform normalization of the SQL contained in the prepared statement and ** store the result in the zNormSql field. The schema for the associated ** databases are consulted while performing the normalization in order to ** determine if a token appears to be an identifier. All identifiers are ** left intact in the normalized SQL and all literals are replaced with a ** single '?'. */ SQLITE_PRIVATE void sqlite3Normalize( Vdbe *pVdbe, /* VM being reprepared */ const char *zSql, /* The original SQL string */ int nSql, /* Size of the input string in bytes */ u8 prepFlags /* The flags passed to sqlite3_prepare_v3() */ ){ sqlite3 *db; /* Database handle. */ char *z; /* The output string */ int nZ; /* Size of the output string in bytes */ int i; /* Next character to read from zSql[] */ int j; /* Next character to fill in on z[] */ int tokenType = 0; /* Type of the next token */ int prevTokenType = 0; /* Type of the previous token, except spaces */ int n; /* Size of the next token */ int nParen = 0; /* Nesting level of parenthesis */ Hash inHash; /* Table of parenthesis levels to output index. */ db = sqlite3VdbeDb(pVdbe); assert( db!=0 ); assert( pVdbe->zNormSql==0 ); if( zSql==0 ) return; nZ = estimateNormalizedSize(zSql, nSql, prepFlags); z = sqlite3DbMallocRawNN(db, nZ); if( z==0 ) return; sqlite3HashInit(&inHash); for(i=j=0; i<nSql && zSql[i]; i+=n){ int flags = 0; if( tokenType!=TK_SPACE ) prevTokenType = tokenType; n = sqlite3GetTokenNormalized((unsigned char*)zSql+i, &tokenType, &flags); switch( tokenType ){ case TK_SPACE: { break; } case TK_ILLEGAL: { sqlite3DbFree(db, z); sqlite3HashClear(&inHash); return; } case TK_STRING: case TK_INTEGER: case TK_FLOAT: case TK_VARIABLE: case TK_BLOB: { z[j++] = '?'; break; } case TK_LP: case TK_RP: { if( tokenType==TK_LP ){ nParen++; if( prevTokenType==TK_IN ){ assert( nParen<nSql ); sqlite3HashInsert(&inHash, zSql+nParen, SQLITE_INT_TO_PTR(j)); } }else{ int jj; assert( nParen<nSql ); jj = SQLITE_PTR_TO_INT(sqlite3HashFind(&inHash, zSql+nParen)); if( jj>0 ){ sqlite3HashInsert(&inHash, zSql+nParen, 0); assert( jj+6<nZ ); memcpy(z+jj+1, "?,?,?", 5); j = jj+6; assert( nZ-1-j>=0 ); assert( nZ-1-j<nZ ); memset(z+j, 0, nZ-1-j); } nParen--; } assert( nParen>=0 ); /* Fall through */ } case TK_MINUS: case TK_SEMI: case TK_PLUS: case TK_STAR: case TK_SLASH: case TK_REM: case TK_EQ: case TK_LE: case TK_NE: case TK_LSHIFT: case TK_LT: case TK_RSHIFT: case TK_GT: case TK_GE: case TK_BITOR: case TK_CONCAT: case TK_COMMA: case TK_BITAND: case TK_BITNOT: case TK_DOT: case TK_IN: case TK_IS: case TK_NOT: case TK_NULL: case TK_ID: { if( tokenType==TK_NULL ){ if( prevTokenType==TK_IS || prevTokenType==TK_NOT ){ /* NULL is a keyword in this case, not a literal value */ }else{ /* Here the NULL is a literal value */ z[j++] = '?'; break; } } if( j>0 && sqlite3IsIdChar(z[j-1]) && sqlite3IsIdChar(zSql[i]) ){ z[j++] = ' '; } if( tokenType==TK_ID ){ int i2 = i, n2 = n, rc = SQLITE_OK; if( nParen>0 ){ assert( nParen<nSql ); sqlite3HashInsert(&inHash, zSql+nParen, 0); } if( flags&SQLITE_TOKEN_QUOTED ){ i2++; n2-=2; } if( shouldTreatAsIdentifier(db, zSql+i2, n2, &rc)==0 ){ if( rc!=SQLITE_OK ){ sqlite3DbFree(db, z); sqlite3HashClear(&inHash); return; } if( sqlite3_keyword_check(zSql+i2, n2)==0 ){ z[j++] = '?'; break; } } } copyNormalizedToken(zSql, i, n, flags, z, &j); break; } } } assert( j<nZ && "one" ); while( j>0 && z[j-1]==' ' ){ j--; } if( j>0 && z[j-1]!=';' ){ z[j++] = ';'; } z[j] = 0; assert( j<nZ && "two" ); pVdbe->zNormSql = z; sqlite3HashClear(&inHash); } #endif /* SQLITE_ENABLE_NORMALIZE */ /* ** Rerun the compilation of a statement after a schema change. ** ** If the statement is successfully recompiled, return SQLITE_OK. Otherwise, ** if the statement cannot be recompiled because another connection has ** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error ** occurs, return SQLITE_SCHEMA. |
︙ | ︙ | |||
123888 123889 123890 123891 123892 123893 123894 | int i; int nDefer = 0; ExprList *pExtra = 0; for(i=0; i<pEList->nExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; | | | 124695 124696 124697 124698 124699 124700 124701 124702 124703 124704 124705 124706 124707 124708 124709 | int i; int nDefer = 0; ExprList *pExtra = 0; for(i=0; i<pEList->nExpr; i++){ struct ExprList_item *pItem = &pEList->a[i]; if( pItem->u.x.iOrderByCol==0 ){ Expr *pExpr = pItem->pExpr; Table *pTab = pExpr->y.pTab; if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab) && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF) ){ int j; for(j=0; j<nDefer; j++){ if( pSort->aDefer[j].iCsr==pExpr->iTable ) break; } |
︙ | ︙ | |||
123911 123912 123913 123914 123915 123916 123917 | pPk = sqlite3PrimaryKeyIndex(pTab); nKey = pPk->nKeyCol; } for(k=0; k<nKey; k++){ Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); if( pNew ){ pNew->iTable = pExpr->iTable; | | | | 124718 124719 124720 124721 124722 124723 124724 124725 124726 124727 124728 124729 124730 124731 124732 124733 124734 124735 124736 124737 | pPk = sqlite3PrimaryKeyIndex(pTab); nKey = pPk->nKeyCol; } for(k=0; k<nKey; k++){ Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0); if( pNew ){ pNew->iTable = pExpr->iTable; pNew->y.pTab = pExpr->y.pTab; pNew->iColumn = pPk ? pPk->aiColumn[k] : -1; pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew); } } pSort->aDefer[nDefer].pTab = pExpr->y.pTab; pSort->aDefer[nDefer].iCsr = pExpr->iTable; pSort->aDefer[nDefer].nKey = nKey; nDefer++; } } pItem->bSorterRef = 1; } |
︙ | ︙ | |||
124765 124766 124767 124768 124769 124770 124771 | ** This is not a problem, as the column type of "t1.col" is never ** used. When columnType() is called on the expression ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT ** branch below. */ break; } | | | 125572 125573 125574 125575 125576 125577 125578 125579 125580 125581 125582 125583 125584 125585 125586 | ** This is not a problem, as the column type of "t1.col" is never ** used. When columnType() is called on the expression ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT ** branch below. */ break; } assert( pTab && pExpr->y.pTab==pTab ); if( pS ){ /* The "table" is actually a sub-select or a view in the FROM clause ** of the SELECT statement. Return the declaration type and origin ** data for the result-set column of the sub-select. */ if( iCol>=0 && iCol<pS->pEList->nExpr ){ /* If iCol is less than zero, then the expression requests the |
︙ | ︙ | |||
124950 124951 124952 124953 124954 124955 124956 | srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; i<pEList->nExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ | | | | 125757 125758 125759 125760 125761 125762 125763 125764 125765 125766 125767 125768 125769 125770 125771 125772 125773 125774 125775 125776 125777 125778 125779 | srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName; sqlite3VdbeSetNumCols(v, pEList->nExpr); for(i=0; i<pEList->nExpr; i++){ Expr *p = pEList->a[i].pExpr; assert( p!=0 ); assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */ assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */ if( pEList->a[i].zName ){ /* An AS clause always takes first priority */ char *zName = pEList->a[i].zName; sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); }else if( srcName && p->op==TK_COLUMN ){ char *zCol; int iCol = p->iColumn; pTab = p->y.pTab; assert( pTab!=0 ); if( iCol<0 ) iCol = pTab->iPKey; assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); if( iCol<0 ){ zCol = "rowid"; }else{ zCol = pTab->aCol[iCol].zName; |
︙ | ︙ | |||
125049 125050 125051 125052 125053 125054 125055 | pColExpr = pColExpr->pRight; assert( pColExpr!=0 ); } assert( pColExpr->op!=TK_AGG_COLUMN ); if( pColExpr->op==TK_COLUMN ){ /* For columns use the column name name */ int iCol = pColExpr->iColumn; | | | 125856 125857 125858 125859 125860 125861 125862 125863 125864 125865 125866 125867 125868 125869 125870 | pColExpr = pColExpr->pRight; assert( pColExpr!=0 ); } assert( pColExpr->op!=TK_AGG_COLUMN ); if( pColExpr->op==TK_COLUMN ){ /* For columns use the column name name */ int iCol = pColExpr->iColumn; Table *pTab = pColExpr->y.pTab; assert( pTab!=0 ); if( iCol<0 ) iCol = pTab->iPKey; zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; }else if( pColExpr->op==TK_ID ){ assert( !ExprHasProperty(pColExpr, EP_IntValue) ); zName = pColExpr->u.zToken; }else{ |
︙ | ︙ | |||
125402 125403 125404 125405 125406 125407 125408 125409 125410 125411 125412 125413 125414 125415 | int eDest = SRT_Fifo; /* How to write to Queue */ SelectDest destQueue; /* SelectDest targetting the Queue table */ int i; /* Loop counter */ int rc; /* Result code */ ExprList *pOrderBy; /* The ORDER BY clause */ Expr *pLimit; /* Saved LIMIT and OFFSET */ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ /* Obtain authorization to do a recursive query */ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; /* Process the LIMIT and OFFSET clauses, if they exist */ addrBreak = sqlite3VdbeMakeLabel(v); p->nSelectRow = 320; /* 4 billion rows */ | > > > > > > > | 126209 126210 126211 126212 126213 126214 126215 126216 126217 126218 126219 126220 126221 126222 126223 126224 126225 126226 126227 126228 126229 | int eDest = SRT_Fifo; /* How to write to Queue */ SelectDest destQueue; /* SelectDest targetting the Queue table */ int i; /* Loop counter */ int rc; /* Result code */ ExprList *pOrderBy; /* The ORDER BY clause */ Expr *pLimit; /* Saved LIMIT and OFFSET */ int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ #ifndef SQLITE_OMIT_WINDOWFUNC if( p->pWin ){ sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries"); return; } #endif /* Obtain authorization to do a recursive query */ if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; /* Process the LIMIT and OFFSET clauses, if they exist */ addrBreak = sqlite3VdbeMakeLabel(v); p->nSelectRow = 320; /* 4 billion rows */ |
︙ | ︙ | |||
127152 127153 127154 127155 127156 127157 127158 | #endif return 1; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* | | | > | | | > > > > > > > > > > > > > > | 127966 127967 127968 127969 127970 127971 127972 127973 127974 127975 127976 127977 127978 127979 127980 127981 127982 127983 127984 127985 127986 127987 127988 127989 127990 127991 127992 127993 127994 127995 127996 127997 127998 127999 128000 128001 128002 128003 128004 128005 128006 128007 128008 128009 128010 128011 128012 128013 | #endif return 1; } #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ /* ** A structure to keep track of all of the column values that are fixed to ** a known value due to WHERE clause constraints of the form COLUMN=VALUE. */ typedef struct WhereConst WhereConst; struct WhereConst { Parse *pParse; /* Parsing context */ int nConst; /* Number for COLUMN=CONSTANT terms */ int nChng; /* Number of times a constant is propagated */ Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */ }; /* ** Add a new entry to the pConst object. Except, do not add duplicate ** pColumn entires. */ static void constInsert( WhereConst *pConst, /* The WhereConst into which we are inserting */ Expr *pColumn, /* The COLUMN part of the constraint */ Expr *pValue /* The VALUE part of the constraint */ ){ int i; assert( pColumn->op==TK_COLUMN ); /* 2018-10-25 ticket [cf5ed20f] ** Make sure the same pColumn is not inserted more than once */ for(i=0; i<pConst->nConst; i++){ const Expr *pExpr = pConst->apExpr[i*2]; assert( pExpr->op==TK_COLUMN ); if( pExpr->iTable==pColumn->iTable && pExpr->iColumn==pColumn->iColumn ){ return; /* Already present. Return without doing anything. */ } } pConst->nConst++; pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr, pConst->nConst*2*sizeof(Expr*)); if( pConst->apExpr==0 ){ pConst->nConst = 0; }else{ |
︙ | ︙ | |||
129171 129172 129173 129174 129175 129176 129177 129178 129179 129180 129181 129182 129183 129184 | int regGosub = ++pParse->nMem; sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); sqlite3VdbeResolveLabel(v, addrGosub); VdbeNoopComment((v, "inner-loop subroutine")); selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp1(v, OP_Return, regGosub); VdbeComment((v, "end inner-loop subroutine")); sqlite3VdbeResolveLabel(v, iBreak); }else #endif /* SQLITE_OMIT_WINDOWFUNC */ | > | 130000 130001 130002 130003 130004 130005 130006 130007 130008 130009 130010 130011 130012 130013 130014 | int regGosub = ++pParse->nMem; sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub); sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); sqlite3VdbeResolveLabel(v, addrGosub); VdbeNoopComment((v, "inner-loop subroutine")); sSort.labelOBLopt = 0; selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak); sqlite3VdbeResolveLabel(v, iCont); sqlite3VdbeAddOp1(v, OP_Return, regGosub); VdbeComment((v, "end inner-loop subroutine")); sqlite3VdbeResolveLabel(v, iBreak); }else #endif /* SQLITE_OMIT_WINDOWFUNC */ |
︙ | ︙ | |||
131150 131151 131152 131153 131154 131155 131156 131157 131158 131159 131160 131161 131162 131163 | } #ifndef SQLITE_OMIT_FLOATING_POINT if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); } #endif } /* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; ** \_______/ \________/ \______/ \________________/ * onError pTabList pChanges pWhere | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 131980 131981 131982 131983 131984 131985 131986 131987 131988 131989 131990 131991 131992 131993 131994 131995 131996 131997 131998 131999 132000 132001 132002 132003 132004 132005 132006 132007 132008 132009 132010 132011 132012 132013 132014 132015 132016 132017 132018 132019 132020 132021 132022 132023 132024 132025 132026 132027 132028 132029 132030 132031 132032 132033 132034 132035 132036 132037 132038 132039 132040 132041 132042 132043 132044 | } #ifndef SQLITE_OMIT_FLOATING_POINT if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){ sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg); } #endif } /* ** Check to see if column iCol of index pIdx references any of the ** columns defined by aXRef and chngRowid. Return true if it does ** and false if not. This is an optimization. False-positives are a ** performance degradation, but false-negatives can result in a corrupt ** index and incorrect answers. ** ** aXRef[j] will be non-negative if column j of the original table is ** being updated. chngRowid will be true if the rowid of the table is ** being updated. */ static int indexColumnIsBeingUpdated( Index *pIdx, /* The index to check */ int iCol, /* Which column of the index to check */ int *aXRef, /* aXRef[j]>=0 if column j is being updated */ int chngRowid /* true if the rowid is being updated */ ){ i16 iIdxCol = pIdx->aiColumn[iCol]; assert( iIdxCol!=XN_ROWID ); /* Cannot index rowid */ if( iIdxCol>=0 ){ return aXRef[iIdxCol]>=0; } assert( iIdxCol==XN_EXPR ); assert( pIdx->aColExpr!=0 ); assert( pIdx->aColExpr->a[iCol].pExpr!=0 ); return sqlite3ExprReferencesUpdatedColumn(pIdx->aColExpr->a[iCol].pExpr, aXRef,chngRowid); } /* ** Check to see if index pIdx is a partial index whose conditional ** expression might change values due to an UPDATE. Return true if ** the index is subject to change and false if the index is guaranteed ** to be unchanged. This is an optimization. False-positives are a ** performance degradation, but false-negatives can result in a corrupt ** index and incorrect answers. ** ** aXRef[j] will be non-negative if column j of the original table is ** being updated. chngRowid will be true if the rowid of the table is ** being updated. */ static int indexWhereClauseMightChange( Index *pIdx, /* The index to check */ int *aXRef, /* aXRef[j]>=0 if column j is being updated */ int chngRowid /* true if the rowid is being updated */ ){ if( pIdx->pPartIdxWhere==0 ) return 0; return sqlite3ExprReferencesUpdatedColumn(pIdx->pPartIdxWhere, aXRef, chngRowid); } /* ** Process an UPDATE statement. ** ** UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL; ** \_______/ \________/ \______/ \________________/ * onError pTabList pChanges pWhere |
︙ | ︙ | |||
131374 131375 131376 131377 131378 131379 131380 | pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); /* There is one entry in the aRegIdx[] array for each index on the table ** being updated. Fill in aRegIdx[] with a register number that will hold ** the key for accessing each index. | < < | > > | < | 132255 132256 132257 132258 132259 132260 132261 132262 132263 132264 132265 132266 132267 132268 132269 132270 132271 132272 132273 132274 132275 132276 132277 132278 132279 132280 | pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0; hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey); /* There is one entry in the aRegIdx[] array for each index on the table ** being updated. Fill in aRegIdx[] with a register number that will hold ** the key for accessing each index. */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int reg; if( chngKey || hasFK>1 || pIdx==pPk || indexWhereClauseMightChange(pIdx,aXRef,chngRowid) ){ reg = ++pParse->nMem; pParse->nMem += pIdx->nColumn; }else{ reg = 0; for(i=0; i<pIdx->nKeyCol; i++){ if( indexColumnIsBeingUpdated(pIdx, i, aXRef, chngRowid) ){ reg = ++pParse->nMem; pParse->nMem += pIdx->nColumn; if( (onError==OE_Replace) || (onError==OE_Default && pIdx->onError==OE_Replace) ){ bReplace = 1; } |
︙ | ︙ | |||
131935 131936 131937 131938 131939 131940 131941 | /* Populate the argument registers. */ for(i=0; i<pTab->nCol; i++){ if( aXRef[i]>=0 ){ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i); }else{ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i); | | | 132815 132816 132817 132818 132819 132820 132821 132822 132823 132824 132825 132826 132827 132828 132829 | /* Populate the argument registers. */ for(i=0; i<pTab->nCol; i++){ if( aXRef[i]>=0 ){ sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i); }else{ sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i); sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG);/* Enable sqlite3_vtab_nochange() */ } } if( HasRowid(pTab) ){ sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg); if( pRowid ){ sqlite3ExprCode(pParse, pRowid, regArg+1); }else{ |
︙ | ︙ | |||
132436 132437 132438 132439 132440 132441 132442 | saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; | | > | 133316 133317 133318 133319 133320 133321 133322 133323 133324 133325 133326 133327 133328 133329 133330 133331 | saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_Defensive | SQLITE_CountRows); db->mTrace = 0; zDbMain = db->aDb[iDb].zDbSName; pMain = db->aDb[iDb].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_db'. The synchronous pragma |
︙ | ︙ | |||
132978 132979 132980 132981 132982 132983 132984 | SQLITE_PRIVATE void sqlite3VtabBeginParse( Parse *pParse, /* Parsing context */ Token *pName1, /* Name of new table, or database name */ Token *pName2, /* Name of new table or NULL */ Token *pModuleName, /* Name of the module for the virtual table */ int ifNotExists /* No error if the table already exists */ ){ | < < < > > | 133859 133860 133861 133862 133863 133864 133865 133866 133867 133868 133869 133870 133871 133872 133873 133874 133875 133876 133877 133878 133879 133880 133881 133882 133883 133884 133885 133886 133887 133888 133889 133890 133891 133892 133893 133894 133895 133896 133897 133898 133899 133900 133901 133902 | SQLITE_PRIVATE void sqlite3VtabBeginParse( Parse *pParse, /* Parsing context */ Token *pName1, /* Name of new table, or database name */ Token *pName2, /* Name of new table or NULL */ Token *pModuleName, /* Name of the module for the virtual table */ int ifNotExists /* No error if the table already exists */ ){ Table *pTable; /* The new virtual table */ sqlite3 *db; /* Database connection */ sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); pTable = pParse->pNewTable; if( pTable==0 ) return; assert( 0==pTable->pIndex ); db = pParse->db; assert( pTable->nModuleArg==0 ); addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); addModuleArgument(db, pTable, 0); addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) || (pParse->sNameToken.z==pName1->z && pName2->z==0) ); pParse->sNameToken.n = (int)( &pModuleName->z[pModuleName->n] - pParse->sNameToken.z ); #ifndef SQLITE_OMIT_AUTHORIZATION /* Creating a virtual table invokes the authorization callback twice. ** The first invocation, to obtain permission to INSERT a row into the ** sqlite_master table, has already been made by sqlite3StartTable(). ** The second call, to obtain permission to create the table, is made now. */ if( pTable->azModuleArg ){ int iDb = sqlite3SchemaToIndex(db, pTable->pSchema); assert( iDb>=0 ); /* The database the table is being created in */ sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName); } #endif } /* |
︙ | ︙ | |||
133703 133704 133705 133706 133707 133708 133709 | void *pArg = 0; FuncDef *pNew; int rc = 0; /* Check to see the left operand is a column in a virtual table */ if( NEVER(pExpr==0) ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; | | | 134583 134584 134585 134586 134587 134588 134589 134590 134591 134592 134593 134594 134595 134596 134597 | void *pArg = 0; FuncDef *pNew; int rc = 0; /* Check to see the left operand is a column in a virtual table */ if( NEVER(pExpr==0) ) return pDef; if( pExpr->op!=TK_COLUMN ) return pDef; pTab = pExpr->y.pTab; if( pTab==0 ) return pDef; if( !IsVirtual(pTab) ) return pDef; pVtab = sqlite3GetVTable(db, pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction==0 ) return pDef; |
︙ | ︙ | |||
134323 134324 134325 134326 134327 134328 134329 134330 134331 134332 134333 134334 134335 134336 134337 134338 134339 134340 134341 | WhereLoop *pNew; /* Template WhereLoop */ WhereOrSet *pOrSet; /* Record best loops here, if not NULL */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 UnpackedRecord *pRec; /* Probe for stat4 (if required) */ int nRecValid; /* Number of valid fields currently in pRec */ #endif unsigned int bldFlags; /* SQLITE_BLDF_* flags */ }; /* Allowed values for WhereLoopBuider.bldFlags */ #define SQLITE_BLDF_INDEXED 0x0001 /* An index is used */ #define SQLITE_BLDF_UNIQUE 0x0002 /* All keys of a UNIQUE index used */ /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. | > > > > > > > > > > > > > > > > > > > > > | 135203 135204 135205 135206 135207 135208 135209 135210 135211 135212 135213 135214 135215 135216 135217 135218 135219 135220 135221 135222 135223 135224 135225 135226 135227 135228 135229 135230 135231 135232 135233 135234 135235 135236 135237 135238 135239 135240 135241 135242 | WhereLoop *pNew; /* Template WhereLoop */ WhereOrSet *pOrSet; /* Record best loops here, if not NULL */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 UnpackedRecord *pRec; /* Probe for stat4 (if required) */ int nRecValid; /* Number of valid fields currently in pRec */ #endif unsigned int bldFlags; /* SQLITE_BLDF_* flags */ unsigned int iPlanLimit; /* Search limiter */ }; /* Allowed values for WhereLoopBuider.bldFlags */ #define SQLITE_BLDF_INDEXED 0x0001 /* An index is used */ #define SQLITE_BLDF_UNIQUE 0x0002 /* All keys of a UNIQUE index used */ /* The WhereLoopBuilder.iPlanLimit is used to limit the number of ** index+constraint combinations the query planner will consider for a ** particular query. If this parameter is unlimited, then certain ** pathological queries can spend excess time in the sqlite3WhereBegin() ** routine. The limit is high enough that is should not impact real-world ** queries. ** ** SQLITE_QUERY_PLANNER_LIMIT is the baseline limit. The limit is ** increased by SQLITE_QUERY_PLANNER_LIMIT_INCR before each term of the FROM ** clause is processed, so that every table in a join is guaranteed to be ** able to propose a some index+constraint combinations even if the initial ** baseline limit was exhausted by prior tables of the join. */ #ifndef SQLITE_QUERY_PLANNER_LIMIT # define SQLITE_QUERY_PLANNER_LIMIT 20000 #endif #ifndef SQLITE_QUERY_PLANNER_LIMIT_INCR # define SQLITE_QUERY_PLANNER_LIMIT_INCR 1000 #endif /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. |
︙ | ︙ | |||
134890 134891 134892 134893 134894 134895 134896 | ExprList *pLhs = 0; /* New LHS after mods */ int i; /* Loop counter */ Select *pSelect; /* Pointer to the SELECT on the RHS */ for(i=iEq; i<pLoop->nLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iField = pLoop->aLTerm[i]->iField - 1; | | | 135791 135792 135793 135794 135795 135796 135797 135798 135799 135800 135801 135802 135803 135804 135805 | ExprList *pLhs = 0; /* New LHS after mods */ int i; /* Loop counter */ Select *pSelect; /* Pointer to the SELECT on the RHS */ for(i=iEq; i<pLoop->nLTerm; i++){ if( pLoop->aLTerm[i]->pExpr==pX ){ int iField = pLoop->aLTerm[i]->iField - 1; if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */ pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr); pOrigRhs->a[iField].pExpr = 0; assert( pOrigLhs->a[iField].pExpr!=0 ); pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr); pOrigLhs->a[iField].pExpr = 0; } } |
︙ | ︙ | |||
135582 135583 135584 135585 135586 135587 135588 | */ static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ IdxExprTrans *pX = p->u.pIdxTrans; if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ pExpr->op = TK_COLUMN; pExpr->iTable = pX->iIdxCur; pExpr->iColumn = pX->iIdxCol; | | | 136483 136484 136485 136486 136487 136488 136489 136490 136491 136492 136493 136494 136495 136496 136497 | */ static int whereIndexExprTransNode(Walker *p, Expr *pExpr){ IdxExprTrans *pX = p->u.pIdxTrans; if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){ pExpr->op = TK_COLUMN; pExpr->iTable = pX->iIdxCur; pExpr->iColumn = pX->iIdxCol; pExpr->y.pTab = 0; return WRC_Prune; }else{ return WRC_Continue; } } /* |
︙ | ︙ | |||
136982 136983 136984 136985 136986 136987 136988 | */ if( sqlite3Isdigit(zNew[0]) || zNew[0]=='-' || (zNew[0]+1=='0' && iTo==1) ){ if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT | | | 137883 137884 137885 137886 137887 137888 137889 137890 137891 137892 137893 137894 137895 137896 137897 | */ if( sqlite3Isdigit(zNew[0]) || zNew[0]=='-' || (zNew[0]+1=='0' && iTo==1) ){ if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT || IsVirtual(pLeft->y.pTab) /* Value might be numeric */ ){ sqlite3ExprDelete(db, pPrefix); sqlite3ValueFree(pVal); return 0; } } } |
︙ | ︙ | |||
137083 137084 137085 137086 137087 137088 137089 | ** virtual table on their second argument, which is the same as ** the left-hand side operand in their in-fix form. ** ** vtab_column MATCH expression ** MATCH(expression,vtab_column) */ pCol = pList->a[1].pExpr; | | | 137984 137985 137986 137987 137988 137989 137990 137991 137992 137993 137994 137995 137996 137997 137998 | ** virtual table on their second argument, which is the same as ** the left-hand side operand in their in-fix form. ** ** vtab_column MATCH expression ** MATCH(expression,vtab_column) */ pCol = pList->a[1].pExpr; if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){ for(i=0; i<ArraySize(aOp); i++){ if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){ *peOp2 = aOp[i].eOp2; *ppRight = pList->a[0].pExpr; *ppLeft = pCol; return 1; } |
︙ | ︙ | |||
137105 137106 137107 137108 137109 137110 137111 | ** OVERLOADED(vtab_column,expression) ** ** Historically, xFindFunction expected to see lower-case function ** names. But for this use case, xFindFunction is expected to deal ** with function names in an arbitrary case. */ pCol = pList->a[0].pExpr; | | | | | | 138006 138007 138008 138009 138010 138011 138012 138013 138014 138015 138016 138017 138018 138019 138020 138021 138022 138023 138024 138025 138026 138027 138028 138029 138030 138031 138032 138033 138034 138035 138036 138037 138038 138039 138040 138041 138042 138043 138044 138045 138046 | ** OVERLOADED(vtab_column,expression) ** ** Historically, xFindFunction expected to see lower-case function ** names. But for this use case, xFindFunction is expected to deal ** with function names in an arbitrary case. */ pCol = pList->a[0].pExpr; if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){ sqlite3_vtab *pVtab; sqlite3_module *pMod; void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**); void *pNotUsed; pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab; assert( pVtab!=0 ); assert( pVtab->pModule!=0 ); pMod = (sqlite3_module *)pVtab->pModule; if( pMod->xFindFunction!=0 ){ i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed); if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){ *peOp2 = i; *ppRight = pList->a[1].pExpr; *ppLeft = pCol; return 1; } } } }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){ int res = 0; Expr *pLeft = pExpr->pLeft; Expr *pRight = pExpr->pRight; if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->y.pTab) ){ res++; } if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->y.pTab) ){ res++; SWAP(Expr*, pLeft, pRight); } *ppLeft = pLeft; *ppRight = pRight; if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE; if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT; |
︙ | ︙ | |||
138083 138084 138085 138086 138087 138088 138089 138090 138091 138092 138093 138094 138095 138096 | ** virtual term of that form. ** ** Note that the virtual term must be tagged with TERM_VNULL. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 && OptimizationEnabled(db, SQLITE_Stat34) ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; | > | 138984 138985 138986 138987 138988 138989 138990 138991 138992 138993 138994 138995 138996 138997 138998 | ** virtual term of that form. ** ** Note that the virtual term must be tagged with TERM_VNULL. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 && !ExprHasProperty(pExpr, EP_FromJoin) && OptimizationEnabled(db, SQLITE_Stat34) ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; |
︙ | ︙ | |||
138274 138275 138276 138277 138278 138279 138280 138281 138282 138283 138284 138285 138286 138287 138288 138289 138290 | Expr *pTerm; if( pItem->fg.isTabFunc==0 ) return; pTab = pItem->pTab; assert( pTab!=0 ); pArgs = pItem->u1.pFuncArg; if( pArgs==0 ) return; for(j=k=0; j<pArgs->nExpr; j++){ while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} if( k>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", pTab->zName, j); return; } pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); if( pColRef==0 ) return; pColRef->iTable = pItem->iCursor; pColRef->iColumn = k++; | > | | | > | 139176 139177 139178 139179 139180 139181 139182 139183 139184 139185 139186 139187 139188 139189 139190 139191 139192 139193 139194 139195 139196 139197 139198 139199 139200 139201 139202 139203 139204 | Expr *pTerm; if( pItem->fg.isTabFunc==0 ) return; pTab = pItem->pTab; assert( pTab!=0 ); pArgs = pItem->u1.pFuncArg; if( pArgs==0 ) return; for(j=k=0; j<pArgs->nExpr; j++){ Expr *pRhs; while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;} if( k>=pTab->nCol ){ sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d", pTab->zName, j); return; } pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0); if( pColRef==0 ) return; pColRef->iTable = pItem->iCursor; pColRef->iColumn = k++; pColRef->y.pTab = pTab; pRhs = sqlite3PExpr(pParse, TK_UPLUS, sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0); pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs); whereClauseInsert(pWC, pTerm, TERM_DYNAMIC); } } /************** End of whereexpr.c *******************************************/ /************** Begin file where.c *******************************************/ /* |
︙ | ︙ | |||
139149 139150 139151 139152 139153 139154 139155 | if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); if( pTabItem->fg.viaCoroutine ){ sqlite3VdbeChangeP2(v, addrCounter, regBase+n); testcase( pParse->db->mallocFailed ); translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); sqlite3VdbeGoto(v, addrTop); | < | 140053 140054 140055 140056 140057 140058 140059 140060 140061 140062 140063 140064 140065 140066 | if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); if( pTabItem->fg.viaCoroutine ){ sqlite3VdbeChangeP2(v, addrCounter, regBase+n); testcase( pParse->db->mallocFailed ); translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); sqlite3VdbeGoto(v, addrTop); }else{ sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); } sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); |
︙ | ︙ | |||
139327 139328 139329 139330 139331 139332 139333 | /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info object that ** comes in as the 3rd argument to this function. ** | | | > | > | < < < < < < < < < < < < | | 140230 140231 140232 140233 140234 140235 140236 140237 140238 140239 140240 140241 140242 140243 140244 140245 140246 140247 140248 140249 140250 140251 140252 140253 140254 140255 140256 140257 140258 140259 140260 140261 140262 140263 140264 140265 140266 140267 140268 140269 140270 140271 140272 140273 | /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info object that ** comes in as the 3rd argument to this function. ** ** If an error occurs, pParse is populated with an error message and an ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that ** the current configuration of "unusable" flags in sqlite3_index_info can ** not result in a valid plan. ** ** Whether or not an error is returned, it is the responsibility of the ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates ** that this is required. */ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; int rc; TRACE_IDX_INPUTS(p); rc = pVtab->pModule->xBestIndex(pVtab, p); TRACE_IDX_OUTPUTS(p); if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ if( rc==SQLITE_NOMEM ){ sqlite3OomFault(pParse->db); }else if( !pVtab->zErrMsg ){ sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); }else{ sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); } } sqlite3_free(pVtab->zErrMsg); pVtab->zErrMsg = 0; return rc; } #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: |
︙ | ︙ | |||
140420 140421 140422 140423 140424 140425 140426 140427 140428 140429 140430 140431 140432 140433 | ** (4) The template has the same or lower cost than the current loop */ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ WhereLoop **ppPrev, *p; WhereInfo *pWInfo = pBuilder->pWInfo; sqlite3 *db = pWInfo->pParse->db; int rc; /* If pBuilder->pOrSet is defined, then only keep track of the costs ** and prereqs. */ if( pBuilder->pOrSet!=0 ){ if( pTemplate->nLTerm ){ #if WHERETRACE_ENABLED | > > > > > > > > | 141313 141314 141315 141316 141317 141318 141319 141320 141321 141322 141323 141324 141325 141326 141327 141328 141329 141330 141331 141332 141333 141334 | ** (4) The template has the same or lower cost than the current loop */ static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ WhereLoop **ppPrev, *p; WhereInfo *pWInfo = pBuilder->pWInfo; sqlite3 *db = pWInfo->pParse->db; int rc; /* Stop the search once we hit the query planner search limit */ if( pBuilder->iPlanLimit==0 ){ WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; return SQLITE_DONE; } pBuilder->iPlanLimit--; /* If pBuilder->pOrSet is defined, then only keep track of the costs ** and prereqs. */ if( pBuilder->pOrSet!=0 ){ if( pTemplate->nLTerm ){ #if WHERETRACE_ENABLED |
︙ | ︙ | |||
141431 141432 141433 141434 141435 141436 141437 | pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; pIdxInfo->idxFlags = 0; pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; /* Invoke the virtual table xBestIndex() method */ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); | | > > > > > > > > > > | 142332 142333 142334 142335 142336 142337 142338 142339 142340 142341 142342 142343 142344 142345 142346 142347 142348 142349 142350 142351 142352 142353 142354 142355 142356 | pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; pIdxInfo->estimatedRows = 25; pIdxInfo->idxFlags = 0; pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; /* Invoke the virtual table xBestIndex() method */ rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); if( rc ){ if( rc==SQLITE_CONSTRAINT ){ /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means ** that the particular combination of parameters provided is unusable. ** Make no entries in the loop table. */ WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); return SQLITE_OK; } return rc; } mxTerm = -1; assert( pNew->nLSlot>=nConstraint ); for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; pNew->u.vtab.omitMask = 0; pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i<nConstraint; i++, pIdxCons++){ |
︙ | ︙ | |||
141827 141828 141829 141830 141831 141832 141833 141834 141835 141836 141837 141838 141839 141840 141841 141842 141843 | int rc = SQLITE_OK; WhereLoop *pNew; u8 priorJointype = 0; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; whereLoopInit(pNew); for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ Bitmask mUnusable = 0; pNew->iTab = iTab; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ /* This condition is true when pItem is the FROM clause term on the ** right-hand-side of a LEFT or CROSS JOIN. */ mPrereq = mPrior; } priorJointype = pItem->fg.jointype; | > > | 142738 142739 142740 142741 142742 142743 142744 142745 142746 142747 142748 142749 142750 142751 142752 142753 142754 142755 142756 | int rc = SQLITE_OK; WhereLoop *pNew; u8 priorJointype = 0; /* Loop over the tables in the join, from left to right */ pNew = pBuilder->pNew; whereLoopInit(pNew); pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ Bitmask mUnusable = 0; pNew->iTab = iTab; pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ /* This condition is true when pItem is the FROM clause term on the ** right-hand-side of a LEFT or CROSS JOIN. */ mPrereq = mPrior; } priorJointype = pItem->fg.jointype; |
︙ | ︙ | |||
141855 141856 141857 141858 141859 141860 141861 | { rc = whereLoopAddBtree(pBuilder, mPrereq); } if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); } mPrior |= pNew->maskSelf; | | > > > > > > > > | 142768 142769 142770 142771 142772 142773 142774 142775 142776 142777 142778 142779 142780 142781 142782 142783 142784 142785 142786 142787 142788 142789 142790 | { rc = whereLoopAddBtree(pBuilder, mPrereq); } if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); } mPrior |= pNew->maskSelf; if( rc || db->mallocFailed ){ if( rc==SQLITE_DONE ){ /* We hit the query planner search limit set by iPlanLimit */ sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); rc = SQLITE_OK; }else{ break; } } } whereLoopClear(db, pNew); return rc; } /* |
︙ | ︙ | |||
144237 144238 144239 144240 144241 144242 144243 | if( i==nSrc ) return WRC_Continue; } } switch( pExpr->op ){ case TK_FUNCTION: | | | | 145158 145159 145160 145161 145162 145163 145164 145165 145166 145167 145168 145169 145170 145171 145172 145173 145174 145175 145176 145177 | if( i==nSrc ) return WRC_Continue; } } switch( pExpr->op ){ case TK_FUNCTION: if( !ExprHasProperty(pExpr, EP_WinFunc) ){ break; }else{ Window *pWin; for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){ if( pExpr->y.pWin==pWin ){ assert( pWin->pOwner==pExpr ); return WRC_Prune; } } } /* Fall through. */ |
︙ | ︙ | |||
144359 144360 144361 144362 144363 144364 144365 | ** any SQL window functions, this function is a no-op. Otherwise, it ** rewrites the SELECT statement so that window function xStep functions ** are invoked in the correct order as described under "SELECT REWRITING" ** at the top of this file. */ SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){ int rc = SQLITE_OK; | | | 145280 145281 145282 145283 145284 145285 145286 145287 145288 145289 145290 145291 145292 145293 145294 | ** any SQL window functions, this function is a no-op. Otherwise, it ** rewrites the SELECT statement so that window function xStep functions ** are invoked in the correct order as described under "SELECT REWRITING" ** at the top of this file. */ SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){ int rc = SQLITE_OK; if( p->pWin && p->pPrior==0 ){ Vdbe *v = sqlite3GetVdbe(pParse); sqlite3 *db = pParse->db; Select *pSub = 0; /* The subquery */ SrcList *pSrc = p->pSrc; Expr *pWhere = p->pWhere; ExprList *pGroupBy = p->pGroupBy; Expr *pHaving = p->pHaving; |
︙ | ︙ | |||
144572 144573 144574 144575 144576 144577 144578 144579 144580 144581 144582 | } /* ** Attach window object pWin to expression p. */ SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ if( p ){ /* This routine is only called for the parser. If pWin was not ** allocated due to an OOM, then the parser would fail before ever ** invoking this routine */ if( ALWAYS(pWin) ){ | > | > | 145493 145494 145495 145496 145497 145498 145499 145500 145501 145502 145503 145504 145505 145506 145507 145508 145509 145510 145511 145512 145513 | } /* ** Attach window object pWin to expression p. */ SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){ if( p ){ assert( p->op==TK_FUNCTION ); /* This routine is only called for the parser. If pWin was not ** allocated due to an OOM, then the parser would fail before ever ** invoking this routine */ if( ALWAYS(pWin) ){ p->y.pWin = pWin; ExprSetProperty(p, EP_WinFunc); pWin->pOwner = p; if( p->flags & EP_Distinct ){ sqlite3ErrorMsg(pParse, "DISTINCT is not supported for window functions"); } } }else{ |
︙ | ︙ | |||
145739 145740 145741 145742 145743 145744 145745 | /* ** Allocate and return a duplicate of the Window object indicated by the ** third argument. Set the Window.pOwner field of the new object to ** pOwner. */ SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ Window *pNew = 0; | | | 146662 146663 146664 146665 146666 146667 146668 146669 146670 146671 146672 146673 146674 146675 146676 | /* ** Allocate and return a duplicate of the Window object indicated by the ** third argument. Set the Window.pOwner field of the new object to ** pOwner. */ SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){ Window *pNew = 0; if( ALWAYS(p) ){ pNew = sqlite3DbMallocZero(db, sizeof(Window)); if( pNew ){ pNew->zName = sqlite3DbStrDup(db, p->zName); pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0); pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0); pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0); pNew->eType = p->eType; |
︙ | ︙ | |||
145891 145892 145893 145894 145895 145896 145897 145898 145899 145900 145901 145902 145903 145904 | ** of this template is copied straight through into the generate parser ** source file. ** ** The following is the concatenation of all %include directives from the ** input grammar file: */ /* #include <stdio.h> */ /************ Begin %include sections from the grammar ************************/ /* #include "sqliteInt.h" */ /* ** Disable all error recovery processing in the parser push-down ** automaton. | > | 146814 146815 146816 146817 146818 146819 146820 146821 146822 146823 146824 146825 146826 146827 146828 | ** of this template is copied straight through into the generate parser ** source file. ** ** The following is the concatenation of all %include directives from the ** input grammar file: */ /* #include <stdio.h> */ /* #include <assert.h> */ /************ Begin %include sections from the grammar ************************/ /* #include "sqliteInt.h" */ /* ** Disable all error recovery processing in the parser push-down ** automaton. |
︙ | ︙ | |||
145992 145993 145994 145995 145996 145997 145998 | p->op = (u8)op; p->affinity = 0; p->flags = EP_Leaf; p->iAgg = -1; p->pLeft = p->pRight = 0; p->x.pList = 0; p->pAggInfo = 0; | | < < < | 146916 146917 146918 146919 146920 146921 146922 146923 146924 146925 146926 146927 146928 146929 146930 146931 146932 146933 | p->op = (u8)op; p->affinity = 0; p->flags = EP_Leaf; p->iAgg = -1; p->pLeft = p->pRight = 0; p->x.pList = 0; p->pAggInfo = 0; p->y.pTab = 0; p->op2 = 0; p->iTable = 0; p->iColumn = 0; p->u.zToken = (char*)&p[1]; memcpy(p->u.zToken, t.z, t.n); p->u.zToken[t.n] = 0; if( sqlite3Isquote(p->u.zToken[0]) ){ if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted; sqlite3Dequote(p->u.zToken); } |
︙ | ︙ | |||
150190 150191 150192 150193 150194 150195 150196 | yyTracePrompt,yyTokenName[yymajor]); } #endif yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion); yymajor = YYNOCODE; }else{ while( yypParser->yytos >= yypParser->yystack | < | | 151111 151112 151113 151114 151115 151116 151117 151118 151119 151120 151121 151122 151123 151124 151125 151126 151127 | yyTracePrompt,yyTokenName[yymajor]); } #endif yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion); yymajor = YYNOCODE; }else{ while( yypParser->yytos >= yypParser->yystack && (yyact = yy_find_reduce_action( yypParser->yytos->stateno, YYERRORSYMBOL)) > YY_MAX_SHIFTREDUCE ){ yy_pop_parser_stack(yypParser); } if( yypParser->yytos < yypParser->yystack || yymajor==0 ){ yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion); yy_parse_failed(yypParser); #ifndef YYNOERRORRECOVERY |
︙ | ︙ | |||
151160 151161 151162 151163 151164 151165 151166 151167 151168 151169 151170 151171 151172 151173 | } } while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; } /* ** Run the parser on the given SQL string. The parser structure is ** passed in. An SQLITE_ status code is returned. If an error occurs ** then an and attempt is made to write an error message into ** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that ** error message. */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 152080 152081 152082 152083 152084 152085 152086 152087 152088 152089 152090 152091 152092 152093 152094 152095 152096 152097 152098 152099 152100 152101 152102 152103 152104 152105 152106 152107 152108 152109 152110 152111 152112 152113 152114 152115 152116 152117 152118 152119 152120 152121 152122 152123 152124 152125 152126 152127 152128 152129 152130 152131 152132 152133 152134 152135 152136 152137 152138 152139 152140 152141 152142 152143 152144 152145 152146 152147 152148 152149 152150 152151 152152 152153 152154 152155 152156 152157 152158 152159 152160 | } } while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; } #ifdef SQLITE_ENABLE_NORMALIZE /* ** Return the length (in bytes) of the token that begins at z[0]. ** Store the token type in *tokenType before returning. If flags has ** SQLITE_TOKEN_NORMALIZE flag enabled, use the identifier token type ** for keywords. Add SQLITE_TOKEN_QUOTED to flags if the token was ** actually a quoted identifier. Add SQLITE_TOKEN_KEYWORD to flags ** if the token was recognized as a keyword; this is useful when the ** SQLITE_TOKEN_NORMALIZE flag is used, because it enables the caller ** to differentiate between a keyword being treated as an identifier ** (for normalization purposes) and an actual identifier. */ SQLITE_PRIVATE int sqlite3GetTokenNormalized( const unsigned char *z, int *tokenType, int *flags ){ int n; unsigned char iClass = aiClass[*z]; if( iClass==CC_KYWD ){ int i; for(i=1; aiClass[z[i]]<=CC_KYWD; i++){} if( IdChar(z[i]) ){ /* This token started out using characters that can appear in keywords, ** but z[i] is a character not allowed within keywords, so this must ** be an identifier instead */ i++; while( IdChar(z[i]) ){ i++; } *tokenType = TK_ID; return i; } *tokenType = TK_ID; n = keywordCode((char*)z, i, tokenType); /* If the token is no longer considered to be an identifier, then it is a ** keyword of some kind. Make the token back into an identifier and then ** set the SQLITE_TOKEN_KEYWORD flag. Several non-identifier tokens are ** used verbatim, including IN, IS, NOT, and NULL. */ switch( *tokenType ){ case TK_ID: { /* do nothing, handled by caller */ break; } case TK_IN: case TK_IS: case TK_NOT: case TK_NULL: { *flags |= SQLITE_TOKEN_KEYWORD; break; } default: { *tokenType = TK_ID; *flags |= SQLITE_TOKEN_KEYWORD; break; } } }else{ n = sqlite3GetToken(z, tokenType); /* If the token is considered to be an identifier and the character class ** of the first character is a quote, set the SQLITE_TOKEN_QUOTED flag. */ if( *tokenType==TK_ID && (iClass==CC_QUOTE || iClass==CC_QUOTE2) ){ *flags |= SQLITE_TOKEN_QUOTED; } } return n; } #endif /* SQLITE_ENABLE_NORMALIZE */ /* ** Run the parser on the given SQL string. The parser structure is ** passed in. An SQLITE_ status code is returned. If an error occurs ** then an and attempt is made to write an error message into ** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that ** error message. */ |
︙ | ︙ | |||
152557 152558 152559 152560 152561 152562 152563 152564 152565 152566 152567 152568 152569 152570 | { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; i<ArraySize(aFlagOp); i++){ if( aFlagOp[i].op==op ){ int onoff = va_arg(ap, int); int *pRes = va_arg(ap, int*); | > | 153544 153545 153546 153547 153548 153549 153550 153551 153552 153553 153554 153555 153556 153557 153558 | { SQLITE_DBCONFIG_ENABLE_TRIGGER, SQLITE_EnableTrigger }, { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer }, { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension }, { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE, SQLITE_NoCkptOnClose }, { SQLITE_DBCONFIG_ENABLE_QPSG, SQLITE_EnableQPSG }, { SQLITE_DBCONFIG_TRIGGER_EQP, SQLITE_TriggerEQP }, { SQLITE_DBCONFIG_RESET_DATABASE, SQLITE_ResetDatabase }, { SQLITE_DBCONFIG_DEFENSIVE, SQLITE_Defensive }, }; unsigned int i; rc = SQLITE_ERROR; /* IMP: R-42790-23372 */ for(i=0; i<ArraySize(aFlagOp); i++){ if( aFlagOp[i].op==op ){ int onoff = va_arg(ap, int); int *pRes = va_arg(ap, int*); |
︙ | ︙ | |||
154743 154744 154745 154746 154747 154748 154749 154750 154751 154752 154753 154754 154755 154756 | } } sqlite3_mutex_enter(db->mutex); db->errMask = 0xff; db->nDb = 2; db->magic = SQLITE_MAGIC_BUSY; db->aDb = db->aDbStatic; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; db->autoCommit = 1; db->nextAutovac = -1; db->szMmap = sqlite3GlobalConfig.szMmap; | > | 155731 155732 155733 155734 155735 155736 155737 155738 155739 155740 155741 155742 155743 155744 155745 | } } sqlite3_mutex_enter(db->mutex); db->errMask = 0xff; db->nDb = 2; db->magic = SQLITE_MAGIC_BUSY; db->aDb = db->aDbStatic; db->lookaside.bDisable = 1; assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS; db->autoCommit = 1; db->nextAutovac = -1; db->szMmap = sqlite3GlobalConfig.szMmap; |
︙ | ︙ | |||
154782 154783 154784 154785 154786 154787 154788 154789 154790 154791 154792 154793 154794 154795 | | SQLITE_CellSizeCk #endif #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) | SQLITE_Fts3Tokenizer #endif #if defined(SQLITE_ENABLE_QPSG) | SQLITE_EnableQPSG #endif ; sqlite3HashInit(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif | > > > | 155771 155772 155773 155774 155775 155776 155777 155778 155779 155780 155781 155782 155783 155784 155785 155786 155787 | | SQLITE_CellSizeCk #endif #if defined(SQLITE_ENABLE_FTS3_TOKENIZER) | SQLITE_Fts3Tokenizer #endif #if defined(SQLITE_ENABLE_QPSG) | SQLITE_EnableQPSG #endif #if defined(SQLITE_DEFAULT_DEFENSIVE) | SQLITE_Defensive #endif ; sqlite3HashInit(&db->aCollSeq); #ifndef SQLITE_OMIT_VIRTUALTABLE sqlite3HashInit(&db->aModule); #endif |
︙ | ︙ | |||
155670 155671 155672 155673 155674 155675 155676 | sqlite3 *db = va_arg(ap, sqlite3*); db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); ** | | | < > > > > > > > > > > > > | 156662 156663 156664 156665 156666 156667 156668 156669 156670 156671 156672 156673 156674 156675 156676 156677 156678 156679 156680 156681 156682 156683 156684 156685 156686 156687 156688 156689 156690 156691 156692 156693 156694 | sqlite3 *db = va_arg(ap, sqlite3*); db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff); ** ** If parameter onoff is non-zero, subsequent calls to localtime() ** and its variants fail. If onoff is zero, undo this setting. */ case SQLITE_TESTCTRL_LOCALTIME_FAULT: { sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCS, int onoff); ** ** If parameter onoff is non-zero, internal-use-only SQL functions ** are visible to ordinary SQL. This is useful for testing but is ** unsafe because invalid parameters to those internal-use-only functions ** can result in crashes or segfaults. */ case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: { sqlite3GlobalConfig.bInternalFunctions = va_arg(ap, int); break; } /* sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int); ** ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated |
︙ | ︙ | |||
159121 159122 159123 159124 159125 159126 159127 | sqlite3_int64 *piFirst, /* OUT: Selected child node */ sqlite3_int64 *piLast /* OUT: Selected child node */ ){ int rc = SQLITE_OK; /* Return code */ const char *zCsr = zNode; /* Cursor to iterate through node */ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ char *zBuffer = 0; /* Buffer to load terms into */ | | | 160124 160125 160126 160127 160128 160129 160130 160131 160132 160133 160134 160135 160136 160137 160138 | sqlite3_int64 *piFirst, /* OUT: Selected child node */ sqlite3_int64 *piLast /* OUT: Selected child node */ ){ int rc = SQLITE_OK; /* Return code */ const char *zCsr = zNode; /* Cursor to iterate through node */ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ char *zBuffer = 0; /* Buffer to load terms into */ i64 nAlloc = 0; /* Size of allocated buffer */ int isFirstTerm = 1; /* True when processing first term on page */ sqlite3_int64 iChild; /* Block id of child node to descend to */ /* Skip over the 'height' varint that occurs at the start of every ** interior node. Then load the blockid of the left-child of the b-tree ** node into variable iChild. ** |
︙ | ︙ | |||
159159 159160 159161 159162 159163 159164 159165 | if( !isFirstTerm ){ zCsr += fts3GetVarint32(zCsr, &nPrefix); } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); assert( nPrefix>=0 && nSuffix>=0 ); | | | | | | 160162 160163 160164 160165 160166 160167 160168 160169 160170 160171 160172 160173 160174 160175 160176 160177 160178 160179 160180 160181 160182 160183 | if( !isFirstTerm ){ zCsr += fts3GetVarint32(zCsr, &nPrefix); } isFirstTerm = 0; zCsr += fts3GetVarint32(zCsr, &nSuffix); assert( nPrefix>=0 && nSuffix>=0 ); if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr ){ rc = FTS_CORRUPT_VTAB; goto finish_scan; } if( (i64)nPrefix+nSuffix>nAlloc ){ char *zNew; nAlloc = ((i64)nPrefix+nSuffix) * 2; zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc); if( !zNew ){ rc = SQLITE_NOMEM; goto finish_scan; } zBuffer = zNew; } assert( zBuffer ); |
︙ | ︙ | |||
161145 161146 161147 161148 161149 161150 161151 161152 161153 | UNUSED_PARAMETER(iSavepoint); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint ); sqlite3Fts3PendingTermsClear(p); return SQLITE_OK; } static const sqlite3_module fts3Module = { | > > > > > > > > > > > > > > > | | 162148 162149 162150 162151 162152 162153 162154 162155 162156 162157 162158 162159 162160 162161 162162 162163 162164 162165 162166 162167 162168 162169 162170 162171 162172 162173 162174 162175 162176 162177 162178 162179 | UNUSED_PARAMETER(iSavepoint); assert( p->inTransaction ); assert( p->mxSavepoint >= iSavepoint ); TESTONLY( p->mxSavepoint = iSavepoint ); sqlite3Fts3PendingTermsClear(p); return SQLITE_OK; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts3ShadowName(const char *zName){ static const char *azName[] = { "content", "docsize", "segdir", "segments", "stat", }; unsigned int i; for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1; } return 0; } static const sqlite3_module fts3Module = { /* iVersion */ 3, /* xCreate */ fts3CreateMethod, /* xConnect */ fts3ConnectMethod, /* xBestIndex */ fts3BestIndexMethod, /* xDisconnect */ fts3DisconnectMethod, /* xDestroy */ fts3DestroyMethod, /* xOpen */ fts3OpenMethod, /* xClose */ fts3CloseMethod, |
︙ | ︙ | |||
161170 161171 161172 161173 161174 161175 161176 161177 161178 161179 161180 161181 161182 161183 | /* xCommit */ fts3CommitMethod, /* xRollback */ fts3RollbackMethod, /* xFindFunction */ fts3FindFunctionMethod, /* xRename */ fts3RenameMethod, /* xSavepoint */ fts3SavepointMethod, /* xRelease */ fts3ReleaseMethod, /* xRollbackTo */ fts3RollbackToMethod, }; /* ** This function is registered as the module destructor (called when an ** FTS3 enabled database connection is closed). It frees the memory ** allocated for the tokenizer hash table. */ | > | 162188 162189 162190 162191 162192 162193 162194 162195 162196 162197 162198 162199 162200 162201 162202 | /* xCommit */ fts3CommitMethod, /* xRollback */ fts3RollbackMethod, /* xFindFunction */ fts3FindFunctionMethod, /* xRename */ fts3RenameMethod, /* xSavepoint */ fts3SavepointMethod, /* xRelease */ fts3ReleaseMethod, /* xRollbackTo */ fts3RollbackToMethod, /* xShadowName */ fts3ShadowName, }; /* ** This function is registered as the module destructor (called when an ** FTS3 enabled database connection is closed). It frees the memory ** allocated for the tokenizer hash table. */ |
︙ | ︙ | |||
161450 161451 161452 161453 161454 161455 161456 161457 161458 161459 161460 161461 161462 161463 | } assert( pToken->pSegcsr==0 ); } return rc; } /* ** This function is called on each phrase after the position lists for ** any deferred tokens have been loaded into memory. It updates the phrases ** current position list to include only those positions that are really ** instances of the phrase (after considering deferred tokens). If this ** means that the phrase does not appear in the current row, doclist.pList ** and doclist.nList are both zeroed. | > | 162469 162470 162471 162472 162473 162474 162475 162476 162477 162478 162479 162480 162481 162482 162483 | } assert( pToken->pSegcsr==0 ); } return rc; } #ifndef SQLITE_DISABLE_FTS4_DEFERRED /* ** This function is called on each phrase after the position lists for ** any deferred tokens have been loaded into memory. It updates the phrases ** current position list to include only those positions that are really ** instances of the phrase (after considering deferred tokens). If this ** means that the phrase does not appear in the current row, doclist.pList ** and doclist.nList are both zeroed. |
︙ | ︙ | |||
161553 161554 161555 161556 161557 161558 161559 161560 161561 161562 161563 161564 161565 161566 | } sqlite3_free(aPoslist); } } return SQLITE_OK; } /* ** Maximum number of tokens a phrase may have to be considered for the ** incremental doclists strategy. */ #define MAX_INCR_PHRASE_TOKENS 4 | > | 162573 162574 162575 162576 162577 162578 162579 162580 162581 162582 162583 162584 162585 162586 162587 | } sqlite3_free(aPoslist); } } return SQLITE_OK; } #endif /* SQLITE_DISABLE_FTS4_DEFERRED */ /* ** Maximum number of tokens a phrase may have to be considered for the ** incremental doclists strategy. */ #define MAX_INCR_PHRASE_TOKENS 4 |
︙ | ︙ | |||
163801 163802 163803 163804 163805 163806 163807 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ | | > | 164822 164823 164824 164825 164826 164827 164828 164829 164830 164831 164832 164833 164834 164835 164836 164837 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; int rc; /* Return code */ rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0); return rc; } |
︙ | ︙ | |||
167360 167361 167362 167363 167364 167365 167366 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ | | > | 168382 168383 168384 168385 168386 168387 168388 168389 168390 168391 168392 168393 168394 168395 168396 168397 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; int rc; /* Return code */ rc = sqlite3_create_module(db, "fts3tokenize", &fts3tok_module, (void*)pHash); return rc; } |
︙ | ︙ | |||
168748 168749 168750 168751 168752 168753 168754 | rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); if( rc!=SQLITE_OK ) return rc; /* Because of the FTS3_NODE_PADDING bytes of padding, the following is ** safe (no risk of overread) even if the node data is corrupted. */ pNext += fts3GetVarint32(pNext, &nPrefix); pNext += fts3GetVarint32(pNext, &nSuffix); | | | > > > > | | | | 169771 169772 169773 169774 169775 169776 169777 169778 169779 169780 169781 169782 169783 169784 169785 169786 169787 169788 169789 169790 169791 169792 169793 169794 169795 169796 169797 | rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); if( rc!=SQLITE_OK ) return rc; /* Because of the FTS3_NODE_PADDING bytes of padding, the following is ** safe (no risk of overread) even if the node data is corrupted. */ pNext += fts3GetVarint32(pNext, &nPrefix); pNext += fts3GetVarint32(pNext, &nSuffix); if( nSuffix<=0 || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix || nPrefix>pReader->nTermAlloc ){ return FTS_CORRUPT_VTAB; } /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer ** overflow - hence the (i64) casts. */ if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){ i64 nNew = ((i64)nPrefix+nSuffix)*2; char *zNew = sqlite3_realloc64(pReader->zTerm, nNew); if( !zNew ){ return SQLITE_NOMEM; } pReader->zTerm = zNew; pReader->nTermAlloc = nNew; } |
︙ | ︙ | |||
168778 168779 168780 168781 168782 168783 168784 | pReader->aDoclist = pNext; pReader->pOffsetList = 0; /* Check that the doclist does not appear to extend past the end of the ** b-tree node. And that the final byte of the doclist is 0x00. If either ** of these statements is untrue, then the data structure is corrupt. */ | | | 169805 169806 169807 169808 169809 169810 169811 169812 169813 169814 169815 169816 169817 169818 169819 | pReader->aDoclist = pNext; pReader->pOffsetList = 0; /* Check that the doclist does not appear to extend past the end of the ** b-tree node. And that the final byte of the doclist is 0x00. If either ** of these statements is untrue, then the data structure is corrupt. */ if( (&pReader->aNode[pReader->nNode] - pReader->aDoclist)<pReader->nDoclist || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) ){ return FTS_CORRUPT_VTAB; } return SQLITE_OK; } |
︙ | ︙ | |||
171104 171105 171106 171107 171108 171109 171110 171111 171112 171113 171114 171115 171116 171117 171118 171119 171120 171121 171122 171123 171124 | p->aNode = 0; }else{ if( bFirst==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); } p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); if( rc==SQLITE_OK ){ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); p->term.n = nPrefix+nSuffix; p->iOff += nSuffix; if( p->iChild==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); p->aDoclist = &p->aNode[p->iOff]; p->iOff += p->nDoclist; } } } assert( p->iOff<=p->nNode ); | > > > > > > < | 172131 172132 172133 172134 172135 172136 172137 172138 172139 172140 172141 172142 172143 172144 172145 172146 172147 172148 172149 172150 172151 172152 172153 172154 172155 172156 172157 172158 172159 172160 172161 172162 172163 172164 | p->aNode = 0; }else{ if( bFirst==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); } p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); if( nPrefix>p->iOff || nSuffix>p->nNode-p->iOff ){ return SQLITE_CORRUPT_VTAB; } blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); if( rc==SQLITE_OK ){ memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); p->term.n = nPrefix+nSuffix; p->iOff += nSuffix; if( p->iChild==0 ){ p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); if( (p->nNode-p->iOff)<p->nDoclist ){ return SQLITE_CORRUPT_VTAB; } p->aDoclist = &p->aNode[p->iOff]; p->iOff += p->nDoclist; } } } assert( p->iOff<=p->nNode ); return rc; } /* ** Release all dynamic resources held by node-reader object *p. */ static void nodeReaderRelease(NodeReader *p){ |
︙ | ︙ | |||
177528 177529 177530 177531 177532 177533 177534 177535 177536 177537 177538 177539 177540 177541 | #define JEACH_VALUE 1 #define JEACH_TYPE 2 #define JEACH_ATOM 3 #define JEACH_ID 4 #define JEACH_PARENT 5 #define JEACH_FULLKEY 6 #define JEACH_PATH 7 #define JEACH_JSON 8 #define JEACH_ROOT 9 UNUSED_PARAM(pzErr); UNUSED_PARAM(argv); UNUSED_PARAM(argc); UNUSED_PARAM(pAux); | > > > | 178560 178561 178562 178563 178564 178565 178566 178567 178568 178569 178570 178571 178572 178573 178574 178575 178576 | #define JEACH_VALUE 1 #define JEACH_TYPE 2 #define JEACH_ATOM 3 #define JEACH_ID 4 #define JEACH_PARENT 5 #define JEACH_FULLKEY 6 #define JEACH_PATH 7 /* The xBestIndex method assumes that the JSON and ROOT columns are ** the last two columns in the table. Should this ever changes, be ** sure to update the xBestIndex method. */ #define JEACH_JSON 8 #define JEACH_ROOT 9 UNUSED_PARAM(pzErr); UNUSED_PARAM(argv); UNUSED_PARAM(argc); UNUSED_PARAM(pAux); |
︙ | ︙ | |||
177785 177786 177787 177788 177789 177790 177791 | ** 1 if the constraint is found, 3 if the constraint and zRoot are found, ** and 0 otherwise. */ static int jsonEachBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ | | | | > > > > > > > > > > > | > | | | < < > > > > > | > > > < > | | | | > | | | | 178820 178821 178822 178823 178824 178825 178826 178827 178828 178829 178830 178831 178832 178833 178834 178835 178836 178837 178838 178839 178840 178841 178842 178843 178844 178845 178846 178847 178848 178849 178850 178851 178852 178853 178854 178855 178856 178857 178858 178859 178860 178861 178862 178863 178864 178865 178866 178867 178868 178869 178870 178871 178872 178873 178874 178875 178876 178877 178878 178879 178880 178881 | ** 1 if the constraint is found, 3 if the constraint and zRoot are found, ** and 0 otherwise. */ static int jsonEachBestIndex( sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo ){ int i; /* Loop counter or computed array index */ int aIdx[2]; /* Index of constraints for JSON and ROOT */ int unusableMask = 0; /* Mask of unusable JSON and ROOT constraints */ int idxMask = 0; /* Mask of usable == constraints JSON and ROOT */ const struct sqlite3_index_constraint *pConstraint; /* This implementation assumes that JSON and ROOT are the last two ** columns in the table */ assert( JEACH_ROOT == JEACH_JSON+1 ); UNUSED_PARAM(tab); aIdx[0] = aIdx[1] = -1; pConstraint = pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ int iCol; int iMask; if( pConstraint->iColumn < JEACH_JSON ) continue; iCol = pConstraint->iColumn - JEACH_JSON; assert( iCol==0 || iCol==1 ); iMask = 1 << iCol; if( pConstraint->usable==0 ){ unusableMask |= iMask; }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ aIdx[iCol] = i; idxMask |= iMask; } } if( (unusableMask & ~idxMask)!=0 ){ /* If there are any unusable constraints on JSON or ROOT, then reject ** this entire plan */ return SQLITE_CONSTRAINT; } if( aIdx[0]<0 ){ /* No JSON input. Leave estimatedCost at the huge value that it was ** initialized to to discourage the query planner from selecting this ** plan. */ pIdxInfo->idxNum = 0; }else{ pIdxInfo->estimatedCost = 1.0; i = aIdx[0]; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; if( aIdx[1]<0 ){ pIdxInfo->idxNum = 1; /* Only JSON supplied. Plan 1 */ }else{ i = aIdx[1]; pIdxInfo->aConstraintUsage[i].argvIndex = 2; pIdxInfo->aConstraintUsage[i].omit = 1; pIdxInfo->idxNum = 3; /* Both JSON and ROOT are supplied. Plan 3 */ } } return SQLITE_OK; } /* Start a search on a new JSON string */ static int jsonEachFilter( |
︙ | ︙ | |||
177922 177923 177924 177925 177926 177927 177928 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ | | > | 178976 178977 178978 178979 178980 178981 178982 178983 178984 178985 178986 178987 178988 178989 178990 178991 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; /* The methods of the json_tree virtual table. */ static sqlite3_module jsonTreeModule = { 0, /* iVersion */ 0, /* xCreate */ jsonEachConnect, /* xConnect */ |
︙ | ︙ | |||
177949 177950 177951 177952 177953 177954 177955 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ | | > | 179004 179005 179006 179007 179008 179009 179010 179011 179012 179013 179014 179015 179016 179017 179018 179019 | 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ /**************************************************************************** ** The following routines are the only publically visible identifiers in this ** file. Call the following routines in order to register the various SQL ** functions and the virtual table implemented by this file. |
︙ | ︙ | |||
181379 181380 181381 181382 181383 181384 181385 181386 | } sqlite3_free(zSql); } return rc; } static sqlite3_module rtreeModule = { | > > > > > > > > > > > > > > > > | | 182435 182436 182437 182438 182439 182440 182441 182442 182443 182444 182445 182446 182447 182448 182449 182450 182451 182452 182453 182454 182455 182456 182457 182458 182459 182460 182461 182462 182463 182464 182465 182466 | } sqlite3_free(zSql); } return rc; } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int rtreeShadowName(const char *zName){ static const char *azName[] = { "node", "parent", "rowid" }; unsigned int i; for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1; } return 0; } static sqlite3_module rtreeModule = { 3, /* iVersion */ rtreeCreate, /* xCreate - create a table */ rtreeConnect, /* xConnect - connect to an existing table */ rtreeBestIndex, /* xBestIndex - Determine search strategy */ rtreeDisconnect, /* xDisconnect - Disconnect from a table */ rtreeDestroy, /* xDestroy - Drop a table */ rtreeOpen, /* xOpen - open a cursor */ rtreeClose, /* xClose - close a cursor */ |
︙ | ︙ | |||
181403 181404 181405 181406 181407 181408 181409 181410 181411 181412 181413 181414 181415 181416 | rtreeEndTransaction, /* xCommit - commit transaction */ rtreeEndTransaction, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ rtreeRename, /* xRename - rename the table */ rtreeSavepoint, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ }; static int rtreeSqlInit( Rtree *pRtree, sqlite3 *db, const char *zDb, const char *zPrefix, | > | 182475 182476 182477 182478 182479 182480 182481 182482 182483 182484 182485 182486 182487 182488 182489 | rtreeEndTransaction, /* xCommit - commit transaction */ rtreeEndTransaction, /* xRollback - rollback transaction */ 0, /* xFindFunction - function overloading */ rtreeRename, /* xRename - rename the table */ rtreeSavepoint, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ rtreeShadowName /* xShadowName */ }; static int rtreeSqlInit( Rtree *pRtree, sqlite3 *db, const char *zDb, const char *zPrefix, |
︙ | ︙ | |||
182393 182394 182395 182396 182397 182398 182399 182400 182401 182402 182403 182404 | ** each segment is "outside" and the area to the left is "inside". ** ** The on-disk representation consists of a 4-byte header followed by ** the values. The 4-byte header is: ** ** encoding (1 byte) 0=big-endian, 1=little-endian ** nvertex (3 bytes) Number of vertexes as a big-endian integer */ typedef struct GeoPoly GeoPoly; struct GeoPoly { int nVertex; /* Number of vertexes */ unsigned char hdr[4]; /* Header for on-disk representation */ | > > > > > | > > > > > | 183466 183467 183468 183469 183470 183471 183472 183473 183474 183475 183476 183477 183478 183479 183480 183481 183482 183483 183484 183485 183486 183487 183488 183489 183490 183491 183492 183493 183494 183495 183496 | ** each segment is "outside" and the area to the left is "inside". ** ** The on-disk representation consists of a 4-byte header followed by ** the values. The 4-byte header is: ** ** encoding (1 byte) 0=big-endian, 1=little-endian ** nvertex (3 bytes) Number of vertexes as a big-endian integer ** ** Enough space is allocated for 4 coordinates, to work around over-zealous ** warnings coming from some compiler (notably, clang). In reality, the size ** of each GeoPoly memory allocate is adjusted as necessary so that the ** GeoPoly.a[] array at the end is the appropriate size. */ typedef struct GeoPoly GeoPoly; struct GeoPoly { int nVertex; /* Number of vertexes */ unsigned char hdr[4]; /* Header for on-disk representation */ GeoCoord a[8]; /* 2*nVertex values. X (longitude) first, then Y */ }; /* The size of a memory allocation needed for a GeoPoly object sufficient ** to hold N coordinate pairs. */ #define GEOPOLY_SZ(N) (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4)) /* ** State of a parse of a GeoJSON input. */ typedef struct GeoParse GeoParse; struct GeoParse { const unsigned char *z; /* Unparsed input */ |
︙ | ︙ | |||
182425 182426 182427 182428 182429 182430 182431 | t = a[1]; a[1] = a[2]; a[2] = t; } /* Skip whitespace. Return the next non-whitespace character. */ static char geopolySkipSpace(GeoParse *p){ | | | | 183508 183509 183510 183511 183512 183513 183514 183515 183516 183517 183518 183519 183520 183521 183522 183523 183524 183525 183526 183527 183528 183529 183530 183531 183532 183533 183534 183535 183536 183537 183538 183539 183540 183541 183542 | t = a[1]; a[1] = a[2]; a[2] = t; } /* Skip whitespace. Return the next non-whitespace character. */ static char geopolySkipSpace(GeoParse *p){ while( safe_isspace(p->z[0]) ) p->z++; return p->z[0]; } /* Parse out a number. Write the value into *pVal if pVal!=0. ** return non-zero on success and zero if the next token is not a number. */ static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){ char c = geopolySkipSpace(p); const unsigned char *z = p->z; int j = 0; int seenDP = 0; int seenE = 0; if( c=='-' ){ j = 1; c = z[j]; } if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0; for(;; j++){ c = z[j]; if( safe_isdigit(c) ) continue; if( c=='.' ){ if( z[j-1]=='-' ) return 0; if( seenDP ) return 0; seenDP = 1; continue; } if( c=='e' || c=='E' ){ |
︙ | ︙ | |||
182467 182468 182469 182470 182471 182472 182473 | } if( c<'0' || c>'9' ) return 0; continue; } break; } if( z[j-1]<'0' ) return 0; | > > > > > > > > | > > | 183550 183551 183552 183553 183554 183555 183556 183557 183558 183559 183560 183561 183562 183563 183564 183565 183566 183567 183568 183569 183570 183571 183572 183573 183574 | } if( c<'0' || c>'9' ) return 0; continue; } break; } if( z[j-1]<'0' ) return 0; if( pVal ){ #ifdef SQLITE_AMALGAMATION /* The sqlite3AtoF() routine is much much faster than atof(), if it ** is available */ double r; (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8); *pVal = r; #else *pVal = (GeoCoord)atof((const char*)p->z); #endif } p->z += j; return 1; } /* ** If the input is a well-formed JSON array of coordinates with at least ** four coordinates and where each coordinate is itself a two-value array, |
︙ | ︙ | |||
182525 182526 182527 182528 182529 182530 182531 | } if( geopolySkipSpace(&s)==']' && s.nVertex>=4 && s.a[0]==s.a[s.nVertex*2-2] && s.a[1]==s.a[s.nVertex*2-1] && (s.z++, geopolySkipSpace(&s)==0) ){ | < < | | 183618 183619 183620 183621 183622 183623 183624 183625 183626 183627 183628 183629 183630 183631 183632 183633 183634 183635 | } if( geopolySkipSpace(&s)==']' && s.nVertex>=4 && s.a[0]==s.a[s.nVertex*2-2] && s.a[1]==s.a[s.nVertex*2-1] && (s.z++, geopolySkipSpace(&s)==0) ){ GeoPoly *pOut; int x = 1; s.nVertex--; /* Remove the redundant vertex at the end */ pOut = sqlite3_malloc64( GEOPOLY_SZ(s.nVertex) ); x = 1; if( pOut==0 ) goto parse_json_err; pOut->nVertex = s.nVertex; memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord)); pOut->hdr[0] = *(unsigned char*)&x; pOut->hdr[1] = (s.nVertex>>16)&0xff; pOut->hdr[2] = (s.nVertex>>8)&0xff; |
︙ | ︙ | |||
182732 182733 182734 182735 182736 182737 182738 182739 182740 182741 182742 182743 182744 182745 182746 182747 182748 182749 182750 182751 182752 182753 182754 | p->a[ii*2+1] = y1; } sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** Implementation of the geopoly_area(X) function. ** ** If the input is a well-formed Geopoly BLOB then return the area ** enclosed by the polygon. If the polygon circulates clockwise instead ** of counterclockwise (as it should) then return the negative of the ** enclosed area. Otherwise return NULL. */ static void geopolyAreaFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); if( p ){ | > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > | | > | > | > | | < < < > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 183823 183824 183825 183826 183827 183828 183829 183830 183831 183832 183833 183834 183835 183836 183837 183838 183839 183840 183841 183842 183843 183844 183845 183846 183847 183848 183849 183850 183851 183852 183853 183854 183855 183856 183857 183858 183859 183860 183861 183862 183863 183864 183865 183866 183867 183868 183869 183870 183871 183872 183873 183874 183875 183876 183877 183878 183879 183880 183881 183882 183883 183884 183885 183886 183887 183888 183889 183890 183891 183892 183893 183894 183895 183896 183897 183898 183899 183900 183901 183902 183903 183904 183905 183906 183907 183908 183909 183910 183911 183912 183913 183914 183915 183916 183917 183918 183919 183920 183921 183922 183923 183924 183925 183926 183927 183928 183929 183930 183931 183932 183933 183934 183935 183936 183937 183938 183939 183940 183941 183942 183943 183944 183945 183946 183947 183948 183949 183950 183951 183952 183953 183954 183955 183956 183957 183958 183959 183960 183961 183962 183963 183964 183965 183966 183967 183968 183969 183970 183971 183972 | p->a[ii*2+1] = y1; } sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } /* ** Compute the area enclosed by the polygon. ** ** This routine can also be used to detect polygons that rotate in ** the wrong direction. Polygons are suppose to be counter-clockwise (CCW). ** This routine returns a negative value for clockwise (CW) polygons. */ static double geopolyArea(GeoPoly *p){ double rArea = 0.0; int ii; for(ii=0; ii<p->nVertex-1; ii++){ rArea += (p->a[ii*2] - p->a[ii*2+2]) /* (x0 - x1) */ * (p->a[ii*2+1] + p->a[ii*2+3]) /* (y0 + y1) */ * 0.5; } rArea += (p->a[ii*2] - p->a[0]) /* (xN - x0) */ * (p->a[ii*2+1] + p->a[1]) /* (yN + y0) */ * 0.5; return rArea; } /* ** Implementation of the geopoly_area(X) function. ** ** If the input is a well-formed Geopoly BLOB then return the area ** enclosed by the polygon. If the polygon circulates clockwise instead ** of counterclockwise (as it should) then return the negative of the ** enclosed area. Otherwise return NULL. */ static void geopolyAreaFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); if( p ){ sqlite3_result_double(context, geopolyArea(p)); sqlite3_free(p); } } /* ** Implementation of the geopoly_ccw(X) function. ** ** If the rotation of polygon X is clockwise (incorrect) instead of ** counter-clockwise (the correct winding order according to RFC7946) ** then reverse the order of the vertexes in polygon X. ** ** In other words, this routine returns a CCW polygon regardless of the ** winding order of its input. ** ** Use this routine to sanitize historical inputs that that sometimes ** contain polygons that wind in the wrong direction. */ static void geopolyCcwFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ GeoPoly *p = geopolyFuncParam(context, argv[0], 0); if( p ){ if( geopolyArea(p)<0.0 ){ int ii, jj; for(ii=2, jj=p->nVertex*2 - 2; ii<jj; ii+=2, jj-=2){ GeoCoord t = p->a[ii]; p->a[ii] = p->a[jj]; p->a[jj] = t; t = p->a[ii+1]; p->a[ii+1] = p->a[jj+1]; p->a[jj+1] = t; } } sqlite3_result_blob(context, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); sqlite3_free(p); } } #define GEOPOLY_PI 3.1415926535897932385 /* Fast approximation for cosine(X) for X between -0.5*pi and 2*pi */ static double geopolyCosine(double r){ assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI ); if( r>=1.5*GEOPOLY_PI ){ r -= 2.0*GEOPOLY_PI; } if( r>=0.5*GEOPOLY_PI ){ return -geopolyCosine(r-GEOPOLY_PI); }else{ double r2 = r*r; double r3 = r2*r; double r5 = r3*r2; return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5; } } /* ** Function: geopoly_regular(X,Y,R,N) ** ** Construct a simple, convex, regular polygon centered at X, Y ** with circumradius R and with N sides. */ static void geopolyRegularFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ double x = sqlite3_value_double(argv[0]); double y = sqlite3_value_double(argv[1]); double r = sqlite3_value_double(argv[2]); int n = sqlite3_value_int(argv[3]); int i; GeoPoly *p; if( n<3 || r<=0.0 ) return; if( n>1000 ) n = 1000; p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) ); if( p==0 ){ sqlite3_result_error_nomem(context); return; } i = 1; p->hdr[0] = *(unsigned char*)&i; p->hdr[1] = 0; p->hdr[2] = (n>>8)&0xff; p->hdr[3] = n&0xff; for(i=0; i<n; i++){ double rAngle = 2.0*GEOPOLY_PI*i/n; p->a[i*2] = x - r*geopolyCosine(rAngle-0.5*GEOPOLY_PI); p->a[i*2+1] = y + r*geopolyCosine(rAngle); } sqlite3_result_blob(context, p->hdr, 4+8*n, SQLITE_TRANSIENT); sqlite3_free(p); } /* ** If pPoly is a polygon, compute its bounding box. Then: ** ** (1) if aCoord!=0 store the bounding box in aCoord, returning NULL ** (2) otherwise, compute a GeoPoly for the bounding box and return the ** new GeoPoly |
︙ | ︙ | |||
182807 182808 182809 182810 182811 182812 182813 | r = p->a[ii*2+1]; if( r<mnY ) mnY = (float)r; else if( r>mxY ) mxY = (float)r; } if( pRc ) *pRc = SQLITE_OK; if( aCoord==0 ){ geopolyBboxFill: | | | 184004 184005 184006 184007 184008 184009 184010 184011 184012 184013 184014 184015 184016 184017 184018 | r = p->a[ii*2+1]; if( r<mnY ) mnY = (float)r; else if( r>mxY ) mxY = (float)r; } if( pRc ) *pRc = SQLITE_OK; if( aCoord==0 ){ geopolyBboxFill: pOut = sqlite3_realloc(p, GEOPOLY_SZ(4)); if( pOut==0 ){ sqlite3_free(p); if( context ) sqlite3_result_error_nomem(context); if( pRc ) *pRc = SQLITE_NOMEM; return 0; } pOut->nVertex = 4; |
︙ | ︙ | |||
183835 183836 183837 183838 183839 183840 183841 | int jj; int nChange = 0; sqlite3_bind_int64(pUp, 1, cell.iRowid); assert( pRtree->nAux>=1 ); if( sqlite3_value_nochange(aData[2]) ){ sqlite3_bind_null(pUp, 2); }else{ | > > > > > > > | > > | 185032 185033 185034 185035 185036 185037 185038 185039 185040 185041 185042 185043 185044 185045 185046 185047 185048 185049 185050 185051 185052 185053 185054 185055 | int jj; int nChange = 0; sqlite3_bind_int64(pUp, 1, cell.iRowid); assert( pRtree->nAux>=1 ); if( sqlite3_value_nochange(aData[2]) ){ sqlite3_bind_null(pUp, 2); }else{ GeoPoly *p = 0; if( sqlite3_value_type(aData[2])==SQLITE_TEXT && (p = geopolyFuncParam(0, aData[2], &rc))!=0 && rc==SQLITE_OK ){ sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT); }else{ sqlite3_bind_value(pUp, 2, aData[2]); } sqlite3_free(p); nChange = 1; } for(jj=1; jj<pRtree->nAux; jj++){ nChange++; sqlite3_bind_value(pUp, jj+2, aData[jj+2]); } if( nChange ){ |
︙ | ︙ | |||
183879 183880 183881 183882 183883 183884 183885 | return SQLITE_INDEX_CONSTRAINT_FUNCTION+1; } return 0; } static sqlite3_module geopolyModule = { | | | 185085 185086 185087 185088 185089 185090 185091 185092 185093 185094 185095 185096 185097 185098 185099 | return SQLITE_INDEX_CONSTRAINT_FUNCTION+1; } return 0; } static sqlite3_module geopolyModule = { 3, /* iVersion */ geopolyCreate, /* xCreate - create a table */ geopolyConnect, /* xConnect - connect to an existing table */ geopolyBestIndex, /* xBestIndex - Determine search strategy */ rtreeDisconnect, /* xDisconnect - Disconnect from a table */ rtreeDestroy, /* xDestroy - Drop a table */ rtreeOpen, /* xOpen - open a cursor */ rtreeClose, /* xClose - close a cursor */ |
︙ | ︙ | |||
183902 183903 183904 183905 183906 183907 183908 183909 183910 183911 183912 183913 183914 | rtreeEndTransaction, /* xCommit - commit transaction */ rtreeEndTransaction, /* xRollback - rollback transaction */ geopolyFindFunction, /* xFindFunction - function overloading */ rtreeRename, /* xRename - rename the table */ rtreeSavepoint, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ }; static int sqlite3_geopoly_init(sqlite3 *db){ int rc = SQLITE_OK; static const struct { void (*xFunc)(sqlite3_context*,int,sqlite3_value**); | > | > | | | | | | | | | | > > > | | 185108 185109 185110 185111 185112 185113 185114 185115 185116 185117 185118 185119 185120 185121 185122 185123 185124 185125 185126 185127 185128 185129 185130 185131 185132 185133 185134 185135 185136 185137 185138 185139 185140 185141 185142 185143 185144 185145 185146 185147 185148 185149 185150 185151 185152 185153 185154 185155 185156 185157 | rtreeEndTransaction, /* xCommit - commit transaction */ rtreeEndTransaction, /* xRollback - rollback transaction */ geopolyFindFunction, /* xFindFunction - function overloading */ rtreeRename, /* xRename - rename the table */ rtreeSavepoint, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ rtreeShadowName /* xShadowName */ }; static int sqlite3_geopoly_init(sqlite3 *db){ int rc = SQLITE_OK; static const struct { void (*xFunc)(sqlite3_context*,int,sqlite3_value**); signed char nArg; unsigned char bPure; const char *zName; } aFunc[] = { { geopolyAreaFunc, 1, 1, "geopoly_area" }, { geopolyBlobFunc, 1, 1, "geopoly_blob" }, { geopolyJsonFunc, 1, 1, "geopoly_json" }, { geopolySvgFunc, -1, 1, "geopoly_svg" }, { geopolyWithinFunc, 2, 1, "geopoly_within" }, { geopolyContainsPointFunc, 3, 1, "geopoly_contains_point" }, { geopolyOverlapFunc, 2, 1, "geopoly_overlap" }, { geopolyDebugFunc, 1, 0, "geopoly_debug" }, { geopolyBBoxFunc, 1, 1, "geopoly_bbox" }, { geopolyXformFunc, 7, 1, "geopoly_xform" }, { geopolyRegularFunc, 4, 1, "geopoly_regular" }, { geopolyCcwFunc, 1, 1, "geopoly_ccw" }, }; static const struct { void (*xStep)(sqlite3_context*,int,sqlite3_value**); void (*xFinal)(sqlite3_context*); const char *zName; } aAgg[] = { { geopolyBBoxStep, geopolyBBoxFinal, "geopoly_group_bbox" }, }; int i; for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){ int enc = aFunc[i].bPure ? SQLITE_UTF8|SQLITE_DETERMINISTIC : SQLITE_UTF8; rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg, enc, 0, aFunc[i].xFunc, 0, 0); } for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){ rc = sqlite3_create_function(db, aAgg[i].zName, 1, SQLITE_UTF8, 0, 0, aAgg[i].xStep, aAgg[i].xFinal); } if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
185959 185960 185961 185962 185963 185964 185965 | ** space used by the RBU handle. */ struct rbu_vfs { sqlite3_vfs base; /* rbu VFS shim methods */ sqlite3_vfs *pRealVfs; /* Underlying VFS */ sqlite3_mutex *mutex; /* Mutex to protect pMain */ sqlite3rbu *pRbu; /* Owner RBU object */ | | > | 187170 187171 187172 187173 187174 187175 187176 187177 187178 187179 187180 187181 187182 187183 187184 187185 | ** space used by the RBU handle. */ struct rbu_vfs { sqlite3_vfs base; /* rbu VFS shim methods */ sqlite3_vfs *pRealVfs; /* Underlying VFS */ sqlite3_mutex *mutex; /* Mutex to protect pMain */ sqlite3rbu *pRbu; /* Owner RBU object */ rbu_file *pMain; /* List of main db files */ rbu_file *pMainRbu; /* List of main db files with pRbu!=0 */ }; /* ** Each file opened by an rbu VFS is represented by an instance of ** the following structure. ** ** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable |
︙ | ︙ | |||
185988 185989 185990 185991 185992 185993 185994 185995 185996 185997 185998 185999 186000 186001 | int nShm; /* Number of entries in apShm[] array */ char **apShm; /* Array of mmap'd *-shm regions */ char *zDel; /* Delete this when closing file */ const char *zWal; /* Wal filename for this main db file */ rbu_file *pWalFd; /* Wal file descriptor for this main db */ rbu_file *pMainNext; /* Next MAIN_DB file */ }; /* ** True for an RBU vacuum handle, or false otherwise. */ #define rbuIsVacuum(p) ((p)->zTarget==0) | > | 187200 187201 187202 187203 187204 187205 187206 187207 187208 187209 187210 187211 187212 187213 187214 | int nShm; /* Number of entries in apShm[] array */ char **apShm; /* Array of mmap'd *-shm regions */ char *zDel; /* Delete this when closing file */ const char *zWal; /* Wal filename for this main db file */ rbu_file *pWalFd; /* Wal file descriptor for this main db */ rbu_file *pMainNext; /* Next MAIN_DB file */ rbu_file *pMainRbuNext; /* Next MAIN_DB file with pRbu!=0 */ }; /* ** True for an RBU vacuum handle, or false otherwise. */ #define rbuIsVacuum(p) ((p)->zTarget==0) |
︙ | ︙ | |||
189583 189584 189585 189586 189587 189588 189589 189590 189591 189592 189593 189594 189595 189596 189597 189598 189599 189600 189601 189602 189603 189604 189605 189606 189607 | i64 nDiff = nNew - pFd->sz; pRbu->szTemp += nDiff; pFd->sz = nNew; assert( pRbu->szTemp>=0 ); if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL; return SQLITE_OK; } /* ** Close an rbu file. */ static int rbuVfsClose(sqlite3_file *pFile){ rbu_file *p = (rbu_file*)pFile; int rc; int i; /* Free the contents of the apShm[] array. And the array itself. */ for(i=0; i<p->nShm; i++){ sqlite3_free(p->apShm[i]); } sqlite3_free(p->apShm); p->apShm = 0; sqlite3_free(p->zDel); if( p->openFlags & SQLITE_OPEN_MAIN_DB ){ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < | < > | 190796 190797 190798 190799 190800 190801 190802 190803 190804 190805 190806 190807 190808 190809 190810 190811 190812 190813 190814 190815 190816 190817 190818 190819 190820 190821 190822 190823 190824 190825 190826 190827 190828 190829 190830 190831 190832 190833 190834 190835 190836 190837 190838 190839 190840 190841 190842 190843 190844 190845 190846 190847 190848 190849 190850 190851 190852 190853 190854 190855 190856 190857 190858 190859 190860 190861 190862 190863 190864 190865 190866 190867 190868 190869 190870 190871 190872 190873 190874 190875 190876 190877 190878 190879 190880 190881 190882 190883 190884 190885 190886 190887 190888 190889 190890 190891 190892 190893 190894 190895 190896 190897 190898 | i64 nDiff = nNew - pFd->sz; pRbu->szTemp += nDiff; pFd->sz = nNew; assert( pRbu->szTemp>=0 ); if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL; return SQLITE_OK; } /* ** Add an item to the main-db lists, if it is not already present. ** ** There are two main-db lists. One for all file descriptors, and one ** for all file descriptors with rbu_file.pDb!=0. If the argument has ** rbu_file.pDb!=0, then it is assumed to already be present on the ** main list and is only added to the pDb!=0 list. */ static void rbuMainlistAdd(rbu_file *p){ rbu_vfs *pRbuVfs = p->pRbuVfs; rbu_file *pIter; assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) ); sqlite3_mutex_enter(pRbuVfs->mutex); if( p->pRbu==0 ){ for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext); p->pMainNext = pRbuVfs->pMain; pRbuVfs->pMain = p; }else{ for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){} if( pIter==0 ){ p->pMainRbuNext = pRbuVfs->pMainRbu; pRbuVfs->pMainRbu = p; } } sqlite3_mutex_leave(pRbuVfs->mutex); } /* ** Remove an item from the main-db lists. */ static void rbuMainlistRemove(rbu_file *p){ rbu_file **pp; sqlite3_mutex_enter(p->pRbuVfs->mutex); for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){} if( *pp ) *pp = p->pMainNext; p->pMainNext = 0; for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){} if( *pp ) *pp = p->pMainRbuNext; p->pMainRbuNext = 0; sqlite3_mutex_leave(p->pRbuVfs->mutex); } /* ** Given that zWal points to a buffer containing a wal file name passed to ** either the xOpen() or xAccess() VFS method, search the main-db list for ** a file-handle opened by the same database connection on the corresponding ** database file. ** ** If parameter bRbu is true, only search for file-descriptors with ** rbu_file.pDb!=0. */ static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){ rbu_file *pDb; sqlite3_mutex_enter(pRbuVfs->mutex); if( bRbu ){ for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){} }else{ for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){} } sqlite3_mutex_leave(pRbuVfs->mutex); return pDb; } /* ** Close an rbu file. */ static int rbuVfsClose(sqlite3_file *pFile){ rbu_file *p = (rbu_file*)pFile; int rc; int i; /* Free the contents of the apShm[] array. And the array itself. */ for(i=0; i<p->nShm; i++){ sqlite3_free(p->apShm[i]); } sqlite3_free(p->apShm); p->apShm = 0; sqlite3_free(p->zDel); if( p->openFlags & SQLITE_OPEN_MAIN_DB ){ rbuMainlistRemove(p); rbuUnlockShm(p); p->pReal->pMethods->xShmUnmap(p->pReal, 0); } else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){ rbuUpdateTempSize(p, 0); } assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p ); /* Close the underlying file handle */ rc = p->pReal->pMethods->xClose(p->pReal); return rc; } |
︙ | ︙ | |||
189870 189871 189872 189873 189874 189875 189876 189877 189878 189879 189880 189881 189882 189883 | rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy); if( rc==SQLITE_OK ){ rc = SQLITE_ERROR; pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error"); }else if( rc==SQLITE_NOTFOUND ){ pRbu->pTargetFd = p; p->pRbu = pRbu; if( p->pWalFd ) p->pWalFd->pRbu = pRbu; rc = SQLITE_OK; } } return rc; } else if( op==SQLITE_FCNTL_RBUCNT ){ | > > > | 191143 191144 191145 191146 191147 191148 191149 191150 191151 191152 191153 191154 191155 191156 191157 191158 191159 | rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy); if( rc==SQLITE_OK ){ rc = SQLITE_ERROR; pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error"); }else if( rc==SQLITE_NOTFOUND ){ pRbu->pTargetFd = p; p->pRbu = pRbu; if( p->openFlags & SQLITE_OPEN_MAIN_DB ){ rbuMainlistAdd(p); } if( p->pWalFd ) p->pWalFd->pRbu = pRbu; rc = SQLITE_OK; } } return rc; } else if( op==SQLITE_FCNTL_RBUCNT ){ |
︙ | ︙ | |||
190031 190032 190033 190034 190035 190036 190037 | /* Release the checkpointer and writer locks */ rbuUnlockShm(p); rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag); } return rc; } | < < < < < < < < < < < < < < | 191307 191308 191309 191310 191311 191312 191313 191314 191315 191316 191317 191318 191319 191320 | /* Release the checkpointer and writer locks */ rbuUnlockShm(p); rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag); } return rc; } /* ** A main database named zName has just been opened. The following ** function returns a pointer to a buffer owned by SQLite that contains ** the name of the *-wal file this db connection will use. SQLite ** happens to pass a pointer to this buffer when using xAccess() ** or xOpen() to operate on the *-wal file. */ |
︙ | ︙ | |||
190123 190124 190125 190126 190127 190128 190129 | ** (pFd->zWal) to point to a buffer owned by SQLite that contains ** the name of the *-wal file this db connection will use. SQLite ** happens to pass a pointer to this buffer when using xAccess() ** or xOpen() to operate on the *-wal file. */ pFd->zWal = rbuMainToWal(zName, flags); } else if( flags & SQLITE_OPEN_WAL ){ | | | 191385 191386 191387 191388 191389 191390 191391 191392 191393 191394 191395 191396 191397 191398 191399 | ** (pFd->zWal) to point to a buffer owned by SQLite that contains ** the name of the *-wal file this db connection will use. SQLite ** happens to pass a pointer to this buffer when using xAccess() ** or xOpen() to operate on the *-wal file. */ pFd->zWal = rbuMainToWal(zName, flags); } else if( flags & SQLITE_OPEN_WAL ){ rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0); if( pDb ){ if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){ /* This call is to open a *-wal file. Intead, open the *-oal. This ** code ensures that the string passed to xOpen() is terminated by a ** pair of '\0' bytes in case the VFS attempts to extract a URI ** parameter from it. */ const char *zBase = zName; |
︙ | ︙ | |||
190175 190176 190177 190178 190179 190180 190181 | } if( pFd->pReal->pMethods ){ /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods ** pointer and, if the file is a main database file, link it into the ** mutex protected linked list of all such files. */ pFile->pMethods = &rbuvfs_io_methods; if( flags & SQLITE_OPEN_MAIN_DB ){ | < < | < | 191437 191438 191439 191440 191441 191442 191443 191444 191445 191446 191447 191448 191449 191450 191451 | } if( pFd->pReal->pMethods ){ /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods ** pointer and, if the file is a main database file, link it into the ** mutex protected linked list of all such files. */ pFile->pMethods = &rbuvfs_io_methods; if( flags & SQLITE_OPEN_MAIN_DB ){ rbuMainlistAdd(pFd); } }else{ sqlite3_free(pFd->zDel); } return rc; } |
︙ | ︙ | |||
190226 190227 190228 190229 190230 190231 190232 | ** ** b) if the *-wal file does not exist, claim that it does anyway, ** causing SQLite to call xOpen() to open it. This call will also ** be intercepted (see the rbuVfsOpen() function) and the *-oal ** file opened instead. */ if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ | | | 191485 191486 191487 191488 191489 191490 191491 191492 191493 191494 191495 191496 191497 191498 191499 | ** ** b) if the *-wal file does not exist, claim that it does anyway, ** causing SQLite to call xOpen() to open it. This call will also ** be intercepted (see the rbuVfsOpen() function) and the *-oal ** file opened instead. */ if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1); if( pDb && pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){ if( *pResOut ){ rc = SQLITE_CANTOPEN; }else{ sqlite3_int64 sz = 0; rc = rbuVfsFileSize(&pDb->base, &sz); *pResOut = (sz>0); |
︙ | ︙ | |||
190639 190640 190641 190642 190643 190644 190645 | ** operate on a different database schema, so check for it. ** ** idxNum is normally 0, but will be 1 if a schema=? constraint exists. */ static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int i; | < < > | < | 191898 191899 191900 191901 191902 191903 191904 191905 191906 191907 191908 191909 191910 191911 191912 191913 191914 191915 191916 191917 191918 191919 191920 | ** operate on a different database schema, so check for it. ** ** idxNum is normally 0, but will be 1 if a schema=? constraint exists. */ static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ int i; /* Look for a valid schema=? constraint. If found, change the idxNum to ** 1 and request the value of that constraint be sent to xFilter. And ** lower the cost estimate to encourage the constrained version to be ** used. */ for(i=0; i<pIdxInfo->nConstraint; i++){ if( pIdxInfo->aConstraint[i].iColumn!=10 ) continue; if( pIdxInfo->aConstraint[i].usable==0 ) return SQLITE_CONSTRAINT; if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; pIdxInfo->idxNum = 1; pIdxInfo->estimatedCost = 1.0; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; break; } |
︙ | ︙ | |||
190699 190700 190701 190702 190703 190704 190705 | pCsr->iDb = pTab->iDb; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } | | > > > > > > | 191956 191957 191958 191959 191960 191961 191962 191963 191964 191965 191966 191967 191968 191969 191970 191971 191972 191973 191974 191975 191976 191977 191978 191979 191980 191981 191982 191983 | pCsr->iDb = pTab->iDb; } *ppCursor = (sqlite3_vtab_cursor *)pCsr; return SQLITE_OK; } static void statClearCells(StatPage *p){ int i; if( p->aCell ){ for(i=0; i<p->nCell; i++){ sqlite3_free(p->aCell[i].aOvfl); } sqlite3_free(p->aCell); } p->nCell = 0; p->aCell = 0; } static void statClearPage(StatPage *p){ statClearCells(p); sqlite3PagerUnref(p->pPg); sqlite3_free(p->zPath); memset(p, 0, sizeof(StatPage)); } static void statResetCsr(StatCursor *pCsr){ int i; |
︙ | ︙ | |||
190769 190770 190771 190772 190773 190774 190775 190776 190777 | int isLeaf; int szPage; u8 *aData = sqlite3PagerGetData(p->pPg); u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0]; p->flags = aHdr[0]; p->nCell = get2byte(&aHdr[3]); p->nMxPayload = 0; | > > > > > > > > > > | < < > > | > > < > > < > | 192032 192033 192034 192035 192036 192037 192038 192039 192040 192041 192042 192043 192044 192045 192046 192047 192048 192049 192050 192051 192052 192053 192054 192055 192056 192057 192058 192059 192060 192061 192062 192063 192064 192065 192066 192067 192068 192069 192070 192071 192072 192073 192074 192075 192076 192077 192078 192079 192080 192081 192082 192083 192084 192085 192086 192087 192088 192089 192090 192091 192092 192093 192094 192095 192096 192097 192098 192099 192100 192101 192102 192103 192104 192105 192106 192107 192108 192109 192110 192111 192112 192113 | int isLeaf; int szPage; u8 *aData = sqlite3PagerGetData(p->pPg); u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0]; p->flags = aHdr[0]; if( p->flags==0x0A || p->flags==0x0D ){ isLeaf = 1; nHdr = 8; }else if( p->flags==0x05 || p->flags==0x02 ){ isLeaf = 0; nHdr = 12; }else{ goto statPageIsCorrupt; } if( p->iPgno==1 ) nHdr += 100; p->nCell = get2byte(&aHdr[3]); p->nMxPayload = 0; szPage = sqlite3BtreeGetPageSize(pBt); nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell; nUnused += (int)aHdr[7]; iOff = get2byte(&aHdr[1]); while( iOff ){ int iNext; if( iOff>=szPage ) goto statPageIsCorrupt; nUnused += get2byte(&aData[iOff+2]); iNext = get2byte(&aData[iOff]); if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt; iOff = iNext; } p->nUnused = nUnused; p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]); if( p->nCell ){ int i; /* Used to iterate through cells */ int nUsable; /* Usable bytes per page */ sqlite3BtreeEnter(pBt); nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt); sqlite3BtreeLeave(pBt); p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell)); if( p->aCell==0 ) return SQLITE_NOMEM_BKPT; memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell)); for(i=0; i<p->nCell; i++){ StatCell *pCell = &p->aCell[i]; iOff = get2byte(&aData[nHdr+i*2]); if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt; if( !isLeaf ){ pCell->iChildPg = sqlite3Get4byte(&aData[iOff]); iOff += 4; } if( p->flags==0x05 ){ /* A table interior node. nPayload==0. */ }else{ u32 nPayload; /* Bytes of payload total (local+overflow) */ int nLocal; /* Bytes of payload stored locally */ iOff += getVarint32(&aData[iOff], nPayload); if( p->flags==0x0D ){ u64 dummy; iOff += sqlite3GetVarint(&aData[iOff], &dummy); } if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload; getLocalPayload(nUsable, p->flags, nPayload, &nLocal); if( nLocal<0 ) goto statPageIsCorrupt; pCell->nLocal = nLocal; assert( nPayload>=(u32)nLocal ); assert( nLocal<=(nUsable-35) ); if( nPayload>(u32)nLocal ){ int j; int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4); if( iOff+nLocal>nUsable ) goto statPageIsCorrupt; pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4); pCell->nOvfl = nOvfl; pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl); if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT; pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]); for(j=1; j<nOvfl; j++){ int rc; |
︙ | ︙ | |||
190847 190848 190849 190850 190851 190852 190853 190854 190855 190856 190857 190858 190859 190860 | } } } } } return SQLITE_OK; } /* ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on ** the current value of pCsr->iPageno. */ static void statSizeAndOffset(StatCursor *pCsr){ | > > > > > | 192123 192124 192125 192126 192127 192128 192129 192130 192131 192132 192133 192134 192135 192136 192137 192138 192139 192140 192141 | } } } } } return SQLITE_OK; statPageIsCorrupt: p->flags = 0; statClearCells(p); return SQLITE_OK; } /* ** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on ** the current value of pCsr->iPageno. */ static void statSizeAndOffset(StatCursor *pCsr){ |
︙ | ︙ | |||
191142 191143 191144 191145 191146 191147 191148 191149 191150 191151 191152 191153 191154 191155 | 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ }; return sqlite3_create_module(db, "dbstat", &dbstat_module, 0); } #elif defined(SQLITE_ENABLE_DBSTAT_VTAB) SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; } #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ | > | 192423 192424 192425 192426 192427 192428 192429 192430 192431 192432 192433 192434 192435 192436 192437 | 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; return sqlite3_create_module(db, "dbstat", &dbstat_module, 0); } #elif defined(SQLITE_ENABLE_DBSTAT_VTAB) SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; } #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ |
︙ | ︙ | |||
191272 191273 191274 191275 191276 191277 191278 | ** unavailable */ for(i=0; i<pIdxInfo->nConstraint; i++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i]; if( p->iColumn!=DBPAGE_COLUMN_SCHEMA ) continue; if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; if( !p->usable ){ | | < | | 192554 192555 192556 192557 192558 192559 192560 192561 192562 192563 192564 192565 192566 192567 192568 192569 | ** unavailable */ for(i=0; i<pIdxInfo->nConstraint; i++){ struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i]; if( p->iColumn!=DBPAGE_COLUMN_SCHEMA ) continue; if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; if( !p->usable ){ /* No solution. */ return SQLITE_CONSTRAINT; } iPlan = 2; pIdxInfo->aConstraintUsage[i].argvIndex = 1; pIdxInfo->aConstraintUsage[i].omit = 1; break; } |
︙ | ︙ | |||
191466 191467 191468 191469 191470 191471 191472 191473 191474 191475 191476 191477 191478 191479 | char *zErr = 0; const char *zSchema; int iDb; Btree *pBt; Pager *pPager; int szPage; if( argc==1 ){ zErr = "cannot delete"; goto update_fail; } pgno = sqlite3_value_int(argv[0]); if( (Pgno)sqlite3_value_int(argv[1])!=pgno ){ zErr = "cannot insert"; | > > > > | 192747 192748 192749 192750 192751 192752 192753 192754 192755 192756 192757 192758 192759 192760 192761 192762 192763 192764 | char *zErr = 0; const char *zSchema; int iDb; Btree *pBt; Pager *pPager; int szPage; if( pTab->db->flags & SQLITE_Defensive ){ zErr = "read-only"; goto update_fail; } if( argc==1 ){ zErr = "cannot delete"; goto update_fail; } pgno = sqlite3_value_int(argv[0]); if( (Pgno)sqlite3_value_int(argv[1])!=pgno ){ zErr = "cannot insert"; |
︙ | ︙ | |||
191556 191557 191558 191559 191560 191561 191562 191563 191564 191565 191566 191567 191568 191569 | 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ }; return sqlite3_create_module(db, "sqlite_dbpage", &dbpage_module, 0); } #elif defined(SQLITE_ENABLE_DBPAGE_VTAB) SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){ return SQLITE_OK; } #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ | > | 192841 192842 192843 192844 192845 192846 192847 192848 192849 192850 192851 192852 192853 192854 192855 | 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0 /* xShadowName */ }; return sqlite3_create_module(db, "sqlite_dbpage", &dbpage_module, 0); } #elif defined(SQLITE_ENABLE_DBPAGE_VTAB) SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){ return SQLITE_OK; } #endif /* SQLITE_ENABLE_DBSTAT_VTAB */ |
︙ | ︙ | |||
191591 191592 191593 191594 191595 191596 191597 191598 191599 191600 191601 191602 191603 191604 | #ifndef SESSIONS_STRM_CHUNK_SIZE # ifdef SQLITE_TEST # define SESSIONS_STRM_CHUNK_SIZE 64 # else # define SESSIONS_STRM_CHUNK_SIZE 1024 # endif #endif typedef struct SessionHook SessionHook; struct SessionHook { void *pCtx; int (*xOld)(void*,int,sqlite3_value**); int (*xNew)(void*,int,sqlite3_value**); int (*xCount)(void*); | > > | 192877 192878 192879 192880 192881 192882 192883 192884 192885 192886 192887 192888 192889 192890 192891 192892 | #ifndef SESSIONS_STRM_CHUNK_SIZE # ifdef SQLITE_TEST # define SESSIONS_STRM_CHUNK_SIZE 64 # else # define SESSIONS_STRM_CHUNK_SIZE 1024 # endif #endif static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE; typedef struct SessionHook SessionHook; struct SessionHook { void *pCtx; int (*xOld)(void*,int,sqlite3_value**); int (*xNew)(void*,int,sqlite3_value**); int (*xCount)(void*); |
︙ | ︙ | |||
191654 191655 191656 191657 191658 191659 191660 191661 191662 191663 191664 191665 191666 191667 | /* ** Structure for changeset iterators. */ struct sqlite3_changeset_iter { SessionInput in; /* Input buffer or stream */ SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ int bPatchset; /* True if this is a patchset */ int rc; /* Iterator error code */ sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ char *zTab; /* Current table */ int nCol; /* Number of columns in zTab */ int op; /* Current operation */ int bIndirect; /* True if current change was indirect */ u8 *abPK; /* Primary key array */ | > | 192942 192943 192944 192945 192946 192947 192948 192949 192950 192951 192952 192953 192954 192955 192956 | /* ** Structure for changeset iterators. */ struct sqlite3_changeset_iter { SessionInput in; /* Input buffer or stream */ SessionBuffer tblhdr; /* Buffer to hold apValue/zTab/abPK/ */ int bPatchset; /* True if this is a patchset */ int bInvert; /* True to invert changeset */ int rc; /* Iterator error code */ sqlite3_stmt *pConflict; /* Points to conflicting row, if any */ char *zTab; /* Current table */ int nCol; /* Number of columns in zTab */ int op; /* Current operation */ int bIndirect; /* True if current change was indirect */ u8 *abPK; /* Primary key array */ |
︙ | ︙ | |||
191810 191811 191812 191813 191814 191815 191816 191817 191818 191819 191820 191821 191822 191823 | ** columns and columns that are modified by the UPDATE are set to "undefined". ** PRIMARY KEY fields contain the values identifying the table row to update, ** and fields associated with modified columns contain the new column values. ** ** The records associated with INSERT changes are in the same format as for ** changesets. It is not possible for a record associated with an INSERT ** change to contain a field set to "undefined". */ /* ** For each row modified during a session, there exists a single instance of ** this structure stored in a SessionTable.aChange[] hash table. */ struct SessionChange { | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 193099 193100 193101 193102 193103 193104 193105 193106 193107 193108 193109 193110 193111 193112 193113 193114 193115 193116 193117 193118 193119 193120 193121 193122 193123 193124 193125 193126 193127 193128 193129 193130 193131 193132 193133 193134 193135 193136 193137 193138 193139 193140 193141 193142 193143 193144 193145 193146 193147 193148 | ** columns and columns that are modified by the UPDATE are set to "undefined". ** PRIMARY KEY fields contain the values identifying the table row to update, ** and fields associated with modified columns contain the new column values. ** ** The records associated with INSERT changes are in the same format as for ** changesets. It is not possible for a record associated with an INSERT ** change to contain a field set to "undefined". ** ** REBASE BLOB FORMAT: ** ** A rebase blob may be output by sqlite3changeset_apply_v2() and its ** streaming equivalent for use with the sqlite3_rebaser APIs to rebase ** existing changesets. A rebase blob contains one entry for each conflict ** resolved using either the OMIT or REPLACE strategies within the apply_v2() ** call. ** ** The format used for a rebase blob is very similar to that used for ** changesets. All entries related to a single table are grouped together. ** ** Each group of entries begins with a table header in changeset format: ** ** 1 byte: Constant 0x54 (capital 'T') ** Varint: Number of columns in the table. ** nCol bytes: 0x01 for PK columns, 0x00 otherwise. ** N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated. ** ** Followed by one or more entries associated with the table. ** ** 1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09). ** 1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT. ** record: (in the record format defined above). ** ** In a rebase blob, the first field is set to SQLITE_INSERT if the change ** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if ** it was a DELETE. The second field is set to 0x01 if the conflict ** resolution strategy was REPLACE, or 0x00 if it was OMIT. ** ** If the change that caused the conflict was a DELETE, then the single ** record is a copy of the old.* record from the original changeset. If it ** was an INSERT, then the single record is a copy of the new.* record. If ** the conflicting change was an UPDATE, then the single record is a copy ** of the new.* record with the PK fields filled in based on the original ** old.* record. */ /* ** For each row modified during a session, there exists a single instance of ** this structure stored in a SessionTable.aChange[] hash table. */ struct SessionChange { |
︙ | ︙ | |||
193360 193361 193362 193363 193364 193365 193366 | ** ** If successful, return zero. Otherwise, if an OOM condition is encountered, ** set *pRc to SQLITE_NOMEM and return non-zero. */ static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ u8 *aNew; | | | | | 194685 194686 194687 194688 194689 194690 194691 194692 194693 194694 194695 194696 194697 194698 194699 194700 194701 194702 194703 194704 | ** ** If successful, return zero. Otherwise, if an OOM condition is encountered, ** set *pRc to SQLITE_NOMEM and return non-zero. */ static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){ if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){ u8 *aNew; i64 nNew = p->nAlloc ? p->nAlloc : 128; do { nNew = nNew*2; }while( (nNew-p->nBuf)<nByte ); aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew); if( 0==aNew ){ *pRc = SQLITE_NOMEM; }else{ p->aBuf = aNew; p->nAlloc = nNew; } } |
︙ | ︙ | |||
193963 193964 193965 193966 193967 193968 193969 | }else if( p->op!=SQLITE_INSERT ){ rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); } if( rc==SQLITE_OK ){ rc = sqlite3_reset(pSel); } | | | | 195288 195289 195290 195291 195292 195293 195294 195295 195296 195297 195298 195299 195300 195301 195302 195303 195304 195305 195306 195307 | }else if( p->op!=SQLITE_INSERT ){ rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK); } if( rc==SQLITE_OK ){ rc = sqlite3_reset(pSel); } /* If the buffer is now larger than sessions_strm_chunk_size, pass ** its contents to the xOutput() callback. */ if( xOutput && rc==SQLITE_OK && buf.nBuf>nNoop && buf.nBuf>sessions_strm_chunk_size ){ rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf); nNoop = -1; buf.nBuf = 0; } } |
︙ | ︙ | |||
194107 194108 194109 194110 194111 194112 194113 | ** Do the work for either sqlite3changeset_start() or start_strm(). */ static int sessionChangesetStart( sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int nChangeset, /* Size of buffer pChangeset in bytes */ | | > > | > > > > > > > > > | > > > > > > > > > | | 195432 195433 195434 195435 195436 195437 195438 195439 195440 195441 195442 195443 195444 195445 195446 195447 195448 195449 195450 195451 195452 195453 195454 195455 195456 195457 195458 195459 195460 195461 195462 195463 195464 195465 195466 195467 195468 195469 195470 195471 195472 195473 195474 195475 195476 195477 195478 195479 195480 195481 195482 195483 195484 195485 195486 195487 195488 195489 195490 195491 195492 195493 195494 195495 195496 195497 195498 195499 195500 195501 195502 195503 195504 195505 195506 195507 195508 195509 195510 195511 195512 195513 195514 195515 195516 195517 195518 195519 | ** Do the work for either sqlite3changeset_start() or start_strm(). */ static int sessionChangesetStart( sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int nChangeset, /* Size of buffer pChangeset in bytes */ void *pChangeset, /* Pointer to buffer containing changeset */ int bInvert /* True to invert changeset */ ){ sqlite3_changeset_iter *pRet; /* Iterator to return */ int nByte; /* Number of bytes to allocate for iterator */ assert( xInput==0 || (pChangeset==0 && nChangeset==0) ); /* Zero the output variable in case an error occurs. */ *pp = 0; /* Allocate and initialize the iterator structure. */ nByte = sizeof(sqlite3_changeset_iter); pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte); if( !pRet ) return SQLITE_NOMEM; memset(pRet, 0, sizeof(sqlite3_changeset_iter)); pRet->in.aData = (u8 *)pChangeset; pRet->in.nData = nChangeset; pRet->in.xInput = xInput; pRet->in.pIn = pIn; pRet->in.bEof = (xInput ? 0 : 1); pRet->bInvert = bInvert; /* Populate the output variable and return success. */ *pp = pRet; return SQLITE_OK; } /* ** Create an iterator used to iterate through the contents of a changeset. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ int nChangeset, /* Size of buffer pChangeset in bytes */ void *pChangeset /* Pointer to buffer containing changeset */ ){ return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0); } SQLITE_API int sqlite3changeset_start_v2( sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ int nChangeset, /* Size of buffer pChangeset in bytes */ void *pChangeset, /* Pointer to buffer containing changeset */ int flags ){ int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT); return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert); } /* ** Streaming version of sqlite3changeset_start(). */ SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ){ return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0); } SQLITE_API int sqlite3changeset_start_v2_strm( sqlite3_changeset_iter **pp, /* OUT: Changeset iterator handle */ int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int flags ){ int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT); return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert); } /* ** If the SessionInput object passed as the only argument is a streaming ** object and the buffer is full, discard some data to free up space. */ static void sessionDiscardData(SessionInput *pIn){ if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){ int nMove = pIn->buf.nBuf - pIn->iNext; assert( nMove>=0 ); if( nMove>0 ){ memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove); } pIn->buf.nBuf -= pIn->iNext; pIn->iNext = 0; |
︙ | ︙ | |||
194183 194184 194185 194186 194187 194188 194189 | ** ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. */ static int sessionInputBuffer(SessionInput *pIn, int nByte){ int rc = SQLITE_OK; if( pIn->xInput ){ while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ | | | 195528 195529 195530 195531 195532 195533 195534 195535 195536 195537 195538 195539 195540 195541 195542 | ** ** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise. */ static int sessionInputBuffer(SessionInput *pIn, int nByte){ int rc = SQLITE_OK; if( pIn->xInput ){ while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){ int nNew = sessions_strm_chunk_size; if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn); if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){ rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew); if( nNew==0 ){ pIn->bEof = 1; }else{ |
︙ | ︙ | |||
194531 194532 194533 194534 194535 194536 194537 | if( sessionChangesetReadTblhdr(p) ) return p->rc; if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; p->in.iCurrent = p->in.iNext; if( p->in.iNext>=p->in.nData ) return SQLITE_DONE; op = p->in.aData[p->in.iNext++]; } | | | | 195876 195877 195878 195879 195880 195881 195882 195883 195884 195885 195886 195887 195888 195889 195890 195891 195892 195893 | if( sessionChangesetReadTblhdr(p) ) return p->rc; if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc; p->in.iCurrent = p->in.iNext; if( p->in.iNext>=p->in.nData ) return SQLITE_DONE; op = p->in.aData[p->in.iNext++]; } if( p->zTab==0 || (p->bPatchset && p->bInvert) ){ /* The first record in the changeset is not a table header. Must be a ** corrupt changeset. */ assert( p->in.iNext==1 || p->zTab ); return (p->rc = SQLITE_CORRUPT_BKPT); } p->op = op; p->bIndirect = p->in.aData[p->in.iNext++]; if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){ return (p->rc = SQLITE_CORRUPT_BKPT); |
︙ | ︙ | |||
194559 194560 194561 194562 194563 194564 194565 194566 194567 194568 194569 | nVal = p->nCol; } p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); if( p->rc!=SQLITE_OK ) return p->rc; *paRec = &p->in.aData[p->in.iNext]; p->in.iNext += *pnRec; }else{ /* If this is an UPDATE or DELETE, read the old.* record. */ if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ u8 *abPK = p->bPatchset ? p->abPK : 0; | > > | | | | > > > > | 195904 195905 195906 195907 195908 195909 195910 195911 195912 195913 195914 195915 195916 195917 195918 195919 195920 195921 195922 195923 195924 195925 195926 195927 195928 195929 195930 195931 195932 195933 195934 195935 195936 195937 195938 195939 195940 195941 195942 195943 195944 195945 195946 195947 195948 195949 195950 | nVal = p->nCol; } p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec); if( p->rc!=SQLITE_OK ) return p->rc; *paRec = &p->in.aData[p->in.iNext]; p->in.iNext += *pnRec; }else{ sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue); sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]); /* If this is an UPDATE or DELETE, read the old.* record. */ if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){ u8 *abPK = p->bPatchset ? p->abPK : 0; p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld); if( p->rc!=SQLITE_OK ) return p->rc; } /* If this is an INSERT or UPDATE, read the new.* record. */ if( p->op!=SQLITE_DELETE ){ p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew); if( p->rc!=SQLITE_OK ) return p->rc; } if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){ /* If this is an UPDATE that is part of a patchset, then all PK and ** modified fields are present in the new.* record. The old.* record ** is currently completely empty. This block shifts the PK fields from ** new.* to old.*, to accommodate the code that reads these arrays. */ for(i=0; i<p->nCol; i++){ assert( p->bPatchset==0 || p->apValue[i]==0 ); if( p->abPK[i] ){ assert( p->apValue[i]==0 ); p->apValue[i] = p->apValue[i+p->nCol]; if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT); p->apValue[i+p->nCol] = 0; } } }else if( p->bInvert ){ if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE; else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT; } } return SQLITE_ROW; } /* |
︙ | ︙ | |||
194902 194903 194904 194905 194906 194907 194908 | default: rc = SQLITE_CORRUPT_BKPT; goto finished_invert; } assert( rc==SQLITE_OK ); | | | 196253 196254 196255 196256 196257 196258 196259 196260 196261 196262 196263 196264 196265 196266 196267 | default: rc = SQLITE_CORRUPT_BKPT; goto finished_invert; } assert( rc==SQLITE_OK ); if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); sOut.nBuf = 0; if( rc!=SQLITE_OK ) goto finished_invert; } } assert( rc==SQLITE_OK ); |
︙ | ︙ | |||
194981 194982 194983 194984 194985 194986 194987 | int nCol; /* Size of azCol[] and abPK[] arrays */ const char **azCol; /* Array of column names */ u8 *abPK; /* Boolean array - true if column is in PK */ int bStat1; /* True if table is sqlite_stat1 */ int bDeferConstraints; /* True to defer constraints */ SessionBuffer constraints; /* Deferred constraints are stored here */ SessionBuffer rebase; /* Rebase information (if any) here */ | | > | 196332 196333 196334 196335 196336 196337 196338 196339 196340 196341 196342 196343 196344 196345 196346 196347 | int nCol; /* Size of azCol[] and abPK[] arrays */ const char **azCol; /* Array of column names */ u8 *abPK; /* Boolean array - true if column is in PK */ int bStat1; /* True if table is sqlite_stat1 */ int bDeferConstraints; /* True to defer constraints */ SessionBuffer constraints; /* Deferred constraints are stored here */ SessionBuffer rebase; /* Rebase information (if any) here */ u8 bRebaseStarted; /* If table header is already in rebase */ u8 bRebase; /* True to collect rebase information */ }; /* ** Formulate a statement to DELETE a row from database db. Assuming a table ** structure like this: ** ** CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c)); |
︙ | ︙ | |||
195378 195379 195380 195381 195382 195383 195384 | */ static int sessionRebaseAdd( SessionApplyCtx *p, /* Apply context */ int eType, /* Conflict resolution (OMIT or REPLACE) */ sqlite3_changeset_iter *pIter /* Iterator pointing at current change */ ){ int rc = SQLITE_OK; | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | 196730 196731 196732 196733 196734 196735 196736 196737 196738 196739 196740 196741 196742 196743 196744 196745 196746 196747 196748 196749 196750 196751 196752 196753 196754 196755 196756 196757 196758 196759 196760 196761 196762 196763 196764 196765 196766 196767 196768 196769 196770 196771 196772 196773 | */ static int sessionRebaseAdd( SessionApplyCtx *p, /* Apply context */ int eType, /* Conflict resolution (OMIT or REPLACE) */ sqlite3_changeset_iter *pIter /* Iterator pointing at current change */ ){ int rc = SQLITE_OK; if( p->bRebase ){ int i; int eOp = pIter->op; if( p->bRebaseStarted==0 ){ /* Append a table-header to the rebase buffer */ const char *zTab = pIter->zTab; sessionAppendByte(&p->rebase, 'T', &rc); sessionAppendVarint(&p->rebase, p->nCol, &rc); sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc); sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc); p->bRebaseStarted = 1; } assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT ); assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE ); sessionAppendByte(&p->rebase, (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc ); sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc); for(i=0; i<p->nCol; i++){ sqlite3_value *pVal = 0; if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){ sqlite3changeset_old(pIter, i, &pVal); }else{ sqlite3changeset_new(pIter, i, &pVal); } sessionAppendValue(&p->rebase, pVal, &rc); } } return rc; } /* ** Invoke the conflict handler for the change that the changeset iterator ** currently points to. ** |
︙ | ︙ | |||
195749 195750 195751 195752 195753 195754 195755 | int rc = SQLITE_OK; while( pApply->constraints.nBuf ){ sqlite3_changeset_iter *pIter2 = 0; SessionBuffer cons = pApply->constraints; memset(&pApply->constraints, 0, sizeof(SessionBuffer)); | | | 197102 197103 197104 197105 197106 197107 197108 197109 197110 197111 197112 197113 197114 197115 197116 | int rc = SQLITE_OK; while( pApply->constraints.nBuf ){ sqlite3_changeset_iter *pIter2 = 0; SessionBuffer cons = pApply->constraints; memset(&pApply->constraints, 0, sizeof(SessionBuffer)); rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf, 0); if( rc==SQLITE_OK ){ int nByte = 2*pApply->nCol*sizeof(sqlite3_value*); int rc2; pIter2->bPatchset = bPatchset; pIter2->zTab = (char*)zTab; pIter2->nCol = pApply->nCol; pIter2->abPK = pApply->abPK; |
︙ | ︙ | |||
195815 195816 195817 195818 195819 195820 195821 195822 195823 195824 195825 195826 195827 195828 | SessionApplyCtx sApply; /* changeset_apply() context object */ int bPatchset; assert( xConflict!=0 ); pIter->in.bNoDiscard = 1; memset(&sApply, 0, sizeof(sApply)); sqlite3_mutex_enter(sqlite3_db_mutex(db)); if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); } | > | 197168 197169 197170 197171 197172 197173 197174 197175 197176 197177 197178 197179 197180 197181 197182 | SessionApplyCtx sApply; /* changeset_apply() context object */ int bPatchset; assert( xConflict!=0 ); pIter->in.bNoDiscard = 1; memset(&sApply, 0, sizeof(sApply)); sApply.bRebase = (ppRebase && pnRebase); sqlite3_mutex_enter(sqlite3_db_mutex(db)); if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){ rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0); } if( rc==SQLITE_OK ){ rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0); } |
︙ | ︙ | |||
195965 195966 195967 195968 195969 195970 195971 | rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); }else{ sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); } } | > | | 197319 197320 197321 197322 197323 197324 197325 197326 197327 197328 197329 197330 197331 197332 197333 197334 | rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); }else{ sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0); sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0); } } assert( sApply.bRebase || sApply.rebase.nBuf==0 ); if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){ *ppRebase = (void*)sApply.rebase.aBuf; *pnRebase = sApply.rebase.nBuf; sApply.rebase.aBuf = 0; } sqlite3_finalize(sApply.pInsert); sqlite3_finalize(sApply.pDelete); sqlite3_finalize(sApply.pUpdate); |
︙ | ︙ | |||
196003 196004 196005 196006 196007 196008 196009 | sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, int flags ){ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ | > | | 197358 197359 197360 197361 197362 197363 197364 197365 197366 197367 197368 197369 197370 197371 197372 197373 | sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, int flags ){ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset,bInverse); if( rc==SQLITE_OK ){ rc = sessionChangesetApply( db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags ); } return rc; } |
︙ | ︙ | |||
196060 196061 196062 196063 196064 196065 196066 | sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, int flags ){ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ | > | | 197416 197417 197418 197419 197420 197421 197422 197423 197424 197425 197426 197427 197428 197429 197430 197431 | sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, int flags ){ sqlite3_changeset_iter *pIter; /* Iterator to skip through changeset */ int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT); int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse); if( rc==SQLITE_OK ){ rc = sessionChangesetApply( db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags ); } return rc; } |
︙ | ︙ | |||
196433 196434 196435 196436 196437 196438 196439 | sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); for(i=0; i<pTab->nChange; i++){ SessionChange *p; for(p=pTab->apChange[i]; p; p=p->pNext){ sessionAppendByte(&buf, p->op, &rc); sessionAppendByte(&buf, p->bIndirect, &rc); sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); | < < < | | | | > > | 197790 197791 197792 197793 197794 197795 197796 197797 197798 197799 197800 197801 197802 197803 197804 197805 197806 197807 197808 197809 | sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc); for(i=0; i<pTab->nChange; i++){ SessionChange *p; for(p=pTab->apChange[i]; p; p=p->pNext){ sessionAppendByte(&buf, p->op, &rc); sessionAppendByte(&buf, p->bIndirect, &rc); sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc); if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){ rc = xOutput(pOut, buf.aBuf, buf.nBuf); buf.nBuf = 0; } } } } if( rc==SQLITE_OK ){ if( xOutput ){ if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf); }else{ *ppOut = buf.aBuf; |
︙ | ︙ | |||
196830 196831 196832 196833 196834 196835 196836 | } if( bDone==0 ){ sessionAppendByte(&sOut, pIter->op, &rc); sessionAppendByte(&sOut, pIter->bIndirect, &rc); sessionAppendBlob(&sOut, aRec, nRec, &rc); } | | | 198186 198187 198188 198189 198190 198191 198192 198193 198194 198195 198196 198197 198198 198199 198200 | } if( bDone==0 ){ sessionAppendByte(&sOut, pIter->op, &rc); sessionAppendByte(&sOut, pIter->bIndirect, &rc); sessionAppendBlob(&sOut, aRec, nRec, &rc); } if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){ rc = xOutput(pOut, sOut.aBuf, sOut.nBuf); sOut.nBuf = 0; } if( rc ) break; } if( rc!=SQLITE_OK ){ |
︙ | ︙ | |||
196940 196941 196942 196943 196944 196945 196946 196947 196948 196949 196950 196951 196952 196953 | */ SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p){ if( p ){ sessionDeleteTable(p->grp.pList); sqlite3_free(p); } } #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ /************** End of sqlite3session.c **************************************/ /************** Begin file fts5.c ********************************************/ | > > > > > > > > > > > > > > > > > > > > > | 198296 198297 198298 198299 198300 198301 198302 198303 198304 198305 198306 198307 198308 198309 198310 198311 198312 198313 198314 198315 198316 198317 198318 198319 198320 198321 198322 198323 198324 198325 198326 198327 198328 198329 198330 | */ SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p){ if( p ){ sessionDeleteTable(p->grp.pList); sqlite3_free(p); } } /* ** Global configuration */ SQLITE_API int sqlite3session_config(int op, void *pArg){ int rc = SQLITE_OK; switch( op ){ case SQLITE_SESSION_CONFIG_STRMSIZE: { int *pInt = (int*)pArg; if( *pInt>0 ){ sessions_strm_chunk_size = *pInt; } *pInt = sessions_strm_chunk_size; break; } default: rc = SQLITE_MISUSE; break; } return rc; } #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */ /************** End of sqlite3session.c **************************************/ /************** Begin file fts5.c ********************************************/ |
︙ | ︙ | |||
197402 197403 197404 197405 197406 197407 197408 | ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do would be ** inefficient), it doesn't matter if the user queries for | | | 198779 198780 198781 198782 198783 198784 198785 198786 198787 198788 198789 198790 198791 198792 198793 | ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do would be ** inefficient), it doesn't matter if the user queries for ** 'first + place' or '1st + place', as there are entries in the ** FTS index corresponding to both forms of the first token. ** </ol> ** ** Whether it is parsing document or query text, any call to xToken that ** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit ** is considered to supply a synonym for the previous token. For example, ** when parsing the document "I won first place", a tokenizer that supports |
︙ | ︙ | |||
197430 197431 197432 197433 197434 197435 197436 | ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the | | | 198807 198808 198809 198810 198811 198812 198813 198814 198815 198816 198817 198818 198819 198820 198821 | ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the ** token "first" is substituted for "1st" by the tokenizer, then the query: ** ** <codeblock> ** ... MATCH '1s*'</codeblock> ** ** will not match documents that contain the token "1st" (as the tokenizer ** will probably not map "1s" to any prefix of "first"). ** |
︙ | ︙ | |||
198375 198376 198377 198378 198379 198380 198381 198382 198383 198384 198385 198386 198387 198388 | ** of this template is copied straight through into the generate parser ** source file. ** ** The following is the concatenation of all %include directives from the ** input grammar file: */ /* #include <stdio.h> */ /************ Begin %include sections from the grammar ************************/ /* #include "fts5Int.h" */ /* #include "fts5parse.h" */ /* ** Disable all error recovery processing in the parser push-down | > | 199752 199753 199754 199755 199756 199757 199758 199759 199760 199761 199762 199763 199764 199765 199766 | ** of this template is copied straight through into the generate parser ** source file. ** ** The following is the concatenation of all %include directives from the ** input grammar file: */ /* #include <stdio.h> */ /* #include <assert.h> */ /************ Begin %include sections from the grammar ************************/ /* #include "fts5Int.h" */ /* #include "fts5parse.h" */ /* ** Disable all error recovery processing in the parser push-down |
︙ | ︙ | |||
199702 199703 199704 199705 199706 199707 199708 | fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]); } #endif fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion); fts5yymajor = fts5YYNOCODE; }else{ while( fts5yypParser->fts5yytos >= fts5yypParser->fts5yystack | < | | 201080 201081 201082 201083 201084 201085 201086 201087 201088 201089 201090 201091 201092 201093 201094 201095 201096 | fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]); } #endif fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion); fts5yymajor = fts5YYNOCODE; }else{ while( fts5yypParser->fts5yytos >= fts5yypParser->fts5yystack && (fts5yyact = fts5yy_find_reduce_action( fts5yypParser->fts5yytos->stateno, fts5YYERRORSYMBOL)) > fts5YY_MAX_SHIFTREDUCE ){ fts5yy_pop_parser_stack(fts5yypParser); } if( fts5yypParser->fts5yytos < fts5yypParser->fts5yystack || fts5yymajor==0 ){ fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion); fts5yy_parse_failed(fts5yypParser); #ifndef fts5YYNOERRORRECOVERY |
︙ | ︙ | |||
210655 210656 210657 210658 210659 210660 210661 | if( p->rc ){ sqlite3Fts5IterClose((Fts5IndexIter*)pRet); pRet = 0; fts5CloseReader(p); } | | | 212032 212033 212034 212035 212036 212037 212038 212039 212040 212041 212042 212043 212044 212045 212046 | if( p->rc ){ sqlite3Fts5IterClose((Fts5IndexIter*)pRet); pRet = 0; fts5CloseReader(p); } *ppIter = (Fts5IndexIter*)pRet; sqlite3Fts5BufferFree(&buf); } return fts5IndexReturn(p); } /* ** Return true if the iterator passed as the only argument is at EOF. |
︙ | ︙ | |||
214404 214405 214406 214407 214408 214409 214410 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); | > > | > > > > > > > > > > > > > | | 215781 215782 215783 215784 215785 215786 215787 215788 215789 215790 215791 215792 215793 215794 215795 215796 215797 215798 215799 215800 215801 215802 215803 215804 215805 215806 215807 215808 215809 215810 215811 215812 215813 215814 215815 | static void fts5SourceIdFunc( sqlite3_context *pCtx, /* Function call context */ int nArg, /* Number of args */ sqlite3_value **apUnused /* Function arguments */ ){ assert( nArg==0 ); UNUSED_PARAM2(nArg, apUnused); sqlite3_result_text(pCtx, "fts5: 2018-11-27 17:02:38 3c893d9bcc34c391505b08cc35808dd3abddf3c5d952798334c296547bcae6a6", -1, SQLITE_TRANSIENT); } /* ** Return true if zName is the extension on one of the shadow tables used ** by this module. */ static int fts5ShadowName(const char *zName){ static const char *azName[] = { "config", "content", "data", "docsize", "idx" }; unsigned int i; for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){ if( sqlite3_stricmp(zName, azName[i])==0 ) return 1; } return 0; } static int fts5Init(sqlite3 *db){ static const sqlite3_module fts5Mod = { /* iVersion */ 3, /* xCreate */ fts5CreateMethod, /* xConnect */ fts5ConnectMethod, /* xBestIndex */ fts5BestIndexMethod, /* xDisconnect */ fts5DisconnectMethod, /* xDestroy */ fts5DestroyMethod, /* xOpen */ fts5OpenMethod, /* xClose */ fts5CloseMethod, |
︙ | ︙ | |||
214432 214433 214434 214435 214436 214437 214438 214439 214440 214441 214442 214443 214444 214445 | /* xCommit */ fts5CommitMethod, /* xRollback */ fts5RollbackMethod, /* xFindFunction */ fts5FindFunctionMethod, /* xRename */ fts5RenameMethod, /* xSavepoint */ fts5SavepointMethod, /* xRelease */ fts5ReleaseMethod, /* xRollbackTo */ fts5RollbackToMethod, }; int rc; Fts5Global *pGlobal = 0; pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global)); if( pGlobal==0 ){ | > | 215824 215825 215826 215827 215828 215829 215830 215831 215832 215833 215834 215835 215836 215837 215838 | /* xCommit */ fts5CommitMethod, /* xRollback */ fts5RollbackMethod, /* xFindFunction */ fts5FindFunctionMethod, /* xRename */ fts5RenameMethod, /* xSavepoint */ fts5SavepointMethod, /* xRelease */ fts5ReleaseMethod, /* xRollbackTo */ fts5RollbackToMethod, /* xShadowName */ fts5ShadowName }; int rc; Fts5Global *pGlobal = 0; pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global)); if( pGlobal==0 ){ |
︙ | ︙ | |||
218476 218477 218478 218479 218480 218481 218482 218483 218484 218485 218486 218487 218488 218489 218490 218491 | static int fts5VocabInstanceNext(Fts5VocabCursor *pCsr){ int eDetail = pCsr->pConfig->eDetail; int rc = SQLITE_OK; Fts5IndexIter *pIter = pCsr->pIter; i64 *pp = &pCsr->iInstPos; int *po = &pCsr->iInstOff; while( eDetail==FTS5_DETAIL_NONE || sqlite3Fts5PoslistNext64(pIter->pData, pIter->nData, po, pp) ){ pCsr->iInstPos = 0; pCsr->iInstOff = 0; rc = sqlite3Fts5IterNextScan(pCsr->pIter); if( rc==SQLITE_OK ){ rc = fts5VocabInstanceNewTerm(pCsr); | > > | | 219869 219870 219871 219872 219873 219874 219875 219876 219877 219878 219879 219880 219881 219882 219883 219884 219885 219886 219887 219888 219889 219890 219891 219892 219893 219894 | static int fts5VocabInstanceNext(Fts5VocabCursor *pCsr){ int eDetail = pCsr->pConfig->eDetail; int rc = SQLITE_OK; Fts5IndexIter *pIter = pCsr->pIter; i64 *pp = &pCsr->iInstPos; int *po = &pCsr->iInstOff; assert( sqlite3Fts5IterEof(pIter)==0 ); assert( pCsr->bEof==0 ); while( eDetail==FTS5_DETAIL_NONE || sqlite3Fts5PoslistNext64(pIter->pData, pIter->nData, po, pp) ){ pCsr->iInstPos = 0; pCsr->iInstOff = 0; rc = sqlite3Fts5IterNextScan(pCsr->pIter); if( rc==SQLITE_OK ){ rc = fts5VocabInstanceNewTerm(pCsr); if( pCsr->bEof || eDetail==FTS5_DETAIL_NONE ) break; } if( rc ){ pCsr->bEof = 1; break; } } |
︙ | ︙ | |||
218800 218801 218802 218803 218804 218805 218806 218807 218808 218809 218810 218811 | /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, }; void *p = (void*)pGlobal; return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0); } | > < < | 220195 220196 220197 220198 220199 220200 220201 220202 220203 220204 220205 220206 220207 220208 220209 220210 220211 220212 220213 220214 | /* xCommit */ 0, /* xRollback */ 0, /* xFindFunction */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ 0 }; void *p = (void*)pGlobal; return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0); } #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) */ /************** End of fts5.c ************************************************/ /************** Begin file stmt.c ********************************************/ |
︙ | ︙ | |||
219082 219083 219084 219085 219086 219087 219088 219089 219090 219091 219092 219093 219094 219095 | 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3 *db){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_VIRTUALTABLE | > | 220476 220477 220478 220479 220480 220481 220482 220483 220484 220485 220486 220487 220488 220489 220490 | 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ 0, /* xSavepoint */ 0, /* xRelease */ 0, /* xRollbackTo */ 0, /* xShadowName */ }; #endif /* SQLITE_OMIT_VIRTUALTABLE */ SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3 *db){ int rc = SQLITE_OK; #ifndef SQLITE_OMIT_VIRTUALTABLE |
︙ | ︙ | |||
219114 219115 219116 219117 219118 219119 219120 | #endif return rc; } #endif /* SQLITE_CORE */ #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */ /************** End of stmt.c ************************************************/ | | | | 220509 220510 220511 220512 220513 220514 220515 220516 220517 220518 220519 220520 220521 220522 | #endif return rc; } #endif /* SQLITE_CORE */ #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */ /************** End of stmt.c ************************************************/ #if __LINE__!=220516 #undef SQLITE_SOURCE_ID #define SQLITE_SOURCE_ID "2018-11-27 19:47:55 0ea049f342d11c676e148239e45d252164081362e921a4beb735d6899eb7alt2" #endif /* Return the source-id for this library */ SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; } /************************** End of sqlite3.c ******************************/ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
119 120 121 122 123 124 125 | ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | ** been edited in any way since it was last checked in, then the last ** four hexadecimal digits of the hash may be modified. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.26.0" #define SQLITE_VERSION_NUMBER 3026000 #define SQLITE_SOURCE_ID "2018-11-27 19:47:55 0ea049f342d11c676e148239e45d252164081362e921a4beb735d6899eb77344" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
1078 1079 1080 1081 1082 1083 1084 | ** ** <li>[[SQLITE_FCNTL_DATA_VERSION]] ** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to ** a database file. The argument is a pointer to a 32-bit unsigned integer. ** The "data version" for the pager is written into the pointer. The ** "data version" changes whenever any change occurs to the corresponding ** database file, either through SQL statements on the same database | | | | | | > | 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | ** ** <li>[[SQLITE_FCNTL_DATA_VERSION]] ** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to ** a database file. The argument is a pointer to a 32-bit unsigned integer. ** The "data version" for the pager is written into the pointer. The ** "data version" changes whenever any change occurs to the corresponding ** database file, either through SQL statements on the same database ** connection or through transactions committed by separate database ** connections possibly in other processes. The [sqlite3_total_changes()] ** interface can be used to find if any database on the connection has changed, ** but that interface responds to changes on TEMP as well as MAIN and does ** not provide a mechanism to detect changes to MAIN only. Also, the ** [sqlite3_total_changes()] interface responds to internal changes only and ** omits changes made by other database connections. The ** [PRAGMA data_version] command provide a mechanism to detect changes to ** a single attached database that occur due to other database connections, ** but omits changes implemented by the database connection on which it is ** called. This file control is the only mechanism to detect changes that ** happen either internally or externally and that are associated with ** a particular attached database. ** </ul> */ #define SQLITE_FCNTL_LOCKSTATE 1 #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2 #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3 #define SQLITE_FCNTL_LAST_ERRNO 4 #define SQLITE_FCNTL_SIZE_HINT 5 |
︙ | ︙ | |||
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 | ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that ** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** ** <dl> ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the | > | 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 | ** Existing configuration options might be discontinued. Applications ** should check the return code from [sqlite3_db_config()] to make sure that ** the call worked. ^The [sqlite3_db_config()] interface will return a ** non-zero [error code] if a discontinued or unsupported configuration option ** is invoked. ** ** <dl> ** [[SQLITE_DBCONFIG_LOOKASIDE]] ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt> ** <dd> ^This option takes three additional arguments that determine the ** [lookaside memory allocator] configuration for the [database connection]. ** ^The first argument (the third parameter to [sqlite3_db_config()] is a ** pointer to a memory buffer to use for lookaside memory. ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb ** may be NULL in which case SQLite will allocate the |
︙ | ︙ | |||
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 | ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^</dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> ** <dd> ^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt> ** <dd> ^This option is used to enable or disable the two-argument ** version of the [fts3_tokenizer()] function which is part of the ** [FTS3] full-text search engine extension. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable fts3_tokenizer() or ** positive to enable fts3_tokenizer() or negative to leave the setting ** unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the new setting is not reported back. </dd> ** ** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt> ** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()] ** interface independently of the [load_extension()] SQL function. ** The [sqlite3_enable_load_extension()] API enables or disables both the ** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. ** There should be two additional arguments. ** When the first argument to this interface is 1, then only the C-API is ** enabled and the SQL function remains disabled. If the first argument to ** this interface is 0, then both the C-API and the SQL function are disabled. ** If the first argument is -1, then no changes are made to state of either the ** C-API or the SQL function. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface ** is disabled or enabled following this call. The second parameter may ** be a NULL pointer, in which case the new setting is not reported back. ** </dd> ** | > > > > | > | | | > > > > > > > > > > > > > | | 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 | ** connection is not currently using lookaside memory, or in other words ** when the "current value" returned by ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero. ** Any attempt to change the lookaside memory configuration when lookaside ** memory is in use leaves the configuration unchanged and returns ** [SQLITE_BUSY].)^</dd> ** ** [[SQLITE_DBCONFIG_ENABLE_FKEY]] ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt> ** <dd> ^This option is used to enable or disable the enforcement of ** [foreign key constraints]. There should be two additional arguments. ** The first argument is an integer which is 0 to disable FK enforcement, ** positive to enable FK enforcement or negative to leave FK enforcement ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether FK enforcement is off or on ** following this call. The second parameter may be a NULL pointer, in ** which case the FK enforcement setting is not reported back. </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]] ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt> ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers]. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable triggers, ** positive to enable triggers or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether triggers are disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the trigger setting is not reported back. </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]] ** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt> ** <dd> ^This option is used to enable or disable the two-argument ** version of the [fts3_tokenizer()] function which is part of the ** [FTS3] full-text search engine extension. ** There should be two additional arguments. ** The first argument is an integer which is 0 to disable fts3_tokenizer() or ** positive to enable fts3_tokenizer() or negative to leave the setting ** unchanged. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled ** following this call. The second parameter may be a NULL pointer, in ** which case the new setting is not reported back. </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]] ** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt> ** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()] ** interface independently of the [load_extension()] SQL function. ** The [sqlite3_enable_load_extension()] API enables or disables both the ** C-API [sqlite3_load_extension()] and the SQL function [load_extension()]. ** There should be two additional arguments. ** When the first argument to this interface is 1, then only the C-API is ** enabled and the SQL function remains disabled. If the first argument to ** this interface is 0, then both the C-API and the SQL function are disabled. ** If the first argument is -1, then no changes are made to state of either the ** C-API or the SQL function. ** The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface ** is disabled or enabled following this call. The second parameter may ** be a NULL pointer, in which case the new setting is not reported back. ** </dd> ** ** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt> ** <dd> ^This option is used to change the name of the "main" database ** schema. ^The sole argument is a pointer to a constant UTF8 string ** which will become the new schema name in place of "main". ^SQLite ** does not make a copy of the new main schema name string, so the application ** must ensure that the argument passed into this DBCONFIG option is unchanged ** until after the database connection closes. ** </dd> ** ** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] ** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt> ** <dd> Usually, when a database in wal mode is closed or detached from a ** database handle, SQLite checks if this will mean that there are now no ** connections at all to the database. If so, it performs a checkpoint ** operation before closing the connection. This option may be used to ** override this behaviour. The first parameter passed to this operation ** is an integer - positive to disable checkpoints-on-close, or zero (the ** default) to enable them, and negative to leave the setting unchanged. ** The second parameter is a pointer to an integer ** into which is written 0 or 1 to indicate whether checkpoints-on-close ** have been disabled - 0 if they are not disabled, 1 if they are. ** </dd> ** ** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt> ** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates ** the [query planner stability guarantee] (QPSG). When the QPSG is active, ** a single SQL query statement will always use the same algorithm regardless ** of values of [bound parameters].)^ The QPSG disables some query optimizations ** that look at the values of bound parameters, which can make some queries ** slower. But the QPSG has the advantage of more predictable behavior. With ** the QPSG active, SQLite will always use the same query plan in the field as ** was used during testing in the lab. ** The first argument to this setting is an integer which is 0 to disable ** the QPSG, positive to enable QPSG, or negative to leave the setting ** unchanged. The second parameter is a pointer to an integer into which ** is written 0 or 1 to indicate whether the QPSG is disabled or enabled ** following this call. ** </dd> ** ** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt> ** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not ** include output for any operations performed by trigger programs. This ** option is used to set or clear (the default) a flag that governs this ** behavior. The first parameter passed to this operation is an integer - ** positive to enable output for trigger programs, or zero to disable it, ** or negative to leave the setting unchanged. ** The second parameter is a pointer to an integer into which is written ** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if ** it is not disabled, 1 if it is. ** </dd> ** ** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt> ** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run ** [VACUUM] in order to reset a database back to an empty database ** with no schema and no content. The following process works even for ** a badly corrupted database file: ** <ol> ** <li> If the database connection is newly opened, make sure it has read the ** database schema by preparing then discarding some query against the ** database, or calling sqlite3_table_column_metadata(), ignoring any ** errors. This step is only necessary if the application desires to keep ** the database in WAL mode after the reset if it was in WAL mode before ** the reset. ** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0); ** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0); ** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0); ** </ol> ** Because resetting a database is destructive and irreversible, the ** process requires the use of this obscure API and multiple steps to help ** ensure that it does not happen by accident. ** ** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt> ** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the ** "defensive" flag for a database connection. When the defensive ** flag is enabled, language features that allow ordinary SQL to ** deliberately corrupt the database file are disabled. The disabled ** features include but are not limited to the following: ** <ul> ** <li> The [PRAGMA writable_schema=ON] statement. ** <li> Writes to the [sqlite_dbpage] virtual table. ** <li> Direct writes to [shadow tables]. ** </ul> ** </dd> ** </dl> */ #define SQLITE_DBCONFIG_MAINDBNAME 1000 /* const char* */ #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */ #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */ #define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE 1006 /* int int* */ #define SQLITE_DBCONFIG_ENABLE_QPSG 1007 /* int int* */ #define SQLITE_DBCONFIG_TRIGGER_EQP 1008 /* int int* */ #define SQLITE_DBCONFIG_RESET_DATABASE 1009 /* int int* */ #define SQLITE_DBCONFIG_DEFENSIVE 1010 /* int int* */ #define SQLITE_DBCONFIG_MAX 1010 /* Largest DBCONFIG */ /* ** CAPI3REF: Enable Or Disable Extended Result Codes ** METHOD: sqlite3 ** ** ^The sqlite3_extended_result_codes() routine enables or disables the ** [extended result codes] feature of SQLite. ^The extended result |
︙ | ︙ | |||
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 | ** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()] ** and [sqlite3_prepare16_v3()] assume that the prepared statement will ** be used just once or at most a few times and then destroyed using ** [sqlite3_finalize()] relatively soon. The current implementation acts ** on this hint by avoiding the use of [lookaside memory] so as not to ** deplete the limited store of lookaside memory. Future versions of ** SQLite may act on this hint differently. ** </dl> */ #define SQLITE_PREPARE_PERSISTENT 0x01 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** | > > > > > > > > > > | 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 | ** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()] ** and [sqlite3_prepare16_v3()] assume that the prepared statement will ** be used just once or at most a few times and then destroyed using ** [sqlite3_finalize()] relatively soon. The current implementation acts ** on this hint by avoiding the use of [lookaside memory] so as not to ** deplete the limited store of lookaside memory. Future versions of ** SQLite may act on this hint differently. ** ** [[SQLITE_PREPARE_NORMALIZE]] ^(<dt>SQLITE_PREPARE_NORMALIZE</dt> ** <dd>The SQLITE_PREPARE_NORMALIZE flag indicates that a normalized ** representation of the SQL statement should be calculated and then ** associated with the prepared statement, which can be obtained via ** the [sqlite3_normalized_sql()] interface. The semantics used to ** normalize a SQL statement are unspecified and subject to change. ** At a minimum, literal values will be replaced with suitable ** placeholders. ** </dl> */ #define SQLITE_PREPARE_PERSISTENT 0x01 #define SQLITE_PREPARE_NORMALIZE 0x02 /* ** CAPI3REF: Compiling An SQL Statement ** KEYWORDS: {SQL statement compiler} ** METHOD: sqlite3 ** CONSTRUCTOR: sqlite3_stmt ** |
︙ | ︙ | |||
3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 | ** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 ** SQL text used to create [prepared statement] P if P was ** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 ** string containing the SQL text of prepared statement P with ** [bound parameters] expanded. ** ** ^(For example, if a prepared statement is created using the SQL ** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 ** and parameter :xyz is unbound, then sqlite3_sql() will return ** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() ** will return "SELECT 2345,NULL".)^ ** ** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory ** is available to hold the result, or if the result would exceed the ** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. ** ** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of ** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time ** option causes sqlite3_expanded_sql() to always return NULL. ** | > > > > > | | > > | 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 | ** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8 ** SQL text used to create [prepared statement] P if P was ** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()], ** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()]. ** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8 ** string containing the SQL text of prepared statement P with ** [bound parameters] expanded. ** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8 ** string containing the normalized SQL text of prepared statement P. The ** semantics used to normalize a SQL statement are unspecified and subject ** to change. At a minimum, literal values will be replaced with suitable ** placeholders. ** ** ^(For example, if a prepared statement is created using the SQL ** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345 ** and parameter :xyz is unbound, then sqlite3_sql() will return ** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql() ** will return "SELECT 2345,NULL".)^ ** ** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory ** is available to hold the result, or if the result would exceed the ** the maximum string length determined by the [SQLITE_LIMIT_LENGTH]. ** ** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of ** bound parameter expansions. ^The [SQLITE_OMIT_TRACE] compile-time ** option causes sqlite3_expanded_sql() to always return NULL. ** ** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P) ** are managed by SQLite and are automatically freed when the prepared ** statement is finalized. ** ^The string returned by sqlite3_expanded_sql(P), on the other hand, ** is obtained from [sqlite3_malloc()] and must be free by the application ** by passing it to [sqlite3_free()]. */ SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt); SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt); SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt); /* ** CAPI3REF: Determine If An SQL Statement Writes The Database ** METHOD: sqlite3_stmt ** ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if ** and only if the [prepared statement] X makes no direct changes to |
︙ | ︙ | |||
4727 4728 4729 4730 4731 4732 4733 | ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue ** and xInverse) passed to sqlite3_create_window_function are pointers to | | | 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 | ** parameters. ^An aggregate SQL function requires an implementation of xStep ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing ** SQL function or aggregate, pass NULL pointers for all three function ** callbacks. ** ** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue ** and xInverse) passed to sqlite3_create_window_function are pointers to ** C-language callbacks that implement the new function. xStep and xFinal ** must both be non-NULL. xValue and xInverse may either both be NULL, in ** which case a regular aggregate function is created, or must both be ** non-NULL, in which case the new function may be used as either an aggregate ** or aggregate window function. More details regarding the implementation ** of aggregate window functions are ** [user-defined window functions|available here]. ** |
︙ | ︙ | |||
6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 | void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 1 of the sqlite_module object. Those ** below are for version 2 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part | > > > | 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 | void **ppArg); int (*xRename)(sqlite3_vtab *pVtab, const char *zNew); /* The methods above are in version 1 of the sqlite_module object. Those ** below are for version 2 and greater. */ int (*xSavepoint)(sqlite3_vtab *pVTab, int); int (*xRelease)(sqlite3_vtab *pVTab, int); int (*xRollbackTo)(sqlite3_vtab *pVTab, int); /* The methods above are in versions 1 and 2 of the sqlite_module object. ** Those below are for version 3 and greater. */ int (*xShadowName)(const char*); }; /* ** CAPI3REF: Virtual Table Indexing Information ** KEYWORDS: sqlite3_index_info ** ** The sqlite3_index_info structure and its substructures is used as part |
︙ | ︙ | |||
7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 | #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 | > | 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 | #define SQLITE_TESTCTRL_PENDING_BYTE 11 #define SQLITE_TESTCTRL_ASSERT 12 #define SQLITE_TESTCTRL_ALWAYS 13 #define SQLITE_TESTCTRL_RESERVE 14 #define SQLITE_TESTCTRL_OPTIMIZATIONS 15 #define SQLITE_TESTCTRL_ISKEYWORD 16 /* NOT USED */ #define SQLITE_TESTCTRL_SCRATCHMALLOC 17 /* NOT USED */ #define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS 17 #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18 #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */ #define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD 19 #define SQLITE_TESTCTRL_NEVER_CORRUPT 20 #define SQLITE_TESTCTRL_VDBE_COVERAGE 21 #define SQLITE_TESTCTRL_BYTEORDER 22 #define SQLITE_TESTCTRL_ISINIT 23 |
︙ | ︙ | |||
8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 | ** CAPI3REF: Virtual Table Configuration Options ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** ** <dl> ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, ** where X is an integer. If X is zero, then the [virtual table] whose ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not ** support constraints. In this configuration (which is the default) if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire | > | 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 | ** CAPI3REF: Virtual Table Configuration Options ** ** These macros define the various options to the ** [sqlite3_vtab_config()] interface that [virtual table] implementations ** can use to customize and optimize their behavior. ** ** <dl> ** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]] ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT ** <dd>Calls of the form ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported, ** where X is an integer. If X is zero, then the [virtual table] whose ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not ** support constraints. In this configuration (which is the default) if ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire |
︙ | ︙ | |||
9253 9254 9255 9256 9257 9258 9259 | ** The following are allowed values for 6th argument (the F argument) to ** the [sqlite3_deserialize(D,S,P,N,M,F)] interface. ** ** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization ** in the P argument is held in memory obtained from [sqlite3_malloc64()] ** and that SQLite should take ownership of this memory and automatically ** free it when it has finished using it. Without this flag, the caller | | | 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 | ** The following are allowed values for 6th argument (the F argument) to ** the [sqlite3_deserialize(D,S,P,N,M,F)] interface. ** ** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization ** in the P argument is held in memory obtained from [sqlite3_malloc64()] ** and that SQLite should take ownership of this memory and automatically ** free it when it has finished using it. Without this flag, the caller ** is responsible for freeing any dynamically allocated memory. ** ** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to ** grow the size of the database using calls to [sqlite3_realloc64()]. This ** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used. ** Without this flag, the deserialized database cannot increase in size beyond ** the number of bytes specified by the M parameter. ** |
︙ | ︙ | |||
9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 | ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visited ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); /* ** CAPI3REF: Advance A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function may only be used with iterators created by function | > > > > > > > > > > > > > > > > > > > > > > > > > > | 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 | ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visited ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. ** ** The behavior of sqlite3changeset_start_v2() and its streaming equivalent ** may be modified by passing a combination of ** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter. ** ** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b> ** and therefore subject to change. */ SQLITE_API int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); SQLITE_API int sqlite3changeset_start_v2( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset, /* Pointer to blob containing changeset */ int flags /* SESSION_CHANGESETSTART_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_start_v2 ** ** The following flags may passed via the 4th parameter to ** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]: ** ** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd> ** Invert the changeset while iterating through it. This is equivalent to ** inverting a changeset using sqlite3changeset_invert() before applying it. ** It is an error to specify this flag with a patchset. */ #define SQLITE_CHANGESETSTART_INVERT 0x0002 /* ** CAPI3REF: Advance A Changeset Iterator ** METHOD: sqlite3_changeset_iter ** ** This function may only be used with iterators created by function |
︙ | ︙ | |||
10535 10536 10537 10538 10539 10540 10541 | int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, /* OUT: Rebase data */ | | > > > > > > | 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 | int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx, /* First argument passed to xConflict */ void **ppRebase, int *pnRebase, /* OUT: Rebase data */ int flags /* SESSION_CHANGESETAPPLY_* flags */ ); /* ** CAPI3REF: Flags for sqlite3changeset_apply_v2 ** ** The following flags may passed via the 9th parameter to ** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]: ** ** <dl> ** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd> ** Usually, the sessions module encloses all operations performed by ** a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The ** SAVEPOINT is committed if the changeset or patchset is successfully ** applied, or rolled back if an error occurs. Specifying this flag ** causes the sessions module to omit this savepoint. In this case, if the ** caller has an open transaction or savepoint when apply_v2() is called, ** it may revert the partially applied changeset by rolling it back. ** ** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd> ** Invert the changeset before applying it. This is equivalent to inverting ** a changeset using sqlite3changeset_invert() before applying it. It is ** an error to specify this flag with a patchset. */ #define SQLITE_CHANGESETAPPLY_NOSAVEPOINT 0x0001 #define SQLITE_CHANGESETAPPLY_INVERT 0x0002 /* ** CAPI3REF: Constants Passed To The Conflict Handler ** ** Values that may be passed as the second argument to a conflict-handler. ** ** <dl> |
︙ | ︙ | |||
10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 | int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3session_changeset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3session_patchset_strm( | > > > > > > | 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 | int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3changeset_start_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); SQLITE_API int sqlite3changeset_start_v2_strm( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int flags ); SQLITE_API int sqlite3session_changeset_strm( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); SQLITE_API int sqlite3session_patchset_strm( |
︙ | ︙ | |||
10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 | sqlite3_rebaser *pRebaser, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** Make sure we can call this stuff from C++. */ #ifdef __cplusplus } #endif | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 | sqlite3_rebaser *pRebaser, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Configure global parameters ** ** The sqlite3session_config() interface is used to make global configuration ** changes to the sessions module in order to tune it to the specific needs ** of the application. ** ** The sqlite3session_config() interface is not threadsafe. If it is invoked ** while any other thread is inside any other sessions method then the ** results are undefined. Furthermore, if it is invoked after any sessions ** related objects have been created, the results are also undefined. ** ** The first argument to the sqlite3session_config() function must be one ** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The ** interpretation of the (void*) value passed as the second parameter and ** the effect of calling this function depends on the value of the first ** parameter. ** ** <dl> ** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd> ** By default, the sessions module streaming interfaces attempt to input ** and output data in approximately 1 KiB chunks. This operand may be used ** to set and query the value of this configuration setting. The pointer ** passed as the second argument must point to a value of type (int). ** If this value is greater than 0, it is used as the new streaming data ** chunk size for both input and output. Before returning, the (int) value ** pointed to by pArg is set to the final value of the streaming interface ** chunk size. ** </dl> ** ** This function returns SQLITE_OK if successful, or an SQLite error code ** otherwise. */ SQLITE_API int sqlite3session_config(int op, void *pArg); /* ** CAPI3REF: Values for sqlite3session_config(). */ #define SQLITE_SESSION_CONFIG_STRMSIZE 1 /* ** Make sure we can call this stuff from C++. */ #ifdef __cplusplus } #endif |
︙ | ︙ | |||
11431 11432 11433 11434 11435 11436 11437 | ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do would be ** inefficient), it doesn't matter if the user queries for | | | 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 | ** document such as "I won first place" is tokenized, entries are ** added to the FTS index for "i", "won", "first", "1st" and ** "place". ** ** This way, even if the tokenizer does not provide synonyms ** when tokenizing query text (it should not - to do would be ** inefficient), it doesn't matter if the user queries for ** 'first + place' or '1st + place', as there are entries in the ** FTS index corresponding to both forms of the first token. ** </ol> ** ** Whether it is parsing document or query text, any call to xToken that ** specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit ** is considered to supply a synonym for the previous token. For example, ** when parsing the document "I won first place", a tokenizer that supports |
︙ | ︙ | |||
11459 11460 11461 11462 11463 11464 11465 | ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the | | | 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 | ** There is no limit to the number of synonyms that may be provided for a ** single token. ** ** In many cases, method (1) above is the best approach. It does not add ** extra data to the FTS index or require FTS5 to query for multiple terms, ** so it is efficient in terms of disk space and query speed. However, it ** does not support prefix queries very well. If, as suggested above, the ** token "first" is substituted for "1st" by the tokenizer, then the query: ** ** <codeblock> ** ... MATCH '1s*'</codeblock> ** ** will not match documents that contain the token "1st" (as the tokenizer ** will probably not map "1s" to any prefix of "first"). ** |
︙ | ︙ |