sqllogictest

Check-in [7ecd9f43d7]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to the latest 3.26.0 beta.
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 7ecd9f43d7ed057b7d59999753b37ce819575331
User & Date: drh 2018-11-27 22:13:02.521
Context
2019-02-06
16:28
Update the built-in SQLite to the latest 3.27.0 beta. check-in: 40b4bc94f8 user: drh tags: trunk
2018-11-27
22:13
Update the built-in SQLite to the latest 3.26.0 beta. check-in: 7ecd9f43d7 user: drh tags: trunk
2018-09-12
14:31
Update the built-in SQLite to the first 3.25.0 release candidate. check-in: 0756e950c1 user: drh tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.25.0.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.26.0.  By combining all the individual C code files into this
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
255
256
257
258
259
260
261



262
263
264
265
266
267
268
  "ENABLE_FTS3_TOKENIZER",
#endif
#if SQLITE_ENABLE_FTS4
  "ENABLE_FTS4",
#endif
#if SQLITE_ENABLE_FTS5
  "ENABLE_FTS5",



#endif
#if SQLITE_ENABLE_HIDDEN_COLUMNS
  "ENABLE_HIDDEN_COLUMNS",
#endif
#if SQLITE_ENABLE_ICU
  "ENABLE_ICU",
#endif







>
>
>







255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
  "ENABLE_FTS3_TOKENIZER",
#endif
#if SQLITE_ENABLE_FTS4
  "ENABLE_FTS4",
#endif
#if SQLITE_ENABLE_FTS5
  "ENABLE_FTS5",
#endif
#if SQLITE_ENABLE_GEOPOLY
  "ENABLE_GEOPOLY",
#endif
#if SQLITE_ENABLE_HIDDEN_COLUMNS
  "ENABLE_HIDDEN_COLUMNS",
#endif
#if SQLITE_ENABLE_ICU
  "ENABLE_ICU",
#endif
285
286
287
288
289
290
291



292
293
294
295
296
297
298
  "ENABLE_MEMSYS3",
#endif
#if SQLITE_ENABLE_MEMSYS5
  "ENABLE_MEMSYS5",
#endif
#if SQLITE_ENABLE_MULTIPLEX
  "ENABLE_MULTIPLEX",



#endif
#if SQLITE_ENABLE_NULL_TRIM
  "ENABLE_NULL_TRIM",
#endif
#if SQLITE_ENABLE_OVERSIZE_CELL_CHECK
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif







>
>
>







288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
  "ENABLE_MEMSYS3",
#endif
#if SQLITE_ENABLE_MEMSYS5
  "ENABLE_MEMSYS5",
#endif
#if SQLITE_ENABLE_MULTIPLEX
  "ENABLE_MULTIPLEX",
#endif
#if SQLITE_ENABLE_NORMALIZE
  "ENABLE_NORMALIZE",
#endif
#if SQLITE_ENABLE_NULL_TRIM
  "ENABLE_NULL_TRIM",
#endif
#if SQLITE_ENABLE_OVERSIZE_CELL_CHECK
  "ENABLE_OVERSIZE_CELL_CHECK",
#endif
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.25.0"
#define SQLITE_VERSION_NUMBER 3025000
#define SQLITE_SOURCE_ID      "2018-09-12 08:51:48 572de7e4e33562c72cd90790b267ba389370f21ddcaebc4db609fd76ae9b7ada"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.26.0"
#define SQLITE_VERSION_NUMBER 3026000
#define SQLITE_SOURCE_ID      "2018-11-27 19:47:55 0ea049f342d11c676e148239e45d252164081362e921a4beb735d6899eb77344"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129

2130
2131
2132
2133
2134
2135
2136
**
** <li>[[SQLITE_FCNTL_DATA_VERSION]]
** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
** a database file.  The argument is a pointer to a 32-bit unsigned integer.
** The "data version" for the pager is written into the pointer.  The
** "data version" changes whenever any change occurs to the corresponding
** database file, either through SQL statements on the same database
** connection, or through transactions committed by separate database
** connections possibly in other processes. The [sqlite3_total_changes()]
** interface can be used to find if any database on the connection has changed,
** but that interface response to changes on TEMP as well as MAIN and does
** not provide a mechanism to detect changes to MAIN only.  Also, the
** [sqlite3_total_changes()] interface response to internal changes only and
** omits changes made by other database connections.  The
** [PRAGMA data_version] command provide a mechanism to detect changes to
** a single attached database that occur due to other database connections,
** but omits changes implemented by the database connection for which it is
** called.  This file control is the only mechanism to detect changes that
** happen either internally or externally on a single database.

** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
#define SQLITE_FCNTL_LAST_ERRNO              4
#define SQLITE_FCNTL_SIZE_HINT               5







|


|

|



|

|
>







2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
**
** <li>[[SQLITE_FCNTL_DATA_VERSION]]
** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
** a database file.  The argument is a pointer to a 32-bit unsigned integer.
** The "data version" for the pager is written into the pointer.  The
** "data version" changes whenever any change occurs to the corresponding
** database file, either through SQL statements on the same database
** connection or through transactions committed by separate database
** connections possibly in other processes. The [sqlite3_total_changes()]
** interface can be used to find if any database on the connection has changed,
** but that interface responds to changes on TEMP as well as MAIN and does
** not provide a mechanism to detect changes to MAIN only.  Also, the
** [sqlite3_total_changes()] interface responds to internal changes only and
** omits changes made by other database connections.  The
** [PRAGMA data_version] command provide a mechanism to detect changes to
** a single attached database that occur due to other database connections,
** but omits changes implemented by the database connection on which it is
** called.  This file control is the only mechanism to detect changes that
** happen either internally or externally and that are associated with
** a particular attached database.
** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
#define SQLITE_FCNTL_LAST_ERRNO              4
#define SQLITE_FCNTL_SIZE_HINT               5
3045
3046
3047
3048
3049
3050
3051

3052
3053
3054
3055
3056
3057
3058
** Existing configuration options might be discontinued.  Applications
** should check the return code from [sqlite3_db_config()] to make sure that
** the call worked.  ^The [sqlite3_db_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>

** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd> ^This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** ^The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to a memory buffer to use for lookaside memory.
** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
** may be NULL in which case SQLite will allocate the







>







3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
** Existing configuration options might be discontinued.  Applications
** should check the return code from [sqlite3_db_config()] to make sure that
** the call worked.  ^The [sqlite3_db_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>
** [[SQLITE_DBCONFIG_LOOKASIDE]]
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd> ^This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** ^The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to a memory buffer to use for lookaside memory.
** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
** may be NULL in which case SQLite will allocate the
3067
3068
3069
3070
3071
3072
3073

3074
3075
3076
3077
3078
3079
3080
3081
3082
3083

3084
3085
3086
3087
3088
3089
3090
3091
3092
3093

3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106

3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132

3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192












3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205

3206
3207
3208
3209
3210
3211
3212
3213
** connection is not currently using lookaside memory, or in other words
** when the "current value" returned by
** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
** Any attempt to change the lookaside memory configuration when lookaside
** memory is in use leaves the configuration unchanged and returns 
** [SQLITE_BUSY].)^</dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
** <dd> ^This option is used to enable or disable the enforcement of
** [foreign key constraints].  There should be two additional arguments.
** The first argument is an integer which is 0 to disable FK enforcement,
** positive to enable FK enforcement or negative to leave FK enforcement
** unchanged.  The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether FK enforcement is off or on
** following this call.  The second parameter may be a NULL pointer, in
** which case the FK enforcement setting is not reported back. </dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable triggers,
** positive to enable triggers or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether triggers are disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the trigger setting is not reported back. </dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
** <dd> ^This option is used to enable or disable the two-argument
** version of the [fts3_tokenizer()] function which is part of the
** [FTS3] full-text search engine extension.
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable fts3_tokenizer() or
** positive to enable fts3_tokenizer() or negative to leave the setting
** unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the new setting is not reported back. </dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
** interface independently of the [load_extension()] SQL function.
** The [sqlite3_enable_load_extension()] API enables or disables both the
** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
** There should be two additional arguments.
** When the first argument to this interface is 1, then only the C-API is
** enabled and the SQL function remains disabled.  If the first argument to
** this interface is 0, then both the C-API and the SQL function are disabled.
** If the first argument is -1, then no changes are made to state of either the
** C-API or the SQL function.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
** is disabled or enabled following this call.  The second parameter may
** be a NULL pointer, in which case the new setting is not reported back.
** </dd>
**
** <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
** <dd> ^This option is used to change the name of the "main" database
** schema.  ^The sole argument is a pointer to a constant UTF8 string
** which will become the new schema name in place of "main".  ^SQLite
** does not make a copy of the new main schema name string, so the application
** must ensure that the argument passed into this DBCONFIG option is unchanged
** until after the database connection closes.
** </dd>
**

** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
** <dd> Usually, when a database in wal mode is closed or detached from a 
** database handle, SQLite checks if this will mean that there are now no 
** connections at all to the database. If so, it performs a checkpoint 
** operation before closing the connection. This option may be used to
** override this behaviour. The first parameter passed to this operation
** is an integer - positive to disable checkpoints-on-close, or zero (the
** default) to enable them, and negative to leave the setting unchanged.
** The second parameter is a pointer to an integer
** into which is written 0 or 1 to indicate whether checkpoints-on-close
** have been disabled - 0 if they are not disabled, 1 if they are.
** </dd>
**
** <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
** the [query planner stability guarantee] (QPSG).  When the QPSG is active,
** a single SQL query statement will always use the same algorithm regardless
** of values of [bound parameters].)^ The QPSG disables some query optimizations
** that look at the values of bound parameters, which can make some queries
** slower.  But the QPSG has the advantage of more predictable behavior.  With
** the QPSG active, SQLite will always use the same query plan in the field as
** was used during testing in the lab.
** The first argument to this setting is an integer which is 0 to disable 
** the QPSG, positive to enable QPSG, or negative to leave the setting
** unchanged. The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
** following this call.
** </dd>
**
** <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
** include output for any operations performed by trigger programs. This
** option is used to set or clear (the default) a flag that governs this
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
**
** <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
** [VACUUM] in order to reset a database back to an empty database
** with no schema and no content. The following process works even for
** a badly corrupted database file:
** <ol>
** <li> If the database connection is newly opened, make sure it has read the
**      database schema by preparing then discarding some query against the
**      database, or calling sqlite3_table_column_metadata(), ignoring any
**      errors.  This step is only necessary if the application desires to keep
**      the database in WAL mode after the reset if it was in WAL mode before
**      the reset.  
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
** </ol>
** Because resetting a database is destructive and irreversible, the
** process requires the use of this obscure API and multiple steps to help
** ensure that it does not happen by accident.












** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */

#define SQLITE_DBCONFIG_MAX                   1009 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result







>










>










>













>

















|








>













|















|











|


















>
>
>
>
>
>
>
>
>
>
>
>













>
|







3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
** connection is not currently using lookaside memory, or in other words
** when the "current value" returned by
** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
** Any attempt to change the lookaside memory configuration when lookaside
** memory is in use leaves the configuration unchanged and returns 
** [SQLITE_BUSY].)^</dd>
**
** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
** <dd> ^This option is used to enable or disable the enforcement of
** [foreign key constraints].  There should be two additional arguments.
** The first argument is an integer which is 0 to disable FK enforcement,
** positive to enable FK enforcement or negative to leave FK enforcement
** unchanged.  The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether FK enforcement is off or on
** following this call.  The second parameter may be a NULL pointer, in
** which case the FK enforcement setting is not reported back. </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable triggers,
** positive to enable triggers or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether triggers are disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the trigger setting is not reported back. </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
** <dd> ^This option is used to enable or disable the two-argument
** version of the [fts3_tokenizer()] function which is part of the
** [FTS3] full-text search engine extension.
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable fts3_tokenizer() or
** positive to enable fts3_tokenizer() or negative to leave the setting
** unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the new setting is not reported back. </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
** interface independently of the [load_extension()] SQL function.
** The [sqlite3_enable_load_extension()] API enables or disables both the
** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
** There should be two additional arguments.
** When the first argument to this interface is 1, then only the C-API is
** enabled and the SQL function remains disabled.  If the first argument to
** this interface is 0, then both the C-API and the SQL function are disabled.
** If the first argument is -1, then no changes are made to state of either the
** C-API or the SQL function.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
** is disabled or enabled following this call.  The second parameter may
** be a NULL pointer, in which case the new setting is not reported back.
** </dd>
**
** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
** <dd> ^This option is used to change the name of the "main" database
** schema.  ^The sole argument is a pointer to a constant UTF8 string
** which will become the new schema name in place of "main".  ^SQLite
** does not make a copy of the new main schema name string, so the application
** must ensure that the argument passed into this DBCONFIG option is unchanged
** until after the database connection closes.
** </dd>
**
** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] 
** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
** <dd> Usually, when a database in wal mode is closed or detached from a 
** database handle, SQLite checks if this will mean that there are now no 
** connections at all to the database. If so, it performs a checkpoint 
** operation before closing the connection. This option may be used to
** override this behaviour. The first parameter passed to this operation
** is an integer - positive to disable checkpoints-on-close, or zero (the
** default) to enable them, and negative to leave the setting unchanged.
** The second parameter is a pointer to an integer
** into which is written 0 or 1 to indicate whether checkpoints-on-close
** have been disabled - 0 if they are not disabled, 1 if they are.
** </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
** the [query planner stability guarantee] (QPSG).  When the QPSG is active,
** a single SQL query statement will always use the same algorithm regardless
** of values of [bound parameters].)^ The QPSG disables some query optimizations
** that look at the values of bound parameters, which can make some queries
** slower.  But the QPSG has the advantage of more predictable behavior.  With
** the QPSG active, SQLite will always use the same query plan in the field as
** was used during testing in the lab.
** The first argument to this setting is an integer which is 0 to disable 
** the QPSG, positive to enable QPSG, or negative to leave the setting
** unchanged. The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
** following this call.
** </dd>
**
** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
** include output for any operations performed by trigger programs. This
** option is used to set or clear (the default) a flag that governs this
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
**
** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
** [VACUUM] in order to reset a database back to an empty database
** with no schema and no content. The following process works even for
** a badly corrupted database file:
** <ol>
** <li> If the database connection is newly opened, make sure it has read the
**      database schema by preparing then discarding some query against the
**      database, or calling sqlite3_table_column_metadata(), ignoring any
**      errors.  This step is only necessary if the application desires to keep
**      the database in WAL mode after the reset if it was in WAL mode before
**      the reset.  
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
** </ol>
** Because resetting a database is destructive and irreversible, the
** process requires the use of this obscure API and multiple steps to help
** ensure that it does not happen by accident.
**
** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
** "defensive" flag for a database connection.  When the defensive
** flag is enabled, language features that allow ordinary SQL to 
** deliberately corrupt the database file are disabled.  The disabled
** features include but are not limited to the following:
** <ul>
** <li> The [PRAGMA writable_schema=ON] statement.
** <li> Writes to the [sqlite_dbpage] virtual table.
** <li> Direct writes to [shadow tables].
** </ul>
** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */
#define SQLITE_DBCONFIG_DEFENSIVE             1010 /* int int* */
#define SQLITE_DBCONFIG_MAX                   1010 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
4637
4638
4639
4640
4641
4642
4643









4644
4645
4646

4647
4648
4649
4650
4651
4652
4653
** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
** and [sqlite3_prepare16_v3()] assume that the prepared statement will 
** be used just once or at most a few times and then destroyed using
** [sqlite3_finalize()] relatively soon. The current implementation acts
** on this hint by avoiding the use of [lookaside memory] so as not to
** deplete the limited store of lookaside memory. Future versions of
** SQLite may act on this hint differently.









** </dl>
*/
#define SQLITE_PREPARE_PERSISTENT              0x01


/*
** CAPI3REF: Compiling An SQL Statement
** KEYWORDS: {SQL statement compiler}
** METHOD: sqlite3
** CONSTRUCTOR: sqlite3_stmt
**







>
>
>
>
>
>
>
>
>



>







4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
** and [sqlite3_prepare16_v3()] assume that the prepared statement will 
** be used just once or at most a few times and then destroyed using
** [sqlite3_finalize()] relatively soon. The current implementation acts
** on this hint by avoiding the use of [lookaside memory] so as not to
** deplete the limited store of lookaside memory. Future versions of
** SQLite may act on this hint differently.
**
** [[SQLITE_PREPARE_NORMALIZE]] ^(<dt>SQLITE_PREPARE_NORMALIZE</dt>
** <dd>The SQLITE_PREPARE_NORMALIZE flag indicates that a normalized
** representation of the SQL statement should be calculated and then
** associated with the prepared statement, which can be obtained via
** the [sqlite3_normalized_sql()] interface.  The semantics used to
** normalize a SQL statement are unspecified and subject to change.
** At a minimum, literal values will be replaced with suitable
** placeholders.
** </dl>
*/
#define SQLITE_PREPARE_PERSISTENT              0x01
#define SQLITE_PREPARE_NORMALIZE               0x02

/*
** CAPI3REF: Compiling An SQL Statement
** KEYWORDS: {SQL statement compiler}
** METHOD: sqlite3
** CONSTRUCTOR: sqlite3_stmt
**
4797
4798
4799
4800
4801
4802
4803





4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820

4821
4822
4823
4824
4825
4826

4827
4828
4829
4830
4831
4832
4833
** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
** SQL text used to create [prepared statement] P if P was
** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
** string containing the SQL text of prepared statement P with
** [bound parameters] expanded.





**
** ^(For example, if a prepared statement is created using the SQL
** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
** and parameter :xyz is unbound, then sqlite3_sql() will return
** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
** will return "SELECT 2345,NULL".)^
**
** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
** is available to hold the result, or if the result would exceed the
** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
**
** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
** bound parameter expansions.  ^The [SQLITE_OMIT_TRACE] compile-time
** option causes sqlite3_expanded_sql() to always return NULL.
**
** ^The string returned by sqlite3_sql(P) is managed by SQLite and is
** automatically freed when the prepared statement is finalized.

** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
** is obtained from [sqlite3_malloc()] and must be free by the application
** by passing it to [sqlite3_free()].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);


/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
** METHOD: sqlite3_stmt
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to







>
>
>
>
>















|
|
>






>







4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
** SQL text used to create [prepared statement] P if P was
** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
** string containing the SQL text of prepared statement P with
** [bound parameters] expanded.
** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
** string containing the normalized SQL text of prepared statement P.  The
** semantics used to normalize a SQL statement are unspecified and subject
** to change.  At a minimum, literal values will be replaced with suitable
** placeholders.
**
** ^(For example, if a prepared statement is created using the SQL
** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
** and parameter :xyz is unbound, then sqlite3_sql() will return
** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
** will return "SELECT 2345,NULL".)^
**
** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
** is available to hold the result, or if the result would exceed the
** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
**
** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
** bound parameter expansions.  ^The [SQLITE_OMIT_TRACE] compile-time
** option causes sqlite3_expanded_sql() to always return NULL.
**
** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
** are managed by SQLite and are automatically freed when the prepared
** statement is finalized.
** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
** is obtained from [sqlite3_malloc()] and must be free by the application
** by passing it to [sqlite3_free()].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
** METHOD: sqlite3_stmt
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
** parameters. ^An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
** SQL function or aggregate, pass NULL pointers for all three function
** callbacks.
**
** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue 
** and xInverse) passed to sqlite3_create_window_function are pointers to
** C-lanugage callbacks that implement the new function. xStep and xFinal
** must both be non-NULL. xValue and xInverse may either both be NULL, in
** which case a regular aggregate function is created, or must both be 
** non-NULL, in which case the new function may be used as either an aggregate
** or aggregate window function. More details regarding the implementation
** of aggregate window functions are 
** [user-defined window functions|available here].
**







|







5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
** parameters. ^An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
** SQL function or aggregate, pass NULL pointers for all three function
** callbacks.
**
** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue 
** and xInverse) passed to sqlite3_create_window_function are pointers to
** C-language callbacks that implement the new function. xStep and xFinal
** must both be non-NULL. xValue and xInverse may either both be NULL, in
** which case a regular aggregate function is created, or must both be 
** non-NULL, in which case the new function may be used as either an aggregate
** or aggregate window function. More details regarding the implementation
** of aggregate window functions are 
** [user-defined window functions|available here].
**
7309
7310
7311
7312
7313
7314
7315



7316
7317
7318
7319
7320
7321
7322
                       void **ppArg);
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
  /* The methods above are in version 1 of the sqlite_module object. Those 
  ** below are for version 2 and greater. */
  int (*xSavepoint)(sqlite3_vtab *pVTab, int);
  int (*xRelease)(sqlite3_vtab *pVTab, int);
  int (*xRollbackTo)(sqlite3_vtab *pVTab, int);



};

/*
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
**
** The sqlite3_index_info structure and its substructures is used as part







>
>
>







7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
                       void **ppArg);
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
  /* The methods above are in version 1 of the sqlite_module object. Those 
  ** below are for version 2 and greater. */
  int (*xSavepoint)(sqlite3_vtab *pVTab, int);
  int (*xRelease)(sqlite3_vtab *pVTab, int);
  int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
  /* The methods above are in versions 1 and 2 of the sqlite_module object.
  ** Those below are for version 3 and greater. */
  int (*xShadowName)(const char*);
};

/*
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
**
** The sqlite3_index_info structure and its substructures is used as part
8231
8232
8233
8234
8235
8236
8237

8238
8239
8240
8241
8242
8243
8244
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16  /* NOT USED */
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */

#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23







>







8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16  /* NOT USED */
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */
#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS      17
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
9643
9644
9645
9646
9647
9648
9649

9650
9651
9652
9653
9654
9655
9656
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
**
** <dl>

** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
** <dd>Calls of the form
** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
** where X is an integer.  If X is zero, then the [virtual table] whose
** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
** support constraints.  In this configuration (which is the default) if
** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire







>







9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
**
** <dl>
** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
** <dd>Calls of the form
** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
** where X is an integer.  If X is zero, then the [virtual table] whose
** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
** support constraints.  In this configuration (which is the default) if
** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
** The following are allowed values for 6th argument (the F argument) to
** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
**
** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
** in the P argument is held in memory obtained from [sqlite3_malloc64()]
** and that SQLite should take ownership of this memory and automatically
** free it when it has finished using it.  Without this flag, the caller
** is resposible for freeing any dynamically allocated memory.
**
** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
** grow the size of the database using calls to [sqlite3_realloc64()].  This
** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
** Without this flag, the deserialized database cannot increase in size beyond
** the number of bytes specified by the M parameter.
**







|







10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
** The following are allowed values for 6th argument (the F argument) to
** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
**
** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
** in the P argument is held in memory obtained from [sqlite3_malloc64()]
** and that SQLite should take ownership of this memory and automatically
** free it when it has finished using it.  Without this flag, the caller
** is responsible for freeing any dynamically allocated memory.
**
** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
** grow the size of the database using calls to [sqlite3_realloc64()].  This
** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
** Without this flag, the deserialized database cannot increase in size beyond
** the number of bytes specified by the M parameter.
**
10908
10909
10910
10911
10912
10913
10914







10915
10916
10917
10918
10919
10920



















10921
10922
10923
10924
10925
10926
10927
** [sqlite3changeset_invert()] functions, all changes within the changeset 
** that apply to a single table are grouped together. This means that when 
** an application iterates through a changeset using an iterator created by 
** this function, all changes that relate to a single table are visited 
** consecutively. There is no chance that the iterator will visit a change 
** the applies to table X, then one for table Y, and then later on visit 
** another change for table X.







*/
SQLITE_API int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset                /* Pointer to blob containing changeset */
);





















/*
** CAPI3REF: Advance A Changeset Iterator
** METHOD: sqlite3_changeset_iter
**
** This function may only be used with iterators created by function







>
>
>
>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
** [sqlite3changeset_invert()] functions, all changes within the changeset 
** that apply to a single table are grouped together. This means that when 
** an application iterates through a changeset using an iterator created by 
** this function, all changes that relate to a single table are visited 
** consecutively. There is no chance that the iterator will visit a change 
** the applies to table X, then one for table Y, and then later on visit 
** another change for table X.
**
** The behavior of sqlite3changeset_start_v2() and its streaming equivalent
** may be modified by passing a combination of
** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter.
**
** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b>
** and therefore subject to change.
*/
SQLITE_API int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset                /* Pointer to blob containing changeset */
);
SQLITE_API int sqlite3changeset_start_v2(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset,               /* Pointer to blob containing changeset */
  int flags                       /* SESSION_CHANGESETSTART_* flags */
);

/*
** CAPI3REF: Flags for sqlite3changeset_start_v2
**
** The following flags may passed via the 4th parameter to
** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]:
**
** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
**   Invert the changeset while iterating through it. This is equivalent to
**   inverting a changeset using sqlite3changeset_invert() before applying it.
**   It is an error to specify this flag with a patchset.
*/
#define SQLITE_CHANGESETSTART_INVERT        0x0002


/*
** CAPI3REF: Advance A Changeset Iterator
** METHOD: sqlite3_changeset_iter
**
** This function may only be used with iterators created by function
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592





11593
11594

11595
11596
11597
11598
11599
11600
11601
  int(*xConflict)(
    void *pCtx,                   /* Copy of sixth arg to _apply() */
    int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase, /* OUT: Rebase data */
  int flags                       /* Combination of SESSION_APPLY_* flags */
);

/*
** CAPI3REF: Flags for sqlite3changeset_apply_v2
**
** The following flags may passed via the 9th parameter to
** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
**
** <dl>
** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
**   Usually, the sessions module encloses all operations performed by
**   a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
**   SAVEPOINT is committed if the changeset or patchset is successfully
**   applied, or rolled back if an error occurs. Specifying this flag
**   causes the sessions module to omit this savepoint. In this case, if the
**   caller has an open transaction or savepoint when apply_v2() is called, 
**   it may revert the partially applied changeset by rolling it back.





*/
#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT   0x0001


/* 
** CAPI3REF: Constants Passed To The Conflict Handler
**
** Values that may be passed as the second argument to a conflict-handler.
**
** <dl>







|

















>
>
>
>
>


>







11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
  int(*xConflict)(
    void *pCtx,                   /* Copy of sixth arg to _apply() */
    int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase, /* OUT: Rebase data */
  int flags                       /* SESSION_CHANGESETAPPLY_* flags */
);

/*
** CAPI3REF: Flags for sqlite3changeset_apply_v2
**
** The following flags may passed via the 9th parameter to
** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
**
** <dl>
** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
**   Usually, the sessions module encloses all operations performed by
**   a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
**   SAVEPOINT is committed if the changeset or patchset is successfully
**   applied, or rolled back if an error occurs. Specifying this flag
**   causes the sessions module to omit this savepoint. In this case, if the
**   caller has an open transaction or savepoint when apply_v2() is called, 
**   it may revert the partially applied changeset by rolling it back.
**
** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
**   Invert the changeset before applying it. This is equivalent to inverting
**   a changeset using sqlite3changeset_invert() before applying it. It is
**   an error to specify this flag with a patchset.
*/
#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT   0x0001
#define SQLITE_CHANGESETAPPLY_INVERT        0x0002

/* 
** CAPI3REF: Constants Passed To The Conflict Handler
**
** Values that may be passed as the second argument to a conflict-handler.
**
** <dl>
11980
11981
11982
11983
11984
11985
11986






11987
11988
11989
11990
11991
11992
11993
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3changeset_start_strm(
  sqlite3_changeset_iter **pp,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn






);
SQLITE_API int sqlite3session_changeset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(







>
>
>
>
>
>







12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3changeset_start_strm(
  sqlite3_changeset_iter **pp,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn
);
SQLITE_API int sqlite3changeset_start_v2_strm(
  sqlite3_changeset_iter **pp,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int flags
);
SQLITE_API int sqlite3session_changeset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(
12007
12008
12009
12010
12011
12012
12013







































12014
12015
12016
12017
12018
12019
12020
  sqlite3_rebaser *pRebaser,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);









































/*
** Make sure we can call this stuff from C++.
*/
#if 0
}
#endif







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
  sqlite3_rebaser *pRebaser,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);

/*
** CAPI3REF: Configure global parameters
**
** The sqlite3session_config() interface is used to make global configuration
** changes to the sessions module in order to tune it to the specific needs 
** of the application.
**
** The sqlite3session_config() interface is not threadsafe. If it is invoked
** while any other thread is inside any other sessions method then the
** results are undefined. Furthermore, if it is invoked after any sessions
** related objects have been created, the results are also undefined. 
**
** The first argument to the sqlite3session_config() function must be one
** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The 
** interpretation of the (void*) value passed as the second parameter and
** the effect of calling this function depends on the value of the first
** parameter.
**
** <dl>
** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd>
**    By default, the sessions module streaming interfaces attempt to input
**    and output data in approximately 1 KiB chunks. This operand may be used
**    to set and query the value of this configuration setting. The pointer
**    passed as the second argument must point to a value of type (int).
**    If this value is greater than 0, it is used as the new streaming data
**    chunk size for both input and output. Before returning, the (int) value
**    pointed to by pArg is set to the final value of the streaming interface
**    chunk size.
** </dl>
**
** This function returns SQLITE_OK if successful, or an SQLite error code
** otherwise.
*/
SQLITE_API int sqlite3session_config(int op, void *pArg);

/*
** CAPI3REF: Values for sqlite3session_config().
*/
#define SQLITE_SESSION_CONFIG_STRMSIZE 1

/*
** Make sure we can call this stuff from C++.
*/
#if 0
}
#endif
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
**            document such as "I won first place" is tokenized, entries are
**            added to the FTS index for "i", "won", "first", "1st" and
**            "place".
**
**            This way, even if the tokenizer does not provide synonyms
**            when tokenizing query text (it should not - to do would be
**            inefficient), it doesn't matter if the user queries for 
**            'first + place' or '1st + place', as there are entires in the
**            FTS index corresponding to both forms of the first token.
**   </ol>
**
**   Whether it is parsing document or query text, any call to xToken that
**   specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
**   is considered to supply a synonym for the previous token. For example,
**   when parsing the document "I won first place", a tokenizer that supports







|







12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
**            document such as "I won first place" is tokenized, entries are
**            added to the FTS index for "i", "won", "first", "1st" and
**            "place".
**
**            This way, even if the tokenizer does not provide synonyms
**            when tokenizing query text (it should not - to do would be
**            inefficient), it doesn't matter if the user queries for 
**            'first + place' or '1st + place', as there are entries in the
**            FTS index corresponding to both forms of the first token.
**   </ol>
**
**   Whether it is parsing document or query text, any call to xToken that
**   specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
**   is considered to supply a synonym for the previous token. For example,
**   when parsing the document "I won first place", a tokenizer that supports
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
**   There is no limit to the number of synonyms that may be provided for a
**   single token.
**
**   In many cases, method (1) above is the best approach. It does not add 
**   extra data to the FTS index or require FTS5 to query for multiple terms,
**   so it is efficient in terms of disk space and query speed. However, it
**   does not support prefix queries very well. If, as suggested above, the
**   token "first" is subsituted for "1st" by the tokenizer, then the query:
**
**   <codeblock>
**     ... MATCH '1s*'</codeblock>
**
**   will not match documents that contain the token "1st" (as the tokenizer
**   will probably not map "1s" to any prefix of "first").
**







|







12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
**   There is no limit to the number of synonyms that may be provided for a
**   single token.
**
**   In many cases, method (1) above is the best approach. It does not add 
**   extra data to the FTS index or require FTS5 to query for multiple terms,
**   so it is efficient in terms of disk space and query speed. However, it
**   does not support prefix queries very well. If, as suggested above, the
**   token "first" is substituted for "1st" by the tokenizer, then the query:
**
**   <codeblock>
**     ... MATCH '1s*'</codeblock>
**
**   will not match documents that contain the token "1st" (as the tokenizer
**   will probably not map "1s" to any prefix of "first").
**
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290


15291
15292
15293
15294
15295
15296
15297

#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*);
SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager, sqlite3*);
# ifdef SQLITE_DIRECT_OVERFLOW_READ
SQLITE_PRIVATE   int sqlite3PagerUseWal(Pager *pPager, Pgno);
# endif
# ifdef SQLITE_ENABLE_SNAPSHOT
SQLITE_PRIVATE   int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotRecover(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot);
SQLITE_PRIVATE   void sqlite3PagerSnapshotUnlock(Pager *pPager);
# endif
#else
# define sqlite3PagerUseWal(x,y) 0


#endif

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */







<
<
<







|
|
>
>







15397
15398
15399
15400
15401
15402
15403



15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421

#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, sqlite3*, int, int*, int*);
SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager, sqlite3*);



# ifdef SQLITE_ENABLE_SNAPSHOT
SQLITE_PRIVATE   int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotRecover(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerSnapshotCheck(Pager *pPager, sqlite3_snapshot *pSnapshot);
SQLITE_PRIVATE   void sqlite3PagerSnapshotUnlock(Pager *pPager);
# endif
#endif

#ifdef SQLITE_DIRECT_OVERFLOW_READ
SQLITE_PRIVATE   int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno);
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
15527
15528
15529
15530
15531
15532
15533




15534
15535
15536
15537
15538
15539
15540

/* Return the header size */
SQLITE_PRIVATE int sqlite3HeaderSizePcache(void);
SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void);

/* Number of dirty pages as a percentage of the configured cache size */
SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*);





#endif /* _PCACHE_H_ */

/************** End of pcache.h **********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include os.h in the middle of sqliteInt.h ********************/
/************** Begin file os.h **********************************************/







>
>
>
>







15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668

/* Return the header size */
SQLITE_PRIVATE int sqlite3HeaderSizePcache(void);
SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void);

/* Number of dirty pages as a percentage of the configured cache size */
SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache*);

#ifdef SQLITE_DIRECT_OVERFLOW_READ
SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache);
#endif

#endif /* _PCACHE_H_ */

/************** End of pcache.h **********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
/************** Include os.h in the middle of sqliteInt.h ********************/
/************** Begin file os.h **********************************************/
16033
16034
16035
16036
16037
16038
16039
16040

16041
16042
16043
16044
16045

16046
16047
16048
16049
16050
16051
16052
};

/*
** A hash table for built-in function definitions.  (Application-defined
** functions use a regular table table from hash.h.)
**
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
** Collisions are on the FuncDef.u.pHash chain.

*/
#define SQLITE_FUNC_HASH_SZ 23
struct FuncDefHash {
  FuncDef *a[SQLITE_FUNC_HASH_SZ];       /* Hash table for functions */
};


#ifdef SQLITE_USER_AUTHENTICATION
/*
** Information held in the "sqlite3" database connection object and used
** to manage user authentication.
*/
typedef struct sqlite3_userauth sqlite3_userauth;







|
>





>







16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
};

/*
** A hash table for built-in function definitions.  (Application-defined
** functions use a regular table table from hash.h.)
**
** Hash each FuncDef structure into one of the FuncDefHash.a[] slots.
** Collisions are on the FuncDef.u.pHash chain.  Use the SQLITE_FUNC_HASH()
** macro to compute a hash on the function name.
*/
#define SQLITE_FUNC_HASH_SZ 23
struct FuncDefHash {
  FuncDef *a[SQLITE_FUNC_HASH_SZ];       /* Hash table for functions */
};
#define SQLITE_FUNC_HASH(C,L) (((C)+(L))%SQLITE_FUNC_HASH_SZ)

#ifdef SQLITE_USER_AUTHENTICATION
/*
** Information held in the "sqlite3" database connection object and used
** to manage user authentication.
*/
typedef struct sqlite3_userauth sqlite3_userauth;
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
  sqlite3_vfs *pVfs;            /* OS Interface */
  struct Vdbe *pVdbe;           /* List of active virtual machines */
  CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
  sqlite3_mutex *mutex;         /* Connection mutex */
  Db *aDb;                      /* All backends */
  int nDb;                      /* Number of backends currently in use */
  u32 mDbFlags;                 /* flags recording internal state */
  u32 flags;                    /* flags settable by pragmas. See below */
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
  i64 szMmap;                   /* Default mmap_size setting */
  u32 nSchemaLock;              /* Do not reset the schema when non-zero */
  unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
  int errCode;                  /* Most recent error code (SQLITE_*) */
  int errMask;                  /* & result codes with this before returning */
  int iSysErrno;                /* Errno value from last system error */







|







16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
  sqlite3_vfs *pVfs;            /* OS Interface */
  struct Vdbe *pVdbe;           /* List of active virtual machines */
  CollSeq *pDfltColl;           /* The default collating sequence (BINARY) */
  sqlite3_mutex *mutex;         /* Connection mutex */
  Db *aDb;                      /* All backends */
  int nDb;                      /* Number of backends currently in use */
  u32 mDbFlags;                 /* flags recording internal state */
  u64 flags;                    /* flags settable by pragmas. See below */
  i64 lastRowid;                /* ROWID of most recent insert (see above) */
  i64 szMmap;                   /* Default mmap_size setting */
  u32 nSchemaLock;              /* Do not reset the schema when non-zero */
  unsigned int openFlags;       /* Flags passed to sqlite3_vfs.xOpen() */
  int errCode;                  /* Most recent error code (SQLITE_*) */
  int errMask;                  /* & result codes with this before returning */
  int iSysErrno;                /* Errno value from last system error */
16264
16265
16266
16267
16268
16269
16270



16271
16272

16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */
#define SQLITE_ResetDatabase  0x02000000  /* Reset the database */




/* Flags used only if debugging */

#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       0x08000000  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    0x10000000  /* Debug listings of VDBE programs */
#define SQLITE_VdbeTrace      0x20000000  /* True to trace VDBE execution */
#define SQLITE_VdbeAddopTrace 0x40000000  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_VdbeEQP        0x80000000  /* Debug EXPLAIN QUERY PLAN */
#endif

/*
** Allowed values for sqlite3.mDbFlags
*/
#define DBFLAG_SchemaChange   0x0001  /* Uncommitted Hash table changes */
#define DBFLAG_PreferBuiltin  0x0002  /* Preference to built-in funcs */







>
>
>


>

|
|
|
|
|







16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
#define SQLITE_DeferFKs       0x00080000  /* Defer all FK constraints */
#define SQLITE_QueryOnly      0x00100000  /* Disable database changes */
#define SQLITE_CellSizeCk     0x00200000  /* Check btree cell sizes on load */
#define SQLITE_Fts3Tokenizer  0x00400000  /* Enable fts3_tokenizer(2) */
#define SQLITE_EnableQPSG     0x00800000  /* Query Planner Stability Guarantee*/
#define SQLITE_TriggerEQP     0x01000000  /* Show trigger EXPLAIN QUERY PLAN */
#define SQLITE_ResetDatabase  0x02000000  /* Reset the database */
#define SQLITE_LegacyAlter    0x04000000  /* Legacy ALTER TABLE behaviour */
#define SQLITE_NoSchemaError  0x08000000  /* Do not report schema parse errors*/
#define SQLITE_Defensive      0x10000000  /* Input SQL is likely hostile */

/* Flags used only if debugging */
#define HI(X)  ((u64)(X)<<32)
#ifdef SQLITE_DEBUG
#define SQLITE_SqlTrace       HI(0x0001)  /* Debug print SQL as it executes */
#define SQLITE_VdbeListing    HI(0x0002)  /* Debug listings of VDBE progs */
#define SQLITE_VdbeTrace      HI(0x0004)  /* True to trace VDBE execution */
#define SQLITE_VdbeAddopTrace HI(0x0008)  /* Trace sqlite3VdbeAddOp() calls */
#define SQLITE_VdbeEQP        HI(0x0010)  /* Debug EXPLAIN QUERY PLAN */
#endif

/*
** Allowed values for sqlite3.mDbFlags
*/
#define DBFLAG_SchemaChange   0x0001  /* Uncommitted Hash table changes */
#define DBFLAG_PreferBuiltin  0x0002  /* Preference to built-in funcs */
16405
16406
16407
16408
16409
16410
16411
16412
16413

16414
16415
16416
16417
16418
16419
16420
#define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
#define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
#define SQLITE_FUNC_MINMAX   0x1000 /* True for min() and max() aggregates */
#define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
                                    ** single query - might change over time */
#define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */
#define SQLITE_FUNC_OFFSET   0x8000 /* Built-in sqlite_offset() function */
#define SQLITE_FUNC_WINDOW  0x10000 /* Built-in window-only function */
#define SQLITE_FUNC_WINDOW_SIZE  0x20000  /* Requires partition size as arg. */


/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName







|
|
>







16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
#define SQLITE_FUNC_UNLIKELY 0x0400 /* Built-in unlikely() function */
#define SQLITE_FUNC_CONSTANT 0x0800 /* Constant inputs give a constant output */
#define SQLITE_FUNC_MINMAX   0x1000 /* True for min() and max() aggregates */
#define SQLITE_FUNC_SLOCHNG  0x2000 /* "Slow Change". Value constant during a
                                    ** single query - might change over time */
#define SQLITE_FUNC_AFFINITY 0x4000 /* Built-in affinity() function */
#define SQLITE_FUNC_OFFSET   0x8000 /* Built-in sqlite_offset() function */
#define SQLITE_FUNC_WINDOW   0x00010000 /* Built-in window-only function */
#define SQLITE_FUNC_WINDOW_SIZE 0x20000 /* Requires partition size as arg. */
#define SQLITE_FUNC_INTERNAL 0x00040000 /* For use by NestedParse() only */

/*
** The following three macros, FUNCTION(), LIKEFUNC() and AGGREGATE() are
** used to create the initializers for the FuncDef structures.
**
**   FUNCTION(zName, nArg, iArg, bNC, xFunc)
**     Used to create a scalar function definition of a function zName
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492




16493
16494
16495
16496
16497
16498
16499
   (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} }
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,0,#zName, {0}}
#define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xFinal,0,#zName, {0}}

#define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}}





/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/







<



>
>
>
>







16617
16618
16619
16620
16621
16622
16623

16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
   (void *)arg, 0, likeFunc, 0, 0, 0, #zName, {0} }
#define AGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL), \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,0,#zName, {0}}
#define AGGREGATE2(zName, nArg, arg, nc, xStep, xFinal, extraFlags) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|extraFlags, \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xFinal,0,#zName, {0}}

#define WAGGREGATE(zName, nArg, arg, nc, xStep, xFinal, xValue, xInverse, f) \
  {nArg, SQLITE_UTF8|(nc*SQLITE_FUNC_NEEDCOLL)|f, \
   SQLITE_INT_TO_PTR(arg), 0, xStep,xFinal,xValue,xInverse,#zName, {0}}
#define INTERNAL_FUNCTION(zName, nArg, xFunc) \
  {nArg, SQLITE_FUNC_INTERNAL|SQLITE_UTF8|SQLITE_FUNC_CONSTANT, \
   0, 0, xFunc, 0, 0, 0, #zName, {0} }


/*
** All current savepoints are stored in a linked list starting at
** sqlite3.pSavepoint. The first element in the list is the most recently
** opened savepoint. Savepoints are added to the list by the vdbe
** OP_Savepoint instruction.
*/
16670
16671
16672
16673
16674
16675
16676



16677
16678
16679
16680
16681
16682
16683
/*
** The schema for each SQL table and view is represented in memory
** by an instance of the following structure.
*/
struct Table {
  char *zName;         /* Name of the table or view */
  Column *aCol;        /* Information about each column */



  Index *pIndex;       /* List of SQL indexes on this table. */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
  ExprList *pCheck;    /* All CHECK constraints */
                       /*   ... also used as column name list in a VIEW */
  int tnum;            /* Root BTree page for this table */







>
>
>







16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
/*
** The schema for each SQL table and view is represented in memory
** by an instance of the following structure.
*/
struct Table {
  char *zName;         /* Name of the table or view */
  Column *aCol;        /* Information about each column */
#ifdef SQLITE_ENABLE_NORMALIZE
  Hash *pColHash;      /* All columns indexed by name */
#endif
  Index *pIndex;       /* List of SQL indexes on this table. */
  Select *pSelect;     /* NULL for tables.  Points to definition if a view. */
  FKey *pFKey;         /* Linked list of all foreign keys in this table */
  char *zColAff;       /* String defining the affinity of each column */
  ExprList *pCheck;    /* All CHECK constraints */
                       /*   ... also used as column name list in a VIEW */
  int tnum;            /* Root BTree page for this table */
16720
16721
16722
16723
16724
16725
16726

16727
16728
16729
16730
16731
16732
16733
#define TF_HasStat1        0x0010    /* nRowLogEst set from sqlite_stat1 */
#define TF_WithoutRowid    0x0020    /* No rowid.  PRIMARY KEY is the key */
#define TF_NoVisibleRowid  0x0040    /* No user-visible "rowid" column */
#define TF_OOOHidden       0x0080    /* Out-of-Order hidden columns */
#define TF_StatsUsed       0x0100    /* Query planner decisions affected by
                                     ** Index.aiRowLogEst[] values */
#define TF_HasNotNull      0x0200    /* Contains NOT NULL constraints */


/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE







>







16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
#define TF_HasStat1        0x0010    /* nRowLogEst set from sqlite_stat1 */
#define TF_WithoutRowid    0x0020    /* No rowid.  PRIMARY KEY is the key */
#define TF_NoVisibleRowid  0x0040    /* No user-visible "rowid" column */
#define TF_OOOHidden       0x0080    /* Out-of-Order hidden columns */
#define TF_StatsUsed       0x0100    /* Query planner decisions affected by
                                     ** Index.aiRowLogEst[] values */
#define TF_HasNotNull      0x0200    /* Contains NOT NULL constraints */
#define TF_Shadow          0x0400    /* True for a shadow table */

/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
17006
17007
17008
17009
17010
17011
17012






17013
17014
17015
17016
17017
17018
17019
  void *p;          /* Pointer to sampled record */
  int n;            /* Size of record in bytes */
  tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
  tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
  tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
};







/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** The memory that "z" points to is owned by other objects.  Take care
** that the owner of the "z" string does not deallocate the string before
** the Token goes out of scope!  Very often, the "z" points to some place







>
>
>
>
>
>







17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
  void *p;          /* Pointer to sampled record */
  int n;            /* Size of record in bytes */
  tRowcnt *anEq;    /* Est. number of rows where the key equals this sample */
  tRowcnt *anLt;    /* Est. number of rows where key is less than this sample */
  tRowcnt *anDLt;   /* Est. number of distinct keys less than this sample */
};

/*
** Possible values to use within the flags argument to sqlite3GetToken().
*/
#define SQLITE_TOKEN_QUOTED    0x1 /* Token is a quoted identifier. */
#define SQLITE_TOKEN_KEYWORD   0x2 /* Token is a keyword. */

/*
** Each token coming out of the lexer is an instance of
** this structure.  Tokens are also used as part of an expression.
**
** The memory that "z" points to is owned by other objects.  Take care
** that the owner of the "z" string does not deallocate the string before
** the Token goes out of scope!  Very often, the "z" points to some place
17187
17188
17189
17190
17191
17192
17193

17194
17195
17196
17197
17198

17199
17200
17201
17202
17203
17204
17205
                         ** TK_SELECT_COLUMN: column of the result vector */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */

  Table *pTab;           /* Table for TK_COLUMN expressions.  Can be NULL
                         ** for a column of an index on an expression */
#ifndef SQLITE_OMIT_WINDOWFUNC
  Window *pWin;          /* Window definition for window functions */
#endif

};

/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
#define EP_Agg       0x000002 /* Contains one or more aggregate functions */







>
|
|
<
|
<
>







17335
17336
17337
17338
17339
17340
17341
17342
17343
17344

17345

17346
17347
17348
17349
17350
17351
17352
17353
                         ** TK_SELECT_COLUMN: column of the result vector */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  union {
    Table *pTab;           /* TK_COLUMN: Table containing column. Can be NULL
                           ** for a column of an index on an expression */

    Window *pWin;          /* TK_FUNCTION: Window definition for the func */

  } y;
};

/*
** The following are the meanings of bits in the Expr.flags field.
*/
#define EP_FromJoin  0x000001 /* Originates in ON/USING clause of outer join */
#define EP_Agg       0x000002 /* Contains one or more aggregate functions */
17221
17222
17223
17224
17225
17226
17227

17228
17229
17230
17231
17232
17233
17234
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
#define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
#define EP_Alias     0x400000 /* Is an alias for a result set column */
#define EP_Leaf      0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */


/*
** The EP_Propagate mask is a set of properties that automatically propagate
** upwards into parent nodes.
*/
#define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc)








>







17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_ConstFunc 0x080000 /* A SQLITE_FUNC_CONSTANT or _SLOCHNG function */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
#define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */
#define EP_Alias     0x400000 /* Is an alias for a result set column */
#define EP_Leaf      0x800000 /* Expr.pLeft, .pRight, .u.pSelect all NULL */
#define EP_WinFunc  0x1000000 /* TK_FUNCTION with Expr.y.pWin set */

/*
** The EP_Propagate mask is a set of properties that automatically propagate
** upwards into parent nodes.
*/
#define EP_Propagate (EP_Collate|EP_Subquery|EP_HasFunc)

17906
17907
17908
17909
17910
17911
17912

17913
17914
17915
17916
17917
17918
17919
**    OPFLAG_SEEKEQ       == BTREE_SEEK_EQ
**    OPFLAG_FORDELETE    == BTREE_FORDELETE
**    OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
**    OPFLAG_AUXDELETE    == BTREE_AUXDELETE
*/
#define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
                                     /* Also used in P2 (not P5) of OP_Delete */

#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x20    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_ISNOOP        0x40    /* OP_Delete does pre-update-hook only */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */







>







18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
**    OPFLAG_SEEKEQ       == BTREE_SEEK_EQ
**    OPFLAG_FORDELETE    == BTREE_FORDELETE
**    OPFLAG_SAVEPOSITION == BTREE_SAVEPOSITION
**    OPFLAG_AUXDELETE    == BTREE_AUXDELETE
*/
#define OPFLAG_NCHANGE       0x01    /* OP_Insert: Set to update db->nChange */
                                     /* Also used in P2 (not P5) of OP_Delete */
#define OPFLAG_NOCHNG        0x01    /* OP_VColumn nochange for UPDATE */
#define OPFLAG_EPHEM         0x01    /* OP_Column: Ephemeral output is ok */
#define OPFLAG_LASTROWID     0x20    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_ISNOOP        0x40    /* OP_Delete does pre-update-hook only */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
18124
18125
18126
18127
18128
18129
18130

18131
18132
18133
18134
18135
18136
18137
  void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx);  /* Callback */
  void *pVdbeBranchArg;                                     /* 1st argument */
#endif
#ifndef SQLITE_UNTESTABLE
  int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
#endif
  int bLocaltimeFault;              /* True to fail localtime() calls */

  int iOnceResetThreshold;          /* When to reset OP_Once counters */
  u32 szSorterRef;                  /* Min size in bytes to use sorter-refs */
};

/*
** This macro is used inside of assert() statements to indicate that
** the assert is only valid on a well-formed database.  Instead of:







>







18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
  void (*xVdbeBranch)(void*,unsigned iSrcLine,u8 eThis,u8 eMx);  /* Callback */
  void *pVdbeBranchArg;                                     /* 1st argument */
#endif
#ifndef SQLITE_UNTESTABLE
  int (*xTestCallback)(int);        /* Invoked by sqlite3FaultSim() */
#endif
  int bLocaltimeFault;              /* True to fail localtime() calls */
  int bInternalFunctions;           /* Internal SQL functions are visible */
  int iOnceResetThreshold;          /* When to reset OP_Once counters */
  u32 szSorterRef;                  /* Min size in bytes to use sorter-refs */
};

/*
** This macro is used inside of assert() statements to indicate that
** the assert is only valid on a well-formed database.  Instead of:
18377
18378
18379
18380
18381
18382
18383

18384
18385
18386
18387
18388
18389
18390
SQLITE_PRIVATE int sqlite3IsIdChar(u8);

/*
** Internal function prototypes
*/
SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*);
SQLITE_PRIVATE int sqlite3Strlen30(const char*);

SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*);
#define sqlite3StrNICmp sqlite3_strnicmp

SQLITE_PRIVATE int sqlite3MallocInit(void);
SQLITE_PRIVATE void sqlite3MallocEnd(void);
SQLITE_PRIVATE void *sqlite3Malloc(u64);
SQLITE_PRIVATE void *sqlite3MallocZero(u64);







>







18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
SQLITE_PRIVATE int sqlite3IsIdChar(u8);

/*
** Internal function prototypes
*/
SQLITE_PRIVATE int sqlite3StrICmp(const char*,const char*);
SQLITE_PRIVATE int sqlite3Strlen30(const char*);
#define sqlite3Strlen30NN(C) (strlen(C)&0x3fffffff)
SQLITE_PRIVATE char *sqlite3ColumnType(Column*,char*);
#define sqlite3StrNICmp sqlite3_strnicmp

SQLITE_PRIVATE int sqlite3MallocInit(void);
SQLITE_PRIVATE void sqlite3MallocEnd(void);
SQLITE_PRIVATE void *sqlite3Malloc(u64);
SQLITE_PRIVATE void *sqlite3MallocZero(u64);
18493
18494
18495
18496
18497
18498
18499

18500
18501
18502
18503
18504
18505
18506
SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
SQLITE_PRIVATE   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);

SQLITE_PRIVATE   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWith(TreeView*, const With*, u8);
#ifndef SQLITE_OMIT_WINDOWFUNC
SQLITE_PRIVATE   void sqlite3TreeViewWindow(TreeView*, const Window*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8);
#endif
#endif







>







18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
SQLITE_PRIVATE   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewBareExprList(TreeView*, const ExprList*, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewSrcList(TreeView*, const SrcList*);
SQLITE_PRIVATE   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWith(TreeView*, const With*, u8);
#ifndef SQLITE_OMIT_WINDOWFUNC
SQLITE_PRIVATE   void sqlite3TreeViewWindow(TreeView*, const Window*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWinFunc(TreeView*, const Window*, u8);
#endif
#endif
18725
18726
18727
18728
18729
18730
18731



18732
18733
18734
18735
18736

18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756



18757
18758
18759
18760
18761
18762
18763
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
#endif
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);



SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);

SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*,Upsert*);
#ifdef SQLITE_ENABLE_NULL_TRIM
SQLITE_PRIVATE   void sqlite3SetMakeRecordP5(Vdbe*,Table*);
#else
# define sqlite3SetMakeRecordP5(A,B)
#endif
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);



SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8);
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void);
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*);
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);







>
>
>





>




















>
>
>







18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
#endif
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE int sqlite3IsRowidN(const char*, int);
#endif
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(Expr*,int*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*,int*,Upsert*);
#ifdef SQLITE_ENABLE_NULL_TRIM
SQLITE_PRIVATE   void sqlite3SetMakeRecordP5(Vdbe*,Table*);
#else
# define sqlite3SetMakeRecordP5(A,B)
#endif
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3*,ExprList*,int);
SQLITE_PRIVATE SrcList *sqlite3SrcListDup(sqlite3*,SrcList*,int);
SQLITE_PRIVATE IdList *sqlite3IdListDup(sqlite3*,IdList*);
SQLITE_PRIVATE Select *sqlite3SelectDup(sqlite3*,Select*,int);
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE FuncDef *sqlite3FunctionSearchN(int,const char*,int);
#endif
SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(FuncDef*,int);
SQLITE_PRIVATE FuncDef *sqlite3FindFunction(sqlite3*,const char*,int,u8,u8);
SQLITE_PRIVATE void sqlite3RegisterBuiltinFunctions(void);
SQLITE_PRIVATE void sqlite3RegisterDateTimeFunctions(void);
SQLITE_PRIVATE void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3*);
SQLITE_PRIVATE int sqlite3SafetyCheckOk(sqlite3*);
SQLITE_PRIVATE int sqlite3SafetyCheckSickOrOk(sqlite3*);
18907
18908
18909
18910
18911
18912
18913

18914
18915
18916
18917
18918
18919
18920
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr);
SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,Expr*,Expr*);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);

SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3AbsInt32(int);
#ifdef SQLITE_ENABLE_8_3_NAMES







>







19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
SQLITE_PRIVATE CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr);
SQLITE_PRIVATE int sqlite3ExprCollSeqMatch(Parse*,Expr*,Expr*);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3*);
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3MulInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3AbsInt32(int);
#ifdef SQLITE_ENABLE_8_3_NAMES
18953
18954
18955
18956
18957
18958
18959



18960
18961
18962
18963
18964
18965
18966
#endif
SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int);
SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
SQLITE_PRIVATE void sqlite3AlterFunctions(void);
SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*);
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);



SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int);
SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr *, int, int);
SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);







>
>
>







19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
#endif
SQLITE_PRIVATE void sqlite3RootPageMoved(sqlite3*, int, int, int);
SQLITE_PRIVATE void sqlite3Reindex(Parse*, Token*, Token*);
SQLITE_PRIVATE void sqlite3AlterFunctions(void);
SQLITE_PRIVATE void sqlite3AlterRenameTable(Parse*, SrcList*, Token*);
SQLITE_PRIVATE void sqlite3AlterRenameColumn(Parse*, SrcList*, Token*, Token*);
SQLITE_PRIVATE int sqlite3GetToken(const unsigned char *, int *);
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE int sqlite3GetTokenNormalized(const unsigned char *, int *, int *);
#endif
SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...);
SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*, int);
SQLITE_PRIVATE int sqlite3CodeSubselect(Parse*, Expr *, int, int);
SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*);
SQLITE_PRIVATE void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p);
SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*);
SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*);
19110
19111
19112
19113
19114
19115
19116



19117
19118
19119
19120
19121
19122
19123
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
SQLITE_PRIVATE void sqlite3ParserReset(Parse*);



SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
SQLITE_PRIVATE const char *sqlite3JournalModename(int);
#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);







>
>
>







19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3*, int, const char *);
SQLITE_PRIVATE int sqlite3VtabBegin(sqlite3 *, VTable *);
SQLITE_PRIVATE FuncDef *sqlite3VtabOverloadFunction(sqlite3 *,FuncDef*, int nArg, Expr*);
SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context*);
SQLITE_PRIVATE int sqlite3VdbeParameterIndex(Vdbe*, const char*, int);
SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *, sqlite3_stmt *);
SQLITE_PRIVATE void sqlite3ParserReset(Parse*);
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE void sqlite3Normalize(Vdbe*, const char*, int, u8);
#endif
SQLITE_PRIVATE int sqlite3Reprepare(Vdbe*);
SQLITE_PRIVATE void sqlite3ExprListCheckLength(Parse*, ExprList*, const char*);
SQLITE_PRIVATE CollSeq *sqlite3BinaryCompareCollSeq(Parse *, Expr *, Expr *);
SQLITE_PRIVATE int sqlite3TempInMemory(const sqlite3*);
SQLITE_PRIVATE const char *sqlite3JournalModename(int);
#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3Checkpoint(sqlite3*, int, int, int*, int*);
19571
19572
19573
19574
19575
19576
19577

19578
19579
19580
19581
19582
19583
19584
   0,                         /* xVdbeBranch */
   0,                         /* pVbeBranchArg */
#endif
#ifndef SQLITE_UNTESTABLE
   0,                         /* xTestCallback */
#endif
   0,                         /* bLocaltimeFault */

   0x7ffffffe,                /* iOnceResetThreshold */
   SQLITE_DEFAULT_SORTERREF_SIZE   /* szSorterRef */
};

/*
** Hash table for global functions - functions common to all
** database connections.  After initialization, this table is







>







19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
   0,                         /* xVdbeBranch */
   0,                         /* pVbeBranchArg */
#endif
#ifndef SQLITE_UNTESTABLE
   0,                         /* xTestCallback */
#endif
   0,                         /* bLocaltimeFault */
   0,                         /* bInternalFunctions */
   0x7ffffffe,                /* iOnceResetThreshold */
   SQLITE_DEFAULT_SORTERREF_SIZE   /* szSorterRef */
};

/*
** Hash table for global functions - functions common to all
** database connections.  After initialization, this table is
20062
20063
20064
20065
20066
20067
20068



20069
20070
20071
20072
20073
20074
20075
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */
  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  u32 aCounter[7];        /* Counters used by sqlite3_stmt_status() */
  char *zSql;             /* Text of the SQL statement that generated this */



  void *pFree;            /* Free this when deleting the vdbe */
  VdbeFrame *pFrame;      /* Parent frame */
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */







>
>
>







20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */
  yDbMask btreeMask;      /* Bitmask of db->aDb[] entries referenced */
  yDbMask lockMask;       /* Subset of btreeMask that requires a lock */
  u32 aCounter[7];        /* Counters used by sqlite3_stmt_status() */
  char *zSql;             /* Text of the SQL statement that generated this */
#ifdef SQLITE_ENABLE_NORMALIZE
  char *zNormSql;         /* Normalization of the associated SQL statement */
#endif
  void *pFree;            /* Free this when deleting the vdbe */
  VdbeFrame *pFrame;      /* Parent frame */
  VdbeFrame *pDelFrame;   /* List of frame objects to free on VM reset */
  int nFrame;             /* Number of frames in pFrame list */
  u32 expmask;            /* Binding to these vars invalidates VM */
  SubProgram *pProgram;   /* Linked list of all sub-programs used by VM */
  AuxData *pAuxData;      /* Linked list of auxdata allocations */
20124
20125
20126
20127
20128
20129
20130

20131

20132
20133
20134
20135
20136
20137
20138
SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);

SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);

SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);







>

>







20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(sqlite3*, AuxData**, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*);
#ifndef SQLITE_OMIT_EXPLAIN
SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*);
#endif
SQLITE_PRIVATE int sqlite3VdbeHalt(Vdbe*);
SQLITE_PRIVATE int sqlite3VdbeChangeEncoding(Mem *, int);
SQLITE_PRIVATE int sqlite3VdbeMemTooBig(Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemCopy(Mem*, const Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem*, const Mem*, int);
SQLITE_PRIVATE void sqlite3VdbeMemMove(Mem*, Mem*);
SQLITE_PRIVATE int sqlite3VdbeMemNulTerminate(Mem*);
20163
20164
20165
20166
20167
20168
20169

20170

20171
20172
20173
20174
20175
20176
20177
SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8);
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
#ifndef SQLITE_OMIT_WINDOWFUNC
SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*);
#endif

SQLITE_PRIVATE const char *sqlite3OpcodeName(int);

SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*);
#endif
SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*);      /* Destructor on Mem */







>

>







20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
SQLITE_PRIVATE void sqlite3VdbeMemCast(Mem*,u8,u8);
SQLITE_PRIVATE int sqlite3VdbeMemFromBtree(BtCursor*,u32,u32,Mem*);
SQLITE_PRIVATE void sqlite3VdbeMemRelease(Mem *p);
SQLITE_PRIVATE int sqlite3VdbeMemFinalize(Mem*, FuncDef*);
#ifndef SQLITE_OMIT_WINDOWFUNC
SQLITE_PRIVATE int sqlite3VdbeMemAggValue(Mem*, Mem*, FuncDef*);
#endif
#ifndef SQLITE_OMIT_EXPLAIN
SQLITE_PRIVATE const char *sqlite3OpcodeName(int);
#endif
SQLITE_PRIVATE int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve);
SQLITE_PRIVATE int sqlite3VdbeMemClearAndResize(Mem *pMem, int n);
SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *, int);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3VdbeFrameIsValid(VdbeFrame*);
#endif
SQLITE_PRIVATE void sqlite3VdbeFrameMemDel(void*);      /* Destructor on Mem */
27605
27606
27607
27608
27609
27610
27611
27612





27613
27614
27615
27616
27617
27618
27619
          xtype = etSTRING;
        }else{
          bufpt = va_arg(ap,char*);
        }
        if( bufpt==0 ){
          bufpt = "";
        }else if( xtype==etDYNSTRING ){
          if( pAccum->nChar==0 && pAccum->mxAlloc && width==0 && precision<0 ){





            /* Special optimization for sqlite3_mprintf("%z..."):
            ** Extend an existing memory allocation rather than creating
            ** a new one. */
            assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
            pAccum->zText = bufpt;
            pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
            pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);







|
>
>
>
>
>







27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
          xtype = etSTRING;
        }else{
          bufpt = va_arg(ap,char*);
        }
        if( bufpt==0 ){
          bufpt = "";
        }else if( xtype==etDYNSTRING ){
          if( pAccum->nChar==0
           && pAccum->mxAlloc
           && width==0
           && precision<0
           && pAccum->accError==0
          ){
            /* Special optimization for sqlite3_mprintf("%z..."):
            ** Extend an existing memory allocation rather than creating
            ** a new one. */
            assert( (pAccum->printfFlags&SQLITE_PRINTF_MALLOCED)==0 );
            pAccum->zText = bufpt;
            pAccum->nAlloc = sqlite3DbMallocSize(pAccum->db, bufpt);
            pAccum->nChar = 0x7fffffff & (int)strlen(bufpt);
28285
28286
28287
28288
28289
28290
28291




































28292
28293
28294
28295
28296
28297
28298
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
}






































/*
** Generate a human-readable description of a Select object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  int cnt = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
}

/*
** Generate a human-readable description of a SrcList object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSrcList(TreeView *pView, const SrcList *pSrc){
  int i;
  for(i=0; i<pSrc->nSrc; i++){
    const struct SrcList_item *pItem = &pSrc->a[i];
    StrAccum x;
    char zLine[100];
    sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
    sqlite3_str_appendf(&x, "{%d,*}", pItem->iCursor);
    if( pItem->zDatabase ){
      sqlite3_str_appendf(&x, " %s.%s", pItem->zDatabase, pItem->zName);
    }else if( pItem->zName ){
      sqlite3_str_appendf(&x, " %s", pItem->zName);
    }
    if( pItem->pTab ){
      sqlite3_str_appendf(&x, " tabname=%Q", pItem->pTab->zName);
    }
    if( pItem->zAlias ){
      sqlite3_str_appendf(&x, " (AS %s)", pItem->zAlias);
    }
    if( pItem->fg.jointype & JT_LEFT ){
      sqlite3_str_appendf(&x, " LEFT-JOIN");
    }
    sqlite3StrAccumFinish(&x);
    sqlite3TreeViewItem(pView, zLine, i<pSrc->nSrc-1); 
    if( pItem->pSelect ){
      sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
    }
    if( pItem->fg.isTabFunc ){
      sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:");
    }
    sqlite3TreeViewPop(pView);
  }
}

/*
** Generate a human-readable description of a Select object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  int cnt = 0;
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
      for(pX=p->pWin; pX; pX=pX->pNextWin){
        sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0);
      }
      sqlite3TreeViewPop(pView);
    }
#endif
    if( p->pSrc && p->pSrc->nSrc ){
      int i;
      pView = sqlite3TreeViewPush(pView, (n--)>0);
      sqlite3TreeViewLine(pView, "FROM");
      for(i=0; i<p->pSrc->nSrc; i++){
        struct SrcList_item *pItem = &p->pSrc->a[i];
        StrAccum x;
        char zLine[100];
        sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
        sqlite3_str_appendf(&x, "{%d,*}", pItem->iCursor);
        if( pItem->zDatabase ){
          sqlite3_str_appendf(&x, " %s.%s", pItem->zDatabase, pItem->zName);
        }else if( pItem->zName ){
          sqlite3_str_appendf(&x, " %s", pItem->zName);
        }
        if( pItem->pTab ){
          sqlite3_str_appendf(&x, " tabname=%Q", pItem->pTab->zName);
        }
        if( pItem->zAlias ){
          sqlite3_str_appendf(&x, " (AS %s)", pItem->zAlias);
        }
        if( pItem->fg.jointype & JT_LEFT ){
          sqlite3_str_appendf(&x, " LEFT-JOIN");
        }
        sqlite3StrAccumFinish(&x);
        sqlite3TreeViewItem(pView, zLine, i<p->pSrc->nSrc-1); 
        if( pItem->pSelect ){
          sqlite3TreeViewSelect(pView, pItem->pSelect, 0);
        }
        if( pItem->fg.isTabFunc ){
          sqlite3TreeViewExprList(pView, pItem->u1.pFuncArg, 0, "func-args:");
        }
        sqlite3TreeViewPop(pView);
      }
      sqlite3TreeViewPop(pView);
    }
    if( p->pWhere ){
      sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
      sqlite3TreeViewExpr(pView, p->pWhere, 0);
      sqlite3TreeViewPop(pView);
    }







<


<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<







28555
28556
28557
28558
28559
28560
28561

28562
28563




























28564

28565
28566
28567
28568
28569
28570
28571
      for(pX=p->pWin; pX; pX=pX->pNextWin){
        sqlite3TreeViewWinFunc(pView, pX, pX->pNextWin!=0);
      }
      sqlite3TreeViewPop(pView);
    }
#endif
    if( p->pSrc && p->pSrc->nSrc ){

      pView = sqlite3TreeViewPush(pView, (n--)>0);
      sqlite3TreeViewLine(pView, "FROM");




























      sqlite3TreeViewSrcList(pView, p->pSrc);

      sqlite3TreeViewPop(pView);
    }
    if( p->pWhere ){
      sqlite3TreeViewItem(pView, "WHERE", (n--)>0);
      sqlite3TreeViewExpr(pView, p->pWhere, 0);
      sqlite3TreeViewPop(pView);
    }
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
      Window *pWin;
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
        pWin = 0;
      }else{
        pFarg = pExpr->x.pList;
#ifndef SQLITE_OMIT_WINDOWFUNC
        pWin = pExpr->pWin;
#else
        pWin = 0;
#endif 
      }
      if( pExpr->op==TK_AGG_FUNCTION ){
        sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
                             pExpr->op2, pExpr->u.zToken);







|







28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
      Window *pWin;
      if( ExprHasProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
        pWin = 0;
      }else{
        pFarg = pExpr->x.pList;
#ifndef SQLITE_OMIT_WINDOWFUNC
        pWin = pExpr->y.pWin;
#else
        pWin = 0;
#endif 
      }
      if( pExpr->op==TK_AGG_FUNCTION ){
        sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q",
                             pExpr->op2, pExpr->u.zToken);
31489
31490
31491
31492
31493
31494
31495














31496
31497
31498
31499
31500
31501
31502
    ** 0x9e3779b1 is 2654435761 which is the closest prime number to
    ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */
    h += sqlite3UpperToLower[c];
    h *= 0x9e3779b1;
  }
  return h;
}
















/* Link pNew element into the hash table pH.  If pEntry!=0 then also
** insert pNew into the pEntry hash bucket.
*/
static void insertElement(
  Hash *pH,              /* The complete hash table */







>
>
>
>
>
>
>
>
>
>
>
>
>
>







31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
    ** 0x9e3779b1 is 2654435761 which is the closest prime number to
    ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */
    h += sqlite3UpperToLower[c];
    h *= 0x9e3779b1;
  }
  return h;
}
#ifdef SQLITE_ENABLE_NORMALIZE
static unsigned int strHashN(const char *z, int n){
  unsigned int h = 0;
  int i;
  for(i=0; i<n; i++){
    /* Knuth multiplicative hashing.  (Sorting & Searching, p. 510).
    ** 0x9e3779b1 is 2654435761 which is the closest prime number to
    ** (2**32)*golden_ratio, where golden_ratio = (sqrt(5) - 1)/2. */
    h += sqlite3UpperToLower[z[i]];
    h *= 0x9e3779b1;
  }
  return h;
}
#endif /* SQLITE_ENABLE_NORMALIZE */


/* Link pNew element into the hash table pH.  If pEntry!=0 then also
** insert pNew into the pEntry hash bucket.
*/
static void insertElement(
  Hash *pH,              /* The complete hash table */
31600
31601
31602
31603
31604
31605
31606


































31607
31608
31609
31610
31611
31612
31613
    if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ 
      return elem;
    }
    elem = elem->next;
  }
  return &nullElement;
}



































/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void removeElementGivenHash(
  Hash *pH,         /* The pH containing "elem" */
  HashElem* elem,   /* The element to be removed from the pH */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
    if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ 
      return elem;
    }
    elem = elem->next;
  }
  return &nullElement;
}
#ifdef SQLITE_ENABLE_NORMALIZE
static HashElem *findElementWithHashN(
  const Hash *pH,     /* The pH to be searched */
  const char *pKey,   /* The key we are searching for */
  int nKey,           /* Number of key bytes to use */
  unsigned int *pHash /* Write the hash value here */
){
  HashElem *elem;                /* Used to loop thru the element list */
  int count;                     /* Number of elements left to test */
  unsigned int h;                /* The computed hash */
  static HashElem nullElement = { 0, 0, 0, 0 };

  if( pH->ht ){   /*OPTIMIZATION-IF-TRUE*/
    struct _ht *pEntry;
    h = strHashN(pKey, nKey) % pH->htsize;
    pEntry = &pH->ht[h];
    elem = pEntry->chain;
    count = pEntry->count;
  }else{
    h = 0;
    elem = pH->first;
    count = pH->count;
  }
  if( pHash ) *pHash = h;
  while( count-- ){
    assert( elem!=0 );
    if( sqlite3StrNICmp(elem->pKey,pKey,nKey)==0 ){ 
      return elem;
    }
    elem = elem->next;
  }
  return &nullElement;
}
#endif /* SQLITE_ENABLE_NORMALIZE */

/* Remove a single entry from the hash table given a pointer to that
** element and a hash on the element's key.
*/
static void removeElementGivenHash(
  Hash *pH,         /* The pH containing "elem" */
  HashElem* elem,   /* The element to be removed from the pH */
31644
31645
31646
31647
31648
31649
31650








31651
31652
31653
31654
31655
31656
31657
** found, or NULL if there is no match.
*/
SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){
  assert( pH!=0 );
  assert( pKey!=0 );
  return findElementWithHash(pH, pKey, 0)->data;
}









/* Insert an element into the hash table pH.  The key is pKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created and NULL is returned.
**







>
>
>
>
>
>
>
>







31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
** found, or NULL if there is no match.
*/
SQLITE_PRIVATE void *sqlite3HashFind(const Hash *pH, const char *pKey){
  assert( pH!=0 );
  assert( pKey!=0 );
  return findElementWithHash(pH, pKey, 0)->data;
}
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE void *sqlite3HashFindN(const Hash *pH, const char *pKey, int nKey){
  assert( pH!=0 );
  assert( pKey!=0 );
  assert( nKey>=0 );
  return findElementWithHashN(pH, pKey, nKey, 0)->data;
}
#endif /* SQLITE_ENABLE_NORMALIZE */

/* Insert an element into the hash table pH.  The key is pKey
** and the data is "data".
**
** If no element exists with a matching key, then a new
** element is created and NULL is returned.
**
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045

/*
** Allowed values of unixFile.fsFlags
*/
#define SQLITE_FSFLAGS_IS_MSDOS     0x1

/*
** If we are to be thread-safe, include the pthreads header and define
** the SQLITE_UNIX_THREADS macro.
*/
#if SQLITE_THREADSAFE
/* # include <pthread.h> */
# define SQLITE_UNIX_THREADS 1
#endif

/*
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644







|
<



<







32268
32269
32270
32271
32272
32273
32274
32275

32276
32277
32278

32279
32280
32281
32282
32283
32284
32285

/*
** Allowed values of unixFile.fsFlags
*/
#define SQLITE_FSFLAGS_IS_MSDOS     0x1

/*
** If we are to be thread-safe, include the pthreads header.

*/
#if SQLITE_THREADSAFE
/* # include <pthread.h> */

#endif

/*
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
32609
32610
32611
32612
32613
32614
32615



32616

32617
32618
32619
32620
32621
32622
32623
  { "lstat",         (sqlite3_syscall_ptr)lstat,          0 },
#else
  { "lstat",         (sqlite3_syscall_ptr)0,              0 },
#endif
#define osLstat      ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)

#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)



  { "ioctl",         (sqlite3_syscall_ptr)ioctl,          0 },

#else
  { "ioctl",         (sqlite3_syscall_ptr)0,              0 },
#endif
#define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)

}; /* End of the overrideable system calls */








>
>
>

>







32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
  { "lstat",         (sqlite3_syscall_ptr)lstat,          0 },
#else
  { "lstat",         (sqlite3_syscall_ptr)0,              0 },
#endif
#define osLstat      ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)

#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
# ifdef __ANDROID__
  { "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 },
# else
  { "ioctl",         (sqlite3_syscall_ptr)ioctl,          0 },
# endif
#else
  { "ioctl",         (sqlite3_syscall_ptr)0,              0 },
#endif
#define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)

}; /* End of the overrideable system calls */

33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
  /* WAS:  ino_t ino;   */
  u64 ino;                   /* Inode number */
#endif
};

/*
** An instance of the following structure is allocated for each open
** inode.  Or, on LinuxThreads, there is one of these structures for
** each inode opened by each thread.
**
** A single inode can have multiple file descriptors, so each unixFile
** structure contains a pointer to an instance of this object and this
** object keeps a count of the number of unixFile pointing to it.
**
** Mutex rules:
**







|
<







33447
33448
33449
33450
33451
33452
33453
33454

33455
33456
33457
33458
33459
33460
33461
  /* WAS:  ino_t ino;   */
  u64 ino;                   /* Inode number */
#endif
};

/*
** An instance of the following structure is allocated for each open
** inode.

**
** A single inode can have multiple file descriptors, so each unixFile
** structure contains a pointer to an instance of this object and this
** object keeps a count of the number of unixFile pointing to it.
**
** Mutex rules:
**
33250
33251
33252
33253
33254
33255
33256


33257
33258
33259
33260
33261
33262
33263

33264
33265
33266
33267
33268
33269
33270
  sem_t *pSem;                    /* Named POSIX semaphore */
  char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
#endif
};

/*
** A lists of all unixInodeInfo objects.


*/
static unixInodeInfo *inodeList = 0;  /* All unixInodeInfo objects */

#ifdef SQLITE_DEBUG
/*
** True if the inode mutex is held, or not.  Used only within assert()
** to help verify correct mutex usage.

*/
int unixFileMutexHeld(unixFile *pFile){
  assert( pFile->pInode );
  return sqlite3_mutex_held(pFile->pInode->pLockMutex);
}
int unixFileMutexNotheld(unixFile *pFile){
  assert( pFile->pInode );







>
>





|
|
>







33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
  sem_t *pSem;                    /* Named POSIX semaphore */
  char aSemName[MAX_PATHNAME+2];  /* Name of that semaphore */
#endif
};

/*
** A lists of all unixInodeInfo objects.
**
** Must hold unixBigLock in order to read or write this variable.
*/
static unixInodeInfo *inodeList = 0;  /* All unixInodeInfo objects */

#ifdef SQLITE_DEBUG
/*
** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not.
** This routine is used only within assert() to help verify correct mutex
** usage.
*/
int unixFileMutexHeld(unixFile *pFile){
  assert( pFile->pInode );
  return sqlite3_mutex_held(pFile->pInode->pLockMutex);
}
int unixFileMutexNotheld(unixFile *pFile){
  assert( pFile->pInode );
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
  }
  pInode->pUnused = 0;
}

/*
** Release a unixInodeInfo structure previously allocated by findInodeInfo().
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
*/
static void releaseInodeInfo(unixFile *pFile){
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  assert( unixFileMutexNotheld(pFile) );
  if( ALWAYS(pInode) ){
    pInode->nRef--;







|
|







33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
  }
  pInode->pUnused = 0;
}

/*
** Release a unixInodeInfo structure previously allocated by findInodeInfo().
**
** The global mutex must be held when this routine is called, but the mutex
** on the inode being deleted must NOT be held.
*/
static void releaseInodeInfo(unixFile *pFile){
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  assert( unixFileMutexNotheld(pFile) );
  if( ALWAYS(pInode) ){
    pInode->nRef--;
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
}

/*
** Given a file descriptor, locate the unixInodeInfo object that
** describes that file descriptor.  Create a new one if necessary.  The
** return value might be uninitialized if an error occurs.
**
** The mutex entered using the unixEnterMutex() function must be held
** when this function is called.
**
** Return an appropriate error code.
*/
static int findInodeInfo(
  unixFile *pFile,               /* Unix file with file desc used in the key */
  unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
){







|
<







33666
33667
33668
33669
33670
33671
33672
33673

33674
33675
33676
33677
33678
33679
33680
}

/*
** Given a file descriptor, locate the unixInodeInfo object that
** describes that file descriptor.  Create a new one if necessary.  The
** return value might be uninitialized if an error occurs.
**
** The global mutex must held when calling this routine.

**
** Return an appropriate error code.
*/
static int findInodeInfo(
  unixFile *pFile,               /* Unix file with file desc used in the key */
  unixInodeInfo **ppInode        /* Return the unixInodeInfo object here */
){
33482
33483
33484
33485
33486
33487
33488

33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507

33508
33509
33510
33511
33512
33513
33514
  memset(&fileId, 0, sizeof(fileId));
  fileId.dev = statbuf.st_dev;
#if OS_VXWORKS
  fileId.pId = pFile->pId;
#else
  fileId.ino = (u64)statbuf.st_ino;
#endif

  pInode = inodeList;
  while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
    pInode = pInode->pNext;
  }
  if( pInode==0 ){
    pInode = sqlite3_malloc64( sizeof(*pInode) );
    if( pInode==0 ){
      return SQLITE_NOMEM_BKPT;
    }
    memset(pInode, 0, sizeof(*pInode));
    memcpy(&pInode->fileId, &fileId, sizeof(fileId));
    if( sqlite3GlobalConfig.bCoreMutex ){
      pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
      if( pInode->pLockMutex==0 ){
        sqlite3_free(pInode);
        return SQLITE_NOMEM_BKPT;
      }
    }
    pInode->nRef = 1;

    pInode->pNext = inodeList;
    pInode->pPrev = 0;
    if( inodeList ) inodeList->pPrev = pInode;
    inodeList = pInode;
  }else{
    pInode->nRef++;
  }







>



















>







33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
  memset(&fileId, 0, sizeof(fileId));
  fileId.dev = statbuf.st_dev;
#if OS_VXWORKS
  fileId.pId = pFile->pId;
#else
  fileId.ino = (u64)statbuf.st_ino;
#endif
  assert( unixMutexHeld() );
  pInode = inodeList;
  while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
    pInode = pInode->pNext;
  }
  if( pInode==0 ){
    pInode = sqlite3_malloc64( sizeof(*pInode) );
    if( pInode==0 ){
      return SQLITE_NOMEM_BKPT;
    }
    memset(pInode, 0, sizeof(*pInode));
    memcpy(&pInode->fileId, &fileId, sizeof(fileId));
    if( sqlite3GlobalConfig.bCoreMutex ){
      pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
      if( pInode->pLockMutex==0 ){
        sqlite3_free(pInode);
        return SQLITE_NOMEM_BKPT;
      }
    }
    pInode->nRef = 1;
    assert( unixMutexHeld() );
    pInode->pNext = inodeList;
    pInode->pPrev = 0;
    if( inodeList ) inodeList->pPrev = pInode;
    inodeList = pInode;
  }else{
    pInode->nRef++;
  }
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
** unixMutexHeld() must be true when creating or destroying
** this object or while reading or writing the following fields:
**
**      nRef
**
** The following fields are read-only after the object is created:
** 
**      fid
**      zFilename
**
** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and
** unixMutexHeld() is true when reading or writing any other field
** in this structure.
*/
struct unixShmNode {
  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
  sqlite3_mutex *mutex;      /* Mutex to access this object */
  char *zFilename;           /* Name of the mmapped file */
  int h;                     /* Open file descriptor */
  int szRegion;              /* Size of shared-memory regions */
  u16 nRegion;               /* Size of array apRegion */
  u8 isReadonly;             /* True if read-only */
  u8 isUnlocked;             /* True if no DMS lock held */
  char **apRegion;           /* Array of mapped shared-memory regions */
  int nRef;                  /* Number of unixShm objects pointing to this */
  unixShm *pFirst;           /* All unixShm objects pointing to this */







|


|





|

|







36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
** unixMutexHeld() must be true when creating or destroying
** this object or while reading or writing the following fields:
**
**      nRef
**
** The following fields are read-only after the object is created:
** 
**      hShm
**      zFilename
**
** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and
** unixMutexHeld() is true when reading or writing any other field
** in this structure.
*/
struct unixShmNode {
  unixInodeInfo *pInode;     /* unixInodeInfo that owns this SHM node */
  sqlite3_mutex *pShmMutex;  /* Mutex to access this object */
  char *zFilename;           /* Name of the mmapped file */
  int hShm;                  /* Open file descriptor */
  int szRegion;              /* Size of shared-memory regions */
  u16 nRegion;               /* Size of array apRegion */
  u8 isReadonly;             /* True if read-only */
  u8 isUnlocked;             /* True if no DMS lock held */
  char **apRegion;           /* Array of mapped shared-memory regions */
  int nRef;                  /* Number of unixShm objects pointing to this */
  unixShm *pFirst;           /* All unixShm objects pointing to this */
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
/*
** Structure used internally by this VFS to record the state of an
** open shared memory connection.
**
** The following fields are initialized when this object is created and
** are read-only thereafter:
**
**    unixShm.pFile
**    unixShm.id
**
** All other fields are read/write.  The unixShm.pFile->mutex must be held
** while accessing any read/write fields.
*/
struct unixShm {
  unixShmNode *pShmNode;     /* The underlying unixShmNode object */
  unixShm *pNext;            /* Next unixShm with the same unixShmNode */
  u8 hasMutex;               /* True if holding the unixShmNode mutex */
  u8 id;                     /* Id of this connection within its unixShmNode */
  u16 sharedMask;            /* Mask of shared locks held */
  u16 exclMask;              /* Mask of exclusive locks held */
};

/*
** Constants used for locking







|


|
|




|







36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
/*
** Structure used internally by this VFS to record the state of an
** open shared memory connection.
**
** The following fields are initialized when this object is created and
** are read-only thereafter:
**
**    unixShm.pShmNode
**    unixShm.id
**
** All other fields are read/write.  The unixShm.pShmNode->pShmMutex must
** be held while accessing any read/write fields.
*/
struct unixShm {
  unixShmNode *pShmNode;     /* The underlying unixShmNode object */
  unixShm *pNext;            /* Next unixShm with the same unixShmNode */
  u8 hasMutex;               /* True if holding the unixShmNode->pShmMutex */
  u8 id;                     /* Id of this connection within its unixShmNode */
  u16 sharedMask;            /* Mask of shared locks held */
  u16 exclMask;              /* Mask of exclusive locks held */
};

/*
** Constants used for locking
36370
36371
36372
36373
36374
36375
36376
36377

36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
){
  unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
  struct flock f;        /* The posix advisory locking structure */
  int rc = SQLITE_OK;    /* Result code form fcntl() */

  /* Access to the unixShmNode object is serialized by the caller */
  pShmNode = pFile->pInode->pShmNode;
  assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->mutex) );


  /* Shared locks never span more than one byte */
  assert( n==1 || lockType!=F_RDLCK );

  /* Locks are within range */
  assert( n>=1 && n<=SQLITE_SHM_NLOCK );

  if( pShmNode->h>=0 ){
    /* Initialize the locking parameters */
    f.l_type = lockType;
    f.l_whence = SEEK_SET;
    f.l_start = ofst;
    f.l_len = n;
    rc = osSetPosixAdvisoryLock(pShmNode->h, &f, pFile);
    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
  }

  /* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
  { u16 mask;
  OSTRACE(("SHM-LOCK "));







|
>







|





|







36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
){
  unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
  struct flock f;        /* The posix advisory locking structure */
  int rc = SQLITE_OK;    /* Result code form fcntl() */

  /* Access to the unixShmNode object is serialized by the caller */
  pShmNode = pFile->pInode->pShmNode;
  assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) );
  assert( pShmNode->nRef>0 || unixMutexHeld() );

  /* Shared locks never span more than one byte */
  assert( n==1 || lockType!=F_RDLCK );

  /* Locks are within range */
  assert( n>=1 && n<=SQLITE_SHM_NLOCK );

  if( pShmNode->hShm>=0 ){
    /* Initialize the locking parameters */
    f.l_type = lockType;
    f.l_whence = SEEK_SET;
    f.l_start = ofst;
    f.l_len = n;
    rc = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile);
    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
  }

  /* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
  { u16 mask;
  OSTRACE(("SHM-LOCK "));
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && ALWAYS(p->nRef==0) ){
    int nShmPerMap = unixShmRegionPerMap();
    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i+=nShmPerMap){
      if( p->h>=0 ){
        osMunmap(p->apRegion[i], p->szRegion);
      }else{
        sqlite3_free(p->apRegion[i]);
      }
    }
    sqlite3_free(p->apRegion);
    if( p->h>=0 ){
      robust_close(pFd, p->h, __LINE__);
      p->h = -1;
    }
    p->pInode->pShmNode = 0;
    sqlite3_free(p);
  }
}

/*







|

|






|
|
|







36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && ALWAYS(p->nRef==0) ){
    int nShmPerMap = unixShmRegionPerMap();
    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->pShmMutex);
    for(i=0; i<p->nRegion; i+=nShmPerMap){
      if( p->hShm>=0 ){
        osMunmap(p->apRegion[i], p->szRegion);
      }else{
        sqlite3_free(p->apRegion[i]);
      }
    }
    sqlite3_free(p->apRegion);
    if( p->hShm>=0 ){
      robust_close(pFd, p->hShm, __LINE__);
      p->hShm = -1;
    }
    p->pInode->pShmNode = 0;
    sqlite3_free(p);
  }
}

/*
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523





36524
36525
36526
36527
36528
36529
36530
36531
  ** process might open and use the *-shm file without truncating it.
  ** And if the *-shm file has been corrupted by a power failure or
  ** system crash, the database itself may also become corrupt.  */
  lock.l_whence = SEEK_SET;
  lock.l_start = UNIX_SHM_DMS;
  lock.l_len = 1;
  lock.l_type = F_WRLCK;
  if( osFcntl(pShmNode->h, F_GETLK, &lock)!=0 ) {
    rc = SQLITE_IOERR_LOCK;
  }else if( lock.l_type==F_UNLCK ){
    if( pShmNode->isReadonly ){
      pShmNode->isUnlocked = 1;
      rc = SQLITE_READONLY_CANTINIT;
    }else{
      rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);





      if( rc==SQLITE_OK && robust_ftruncate(pShmNode->h, 0) ){
        rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
      }
    }
  }else if( lock.l_type==F_WRLCK ){
    rc = SQLITE_BUSY;
  }








|







>
>
>
>
>
|







36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
  ** process might open and use the *-shm file without truncating it.
  ** And if the *-shm file has been corrupted by a power failure or
  ** system crash, the database itself may also become corrupt.  */
  lock.l_whence = SEEK_SET;
  lock.l_start = UNIX_SHM_DMS;
  lock.l_len = 1;
  lock.l_type = F_WRLCK;
  if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) {
    rc = SQLITE_IOERR_LOCK;
  }else if( lock.l_type==F_UNLCK ){
    if( pShmNode->isReadonly ){
      pShmNode->isUnlocked = 1;
      rc = SQLITE_READONLY_CANTINIT;
    }else{
      rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);
      /* The first connection to attach must truncate the -shm file.  We
      ** truncate to 3 bytes (an arbitrary small number, less than the
      ** -shm header size) rather than 0 as a system debugging aid, to
      ** help detect if a -shm file truncation is legitimate or is the work
      ** or a rogue process. */
      if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){
        rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
      }
    }
  }else if( lock.l_type==F_WRLCK ){
    rc = SQLITE_BUSY;
  }

36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
    sqlite3_snprintf(nShmFilename, zShm, 
                     SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
                     (u32)sStat.st_ino, (u32)sStat.st_dev);
#else
    sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
    sqlite3FileSuffix3(pDbFd->zPath, zShm);
#endif
    pShmNode->h = -1;
    pDbFd->pInode->pShmNode = pShmNode;
    pShmNode->pInode = pDbFd->pInode;
    if( sqlite3GlobalConfig.bCoreMutex ){
      pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
      if( pShmNode->mutex==0 ){
        rc = SQLITE_NOMEM_BKPT;
        goto shm_open_err;
      }
    }

    if( pInode->bProcessLock==0 ){
      if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
        pShmNode->h = robust_open(zShm, O_RDWR|O_CREAT, (sStat.st_mode&0777));
      }
      if( pShmNode->h<0 ){
        pShmNode->h = robust_open(zShm, O_RDONLY, (sStat.st_mode&0777));
        if( pShmNode->h<0 ){
          rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
          goto shm_open_err;
        }
        pShmNode->isReadonly = 1;
      }

      /* If this process is running as root, make sure that the SHM file
      ** is owned by the same user that owns the original database.  Otherwise,
      ** the original owner will not be able to connect.
      */
      robustFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);

      rc = unixLockSharedMemory(pDbFd, pShmNode);
      if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
    }
  }

  /* Make the new connection a child of the unixShmNode */
  p->pShmNode = pShmNode;
#ifdef SQLITE_DEBUG
  p->id = pShmNode->nextShmId++;
#endif
  pShmNode->nRef++;
  pDbFd->pShm = p;
  unixLeaveMutex();

  /* The reference count on pShmNode has already been incremented under
  ** the cover of the unixEnterMutex() mutex and the pointer from the
  ** new (struct unixShm) object to the pShmNode has been set. All that is
  ** left to do is to link the new object into the linked list starting
  ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex 
  ** mutex.
  */
  sqlite3_mutex_enter(pShmNode->mutex);
  p->pNext = pShmNode->pFirst;
  pShmNode->pFirst = p;
  sqlite3_mutex_leave(pShmNode->mutex);
  return rc;

  /* Jump here on any error */
shm_open_err:
  unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
  sqlite3_free(p);
  unixLeaveMutex();







|



|
|







|

|
|
|










|



















|
|

|


|







36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
    sqlite3_snprintf(nShmFilename, zShm, 
                     SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
                     (u32)sStat.st_ino, (u32)sStat.st_dev);
#else
    sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
    sqlite3FileSuffix3(pDbFd->zPath, zShm);
#endif
    pShmNode->hShm = -1;
    pDbFd->pInode->pShmNode = pShmNode;
    pShmNode->pInode = pDbFd->pInode;
    if( sqlite3GlobalConfig.bCoreMutex ){
      pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
      if( pShmNode->pShmMutex==0 ){
        rc = SQLITE_NOMEM_BKPT;
        goto shm_open_err;
      }
    }

    if( pInode->bProcessLock==0 ){
      if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
        pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT,(sStat.st_mode&0777));
      }
      if( pShmNode->hShm<0 ){
        pShmNode->hShm = robust_open(zShm, O_RDONLY, (sStat.st_mode&0777));
        if( pShmNode->hShm<0 ){
          rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
          goto shm_open_err;
        }
        pShmNode->isReadonly = 1;
      }

      /* If this process is running as root, make sure that the SHM file
      ** is owned by the same user that owns the original database.  Otherwise,
      ** the original owner will not be able to connect.
      */
      robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid);

      rc = unixLockSharedMemory(pDbFd, pShmNode);
      if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
    }
  }

  /* Make the new connection a child of the unixShmNode */
  p->pShmNode = pShmNode;
#ifdef SQLITE_DEBUG
  p->id = pShmNode->nextShmId++;
#endif
  pShmNode->nRef++;
  pDbFd->pShm = p;
  unixLeaveMutex();

  /* The reference count on pShmNode has already been incremented under
  ** the cover of the unixEnterMutex() mutex and the pointer from the
  ** new (struct unixShm) object to the pShmNode has been set. All that is
  ** left to do is to link the new object into the linked list starting
  ** at pShmNode->pFirst. This must be done while holding the
  ** pShmNode->pShmMutex.
  */
  sqlite3_mutex_enter(pShmNode->pShmMutex);
  p->pNext = pShmNode->pFirst;
  pShmNode->pFirst = p;
  sqlite3_mutex_leave(pShmNode->pShmMutex);
  return rc;

  /* Jump here on any error */
shm_open_err:
  unixShmPurge(pDbFd);       /* This call frees pShmNode if required */
  sqlite3_free(p);
  unixLeaveMutex();
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
  if( pDbFd->pShm==0 ){
    rc = unixOpenSharedMemory(pDbFd);
    if( rc!=SQLITE_OK ) return rc;
  }

  p = pDbFd->pShm;
  pShmNode = p->pShmNode;
  sqlite3_mutex_enter(pShmNode->mutex);
  if( pShmNode->isUnlocked ){
    rc = unixLockSharedMemory(pDbFd, pShmNode);
    if( rc!=SQLITE_OK ) goto shmpage_out;
    pShmNode->isUnlocked = 0;
  }
  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
  assert( pShmNode->pInode==pDbFd->pInode );
  assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
  assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );

  /* Minimum number of regions required to be mapped. */
  nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;

  if( pShmNode->nRegion<nReqRegion ){
    char **apNew;                      /* New apRegion[] array */
    int nByte = nReqRegion*szRegion;   /* Minimum required file size */
    struct stat sStat;                 /* Used by fstat() */

    pShmNode->szRegion = szRegion;

    if( pShmNode->h>=0 ){
      /* The requested region is not mapped into this processes address space.
      ** Check to see if it has been allocated (i.e. if the wal-index file is
      ** large enough to contain the requested region).
      */
      if( osFstat(pShmNode->h, &sStat) ){
        rc = SQLITE_IOERR_SHMSIZE;
        goto shmpage_out;
      }
  
      if( sStat.st_size<nByte ){
        /* The requested memory region does not exist. If bExtend is set to
        ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.







|







|
|











|




|







36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
  if( pDbFd->pShm==0 ){
    rc = unixOpenSharedMemory(pDbFd);
    if( rc!=SQLITE_OK ) return rc;
  }

  p = pDbFd->pShm;
  pShmNode = p->pShmNode;
  sqlite3_mutex_enter(pShmNode->pShmMutex);
  if( pShmNode->isUnlocked ){
    rc = unixLockSharedMemory(pDbFd, pShmNode);
    if( rc!=SQLITE_OK ) goto shmpage_out;
    pShmNode->isUnlocked = 0;
  }
  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
  assert( pShmNode->pInode==pDbFd->pInode );
  assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
  assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );

  /* Minimum number of regions required to be mapped. */
  nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;

  if( pShmNode->nRegion<nReqRegion ){
    char **apNew;                      /* New apRegion[] array */
    int nByte = nReqRegion*szRegion;   /* Minimum required file size */
    struct stat sStat;                 /* Used by fstat() */

    pShmNode->szRegion = szRegion;

    if( pShmNode->hShm>=0 ){
      /* The requested region is not mapped into this processes address space.
      ** Check to see if it has been allocated (i.e. if the wal-index file is
      ** large enough to contain the requested region).
      */
      if( osFstat(pShmNode->hShm, &sStat) ){
        rc = SQLITE_IOERR_SHMSIZE;
        goto shmpage_out;
      }
  
      if( sStat.st_size<nByte ){
        /* The requested memory region does not exist. If bExtend is set to
        ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
          static const int pgsz = 4096;
          int iPg;

          /* Write to the last byte of each newly allocated or extended page */
          assert( (nByte % pgsz)==0 );
          for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
            int x = 0;
            if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, &x)!=1 ){
              const char *zFile = pShmNode->zFilename;
              rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
              goto shmpage_out;
            }
          }
        }
      }







|







37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
          static const int pgsz = 4096;
          int iPg;

          /* Write to the last byte of each newly allocated or extended page */
          assert( (nByte % pgsz)==0 );
          for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
            int x = 0;
            if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){
              const char *zFile = pShmNode->zFilename;
              rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
              goto shmpage_out;
            }
          }
        }
      }
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while( pShmNode->nRegion<nReqRegion ){
      int nMap = szRegion*nShmPerMap;
      int i;
      void *pMem;
      if( pShmNode->h>=0 ){
        pMem = osMmap(0, nMap,
            pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
            MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{
        pMem = sqlite3_malloc64(szRegion);
        if( pMem==0 ){
          rc = SQLITE_NOMEM_BKPT;
          goto shmpage_out;
        }
        memset(pMem, 0, szRegion);
      }

      for(i=0; i<nShmPerMap; i++){
        pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
      }
      pShmNode->nRegion += nShmPerMap;
    }
  }

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
    *pp = 0;
  }
  if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
  sqlite3_mutex_leave(pShmNode->mutex);
  return rc;
}

/*
** Change the lock state for a shared-memory segment.
**
** Note that the relationship between SHAREd and EXCLUSIVE locks is a little







|


|






|




|
















|







37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
      goto shmpage_out;
    }
    pShmNode->apRegion = apNew;
    while( pShmNode->nRegion<nReqRegion ){
      int nMap = szRegion*nShmPerMap;
      int i;
      void *pMem;
      if( pShmNode->hShm>=0 ){
        pMem = osMmap(0, nMap,
            pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, 
            MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion
        );
        if( pMem==MAP_FAILED ){
          rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
          goto shmpage_out;
        }
      }else{
        pMem = sqlite3_malloc64(nMap);
        if( pMem==0 ){
          rc = SQLITE_NOMEM_BKPT;
          goto shmpage_out;
        }
        memset(pMem, 0, nMap);
      }

      for(i=0; i<nShmPerMap; i++){
        pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
      }
      pShmNode->nRegion += nShmPerMap;
    }
  }

shmpage_out:
  if( pShmNode->nRegion>iRegion ){
    *pp = pShmNode->apRegion[iRegion];
  }else{
    *pp = 0;
  }
  if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
  sqlite3_mutex_leave(pShmNode->pShmMutex);
  return rc;
}

/*
** Change the lock state for a shared-memory segment.
**
** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
  assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
  assert( n>=1 );
  assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
       || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
  assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
  assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 );
  assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 );

  mask = (1<<(ofst+n)) - (1<<ofst);
  assert( n>1 || mask==(1<<ofst) );
  sqlite3_mutex_enter(pShmNode->mutex);
  if( flags & SQLITE_SHM_UNLOCK ){
    u16 allMask = 0; /* Mask of locks held by siblings */

    /* See if any siblings hold this same lock */
    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
      if( pX==p ) continue;
      assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );







|
|



|







37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
  assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
  assert( n>=1 );
  assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
       || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
  assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
  assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
  assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );

  mask = (1<<(ofst+n)) - (1<<ofst);
  assert( n>1 || mask==(1<<ofst) );
  sqlite3_mutex_enter(pShmNode->pShmMutex);
  if( flags & SQLITE_SHM_UNLOCK ){
    u16 allMask = 0; /* Mask of locks held by siblings */

    /* See if any siblings hold this same lock */
    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
      if( pX==p ) continue;
      assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973

36974

36975
36976
36977
36978
36979
36980
36981
      rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
      if( rc==SQLITE_OK ){
        assert( (p->sharedMask & mask)==0 );
        p->exclMask |= mask;
      }
    }
  }
  sqlite3_mutex_leave(pShmNode->mutex);
  OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
           p->id, osGetpid(0), p->sharedMask, p->exclMask));
  return rc;
}

/*
** Implement a memory barrier or memory fence on shared memory.  
**
** All loads and stores begun before the barrier must complete before
** any load or store begun after the barrier.
*/
static void unixShmBarrier(
  sqlite3_file *fd                /* Database file holding the shared memory */
){
  UNUSED_PARAMETER(fd);
  sqlite3MemoryBarrier();         /* compiler-defined memory barrier */

  assert( unixFileMutexNotheld((unixFile*)fd) );

  unixEnterMutex();               /* Also mutex, for redundancy */
  unixLeaveMutex();
}

/*
** Close a connection to shared-memory.  Delete the underlying 
** storage if deleteFlag is true.







|
















>
|
>







37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
      rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
      if( rc==SQLITE_OK ){
        assert( (p->sharedMask & mask)==0 );
        p->exclMask |= mask;
      }
    }
  }
  sqlite3_mutex_leave(pShmNode->pShmMutex);
  OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
           p->id, osGetpid(0), p->sharedMask, p->exclMask));
  return rc;
}

/*
** Implement a memory barrier or memory fence on shared memory.  
**
** All loads and stores begun before the barrier must complete before
** any load or store begun after the barrier.
*/
static void unixShmBarrier(
  sqlite3_file *fd                /* Database file holding the shared memory */
){
  UNUSED_PARAMETER(fd);
  sqlite3MemoryBarrier();         /* compiler-defined memory barrier */
  assert( fd->pMethods->xLock==nolockLock 
       || unixFileMutexNotheld((unixFile*)fd) 
  );
  unixEnterMutex();               /* Also mutex, for redundancy */
  unixLeaveMutex();
}

/*
** Close a connection to shared-memory.  Delete the underlying 
** storage if deleteFlag is true.
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
  pShmNode = p->pShmNode;

  assert( pShmNode==pDbFd->pInode->pShmNode );
  assert( pShmNode->pInode==pDbFd->pInode );

  /* Remove connection p from the set of connections associated
  ** with pShmNode */
  sqlite3_mutex_enter(pShmNode->mutex);
  for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
  *pp = p->pNext;

  /* Free the connection p */
  sqlite3_free(p);
  pDbFd->pShm = 0;
  sqlite3_mutex_leave(pShmNode->mutex);

  /* If pShmNode->nRef has reached 0, then close the underlying
  ** shared-memory file, too */
  assert( unixFileMutexNotheld(pDbFd) );
  unixEnterMutex();
  assert( pShmNode->nRef>0 );
  pShmNode->nRef--;
  if( pShmNode->nRef==0 ){
    if( deleteFlag && pShmNode->h>=0 ){
      osUnlink(pShmNode->zFilename);
    }
    unixShmPurge(pDbFd);
  }
  unixLeaveMutex();

  return SQLITE_OK;







|






|








|







37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
  pShmNode = p->pShmNode;

  assert( pShmNode==pDbFd->pInode->pShmNode );
  assert( pShmNode->pInode==pDbFd->pInode );

  /* Remove connection p from the set of connections associated
  ** with pShmNode */
  sqlite3_mutex_enter(pShmNode->pShmMutex);
  for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
  *pp = p->pNext;

  /* Free the connection p */
  sqlite3_free(p);
  pDbFd->pShm = 0;
  sqlite3_mutex_leave(pShmNode->pShmMutex);

  /* If pShmNode->nRef has reached 0, then close the underlying
  ** shared-memory file, too */
  assert( unixFileMutexNotheld(pDbFd) );
  unixEnterMutex();
  assert( pShmNode->nRef>0 );
  pShmNode->nRef--;
  if( pShmNode->nRef==0 ){
    if( deleteFlag && pShmNode->hShm>=0 ){
      osUnlink(pShmNode->zFilename);
    }
    unixShmPurge(pDbFd);
  }
  unixLeaveMutex();

  return SQLITE_OK;
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
  winceLock local;        /* Locks obtained by this instance of winFile */
  winceLock *shared;      /* Global shared lock memory for the file  */
#endif
#if SQLITE_MAX_MMAP_SIZE>0
  int nFetchOut;                /* Number of outstanding xFetch references */
  HANDLE hMap;                  /* Handle for accessing memory mapping */
  void *pMapRegion;             /* Area memory mapped */
  sqlite3_int64 mmapSize;       /* Usable size of mapped region */
  sqlite3_int64 mmapSizeActual; /* Actual size of mapped region */
  sqlite3_int64 mmapSizeMax;    /* Configured FCNTL_MMAP_SIZE value */
#endif
};

/*
** The winVfsAppData structure is used for the pAppData member for all of the
** Win32 VFS variants.







|
<







40687
40688
40689
40690
40691
40692
40693
40694

40695
40696
40697
40698
40699
40700
40701
  winceLock local;        /* Locks obtained by this instance of winFile */
  winceLock *shared;      /* Global shared lock memory for the file  */
#endif
#if SQLITE_MAX_MMAP_SIZE>0
  int nFetchOut;                /* Number of outstanding xFetch references */
  HANDLE hMap;                  /* Handle for accessing memory mapping */
  void *pMapRegion;             /* Area memory mapped */
  sqlite3_int64 mmapSize;       /* Size of mapped region */

  sqlite3_int64 mmapSizeMax;    /* Configured FCNTL_MMAP_SIZE value */
#endif
};

/*
** The winVfsAppData structure is used for the pAppData member for all of the
** Win32 VFS variants.
43054
43055
43056
43057
43058
43059
43060




















43061
43062
43063
43064
43065
43066
43067
*/
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
  winFile *pFile = (winFile*)id;  /* File handle object */
  int rc = SQLITE_OK;             /* Return code for this function */
  DWORD lastErrno;
#if SQLITE_MAX_MMAP_SIZE>0
  sqlite3_int64 oldMmapSize;




















#endif

  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_TRUNCATE);
  OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n",
           osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype));








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
*/
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
  winFile *pFile = (winFile*)id;  /* File handle object */
  int rc = SQLITE_OK;             /* Return code for this function */
  DWORD lastErrno;
#if SQLITE_MAX_MMAP_SIZE>0
  sqlite3_int64 oldMmapSize;
  if( pFile->nFetchOut>0 ){
    /* File truncation is a no-op if there are outstanding memory mapped
    ** pages.  This is because truncating the file means temporarily unmapping
    ** the file, and that might delete memory out from under existing cursors.
    **
    ** This can result in incremental vacuum not truncating the file,
    ** if there is an active read cursor when the incremental vacuum occurs.
    ** No real harm comes of this - the database file is not corrupted,
    ** though some folks might complain that the file is bigger than it
    ** needs to be.
    **
    ** The only feasible work-around is to defer the truncation until after
    ** all references to memory-mapped content are closed.  That is doable,
    ** but involves adding a few branches in the common write code path which
    ** could slow down normal operations slightly.  Hence, we have decided for
    ** now to simply make trancations a no-op if there are pending reads.  We
    ** can maybe revisit this decision in the future.
    */
    return SQLITE_OK;
  }
#endif

  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_TRUNCATE);
  OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n",
           osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype));

44482
44483
44484
44485
44486
44487
44488
44489
44490
44491
44492
44493
44494
44495
44496
44497
44498
44499
44500
44501
44502
44503
44504
44505
44506
44507
44508
44509
44510
/*
** Cleans up the mapped region of the specified file, if any.
*/
#if SQLITE_MAX_MMAP_SIZE>0
static int winUnmapfile(winFile *pFile){
  assert( pFile!=0 );
  OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, "
           "mmapSize=%lld, mmapSizeActual=%lld, mmapSizeMax=%lld\n",
           osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion,
           pFile->mmapSize, pFile->mmapSizeActual, pFile->mmapSizeMax));
  if( pFile->pMapRegion ){
    if( !osUnmapViewOfFile(pFile->pMapRegion) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
               "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
               pFile->pMapRegion));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winUnmapfile1", pFile->zPath);
    }
    pFile->pMapRegion = 0;
    pFile->mmapSize = 0;
    pFile->mmapSizeActual = 0;
  }
  if( pFile->hMap!=NULL ){
    if( !osCloseHandle(pFile->hMap) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
               osGetCurrentProcessId(), pFile, pFile->hMap));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,







|

|











<







44756
44757
44758
44759
44760
44761
44762
44763
44764
44765
44766
44767
44768
44769
44770
44771
44772
44773
44774
44775
44776

44777
44778
44779
44780
44781
44782
44783
/*
** Cleans up the mapped region of the specified file, if any.
*/
#if SQLITE_MAX_MMAP_SIZE>0
static int winUnmapfile(winFile *pFile){
  assert( pFile!=0 );
  OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, pMapRegion=%p, "
           "mmapSize=%lld, mmapSizeMax=%lld\n",
           osGetCurrentProcessId(), pFile, pFile->hMap, pFile->pMapRegion,
           pFile->mmapSize, pFile->mmapSizeMax));
  if( pFile->pMapRegion ){
    if( !osUnmapViewOfFile(pFile->pMapRegion) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, pMapRegion=%p, "
               "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFile,
               pFile->pMapRegion));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winUnmapfile1", pFile->zPath);
    }
    pFile->pMapRegion = 0;
    pFile->mmapSize = 0;

  }
  if( pFile->hMap!=NULL ){
    if( !osCloseHandle(pFile->hMap) ){
      pFile->lastErrno = osGetLastError();
      OSTRACE(("UNMAP-FILE pid=%lu, pFile=%p, hMap=%p, rc=SQLITE_IOERR_MMAP\n",
               osGetCurrentProcessId(), pFile, pFile->hMap));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
44607
44608
44609
44610
44611
44612
44613
44614
44615
44616
44617
44618
44619
44620
44621
      /* Log the error, but continue normal operation using xRead/xWrite */
      OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
               osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
      return SQLITE_OK;
    }
    pFd->pMapRegion = pNew;
    pFd->mmapSize = nMap;
    pFd->mmapSizeActual = nMap;
  }

  OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFd));
  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */







<







44880
44881
44882
44883
44884
44885
44886

44887
44888
44889
44890
44891
44892
44893
      /* Log the error, but continue normal operation using xRead/xWrite */
      OSTRACE(("MAP-FILE-MAP pid=%lu, pFile=%p, rc=%s\n",
               osGetCurrentProcessId(), pFd, sqlite3ErrName(rc)));
      return SQLITE_OK;
    }
    pFd->pMapRegion = pNew;
    pFd->mmapSize = nMap;

  }

  OSTRACE(("MAP-FILE pid=%lu, pFile=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFd));
  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */
45409
45410
45411
45412
45413
45414
45415
45416
45417
45418
45419
45420
45421
45422
45423
  }
  pFile->lastErrno = NO_ERROR;
  pFile->zPath = zName;
#if SQLITE_MAX_MMAP_SIZE>0
  pFile->hMap = NULL;
  pFile->pMapRegion = 0;
  pFile->mmapSize = 0;
  pFile->mmapSizeActual = 0;
  pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap;
#endif

  OpenCounter(+1);
  return rc;
}








<







45681
45682
45683
45684
45685
45686
45687

45688
45689
45690
45691
45692
45693
45694
  }
  pFile->lastErrno = NO_ERROR;
  pFile->zPath = zName;
#if SQLITE_MAX_MMAP_SIZE>0
  pFile->hMap = NULL;
  pFile->pMapRegion = 0;
  pFile->mmapSize = 0;

  pFile->mmapSizeMax = sqlite3GlobalConfig.szMmap;
#endif

  OpenCounter(+1);
  return rc;
}

47306
47307
47308
47309
47310
47311
47312
47313
47314
47315
47316
47317
47318
47319
47320
**   such that p was added to the list more recently than p->pDirtyNext.
**   PCache.pDirty points to the first (newest) element in the list and
**   pDirtyTail to the last (oldest).
**
**   The PCache.pSynced variable is used to optimize searching for a dirty
**   page to eject from the cache mid-transaction. It is better to eject
**   a page that does not require a journal sync than one that does. 
**   Therefore, pSynced is maintained to that it *almost* always points
**   to either the oldest page in the pDirty/pDirtyTail list that has a
**   clear PGHDR_NEED_SYNC flag or to a page that is older than this one
**   (so that the right page to eject can be found by following pDirtyPrev
**   pointers).
*/
struct PCache {
  PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */







|







47577
47578
47579
47580
47581
47582
47583
47584
47585
47586
47587
47588
47589
47590
47591
**   such that p was added to the list more recently than p->pDirtyNext.
**   PCache.pDirty points to the first (newest) element in the list and
**   pDirtyTail to the last (oldest).
**
**   The PCache.pSynced variable is used to optimize searching for a dirty
**   page to eject from the cache mid-transaction. It is better to eject
**   a page that does not require a journal sync than one that does. 
**   Therefore, pSynced is maintained so that it *almost* always points
**   to either the oldest page in the pDirty/pDirtyTail list that has a
**   clear PGHDR_NEED_SYNC flag or to a page that is older than this one
**   (so that the right page to eject can be found by following pDirtyPrev
**   pointers).
*/
struct PCache {
  PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
48129
48130
48131
48132
48133
48134
48135









48136
48137
48138
48139
48140
48141
48142
SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){
  PgHdr *pDirty;
  int nDirty = 0;
  int nCache = numberOfCachePages(pCache);
  for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
  return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
}










#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/







>
>
>
>
>
>
>
>
>







48400
48401
48402
48403
48404
48405
48406
48407
48408
48409
48410
48411
48412
48413
48414
48415
48416
48417
48418
48419
48420
48421
48422
SQLITE_PRIVATE int sqlite3PCachePercentDirty(PCache *pCache){
  PgHdr *pDirty;
  int nDirty = 0;
  int nCache = numberOfCachePages(pCache);
  for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext) nDirty++;
  return nCache ? (int)(((i64)nDirty * 100) / nCache) : 0;
}

#ifdef SQLITE_DIRECT_OVERFLOW_READ
/* 
** Return true if there are one or more dirty pages in the cache. Else false.
*/
SQLITE_PRIVATE int sqlite3PCacheIsDirty(PCache *pCache){
  return (pCache->pDirty!=0);
}
#endif

#if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
/*
** For all dirty pages currently in the cache, invoke the specified
** callback. This is only used if the SQLITE_CHECK_PAGES macro is
** defined.
*/
50893
50894
50895
50896
50897
50898
50899

50900
50901


50902


50903



50904
50905
50906
50907
50908
50909



50910
50911
50912

50913
50914
50915
50916
50917
50918
50919
**
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods!=0)


/*
** Return true if this pager uses a write-ahead log to read page pgno.


** Return false if the pager reads pgno directly from the database.


*/



#if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_DIRECT_OVERFLOW_READ)
SQLITE_PRIVATE int sqlite3PagerUseWal(Pager *pPager, Pgno pgno){
  u32 iRead = 0;
  int rc;
  if( pPager->pWal==0 ) return 0;
  rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);



  return rc || iRead;
}
#endif

#ifndef SQLITE_OMIT_WAL
# define pagerUseWal(x) ((x)->pWal!=0)
#else
# define pagerUseWal(x) 0
# define pagerRollbackWal(x) 0
# define pagerWalFrames(v,w,x,y) 0
# define pagerOpenWalIfPresent(z) SQLITE_OK







>

|
>
>
|
>
>

>
>
>
|
|
|
|
<
|
>
>
>
|


>







51173
51174
51175
51176
51177
51178
51179
51180
51181
51182
51183
51184
51185
51186
51187
51188
51189
51190
51191
51192
51193
51194
51195

51196
51197
51198
51199
51200
51201
51202
51203
51204
51205
51206
51207
51208
51209
51210
**
** instead of
**
**   if( pPager->jfd->pMethods ){ ...
*/
#define isOpen(pFd) ((pFd)->pMethods!=0)

#ifdef SQLITE_DIRECT_OVERFLOW_READ
/*
** Return true if page pgno can be read directly from the database file
** by the b-tree layer. This is the case if:
**
**   * the database file is open,
**   * there are no dirty pages in the cache, and
**   * the desired page is not currently in the wal file.
*/
SQLITE_PRIVATE int sqlite3PagerDirectReadOk(Pager *pPager, Pgno pgno){
  if( pPager->fd->pMethods==0 ) return 0;
  if( sqlite3PCacheIsDirty(pPager->pPCache) ) return 0;
#ifndef SQLITE_OMIT_WAL
  if( pPager->pWal ){
    u32 iRead = 0;
    int rc;

    rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);
    return (rc==SQLITE_OK && iRead==0);
  }
#endif
  return 1;
}
#endif

#ifndef SQLITE_OMIT_WAL
# define pagerUseWal(x) ((x)->pWal!=0)
#else
# define pagerUseWal(x) 0
# define pagerRollbackWal(x) 0
# define pagerWalFrames(v,w,x,y) 0
# define pagerOpenWalIfPresent(z) SQLITE_OK
57089
57090
57091
57092
57093
57094
57095

57096
57097
57098
57099
57100
57101
57102
SQLITE_PRIVATE void sqlite3PagerSetCodec(
  Pager *pPager,
  void *(*xCodec)(void*,void*,Pgno,int),
  void (*xCodecSizeChng)(void*,int,int),
  void (*xCodecFree)(void*),
  void *pCodec
){

  if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
  pPager->xCodec = pPager->memDb ? 0 : xCodec;
  pPager->xCodecSizeChng = xCodecSizeChng;
  pPager->xCodecFree = xCodecFree;
  pPager->pCodec = pCodec;
  setGetterMethod(pPager);
  pagerReportSize(pPager);







>







57380
57381
57382
57383
57384
57385
57386
57387
57388
57389
57390
57391
57392
57393
57394
SQLITE_PRIVATE void sqlite3PagerSetCodec(
  Pager *pPager,
  void *(*xCodec)(void*,void*,Pgno,int),
  void (*xCodecSizeChng)(void*,int,int),
  void (*xCodecFree)(void*),
  void *pCodec
){
  pager_reset(pPager);
  if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
  pPager->xCodec = pPager->memDb ? 0 : xCodec;
  pPager->xCodecSizeChng = xCodecSizeChng;
  pPager->xCodecFree = xCodecFree;
  pPager->pCodec = pCodec;
  setGetterMethod(pPager);
  pagerReportSize(pPager);
65749
65750
65751
65752
65753
65754
65755
65756
65757
65758
65759
65760
65761
65762
65763
      pBt->usableSize = usableSize;
      pBt->pageSize = pageSize;
      freeTempSpace(pBt);
      rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
                                   pageSize-usableSize);
      return rc;
    }
    if( (pBt->db->flags & SQLITE_WriteSchema)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
    ** be less than 480. In other words, if the page size is 512, then the
    ** reserved space size cannot exceed 32. */
    if( usableSize<480 ){







|







66041
66042
66043
66044
66045
66046
66047
66048
66049
66050
66051
66052
66053
66054
66055
      pBt->usableSize = usableSize;
      pBt->pageSize = pageSize;
      freeTempSpace(pBt);
      rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
                                   pageSize-usableSize);
      return rc;
    }
    if( sqlite3WritableSchema(pBt->db)==0 && nPage>nPageFile ){
      rc = SQLITE_CORRUPT_BKPT;
      goto page1_init_failed;
    }
    /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
    ** be less than 480. In other words, if the page size is 512, then the
    ** reserved space size cannot exceed 32. */
    if( usableSize<480 ){
66223
66224
66225
66226
66227
66228
66229

66230
66231
66232
66233
66234
66235
66236
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pDbPage->pBt==pBt );


  /* Move page iDbPage from its current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  if( rc!=SQLITE_OK ){
    return rc;







>







66515
66516
66517
66518
66519
66520
66521
66522
66523
66524
66525
66526
66527
66528
66529
  Pager *pPager = pBt->pPager;
  int rc;

  assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || 
      eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
  assert( sqlite3_mutex_held(pBt->mutex) );
  assert( pDbPage->pBt==pBt );
  if( iDbPage<3 ) return SQLITE_CORRUPT_BKPT;

  /* Move page iDbPage from its current location to page number iFreePage */
  TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", 
      iDbPage, iFreePage, iPtrPage, eType));
  rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
  if( rc!=SQLITE_OK ){
    return rc;
67394
67395
67396
67397
67398
67399
67400
67401
67402
67403
67404
67405
67406
67407
67408
67409
67410
67411
67412
67413
67414
67415
67416
67417
67418
67419
67420
67421
67422
67423
67424
67425
67426
67427
67428
67429

67430
67431
67432
67433
67434
67435
67436
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */
#ifdef SQLITE_DIRECT_OVERFLOW_READ
        sqlite3_file *fd;      /* File from which to do direct overflow read */
#endif
        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) there is no open write-transaction, and
        **   4) the database is file-backed, and
        **   5) the page is not in the WAL file
        **   6) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( eOp==0                                             /* (1) */
         && offset==0                                          /* (2) */
         && pBt->inTransaction==TRANS_READ                     /* (3) */
         && (fd = sqlite3PagerFile(pBt->pPager))->pMethods     /* (4) */
         && 0==sqlite3PagerUseWal(pBt->pPager, nextPage)       /* (5) */
         && &pBuf[-4]>=pBufStart                               /* (6) */
        ){

          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* due to (6) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);







<
<
<










|










<
<
|


>







67687
67688
67689
67690
67691
67692
67693



67694
67695
67696
67697
67698
67699
67700
67701
67702
67703
67704
67705
67706
67707
67708
67709
67710
67711
67712
67713
67714


67715
67716
67717
67718
67719
67720
67721
67722
67723
67724
67725
          rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
        }
        offset -= ovflSize;
      }else{
        /* Need to read this page properly. It contains some of the
        ** range of data that is being read (eOp==0) or written (eOp!=0).
        */



        int a = amt;
        if( a + offset > ovflSize ){
          a = ovflSize - offset;
        }

#ifdef SQLITE_DIRECT_OVERFLOW_READ
        /* If all the following are true:
        **
        **   1) this is a read operation, and 
        **   2) data is required from the start of this overflow page, and
        **   3) there are no dirty pages in the page-cache
        **   4) the database is file-backed, and
        **   5) the page is not in the WAL file
        **   6) at least 4 bytes have already been read into the output buffer 
        **
        ** then data can be read directly from the database file into the
        ** output buffer, bypassing the page-cache altogether. This speeds
        ** up loading large records that span many overflow pages.
        */
        if( eOp==0                                             /* (1) */
         && offset==0                                          /* (2) */


         && sqlite3PagerDirectReadOk(pBt->pPager, nextPage)    /* (3,4,5) */
         && &pBuf[-4]>=pBufStart                               /* (6) */
        ){
          sqlite3_file *fd = sqlite3PagerFile(pBt->pPager);
          u8 aSave[4];
          u8 *aWrite = &pBuf[-4];
          assert( aWrite>=pBufStart );                         /* due to (6) */
          memcpy(aSave, aWrite, 4);
          rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
74018
74019
74020
74021
74022
74023
74024

74025
74026
74027
74028
74029
74030
74031
74032
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
  }

  pMem->n = sqlite3Strlen30(pMem->z);
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str|MEM_Term;
  if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
  sqlite3VdbeChangeEncoding(pMem, enc);
  return SQLITE_OK;
}








>
|







74307
74308
74309
74310
74311
74312
74313
74314
74315
74316
74317
74318
74319
74320
74321
74322
  */
  if( fg & MEM_Int ){
    sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i);
  }else{
    assert( fg & MEM_Real );
    sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r);
  }
  assert( pMem->z!=0 );
  pMem->n = sqlite3Strlen30NN(pMem->z);
  pMem->enc = SQLITE_UTF8;
  pMem->flags |= MEM_Str|MEM_Term;
  if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real);
  sqlite3VdbeChangeEncoding(pMem, enc);
  return SQLITE_OK;
}

75593
75594
75595
75596
75597
75598
75599







75600
75601
75602
75603
75604
75605
75606
  if( p==0 ) return;
  p->prepFlags = prepFlags;
  if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
    p->expmask = 0;
  }
  assert( p->zSql==0 );
  p->zSql = sqlite3DbStrNDup(p->db, z, n);







}

/*
** Swap all content between two VDBE structures.
*/
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
  Vdbe tmp, *pTmp;







>
>
>
>
>
>
>







75883
75884
75885
75886
75887
75888
75889
75890
75891
75892
75893
75894
75895
75896
75897
75898
75899
75900
75901
75902
75903
  if( p==0 ) return;
  p->prepFlags = prepFlags;
  if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
    p->expmask = 0;
  }
  assert( p->zSql==0 );
  p->zSql = sqlite3DbStrNDup(p->db, z, n);
#ifdef SQLITE_ENABLE_NORMALIZE
  assert( p->zNormSql==0 );
  if( p->zSql && (prepFlags & SQLITE_PREPARE_NORMALIZE)!=0 ){
    sqlite3Normalize(p, p->zSql, n, prepFlags);
    assert( p->zNormSql!=0 || p->db->mallocFailed );
  }
#endif
}

/*
** Swap all content between two VDBE structures.
*/
SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
  Vdbe tmp, *pTmp;
75614
75615
75616
75617
75618
75619
75620





75621
75622
75623
75624
75625
75626
75627
  pB->pNext = pTmp;
  pTmp = pA->pPrev;
  pA->pPrev = pB->pPrev;
  pB->pPrev = pTmp;
  zTmp = pA->zSql;
  pA->zSql = pB->zSql;
  pB->zSql = zTmp;





  pB->expmask = pA->expmask;
  pB->prepFlags = pA->prepFlags;
  memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
  pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
}

/*







>
>
>
>
>







75911
75912
75913
75914
75915
75916
75917
75918
75919
75920
75921
75922
75923
75924
75925
75926
75927
75928
75929
  pB->pNext = pTmp;
  pTmp = pA->pPrev;
  pA->pPrev = pB->pPrev;
  pB->pPrev = pTmp;
  zTmp = pA->zSql;
  pA->zSql = pB->zSql;
  pB->zSql = zTmp;
#ifdef SQLITE_ENABLE_NORMALIZE
  zTmp = pA->zNormSql;
  pA->zNormSql = pB->zNormSql;
  pB->zNormSql = zTmp;
#endif
  pB->expmask = pA->expmask;
  pB->prepFlags = pA->prepFlags;
  memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
  pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
}

/*
78685
78686
78687
78688
78689
78690
78691



78692
78693
78694
78695
78696
78697
78698
    releaseMemArray(p->aVar, p->nVar);
    sqlite3DbFree(db, p->pVList);
    sqlite3DbFree(db, p->pFree);
  }
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);



#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  {
    int i;
    for(i=0; i<p->nScan; i++){
      sqlite3DbFree(db, p->aScan[i].zName);
    }
    sqlite3DbFree(db, p->aScan);







>
>
>







78987
78988
78989
78990
78991
78992
78993
78994
78995
78996
78997
78998
78999
79000
79001
79002
79003
    releaseMemArray(p->aVar, p->nVar);
    sqlite3DbFree(db, p->pVList);
    sqlite3DbFree(db, p->pFree);
  }
  vdbeFreeOpArray(db, p->aOp, p->nOp);
  sqlite3DbFree(db, p->aColName);
  sqlite3DbFree(db, p->zSql);
#ifdef SQLITE_ENABLE_NORMALIZE
  sqlite3DbFree(db, p->zNormSql);
#endif
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
  {
    int i;
    for(i=0; i<p->nScan; i++){
      sqlite3DbFree(db, p->aScan[i].zName);
    }
    sqlite3DbFree(db, p->aScan);
80086
80087
80088
80089
80090
80091
80092


80093
80094
80095
80096
80097
80098
80099
80100
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
  testcase( szHdr==3 );
  testcase( szHdr==m.n );


  if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
    goto idx_rowid_corruption;
  }

  /* The last field of the index should be an integer - the ROWID.
  ** Verify that the last entry really is an integer. */
  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
  testcase( typeRowid==1 );







>
>
|







80391
80392
80393
80394
80395
80396
80397
80398
80399
80400
80401
80402
80403
80404
80405
80406
80407
    return rc;
  }

  /* The index entry must begin with a header size */
  (void)getVarint32((u8*)m.z, szHdr);
  testcase( szHdr==3 );
  testcase( szHdr==m.n );
  testcase( szHdr>0x7fffffff );
  assert( m.n>=0 );
  if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
    goto idx_rowid_corruption;
  }

  /* The last field of the index should be an integer - the ROWID.
  ** Verify that the last entry really is an integer. */
  (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
  testcase( typeRowid==1 );
82097
82098
82099
82100
82101
82102
82103










82104
82105
82106
82107
82108
82109
82110
    z = sqlite3VdbeExpandSql(p, zSql);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return z;
#endif
}











#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Allocate and populate an UnpackedRecord structure based on the serialized
** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
** if successful, or a NULL pointer if an OOM error is encountered.
*/
static UnpackedRecord *vdbeUnpackRecord(







>
>
>
>
>
>
>
>
>
>







82404
82405
82406
82407
82408
82409
82410
82411
82412
82413
82414
82415
82416
82417
82418
82419
82420
82421
82422
82423
82424
82425
82426
82427
    z = sqlite3VdbeExpandSql(p, zSql);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return z;
#endif
}

#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Return the normalized SQL associated with a prepared statement.
*/
SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe *)pStmt;
  return p ? p->zNormSql : 0;
}
#endif /* SQLITE_ENABLE_NORMALIZE */

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
/*
** Allocate and populate an UnpackedRecord structure based on the serialized
** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
** if successful, or a NULL pointer if an OOM error is encountered.
*/
static UnpackedRecord *vdbeUnpackRecord(
85536
85537
85538
85539
85540
85541
85542
85543
85544
85545
85546
85547
85548
85549
85550
85551










85552
85553

85554
85555
85556
85557
85558
85559
85560
  }else{
    /* Rare case of a really large header */
    nVarint = sqlite3VarintLen(nHdr);
    nHdr += nVarint;
    if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
  }
  nByte = nHdr+nData;
  if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }

  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
  */










  if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
    goto no_mem;

  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );







<
<
<






>
>
>
>
>
>
>
>
>
>
|
|
>







85853
85854
85855
85856
85857
85858
85859



85860
85861
85862
85863
85864
85865
85866
85867
85868
85869
85870
85871
85872
85873
85874
85875
85876
85877
85878
85879
85880
85881
85882
85883
85884
85885
  }else{
    /* Rare case of a really large header */
    nVarint = sqlite3VarintLen(nHdr);
    nHdr += nVarint;
    if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
  }
  nByte = nHdr+nData;




  /* Make sure the output register has a buffer large enough to store 
  ** the new record. The output register (pOp->p3) is not allowed to
  ** be one of the input registers (because the following call to
  ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
  */
  if( nByte+nZero<=pOut->szMalloc ){
    /* The output register is already large enough to hold the record.
    ** No error checks or buffer enlargement is required */
    pOut->z = pOut->zMalloc;
  }else{
    /* Need to make sure that the output is not too big and then enlarge
    ** the output register to hold the full result */
    if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
      goto too_big;
    }
    if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
      goto no_mem;
    }
  }
  zNewRecord = (u8 *)pOut->z;

  /* Write the record */
  i = putVarint32(zNewRecord, nHdr);
  j = nHdr;
  assert( pData0<=pLast );
88402
88403
88404
88405
88406
88407
88408
88409
88410
88411
88412
88413
88414
88415
88416
    db->mDbFlags |= DBFLAG_SchemaChange;
    p->expired = 0;
  }else
#endif
  {
    zMaster = MASTER_NAME;
    initData.db = db;
    initData.iDb = pOp->p1;
    initData.pzErrMsg = &p->zErrMsg;
    initData.mInitFlags = 0;
    zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
       db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
    if( zSql==0 ){
      rc = SQLITE_NOMEM_BKPT;







|







88727
88728
88729
88730
88731
88732
88733
88734
88735
88736
88737
88738
88739
88740
88741
    db->mDbFlags |= DBFLAG_SchemaChange;
    p->expired = 0;
  }else
#endif
  {
    zMaster = MASTER_NAME;
    initData.db = db;
    initData.iDb = iDb;
    initData.pzErrMsg = &p->zErrMsg;
    initData.mInitFlags = 0;
    zSql = sqlite3MPrintf(db,
       "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
       db->aDb[iDb].zDbSName, zMaster, pOp->p4.z);
    if( zSql==0 ){
      rc = SQLITE_NOMEM_BKPT;
89599
89600
89601
89602
89603
89604
89605
89606
89607

89608
89609

89610
89611
89612
89613
89614
89615
89616
** Synopsis: r[P3]=vcolumn(P2)
**
** Store in register P3 the value of the P2-th column of
** the current row of the virtual-table of cursor P1.
**
** If the VColumn opcode is being used to fetch the value of
** an unchanging column during an UPDATE operation, then the P5
** value is 1.  Otherwise, P5 is 0.  The P5 value is returned
** by sqlite3_vtab_nochange() routine and can be used

** by virtual table implementations to return special "no-change"
** marks which can be more efficient, depending on the virtual table.

*/
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;








<
|
>
|
|
>







89924
89925
89926
89927
89928
89929
89930

89931
89932
89933
89934
89935
89936
89937
89938
89939
89940
89941
89942
** Synopsis: r[P3]=vcolumn(P2)
**
** Store in register P3 the value of the P2-th column of
** the current row of the virtual-table of cursor P1.
**
** If the VColumn opcode is being used to fetch the value of
** an unchanging column during an UPDATE operation, then the P5

** value is OPFLAG_NOCHNG.  This will cause the sqlite3_vtab_nochange()
** function to return true inside the xColumn method of the virtual
** table implementation.  The P5 column might also contain other
** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
** unused by OP_VColumn.
*/
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

89624
89625
89626
89627
89628
89629
89630

89631
89632
89633
89634
89635
89636
89637
89638
    break;
  }
  pVtab = pCur->uc.pVCur->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));
  sContext.pOut = pDest;

  if( pOp->p5 ){
    sqlite3VdbeMemSetNull(pDest);
    pDest->flags = MEM_Null|MEM_Zero;
    pDest->u.nZero = 0;
  }else{
    MemSetTypeFlag(pDest, MEM_Null);
  }
  rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);







>
|







89950
89951
89952
89953
89954
89955
89956
89957
89958
89959
89960
89961
89962
89963
89964
89965
    break;
  }
  pVtab = pCur->uc.pVCur->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));
  sContext.pOut = pDest;
  testcase( (pOp->p5 & OPFLAG_NOCHNG)==0 && pOp->p5!=0 );
  if( pOp->p5 & OPFLAG_NOCHNG ){
    sqlite3VdbeMemSetNull(pDest);
    pDest->flags = MEM_Null|MEM_Zero;
    pDest->u.nZero = 0;
  }else{
    MemSetTypeFlag(pDest, MEM_Null);
  }
  rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
89701
89702
89703
89704
89705
89706
89707

89708


89709
89710
89711
89712
89713
89714
89715
89716
89717
89718
89719
89720
89721

89722
89723
89724
89725
89726
89727
89728
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab;
  Mem *pName;




  pVtab = pOp->p4.pVtab->pVtab;
  pName = &aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  assert( memIsValid(pName) );
  assert( p->readOnly==0 );
  REGISTER_TRACE(pOp->p1, pName);
  assert( pName->flags & MEM_Str );
  testcase( pName->enc==SQLITE_UTF8 );
  testcase( pName->enc==SQLITE_UTF16BE );
  testcase( pName->enc==SQLITE_UTF16LE );
  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
  if( rc ) goto abort_due_to_error;
  rc = pVtab->pModule->xRename(pVtab, pName->z);

  sqlite3VtabImportErrmsg(p, pVtab);
  p->expired = 0;
  if( rc ) goto abort_due_to_error;
  break;
}
#endif








>
|
>
>













>







90028
90029
90030
90031
90032
90033
90034
90035
90036
90037
90038
90039
90040
90041
90042
90043
90044
90045
90046
90047
90048
90049
90050
90051
90052
90053
90054
90055
90056
90057
90058
90059
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** This opcode invokes the corresponding xRename method. The value
** in register P1 is passed as the zName argument to the xRename method.
*/
case OP_VRename: {
  sqlite3_vtab *pVtab;
  Mem *pName;
  int isLegacy;
  
  isLegacy = (db->flags & SQLITE_LegacyAlter);
  db->flags |= SQLITE_LegacyAlter;
  pVtab = pOp->p4.pVtab->pVtab;
  pName = &aMem[pOp->p1];
  assert( pVtab->pModule->xRename );
  assert( memIsValid(pName) );
  assert( p->readOnly==0 );
  REGISTER_TRACE(pOp->p1, pName);
  assert( pName->flags & MEM_Str );
  testcase( pName->enc==SQLITE_UTF8 );
  testcase( pName->enc==SQLITE_UTF16BE );
  testcase( pName->enc==SQLITE_UTF16LE );
  rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
  if( rc ) goto abort_due_to_error;
  rc = pVtab->pModule->xRename(pVtab, pName->z);
  if( isLegacy==0 ) db->flags &= ~SQLITE_LegacyAlter;
  sqlite3VtabImportErrmsg(p, pVtab);
  p->expired = 0;
  if( rc ) goto abort_due_to_error;
  break;
}
#endif

93979
93980
93981
93982
93983
93984
93985
93986
93987
93988
93989
93990
93991
93992
93993
93994
        continue;
      }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
      }else if( pExpr->x.pList ){
        if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
      }
#ifndef SQLITE_OMIT_WINDOWFUNC
      if( !ExprHasProperty(pExpr, EP_Reduced) && pExpr->pWin ){
        Window *pWin = pExpr->pWin;
        if( sqlite3WalkExprList(pWalker, pWin->pPartition) ) return WRC_Abort;
        if( sqlite3WalkExprList(pWalker, pWin->pOrderBy) ) return WRC_Abort;
        if( sqlite3WalkExpr(pWalker, pWin->pFilter) ) return WRC_Abort;
      }
#endif
    }
    break;







|
|







94310
94311
94312
94313
94314
94315
94316
94317
94318
94319
94320
94321
94322
94323
94324
94325
        continue;
      }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
        if( sqlite3WalkSelect(pWalker, pExpr->x.pSelect) ) return WRC_Abort;
      }else if( pExpr->x.pList ){
        if( sqlite3WalkExprList(pWalker, pExpr->x.pList) ) return WRC_Abort;
      }
#ifndef SQLITE_OMIT_WINDOWFUNC
      if( ExprHasProperty(pExpr, EP_WinFunc) ){
        Window *pWin = pExpr->y.pWin;
        if( sqlite3WalkExprList(pWalker, pWin->pPartition) ) return WRC_Abort;
        if( sqlite3WalkExprList(pWalker, pWin->pOrderBy) ) return WRC_Abort;
        if( sqlite3WalkExpr(pWalker, pWin->pFilter) ) return WRC_Abort;
      }
#endif
    }
    break;
94253
94254
94255
94256
94257
94258
94259
94260
94261
94262
94263
94264
94265
94266
94267
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database X
**                         (even if X is implied).
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->pTab          Points to the Table structure of X.Y (even if
**                         X and/or Y are implied.)
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The zDb variable is the name of the database (the "X").  This value may be







|







94584
94585
94586
94587
94588
94589
94590
94591
94592
94593
94594
94595
94596
94597
94598
** expression node refer back to that source column.  The following changes
** are made to pExpr:
**
**    pExpr->iDb           Set the index in db->aDb[] of the database X
**                         (even if X is implied).
**    pExpr->iTable        Set to the cursor number for the table obtained
**                         from pSrcList.
**    pExpr->y.pTab        Points to the Table structure of X.Y (even if
**                         X and/or Y are implied.)
**    pExpr->iColumn       Set to the column number within the table.
**    pExpr->op            Set to TK_COLUMN.
**    pExpr->pLeft         Any expression this points to is deleted
**    pExpr->pRight        Any expression this points to is deleted.
**
** The zDb variable is the name of the database (the "X").  This value may be
94297
94298
94299
94300
94301
94302
94303
94304
94305
94306
94307
94308
94309
94310
94311

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;
  pExpr->pTab = 0;
  ExprSetVVAProperty(pExpr, EP_NoReduce);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){







<







94628
94629
94630
94631
94632
94633
94634

94635
94636
94637
94638
94639
94640
94641

  assert( pNC );     /* the name context cannot be NULL. */
  assert( zCol );    /* The Z in X.Y.Z cannot be NULL */
  assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );

  /* Initialize the node to no-match */
  pExpr->iTable = -1;

  ExprSetVVAProperty(pExpr, EP_NoReduce);

  /* Translate the schema name in zDb into a pointer to the corresponding
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
94359
94360
94361
94362
94363
94364
94365
94366
94367
94368
94369
94370
94371
94372
94373
        if( zTab ){
          const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
          assert( zTabName!=0 );
          if( sqlite3StrICmp(zTabName, zTab)!=0 ){
            continue;
          }
          if( IN_RENAME_OBJECT && pItem->zAlias ){
            sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->pTab);
          }
        }
        if( 0==(cntTab++) ){
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){







|







94689
94690
94691
94692
94693
94694
94695
94696
94697
94698
94699
94700
94701
94702
94703
        if( zTab ){
          const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName;
          assert( zTabName!=0 );
          if( sqlite3StrICmp(zTabName, zTab)!=0 ){
            continue;
          }
          if( IN_RENAME_OBJECT && pItem->zAlias ){
            sqlite3RenameTokenRemap(pParse, 0, (void*)&pExpr->y.pTab);
          }
        }
        if( 0==(cntTab++) ){
          pMatch = pItem;
        }
        for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){
          if( sqlite3StrICmp(pCol->zName, zCol)==0 ){
94385
94386
94387
94388
94389
94390
94391
94392
94393
94394
94395
94396
94397
94398
94399
94400
94401
94402
94403
94404
94405
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;
        /* RIGHT JOIN not (yet) supported */
        assert( (pMatch->fg.jointype & JT_RIGHT)==0 );
        if( (pMatch->fg.jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

#if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT)
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference.  Or
    ** maybe it is an excluded.* from an upsert.







|





|







94715
94716
94717
94718
94719
94720
94721
94722
94723
94724
94725
94726
94727
94728
94729
94730
94731
94732
94733
94734
94735
            pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j;
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->y.pTab = pMatch->pTab;
        /* RIGHT JOIN not (yet) supported */
        assert( (pMatch->fg.jointype & JT_RIGHT)==0 );
        if( (pMatch->fg.jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->y.pTab->pSchema;
      }
    } /* if( pSrcList ) */

#if !defined(SQLITE_OMIT_TRIGGER) || !defined(SQLITE_OMIT_UPSERT)
    /* If we have not already resolved the name, then maybe 
    ** it is a new.* or old.* trigger argument reference.  Or
    ** maybe it is an excluded.* from an upsert.
94448
94449
94450
94451
94452
94453
94454
94455
94456
94457
94458
94459
94460
94461
94462
        if( iCol<pTab->nCol ){
          cnt++;
#ifndef SQLITE_OMIT_UPSERT
          if( pExpr->iTable==2 ){
            testcase( iCol==(-1) );
            if( IN_RENAME_OBJECT ){
              pExpr->iColumn = iCol;
              pExpr->pTab = pTab;
              eNewExprOp = TK_COLUMN;
            }else{
              pExpr->iTable = pNC->uNC.pUpsert->regData + iCol;
              eNewExprOp = TK_REGISTER;
              ExprSetProperty(pExpr, EP_Alias);
            }
          }else







|







94778
94779
94780
94781
94782
94783
94784
94785
94786
94787
94788
94789
94790
94791
94792
        if( iCol<pTab->nCol ){
          cnt++;
#ifndef SQLITE_OMIT_UPSERT
          if( pExpr->iTable==2 ){
            testcase( iCol==(-1) );
            if( IN_RENAME_OBJECT ){
              pExpr->iColumn = iCol;
              pExpr->y.pTab = pTab;
              eNewExprOp = TK_COLUMN;
            }else{
              pExpr->iTable = pNC->uNC.pUpsert->regData + iCol;
              eNewExprOp = TK_REGISTER;
              ExprSetProperty(pExpr, EP_Alias);
            }
          }else
94470
94471
94472
94473
94474
94475
94476
94477
94478
94479
94480
94481
94482
94483
94484
              testcase( iCol==32 );
              pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
            }else{
              testcase( iCol==31 );
              testcase( iCol==32 );
              pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
            }
            pExpr->pTab = pTab;
            pExpr->iColumn = (i16)iCol;
            eNewExprOp = TK_TRIGGER;
#endif /* SQLITE_OMIT_TRIGGER */
          }
        }
      }
    }







|







94800
94801
94802
94803
94804
94805
94806
94807
94808
94809
94810
94811
94812
94813
94814
              testcase( iCol==32 );
              pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
            }else{
              testcase( iCol==31 );
              testcase( iCol==32 );
              pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol));
            }
            pExpr->y.pTab = pTab;
            pExpr->iColumn = (i16)iCol;
            eNewExprOp = TK_TRIGGER;
#endif /* SQLITE_OMIT_TRIGGER */
          }
        }
      }
    }
94570
94571
94572
94573
94574
94575
94576
94577
94578
94579
94580
94581
94582
94583
94584
  ** Because no reference was made to outer contexts, the pNC->nRef
  ** fields are not changed in any context.
  */
  if( cnt==0 && zTab==0 ){
    assert( pExpr->op==TK_ID );
    if( ExprHasProperty(pExpr,EP_DblQuoted) ){
      pExpr->op = TK_STRING;
      pExpr->pTab = 0;
      return WRC_Prune;
    }
    if( sqlite3ExprIdToTrueFalse(pExpr) ){
      return WRC_Prune;
    }
  }








|







94900
94901
94902
94903
94904
94905
94906
94907
94908
94909
94910
94911
94912
94913
94914
  ** Because no reference was made to outer contexts, the pNC->nRef
  ** fields are not changed in any context.
  */
  if( cnt==0 && zTab==0 ){
    assert( pExpr->op==TK_ID );
    if( ExprHasProperty(pExpr,EP_DblQuoted) ){
      pExpr->op = TK_STRING;
      pExpr->y.pTab = 0;
      return WRC_Prune;
    }
    if( sqlite3ExprIdToTrueFalse(pExpr) ){
      return WRC_Prune;
    }
  }

94648
94649
94650
94651
94652
94653
94654
94655
94656
94657
94658
94659
94660
94661
94662
94663
94664
** Allocate and return a pointer to an expression to load the column iCol
** from datasource iSrc in SrcList pSrc.
*/
SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){
  Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0);
  if( p ){
    struct SrcList_item *pItem = &pSrc->a[iSrc];
    p->pTab = pItem->pTab;
    p->iTable = pItem->iCursor;
    if( p->pTab->iPKey==iCol ){
      p->iColumn = -1;
    }else{
      p->iColumn = (ynVar)iCol;
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
    }







|

|







94978
94979
94980
94981
94982
94983
94984
94985
94986
94987
94988
94989
94990
94991
94992
94993
94994
** Allocate and return a pointer to an expression to load the column iCol
** from datasource iSrc in SrcList pSrc.
*/
SQLITE_PRIVATE Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){
  Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0);
  if( p ){
    struct SrcList_item *pItem = &pSrc->a[iSrc];
    p->y.pTab = pItem->pTab;
    p->iTable = pItem->iCursor;
    if( p->y.pTab->iPKey==iCol ){
      p->iColumn = -1;
    }else{
      p->iColumn = (ynVar)iCol;
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol);
    }
94740
94741
94742
94743
94744
94745
94746
94747
94748
94749
94750
94751
94752
94753
94754
    case TK_ROW: {
      SrcList *pSrcList = pNC->pSrcList;
      struct SrcList_item *pItem;
      assert( pSrcList && pSrcList->nSrc==1 );
      pItem = pSrcList->a;
      assert( HasRowid(pItem->pTab) && pItem->pTab->pSelect==0 );
      pExpr->op = TK_COLUMN;
      pExpr->pTab = pItem->pTab;
      pExpr->iTable = pItem->iCursor;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
      break;
    }
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
          && !defined(SQLITE_OMIT_SUBQUERY) */







|







95070
95071
95072
95073
95074
95075
95076
95077
95078
95079
95080
95081
95082
95083
95084
    case TK_ROW: {
      SrcList *pSrcList = pNC->pSrcList;
      struct SrcList_item *pItem;
      assert( pSrcList && pSrcList->nSrc==1 );
      pItem = pSrcList->a;
      assert( HasRowid(pItem->pTab) && pItem->pTab->pSelect==0 );
      pExpr->op = TK_COLUMN;
      pExpr->y.pTab = pItem->pTab;
      pExpr->iTable = pItem->iCursor;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
      break;
    }
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
          && !defined(SQLITE_OMIT_SUBQUERY) */
94784
94785
94786
94787
94788
94789
94790
94791
94792
94793
94794
94795
94796
94797
94798
94799
94800
          pLeft = pRight->pLeft;
          pRight = pRight->pRight;
        }
        zTable = pLeft->u.zToken;
        zColumn = pRight->u.zToken;
        if( IN_RENAME_OBJECT ){
          sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight);
        }
        if( IN_RENAME_OBJECT ){
          sqlite3RenameTokenRemap(pParse, (void*)&pExpr->pTab, (void*)pLeft);
        }
      }
      return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
    }

    /* Resolve function names
    */







<
<
|







95114
95115
95116
95117
95118
95119
95120


95121
95122
95123
95124
95125
95126
95127
95128
          pLeft = pRight->pLeft;
          pRight = pRight->pRight;
        }
        zTable = pLeft->u.zToken;
        zColumn = pRight->u.zToken;
        if( IN_RENAME_OBJECT ){
          sqlite3RenameTokenRemap(pParse, (void*)pExpr, (void*)pRight);


          sqlite3RenameTokenRemap(pParse, (void*)&pExpr->y.pTab, (void*)pLeft);
        }
      }
      return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr);
    }

    /* Resolve function names
    */
94868
94869
94870
94871
94872
94873
94874









94875
94876
94877
94878
94879
94880
94881
94882
94883
94884
94885
94886
94887
94888
94889
94890
94891
94892
94893
94894
94895
94896
94897
94898
94899
94900
94901
        if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){
          /* Date/time functions that use 'now', and other functions like
          ** sqlite_version() that might change over time cannot be used
          ** in an index. */
          notValid(pParse, pNC, "non-deterministic functions",
                   NC_IdxExpr|NC_PartIdx);
        }









      }

      if( 0==IN_RENAME_OBJECT ){
#ifndef SQLITE_OMIT_WINDOWFUNC
        assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX)
          || (pDef->xValue==0 && pDef->xInverse==0)
          || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize)
        );
        if( pDef && pDef->xValue==0 && pExpr->pWin ){
          sqlite3ErrorMsg(pParse, 
              "%.*s() may not be used as a window function", nId, zId
          );
          pNC->nErr++;
        }else if( 
              (is_agg && (pNC->ncFlags & NC_AllowAgg)==0)
           || (is_agg && (pDef->funcFlags & SQLITE_FUNC_WINDOW) && !pExpr->pWin)
           || (is_agg && pExpr->pWin && (pNC->ncFlags & NC_AllowWin)==0)
        ){
          const char *zType;
          if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pExpr->pWin ){
            zType = "window";
          }else{
            zType = "aggregate";
          }
          sqlite3ErrorMsg(pParse, "misuse of %s function %.*s()",zType,nId,zId);
          pNC->nErr++;
          is_agg = 0;







>
>
>
>
>
>
>
>
>








|






|
|


|







95196
95197
95198
95199
95200
95201
95202
95203
95204
95205
95206
95207
95208
95209
95210
95211
95212
95213
95214
95215
95216
95217
95218
95219
95220
95221
95222
95223
95224
95225
95226
95227
95228
95229
95230
95231
95232
95233
95234
95235
95236
95237
95238
        if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){
          /* Date/time functions that use 'now', and other functions like
          ** sqlite_version() that might change over time cannot be used
          ** in an index. */
          notValid(pParse, pNC, "non-deterministic functions",
                   NC_IdxExpr|NC_PartIdx);
        }
        if( (pDef->funcFlags & SQLITE_FUNC_INTERNAL)!=0
         && pParse->nested==0
         && sqlite3Config.bInternalFunctions==0
        ){
          /* Internal-use-only functions are disallowed unless the
          ** SQL is being compiled using sqlite3NestedParse() */
          no_such_func = 1;
          pDef = 0;
        }
      }

      if( 0==IN_RENAME_OBJECT ){
#ifndef SQLITE_OMIT_WINDOWFUNC
        assert( is_agg==0 || (pDef->funcFlags & SQLITE_FUNC_MINMAX)
          || (pDef->xValue==0 && pDef->xInverse==0)
          || (pDef->xValue && pDef->xInverse && pDef->xSFunc && pDef->xFinalize)
        );
        if( pDef && pDef->xValue==0 && ExprHasProperty(pExpr, EP_WinFunc) ){
          sqlite3ErrorMsg(pParse, 
              "%.*s() may not be used as a window function", nId, zId
          );
          pNC->nErr++;
        }else if( 
              (is_agg && (pNC->ncFlags & NC_AllowAgg)==0)
           || (is_agg && (pDef->funcFlags&SQLITE_FUNC_WINDOW) && !pExpr->y.pWin)
           || (is_agg && pExpr->y.pWin && (pNC->ncFlags & NC_AllowWin)==0)
        ){
          const char *zType;
          if( (pDef->funcFlags & SQLITE_FUNC_WINDOW) || pExpr->y.pWin ){
            zType = "window";
          }else{
            zType = "aggregate";
          }
          sqlite3ErrorMsg(pParse, "misuse of %s function %.*s()",zType,nId,zId);
          pNC->nErr++;
          is_agg = 0;
94917
94918
94919
94920
94921
94922
94923
94924
94925
94926
94927
94928
94929
94930
94931
94932
94933
94934
94935
94936
94937
94938
94939
94940
94941
94942
94943
94944
94945
94946
94947
94948
94949
94950
        }else if( wrong_num_args ){
          sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
               nId, zId);
          pNC->nErr++;
        }
        if( is_agg ){
#ifndef SQLITE_OMIT_WINDOWFUNC
          pNC->ncFlags &= ~(pExpr->pWin ? NC_AllowWin : NC_AllowAgg);
#else
          pNC->ncFlags &= ~NC_AllowAgg;
#endif
        }
      }
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ){
#ifndef SQLITE_OMIT_WINDOWFUNC
        if( pExpr->pWin ){
          Select *pSel = pNC->pWinSelect;
          sqlite3WalkExprList(pWalker, pExpr->pWin->pPartition);
          sqlite3WalkExprList(pWalker, pExpr->pWin->pOrderBy);
          sqlite3WalkExpr(pWalker, pExpr->pWin->pFilter);
          sqlite3WindowUpdate(pParse, pSel->pWinDefn, pExpr->pWin, pDef);
          if( 0==pSel->pWin 
           || 0==sqlite3WindowCompare(pParse, pSel->pWin, pExpr->pWin) 
          ){
            pExpr->pWin->pNextWin = pSel->pWin;
            pSel->pWin = pExpr->pWin;
          }
          pNC->ncFlags |= NC_AllowWin;
        }else
#endif /* SQLITE_OMIT_WINDOWFUNC */
        {
          NameContext *pNC2 = pNC;
          pExpr->op = TK_AGG_FUNCTION;







|








|

|
|
|
|

|

|
|







95254
95255
95256
95257
95258
95259
95260
95261
95262
95263
95264
95265
95266
95267
95268
95269
95270
95271
95272
95273
95274
95275
95276
95277
95278
95279
95280
95281
95282
95283
95284
95285
95286
95287
        }else if( wrong_num_args ){
          sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
               nId, zId);
          pNC->nErr++;
        }
        if( is_agg ){
#ifndef SQLITE_OMIT_WINDOWFUNC
          pNC->ncFlags &= ~(pExpr->y.pWin ? NC_AllowWin : NC_AllowAgg);
#else
          pNC->ncFlags &= ~NC_AllowAgg;
#endif
        }
      }
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ){
#ifndef SQLITE_OMIT_WINDOWFUNC
        if( pExpr->y.pWin ){
          Select *pSel = pNC->pWinSelect;
          sqlite3WalkExprList(pWalker, pExpr->y.pWin->pPartition);
          sqlite3WalkExprList(pWalker, pExpr->y.pWin->pOrderBy);
          sqlite3WalkExpr(pWalker, pExpr->y.pWin->pFilter);
          sqlite3WindowUpdate(pParse, pSel->pWinDefn, pExpr->y.pWin, pDef);
          if( 0==pSel->pWin 
           || 0==sqlite3WindowCompare(pParse, pSel->pWin, pExpr->y.pWin) 
          ){
            pExpr->y.pWin->pNextWin = pSel->pWin;
            pSel->pWin = pExpr->y.pWin;
          }
          pNC->ncFlags |= NC_AllowWin;
        }else
#endif /* SQLITE_OMIT_WINDOWFUNC */
        {
          NameContext *pNC2 = pNC;
          pExpr->op = TK_AGG_FUNCTION;
95359
95360
95361
95362
95363
95364
95365
95366
95367
95368
95369
95370
95371
95372
95373
95374
95375
95376
95377
95378
95379
    pItem->u.x.iOrderByCol = 0;
    if( sqlite3ResolveExprNames(pNC, pE) ){
      return 1;
    }
    for(j=0; j<pSelect->pEList->nExpr; j++){
      if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){
#ifndef SQLITE_OMIT_WINDOWFUNC
        if( pE->pWin ){
          /* Since this window function is being changed into a reference
          ** to the same window function the result set, remove the instance
          ** of this window function from the Select.pWin list. */
          Window **pp;
          for(pp=&pSelect->pWin; *pp; pp=&(*pp)->pNextWin){
            if( *pp==pE->pWin ){
              *pp = (*pp)->pNextWin;
            }    
          }
        }
#endif
        pItem->u.x.iOrderByCol = j+1;
      }







|





|







95696
95697
95698
95699
95700
95701
95702
95703
95704
95705
95706
95707
95708
95709
95710
95711
95712
95713
95714
95715
95716
    pItem->u.x.iOrderByCol = 0;
    if( sqlite3ResolveExprNames(pNC, pE) ){
      return 1;
    }
    for(j=0; j<pSelect->pEList->nExpr; j++){
      if( sqlite3ExprCompare(0, pE, pSelect->pEList->a[j].pExpr, -1)==0 ){
#ifndef SQLITE_OMIT_WINDOWFUNC
        if( ExprHasProperty(pE, EP_WinFunc) ){
          /* Since this window function is being changed into a reference
          ** to the same window function the result set, remove the instance
          ** of this window function from the Select.pWin list. */
          Window **pp;
          for(pp=&pSelect->pWin; *pp; pp=&(*pp)->pNextWin){
            if( *pp==pE->y.pWin ){
              *pp = (*pp)->pNextWin;
            }    
          }
        }
#endif
        pItem->u.x.iOrderByCol = j+1;
      }
95828
95829
95830
95831
95832
95833
95834
95835
95836
95837
95838
95839
95840
95841
95842
95843
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->pTab ){
    return sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
  }
  if( op==TK_SELECT_COLUMN ){
    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(
        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );
  }







|
|







96165
96166
96167
96168
96169
96170
96171
96172
96173
96174
96175
96176
96177
96178
96179
96180
  if( op==TK_REGISTER ) op = pExpr->op2;
#ifndef SQLITE_OMIT_CAST
  if( op==TK_CAST ){
    assert( !ExprHasProperty(pExpr, EP_IntValue) );
    return sqlite3AffinityType(pExpr->u.zToken, 0);
  }
#endif
  if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){
    return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
  }
  if( op==TK_SELECT_COLUMN ){
    assert( pExpr->pLeft->flags&EP_xIsSelect );
    return sqlite3ExprAffinity(
        pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
    );
  }
95913
95914
95915
95916
95917
95918
95919
95920
95921
95922
95923
95924
95925
95926
95927
95928
95929
95930
95931
95932
95933
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( p->flags & EP_Generic ) break;
    if( (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
     && p->pTab!=0
    ){
      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      int j = p->iColumn;
      if( j>=0 ){
        const char *zColl = p->pTab->aCol[j].zColl;
        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
      }
      break;
    }
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;







|

|



|







96250
96251
96252
96253
96254
96255
96256
96257
96258
96259
96260
96261
96262
96263
96264
96265
96266
96267
96268
96269
96270
  CollSeq *pColl = 0;
  Expr *p = pExpr;
  while( p ){
    int op = p->op;
    if( p->flags & EP_Generic ) break;
    if( (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
     && p->y.pTab!=0
    ){
      /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      int j = p->iColumn;
      if( j>=0 ){
        const char *zColl = p->y.pTab->aCol[j].zColl;
        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
      }
      break;
    }
    if( op==TK_CAST || op==TK_UPLUS ){
      p = p->pLeft;
      continue;
96822
96823
96824
96825
96826
96827
96828




96829
96830
96831
96832
96833
96834
96835
96836
96837
96838
96839
96840
96841
96842
96843
96844
96845
96846
96847

96848
96849
96850
96851
96852
96853
96854
96855
/*
** Recursively delete an expression tree.
*/
static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
  assert( p!=0 );
  /* Sanity check: Assert that the IntValue is non-negative if it exists */
  assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );




#ifdef SQLITE_DEBUG
  if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
    assert( p->pLeft==0 );
    assert( p->pRight==0 );
    assert( p->x.pSelect==0 );
  }
#endif
  if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
    /* The Expr.x union is never used at the same time as Expr.pRight */
    assert( p->x.pList==0 || p->pRight==0 );
    if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
    if( p->pRight ){
      sqlite3ExprDeleteNN(db, p->pRight);
    }else if( ExprHasProperty(p, EP_xIsSelect) ){
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
    if( !ExprHasProperty(p, EP_Reduced) ){

      sqlite3WindowDelete(db, p->pWin);
    }
  }
  if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
  if( !ExprHasProperty(p, EP_Static) ){
    sqlite3DbFreeNN(db, p);
  }
}







>
>
>
>


















|
>
|







97159
97160
97161
97162
97163
97164
97165
97166
97167
97168
97169
97170
97171
97172
97173
97174
97175
97176
97177
97178
97179
97180
97181
97182
97183
97184
97185
97186
97187
97188
97189
97190
97191
97192
97193
97194
97195
97196
97197
/*
** Recursively delete an expression tree.
*/
static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
  assert( p!=0 );
  /* Sanity check: Assert that the IntValue is non-negative if it exists */
  assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );

  assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed );
  assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced)
          || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) );
#ifdef SQLITE_DEBUG
  if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
    assert( p->pLeft==0 );
    assert( p->pRight==0 );
    assert( p->x.pSelect==0 );
  }
#endif
  if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
    /* The Expr.x union is never used at the same time as Expr.pRight */
    assert( p->x.pList==0 || p->pRight==0 );
    if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
    if( p->pRight ){
      sqlite3ExprDeleteNN(db, p->pRight);
    }else if( ExprHasProperty(p, EP_xIsSelect) ){
      sqlite3SelectDelete(db, p->x.pSelect);
    }else{
      sqlite3ExprListDelete(db, p->x.pList);
    }
    if( ExprHasProperty(p, EP_WinFunc) ){
      assert( p->op==TK_FUNCTION );
      sqlite3WindowDelete(db, p->y.pWin);
    }
  }
  if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
  if( !ExprHasProperty(p, EP_Static) ){
    sqlite3DbFreeNN(db, p);
  }
}
96905
96906
96907
96908
96909
96910
96911
96912
96913
96914
96915
96916
96917
96918
96919
static int dupedExprStructSize(Expr *p, int flags){
  int nSize;
  assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
  assert( EXPR_FULLSIZE<=0xfff );
  assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
  if( 0==flags || p->op==TK_SELECT_COLUMN 
#ifndef SQLITE_OMIT_WINDOWFUNC
   || p->pWin 
#endif
  ){
    nSize = EXPR_FULLSIZE;
  }else{
    assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
    assert( !ExprHasProperty(p, EP_FromJoin) ); 
    assert( !ExprHasProperty(p, EP_MemToken) );







|







97247
97248
97249
97250
97251
97252
97253
97254
97255
97256
97257
97258
97259
97260
97261
static int dupedExprStructSize(Expr *p, int flags){
  int nSize;
  assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
  assert( EXPR_FULLSIZE<=0xfff );
  assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
  if( 0==flags || p->op==TK_SELECT_COLUMN 
#ifndef SQLITE_OMIT_WINDOWFUNC
   || ExprHasProperty(p, EP_WinFunc)
#endif
  ){
    nSize = EXPR_FULLSIZE;
  }else{
    assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
    assert( !ExprHasProperty(p, EP_FromJoin) ); 
    assert( !ExprHasProperty(p, EP_MemToken) );
96932
96933
96934
96935
96936
96937
96938
96939
96940
96941
96942
96943
96944
96945
96946
** This function returns the space in bytes required to store the copy 
** of the Expr structure and a copy of the Expr.u.zToken string (if that
** string is defined.)
*/
static int dupedExprNodeSize(Expr *p, int flags){
  int nByte = dupedExprStructSize(p, flags) & 0xfff;
  if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
    nByte += sqlite3Strlen30(p->u.zToken)+1;
  }
  return ROUND8(nByte);
}

/*
** Return the number of bytes required to create a duplicate of the 
** expression passed as the first argument. The second argument is a







|







97274
97275
97276
97277
97278
97279
97280
97281
97282
97283
97284
97285
97286
97287
97288
** This function returns the space in bytes required to store the copy 
** of the Expr structure and a copy of the Expr.u.zToken string (if that
** string is defined.)
*/
static int dupedExprNodeSize(Expr *p, int flags){
  int nByte = dupedExprStructSize(p, flags) & 0xfff;
  if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
    nByte += sqlite3Strlen30NN(p->u.zToken)+1;
  }
  return ROUND8(nByte);
}

/*
** Return the number of bytes required to create a duplicate of the 
** expression passed as the first argument. The second argument is a
97035
97036
97037
97038
97039
97040
97041
97042
97043
97044
97045
97046
97047
97048
97049






97050
97051
97052
97053
97054
97055
97056
97057
97058
97059
97060
97061
97062
97063
97064
97065
97066
97067
        pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
      }else{
        pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
      }
    }

    /* Fill in pNew->pLeft and pNew->pRight. */
    if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
      zAlloc += dupedExprNodeSize(p, dupFlags);
      if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
        pNew->pLeft = p->pLeft ?
                      exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
        pNew->pRight = p->pRight ?
                       exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
      }






      if( pzBuffer ){
        *pzBuffer = zAlloc;
      }
    }else{
#ifndef SQLITE_OMIT_WINDOWFUNC
      if( ExprHasProperty(p, EP_Reduced|EP_TokenOnly) ){
        pNew->pWin = 0;
      }else{
        pNew->pWin = sqlite3WindowDup(db, pNew, p->pWin);
      }
#endif /* SQLITE_OMIT_WINDOWFUNC */
      if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
        if( pNew->op==TK_SELECT_COLUMN ){
          pNew->pLeft = p->pLeft;
          assert( p->iColumn==0 || p->pRight==0 );
          assert( p->pRight==0  || p->pRight==p->pLeft );
        }else{
          pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);







|







>
>
>
>
>
>




<
<
<
<
<
<
<







97377
97378
97379
97380
97381
97382
97383
97384
97385
97386
97387
97388
97389
97390
97391
97392
97393
97394
97395
97396
97397
97398
97399
97400
97401







97402
97403
97404
97405
97406
97407
97408
        pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
      }else{
        pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
      }
    }

    /* Fill in pNew->pLeft and pNew->pRight. */
    if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
      zAlloc += dupedExprNodeSize(p, dupFlags);
      if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
        pNew->pLeft = p->pLeft ?
                      exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
        pNew->pRight = p->pRight ?
                       exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
      }
#ifndef SQLITE_OMIT_WINDOWFUNC
      if( ExprHasProperty(p, EP_WinFunc) ){
        pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
        assert( ExprHasProperty(pNew, EP_WinFunc) );
      }
#endif /* SQLITE_OMIT_WINDOWFUNC */
      if( pzBuffer ){
        *pzBuffer = zAlloc;
      }
    }else{







      if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
        if( pNew->op==TK_SELECT_COLUMN ){
          pNew->pLeft = p->pLeft;
          assert( p->iColumn==0 || p->pRight==0 );
          assert( p->pRight==0  || p->pRight==p->pLeft );
        }else{
          pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
97859
97860
97861
97862
97863
97864
97865
97866
97867
97868
97869
97870
97871
97872
97873
97874
    case TK_INTEGER:
    case TK_STRING:
    case TK_FLOAT:
    case TK_BLOB:
      return 0;
    case TK_COLUMN:
      return ExprHasProperty(p, EP_CanBeNull) ||
             p->pTab==0 ||  /* Reference to column of index on expression */
             (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
    default:
      return 1;
  }
}

/*
** Return TRUE if the given expression is a constant which would be







|
|







98200
98201
98202
98203
98204
98205
98206
98207
98208
98209
98210
98211
98212
98213
98214
98215
    case TK_INTEGER:
    case TK_STRING:
    case TK_FLOAT:
    case TK_BLOB:
      return 0;
    case TK_COLUMN:
      return ExprHasProperty(p, EP_CanBeNull) ||
             p->y.pTab==0 ||  /* Reference to column of index on expression */
             (p->iColumn>=0 && p->y.pTab->aCol[p->iColumn].notNull==0);
    default:
      return 1;
  }
}

/*
** Return TRUE if the given expression is a constant which would be
97915
97916
97917
97918
97919
97920
97921








97922
97923
97924
97925
97926
97927
97928
*/
SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  return 0;
}









/*
** pX is the RHS of an IN operator.  If pX is a SELECT statement 
** that can be simplified to a direct table access, then return
** a pointer to the SELECT statement.  If pX is not a SELECT statement,
** or if the SELECT statement needs to be manifested into a transient
** table, then return NULL.







>
>
>
>
>
>
>
>







98256
98257
98258
98259
98260
98261
98262
98263
98264
98265
98266
98267
98268
98269
98270
98271
98272
98273
98274
98275
98276
98277
*/
SQLITE_PRIVATE int sqlite3IsRowid(const char *z){
  if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
  if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
  if( sqlite3StrICmp(z, "OID")==0 ) return 1;
  return 0;
}
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE int sqlite3IsRowidN(const char *z, int n){
  if( sqlite3StrNICmp(z, "_ROWID_", n)==0 ) return 1;
  if( sqlite3StrNICmp(z, "ROWID", n)==0 ) return 1;
  if( sqlite3StrNICmp(z, "OID", n)==0 ) return 1;
  return 0;
}
#endif

/*
** pX is the RHS of an IN operator.  If pX is a SELECT statement 
** that can be simplified to a direct table access, then return
** a pointer to the SELECT statement.  If pX is not a SELECT statement,
** or if the SELECT statement needs to be manifested into a transient
** table, then return NULL.
99148
99149
99150
99151
99152
99153
99154
99155
99156
99157
99158
99159
99160
99161
99162
        /* This COLUMN expression is really a constant due to WHERE clause
        ** constraints, and that constant is coded by the pExpr->pLeft
        ** expresssion.  However, make sure the constant has the correct
        ** datatype by applying the Affinity of the table column to the
        ** constant.
        */
        int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
        int aff = sqlite3TableColumnAffinity(pExpr->pTab, pExpr->iColumn);
        if( aff!=SQLITE_AFF_BLOB ){
          static const char zAff[] = "B\000C\000D\000E";
          assert( SQLITE_AFF_BLOB=='A' );
          assert( SQLITE_AFF_TEXT=='B' );
          if( iReg!=target ){
            sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
            iReg = target;







|







99497
99498
99499
99500
99501
99502
99503
99504
99505
99506
99507
99508
99509
99510
99511
        /* This COLUMN expression is really a constant due to WHERE clause
        ** constraints, and that constant is coded by the pExpr->pLeft
        ** expresssion.  However, make sure the constant has the correct
        ** datatype by applying the Affinity of the table column to the
        ** constant.
        */
        int iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
        int aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
        if( aff!=SQLITE_AFF_BLOB ){
          static const char zAff[] = "B\000C\000D\000E";
          assert( SQLITE_AFF_BLOB=='A' );
          assert( SQLITE_AFF_TEXT=='B' );
          if( iReg!=target ){
            sqlite3VdbeAddOp2(v, OP_SCopy, iReg, target);
            iReg = target;
99172
99173
99174
99175
99176
99177
99178
99179
99180
99181
99182
99183
99184
99185
99186
          return pExpr->iColumn - pParse->iSelfTab;
        }else{
          /* Coding an expression that is part of an index where column names
          ** in the index refer to the table to which the index belongs */
          iTab = pParse->iSelfTab - 1;
        }
      }
      return sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
                               pExpr->iColumn, iTab, target,
                               pExpr->op2);
    }
    case TK_INTEGER: {
      codeInteger(pParse, pExpr, 0, target);
      return target;
    }







|







99521
99522
99523
99524
99525
99526
99527
99528
99529
99530
99531
99532
99533
99534
99535
          return pExpr->iColumn - pParse->iSelfTab;
        }else{
          /* Coding an expression that is part of an index where column names
          ** in the index refer to the table to which the index belongs */
          iTab = pParse->iSelfTab - 1;
        }
      }
      return sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
                               pExpr->iColumn, iTab, target,
                               pExpr->op2);
    }
    case TK_INTEGER: {
      codeInteger(pParse, pExpr, 0, target);
      return target;
    }
99386
99387
99388
99389
99390
99391
99392
99393
99394
99395
99396
99397
99398
99399
99400
99401
      u32 constMask = 0;     /* Mask of function arguments that are constant */
      int i;                 /* Loop counter */
      sqlite3 *db = pParse->db;  /* The database connection */
      u8 enc = ENC(db);      /* The text encoding used by this database */
      CollSeq *pColl = 0;    /* A collating sequence */

#ifndef SQLITE_OMIT_WINDOWFUNC
      if( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) && pExpr->pWin ){
        return pExpr->pWin->regResult;
      }
#endif

      if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
        /* SQL functions can be expensive. So try to move constant functions
        ** out of the inner loop, even if that means an extra OP_Copy. */
        return sqlite3ExprCodeAtInit(pParse, pExpr, -1);







|
|







99735
99736
99737
99738
99739
99740
99741
99742
99743
99744
99745
99746
99747
99748
99749
99750
      u32 constMask = 0;     /* Mask of function arguments that are constant */
      int i;                 /* Loop counter */
      sqlite3 *db = pParse->db;  /* The database connection */
      u8 enc = ENC(db);      /* The text encoding used by this database */
      CollSeq *pColl = 0;    /* A collating sequence */

#ifndef SQLITE_OMIT_WINDOWFUNC
      if( ExprHasProperty(pExpr, EP_WinFunc) ){
        return pExpr->y.pWin->regResult;
      }
#endif

      if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
        /* SQL functions can be expensive. So try to move constant functions
        ** out of the inner loop, even if that means an extra OP_Copy. */
        return sqlite3ExprCodeAtInit(pParse, pExpr, -1);
99630
99631
99632
99633
99634
99635
99636
99637
99638
99639
99640
99641
99642
99643
99644
99645
99646
99647
99648
99649
99650
99651
99652
99653
99654
99655
      **
      ** Then p1 is interpreted as follows:
      **
      **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
      **   p1==1   ->    old.a         p1==4   ->    new.a
      **   p1==2   ->    old.b         p1==5   ->    new.b       
      */
      Table *pTab = pExpr->pTab;
      int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;

      assert( pExpr->iTable==0 || pExpr->iTable==1 );
      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
      assert( p1>=0 && p1<(pTab->nCol*2+2) );

      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
      VdbeComment((v, "r[%d]=%s.%s", target,
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName)
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.
      **
      ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to







|










|







99979
99980
99981
99982
99983
99984
99985
99986
99987
99988
99989
99990
99991
99992
99993
99994
99995
99996
99997
99998
99999
100000
100001
100002
100003
100004
      **
      ** Then p1 is interpreted as follows:
      **
      **   p1==0   ->    old.rowid     p1==3   ->    new.rowid
      **   p1==1   ->    old.a         p1==4   ->    new.a
      **   p1==2   ->    old.b         p1==5   ->    new.b       
      */
      Table *pTab = pExpr->y.pTab;
      int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;

      assert( pExpr->iTable==0 || pExpr->iTable==1 );
      assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
      assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
      assert( p1>=0 && p1<(pTab->nCol*2+2) );

      sqlite3VdbeAddOp2(v, OP_Param, p1, target);
      VdbeComment((v, "r[%d]=%s.%s", target,
        (pExpr->iTable ? "new" : "old"),
        (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[pExpr->iColumn].zName)
      ));

#ifndef SQLITE_OMIT_FLOATING_POINT
      /* If the column has REAL affinity, it may currently be stored as an
      ** integer. Use OP_RealAffinity to make sure it is really real.
      **
      ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
100492
100493
100494
100495
100496
100497
100498














100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
      return 1;
    }
    return 2;
  }
  if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( pA->op==TK_FUNCTION ){
      if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;














    }else if( pA->op==TK_COLLATE ){
      if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
    }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
  if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
    if( combinedFlags & EP_xIsSelect ) return 2;
    if( (combinedFlags & EP_FixedCol)==0
     && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
    if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
    if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
    assert( (combinedFlags & EP_Reduced)==0 );
    if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
      if( pA->iColumn!=pB->iColumn ) return 2;
      if( pA->iTable!=pB->iTable 
       && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
    }
#ifndef SQLITE_OMIT_WINDOWFUNC
    /* Justification for the assert():
    ** window functions have p->op==TK_FUNCTION but aggregate functions
    ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
    ** function and a window function should have failed before reaching
    ** this point.  And, it is not possible to have a window function and
    ** a scalar function with the same name and number of arguments.  So
    ** if we reach this point, either A and B both window functions or
    ** neither are a window functions. */
    assert( (pA->pWin==0)==(pB->pWin==0) );

    if( pA->pWin!=0 ){
      if( sqlite3WindowCompare(pParse,pA->pWin,pB->pWin)!=0 ) return 2;
    }
#endif
  }
  return 0;
}

/*
** Compare two ExprList objects.  Return 0 if they are identical and 
** non-zero if they differ in any way.







>
>
>
>
>
>
>
>
>
>
>
>
>
>



















<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880















100881
100882
100883
100884
100885
100886
100887
      return 1;
    }
    return 2;
  }
  if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( pA->op==TK_FUNCTION ){
      if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
#ifndef SQLITE_OMIT_WINDOWFUNC
      /* Justification for the assert():
      ** window functions have p->op==TK_FUNCTION but aggregate functions
      ** have p->op==TK_AGG_FUNCTION.  So any comparison between an aggregate
      ** function and a window function should have failed before reaching
      ** this point.  And, it is not possible to have a window function and
      ** a scalar function with the same name and number of arguments.  So
      ** if we reach this point, either A and B both window functions or
      ** neither are a window functions. */
      assert( ExprHasProperty(pA,EP_WinFunc)==ExprHasProperty(pB,EP_WinFunc) );
      if( ExprHasProperty(pA,EP_WinFunc) ){
        if( sqlite3WindowCompare(pParse,pA->y.pWin,pB->y.pWin)!=0 ) return 2;
      }
#endif
    }else if( pA->op==TK_COLLATE ){
      if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
    }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return 2;
    }
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
  if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
    if( combinedFlags & EP_xIsSelect ) return 2;
    if( (combinedFlags & EP_FixedCol)==0
     && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
    if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
    if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
    assert( (combinedFlags & EP_Reduced)==0 );
    if( pA->op!=TK_STRING && pA->op!=TK_TRUEFALSE ){
      if( pA->iColumn!=pB->iColumn ) return 2;
      if( pA->iTable!=pB->iTable 
       && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
    }















  }
  return 0;
}

/*
** Compare two ExprList objects.  Return 0 if they are identical and 
** non-zero if they differ in any way.
100616
100617
100618
100619
100620
100621
100622
100623




100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
  }
  return 0;
}

/*
** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
** If the expression node requires that the table at pWalker->iCur
** have a non-NULL column, then set pWalker->eCode to 1 and abort.




*/
static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
  /* This routine is only called for WHERE clause expressions and so it
  ** cannot have any TK_AGG_COLUMN entries because those are only found
  ** in HAVING clauses.  We can get a TK_AGG_FUNCTION in a WHERE clause,
  ** but that is an illegal construct and the query will be rejected at
  ** a later stage of processing, so the TK_AGG_FUNCTION case does not
  ** need to be considered here. */
  assert( pExpr->op!=TK_AGG_COLUMN );
  testcase( pExpr->op==TK_AGG_FUNCTION );

  if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
  switch( pExpr->op ){
    case TK_ISNOT:
    case TK_NOT:
    case TK_ISNULL:
    case TK_IS:
    case TK_OR:







|
>
>
>
>


<
<
<
<
<
<
|

<







100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977






100978
100979

100980
100981
100982
100983
100984
100985
100986
  }
  return 0;
}

/*
** This is the Expr node callback for sqlite3ExprImpliesNotNullRow().
** If the expression node requires that the table at pWalker->iCur
** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
**
** This routine controls an optimization.  False positives (setting
** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
** (never setting pWalker->eCode) is a harmless missed optimization.
*/
static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){






  testcase( pExpr->op==TK_AGG_COLUMN );
  testcase( pExpr->op==TK_AGG_FUNCTION );

  if( ExprHasProperty(pExpr, EP_FromJoin) ) return WRC_Prune;
  switch( pExpr->op ){
    case TK_ISNOT:
    case TK_NOT:
    case TK_ISNULL:
    case TK_IS:
    case TK_OR:
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
    case TK_GE:
      testcase( pExpr->op==TK_EQ );
      testcase( pExpr->op==TK_NE );
      testcase( pExpr->op==TK_LT );
      testcase( pExpr->op==TK_LE );
      testcase( pExpr->op==TK_GT );
      testcase( pExpr->op==TK_GE );
      if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->pTab))
       || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->pTab))
      ){
       return WRC_Prune;
      }
    default:
      return WRC_Continue;
  }
}







|
|







101014
101015
101016
101017
101018
101019
101020
101021
101022
101023
101024
101025
101026
101027
101028
101029
    case TK_GE:
      testcase( pExpr->op==TK_EQ );
      testcase( pExpr->op==TK_NE );
      testcase( pExpr->op==TK_LT );
      testcase( pExpr->op==TK_LE );
      testcase( pExpr->op==TK_GT );
      testcase( pExpr->op==TK_GE );
      if( (pExpr->pLeft->op==TK_COLUMN && IsVirtual(pExpr->pLeft->y.pTab))
       || (pExpr->pRight->op==TK_COLUMN && IsVirtual(pExpr->pRight->y.pTab))
      ){
       return WRC_Prune;
      }
    default:
      return WRC_Continue;
  }
}
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
                break;
              }
            }
            if( (k>=pAggInfo->nColumn)
             && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
            ){
              pCol = &pAggInfo->aCol[k];
              pCol->pTab = pExpr->pTab;
              pCol->iTable = pExpr->iTable;
              pCol->iColumn = pExpr->iColumn;
              pCol->iMem = ++pParse->nMem;
              pCol->iSorterColumn = -1;
              pCol->pExpr = pExpr;
              if( pAggInfo->pGroupBy ){
                int j, n;







|







101246
101247
101248
101249
101250
101251
101252
101253
101254
101255
101256
101257
101258
101259
101260
                break;
              }
            }
            if( (k>=pAggInfo->nColumn)
             && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 
            ){
              pCol = &pAggInfo->aCol[k];
              pCol->pTab = pExpr->y.pTab;
              pCol->iTable = pExpr->iTable;
              pCol->iColumn = pExpr->iColumn;
              pCol->iMem = ++pParse->nMem;
              pCol->iSorterColumn = -1;
              pCol->pExpr = pExpr;
              if( pAggInfo->pGroupBy ){
                int j, n;
101160
101161
101162
101163
101164
101165
101166
101167
101168
101169
101170
101171
101172
101173
101174
/*
** Generate code to verify that the schemas of database zDb and, if
** bTemp is not true, database "temp", can still be parsed. This is
** called at the end of the generation of an ALTER TABLE ... RENAME ...
** statement to ensure that the operation has not rendered any schema
** objects unusable.
*/
void renameTestSchema(Parse *pParse, const char *zDb, int bTemp){
  sqlite3NestedParse(pParse, 
      "SELECT 1 "
      "FROM \"%w\".%s "
      "WHERE name NOT LIKE 'sqlite_%%'"
      " AND sql NOT LIKE 'create virtual%%'"
      " AND sqlite_rename_test(%Q, sql, type, name, %d)=NULL ",
      zDb, MASTER_NAME, 







|







101505
101506
101507
101508
101509
101510
101511
101512
101513
101514
101515
101516
101517
101518
101519
/*
** Generate code to verify that the schemas of database zDb and, if
** bTemp is not true, database "temp", can still be parsed. This is
** called at the end of the generation of an ALTER TABLE ... RENAME ...
** statement to ensure that the operation has not rendered any schema
** objects unusable.
*/
static void renameTestSchema(Parse *pParse, const char *zDb, int bTemp){
  sqlite3NestedParse(pParse, 
      "SELECT 1 "
      "FROM \"%w\".%s "
      "WHERE name NOT LIKE 'sqlite_%%'"
      " AND sql NOT LIKE 'create virtual%%'"
      " AND sqlite_rename_test(%Q, sql, type, name, %d)=NULL ",
      zDb, MASTER_NAME, 
101187
101188
101189
101190
101191
101192
101193
101194
101195
101196
101197
101198
101199
101200
101201
  }
}

/*
** Generate code to reload the schema for database iDb. And, if iDb!=1, for
** the temp database as well.
*/
void renameReloadSchema(Parse *pParse, int iDb){
  Vdbe *v = pParse->pVdbe;
  if( v ){
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0);
    if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0);
  }
}







|







101532
101533
101534
101535
101536
101537
101538
101539
101540
101541
101542
101543
101544
101545
101546
  }
}

/*
** Generate code to reload the schema for database iDb. And, if iDb!=1, for
** the temp database as well.
*/
static void renameReloadSchema(Parse *pParse, int iDb){
  Vdbe *v = pParse->pVdbe;
  if( v ){
    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, iDb, 0);
    if( iDb!=1 ) sqlite3VdbeAddParseSchemaOp(pParse->pVdbe, 1, 0);
  }
}
101286
101287
101288
101289
101290
101291
101292
101293
101294
101295
101296
101297
101298
101299
101300
101301
101302
101303
101304
101305
101306
101307
101308
101309
101310
101311
101312
101313
  ** table.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto exit_rename_table;
  }

  /* If this is a virtual table, invoke the xRename() function if
  ** one is defined. The xRename() callback will modify the names
  ** of any resources used by the v-table implementation (including other
  ** SQLite tables) that are identified by the name of the virtual table.
  */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pVTab ){
    int i = ++pParse->nMem;
    sqlite3VdbeLoadString(v, i, zName);
    sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
    sqlite3MayAbort(pParse);
  }
#endif

  /* figure out how many UTF-8 characters are in zName */
  zTabName = pTab->zName;
  nTabName = sqlite3Utf8CharLen(zTabName, -1);

  /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in
  ** the schema to use the new table name.  */
  sqlite3NestedParse(pParse, 







<
<
<
<
<
<
<
<
<
<
<
<
<
<







101631
101632
101633
101634
101635
101636
101637














101638
101639
101640
101641
101642
101643
101644
  ** table.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ){
    goto exit_rename_table;
  }















  /* figure out how many UTF-8 characters are in zName */
  zTabName = pTab->zName;
  nTabName = sqlite3Utf8CharLen(zTabName, -1);

  /* Rewrite all CREATE TABLE, INDEX, TRIGGER or VIEW statements in
  ** the schema to use the new table name.  */
  sqlite3NestedParse(pParse, 
101356
101357
101358
101359
101360
101361
101362














101363
101364
101365
101366
101367
101368
101369
            "tbl_name = "
              "CASE WHEN tbl_name=%Q COLLATE nocase AND "
              "          sqlite_rename_test(%Q, sql, type, name, 1) "
              "THEN %Q ELSE tbl_name END "
            "WHERE type IN ('view', 'trigger')"
        , zDb, zTabName, zName, zTabName, zDb, zName);
  }















  renameReloadSchema(pParse, iDb);
  renameTestSchema(pParse, zDb, iDb==1);

exit_rename_table:
  sqlite3SrcListDelete(db, pSrc);
  sqlite3DbFree(db, zName);







>
>
>
>
>
>
>
>
>
>
>
>
>
>







101687
101688
101689
101690
101691
101692
101693
101694
101695
101696
101697
101698
101699
101700
101701
101702
101703
101704
101705
101706
101707
101708
101709
101710
101711
101712
101713
101714
            "tbl_name = "
              "CASE WHEN tbl_name=%Q COLLATE nocase AND "
              "          sqlite_rename_test(%Q, sql, type, name, 1) "
              "THEN %Q ELSE tbl_name END "
            "WHERE type IN ('view', 'trigger')"
        , zDb, zTabName, zName, zTabName, zDb, zName);
  }

  /* If this is a virtual table, invoke the xRename() function if
  ** one is defined. The xRename() callback will modify the names
  ** of any resources used by the v-table implementation (including other
  ** SQLite tables) that are identified by the name of the virtual table.
  */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  if( pVTab ){
    int i = ++pParse->nMem;
    sqlite3VdbeLoadString(v, i, zName);
    sqlite3VdbeAddOp4(v, OP_VRename, i, 0, 0,(const char*)pVTab, P4_VTAB);
    sqlite3MayAbort(pParse);
  }
#endif

  renameReloadSchema(pParse, iDb);
  renameTestSchema(pParse, zDb, iDb==1);

exit_rename_table:
  sqlite3SrcListDelete(db, pSrc);
  sqlite3DbFree(db, zName);
101767
101768
101769
101770
101771
101772
101773
101774
101775
101776
101777
101778
101779
101780
101781
101782
101783
101784
101785
101786
101787
101788
101789
101790



101791
101792

101793


101794
101795
101796
101797
101798
101799
101800
101801
**
**     sqlite3_free(x);
**     if( x==y ) ...
**
** Technically, as x no longer points into a valid object or to the byte
** following a valid object, it may not be used in comparison operations.
*/
void renameTokenCheckAll(Parse *pParse, void *pPtr){
  if( pParse->nErr==0 && pParse->db->mallocFailed==0 ){
    RenameToken *p;
    u8 i = 0;
    for(p=pParse->pRename; p; p=p->pNext){
      if( p->p ){
        assert( p->p!=pPtr );
        i += *(u8*)(p->p);
      }
    }
  }
}
#else
# define renameTokenCheckAll(x,y)
#endif

/*



** Add a new RenameToken object mapping parse tree element pPtr into
** token *pToken to the Parse object currently under construction.

**


** Return a copy of pPtr.
*/
SQLITE_PRIVATE void *sqlite3RenameTokenMap(Parse *pParse, void *pPtr, Token *pToken){
  RenameToken *pNew;
  assert( pPtr || pParse->db->mallocFailed );
  renameTokenCheckAll(pParse, pPtr);
  pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken));
  if( pNew ){







|
















>
>
>
|
|
>

>
>
|







102112
102113
102114
102115
102116
102117
102118
102119
102120
102121
102122
102123
102124
102125
102126
102127
102128
102129
102130
102131
102132
102133
102134
102135
102136
102137
102138
102139
102140
102141
102142
102143
102144
102145
102146
102147
102148
102149
102150
102151
102152
**
**     sqlite3_free(x);
**     if( x==y ) ...
**
** Technically, as x no longer points into a valid object or to the byte
** following a valid object, it may not be used in comparison operations.
*/
static void renameTokenCheckAll(Parse *pParse, void *pPtr){
  if( pParse->nErr==0 && pParse->db->mallocFailed==0 ){
    RenameToken *p;
    u8 i = 0;
    for(p=pParse->pRename; p; p=p->pNext){
      if( p->p ){
        assert( p->p!=pPtr );
        i += *(u8*)(p->p);
      }
    }
  }
}
#else
# define renameTokenCheckAll(x,y)
#endif

/*
** Remember that the parser tree element pPtr was created using
** the token pToken.
**
** In other words, construct a new RenameToken object and add it
** to the list of RenameToken objects currently being built up
** in pParse->pRename.
**
** The pPtr argument is returned so that this routine can be used
** with tail recursion in tokenExpr() routine, for a small performance
** improvement.
*/
SQLITE_PRIVATE void *sqlite3RenameTokenMap(Parse *pParse, void *pPtr, Token *pToken){
  RenameToken *pNew;
  assert( pPtr || pParse->db->mallocFailed );
  renameTokenCheckAll(pParse, pPtr);
  pNew = sqlite3DbMallocZero(pParse->db, sizeof(RenameToken));
  if( pNew ){
101920
101921
101922
101923
101924
101925
101926
101927
101928
101929
101930
101931
101932
101933
101934
  if( pExpr->op==TK_TRIGGER 
   && pExpr->iColumn==p->iCol 
   && pWalker->pParse->pTriggerTab==p->pTab
  ){
    renameTokenFind(pWalker->pParse, p, (void*)pExpr);
  }else if( pExpr->op==TK_COLUMN 
   && pExpr->iColumn==p->iCol 
   && p->pTab==pExpr->pTab
  ){
    renameTokenFind(pWalker->pParse, p, (void*)pExpr);
  }
  return WRC_Continue;
}

/*







|







102271
102272
102273
102274
102275
102276
102277
102278
102279
102280
102281
102282
102283
102284
102285
  if( pExpr->op==TK_TRIGGER 
   && pExpr->iColumn==p->iCol 
   && pWalker->pParse->pTriggerTab==p->pTab
  ){
    renameTokenFind(pWalker->pParse, p, (void*)pExpr);
  }else if( pExpr->op==TK_COLUMN 
   && pExpr->iColumn==p->iCol 
   && p->pTab==pExpr->y.pTab
  ){
    renameTokenFind(pWalker->pParse, p, (void*)pExpr);
  }
  return WRC_Continue;
}

/*
102178
102179
102180
102181
102182
102183
102184




102185

102186
102187
102188
102189
102190
102191
102192
102193
102194
102195
102196
102197
102198
102199
102200
102201
102202
102203
102204
102205
102206
102207
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  assert( pNew->pTabSchema );
  pParse->pTriggerTab = sqlite3FindTable(db, pNew->table, 
      db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName
  );
  pParse->eTriggerOp = pNew->op;






  /* Resolve symbols in WHEN clause */
  if( pNew->pWhen ){
    rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen);
  }

  for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){
    if( pStep->pSelect ){
      sqlite3SelectPrep(pParse, pStep->pSelect, &sNC);
      if( pParse->nErr ) rc = pParse->rc;
    }
    if( rc==SQLITE_OK && pStep->zTarget ){
      Table *pTarget = sqlite3LocateTable(pParse, 0, pStep->zTarget, zDb);
      if( pTarget==0 ){
        rc = SQLITE_ERROR;
      }else{
        SrcList sSrc;
        memset(&sSrc, 0, sizeof(sSrc));
        sSrc.nSrc = 1;
        sSrc.a[0].zName = pStep->zTarget;
        sSrc.a[0].pTab = pTarget;
        sNC.pSrcList = &sSrc;
        if( pStep->pWhere ){







>
>
>
>
|
>

|












|







102529
102530
102531
102532
102533
102534
102535
102536
102537
102538
102539
102540
102541
102542
102543
102544
102545
102546
102547
102548
102549
102550
102551
102552
102553
102554
102555
102556
102557
102558
102559
102560
102561
102562
102563
  memset(&sNC, 0, sizeof(sNC));
  sNC.pParse = pParse;
  assert( pNew->pTabSchema );
  pParse->pTriggerTab = sqlite3FindTable(db, pNew->table, 
      db->aDb[sqlite3SchemaToIndex(db, pNew->pTabSchema)].zDbSName
  );
  pParse->eTriggerOp = pNew->op;
  /* ALWAYS() because if the table of the trigger does not exist, the
  ** error would have been hit before this point */
  if( ALWAYS(pParse->pTriggerTab) ){
    rc = sqlite3ViewGetColumnNames(pParse, pParse->pTriggerTab);
  }

  /* Resolve symbols in WHEN clause */
  if( rc==SQLITE_OK && pNew->pWhen ){
    rc = sqlite3ResolveExprNames(&sNC, pNew->pWhen);
  }

  for(pStep=pNew->step_list; rc==SQLITE_OK && pStep; pStep=pStep->pNext){
    if( pStep->pSelect ){
      sqlite3SelectPrep(pParse, pStep->pSelect, &sNC);
      if( pParse->nErr ) rc = pParse->rc;
    }
    if( rc==SQLITE_OK && pStep->zTarget ){
      Table *pTarget = sqlite3LocateTable(pParse, 0, pStep->zTarget, zDb);
      if( pTarget==0 ){
        rc = SQLITE_ERROR;
      }else if( SQLITE_OK==(rc = sqlite3ViewGetColumnNames(pParse, pTarget)) ){
        SrcList sSrc;
        memset(&sSrc, 0, sizeof(sSrc));
        sSrc.nSrc = 1;
        sSrc.a[0].zName = pStep->zTarget;
        sSrc.a[0].pTab = pTarget;
        sNC.pSrcList = &sSrc;
        if( pStep->pWhere ){
102294
102295
102296
102297
102298
102299
102300
102301
102302
102303
102304
102305
102306
102307
102308
102309
102310
102311
102312
102313
102314
102315
102316
**   8. bTemp:    True if zSql comes from temp schema
**
** Do a column rename operation on the CREATE statement given in zSql.
** The iCol-th column (left-most is 0) of table zTable is renamed from zCol
** into zNew.  The name should be quoted if bQuote is true.
**
** This function is used internally by the ALTER TABLE RENAME COLUMN command.
** Though accessible to application code, it is not intended for use by
** applications.  The existance of this function, and the way it works,
** is subject to change without notice.
**
** If any of the parameters are out-of-bounds, then simply return NULL.
** An out-of-bounds parameter can only occur when the application calls
** this function directly.  The parameters will always be well-formed when
** this routine is invoked by the bytecode for a legitimate ALTER TABLE
** statement.
*/
static void renameColumnFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);







|
|
<
<
<
<
<
<
<







102650
102651
102652
102653
102654
102655
102656
102657
102658







102659
102660
102661
102662
102663
102664
102665
**   8. bTemp:    True if zSql comes from temp schema
**
** Do a column rename operation on the CREATE statement given in zSql.
** The iCol-th column (left-most is 0) of table zTable is renamed from zCol
** into zNew.  The name should be quoted if bQuote is true.
**
** This function is used internally by the ALTER TABLE RENAME COLUMN command.
** It is only accessible to SQL created using sqlite3NestedParse().  It is
** not reachable from ordinary SQL passed into sqlite3_prepare().







*/
static void renameColumnFunc(
  sqlite3_context *context,
  int NotUsed,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
102458
102459
102460
102461
102462
102463
102464
102465
102466
102467
102468
102469
102470
102471
102472
102473
}

/*
** Walker expression callback used by "RENAME TABLE". 
*/
static int renameTableExprCb(Walker *pWalker, Expr *pExpr){
  RenameCtx *p = pWalker->u.pRename;
  if( pExpr->op==TK_COLUMN && p->pTab==pExpr->pTab ){
    renameTokenFind(pWalker->pParse, p, (void*)&pExpr->pTab);
  }
  return WRC_Continue;
}

/*
** Walker select callback used by "RENAME TABLE". 
*/







|
|







102807
102808
102809
102810
102811
102812
102813
102814
102815
102816
102817
102818
102819
102820
102821
102822
}

/*
** Walker expression callback used by "RENAME TABLE". 
*/
static int renameTableExprCb(Walker *pWalker, Expr *pExpr){
  RenameCtx *p = pWalker->u.pRename;
  if( pExpr->op==TK_COLUMN && p->pTab==pExpr->y.pTab ){
    renameTokenFind(pWalker->pParse, p, (void*)&pExpr->y.pTab);
  }
  return WRC_Continue;
}

/*
** Walker select callback used by "RENAME TABLE". 
*/
102539
102540
102541
102542
102543
102544
102545

102546
102547
102548
102549

102550
102551
102552
102553
102554
102555
102556

102557
102558
102559
102560
102561
102562
102563
102564
102565
102566
102567
102568
102569
102570
102571
102572
102573
102574

102575

102576
102577
102578
102579
102580
102581
102582

102583

102584
102585
102586
102587
102588
102589
102590
102591
102592
102593
102594
102595

102596
102597
102598
102599
102600
102601

102602
102603
102604
102605
102606
102607
102608
    sWalker.xExprCallback = renameTableExprCb;
    sWalker.xSelectCallback = renameTableSelectCb;
    sWalker.u.pRename = &sCtx;

    rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp);

    if( rc==SQLITE_OK ){

      if( sParse.pNewTable ){
        Table *pTab = sParse.pNewTable;

        if( pTab->pSelect ){

          NameContext sNC;
          memset(&sNC, 0, sizeof(sNC));
          sNC.pParse = &sParse;

          sqlite3SelectPrep(&sParse, pTab->pSelect, &sNC);
          if( sParse.nErr ) rc = sParse.rc;
          sqlite3WalkSelect(&sWalker, pTab->pSelect);

        }else{
          /* Modify any FK definitions to point to the new table. */
#ifndef SQLITE_OMIT_FOREIGN_KEY
          if( db->flags & SQLITE_ForeignKeys ){
            FKey *pFKey;
            for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
              if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){
                renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo);
              }
            }
          }
#endif

          /* If this is the table being altered, fix any table refs in CHECK
          ** expressions. Also update the name that appears right after the
          ** "CREATE [VIRTUAL] TABLE" bit. */
          if( sqlite3_stricmp(zOld, pTab->zName)==0 ){
            sCtx.pTab = pTab;

            sqlite3WalkExprList(&sWalker, pTab->pCheck);

            renameTokenFind(&sParse, &sCtx, pTab->zName);
          }
        }
      }

      else if( sParse.pNewIndex ){
        renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName);

        sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);

      }

#ifndef SQLITE_OMIT_TRIGGER
      else{
        Trigger *pTrigger = sParse.pNewTrigger;
        TriggerStep *pStep;
        if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld) 
            && sCtx.pTab->pSchema==pTrigger->pTabSchema
          ){
          renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table);
        }


        rc = renameResolveTrigger(&sParse, bTemp ? 0 : zDb);
        if( rc==SQLITE_OK ){
          renameWalkTrigger(&sWalker, pTrigger);
          for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){
            if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){
              renameTokenFind(&sParse, &sCtx, pStep->zTarget);

            }
          }
        }
      }
#endif
    }








>




>
|
|
|

|
|
|
>



|














>
|
>







>
|
>












>
|
|
|
|
|
|
>







102888
102889
102890
102891
102892
102893
102894
102895
102896
102897
102898
102899
102900
102901
102902
102903
102904
102905
102906
102907
102908
102909
102910
102911
102912
102913
102914
102915
102916
102917
102918
102919
102920
102921
102922
102923
102924
102925
102926
102927
102928
102929
102930
102931
102932
102933
102934
102935
102936
102937
102938
102939
102940
102941
102942
102943
102944
102945
102946
102947
102948
102949
102950
102951
102952
102953
102954
102955
102956
102957
102958
102959
102960
102961
102962
102963
102964
102965
102966
    sWalker.xExprCallback = renameTableExprCb;
    sWalker.xSelectCallback = renameTableSelectCb;
    sWalker.u.pRename = &sCtx;

    rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp);

    if( rc==SQLITE_OK ){
      int isLegacy = (db->flags & SQLITE_LegacyAlter);
      if( sParse.pNewTable ){
        Table *pTab = sParse.pNewTable;

        if( pTab->pSelect ){
          if( isLegacy==0 ){
            NameContext sNC;
            memset(&sNC, 0, sizeof(sNC));
            sNC.pParse = &sParse;

            sqlite3SelectPrep(&sParse, pTab->pSelect, &sNC);
            if( sParse.nErr ) rc = sParse.rc;
            sqlite3WalkSelect(&sWalker, pTab->pSelect);
          }
        }else{
          /* Modify any FK definitions to point to the new table. */
#ifndef SQLITE_OMIT_FOREIGN_KEY
          if( isLegacy==0 || (db->flags & SQLITE_ForeignKeys) ){
            FKey *pFKey;
            for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
              if( sqlite3_stricmp(pFKey->zTo, zOld)==0 ){
                renameTokenFind(&sParse, &sCtx, (void*)pFKey->zTo);
              }
            }
          }
#endif

          /* If this is the table being altered, fix any table refs in CHECK
          ** expressions. Also update the name that appears right after the
          ** "CREATE [VIRTUAL] TABLE" bit. */
          if( sqlite3_stricmp(zOld, pTab->zName)==0 ){
            sCtx.pTab = pTab;
            if( isLegacy==0 ){
              sqlite3WalkExprList(&sWalker, pTab->pCheck);
            }
            renameTokenFind(&sParse, &sCtx, pTab->zName);
          }
        }
      }

      else if( sParse.pNewIndex ){
        renameTokenFind(&sParse, &sCtx, sParse.pNewIndex->zName);
        if( isLegacy==0 ){
          sqlite3WalkExpr(&sWalker, sParse.pNewIndex->pPartIdxWhere);
        }
      }

#ifndef SQLITE_OMIT_TRIGGER
      else{
        Trigger *pTrigger = sParse.pNewTrigger;
        TriggerStep *pStep;
        if( 0==sqlite3_stricmp(sParse.pNewTrigger->table, zOld) 
            && sCtx.pTab->pSchema==pTrigger->pTabSchema
          ){
          renameTokenFind(&sParse, &sCtx, sParse.pNewTrigger->table);
        }

        if( isLegacy==0 ){
          rc = renameResolveTrigger(&sParse, bTemp ? 0 : zDb);
          if( rc==SQLITE_OK ){
            renameWalkTrigger(&sWalker, pTrigger);
            for(pStep=pTrigger->step_list; pStep; pStep=pStep->pNext){
              if( pStep->zTarget && 0==sqlite3_stricmp(pStep->zTarget, zOld) ){
                renameTokenFind(&sParse, &sCtx, pStep->zTarget);
              }
            }
          }
        }
      }
#endif
    }

102652
102653
102654
102655
102656
102657
102658

102659
102660
102661
102662
102663
102664
102665
102666
102667
102668
102669
102670
102671
102672
102673
102674
102675
102676
102677
102678
102679

102680

102681
102682
102683
102684
102685
102686
102687
  int NotUsed,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  char const *zDb = (const char*)sqlite3_value_text(argv[0]);
  char const *zInput = (const char*)sqlite3_value_text(argv[1]);
  int bTemp = sqlite3_value_int(argv[4]);


#ifndef SQLITE_OMIT_AUTHORIZATION
  sqlite3_xauth xAuth = db->xAuth;
  db->xAuth = 0;
#endif

  UNUSED_PARAMETER(NotUsed);
  if( zDb && zInput ){
    int rc;
    Parse sParse;
    rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp);
    if( rc==SQLITE_OK ){
      if( sParse.pNewTable && sParse.pNewTable->pSelect ){
        NameContext sNC;
        memset(&sNC, 0, sizeof(sNC));
        sNC.pParse = &sParse;
        sqlite3SelectPrep(&sParse, sParse.pNewTable->pSelect, &sNC);
        if( sParse.nErr ) rc = sParse.rc;
      }

      else if( sParse.pNewTrigger ){

        rc = renameResolveTrigger(&sParse, bTemp ? 0 : zDb);

        if( rc==SQLITE_OK ){
          int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema);
          int i2 = sqlite3FindDbName(db, zDb);
          if( i1==i2 ) sqlite3_result_int(context, 1);
        }
      }
    }







>












|








>
|
>







103010
103011
103012
103013
103014
103015
103016
103017
103018
103019
103020
103021
103022
103023
103024
103025
103026
103027
103028
103029
103030
103031
103032
103033
103034
103035
103036
103037
103038
103039
103040
103041
103042
103043
103044
103045
103046
103047
103048
  int NotUsed,
  sqlite3_value **argv
){
  sqlite3 *db = sqlite3_context_db_handle(context);
  char const *zDb = (const char*)sqlite3_value_text(argv[0]);
  char const *zInput = (const char*)sqlite3_value_text(argv[1]);
  int bTemp = sqlite3_value_int(argv[4]);
  int isLegacy = (db->flags & SQLITE_LegacyAlter);

#ifndef SQLITE_OMIT_AUTHORIZATION
  sqlite3_xauth xAuth = db->xAuth;
  db->xAuth = 0;
#endif

  UNUSED_PARAMETER(NotUsed);
  if( zDb && zInput ){
    int rc;
    Parse sParse;
    rc = renameParseSql(&sParse, zDb, 1, db, zInput, bTemp);
    if( rc==SQLITE_OK ){
      if( isLegacy==0 && sParse.pNewTable && sParse.pNewTable->pSelect ){
        NameContext sNC;
        memset(&sNC, 0, sizeof(sNC));
        sNC.pParse = &sParse;
        sqlite3SelectPrep(&sParse, sParse.pNewTable->pSelect, &sNC);
        if( sParse.nErr ) rc = sParse.rc;
      }

      else if( sParse.pNewTrigger ){
        if( isLegacy==0 ){
          rc = renameResolveTrigger(&sParse, bTemp ? 0 : zDb);
        }
        if( rc==SQLITE_OK ){
          int i1 = sqlite3SchemaToIndex(db, sParse.pNewTrigger->pTabSchema);
          int i2 = sqlite3FindDbName(db, zDb);
          if( i1==i2 ) sqlite3_result_int(context, 1);
        }
      }
    }
102698
102699
102700
102701
102702
102703
102704
102705
102706
102707
102708
102709
102710
102711
102712
102713
102714
}

/*
** Register built-in functions used to help implement ALTER TABLE
*/
SQLITE_PRIVATE void sqlite3AlterFunctions(void){
  static FuncDef aAlterTableFuncs[] = {
    FUNCTION(sqlite_rename_column,  9, 0, 0, renameColumnFunc),
    FUNCTION(sqlite_rename_table,  7, 0, 0, renameTableFunc),
    FUNCTION(sqlite_rename_test,  5, 0, 0, renameTableTest),
  };
  sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs));
}
#endif  /* SQLITE_ALTER_TABLE */

/************** End of alter.c ***********************************************/
/************** Begin file analyze.c *****************************************/







|
|
|







103059
103060
103061
103062
103063
103064
103065
103066
103067
103068
103069
103070
103071
103072
103073
103074
103075
}

/*
** Register built-in functions used to help implement ALTER TABLE
*/
SQLITE_PRIVATE void sqlite3AlterFunctions(void){
  static FuncDef aAlterTableFuncs[] = {
    INTERNAL_FUNCTION(sqlite_rename_column, 9, renameColumnFunc),
    INTERNAL_FUNCTION(sqlite_rename_table,  7, renameTableFunc),
    INTERNAL_FUNCTION(sqlite_rename_test,   5, renameTableTest),
  };
  sqlite3InsertBuiltinFuncs(aAlterTableFuncs, ArraySize(aAlterTableFuncs));
}
#endif  /* SQLITE_ALTER_TABLE */

/************** End of alter.c ***********************************************/
/************** Begin file analyze.c *****************************************/
104749
104750
104751
104752
104753
104754
104755
104756
104757
104758
104759
104760
104761
104762
104763
    ** reopen it as a MemDB */
    pVfs = sqlite3_vfs_find("memdb");
    if( pVfs==0 ) return;
    pNew = &db->aDb[db->init.iDb];
    if( pNew->pBt ) sqlite3BtreeClose(pNew->pBt);
    pNew->pBt = 0;
    pNew->pSchema = 0;
    rc = sqlite3BtreeOpen(pVfs, "x", db, &pNew->pBt, 0, SQLITE_OPEN_MAIN_DB);
  }else{
    /* This is a real ATTACH
    **
    ** Check for the following errors:
    **
    **     * Too many attached databases,
    **     * Transaction currently open







|







105110
105111
105112
105113
105114
105115
105116
105117
105118
105119
105120
105121
105122
105123
105124
    ** reopen it as a MemDB */
    pVfs = sqlite3_vfs_find("memdb");
    if( pVfs==0 ) return;
    pNew = &db->aDb[db->init.iDb];
    if( pNew->pBt ) sqlite3BtreeClose(pNew->pBt);
    pNew->pBt = 0;
    pNew->pSchema = 0;
    rc = sqlite3BtreeOpen(pVfs, "x\0", db, &pNew->pBt, 0, SQLITE_OPEN_MAIN_DB);
  }else{
    /* This is a real ATTACH
    **
    ** Check for the following errors:
    **
    **     * Too many attached databases,
    **     * Transaction currently open
105429
105430
105431
105432
105433
105434
105435

105436
105437
105438
105439
105440
105441
105442
  Table *pTab = 0;      /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  int iDb;              /* The index of the database the expression refers to */
  int iCol;             /* Index of column in table */

  assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );

  if( db->xAuth==0 ) return;
  iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
  if( iDb<0 ){
    /* An attempt to read a column out of a subquery or other
    ** temporary table. */
    return;
  }







>







105790
105791
105792
105793
105794
105795
105796
105797
105798
105799
105800
105801
105802
105803
105804
  Table *pTab = 0;      /* The table being read */
  const char *zCol;     /* Name of the column of the table */
  int iSrc;             /* Index in pTabList->a[] of table being read */
  int iDb;              /* The index of the database the expression refers to */
  int iCol;             /* Index of column in table */

  assert( pExpr->op==TK_COLUMN || pExpr->op==TK_TRIGGER );
  assert( !IN_RENAME_OBJECT || db->xAuth==0 );
  if( db->xAuth==0 ) return;
  iDb = sqlite3SchemaToIndex(pParse->db, pSchema);
  if( iDb<0 ){
    /* An attempt to read a column out of a subquery or other
    ** temporary table. */
    return;
  }
105485
105486
105487
105488
105489
105490
105491

105492
105493
105494
105495
105496
105497
105498
){
  sqlite3 *db = pParse->db;
  int rc;

  /* Don't do any authorization checks if the database is initialising
  ** or if the parser is being invoked from within sqlite3_declare_vtab.
  */

  if( db->init.busy || IN_SPECIAL_PARSE ){
    return SQLITE_OK;
  }

  if( db->xAuth==0 ){
    return SQLITE_OK;
  }







>







105847
105848
105849
105850
105851
105852
105853
105854
105855
105856
105857
105858
105859
105860
105861
){
  sqlite3 *db = pParse->db;
  int rc;

  /* Don't do any authorization checks if the database is initialising
  ** or if the parser is being invoked from within sqlite3_declare_vtab.
  */
  assert( !IN_RENAME_OBJECT || db->xAuth==0 );
  if( db->init.busy || IN_SPECIAL_PARSE ){
    return SQLITE_OK;
  }

  if( db->xAuth==0 ){
    return SQLITE_OK;
  }
105908
105909
105910
105911
105912
105913
105914
105915
105916
105917
105918
105919
105920
105921
105922
105923
105924
105925
105926
105927
105928
105929
105930
105931
105932
    return 0;
  }

  p = sqlite3FindTable(db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE
    if( sqlite3FindDbName(db, zDbase)<1 ){
      /* If zName is the not the name of a table in the schema created using
      ** CREATE, then check to see if it is the name of an virtual table that
      ** can be an eponymous virtual table. */
      Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
      if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
        pMod = sqlite3PragmaVtabRegister(db, zName);
      }
      if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
        return pMod->pEpoTab;
      }
    }
#endif
    if( (flags & LOCATE_NOERR)==0 ){
      if( zDbase ){
        sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
      }else{
        sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);







<
|
|
|
|
|
|
|
|
|
<







106271
106272
106273
106274
106275
106276
106277

106278
106279
106280
106281
106282
106283
106284
106285
106286

106287
106288
106289
106290
106291
106292
106293
    return 0;
  }

  p = sqlite3FindTable(db, zName, zDbase);
  if( p==0 ){
    const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
#ifndef SQLITE_OMIT_VIRTUALTABLE

    /* If zName is the not the name of a table in the schema created using
    ** CREATE, then check to see if it is the name of an virtual table that
    ** can be an eponymous virtual table. */
    Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
    if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
      pMod = sqlite3PragmaVtabRegister(db, zName);
    }
    if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
      return pMod->pEpoTab;

    }
#endif
    if( (flags & LOCATE_NOERR)==0 ){
      if( zDbase ){
        sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
      }else{
        sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
106098
106099
106100
106101
106102
106103
106104
106105
106106
106107
106108

106109



106110
106111
106112
106113
106114

106115

106116
106117
106118
106119
106120
106121
106122
/*
** Erase all schema information from all attached databases (including
** "main" and "temp") for a single database connection.
*/
SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
  int i;
  sqlite3BtreeEnterAll(db);
  assert( db->nSchemaLock==0 );
  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){

      sqlite3SchemaClear(pDb->pSchema);



    }
  }
  db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
  sqlite3VtabUnlockList(db);
  sqlite3BtreeLeaveAll(db);

  sqlite3CollapseDatabaseArray(db);

}

/*
** This routine is called when a commit occurs.
*/
SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
  db->mDbFlags &= ~DBFLAG_SchemaChange;







<



>
|
>
>
>





>
|
>







106459
106460
106461
106462
106463
106464
106465

106466
106467
106468
106469
106470
106471
106472
106473
106474
106475
106476
106477
106478
106479
106480
106481
106482
106483
106484
106485
106486
106487
106488
/*
** Erase all schema information from all attached databases (including
** "main" and "temp") for a single database connection.
*/
SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
  int i;
  sqlite3BtreeEnterAll(db);

  for(i=0; i<db->nDb; i++){
    Db *pDb = &db->aDb[i];
    if( pDb->pSchema ){
      if( db->nSchemaLock==0 ){
        sqlite3SchemaClear(pDb->pSchema);
      }else{
        DbSetProperty(db, i, DB_ResetWanted);
      }
    }
  }
  db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
  sqlite3VtabUnlockList(db);
  sqlite3BtreeLeaveAll(db);
  if( db->nSchemaLock==0 ){
    sqlite3CollapseDatabaseArray(db);
  }
}

/*
** This routine is called when a commit occurs.
*/
SQLITE_PRIVATE void sqlite3CommitInternalChanges(sqlite3 *db){
  db->mDbFlags &= ~DBFLAG_SchemaChange;
106185
106186
106187
106188
106189
106190
106191






106192
106193
106194
106195
106196
106197
106198
  }

  /* Delete any foreign keys attached to this table. */
  sqlite3FkDelete(db, pTable);

  /* Delete the Table structure itself.
  */






  sqlite3DeleteColumnNames(db, pTable);
  sqlite3DbFree(db, pTable->zName);
  sqlite3DbFree(db, pTable->zColAff);
  sqlite3SelectDelete(db, pTable->pSelect);
  sqlite3ExprListDelete(db, pTable->pCheck);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3VtabClear(db, pTable);







>
>
>
>
>
>







106551
106552
106553
106554
106555
106556
106557
106558
106559
106560
106561
106562
106563
106564
106565
106566
106567
106568
106569
106570
  }

  /* Delete any foreign keys attached to this table. */
  sqlite3FkDelete(db, pTable);

  /* Delete the Table structure itself.
  */
#ifdef SQLITE_ENABLE_NORMALIZE
  if( pTable->pColHash ){
    sqlite3HashClear(pTable->pColHash);
    sqlite3_free(pTable->pColHash);
  }
#endif
  sqlite3DeleteColumnNames(db, pTable);
  sqlite3DbFree(db, pTable->zName);
  sqlite3DbFree(db, pTable->zColAff);
  sqlite3SelectDelete(db, pTable->pSelect);
  sqlite3ExprListDelete(db, pTable->pCheck);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3VtabClear(db, pTable);
106342
106343
106344
106345
106346
106347
106348














106349
106350
106351
106352
106353
106354
106355
106356
106357
106358
106359
106360
106361
106362
106363
106364
106365
106366
    assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT
             || (db->mDbFlags & DBFLAG_Vacuum)!=0);
    iDb = db->init.iDb;
    *pUnqual = pName1;
  }
  return iDb;
}















/*
** This routine is used to check if the UTF-8 string zName is a legal
** unqualified name for a new schema object (table, index, view or
** trigger). All names are legal except those that begin with the string
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
** is reserved for internal use.
*/
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
  if( !pParse->db->init.busy && pParse->nested==0 
          && (pParse->db->flags & SQLITE_WriteSchema)==0
          && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
    sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}








>
>
>
>
>
>
>
>
>
>
>
>
>
>










|







106714
106715
106716
106717
106718
106719
106720
106721
106722
106723
106724
106725
106726
106727
106728
106729
106730
106731
106732
106733
106734
106735
106736
106737
106738
106739
106740
106741
106742
106743
106744
106745
106746
106747
106748
106749
106750
106751
106752
    assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT
             || (db->mDbFlags & DBFLAG_Vacuum)!=0);
    iDb = db->init.iDb;
    *pUnqual = pName1;
  }
  return iDb;
}

/*
** True if PRAGMA writable_schema is ON
*/
SQLITE_PRIVATE int sqlite3WritableSchema(sqlite3 *db){
  testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
  testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
               SQLITE_WriteSchema );
  testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
               SQLITE_Defensive );
  testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
               (SQLITE_WriteSchema|SQLITE_Defensive) );
  return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
}

/*
** This routine is used to check if the UTF-8 string zName is a legal
** unqualified name for a new schema object (table, index, view or
** trigger). All names are legal except those that begin with the string
** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
** is reserved for internal use.
*/
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *pParse, const char *zName){
  if( !pParse->db->init.busy && pParse->nested==0 
          && sqlite3WritableSchema(pParse->db)==0
          && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
    sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
    return SQLITE_ERROR;
  }
  return SQLITE_OK;
}

107323
107324
107325
107326
107327
107328
107329
107330
107331
107332
107333
107334
107335
107336
107337
107338
107339
107340
    for(i=0; i<pTab->nCol; i++){
      if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
        pTab->aCol[i].notNull = OE_Abort;
      }
    }
  }

  /* The remaining transformations only apply to b-tree tables, not to
  ** virtual tables */
  if( IN_DECLARE_VTAB ) return;

  /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
  ** into BTREE_BLOBKEY.
  */
  if( pParse->addrCrTab ){
    assert( v );
    sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
  }







<
<
<
<







107709
107710
107711
107712
107713
107714
107715




107716
107717
107718
107719
107720
107721
107722
    for(i=0; i<pTab->nCol; i++){
      if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
        pTab->aCol[i].notNull = OE_Abort;
      }
    }
  }





  /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
  ** into BTREE_BLOBKEY.
  */
  if( pParse->addrCrTab ){
    assert( v );
    sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
  }
107431
107432
107433
107434
107435
107436
107437


























107438
107439
107440
107441
107442
107443
107444
    assert( pPk->nColumn==j );
    assert( pTab->nCol==j );
  }else{
    pPk->nColumn = pTab->nCol;
  }
  recomputeColumnsNotIndexed(pPk);
}



























/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







107813
107814
107815
107816
107817
107818
107819
107820
107821
107822
107823
107824
107825
107826
107827
107828
107829
107830
107831
107832
107833
107834
107835
107836
107837
107838
107839
107840
107841
107842
107843
107844
107845
107846
107847
107848
107849
107850
107851
107852
    assert( pPk->nColumn==j );
    assert( pTab->nCol==j );
  }else{
    pPk->nColumn = pTab->nCol;
  }
  recomputeColumnsNotIndexed(pPk);
}

/*
** Return true if zName is a shadow table name in the current database
** connection.
**
** zName is temporarily modified while this routine is running, but is
** restored to its original value prior to this routine returning.
*/
static int isShadowTableName(sqlite3 *db, char *zName){
  char *zTail;                  /* Pointer to the last "_" in zName */
  Table *pTab;                  /* Table that zName is a shadow of */
  Module *pMod;                 /* Module for the virtual table */

  zTail = strrchr(zName, '_');
  if( zTail==0 ) return 0;
  *zTail = 0;
  pTab = sqlite3FindTable(db, zName, 0);
  *zTail = '_';
  if( pTab==0 ) return 0;
  if( !IsVirtual(pTab) ) return 0;
  pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]);
  if( pMod==0 ) return 0;
  if( pMod->pModule->iVersion<3 ) return 0;
  if( pMod->pModule->xShadowName==0 ) return 0;
  return pMod->pModule->xShadowName(zTail+1);
}

/*
** This routine is called to report the final ")" that terminates
** a CREATE TABLE statement.
**
** The table structure that other action routines have been building
** is added to the internal hash tables, assuming no errors have
107470
107471
107472
107473
107474
107475
107476




107477
107478
107479
107480
107481
107482
107483

  if( pEnd==0 && pSelect==0 ){
    return;
  }
  assert( !db->mallocFailed );
  p = pParse->pNewTable;
  if( p==0 ) return;





  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
  ** should have been put there by the sqliteOpenCb routine.)
  **







>
>
>
>







107878
107879
107880
107881
107882
107883
107884
107885
107886
107887
107888
107889
107890
107891
107892
107893
107894
107895

  if( pEnd==0 && pSelect==0 ){
    return;
  }
  assert( !db->mallocFailed );
  p = pParse->pNewTable;
  if( p==0 ) return;

  if( pSelect==0 && isShadowTableName(db, p->zName) ){
    p->tabFlags |= TF_Shadow;
  }

  /* If the db->init.busy is 1 it means we are reading the SQL off the
  ** "sqlite_master" or "sqlite_temp_master" table on the disk.
  ** So do not write to the disk again.  Extract the root page number
  ** for the table from the db->init.newTnum field.  (The page number
  ** should have been put there by the sqliteOpenCb routine.)
  **
107839
107840
107841
107842
107843
107844
107845




107846
107847
107848
107849
107850
107851
107852
  ** to the elements of the FROM clause.  But we do not want these changes
  ** to be permanent.  So the computation is done on a copy of the SELECT
  ** statement that defines the view.
  */
  assert( pTable->pSelect );
  pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
  if( pSel ){




    n = pParse->nTab;
    sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
    pTable->nCol = -1;
    db->lookaside.bDisable++;
#ifndef SQLITE_OMIT_AUTHORIZATION
    xAuth = db->xAuth;
    db->xAuth = 0;







>
>
>
>







108251
108252
108253
108254
108255
108256
108257
108258
108259
108260
108261
108262
108263
108264
108265
108266
108267
108268
  ** to the elements of the FROM clause.  But we do not want these changes
  ** to be permanent.  So the computation is done on a copy of the SELECT
  ** statement that defines the view.
  */
  assert( pTable->pSelect );
  pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
  if( pSel ){
#ifndef SQLITE_OMIT_ALTERTABLE
    u8 eParseMode = pParse->eParseMode;
    pParse->eParseMode = PARSE_MODE_NORMAL;
#endif
    n = pParse->nTab;
    sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
    pTable->nCol = -1;
    db->lookaside.bDisable++;
#ifndef SQLITE_OMIT_AUTHORIZATION
    xAuth = db->xAuth;
    db->xAuth = 0;
107884
107885
107886
107887
107888
107889
107890



107891
107892
107893
107894
107895
107896
107897
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite3DeleteTable(db, pSelTab);
    sqlite3SelectDelete(db, pSel);
    db->lookaside.bDisable--;



  } else {
    nErr++;
  }
  pTable->pSchema->schemaFlags |= DB_UnresetViews;
  if( db->mallocFailed ){
    sqlite3DeleteColumnNames(db, pTable);
    pTable->aCol = 0;







>
>
>







108300
108301
108302
108303
108304
108305
108306
108307
108308
108309
108310
108311
108312
108313
108314
108315
108316
    }else{
      pTable->nCol = 0;
      nErr++;
    }
    sqlite3DeleteTable(db, pSelTab);
    sqlite3SelectDelete(db, pSel);
    db->lookaside.bDisable--;
#ifndef SQLITE_OMIT_ALTERTABLE
    pParse->eParseMode = eParseMode;
#endif
  } else {
    nErr++;
  }
  pTable->pSchema->schemaFlags |= DB_UnresetViews;
  if( db->mallocFailed ){
    sqlite3DeleteColumnNames(db, pTable);
    pTable->aCol = 0;
107971
107972
107973
107974
107975
107976
107977
107978
107979
107980
107981
107982
107983
107984
107985
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  assert( iTable>1 );
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.







|







108390
108391
108392
108393
108394
108395
108396
108397
108398
108399
108400
108401
108402
108403
108404
** Also write code to modify the sqlite_master table and internal schema
** if a root-page of another table is moved by the btree-layer whilst
** erasing iTable (this can happen with an auto-vacuum database).
*/ 
static void destroyRootPage(Parse *pParse, int iTable, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  int r1 = sqlite3GetTempReg(pParse);
  if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
  sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
  sqlite3MayAbort(pParse);
#ifndef SQLITE_OMIT_AUTOVACUUM
  /* OP_Destroy stores an in integer r1. If this integer
  ** is non-zero, then it is the root page number of a table moved to
  ** location iTable. The following code modifies the sqlite_master table to
  ** reflect this.
110426
110427
110428
110429
110430
110431
110432















110433
110434
110435
110436
110437
110438
110439
110440
110441
110442
110443
110444
110445
110446
110447
110448
110449
110450
110451
110452
110453
  for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){
    if( sqlite3StrICmp(p->zName, zFunc)==0 ){
      return p;
    }
  }
  return 0;
}
















/*
** Insert a new FuncDef into a FuncDefHash hash table.
*/
SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(
  FuncDef *aDef,      /* List of global functions to be inserted */
  int nDef            /* Length of the apDef[] list */
){
  int i;
  for(i=0; i<nDef; i++){
    FuncDef *pOther;
    const char *zName = aDef[i].zName;
    int nName = sqlite3Strlen30(zName);
    int h = (zName[0] + nName) % SQLITE_FUNC_HASH_SZ;
    assert( zName[0]>='a' && zName[0]<='z' );
    pOther = functionSearch(h, zName);
    if( pOther ){
      assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
      aDef[i].pNext = pOther->pNext;
      pOther->pNext = &aDef[i];
    }else{







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>













|







110845
110846
110847
110848
110849
110850
110851
110852
110853
110854
110855
110856
110857
110858
110859
110860
110861
110862
110863
110864
110865
110866
110867
110868
110869
110870
110871
110872
110873
110874
110875
110876
110877
110878
110879
110880
110881
110882
110883
110884
110885
110886
110887
  for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){
    if( sqlite3StrICmp(p->zName, zFunc)==0 ){
      return p;
    }
  }
  return 0;
}
#ifdef SQLITE_ENABLE_NORMALIZE
SQLITE_PRIVATE FuncDef *sqlite3FunctionSearchN(
  int h,               /* Hash of the name */
  const char *zFunc,   /* Name of function */
  int nFunc            /* Length of the name */
){
  FuncDef *p;
  for(p=sqlite3BuiltinFunctions.a[h]; p; p=p->u.pHash){
    if( sqlite3StrNICmp(p->zName, zFunc, nFunc)==0 ){
      return p;
    }
  }
  return 0;
}
#endif /* SQLITE_ENABLE_NORMALIZE */

/*
** Insert a new FuncDef into a FuncDefHash hash table.
*/
SQLITE_PRIVATE void sqlite3InsertBuiltinFuncs(
  FuncDef *aDef,      /* List of global functions to be inserted */
  int nDef            /* Length of the apDef[] list */
){
  int i;
  for(i=0; i<nDef; i++){
    FuncDef *pOther;
    const char *zName = aDef[i].zName;
    int nName = sqlite3Strlen30(zName);
    int h = SQLITE_FUNC_HASH(zName[0], nName);
    assert( zName[0]>='a' && zName[0]<='z' );
    pOther = functionSearch(h, zName);
    if( pOther ){
      assert( pOther!=&aDef[i] && pOther->pNext!=&aDef[i] );
      aDef[i].pNext = pOther->pNext;
      pOther->pNext = &aDef[i];
    }else{
110518
110519
110520
110521
110522
110523
110524
110525
110526
110527
110528
110529
110530
110531
110532
  ** install a new function.  Whatever FuncDef structure is returned it will
  ** have fields overwritten with new information appropriate for the
  ** new function.  But the FuncDefs for built-in functions are read-only.
  ** So we must not search for built-ins when creating a new function.
  */ 
  if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){
    bestScore = 0;
    h = (sqlite3UpperToLower[(u8)zName[0]] + nName) % SQLITE_FUNC_HASH_SZ;
    p = functionSearch(h, zName);
    while( p ){
      int score = matchQuality(p, nArg, enc);
      if( score>bestScore ){
        pBest = p;
        bestScore = score;
      }







|







110952
110953
110954
110955
110956
110957
110958
110959
110960
110961
110962
110963
110964
110965
110966
  ** install a new function.  Whatever FuncDef structure is returned it will
  ** have fields overwritten with new information appropriate for the
  ** new function.  But the FuncDefs for built-in functions are read-only.
  ** So we must not search for built-ins when creating a new function.
  */ 
  if( !createFlag && (pBest==0 || (db->mDbFlags & DBFLAG_PreferBuiltin)!=0) ){
    bestScore = 0;
    h = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zName[0]], nName);
    p = functionSearch(h, zName);
    while( p ){
      int score = matchQuality(p, nArg, enc);
      if( score>bestScore ){
        pBest = p;
        bestScore = score;
      }
110665
110666
110667
110668
110669
110670
110671































110672
110673
110674
110675
110676
110677
110678
110679
110680
110681
110682
110683
110684
110685
110686
110687
110688
110689
110690
110691
110692
110693
110694
110695
110696
110697
110698
110699
110700
110701
110702
110703
110704
110705
    pTab->nTabRef++;
  }
  if( sqlite3IndexedByLookup(pParse, pItem) ){
    pTab = 0;
  }
  return pTab;
}
































/*
** Check to make sure the given table is writable.  If it is not
** writable, generate an error message and return 1.  If it is
** writable return 0;
*/
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){
  /* A table is not writable under the following circumstances:
  **
  **   1) It is a virtual table and no implementation of the xUpdate method
  **      has been provided, or
  **   2) It is a system table (i.e. sqlite_master), this call is not
  **      part of a nested parse and writable_schema pragma has not 
  **      been specified.
  **
  ** In either case leave an error message in pParse and return non-zero.
  */
  if( ( IsVirtual(pTab) 
     && sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0 )
   || ( (pTab->tabFlags & TF_Readonly)!=0
     && (pParse->db->flags & SQLITE_WriteSchema)==0
     && pParse->nested==0 )
  ){
    sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
    return 1;
  }

#ifndef SQLITE_OMIT_VIEW
  if( !viewOk && pTab->pSelect ){
    sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
    return 1;
  }
#endif
  return 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<



<







111099
111100
111101
111102
111103
111104
111105
111106
111107
111108
111109
111110
111111
111112
111113
111114
111115
111116
111117
111118
111119
111120
111121
111122
111123
111124
111125
111126
111127
111128
111129
111130
111131
111132
111133
111134
111135
111136
111137
111138
111139
111140
111141
111142
111143














111144

111145
111146
111147

111148
111149
111150
111151
111152
111153
111154
    pTab->nTabRef++;
  }
  if( sqlite3IndexedByLookup(pParse, pItem) ){
    pTab = 0;
  }
  return pTab;
}

/* Return true if table pTab is read-only.
**
** A table is read-only if any of the following are true:
**
**   1) It is a virtual table and no implementation of the xUpdate method
**      has been provided
**
**   2) It is a system table (i.e. sqlite_master), this call is not
**      part of a nested parse and writable_schema pragma has not 
**      been specified
**
**   3) The table is a shadow table, the database connection is in
**      defensive mode, and the current sqlite3_prepare()
**      is for a top-level SQL statement.
*/
static int tabIsReadOnly(Parse *pParse, Table *pTab){
  sqlite3 *db;
  if( IsVirtual(pTab) ){
    return sqlite3GetVTable(pParse->db, pTab)->pMod->pModule->xUpdate==0;
  }
  if( (pTab->tabFlags & (TF_Readonly|TF_Shadow))==0 ) return 0;
  db = pParse->db;
  if( (pTab->tabFlags & TF_Readonly)!=0 ){
    return sqlite3WritableSchema(db)==0 && pParse->nested==0;
  }
  assert( pTab->tabFlags & TF_Shadow );
  return (db->flags & SQLITE_Defensive)!=0
           && db->nVdbeExec==0
           && db->pVtabCtx==0;
}

/*
** Check to make sure the given table is writable.  If it is not
** writable, generate an error message and return 1.  If it is
** writable return 0;
*/
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse *pParse, Table *pTab, int viewOk){














  if( tabIsReadOnly(pParse, pTab) ){

    sqlite3ErrorMsg(pParse, "table %s may not be modified", pTab->zName);
    return 1;
  }

#ifndef SQLITE_OMIT_VIEW
  if( !viewOk && pTab->pSelect ){
    sqlite3ErrorMsg(pParse,"cannot modify %s because it is a view",pTab->zName);
    return 1;
  }
#endif
  return 0;
114095
114096
114097
114098
114099
114100
114101
114102
114103
114104
114105
114106
114107
114108
114109
  sqlite3 *db,      /* The database connection */
  Table *pTab,      /* The table whose column is desired */
  int iCursor,      /* The open cursor on the table */
  i16 iCol          /* The column that is wanted */
){
  Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
  if( pExpr ){
    pExpr->pTab = pTab;
    pExpr->iTable = iCursor;
    pExpr->iColumn = iCol;
  }
  return pExpr;
}

/*







|







114544
114545
114546
114547
114548
114549
114550
114551
114552
114553
114554
114555
114556
114557
114558
  sqlite3 *db,      /* The database connection */
  Table *pTab,      /* The table whose column is desired */
  int iCursor,      /* The open cursor on the table */
  i16 iCol          /* The column that is wanted */
){
  Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
  if( pExpr ){
    pExpr->y.pTab = pTab;
    pExpr->iTable = iCursor;
    pExpr->iColumn = iCol;
  }
  return pExpr;
}

/*
115171
115172
115173
115174
115175
115176
115177

115178
115179
115180
115181
115182
115183
115184
115185
      zColAff[i] = pTab->aCol[i].affinity;
    }
    do{
      zColAff[i--] = 0;
    }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
    pTab->zColAff = zColAff;
  }

  i = sqlite3Strlen30(zColAff);
  if( i ){
    if( iReg ){
      sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
    }else{
      sqlite3VdbeChangeP4(v, -1, zColAff, i);
    }
  }







>
|







115620
115621
115622
115623
115624
115625
115626
115627
115628
115629
115630
115631
115632
115633
115634
115635
      zColAff[i] = pTab->aCol[i].affinity;
    }
    do{
      zColAff[i--] = 0;
    }while( i>=0 && zColAff[i]==SQLITE_AFF_BLOB );
    pTab->zColAff = zColAff;
  }
  assert( zColAff!=0 );
  i = sqlite3Strlen30NN(zColAff);
  if( i ){
    if( iReg ){
      sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
    }else{
      sqlite3VdbeChangeP4(v, -1, zColAff, i);
    }
  }
116151
116152
116153
116154
116155
116156
116157
116158

116159
116160
116161
116162
116163
116164
116165
116166
116167
116168
116169
116170
116171
116172
 #undef pTrigger
#endif
#ifdef tmask
 #undef tmask
#endif

/*
** Meanings of bits in of pWalker->eCode for checkConstraintUnchanged()

*/
#define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
#define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */

/* This is the Walker callback from checkConstraintUnchanged().  Set
** bit 0x01 of pWalker->eCode if
** pWalker->eCode to 0 if this expression node references any of the
** columns that are being modifed by an UPDATE statement.
*/
static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_COLUMN ){
    assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
    if( pExpr->iColumn>=0 ){
      if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){







|
>




|
|
|







116601
116602
116603
116604
116605
116606
116607
116608
116609
116610
116611
116612
116613
116614
116615
116616
116617
116618
116619
116620
116621
116622
116623
 #undef pTrigger
#endif
#ifdef tmask
 #undef tmask
#endif

/*
** Meanings of bits in of pWalker->eCode for 
** sqlite3ExprReferencesUpdatedColumn()
*/
#define CKCNSTRNT_COLUMN   0x01    /* CHECK constraint uses a changing column */
#define CKCNSTRNT_ROWID    0x02    /* CHECK constraint references the ROWID */

/* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
*  Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
** expression node references any of the
** columns that are being modifed by an UPDATE statement.
*/
static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_COLUMN ){
    assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
    if( pExpr->iColumn>=0 ){
      if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
116180
116181
116182
116183
116184
116185
116186
116187
116188
116189
116190





116191

116192



116193
116194
116195
116196
116197
116198
116199
116200
116201
116202
116203
116204
116205
116206
116207
116208
116209
116210
116211
116212
116213
116214
}

/*
** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
** only columns that are modified by the UPDATE are those for which
** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
**
** Return true if CHECK constraint pExpr does not use any of the
** changing columns (or the rowid if it is changing).  In other words,
** return true if this CHECK constraint can be skipped when validating
** the new row in the UPDATE statement.





*/

static int checkConstraintUnchanged(Expr *pExpr, int *aiChng, int chngRowid){



  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = 0;
  w.xExprCallback = checkConstraintExprNode;
  w.u.aiCol = aiChng;
  sqlite3WalkExpr(&w, pExpr);
  if( !chngRowid ){
    testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
    w.eCode &= ~CKCNSTRNT_ROWID;
  }
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return !w.eCode;
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains







|

|

>
>
>
>
>

>
|
>
>
>














|







116631
116632
116633
116634
116635
116636
116637
116638
116639
116640
116641
116642
116643
116644
116645
116646
116647
116648
116649
116650
116651
116652
116653
116654
116655
116656
116657
116658
116659
116660
116661
116662
116663
116664
116665
116666
116667
116668
116669
116670
116671
116672
116673
116674
}

/*
** pExpr is a CHECK constraint on a row that is being UPDATE-ed.  The
** only columns that are modified by the UPDATE are those for which
** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
**
** Return true if CHECK constraint pExpr uses any of the
** changing columns (or the rowid if it is changing).  In other words,
** return true if this CHECK constraint must be validated for
** the new row in the UPDATE statement.
**
** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
** The operation of this routine is the same - return true if an only if
** the expression uses one or more of columns identified by the second and
** third arguments.
*/
SQLITE_PRIVATE int sqlite3ExprReferencesUpdatedColumn(
  Expr *pExpr,    /* The expression to be checked */
  int *aiChng,    /* aiChng[x]>=0 if column x changed by the UPDATE */
  int chngRowid   /* True if UPDATE changes the rowid */
){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = 0;
  w.xExprCallback = checkConstraintExprNode;
  w.u.aiCol = aiChng;
  sqlite3WalkExpr(&w, pExpr);
  if( !chngRowid ){
    testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
    w.eCode &= ~CKCNSTRNT_ROWID;
  }
  testcase( w.eCode==0 );
  testcase( w.eCode==CKCNSTRNT_COLUMN );
  testcase( w.eCode==CKCNSTRNT_ROWID );
  testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
  return w.eCode!=0;
}

/*
** Generate code to do constraint checks prior to an INSERT or an UPDATE
** on table pTab.
**
** The regNewData parameter is the first register in a range that contains
116406
116407
116408
116409
116410
116411
116412
116413






116414
116415
116416
116417
116418
116419
116420
  if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
    ExprList *pCheck = pTab->pCheck;
    pParse->iSelfTab = -(regNewData+1);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk;
      Expr *pExpr = pCheck->a[i].pExpr;
      if( aiChng && checkConstraintUnchanged(pExpr, aiChng, pkChng) ) continue;






      allOk = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeVerifyAbortable(v, onError);
      sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeGoto(v, ignoreDest);
      }else{
        char *zName = pCheck->a[i].zName;







|
>
>
>
>
>
>







116866
116867
116868
116869
116870
116871
116872
116873
116874
116875
116876
116877
116878
116879
116880
116881
116882
116883
116884
116885
116886
  if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
    ExprList *pCheck = pTab->pCheck;
    pParse->iSelfTab = -(regNewData+1);
    onError = overrideError!=OE_Default ? overrideError : OE_Abort;
    for(i=0; i<pCheck->nExpr; i++){
      int allOk;
      Expr *pExpr = pCheck->a[i].pExpr;
      if( aiChng
       && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
      ){
        /* The check constraints do not reference any of the columns being
        ** updated so there is no point it verifying the check constraint */
        continue;
      }
      allOk = sqlite3VdbeMakeLabel(v);
      sqlite3VdbeVerifyAbortable(v, onError);
      sqlite3ExprIfTrue(pParse, pExpr, allOk, SQLITE_JUMPIFNULL);
      if( onError==OE_Ignore ){
        sqlite3VdbeGoto(v, ignoreDest);
      }else{
        char *zName = pCheck->a[i].zName;
117907
117908
117909
117910
117911
117912
117913

117914
117915
117916
117917
117918
117919


117920
117921
117922
117923
117924
117925
117926
  void (*str_append)(sqlite3_str*, const char *zIn, int N);
  void (*str_appendall)(sqlite3_str*, const char *zIn);
  void (*str_appendchar)(sqlite3_str*, int N, char C);
  void (*str_reset)(sqlite3_str*);
  int (*str_errcode)(sqlite3_str*);
  int (*str_length)(sqlite3_str*);
  char *(*str_value)(sqlite3_str*);

  int (*create_window_function)(sqlite3*,const char*,int,int,void*,
                            void (*xStep)(sqlite3_context*,int,sqlite3_value**),
                            void (*xFinal)(sqlite3_context*),
                            void (*xValue)(sqlite3_context*),
                            void (*xInv)(sqlite3_context*,int,sqlite3_value**),
                            void(*xDestroy)(void*));


};

/*
** This is the function signature used for all extension entry points.  It
** is also defined in the file "loadext.c".
*/
typedef int (*sqlite3_loadext_entry)(







>






>
>







118373
118374
118375
118376
118377
118378
118379
118380
118381
118382
118383
118384
118385
118386
118387
118388
118389
118390
118391
118392
118393
118394
118395
  void (*str_append)(sqlite3_str*, const char *zIn, int N);
  void (*str_appendall)(sqlite3_str*, const char *zIn);
  void (*str_appendchar)(sqlite3_str*, int N, char C);
  void (*str_reset)(sqlite3_str*);
  int (*str_errcode)(sqlite3_str*);
  int (*str_length)(sqlite3_str*);
  char *(*str_value)(sqlite3_str*);
  /* Version 3.25.0 and later */
  int (*create_window_function)(sqlite3*,const char*,int,int,void*,
                            void (*xStep)(sqlite3_context*,int,sqlite3_value**),
                            void (*xFinal)(sqlite3_context*),
                            void (*xValue)(sqlite3_context*),
                            void (*xInv)(sqlite3_context*,int,sqlite3_value**),
                            void(*xDestroy)(void*));
  /* Version 3.26.0 and later */
  const char *(*normalized_sql)(sqlite3_stmt*);
};

/*
** This is the function signature used for all extension entry points.  It
** is also defined in the file "loadext.c".
*/
typedef int (*sqlite3_loadext_entry)(
118200
118201
118202
118203
118204
118205
118206


118207
118208
118209
118210
118211
118212
118213
#define sqlite3_str_appendchar         sqlite3_api->str_appendchar
#define sqlite3_str_reset              sqlite3_api->str_reset
#define sqlite3_str_errcode            sqlite3_api->str_errcode
#define sqlite3_str_length             sqlite3_api->str_length
#define sqlite3_str_value              sqlite3_api->str_value
/* Version 3.25.0 and later */
#define sqlite3_create_window_function sqlite3_api->create_window_function


#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;







>
>







118669
118670
118671
118672
118673
118674
118675
118676
118677
118678
118679
118680
118681
118682
118683
118684
#define sqlite3_str_appendchar         sqlite3_api->str_appendchar
#define sqlite3_str_reset              sqlite3_api->str_reset
#define sqlite3_str_errcode            sqlite3_api->str_errcode
#define sqlite3_str_length             sqlite3_api->str_length
#define sqlite3_str_value              sqlite3_api->str_value
/* Version 3.25.0 and later */
#define sqlite3_create_window_function sqlite3_api->create_window_function
/* Version 3.26.0 and later */
#define sqlite3_normalized_sql         sqlite3_api->normalized_sql
#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
118655
118656
118657
118658
118659
118660
118661
118662






118663
118664
118665
118666
118667
118668
118669
  sqlite3_str_appendall,
  sqlite3_str_appendchar,
  sqlite3_str_reset,
  sqlite3_str_errcode,
  sqlite3_str_length,
  sqlite3_str_value,
  /* Version 3.25.0 and later */
  sqlite3_create_window_function






};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.







|
>
>
>
>
>
>







119126
119127
119128
119129
119130
119131
119132
119133
119134
119135
119136
119137
119138
119139
119140
119141
119142
119143
119144
119145
119146
  sqlite3_str_appendall,
  sqlite3_str_appendchar,
  sqlite3_str_reset,
  sqlite3_str_errcode,
  sqlite3_str_length,
  sqlite3_str_value,
  /* Version 3.25.0 and later */
  sqlite3_create_window_function,
  /* Version 3.26.0 and later */
#ifdef SQLITE_ENABLE_NORMALIZE
  sqlite3_normalized_sql
#else
  0
#endif
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
119105
119106
119107
119108
119109
119110
119111
119112
119113
119114
119115
119116
119117
119118
119119
119120
119121
119122
119123
119124
119125
119126
119127
119128
119129
119130
119131
119132
119133
119134
119135
119136
119137
119138
119139
119140
119141
119142
119143
119144
119145
119146

119147
119148
119149
119150
119151
119152
119153
119154
119155
119156
119157
119158
119159
119160
119161
119162
119163
119164
119165
119166

119167
119168
119169
119170
119171
119172
119173
119174

119175
119176
119177
119178
119179
119180
119181
119182
119183
119184
119185
119186
119187
119188
119189
119190
119191
119192
119193
119194
119195
119196
119197
119198
119199
119200
#define PragTyp_TEMP_STORE_DIRECTORY          36
#define PragTyp_THREADS                       37
#define PragTyp_WAL_AUTOCHECKPOINT            38
#define PragTyp_WAL_CHECKPOINT                39
#define PragTyp_ACTIVATE_EXTENSIONS           40
#define PragTyp_HEXKEY                        41
#define PragTyp_KEY                           42
#define PragTyp_REKEY                         43
#define PragTyp_LOCK_STATUS                   44
#define PragTyp_PARSER_TRACE                  45
#define PragTyp_STATS                         46

/* Property flags associated with various pragma. */
#define PragFlg_NeedSchema 0x01 /* Force schema load before running */
#define PragFlg_NoColumns  0x02 /* OP_ResultRow called with zero columns */
#define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */
#define PragFlg_ReadOnly   0x08 /* Read-only HEADER_VALUE */
#define PragFlg_Result0    0x10 /* Acts as query when no argument */
#define PragFlg_Result1    0x20 /* Acts as query when has one argument */
#define PragFlg_SchemaOpt  0x40 /* Schema restricts name search if present */
#define PragFlg_SchemaReq  0x80 /* Schema required - "main" is default */

/* Names of columns for pragmas that return multi-column result
** or that return single-column results where the name of the
** result column is different from the name of the pragma
*/
static const char *const pragCName[] = {
  /*   0 */ "cache_size",  /* Used by: default_cache_size */
  /*   1 */ "cid",         /* Used by: table_info */
  /*   2 */ "name",       
  /*   3 */ "type",       
  /*   4 */ "notnull",    
  /*   5 */ "dflt_value", 
  /*   6 */ "pk",         
  /*   7 */ "tbl",         /* Used by: stats */
  /*   8 */ "idx",        
  /*   9 */ "wdth",       
  /*  10 */ "hght",       
  /*  11 */ "flgs",       
  /*  12 */ "seqno",       /* Used by: index_info */
  /*  13 */ "cid",        
  /*  14 */ "name",       

  /*  15 */ "seqno",       /* Used by: index_xinfo */
  /*  16 */ "cid",        
  /*  17 */ "name",       
  /*  18 */ "desc",       
  /*  19 */ "coll",       
  /*  20 */ "key",        
  /*  21 */ "seq",         /* Used by: index_list */
  /*  22 */ "name",       
  /*  23 */ "unique",     
  /*  24 */ "origin",     
  /*  25 */ "partial",    
  /*  26 */ "seq",         /* Used by: database_list */
  /*  27 */ "name",       
  /*  28 */ "file",       
  /*  29 */ "name",        /* Used by: function_list */
  /*  30 */ "builtin",    
  /*  31 */ "name",        /* Used by: module_list pragma_list */
  /*  32 */ "seq",         /* Used by: collation_list */
  /*  33 */ "name",       
  /*  34 */ "id",          /* Used by: foreign_key_list */

  /*  35 */ "seq",        
  /*  36 */ "table",      
  /*  37 */ "from",       
  /*  38 */ "to",         
  /*  39 */ "on_update",  
  /*  40 */ "on_delete",  
  /*  41 */ "match",      
  /*  42 */ "table",       /* Used by: foreign_key_check */

  /*  43 */ "rowid",      
  /*  44 */ "parent",     
  /*  45 */ "fkid",       
  /*  46 */ "busy",        /* Used by: wal_checkpoint */
  /*  47 */ "log",        
  /*  48 */ "checkpointed",
  /*  49 */ "timeout",     /* Used by: busy_timeout */
  /*  50 */ "database",    /* Used by: lock_status */
  /*  51 */ "status",     
};

/* Definitions of all built-in pragmas */
typedef struct PragmaName {
  const char *const zName; /* Name of pragma */
  u8 ePragTyp;             /* PragTyp_XXX value */
  u8 mPragFlg;             /* Zero or more PragFlg_XXX values */
  u8 iPragCName;           /* Start of column names in pragCName[] */
  u8 nPragCName;           /* Num of col names. 0 means use pragma name */
  u32 iArg;                /* Extra argument */
} PragmaName;
static const PragmaName aPragmaName[] = {
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
 {/* zName:     */ "activate_extensions",
  /* ePragTyp:  */ PragTyp_ACTIVATE_EXTENSIONS,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,







<
|
|
|
















|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>






|
|
|
|
|
|

|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
>
|
|
|
<
|
<
|
<
<









|







119582
119583
119584
119585
119586
119587
119588

119589
119590
119591
119592
119593
119594
119595
119596
119597
119598
119599
119600
119601
119602
119603
119604
119605
119606
119607
119608
119609
119610
119611
119612
119613
119614
119615
119616
119617
119618
119619
119620
119621
119622
119623
119624
119625
119626
119627
119628
119629
119630
119631
119632
119633
119634
119635
119636
119637
119638
119639
119640
119641
119642
119643
119644
119645
119646
119647
119648
119649
119650
119651
119652
119653
119654
119655
119656

119657

119658


119659
119660
119661
119662
119663
119664
119665
119666
119667
119668
119669
119670
119671
119672
119673
119674
119675
#define PragTyp_TEMP_STORE_DIRECTORY          36
#define PragTyp_THREADS                       37
#define PragTyp_WAL_AUTOCHECKPOINT            38
#define PragTyp_WAL_CHECKPOINT                39
#define PragTyp_ACTIVATE_EXTENSIONS           40
#define PragTyp_HEXKEY                        41
#define PragTyp_KEY                           42

#define PragTyp_LOCK_STATUS                   43
#define PragTyp_PARSER_TRACE                  44
#define PragTyp_STATS                         45

/* Property flags associated with various pragma. */
#define PragFlg_NeedSchema 0x01 /* Force schema load before running */
#define PragFlg_NoColumns  0x02 /* OP_ResultRow called with zero columns */
#define PragFlg_NoColumns1 0x04 /* zero columns if RHS argument is present */
#define PragFlg_ReadOnly   0x08 /* Read-only HEADER_VALUE */
#define PragFlg_Result0    0x10 /* Acts as query when no argument */
#define PragFlg_Result1    0x20 /* Acts as query when has one argument */
#define PragFlg_SchemaOpt  0x40 /* Schema restricts name search if present */
#define PragFlg_SchemaReq  0x80 /* Schema required - "main" is default */

/* Names of columns for pragmas that return multi-column result
** or that return single-column results where the name of the
** result column is different from the name of the pragma
*/
static const char *const pragCName[] = {
  /*   0 */ "id",          /* Used by: foreign_key_list */
  /*   1 */ "seq",        
  /*   2 */ "table",      
  /*   3 */ "from",       
  /*   4 */ "to",         
  /*   5 */ "on_update",  
  /*   6 */ "on_delete",  
  /*   7 */ "match",      
  /*   8 */ "cid",         /* Used by: table_xinfo */
  /*   9 */ "name",       
  /*  10 */ "type",       
  /*  11 */ "notnull",    
  /*  12 */ "dflt_value", 
  /*  13 */ "pk",         
  /*  14 */ "hidden",     
                           /* table_info reuses 8 */
  /*  15 */ "seqno",       /* Used by: index_xinfo */
  /*  16 */ "cid",        
  /*  17 */ "name",       
  /*  18 */ "desc",       
  /*  19 */ "coll",       
  /*  20 */ "key",        
  /*  21 */ "tbl",         /* Used by: stats */
  /*  22 */ "idx",        
  /*  23 */ "wdth",       
  /*  24 */ "hght",       
  /*  25 */ "flgs",       
  /*  26 */ "seq",         /* Used by: index_list */
  /*  27 */ "name",       
  /*  28 */ "unique",     
  /*  29 */ "origin",     
  /*  30 */ "partial",    
  /*  31 */ "table",       /* Used by: foreign_key_check */
  /*  32 */ "rowid",      
  /*  33 */ "parent",     
  /*  34 */ "fkid",       
                           /* index_info reuses 15 */
  /*  35 */ "seq",         /* Used by: database_list */
  /*  36 */ "name",       
  /*  37 */ "file",       
  /*  38 */ "busy",        /* Used by: wal_checkpoint */
  /*  39 */ "log",        
  /*  40 */ "checkpointed",
  /*  41 */ "name",        /* Used by: function_list */
  /*  42 */ "builtin",    
                           /* collation_list reuses 26 */
  /*  43 */ "database",    /* Used by: lock_status */
  /*  44 */ "status",     
  /*  45 */ "cache_size",  /* Used by: default_cache_size */

                           /* module_list pragma_list reuses 9 */

  /*  46 */ "timeout",     /* Used by: busy_timeout */


};

/* Definitions of all built-in pragmas */
typedef struct PragmaName {
  const char *const zName; /* Name of pragma */
  u8 ePragTyp;             /* PragTyp_XXX value */
  u8 mPragFlg;             /* Zero or more PragFlg_XXX values */
  u8 iPragCName;           /* Start of column names in pragCName[] */
  u8 nPragCName;           /* Num of col names. 0 means use pragma name */
  u64 iArg;                /* Extra argument */
} PragmaName;
static const PragmaName aPragmaName[] = {
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD)
 {/* zName:     */ "activate_extensions",
  /* ePragTyp:  */ PragTyp_ACTIVATE_EXTENSIONS,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
119222
119223
119224
119225
119226
119227
119228
119229
119230
119231
119232
119233
119234
119235
119236
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_AutoIndex },
#endif
#endif
 {/* zName:     */ "busy_timeout",
  /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 49, 1,
  /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "cache_size",
  /* ePragTyp:  */ PragTyp_CACHE_SIZE,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },







|







119697
119698
119699
119700
119701
119702
119703
119704
119705
119706
119707
119708
119709
119710
119711
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_AutoIndex },
#endif
#endif
 {/* zName:     */ "busy_timeout",
  /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 46, 1,
  /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "cache_size",
  /* ePragTyp:  */ PragTyp_CACHE_SIZE,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
119259
119260
119261
119262
119263
119264
119265
119266
119267
119268
119269
119270
119271
119272
119273
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_CkptFullFSync },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "collation_list",
  /* ePragTyp:  */ PragTyp_COLLATION_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 32, 2,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS)
 {/* zName:     */ "compile_options",
  /* ePragTyp:  */ PragTyp_COMPILE_OPTIONS,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 0, 0,







|







119734
119735
119736
119737
119738
119739
119740
119741
119742
119743
119744
119745
119746
119747
119748
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_CkptFullFSync },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "collation_list",
  /* ePragTyp:  */ PragTyp_COLLATION_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 26, 2,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_COMPILEOPTION_DIAGS)
 {/* zName:     */ "compile_options",
  /* ePragTyp:  */ PragTyp_COMPILE_OPTIONS,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 0, 0,
119294
119295
119296
119297
119298
119299
119300
119301
119302
119303
119304
119305
119306
119307
119308
119309
119310
119311
119312
119313
119314
119315
  /* ColNames:  */ 0, 0,
  /* iArg:      */ BTREE_DATA_VERSION },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "database_list",
  /* ePragTyp:  */ PragTyp_DATABASE_LIST,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0,
  /* ColNames:  */ 26, 3,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
 {/* zName:     */ "default_cache_size",
  /* ePragTyp:  */ PragTyp_DEFAULT_CACHE_SIZE,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 1,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
 {/* zName:     */ "defer_foreign_keys",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,







|






|







119769
119770
119771
119772
119773
119774
119775
119776
119777
119778
119779
119780
119781
119782
119783
119784
119785
119786
119787
119788
119789
119790
  /* ColNames:  */ 0, 0,
  /* iArg:      */ BTREE_DATA_VERSION },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "database_list",
  /* ePragTyp:  */ PragTyp_DATABASE_LIST,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0,
  /* ColNames:  */ 35, 3,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
 {/* zName:     */ "default_cache_size",
  /* ePragTyp:  */ PragTyp_DEFAULT_CACHE_SIZE,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
  /* ColNames:  */ 45, 1,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
 {/* zName:     */ "defer_foreign_keys",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
119331
119332
119333
119334
119335
119336
119337
119338
119339
119340
119341
119342
119343
119344
119345
119346
119347
119348
119349
119350
119351
119352
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
 {/* zName:     */ "foreign_key_check",
  /* ePragTyp:  */ PragTyp_FOREIGN_KEY_CHECK,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0,
  /* ColNames:  */ 42, 4,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FOREIGN_KEY)
 {/* zName:     */ "foreign_key_list",
  /* ePragTyp:  */ PragTyp_FOREIGN_KEY_LIST,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 34, 8,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
 {/* zName:     */ "foreign_keys",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,







|






|







119806
119807
119808
119809
119810
119811
119812
119813
119814
119815
119816
119817
119818
119819
119820
119821
119822
119823
119824
119825
119826
119827
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
 {/* zName:     */ "foreign_key_check",
  /* ePragTyp:  */ PragTyp_FOREIGN_KEY_CHECK,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0,
  /* ColNames:  */ 31, 4,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FOREIGN_KEY)
 {/* zName:     */ "foreign_key_list",
  /* ePragTyp:  */ PragTyp_FOREIGN_KEY_LIST,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 0, 8,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER)
 {/* zName:     */ "foreign_keys",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
119374
119375
119376
119377
119378
119379
119380
119381
119382
119383
119384
119385
119386
119387
119388
119389
119390
119391
119392
119393
119394
119395
119396
119397
119398
119399
119400
119401
119402
  /* iArg:      */ SQLITE_FullFSync },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
#if defined(SQLITE_INTROSPECTION_PRAGMAS)
 {/* zName:     */ "function_list",
  /* ePragTyp:  */ PragTyp_FUNCTION_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 29, 2,
  /* iArg:      */ 0 },
#endif
#endif
#if defined(SQLITE_HAS_CODEC)
 {/* zName:     */ "hexkey",
  /* ePragTyp:  */ PragTyp_HEXKEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
 {/* zName:     */ "hexrekey",
  /* ePragTyp:  */ PragTyp_HEXKEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if !defined(SQLITE_OMIT_CHECK)
 {/* zName:     */ "ignore_check_constraints",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,







|








|




|







119849
119850
119851
119852
119853
119854
119855
119856
119857
119858
119859
119860
119861
119862
119863
119864
119865
119866
119867
119868
119869
119870
119871
119872
119873
119874
119875
119876
119877
  /* iArg:      */ SQLITE_FullFSync },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
#if defined(SQLITE_INTROSPECTION_PRAGMAS)
 {/* zName:     */ "function_list",
  /* ePragTyp:  */ PragTyp_FUNCTION_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 41, 2,
  /* iArg:      */ 0 },
#endif
#endif
#if defined(SQLITE_HAS_CODEC)
 {/* zName:     */ "hexkey",
  /* ePragTyp:  */ PragTyp_HEXKEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 2 },
 {/* zName:     */ "hexrekey",
  /* ePragTyp:  */ PragTyp_HEXKEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 3 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
#if !defined(SQLITE_OMIT_CHECK)
 {/* zName:     */ "ignore_check_constraints",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
119410
119411
119412
119413
119414
119415
119416
119417
119418
119419
119420
119421
119422
119423
119424
119425
119426
119427
119428
119429
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "index_info",
  /* ePragTyp:  */ PragTyp_INDEX_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 12, 3,
  /* iArg:      */ 0 },
 {/* zName:     */ "index_list",
  /* ePragTyp:  */ PragTyp_INDEX_LIST,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 21, 5,
  /* iArg:      */ 0 },
 {/* zName:     */ "index_xinfo",
  /* ePragTyp:  */ PragTyp_INDEX_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 15, 6,
  /* iArg:      */ 1 },
#endif







|




|







119885
119886
119887
119888
119889
119890
119891
119892
119893
119894
119895
119896
119897
119898
119899
119900
119901
119902
119903
119904
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "index_info",
  /* ePragTyp:  */ PragTyp_INDEX_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 15, 3,
  /* iArg:      */ 0 },
 {/* zName:     */ "index_list",
  /* ePragTyp:  */ PragTyp_INDEX_LIST,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 26, 5,
  /* iArg:      */ 0 },
 {/* zName:     */ "index_xinfo",
  /* ePragTyp:  */ PragTyp_INDEX_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 15, 6,
  /* iArg:      */ 1 },
#endif
119450
119451
119452
119453
119454
119455
119456





119457
119458
119459
119460
119461
119462
119463
119464
119465
119466
119467
119468
119469
119470
119471
119472
119473
119474
119475
119476
119477
119478
119479
119480
119481
 {/* zName:     */ "key",
  /* ePragTyp:  */ PragTyp_KEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)





 {/* zName:     */ "legacy_file_format",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_LegacyFileFmt },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE
 {/* zName:     */ "lock_proxy_file",
  /* ePragTyp:  */ PragTyp_LOCK_PROXY_FILE,
  /* ePragFlg:  */ PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
 {/* zName:     */ "lock_status",
  /* ePragTyp:  */ PragTyp_LOCK_STATUS,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 50, 2,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "locking_mode",
  /* ePragTyp:  */ PragTyp_LOCKING_MODE,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_SchemaReq,
  /* ColNames:  */ 0, 0,







>
>
>
>
>

















|







119925
119926
119927
119928
119929
119930
119931
119932
119933
119934
119935
119936
119937
119938
119939
119940
119941
119942
119943
119944
119945
119946
119947
119948
119949
119950
119951
119952
119953
119954
119955
119956
119957
119958
119959
119960
119961
 {/* zName:     */ "key",
  /* ePragTyp:  */ PragTyp_KEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "legacy_alter_table",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_LegacyAlter },
 {/* zName:     */ "legacy_file_format",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_LegacyFileFmt },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && SQLITE_ENABLE_LOCKING_STYLE
 {/* zName:     */ "lock_proxy_file",
  /* ePragTyp:  */ PragTyp_LOCK_PROXY_FILE,
  /* ePragFlg:  */ PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
 {/* zName:     */ "lock_status",
  /* ePragTyp:  */ PragTyp_LOCK_STATUS,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 43, 2,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "locking_mode",
  /* ePragTyp:  */ PragTyp_LOCKING_MODE,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_SchemaReq,
  /* ColNames:  */ 0, 0,
119493
119494
119495
119496
119497
119498
119499
119500
119501
119502
119503
119504
119505
119506
119507
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
#if !defined(SQLITE_OMIT_VIRTUALTABLE)
#if defined(SQLITE_INTROSPECTION_PRAGMAS)
 {/* zName:     */ "module_list",
  /* ePragTyp:  */ PragTyp_MODULE_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 31, 1,
  /* iArg:      */ 0 },
#endif
#endif
#endif
 {/* zName:     */ "optimize",
  /* ePragTyp:  */ PragTyp_OPTIMIZE,
  /* ePragFlg:  */ PragFlg_Result1|PragFlg_NeedSchema,







|







119973
119974
119975
119976
119977
119978
119979
119980
119981
119982
119983
119984
119985
119986
119987
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
#if !defined(SQLITE_OMIT_VIRTUALTABLE)
#if defined(SQLITE_INTROSPECTION_PRAGMAS)
 {/* zName:     */ "module_list",
  /* ePragTyp:  */ PragTyp_MODULE_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 9, 1,
  /* iArg:      */ 0 },
#endif
#endif
#endif
 {/* zName:     */ "optimize",
  /* ePragTyp:  */ PragTyp_OPTIMIZE,
  /* ePragFlg:  */ PragFlg_Result1|PragFlg_NeedSchema,
119526
119527
119528
119529
119530
119531
119532
119533
119534
119535
119536
119537
119538
119539
119540
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if defined(SQLITE_INTROSPECTION_PRAGMAS)
 {/* zName:     */ "pragma_list",
  /* ePragTyp:  */ PragTyp_PRAGMA_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 31, 1,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "query_only",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,







|







120006
120007
120008
120009
120010
120011
120012
120013
120014
120015
120016
120017
120018
120019
120020
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if defined(SQLITE_INTROSPECTION_PRAGMAS)
 {/* zName:     */ "pragma_list",
  /* ePragTyp:  */ PragTyp_PRAGMA_LIST,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 9, 1,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "query_only",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
119557
119558
119559
119560
119561
119562
119563
119564
119565
119566
119567
119568
119569
119570
119571
119572
119573
119574
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_RecTriggers },
#endif
#if defined(SQLITE_HAS_CODEC)
 {/* zName:     */ "rekey",
  /* ePragTyp:  */ PragTyp_REKEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "reverse_unordered_selects",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_ReverseOrder },







|


|







120037
120038
120039
120040
120041
120042
120043
120044
120045
120046
120047
120048
120049
120050
120051
120052
120053
120054
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_RecTriggers },
#endif
#if defined(SQLITE_HAS_CODEC)
 {/* zName:     */ "rekey",
  /* ePragTyp:  */ PragTyp_KEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 1 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "reverse_unordered_selects",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_ReverseOrder },
119613
119614
119615
119616
119617
119618
119619
119620
119621
119622
119623
119624
119625
119626
119627
119628
119629
119630
119631
119632
119633
119634
119635





119636
119637
119638
119639
119640
119641
119642
119643
119644
119645
119646
119647












119648
119649
119650
119651
119652
119653
119654
  /* iArg:      */ SQLITE_SqlTrace },
#endif
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG)
 {/* zName:     */ "stats",
  /* ePragTyp:  */ PragTyp_STATS,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
  /* ColNames:  */ 7, 5,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "synchronous",
  /* ePragTyp:  */ PragTyp_SYNCHRONOUS,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "table_info",
  /* ePragTyp:  */ PragTyp_TABLE_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 1, 6,
  /* iArg:      */ 0 },





#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "temp_store",
  /* ePragTyp:  */ PragTyp_TEMP_STORE,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
 {/* zName:     */ "temp_store_directory",
  /* ePragTyp:  */ PragTyp_TEMP_STORE_DIRECTORY,
  /* ePragFlg:  */ PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },












#endif
 {/* zName:     */ "threads",
  /* ePragTyp:  */ PragTyp_THREADS,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)







|













|

>
>
>
>
>












>
>
>
>
>
>
>
>
>
>
>
>







120093
120094
120095
120096
120097
120098
120099
120100
120101
120102
120103
120104
120105
120106
120107
120108
120109
120110
120111
120112
120113
120114
120115
120116
120117
120118
120119
120120
120121
120122
120123
120124
120125
120126
120127
120128
120129
120130
120131
120132
120133
120134
120135
120136
120137
120138
120139
120140
120141
120142
120143
120144
120145
120146
120147
120148
120149
120150
120151
  /* iArg:      */ SQLITE_SqlTrace },
#endif
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS) && defined(SQLITE_DEBUG)
 {/* zName:     */ "stats",
  /* ePragTyp:  */ PragTyp_STATS,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq,
  /* ColNames:  */ 21, 5,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "synchronous",
  /* ePragTyp:  */ PragTyp_SYNCHRONOUS,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result0|PragFlg_SchemaReq|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_SCHEMA_PRAGMAS)
 {/* zName:     */ "table_info",
  /* ePragTyp:  */ PragTyp_TABLE_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 8, 6,
  /* iArg:      */ 0 },
 {/* zName:     */ "table_xinfo",
  /* ePragTyp:  */ PragTyp_TABLE_INFO,
  /* ePragFlg:  */ PragFlg_NeedSchema|PragFlg_Result1|PragFlg_SchemaOpt,
  /* ColNames:  */ 8, 7,
  /* iArg:      */ 1 },
#endif
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
 {/* zName:     */ "temp_store",
  /* ePragTyp:  */ PragTyp_TEMP_STORE,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
 {/* zName:     */ "temp_store_directory",
  /* ePragTyp:  */ PragTyp_TEMP_STORE_DIRECTORY,
  /* ePragFlg:  */ PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#endif
#if defined(SQLITE_HAS_CODEC)
 {/* zName:     */ "textkey",
  /* ePragTyp:  */ PragTyp_KEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 4 },
 {/* zName:     */ "textrekey",
  /* ePragTyp:  */ PragTyp_KEY,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 5 },
#endif
 {/* zName:     */ "threads",
  /* ePragTyp:  */ PragTyp_THREADS,
  /* ePragFlg:  */ PragFlg_Result0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS)
119692
119693
119694
119695
119696
119697
119698
119699
119700
119701
119702
119703
119704
119705
119706
119707
119708
119709
119710
119711
119712
119713
119714
119715
119716
119717
  /* ePragTyp:  */ PragTyp_WAL_AUTOCHECKPOINT,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
 {/* zName:     */ "wal_checkpoint",
  /* ePragTyp:  */ PragTyp_WAL_CHECKPOINT,
  /* ePragFlg:  */ PragFlg_NeedSchema,
  /* ColNames:  */ 46, 3,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "writable_schema",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_WriteSchema },
#endif
};
/* Number of pragmas: 60 on by default, 77 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or 







|







|


|







120189
120190
120191
120192
120193
120194
120195
120196
120197
120198
120199
120200
120201
120202
120203
120204
120205
120206
120207
120208
120209
120210
120211
120212
120213
120214
  /* ePragTyp:  */ PragTyp_WAL_AUTOCHECKPOINT,
  /* ePragFlg:  */ 0,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ 0 },
 {/* zName:     */ "wal_checkpoint",
  /* ePragTyp:  */ PragTyp_WAL_CHECKPOINT,
  /* ePragFlg:  */ PragFlg_NeedSchema,
  /* ColNames:  */ 38, 3,
  /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
 {/* zName:     */ "writable_schema",
  /* ePragTyp:  */ PragTyp_FLAG,
  /* ePragFlg:  */ PragFlg_Result0|PragFlg_NoColumns1,
  /* ColNames:  */ 0, 0,
  /* iArg:      */ SQLITE_WriteSchema|SQLITE_NoSchemaError },
#endif
};
/* Number of pragmas: 62 on by default, 81 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL, 2 for FULL, and 3 for EXTRA.  Return 1 for an empty or 
120715
120716
120717
120718
120719
120720
120721
120722
120723
120724
120725
120726
120727
120728
120729

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  case PragTyp_FLAG: {
    if( zRight==0 ){
      setPragmaResultColumnNames(v, pPragma);
      returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
    }else{
      int mask = pPragma->iArg;    /* Mask of bits to set or clear. */
      if( db->autoCommit==0 ){
        /* Foreign key support may not be enabled or disabled while not
        ** in auto-commit mode.  */
        mask &= ~(SQLITE_ForeignKeys);
      }
#if SQLITE_USER_AUTHENTICATION
      if( db->auth.authLevel==UAUTH_User ){







|







121212
121213
121214
121215
121216
121217
121218
121219
121220
121221
121222
121223
121224
121225
121226

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  case PragTyp_FLAG: {
    if( zRight==0 ){
      setPragmaResultColumnNames(v, pPragma);
      returnSingleInt(v, (db->flags & pPragma->iArg)!=0 );
    }else{
      u64 mask = pPragma->iArg;    /* Mask of bits to set or clear. */
      if( db->autoCommit==0 ){
        /* Foreign key support may not be enabled or disabled while not
        ** in auto-commit mode.  */
        mask &= ~(SQLITE_ForeignKeys);
      }
#if SQLITE_USER_AUTHENTICATION
      if( db->auth.authLevel==UAUTH_User ){
120764
120765
120766
120767
120768
120769
120770

120771
120772
120773
120774
120775
120776
120777
120778
120779

120780
120781
120782
120783
120784
120785
120786
120787
120788
120789
120790
120791
120792
120793
120794
120795
120796
120797

120798
120799
120800
120801
120802
120803
120804
  ** dflt_value: The default value for the column, if any.
  ** pk:         Non-zero for PK fields.
  */
  case PragTyp_TABLE_INFO: if( zRight ){
    Table *pTab;
    pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
    if( pTab ){

      int i, k;
      int nHidden = 0;
      Column *pCol;
      Index *pPk = sqlite3PrimaryKeyIndex(pTab);
      pParse->nMem = 6;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
        if( IsHiddenColumn(pCol) ){

          nHidden++;
          continue;
        }
        if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
          k = 0;
        }else if( pPk==0 ){
          k = 1;
        }else{
          for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
        }
        assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
        sqlite3VdbeMultiLoad(v, 1, "issisi",
               i-nHidden,
               pCol->zName,
               sqlite3ColumnType(pCol,""),
               pCol->notNull ? 1 : 0,
               pCol->pDflt ? pCol->pDflt->u.zToken : 0,
               k);

      }
    }
  }
  break;

#ifdef SQLITE_DEBUG
  case PragTyp_STATS: {







>




|
|


|
>











|





|
>







121261
121262
121263
121264
121265
121266
121267
121268
121269
121270
121271
121272
121273
121274
121275
121276
121277
121278
121279
121280
121281
121282
121283
121284
121285
121286
121287
121288
121289
121290
121291
121292
121293
121294
121295
121296
121297
121298
121299
121300
121301
121302
121303
121304
  ** dflt_value: The default value for the column, if any.
  ** pk:         Non-zero for PK fields.
  */
  case PragTyp_TABLE_INFO: if( zRight ){
    Table *pTab;
    pTab = sqlite3LocateTable(pParse, LOCATE_NOERR, zRight, zDb);
    if( pTab ){
      int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      int i, k;
      int nHidden = 0;
      Column *pCol;
      Index *pPk = sqlite3PrimaryKeyIndex(pTab);
      pParse->nMem = 7;
      sqlite3CodeVerifySchema(pParse, iTabDb);
      sqlite3ViewGetColumnNames(pParse, pTab);
      for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
        int isHidden = IsHiddenColumn(pCol);
        if( isHidden && pPragma->iArg==0 ){
          nHidden++;
          continue;
        }
        if( (pCol->colFlags & COLFLAG_PRIMKEY)==0 ){
          k = 0;
        }else if( pPk==0 ){
          k = 1;
        }else{
          for(k=1; k<=pTab->nCol && pPk->aiColumn[k-1]!=i; k++){}
        }
        assert( pCol->pDflt==0 || pCol->pDflt->op==TK_SPAN );
        sqlite3VdbeMultiLoad(v, 1, pPragma->iArg ? "issisii" : "issisi",
               i-nHidden,
               pCol->zName,
               sqlite3ColumnType(pCol,""),
               pCol->notNull ? 1 : 0,
               pCol->pDflt ? pCol->pDflt->u.zToken : 0,
               k,
               isHidden);
      }
    }
  }
  break;

#ifdef SQLITE_DEBUG
  case PragTyp_STATS: {
120828
120829
120830
120831
120832
120833
120834

120835
120836
120837
120838
120839
120840
120841
120842
120843
120844
120845
120846
120847
120848
120849
120850
120851
120852
120853
120854
#endif

  case PragTyp_INDEX_INFO: if( zRight ){
    Index *pIdx;
    Table *pTab;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){

      int i;
      int mx;
      if( pPragma->iArg ){
        /* PRAGMA index_xinfo (newer version with more rows and columns) */
        mx = pIdx->nColumn;
        pParse->nMem = 6;
      }else{
        /* PRAGMA index_info (legacy version) */
        mx = pIdx->nKeyCol;
        pParse->nMem = 3;
      }
      pTab = pIdx->pTable;
      sqlite3CodeVerifySchema(pParse, iDb);
      assert( pParse->nMem<=pPragma->nPragCName );
      for(i=0; i<mx; i++){
        i16 cnum = pIdx->aiColumn[i];
        sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
                             cnum<0 ? 0 : pTab->aCol[cnum].zName);
        if( pPragma->iArg ){
          sqlite3VdbeMultiLoad(v, 4, "isiX",







>












|







121328
121329
121330
121331
121332
121333
121334
121335
121336
121337
121338
121339
121340
121341
121342
121343
121344
121345
121346
121347
121348
121349
121350
121351
121352
121353
121354
121355
#endif

  case PragTyp_INDEX_INFO: if( zRight ){
    Index *pIdx;
    Table *pTab;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int iIdxDb = sqlite3SchemaToIndex(db, pIdx->pSchema);
      int i;
      int mx;
      if( pPragma->iArg ){
        /* PRAGMA index_xinfo (newer version with more rows and columns) */
        mx = pIdx->nColumn;
        pParse->nMem = 6;
      }else{
        /* PRAGMA index_info (legacy version) */
        mx = pIdx->nKeyCol;
        pParse->nMem = 3;
      }
      pTab = pIdx->pTable;
      sqlite3CodeVerifySchema(pParse, iIdxDb);
      assert( pParse->nMem<=pPragma->nPragCName );
      for(i=0; i<mx; i++){
        i16 cnum = pIdx->aiColumn[i];
        sqlite3VdbeMultiLoad(v, 1, "iisX", i, cnum,
                             cnum<0 ? 0 : pTab->aCol[cnum].zName);
        if( pPragma->iArg ){
          sqlite3VdbeMultiLoad(v, 4, "isiX",
120864
120865
120866
120867
120868
120869
120870

120871
120872
120873
120874
120875
120876
120877
120878
120879

  case PragTyp_INDEX_LIST: if( zRight ){
    Index *pIdx;
    Table *pTab;
    int i;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){

      pParse->nMem = 5;
      sqlite3CodeVerifySchema(pParse, iDb);
      for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
        const char *azOrigin[] = { "c", "u", "pk" };
        sqlite3VdbeMultiLoad(v, 1, "isisi",
           i,
           pIdx->zName,
           IsUniqueIndex(pIdx),
           azOrigin[pIdx->idxType],







>

|







121365
121366
121367
121368
121369
121370
121371
121372
121373
121374
121375
121376
121377
121378
121379
121380
121381

  case PragTyp_INDEX_LIST: if( zRight ){
    Index *pIdx;
    Table *pTab;
    int i;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      pParse->nMem = 5;
      sqlite3CodeVerifySchema(pParse, iTabDb);
      for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
        const char *azOrigin[] = { "c", "u", "pk" };
        sqlite3VdbeMultiLoad(v, 1, "isisi",
           i,
           pIdx->zName,
           IsUniqueIndex(pIdx),
           azOrigin[pIdx->idxType],
120912
120913
120914
120915
120916
120917
120918

120919
120920
120921
120922
120923
120924
120925
  case PragTyp_FUNCTION_LIST: {
    int i;
    HashElem *j;
    FuncDef *p;
    pParse->nMem = 2;
    for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
      for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){

        sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1);
      }
    }
    for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
      p = (FuncDef*)sqliteHashData(j);
      sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0);
    }







>







121414
121415
121416
121417
121418
121419
121420
121421
121422
121423
121424
121425
121426
121427
121428
  case PragTyp_FUNCTION_LIST: {
    int i;
    HashElem *j;
    FuncDef *p;
    pParse->nMem = 2;
    for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
      for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash ){
        if( p->funcFlags & SQLITE_FUNC_INTERNAL ) continue;
        sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 1);
      }
    }
    for(j=sqliteHashFirst(&db->aFunc); j; j=sqliteHashNext(j)){
      p = (FuncDef*)sqliteHashData(j);
      sqlite3VdbeMultiLoad(v, 1, "si", p->zName, 0);
    }
120953
120954
120955
120956
120957
120958
120959

120960
120961
120962
120963
120964
120965
120966
120967
120968
120969
  case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
    FKey *pFK;
    Table *pTab;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      pFK = pTab->pFKey;
      if( pFK ){

        int i = 0; 
        pParse->nMem = 8;
        sqlite3CodeVerifySchema(pParse, iDb);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            sqlite3VdbeMultiLoad(v, 1, "iissssss",
                   i,
                   j,
                   pFK->zTo,







>


|







121456
121457
121458
121459
121460
121461
121462
121463
121464
121465
121466
121467
121468
121469
121470
121471
121472
121473
  case PragTyp_FOREIGN_KEY_LIST: if( zRight ){
    FKey *pFK;
    Table *pTab;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      pFK = pTab->pFKey;
      if( pFK ){
        int iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
        int i = 0; 
        pParse->nMem = 8;
        sqlite3CodeVerifySchema(pParse, iTabDb);
        while(pFK){
          int j;
          for(j=0; j<pFK->nCol; j++){
            sqlite3VdbeMultiLoad(v, 1, "iissssss",
                   i,
                   j,
                   pFK->zTo,
121000
121001
121002
121003
121004
121005
121006
121007
121008
121009

121010
121011
121012
121013
121014
121015
121016
121017


121018
121019
121020
121021
121022
121023
121024
121025
121026
121027
121028
121029
121030
121031
121032
121033
121034
121035
121036
121037
121038
121039
    int addrOk;            /* Jump here if the key is OK */
    int *aiCols;           /* child to parent column mapping */

    regResult = pParse->nMem+1;
    pParse->nMem += 4;
    regKey = ++pParse->nMem;
    regRow = ++pParse->nMem;
    sqlite3CodeVerifySchema(pParse, iDb);
    k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
    while( k ){

      if( zRight ){
        pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
        k = 0;
      }else{
        pTab = (Table*)sqliteHashData(k);
        k = sqliteHashNext(k);
      }
      if( pTab==0 || pTab->pFKey==0 ) continue;


      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
      if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
      sqlite3OpenTable(pParse, 0, iDb, pTab, OP_OpenRead);
      sqlite3VdbeLoadString(v, regResult, pTab->zName);
      for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
        pParent = sqlite3FindTable(db, pFK->zTo, zDb);
        if( pParent==0 ) continue;
        pIdx = 0;
        sqlite3TableLock(pParse, iDb, pParent->tnum, 0, pParent->zName);
        x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
        if( x==0 ){
          if( pIdx==0 ){
            sqlite3OpenTable(pParse, i, iDb, pParent, OP_OpenRead);
          }else{
            sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
          }
        }else{
          k = 0;
          break;
        }
      }







<


>








>
>
|

|





|



|

|







121504
121505
121506
121507
121508
121509
121510

121511
121512
121513
121514
121515
121516
121517
121518
121519
121520
121521
121522
121523
121524
121525
121526
121527
121528
121529
121530
121531
121532
121533
121534
121535
121536
121537
121538
121539
121540
121541
121542
121543
121544
121545
    int addrOk;            /* Jump here if the key is OK */
    int *aiCols;           /* child to parent column mapping */

    regResult = pParse->nMem+1;
    pParse->nMem += 4;
    regKey = ++pParse->nMem;
    regRow = ++pParse->nMem;

    k = sqliteHashFirst(&db->aDb[iDb].pSchema->tblHash);
    while( k ){
      int iTabDb;
      if( zRight ){
        pTab = sqlite3LocateTable(pParse, 0, zRight, zDb);
        k = 0;
      }else{
        pTab = (Table*)sqliteHashData(k);
        k = sqliteHashNext(k);
      }
      if( pTab==0 || pTab->pFKey==0 ) continue;
      iTabDb = sqlite3SchemaToIndex(db, pTab->pSchema);
      sqlite3CodeVerifySchema(pParse, iTabDb);
      sqlite3TableLock(pParse, iTabDb, pTab->tnum, 0, pTab->zName);
      if( pTab->nCol+regRow>pParse->nMem ) pParse->nMem = pTab->nCol + regRow;
      sqlite3OpenTable(pParse, 0, iTabDb, pTab, OP_OpenRead);
      sqlite3VdbeLoadString(v, regResult, pTab->zName);
      for(i=1, pFK=pTab->pFKey; pFK; i++, pFK=pFK->pNextFrom){
        pParent = sqlite3FindTable(db, pFK->zTo, zDb);
        if( pParent==0 ) continue;
        pIdx = 0;
        sqlite3TableLock(pParse, iTabDb, pParent->tnum, 0, pParent->zName);
        x = sqlite3FkLocateIndex(pParse, pParent, pFK, &pIdx, 0);
        if( x==0 ){
          if( pIdx==0 ){
            sqlite3OpenTable(pParse, i, iTabDb, pParent, OP_OpenRead);
          }else{
            sqlite3VdbeAddOp3(v, OP_OpenRead, i, pIdx->tnum, iTabDb);
            sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
          }
        }else{
          k = 0;
          break;
        }
      }
121794
121795
121796
121797
121798
121799
121800









121801



121802
121803

121804
121805
121806

121807
121808
121809
121810
121811
121812
121813
121814
121815
121816
121817
121818
121819
121820
121821
121822
121823
121824
121825
      sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
    }
    break;
  }
#endif

#ifdef SQLITE_HAS_CODEC









  case PragTyp_KEY: {



    if( zRight ) sqlite3_key_v2(db, zDb, zRight, sqlite3Strlen30(zRight));
    break;

  }
  case PragTyp_REKEY: {
    if( zRight ) sqlite3_rekey_v2(db, zDb, zRight, sqlite3Strlen30(zRight));

    break;
  }
  case PragTyp_HEXKEY: {
    if( zRight ){
      u8 iByte;
      int i;
      char zKey[40];
      for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
        iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
        if( (i&1)!=0 ) zKey[i/2] = iByte;
      }
      if( (zLeft[3] & 0xf)==0xb ){
        sqlite3_key_v2(db, zDb, zKey, i/2);
      }else{
        sqlite3_rekey_v2(db, zDb, zKey, i/2);
      }
    }
    break;
  }







>
>
>
>
>
>
>
>
>

>
>
>
|
|
>
|
<
<
>











|







122300
122301
122302
122303
122304
122305
122306
122307
122308
122309
122310
122311
122312
122313
122314
122315
122316
122317
122318
122319
122320
122321
122322
122323


122324
122325
122326
122327
122328
122329
122330
122331
122332
122333
122334
122335
122336
122337
122338
122339
122340
122341
122342
122343
      sqlite3VdbeMultiLoad(v, 1, "ss", db->aDb[i].zDbSName, zState);
    }
    break;
  }
#endif

#ifdef SQLITE_HAS_CODEC
  /* Pragma        iArg
  ** ----------   ------
  **  key           0
  **  rekey         1
  **  hexkey        2
  **  hexrekey      3
  **  textkey       4
  **  textrekey     5
  */
  case PragTyp_KEY: {
    if( zRight ){
      int n = pPragma->iArg<4 ? sqlite3Strlen30(zRight) : -1;
      if( (pPragma->iArg & 1)==0 ){
        sqlite3_key_v2(db, zDb, zRight, n);
      }else{
        sqlite3_rekey_v2(db, zDb, zRight, n);
      }


    }
    break;
  }
  case PragTyp_HEXKEY: {
    if( zRight ){
      u8 iByte;
      int i;
      char zKey[40];
      for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zRight[i]); i++){
        iByte = (iByte<<4) + sqlite3HexToInt(zRight[i]);
        if( (i&1)!=0 ) zKey[i/2] = iByte;
      }
      if( (pPragma->iArg & 1)==0 ){
        sqlite3_key_v2(db, zDb, zKey, i/2);
      }else{
        sqlite3_rekey_v2(db, zDb, zKey, i/2);
      }
    }
    break;
  }
122141
122142
122143
122144
122145
122146
122147
122148

122149
122150
122151
122152
122153
122154
122155
  0,                           /* xSync - sync transaction */
  0,                           /* xCommit - commit transaction */
  0,                           /* xRollback - rollback transaction */
  0,                           /* xFindFunction - function overloading */
  0,                           /* xRename - rename the table */
  0,                           /* xSavepoint */
  0,                           /* xRelease */
  0                            /* xRollbackTo */

};

/*
** Check to see if zTabName is really the name of a pragma.  If it is,
** then register an eponymous virtual table for that pragma and return
** a pointer to the Module object for the new virtual table.
*/







|
>







122659
122660
122661
122662
122663
122664
122665
122666
122667
122668
122669
122670
122671
122672
122673
122674
  0,                           /* xSync - sync transaction */
  0,                           /* xCommit - commit transaction */
  0,                           /* xRollback - rollback transaction */
  0,                           /* xFindFunction - function overloading */
  0,                           /* xRename - rename the table */
  0,                           /* xSavepoint */
  0,                           /* xRelease */
  0,                           /* xRollbackTo */
  0                            /* xShadowName */
};

/*
** Check to see if zTabName is really the name of a pragma.  If it is,
** then register an eponymous virtual table for that pragma and return
** a pointer to the Module object for the new virtual table.
*/
122494
122495
122496
122497
122498
122499
122500
122501
122502
122503
122504
122505
122506
122507
122508
122509
    }
#endif
  }
  if( db->mallocFailed ){
    rc = SQLITE_NOMEM_BKPT;
    sqlite3ResetAllSchemasOfConnection(db);
  }
  if( rc==SQLITE_OK || (db->flags&SQLITE_WriteSchema)){
    /* Black magic: If the SQLITE_WriteSchema flag is set, then consider
    ** the schema loaded, even if errors occurred. In this situation the 
    ** current sqlite3_prepare() operation will fail, but the following one
    ** will attempt to compile the supplied statement against whatever subset
    ** of the schema was loaded before the error occurred. The primary
    ** purpose of this is to allow access to the sqlite_master table
    ** even when its contents have been corrupted.
    */







|
|







123013
123014
123015
123016
123017
123018
123019
123020
123021
123022
123023
123024
123025
123026
123027
123028
    }
#endif
  }
  if( db->mallocFailed ){
    rc = SQLITE_NOMEM_BKPT;
    sqlite3ResetAllSchemasOfConnection(db);
  }
  if( rc==SQLITE_OK || (db->flags&SQLITE_NoSchemaError)){
    /* Black magic: If the SQLITE_NoSchemaError flag is set, then consider
    ** the schema loaded, even if errors occurred. In this situation the 
    ** current sqlite3_prepare() operation will fail, but the following one
    ** will attempt to compile the supplied statement against whatever subset
    ** of the schema was loaded before the error occurred. The primary
    ** purpose of this is to allow access to the sqlite_master table
    ** even when its contents have been corrupted.
    */
122876
122877
122878
122879
122880
122881
122882
































































































































































































































































































122883
122884
122885
122886
122887
122888
122889
  sqlite3BtreeLeaveAll(db);
  rc = sqlite3ApiExit(db, rc);
  assert( (rc&db->errMask)==rc );
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

































































































































































































































































































/*
** Rerun the compilation of a statement after a schema change.
**
** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
** if the statement cannot be recompiled because another connection has
** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error
** occurs, return SQLITE_SCHEMA.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







123395
123396
123397
123398
123399
123400
123401
123402
123403
123404
123405
123406
123407
123408
123409
123410
123411
123412
123413
123414
123415
123416
123417
123418
123419
123420
123421
123422
123423
123424
123425
123426
123427
123428
123429
123430
123431
123432
123433
123434
123435
123436
123437
123438
123439
123440
123441
123442
123443
123444
123445
123446
123447
123448
123449
123450
123451
123452
123453
123454
123455
123456
123457
123458
123459
123460
123461
123462
123463
123464
123465
123466
123467
123468
123469
123470
123471
123472
123473
123474
123475
123476
123477
123478
123479
123480
123481
123482
123483
123484
123485
123486
123487
123488
123489
123490
123491
123492
123493
123494
123495
123496
123497
123498
123499
123500
123501
123502
123503
123504
123505
123506
123507
123508
123509
123510
123511
123512
123513
123514
123515
123516
123517
123518
123519
123520
123521
123522
123523
123524
123525
123526
123527
123528
123529
123530
123531
123532
123533
123534
123535
123536
123537
123538
123539
123540
123541
123542
123543
123544
123545
123546
123547
123548
123549
123550
123551
123552
123553
123554
123555
123556
123557
123558
123559
123560
123561
123562
123563
123564
123565
123566
123567
123568
123569
123570
123571
123572
123573
123574
123575
123576
123577
123578
123579
123580
123581
123582
123583
123584
123585
123586
123587
123588
123589
123590
123591
123592
123593
123594
123595
123596
123597
123598
123599
123600
123601
123602
123603
123604
123605
123606
123607
123608
123609
123610
123611
123612
123613
123614
123615
123616
123617
123618
123619
123620
123621
123622
123623
123624
123625
123626
123627
123628
123629
123630
123631
123632
123633
123634
123635
123636
123637
123638
123639
123640
123641
123642
123643
123644
123645
123646
123647
123648
123649
123650
123651
123652
123653
123654
123655
123656
123657
123658
123659
123660
123661
123662
123663
123664
123665
123666
123667
123668
123669
123670
123671
123672
123673
123674
123675
123676
123677
123678
123679
123680
123681
123682
123683
123684
123685
123686
123687
123688
123689
123690
123691
123692
123693
123694
123695
123696
  sqlite3BtreeLeaveAll(db);
  rc = sqlite3ApiExit(db, rc);
  assert( (rc&db->errMask)==rc );
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Checks if the specified token is a table, column, or function name,
** based on the databases associated with the statement being prepared.
** If the function fails, zero is returned and pRc is filled with the
** error code.
*/
static int shouldTreatAsIdentifier(
  sqlite3 *db,        /* Database handle. */
  const char *zToken, /* Pointer to start of token to be checked */
  int nToken,         /* Length of token to be checked */
  int *pRc            /* Pointer to error code upon failure */
){
  int bFound = 0;     /* Non-zero if token is an identifier name. */
  int i, j;           /* Database and column loop indexes. */
  Schema *pSchema;    /* Schema for current database. */
  Hash *pHash;        /* Hash table of tables for current database. */
  HashElem *e;        /* Hash element for hash table iteration. */
  Table *pTab;        /* Database table for columns being checked. */

  if( sqlite3IsRowidN(zToken, nToken) ){
    return 1;
  }
  if( nToken>0 ){
    int hash = SQLITE_FUNC_HASH(sqlite3UpperToLower[(u8)zToken[0]], nToken);
    if( sqlite3FunctionSearchN(hash, zToken, nToken) ) return 1;
  }
  assert( db!=0 );
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  for(i=0; i<db->nDb; i++){
    pHash = &db->aFunc;
    if( sqlite3HashFindN(pHash, zToken, nToken) ){
      bFound = 1;
      break;
    }
    pSchema = db->aDb[i].pSchema;
    if( pSchema==0 ) continue;
    pHash = &pSchema->tblHash;
    if( sqlite3HashFindN(pHash, zToken, nToken) ){
      bFound = 1;
      break;
    }
    for(e=sqliteHashFirst(pHash); e; e=sqliteHashNext(e)){
      pTab = sqliteHashData(e);
      if( pTab==0 ) continue;
      pHash = pTab->pColHash;
      if( pHash==0 ){
        pTab->pColHash = pHash = sqlite3_malloc(sizeof(Hash));
        if( pHash ){
          sqlite3HashInit(pHash);
          for(j=0; j<pTab->nCol; j++){
            Column *pCol = &pTab->aCol[j];
            sqlite3HashInsert(pHash, pCol->zName, pCol);
          }
        }else{
          *pRc = SQLITE_NOMEM_BKPT;
          bFound = 0;
          goto done;
        }
      }
      if( pHash && sqlite3HashFindN(pHash, zToken, nToken) ){
        bFound = 1;
        goto done;
      }
    }
  }
done:
  sqlite3BtreeLeaveAll(db);
  sqlite3_mutex_leave(db->mutex);
  return bFound;
}

/*
** Attempt to estimate the final output buffer size needed for the fully
** normalized version of the specified SQL string.  This should take into
** account any potential expansion that could occur (e.g. via IN clauses
** being expanded, etc).  This size returned is the total number of bytes
** including the NUL terminator.
*/
static int estimateNormalizedSize(
  const char *zSql, /* The original SQL string */
  int nSql,         /* Length of original SQL string */
  u8 prepFlags      /* The flags passed to sqlite3_prepare_v3() */
){
  int nOut = nSql + 4;
  const char *z = zSql;
  while( nOut<nSql*5 ){
    while( z[0]!=0 && z[0]!='I' && z[0]!='i' ){ z++; }
    if( z[0]==0 ) break;
    z++;
    if( z[0]!='N' && z[0]!='n' ) break;
    z++;
    while( sqlite3Isspace(z[0]) ){ z++; }
    if( z[0]!='(' ) break;
    z++;
    nOut += 5; /* ?,?,? */
  }
  return nOut;
}

/*
** Copy the current token into the output buffer while dealing with quoted
** identifiers.  By default, all letters will be converted into lowercase.
** If the bUpper flag is set, uppercase will be used.  The piOut argument
** will be used to update the target index into the output string.
*/
static void copyNormalizedToken(
  const char *zSql, /* The original SQL string */
  int iIn,          /* Current index into the original SQL string */
  int nToken,       /* Number of bytes in the current token */
  int tokenFlags,   /* Flags returned by the tokenizer */
  char *zOut,       /* The output string */
  int *piOut        /* Pointer to target index into the output string */
){
  int bQuoted = tokenFlags & SQLITE_TOKEN_QUOTED;
  int bKeyword = tokenFlags & SQLITE_TOKEN_KEYWORD;
  int j = *piOut, k = 0;
  for(; k<nToken; k++){
    if( bQuoted ){
      if( k==0 && iIn>0 ){
        zOut[j++] = '"';
        continue;
      }else if( k==nToken-1 ){
        zOut[j++] = '"';
        continue;
      }
    }
    if( bKeyword ){
      zOut[j++] = sqlite3Toupper(zSql[iIn+k]);
    }else{
      zOut[j++] = sqlite3Tolower(zSql[iIn+k]);
    }
  }
  *piOut = j;
}

/*
** Perform normalization of the SQL contained in the prepared statement and
** store the result in the zNormSql field.  The schema for the associated
** databases are consulted while performing the normalization in order to
** determine if a token appears to be an identifier.  All identifiers are
** left intact in the normalized SQL and all literals are replaced with a
** single '?'.
*/
SQLITE_PRIVATE void sqlite3Normalize(
  Vdbe *pVdbe,      /* VM being reprepared */
  const char *zSql, /* The original SQL string */
  int nSql,         /* Size of the input string in bytes */
  u8 prepFlags      /* The flags passed to sqlite3_prepare_v3() */
){
  sqlite3 *db;           /* Database handle. */
  char *z;               /* The output string */
  int nZ;                /* Size of the output string in bytes */
  int i;                 /* Next character to read from zSql[] */
  int j;                 /* Next character to fill in on z[] */
  int tokenType = 0;     /* Type of the next token */
  int prevTokenType = 0; /* Type of the previous token, except spaces */
  int n;                 /* Size of the next token */
  int nParen = 0;        /* Nesting level of parenthesis */
  Hash inHash;           /* Table of parenthesis levels to output index. */

  db = sqlite3VdbeDb(pVdbe);
  assert( db!=0 );
  assert( pVdbe->zNormSql==0 );
  if( zSql==0 ) return;
  nZ = estimateNormalizedSize(zSql, nSql, prepFlags);
  z = sqlite3DbMallocRawNN(db, nZ);
  if( z==0 ) return;
  sqlite3HashInit(&inHash);
  for(i=j=0; i<nSql && zSql[i]; i+=n){
    int flags = 0;
    if( tokenType!=TK_SPACE ) prevTokenType = tokenType;
    n = sqlite3GetTokenNormalized((unsigned char*)zSql+i, &tokenType, &flags);
    switch( tokenType ){
      case TK_SPACE: {
        break;
      }
      case TK_ILLEGAL: {
        sqlite3DbFree(db, z);
        sqlite3HashClear(&inHash);
        return;
      }
      case TK_STRING:
      case TK_INTEGER:
      case TK_FLOAT:
      case TK_VARIABLE:
      case TK_BLOB: {
        z[j++] = '?';
        break;
      }
      case TK_LP:
      case TK_RP: {
        if( tokenType==TK_LP ){
          nParen++;
          if( prevTokenType==TK_IN ){
            assert( nParen<nSql );
            sqlite3HashInsert(&inHash, zSql+nParen, SQLITE_INT_TO_PTR(j));
          }
        }else{
          int jj;
          assert( nParen<nSql );
          jj = SQLITE_PTR_TO_INT(sqlite3HashFind(&inHash, zSql+nParen));
          if( jj>0 ){
            sqlite3HashInsert(&inHash, zSql+nParen, 0);
            assert( jj+6<nZ );
            memcpy(z+jj+1, "?,?,?", 5);
            j = jj+6;
            assert( nZ-1-j>=0 );
            assert( nZ-1-j<nZ );
            memset(z+j, 0, nZ-1-j);
          }
          nParen--;
        }
        assert( nParen>=0 );
        /* Fall through */
      }
      case TK_MINUS:
      case TK_SEMI:
      case TK_PLUS:
      case TK_STAR:
      case TK_SLASH:
      case TK_REM:
      case TK_EQ:
      case TK_LE:
      case TK_NE:
      case TK_LSHIFT:
      case TK_LT:
      case TK_RSHIFT:
      case TK_GT:
      case TK_GE:
      case TK_BITOR:
      case TK_CONCAT:
      case TK_COMMA:
      case TK_BITAND:
      case TK_BITNOT:
      case TK_DOT:
      case TK_IN:
      case TK_IS:
      case TK_NOT:
      case TK_NULL:
      case TK_ID: {
        if( tokenType==TK_NULL ){
          if( prevTokenType==TK_IS || prevTokenType==TK_NOT ){
            /* NULL is a keyword in this case, not a literal value */
          }else{
            /* Here the NULL is a literal value */
            z[j++] = '?';
            break;
          }
        }
        if( j>0 && sqlite3IsIdChar(z[j-1]) && sqlite3IsIdChar(zSql[i]) ){
          z[j++] = ' ';
        }
        if( tokenType==TK_ID ){
          int i2 = i, n2 = n, rc = SQLITE_OK;
          if( nParen>0 ){
            assert( nParen<nSql );
            sqlite3HashInsert(&inHash, zSql+nParen, 0);
          }
          if( flags&SQLITE_TOKEN_QUOTED ){ i2++; n2-=2; }
          if( shouldTreatAsIdentifier(db, zSql+i2, n2, &rc)==0 ){
            if( rc!=SQLITE_OK ){
              sqlite3DbFree(db, z);
              sqlite3HashClear(&inHash);
              return;
            }
            if( sqlite3_keyword_check(zSql+i2, n2)==0 ){
              z[j++] = '?';
              break;
            }
          }
        }
        copyNormalizedToken(zSql, i, n, flags, z, &j);
        break;
      }
    }
  }
  assert( j<nZ && "one" );
  while( j>0 && z[j-1]==' ' ){ j--; }
  if( j>0 && z[j-1]!=';' ){ z[j++] = ';'; }
  z[j] = 0;
  assert( j<nZ && "two" );
  pVdbe->zNormSql = z;
  sqlite3HashClear(&inHash);
}
#endif /* SQLITE_ENABLE_NORMALIZE */

/*
** Rerun the compilation of a statement after a schema change.
**
** If the statement is successfully recompiled, return SQLITE_OK. Otherwise,
** if the statement cannot be recompiled because another connection has
** locked the sqlite3_master table, return SQLITE_LOCKED. If any other error
** occurs, return SQLITE_SCHEMA.
123888
123889
123890
123891
123892
123893
123894
123895
123896
123897
123898
123899
123900
123901
123902
  int i;
  int nDefer = 0;
  ExprList *pExtra = 0;
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->pTab;
      if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }







|







124695
124696
124697
124698
124699
124700
124701
124702
124703
124704
124705
124706
124707
124708
124709
  int i;
  int nDefer = 0;
  ExprList *pExtra = 0;
  for(i=0; i<pEList->nExpr; i++){
    struct ExprList_item *pItem = &pEList->a[i];
    if( pItem->u.x.iOrderByCol==0 ){
      Expr *pExpr = pItem->pExpr;
      Table *pTab = pExpr->y.pTab;
      if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
       && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
      ){
        int j;
        for(j=0; j<nDefer; j++){
          if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
        }
123911
123912
123913
123914
123915
123916
123917
123918
123919
123920
123921
123922
123923
123924
123925
123926
123927
123928
123929
123930
              pPk = sqlite3PrimaryKeyIndex(pTab);
              nKey = pPk->nKeyCol;
            }
            for(k=0; k<nKey; k++){
              Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
              if( pNew ){
                pNew->iTable = pExpr->iTable;
                pNew->pTab = pExpr->pTab;
                pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
                pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
              }
            }
            pSort->aDefer[nDefer].pTab = pExpr->pTab;
            pSort->aDefer[nDefer].iCsr = pExpr->iTable;
            pSort->aDefer[nDefer].nKey = nKey;
            nDefer++;
          }
        }
        pItem->bSorterRef = 1;
      }







|




|







124718
124719
124720
124721
124722
124723
124724
124725
124726
124727
124728
124729
124730
124731
124732
124733
124734
124735
124736
124737
              pPk = sqlite3PrimaryKeyIndex(pTab);
              nKey = pPk->nKeyCol;
            }
            for(k=0; k<nKey; k++){
              Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
              if( pNew ){
                pNew->iTable = pExpr->iTable;
                pNew->y.pTab = pExpr->y.pTab;
                pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
                pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
              }
            }
            pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
            pSort->aDefer[nDefer].iCsr = pExpr->iTable;
            pSort->aDefer[nDefer].nKey = nKey;
            nDefer++;
          }
        }
        pItem->bSorterRef = 1;
      }
124765
124766
124767
124768
124769
124770
124771
124772
124773
124774
124775
124776
124777
124778
124779
        ** This is not a problem, as the column type of "t1.col" is never
        ** used. When columnType() is called on the expression 
        ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
        ** branch below.  */
        break;
      }

      assert( pTab && pExpr->pTab==pTab );
      if( pS ){
        /* The "table" is actually a sub-select or a view in the FROM clause
        ** of the SELECT statement. Return the declaration type and origin
        ** data for the result-set column of the sub-select.
        */
        if( iCol>=0 && iCol<pS->pEList->nExpr ){
          /* If iCol is less than zero, then the expression requests the







|







125572
125573
125574
125575
125576
125577
125578
125579
125580
125581
125582
125583
125584
125585
125586
        ** This is not a problem, as the column type of "t1.col" is never
        ** used. When columnType() is called on the expression 
        ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
        ** branch below.  */
        break;
      }

      assert( pTab && pExpr->y.pTab==pTab );
      if( pS ){
        /* The "table" is actually a sub-select or a view in the FROM clause
        ** of the SELECT statement. Return the declaration type and origin
        ** data for the result-set column of the sub-select.
        */
        if( iCol>=0 && iCol<pS->pEList->nExpr ){
          /* If iCol is less than zero, then the expression requests the
124950
124951
124952
124953
124954
124955
124956
124957
124958
124959
124960
124961
124962
124963
124964
124965
124966
124967
124968
124969
124970
124971
124972
  srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
  sqlite3VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;

    assert( p!=0 );
    assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
    assert( p->op!=TK_COLUMN || p->pTab!=0 ); /* Covering idx not yet coded */
    if( pEList->a[i].zName ){
      /* An AS clause always takes first priority */
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( srcName && p->op==TK_COLUMN ){
      char *zCol;
      int iCol = p->iColumn;
      pTab = p->pTab;
      assert( pTab!=0 );
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;







|







|







125757
125758
125759
125760
125761
125762
125763
125764
125765
125766
125767
125768
125769
125770
125771
125772
125773
125774
125775
125776
125777
125778
125779
  srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
  sqlite3VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p = pEList->a[i].pExpr;

    assert( p!=0 );
    assert( p->op!=TK_AGG_COLUMN );  /* Agg processing has not run yet */
    assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
    if( pEList->a[i].zName ){
      /* An AS clause always takes first priority */
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( srcName && p->op==TK_COLUMN ){
      char *zCol;
      int iCol = p->iColumn;
      pTab = p->y.pTab;
      assert( pTab!=0 );
      if( iCol<0 ) iCol = pTab->iPKey;
      assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
      if( iCol<0 ){
        zCol = "rowid";
      }else{
        zCol = pTab->aCol[iCol].zName;
125049
125050
125051
125052
125053
125054
125055
125056
125057
125058
125059
125060
125061
125062
125063
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      assert( pColExpr->op!=TK_AGG_COLUMN );
      if( pColExpr->op==TK_COLUMN ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        Table *pTab = pColExpr->pTab;
        assert( pTab!=0 );
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = pColExpr->u.zToken;
      }else{







|







125856
125857
125858
125859
125860
125861
125862
125863
125864
125865
125866
125867
125868
125869
125870
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      assert( pColExpr->op!=TK_AGG_COLUMN );
      if( pColExpr->op==TK_COLUMN ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        Table *pTab = pColExpr->y.pTab;
        assert( pTab!=0 );
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = pColExpr->u.zToken;
      }else{
125402
125403
125404
125405
125406
125407
125408







125409
125410
125411
125412
125413
125414
125415
  int eDest = SRT_Fifo;         /* How to write to Queue */
  SelectDest destQueue;         /* SelectDest targetting the Queue table */
  int i;                        /* Loop counter */
  int rc;                       /* Result code */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Expr *pLimit;                 /* Saved LIMIT and OFFSET */
  int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */








  /* Obtain authorization to do a recursive query */
  if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;

  /* Process the LIMIT and OFFSET clauses, if they exist */
  addrBreak = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = 320;  /* 4 billion rows */







>
>
>
>
>
>
>







126209
126210
126211
126212
126213
126214
126215
126216
126217
126218
126219
126220
126221
126222
126223
126224
126225
126226
126227
126228
126229
  int eDest = SRT_Fifo;         /* How to write to Queue */
  SelectDest destQueue;         /* SelectDest targetting the Queue table */
  int i;                        /* Loop counter */
  int rc;                       /* Result code */
  ExprList *pOrderBy;           /* The ORDER BY clause */
  Expr *pLimit;                 /* Saved LIMIT and OFFSET */
  int regLimit, regOffset;      /* Registers used by LIMIT and OFFSET */

#ifndef SQLITE_OMIT_WINDOWFUNC
  if( p->pWin ){
    sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
    return;
  }
#endif

  /* Obtain authorization to do a recursive query */
  if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;

  /* Process the LIMIT and OFFSET clauses, if they exist */
  addrBreak = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = 320;  /* 4 billion rows */
127152
127153
127154
127155
127156
127157
127158
127159
127160
127161
127162
127163
127164
127165
127166
127167
127168
127169
127170
127171

127172
127173
127174
127175
127176
127177














127178
127179
127180
127181
127182
127183
127184
#endif

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** A structure to keep track of all of the column values that fixed to
** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
*/
typedef struct WhereConst WhereConst;
struct WhereConst {
  Parse *pParse;   /* Parsing context */
  int nConst;      /* Number for COLUMN=CONSTANT terms */
  int nChng;       /* Number of times a constant is propagated */
  Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
};

/*
** Add a new entry to the pConst object

*/
static void constInsert(
  WhereConst *pConst,
  Expr *pColumn,
  Expr *pValue
){















  pConst->nConst++;
  pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
                         pConst->nConst*2*sizeof(Expr*));
  if( pConst->apExpr==0 ){
    pConst->nConst = 0;
  }else{







|











|
>


|
|
|

>
>
>
>
>
>
>
>
>
>
>
>
>
>







127966
127967
127968
127969
127970
127971
127972
127973
127974
127975
127976
127977
127978
127979
127980
127981
127982
127983
127984
127985
127986
127987
127988
127989
127990
127991
127992
127993
127994
127995
127996
127997
127998
127999
128000
128001
128002
128003
128004
128005
128006
128007
128008
128009
128010
128011
128012
128013
#endif

  return 1;
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

/*
** A structure to keep track of all of the column values that are fixed to
** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
*/
typedef struct WhereConst WhereConst;
struct WhereConst {
  Parse *pParse;   /* Parsing context */
  int nConst;      /* Number for COLUMN=CONSTANT terms */
  int nChng;       /* Number of times a constant is propagated */
  Expr **apExpr;   /* [i*2] is COLUMN and [i*2+1] is VALUE */
};

/*
** Add a new entry to the pConst object.  Except, do not add duplicate
** pColumn entires.
*/
static void constInsert(
  WhereConst *pConst,      /* The WhereConst into which we are inserting */
  Expr *pColumn,           /* The COLUMN part of the constraint */
  Expr *pValue             /* The VALUE part of the constraint */
){
  int i;
  assert( pColumn->op==TK_COLUMN );

  /* 2018-10-25 ticket [cf5ed20f]
  ** Make sure the same pColumn is not inserted more than once */
  for(i=0; i<pConst->nConst; i++){
    const Expr *pExpr = pConst->apExpr[i*2];
    assert( pExpr->op==TK_COLUMN );
    if( pExpr->iTable==pColumn->iTable
     && pExpr->iColumn==pColumn->iColumn
    ){
      return;  /* Already present.  Return without doing anything. */
    }
  }

  pConst->nConst++;
  pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
                         pConst->nConst*2*sizeof(Expr*));
  if( pConst->apExpr==0 ){
    pConst->nConst = 0;
  }else{
129171
129172
129173
129174
129175
129176
129177

129178
129179
129180
129181
129182
129183
129184
      int regGosub = ++pParse->nMem;

      sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);

      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      sqlite3VdbeResolveLabel(v, addrGosub);
      VdbeNoopComment((v, "inner-loop subroutine"));

      selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp1(v, OP_Return, regGosub);
      VdbeComment((v, "end inner-loop subroutine"));
      sqlite3VdbeResolveLabel(v, iBreak);
    }else
#endif /* SQLITE_OMIT_WINDOWFUNC */







>







130000
130001
130002
130003
130004
130005
130006
130007
130008
130009
130010
130011
130012
130013
130014
      int regGosub = ++pParse->nMem;

      sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);

      sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
      sqlite3VdbeResolveLabel(v, addrGosub);
      VdbeNoopComment((v, "inner-loop subroutine"));
      sSort.labelOBLopt = 0;
      selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
      sqlite3VdbeResolveLabel(v, iCont);
      sqlite3VdbeAddOp1(v, OP_Return, regGosub);
      VdbeComment((v, "end inner-loop subroutine"));
      sqlite3VdbeResolveLabel(v, iBreak);
    }else
#endif /* SQLITE_OMIT_WINDOWFUNC */
131150
131151
131152
131153
131154
131155
131156



















































131157
131158
131159
131160
131161
131162
131163
  }
#ifndef SQLITE_OMIT_FLOATING_POINT
  if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
    sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
  }
#endif
}




















































/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
**          \_______/ \________/     \______/       \________________/
*            onError   pTabList      pChanges             pWhere







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







131980
131981
131982
131983
131984
131985
131986
131987
131988
131989
131990
131991
131992
131993
131994
131995
131996
131997
131998
131999
132000
132001
132002
132003
132004
132005
132006
132007
132008
132009
132010
132011
132012
132013
132014
132015
132016
132017
132018
132019
132020
132021
132022
132023
132024
132025
132026
132027
132028
132029
132030
132031
132032
132033
132034
132035
132036
132037
132038
132039
132040
132041
132042
132043
132044
  }
#ifndef SQLITE_OMIT_FLOATING_POINT
  if( pTab->aCol[i].affinity==SQLITE_AFF_REAL ){
    sqlite3VdbeAddOp1(v, OP_RealAffinity, iReg);
  }
#endif
}

/*
** Check to see if column iCol of index pIdx references any of the
** columns defined by aXRef and chngRowid.  Return true if it does
** and false if not.  This is an optimization.  False-positives are a
** performance degradation, but false-negatives can result in a corrupt
** index and incorrect answers.
**
** aXRef[j] will be non-negative if column j of the original table is
** being updated.  chngRowid will be true if the rowid of the table is
** being updated.
*/
static int indexColumnIsBeingUpdated(
  Index *pIdx,      /* The index to check */
  int iCol,         /* Which column of the index to check */
  int *aXRef,       /* aXRef[j]>=0 if column j is being updated */
  int chngRowid     /* true if the rowid is being updated */
){
  i16 iIdxCol = pIdx->aiColumn[iCol];
  assert( iIdxCol!=XN_ROWID ); /* Cannot index rowid */
  if( iIdxCol>=0 ){
    return aXRef[iIdxCol]>=0;
  }
  assert( iIdxCol==XN_EXPR );
  assert( pIdx->aColExpr!=0 );
  assert( pIdx->aColExpr->a[iCol].pExpr!=0 );
  return sqlite3ExprReferencesUpdatedColumn(pIdx->aColExpr->a[iCol].pExpr,
                                            aXRef,chngRowid);
}

/*
** Check to see if index pIdx is a partial index whose conditional
** expression might change values due to an UPDATE.  Return true if
** the index is subject to change and false if the index is guaranteed
** to be unchanged.  This is an optimization.  False-positives are a
** performance degradation, but false-negatives can result in a corrupt
** index and incorrect answers.
**
** aXRef[j] will be non-negative if column j of the original table is
** being updated.  chngRowid will be true if the rowid of the table is
** being updated.
*/
static int indexWhereClauseMightChange(
  Index *pIdx,      /* The index to check */
  int *aXRef,       /* aXRef[j]>=0 if column j is being updated */
  int chngRowid     /* true if the rowid is being updated */
){
  if( pIdx->pPartIdxWhere==0 ) return 0;
  return sqlite3ExprReferencesUpdatedColumn(pIdx->pPartIdxWhere,
                                            aXRef, chngRowid);
}

/*
** Process an UPDATE statement.
**
**   UPDATE OR IGNORE table_wxyz SET a=b, c=d WHERE e<5 AND f NOT NULL;
**          \_______/ \________/     \______/       \________________/
*            onError   pTabList      pChanges             pWhere
131374
131375
131376
131377
131378
131379
131380
131381
131382
131383
131384
131385
131386


131387
131388
131389
131390
131391
131392
131393
131394
131395
131396
131397
131398
131399
131400
  pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0;

  hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);

  /* There is one entry in the aRegIdx[] array for each index on the table
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **
  ** FIXME:  Be smarter about omitting indexes that use expressions.
  */
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngKey || hasFK>1 || pIdx->pPartIdxWhere || pIdx==pPk ){


      reg = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        i16 iIdxCol = pIdx->aiColumn[i];
        if( iIdxCol<0 || aXRef[iIdxCol]>=0 ){
          reg = ++pParse->nMem;
          pParse->nMem += pIdx->nColumn;
          if( (onError==OE_Replace)
           || (onError==OE_Default && pIdx->onError==OE_Replace) 
          ){
            bReplace = 1;
          }







<
<



|
>
>





|
<







132255
132256
132257
132258
132259
132260
132261


132262
132263
132264
132265
132266
132267
132268
132269
132270
132271
132272
132273

132274
132275
132276
132277
132278
132279
132280
  pTabList->a[0].colUsed = IsVirtual(pTab) ? ALLBITS : 0;

  hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);

  /* There is one entry in the aRegIdx[] array for each index on the table
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.


  */
  for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
    int reg;
    if( chngKey || hasFK>1 || pIdx==pPk
     || indexWhereClauseMightChange(pIdx,aXRef,chngRowid)
    ){
      reg = ++pParse->nMem;
      pParse->nMem += pIdx->nColumn;
    }else{
      reg = 0;
      for(i=0; i<pIdx->nKeyCol; i++){
        if( indexColumnIsBeingUpdated(pIdx, i, aXRef, chngRowid) ){

          reg = ++pParse->nMem;
          pParse->nMem += pIdx->nColumn;
          if( (onError==OE_Replace)
           || (onError==OE_Default && pIdx->onError==OE_Replace) 
          ){
            bReplace = 1;
          }
131935
131936
131937
131938
131939
131940
131941
131942
131943
131944
131945
131946
131947
131948
131949

  /* Populate the argument registers. */
  for(i=0; i<pTab->nCol; i++){
    if( aXRef[i]>=0 ){
      sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i);
    }else{
      sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i);
      sqlite3VdbeChangeP5(v, 1); /* Enable sqlite3_vtab_nochange() */
    }
  }
  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg);
    if( pRowid ){
      sqlite3ExprCode(pParse, pRowid, regArg+1);
    }else{







|







132815
132816
132817
132818
132819
132820
132821
132822
132823
132824
132825
132826
132827
132828
132829

  /* Populate the argument registers. */
  for(i=0; i<pTab->nCol; i++){
    if( aXRef[i]>=0 ){
      sqlite3ExprCode(pParse, pChanges->a[aXRef[i]].pExpr, regArg+2+i);
    }else{
      sqlite3VdbeAddOp3(v, OP_VColumn, iCsr, i, regArg+2+i);
      sqlite3VdbeChangeP5(v, OPFLAG_NOCHNG);/* Enable sqlite3_vtab_nochange() */
    }
  }
  if( HasRowid(pTab) ){
    sqlite3VdbeAddOp2(v, OP_Rowid, iCsr, regArg);
    if( pRowid ){
      sqlite3ExprCode(pParse, pRowid, regArg+1);
    }else{
132436
132437
132438
132439
132440
132441
132442
132443

132444
132445
132446
132447
132448
132449
132450
  saved_flags = db->flags;
  saved_mDbFlags = db->mDbFlags;
  saved_nChange = db->nChange;
  saved_nTotalChange = db->nTotalChange;
  saved_mTrace = db->mTrace;
  db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
  db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum;
  db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_CountRows);

  db->mTrace = 0;

  zDbMain = db->aDb[iDb].zDbSName;
  pMain = db->aDb[iDb].pBt;
  isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));

  /* Attach the temporary database as 'vacuum_db'. The synchronous pragma







|
>







133316
133317
133318
133319
133320
133321
133322
133323
133324
133325
133326
133327
133328
133329
133330
133331
  saved_flags = db->flags;
  saved_mDbFlags = db->mDbFlags;
  saved_nChange = db->nChange;
  saved_nTotalChange = db->nTotalChange;
  saved_mTrace = db->mTrace;
  db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks;
  db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum;
  db->flags &= ~(SQLITE_ForeignKeys | SQLITE_ReverseOrder
                   | SQLITE_Defensive | SQLITE_CountRows);
  db->mTrace = 0;

  zDbMain = db->aDb[iDb].zDbSName;
  pMain = db->aDb[iDb].pBt;
  isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain));

  /* Attach the temporary database as 'vacuum_db'. The synchronous pragma
132978
132979
132980
132981
132982
132983
132984
132985
132986
132987
132988
132989
132990
132991
132992
132993
132994
132995
132996
132997
132998
132999
133000
133001
133002
133003
133004
133005
133006
133007
133008
133009
133010
133011
133012
133013
133014
133015


133016
133017
133018
133019
133020
133021
133022
SQLITE_PRIVATE void sqlite3VtabBeginParse(
  Parse *pParse,        /* Parsing context */
  Token *pName1,        /* Name of new table, or database name */
  Token *pName2,        /* Name of new table or NULL */
  Token *pModuleName,   /* Name of the module for the virtual table */
  int ifNotExists       /* No error if the table already exists */
){
  int iDb;              /* The database the table is being created in */
  Table *pTable;        /* The new virtual table */
  sqlite3 *db;          /* Database connection */

  sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
  pTable = pParse->pNewTable;
  if( pTable==0 ) return;
  assert( 0==pTable->pIndex );

  db = pParse->db;
  iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
  assert( iDb>=0 );

  assert( pTable->nModuleArg==0 );
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, 0);
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
  assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
       || (pParse->sNameToken.z==pName1->z && pName2->z==0)
  );
  pParse->sNameToken.n = (int)(
      &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
  );

#ifndef SQLITE_OMIT_AUTHORIZATION
  /* Creating a virtual table invokes the authorization callback twice.
  ** The first invocation, to obtain permission to INSERT a row into the
  ** sqlite_master table, has already been made by sqlite3StartTable().
  ** The second call, to obtain permission to create the table, is made now.
  */
  if( pTable->azModuleArg ){


    sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 
            pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName);
  }
#endif
}

/*







<









<
<



















>
>







133859
133860
133861
133862
133863
133864
133865

133866
133867
133868
133869
133870
133871
133872
133873
133874


133875
133876
133877
133878
133879
133880
133881
133882
133883
133884
133885
133886
133887
133888
133889
133890
133891
133892
133893
133894
133895
133896
133897
133898
133899
133900
133901
133902
SQLITE_PRIVATE void sqlite3VtabBeginParse(
  Parse *pParse,        /* Parsing context */
  Token *pName1,        /* Name of new table, or database name */
  Token *pName2,        /* Name of new table or NULL */
  Token *pModuleName,   /* Name of the module for the virtual table */
  int ifNotExists       /* No error if the table already exists */
){

  Table *pTable;        /* The new virtual table */
  sqlite3 *db;          /* Database connection */

  sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
  pTable = pParse->pNewTable;
  if( pTable==0 ) return;
  assert( 0==pTable->pIndex );

  db = pParse->db;



  assert( pTable->nModuleArg==0 );
  addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
  addModuleArgument(db, pTable, 0);
  addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
  assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
       || (pParse->sNameToken.z==pName1->z && pName2->z==0)
  );
  pParse->sNameToken.n = (int)(
      &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
  );

#ifndef SQLITE_OMIT_AUTHORIZATION
  /* Creating a virtual table invokes the authorization callback twice.
  ** The first invocation, to obtain permission to INSERT a row into the
  ** sqlite_master table, has already been made by sqlite3StartTable().
  ** The second call, to obtain permission to create the table, is made now.
  */
  if( pTable->azModuleArg ){
    int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
    assert( iDb>=0 ); /* The database the table is being created in */
    sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, 
            pTable->azModuleArg[0], pParse->db->aDb[iDb].zDbSName);
  }
#endif
}

/*
133703
133704
133705
133706
133707
133708
133709
133710
133711
133712
133713
133714
133715
133716
133717
  void *pArg = 0;
  FuncDef *pNew;
  int rc = 0;

  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->pTab;
  if( pTab==0 ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;







|







134583
134584
134585
134586
134587
134588
134589
134590
134591
134592
134593
134594
134595
134596
134597
  void *pArg = 0;
  FuncDef *pNew;
  int rc = 0;

  /* Check to see the left operand is a column in a virtual table */
  if( NEVER(pExpr==0) ) return pDef;
  if( pExpr->op!=TK_COLUMN ) return pDef;
  pTab = pExpr->y.pTab;
  if( pTab==0 ) return pDef;
  if( !IsVirtual(pTab) ) return pDef;
  pVtab = sqlite3GetVTable(db, pTab)->pVtab;
  assert( pVtab!=0 );
  assert( pVtab->pModule!=0 );
  pMod = (sqlite3_module *)pVtab->pModule;
  if( pMod->xFindFunction==0 ) return pDef;
134323
134324
134325
134326
134327
134328
134329

134330
134331
134332
134333
134334




















134335
134336
134337
134338
134339
134340
134341
  WhereLoop *pNew;          /* Template WhereLoop */
  WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  UnpackedRecord *pRec;     /* Probe for stat4 (if required) */
  int nRecValid;            /* Number of valid fields currently in pRec */
#endif
  unsigned int bldFlags;    /* SQLITE_BLDF_* flags */

};

/* Allowed values for WhereLoopBuider.bldFlags */
#define SQLITE_BLDF_INDEXED  0x0001   /* An index is used */
#define SQLITE_BLDF_UNIQUE   0x0002   /* All keys of a UNIQUE index used */





















/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.







>





>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







135203
135204
135205
135206
135207
135208
135209
135210
135211
135212
135213
135214
135215
135216
135217
135218
135219
135220
135221
135222
135223
135224
135225
135226
135227
135228
135229
135230
135231
135232
135233
135234
135235
135236
135237
135238
135239
135240
135241
135242
  WhereLoop *pNew;          /* Template WhereLoop */
  WhereOrSet *pOrSet;       /* Record best loops here, if not NULL */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  UnpackedRecord *pRec;     /* Probe for stat4 (if required) */
  int nRecValid;            /* Number of valid fields currently in pRec */
#endif
  unsigned int bldFlags;    /* SQLITE_BLDF_* flags */
  unsigned int iPlanLimit;  /* Search limiter */
};

/* Allowed values for WhereLoopBuider.bldFlags */
#define SQLITE_BLDF_INDEXED  0x0001   /* An index is used */
#define SQLITE_BLDF_UNIQUE   0x0002   /* All keys of a UNIQUE index used */

/* The WhereLoopBuilder.iPlanLimit is used to limit the number of
** index+constraint combinations the query planner will consider for a
** particular query.  If this parameter is unlimited, then certain
** pathological queries can spend excess time in the sqlite3WhereBegin()
** routine.  The limit is high enough that is should not impact real-world
** queries.
**
** SQLITE_QUERY_PLANNER_LIMIT is the baseline limit.  The limit is
** increased by SQLITE_QUERY_PLANNER_LIMIT_INCR before each term of the FROM
** clause is processed, so that every table in a join is guaranteed to be
** able to propose a some index+constraint combinations even if the initial
** baseline limit was exhausted by prior tables of the join.
*/
#ifndef SQLITE_QUERY_PLANNER_LIMIT
# define SQLITE_QUERY_PLANNER_LIMIT 20000
#endif
#ifndef SQLITE_QUERY_PLANNER_LIMIT_INCR
# define SQLITE_QUERY_PLANNER_LIMIT_INCR 1000
#endif

/*
** The WHERE clause processing routine has two halves.  The
** first part does the start of the WHERE loop and the second
** half does the tail of the WHERE loop.  An instance of
** this structure is returned by the first half and passed
** into the second half to give some continuity.
134890
134891
134892
134893
134894
134895
134896
134897
134898
134899
134900
134901
134902
134903
134904
    ExprList *pLhs = 0;         /* New LHS after mods */
    int i;                      /* Loop counter */
    Select *pSelect;            /* Pointer to the SELECT on the RHS */

    for(i=iEq; i<pLoop->nLTerm; i++){
      if( pLoop->aLTerm[i]->pExpr==pX ){
        int iField = pLoop->aLTerm[i]->iField - 1;
        assert( pOrigRhs->a[iField].pExpr!=0 );
        pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
        pOrigRhs->a[iField].pExpr = 0;
        assert( pOrigLhs->a[iField].pExpr!=0 );
        pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
        pOrigLhs->a[iField].pExpr = 0;
      }
    }







|







135791
135792
135793
135794
135795
135796
135797
135798
135799
135800
135801
135802
135803
135804
135805
    ExprList *pLhs = 0;         /* New LHS after mods */
    int i;                      /* Loop counter */
    Select *pSelect;            /* Pointer to the SELECT on the RHS */

    for(i=iEq; i<pLoop->nLTerm; i++){
      if( pLoop->aLTerm[i]->pExpr==pX ){
        int iField = pLoop->aLTerm[i]->iField - 1;
        if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
        pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
        pOrigRhs->a[iField].pExpr = 0;
        assert( pOrigLhs->a[iField].pExpr!=0 );
        pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
        pOrigLhs->a[iField].pExpr = 0;
      }
    }
135582
135583
135584
135585
135586
135587
135588
135589
135590
135591
135592
135593
135594
135595
135596
*/
static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
  IdxExprTrans *pX = p->u.pIdxTrans;
  if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
    pExpr->op = TK_COLUMN;
    pExpr->iTable = pX->iIdxCur;
    pExpr->iColumn = pX->iIdxCol;
    pExpr->pTab = 0;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*







|







136483
136484
136485
136486
136487
136488
136489
136490
136491
136492
136493
136494
136495
136496
136497
*/
static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
  IdxExprTrans *pX = p->u.pIdxTrans;
  if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
    pExpr->op = TK_COLUMN;
    pExpr->iTable = pX->iIdxCur;
    pExpr->iColumn = pX->iIdxCol;
    pExpr->y.pTab = 0;
    return WRC_Prune;
  }else{
    return WRC_Continue;
  }
}

/*
136982
136983
136984
136985
136986
136987
136988
136989
136990
136991
136992
136993
136994
136995
136996
        */
        if( sqlite3Isdigit(zNew[0])
         || zNew[0]=='-'
         || (zNew[0]+1=='0' && iTo==1)
        ){
          if( pLeft->op!=TK_COLUMN 
           || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 
           || IsVirtual(pLeft->pTab)  /* Value might be numeric */
          ){
            sqlite3ExprDelete(db, pPrefix);
            sqlite3ValueFree(pVal);
            return 0;
          }
        }
      }







|







137883
137884
137885
137886
137887
137888
137889
137890
137891
137892
137893
137894
137895
137896
137897
        */
        if( sqlite3Isdigit(zNew[0])
         || zNew[0]=='-'
         || (zNew[0]+1=='0' && iTo==1)
        ){
          if( pLeft->op!=TK_COLUMN 
           || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 
           || IsVirtual(pLeft->y.pTab)  /* Value might be numeric */
          ){
            sqlite3ExprDelete(db, pPrefix);
            sqlite3ValueFree(pVal);
            return 0;
          }
        }
      }
137083
137084
137085
137086
137087
137088
137089
137090
137091
137092
137093
137094
137095
137096
137097
    ** virtual table on their second argument, which is the same as
    ** the left-hand side operand in their in-fix form.
    **
    **       vtab_column MATCH expression
    **       MATCH(expression,vtab_column)
    */
    pCol = pList->a[1].pExpr;
    if( pCol->op==TK_COLUMN && IsVirtual(pCol->pTab) ){
      for(i=0; i<ArraySize(aOp); i++){
        if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
          *peOp2 = aOp[i].eOp2;
          *ppRight = pList->a[0].pExpr;
          *ppLeft = pCol;
          return 1;
        }







|







137984
137985
137986
137987
137988
137989
137990
137991
137992
137993
137994
137995
137996
137997
137998
    ** virtual table on their second argument, which is the same as
    ** the left-hand side operand in their in-fix form.
    **
    **       vtab_column MATCH expression
    **       MATCH(expression,vtab_column)
    */
    pCol = pList->a[1].pExpr;
    if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){
      for(i=0; i<ArraySize(aOp); i++){
        if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
          *peOp2 = aOp[i].eOp2;
          *ppRight = pList->a[0].pExpr;
          *ppLeft = pCol;
          return 1;
        }
137105
137106
137107
137108
137109
137110
137111
137112
137113
137114
137115
137116
137117
137118
137119
137120
137121
137122
137123
137124
137125
137126
137127
137128
137129
137130
137131
137132
137133
137134
137135
137136
137137
137138
137139
137140
137141
137142
137143
137144
137145
    **      OVERLOADED(vtab_column,expression)
    **
    ** Historically, xFindFunction expected to see lower-case function
    ** names.  But for this use case, xFindFunction is expected to deal
    ** with function names in an arbitrary case.
    */
    pCol = pList->a[0].pExpr;
    if( pCol->op==TK_COLUMN && IsVirtual(pCol->pTab) ){
      sqlite3_vtab *pVtab;
      sqlite3_module *pMod;
      void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
      void *pNotUsed;
      pVtab = sqlite3GetVTable(db, pCol->pTab)->pVtab;
      assert( pVtab!=0 );
      assert( pVtab->pModule!=0 );
      pMod = (sqlite3_module *)pVtab->pModule;
      if( pMod->xFindFunction!=0 ){
        i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
        if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
          *peOp2 = i;
          *ppRight = pList->a[1].pExpr;
          *ppLeft = pCol;
          return 1;
        }
      }
    }
  }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
    int res = 0;
    Expr *pLeft = pExpr->pLeft;
    Expr *pRight = pExpr->pRight;
    if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->pTab) ){
      res++;
    }
    if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->pTab) ){
      res++;
      SWAP(Expr*, pLeft, pRight);
    }
    *ppLeft = pLeft;
    *ppRight = pRight;
    if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
    if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;







|




|

















|


|







138006
138007
138008
138009
138010
138011
138012
138013
138014
138015
138016
138017
138018
138019
138020
138021
138022
138023
138024
138025
138026
138027
138028
138029
138030
138031
138032
138033
138034
138035
138036
138037
138038
138039
138040
138041
138042
138043
138044
138045
138046
    **      OVERLOADED(vtab_column,expression)
    **
    ** Historically, xFindFunction expected to see lower-case function
    ** names.  But for this use case, xFindFunction is expected to deal
    ** with function names in an arbitrary case.
    */
    pCol = pList->a[0].pExpr;
    if( pCol->op==TK_COLUMN && IsVirtual(pCol->y.pTab) ){
      sqlite3_vtab *pVtab;
      sqlite3_module *pMod;
      void (*xNotUsed)(sqlite3_context*,int,sqlite3_value**);
      void *pNotUsed;
      pVtab = sqlite3GetVTable(db, pCol->y.pTab)->pVtab;
      assert( pVtab!=0 );
      assert( pVtab->pModule!=0 );
      pMod = (sqlite3_module *)pVtab->pModule;
      if( pMod->xFindFunction!=0 ){
        i = pMod->xFindFunction(pVtab,2, pExpr->u.zToken, &xNotUsed, &pNotUsed);
        if( i>=SQLITE_INDEX_CONSTRAINT_FUNCTION ){
          *peOp2 = i;
          *ppRight = pList->a[1].pExpr;
          *ppLeft = pCol;
          return 1;
        }
      }
    }
  }else if( pExpr->op==TK_NE || pExpr->op==TK_ISNOT || pExpr->op==TK_NOTNULL ){
    int res = 0;
    Expr *pLeft = pExpr->pLeft;
    Expr *pRight = pExpr->pRight;
    if( pLeft->op==TK_COLUMN && IsVirtual(pLeft->y.pTab) ){
      res++;
    }
    if( pRight && pRight->op==TK_COLUMN && IsVirtual(pRight->y.pTab) ){
      res++;
      SWAP(Expr*, pLeft, pRight);
    }
    *ppLeft = pLeft;
    *ppRight = pRight;
    if( pExpr->op==TK_NE ) *peOp2 = SQLITE_INDEX_CONSTRAINT_NE;
    if( pExpr->op==TK_ISNOT ) *peOp2 = SQLITE_INDEX_CONSTRAINT_ISNOT;
138083
138084
138085
138086
138087
138088
138089

138090
138091
138092
138093
138094
138095
138096
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0

   && OptimizationEnabled(db, SQLITE_Stat34)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;








>







138984
138985
138986
138987
138988
138989
138990
138991
138992
138993
138994
138995
138996
138997
138998
  ** virtual term of that form.
  **
  ** Note that the virtual term must be tagged with TERM_VNULL.
  */
  if( pExpr->op==TK_NOTNULL
   && pExpr->pLeft->op==TK_COLUMN
   && pExpr->pLeft->iColumn>=0
   && !ExprHasProperty(pExpr, EP_FromJoin)
   && OptimizationEnabled(db, SQLITE_Stat34)
  ){
    Expr *pNewExpr;
    Expr *pLeft = pExpr->pLeft;
    int idxNew;
    WhereTerm *pNewTerm;

138274
138275
138276
138277
138278
138279
138280

138281
138282
138283
138284
138285
138286
138287
138288
138289
138290
138291
138292
138293

138294
138295
138296
138297
138298
138299
138300
  Expr *pTerm;
  if( pItem->fg.isTabFunc==0 ) return;
  pTab = pItem->pTab;
  assert( pTab!=0 );
  pArgs = pItem->u1.pFuncArg;
  if( pArgs==0 ) return;
  for(j=k=0; j<pArgs->nExpr; j++){

    while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
    if( k>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
                      pTab->zName, j);
      return;
    }
    pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
    if( pColRef==0 ) return;
    pColRef->iTable = pItem->iCursor;
    pColRef->iColumn = k++;
    pColRef->pTab = pTab;
    pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef,
                         sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0));

    whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
  }
}

/************** End of whereexpr.c *******************************************/
/************** Begin file where.c *******************************************/
/*







>










|
|
|
>







139176
139177
139178
139179
139180
139181
139182
139183
139184
139185
139186
139187
139188
139189
139190
139191
139192
139193
139194
139195
139196
139197
139198
139199
139200
139201
139202
139203
139204
  Expr *pTerm;
  if( pItem->fg.isTabFunc==0 ) return;
  pTab = pItem->pTab;
  assert( pTab!=0 );
  pArgs = pItem->u1.pFuncArg;
  if( pArgs==0 ) return;
  for(j=k=0; j<pArgs->nExpr; j++){
    Expr *pRhs;
    while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
    if( k>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
                      pTab->zName, j);
      return;
    }
    pColRef = sqlite3ExprAlloc(pParse->db, TK_COLUMN, 0, 0);
    if( pColRef==0 ) return;
    pColRef->iTable = pItem->iCursor;
    pColRef->iColumn = k++;
    pColRef->y.pTab = pTab;
    pRhs = sqlite3PExpr(pParse, TK_UPLUS, 
        sqlite3ExprDup(pParse->db, pArgs->a[j].pExpr, 0), 0);
    pTerm = sqlite3PExpr(pParse, TK_EQ, pColRef, pRhs);
    whereClauseInsert(pWC, pTerm, TERM_DYNAMIC);
  }
}

/************** End of whereexpr.c *******************************************/
/************** Begin file where.c *******************************************/
/*
139149
139150
139151
139152
139153
139154
139155
139156
139157
139158
139159
139160
139161
139162
139163
  if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
  if( pTabItem->fg.viaCoroutine ){
    sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
    testcase( pParse->db->mallocFailed );
    translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
                          pTabItem->regResult, 1);
    sqlite3VdbeGoto(v, addrTop);
    pTabItem->fg.viaCoroutine = 0;
  }else{
    sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
  }
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
  sqlite3ReleaseTempReg(pParse, regRecord);
  







<







140053
140054
140055
140056
140057
140058
140059

140060
140061
140062
140063
140064
140065
140066
  if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
  if( pTabItem->fg.viaCoroutine ){
    sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
    testcase( pParse->db->mallocFailed );
    translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
                          pTabItem->regResult, 1);
    sqlite3VdbeGoto(v, addrTop);

  }else{
    sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
  }
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
  sqlite3ReleaseTempReg(pParse, regRecord);
  
139327
139328
139329
139330
139331
139332
139333
139334
139335

139336

139337
139338
139339
139340
139341
139342
139343
139344
139345
139346
139347
139348
139349
139350
139351
139352
139353
139354
139355
139356
139357
139358
139359
139360
139361
139362
139363
139364
139365
139366
139367
139368
139369
139370
139371
139372
139373
139374
139375
139376
139377
139378
139379
139380

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
** comes in as the 3rd argument to this function.
**
** If an error occurs, pParse is populated with an error message and a
** non-zero value is returned. Otherwise, 0 is returned and the output

** part of the sqlite3_index_info structure is left populated.

**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
  sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
  int rc;

  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ){
      sqlite3OomFault(pParse->db);
    }else if( !pVtab->zErrMsg ){
      sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
    }else{
      sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
    }
  }
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;

#if 0
  /* This error is now caught by the caller.
  ** Search for "xBestIndex malfunction" below */
  for(i=0; i<p->nConstraint; i++){
    if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
      sqlite3ErrorMsg(pParse, 
          "table %s: xBestIndex returned an invalid plan", pTab->zName);
    }
  }
#endif

  return pParse->nErr;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:







|
|
>
|
>













|










<
<
<
<
<
<
<
<
<
<
<
<
|







140230
140231
140232
140233
140234
140235
140236
140237
140238
140239
140240
140241
140242
140243
140244
140245
140246
140247
140248
140249
140250
140251
140252
140253
140254
140255
140256
140257
140258
140259
140260
140261
140262
140263
140264
140265












140266
140267
140268
140269
140270
140271
140272
140273

/*
** The table object reference passed as the second argument to this function
** must represent a virtual table. This function invokes the xBestIndex()
** method of the virtual table with the sqlite3_index_info object that
** comes in as the 3rd argument to this function.
**
** If an error occurs, pParse is populated with an error message and an
** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
** the current configuration of "unusable" flags in sqlite3_index_info can
** not result in a valid plan.
**
** Whether or not an error is returned, it is the responsibility of the
** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
** that this is required.
*/
static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
  sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
  int rc;

  TRACE_IDX_INPUTS(p);
  rc = pVtab->pModule->xBestIndex(pVtab, p);
  TRACE_IDX_OUTPUTS(p);

  if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
    if( rc==SQLITE_NOMEM ){
      sqlite3OomFault(pParse->db);
    }else if( !pVtab->zErrMsg ){
      sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
    }else{
      sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
    }
  }
  sqlite3_free(pVtab->zErrMsg);
  pVtab->zErrMsg = 0;












  return rc;
}
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
140420
140421
140422
140423
140424
140425
140426








140427
140428
140429
140430
140431
140432
140433
**    (4)  The template has the same or lower cost than the current loop
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
  WhereLoop **ppPrev, *p;
  WhereInfo *pWInfo = pBuilder->pWInfo;
  sqlite3 *db = pWInfo->pParse->db;
  int rc;









  /* If pBuilder->pOrSet is defined, then only keep track of the costs
  ** and prereqs.
  */
  if( pBuilder->pOrSet!=0 ){
    if( pTemplate->nLTerm ){
#if WHERETRACE_ENABLED







>
>
>
>
>
>
>
>







141313
141314
141315
141316
141317
141318
141319
141320
141321
141322
141323
141324
141325
141326
141327
141328
141329
141330
141331
141332
141333
141334
**    (4)  The template has the same or lower cost than the current loop
*/
static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
  WhereLoop **ppPrev, *p;
  WhereInfo *pWInfo = pBuilder->pWInfo;
  sqlite3 *db = pWInfo->pParse->db;
  int rc;

  /* Stop the search once we hit the query planner search limit */
  if( pBuilder->iPlanLimit==0 ){
    WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
    if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
    return SQLITE_DONE;
  }
  pBuilder->iPlanLimit--;

  /* If pBuilder->pOrSet is defined, then only keep track of the costs
  ** and prereqs.
  */
  if( pBuilder->pOrSet!=0 ){
    if( pTemplate->nLTerm ){
#if WHERETRACE_ENABLED
141431
141432
141433
141434
141435
141436
141437
141438










141439
141440
141441
141442
141443
141444
141445
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
  pIdxInfo->estimatedRows = 25;
  pIdxInfo->idxFlags = 0;
  pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;

  /* Invoke the virtual table xBestIndex() method */
  rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
  if( rc ) return rc;











  mxTerm = -1;
  assert( pNew->nLSlot>=nConstraint );
  for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
  pNew->u.vtab.omitMask = 0;
  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  for(i=0; i<nConstraint; i++, pIdxCons++){







|
>
>
>
>
>
>
>
>
>
>







142332
142333
142334
142335
142336
142337
142338
142339
142340
142341
142342
142343
142344
142345
142346
142347
142348
142349
142350
142351
142352
142353
142354
142355
142356
  pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
  pIdxInfo->estimatedRows = 25;
  pIdxInfo->idxFlags = 0;
  pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;

  /* Invoke the virtual table xBestIndex() method */
  rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
  if( rc ){
    if( rc==SQLITE_CONSTRAINT ){
      /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
      ** that the particular combination of parameters provided is unusable.
      ** Make no entries in the loop table.
      */
      WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
      return SQLITE_OK;
    }
    return rc;
  }

  mxTerm = -1;
  assert( pNew->nLSlot>=nConstraint );
  for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
  pNew->u.vtab.omitMask = 0;
  pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
  for(i=0; i<nConstraint; i++, pIdxCons++){
141827
141828
141829
141830
141831
141832
141833

141834
141835
141836

141837
141838
141839
141840
141841
141842
141843
  int rc = SQLITE_OK;
  WhereLoop *pNew;
  u8 priorJointype = 0;

  /* Loop over the tables in the join, from left to right */
  pNew = pBuilder->pNew;
  whereLoopInit(pNew);

  for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
    Bitmask mUnusable = 0;
    pNew->iTab = iTab;

    pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
    if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
      /* This condition is true when pItem is the FROM clause term on the
      ** right-hand-side of a LEFT or CROSS JOIN.  */
      mPrereq = mPrior;
    }
    priorJointype = pItem->fg.jointype;







>



>







142738
142739
142740
142741
142742
142743
142744
142745
142746
142747
142748
142749
142750
142751
142752
142753
142754
142755
142756
  int rc = SQLITE_OK;
  WhereLoop *pNew;
  u8 priorJointype = 0;

  /* Loop over the tables in the join, from left to right */
  pNew = pBuilder->pNew;
  whereLoopInit(pNew);
  pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
  for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
    Bitmask mUnusable = 0;
    pNew->iTab = iTab;
    pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
    pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
    if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
      /* This condition is true when pItem is the FROM clause term on the
      ** right-hand-side of a LEFT or CROSS JOIN.  */
      mPrereq = mPrior;
    }
    priorJointype = pItem->fg.jointype;
141855
141856
141857
141858
141859
141860
141861
141862








141863
141864
141865
141866
141867
141868
141869
    {
      rc = whereLoopAddBtree(pBuilder, mPrereq);
    }
    if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
      rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
    }
    mPrior |= pNew->maskSelf;
    if( rc || db->mallocFailed ) break;








  }

  whereLoopClear(db, pNew);
  return rc;
}

/*







|
>
>
>
>
>
>
>
>







142768
142769
142770
142771
142772
142773
142774
142775
142776
142777
142778
142779
142780
142781
142782
142783
142784
142785
142786
142787
142788
142789
142790
    {
      rc = whereLoopAddBtree(pBuilder, mPrereq);
    }
    if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
      rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
    }
    mPrior |= pNew->maskSelf;
    if( rc || db->mallocFailed ){
      if( rc==SQLITE_DONE ){
        /* We hit the query planner search limit set by iPlanLimit */
        sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
        rc = SQLITE_OK;
      }else{
        break;
      }
    }
  }

  whereLoopClear(db, pNew);
  return rc;
}

/*
144237
144238
144239
144240
144241
144242
144243
144244
144245
144246
144247
144248
144249
144250
144251
144252
144253
144254
144255
144256
      if( i==nSrc ) return WRC_Continue;
    }
  }

  switch( pExpr->op ){

    case TK_FUNCTION:
      if( pExpr->pWin==0 ){
        break;
      }else{
        Window *pWin;
        for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
          if( pExpr->pWin==pWin ){
            assert( pWin->pOwner==pExpr );
            return WRC_Prune;
          }
        }
      }
      /* Fall through.  */








|




|







145158
145159
145160
145161
145162
145163
145164
145165
145166
145167
145168
145169
145170
145171
145172
145173
145174
145175
145176
145177
      if( i==nSrc ) return WRC_Continue;
    }
  }

  switch( pExpr->op ){

    case TK_FUNCTION:
      if( !ExprHasProperty(pExpr, EP_WinFunc) ){
        break;
      }else{
        Window *pWin;
        for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
          if( pExpr->y.pWin==pWin ){
            assert( pWin->pOwner==pExpr );
            return WRC_Prune;
          }
        }
      }
      /* Fall through.  */

144359
144360
144361
144362
144363
144364
144365
144366
144367
144368
144369
144370
144371
144372
144373
** any SQL window functions, this function is a no-op. Otherwise, it 
** rewrites the SELECT statement so that window function xStep functions
** are invoked in the correct order as described under "SELECT REWRITING"
** at the top of this file.
*/
SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){
  int rc = SQLITE_OK;
  if( p->pWin ){
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3 *db = pParse->db;
    Select *pSub = 0;             /* The subquery */
    SrcList *pSrc = p->pSrc;
    Expr *pWhere = p->pWhere;
    ExprList *pGroupBy = p->pGroupBy;
    Expr *pHaving = p->pHaving;







|







145280
145281
145282
145283
145284
145285
145286
145287
145288
145289
145290
145291
145292
145293
145294
** any SQL window functions, this function is a no-op. Otherwise, it 
** rewrites the SELECT statement so that window function xStep functions
** are invoked in the correct order as described under "SELECT REWRITING"
** at the top of this file.
*/
SQLITE_PRIVATE int sqlite3WindowRewrite(Parse *pParse, Select *p){
  int rc = SQLITE_OK;
  if( p->pWin && p->pPrior==0 ){
    Vdbe *v = sqlite3GetVdbe(pParse);
    sqlite3 *db = pParse->db;
    Select *pSub = 0;             /* The subquery */
    SrcList *pSrc = p->pSrc;
    Expr *pWhere = p->pWhere;
    ExprList *pGroupBy = p->pGroupBy;
    Expr *pHaving = p->pHaving;
144572
144573
144574
144575
144576
144577
144578

144579
144580
144581
144582
144583

144584
144585
144586
144587
144588
144589
144590
}

/*
** Attach window object pWin to expression p.
*/
SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
  if( p ){

    /* This routine is only called for the parser.  If pWin was not
    ** allocated due to an OOM, then the parser would fail before ever
    ** invoking this routine */
    if( ALWAYS(pWin) ){
      p->pWin = pWin;

      pWin->pOwner = p;
      if( p->flags & EP_Distinct ){
        sqlite3ErrorMsg(pParse,
           "DISTINCT is not supported for window functions");
      }
    }
  }else{







>




|
>







145493
145494
145495
145496
145497
145498
145499
145500
145501
145502
145503
145504
145505
145506
145507
145508
145509
145510
145511
145512
145513
}

/*
** Attach window object pWin to expression p.
*/
SQLITE_PRIVATE void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
  if( p ){
    assert( p->op==TK_FUNCTION );
    /* This routine is only called for the parser.  If pWin was not
    ** allocated due to an OOM, then the parser would fail before ever
    ** invoking this routine */
    if( ALWAYS(pWin) ){
      p->y.pWin = pWin;
      ExprSetProperty(p, EP_WinFunc);
      pWin->pOwner = p;
      if( p->flags & EP_Distinct ){
        sqlite3ErrorMsg(pParse,
           "DISTINCT is not supported for window functions");
      }
    }
  }else{
145739
145740
145741
145742
145743
145744
145745
145746
145747
145748
145749
145750
145751
145752
145753
/*
** Allocate and return a duplicate of the Window object indicated by the
** third argument. Set the Window.pOwner field of the new object to
** pOwner.
*/
SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
  Window *pNew = 0;
  if( p ){
    pNew = sqlite3DbMallocZero(db, sizeof(Window));
    if( pNew ){
      pNew->zName = sqlite3DbStrDup(db, p->zName);
      pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
      pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
      pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
      pNew->eType = p->eType;







|







146662
146663
146664
146665
146666
146667
146668
146669
146670
146671
146672
146673
146674
146675
146676
/*
** Allocate and return a duplicate of the Window object indicated by the
** third argument. Set the Window.pOwner field of the new object to
** pOwner.
*/
SQLITE_PRIVATE Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
  Window *pNew = 0;
  if( ALWAYS(p) ){
    pNew = sqlite3DbMallocZero(db, sizeof(Window));
    if( pNew ){
      pNew->zName = sqlite3DbStrDup(db, p->zName);
      pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
      pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
      pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
      pNew->eType = p->eType;
145891
145892
145893
145894
145895
145896
145897

145898
145899
145900
145901
145902
145903
145904
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/* #include <stdio.h> */

/************ Begin %include sections from the grammar ************************/

/* #include "sqliteInt.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.







>







146814
146815
146816
146817
146818
146819
146820
146821
146822
146823
146824
146825
146826
146827
146828
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/* #include <stdio.h> */
/* #include <assert.h> */
/************ Begin %include sections from the grammar ************************/

/* #include "sqliteInt.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.
145992
145993
145994
145995
145996
145997
145998
145999
146000
146001
146002
146003
146004
146005
146006
146007
146008
146009
146010
146011
146012
      p->op = (u8)op;
      p->affinity = 0;
      p->flags = EP_Leaf;
      p->iAgg = -1;
      p->pLeft = p->pRight = 0;
      p->x.pList = 0;
      p->pAggInfo = 0;
      p->pTab = 0;
      p->op2 = 0;
      p->iTable = 0;
      p->iColumn = 0;
#ifndef SQLITE_OMIT_WINDOWFUNC
      p->pWin = 0;
#endif
      p->u.zToken = (char*)&p[1];
      memcpy(p->u.zToken, t.z, t.n);
      p->u.zToken[t.n] = 0;
      if( sqlite3Isquote(p->u.zToken[0]) ){
        if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
        sqlite3Dequote(p->u.zToken);
      }







|



<
<
<







146916
146917
146918
146919
146920
146921
146922
146923
146924
146925
146926



146927
146928
146929
146930
146931
146932
146933
      p->op = (u8)op;
      p->affinity = 0;
      p->flags = EP_Leaf;
      p->iAgg = -1;
      p->pLeft = p->pRight = 0;
      p->x.pList = 0;
      p->pAggInfo = 0;
      p->y.pTab = 0;
      p->op2 = 0;
      p->iTable = 0;
      p->iColumn = 0;



      p->u.zToken = (char*)&p[1];
      memcpy(p->u.zToken, t.z, t.n);
      p->u.zToken[t.n] = 0;
      if( sqlite3Isquote(p->u.zToken[0]) ){
        if( p->u.zToken[0]=='"' ) p->flags |= EP_DblQuoted;
        sqlite3Dequote(p->u.zToken);
      }
150190
150191
150192
150193
150194
150195
150196
150197
150198
150199
150200
150201
150202
150203
150204
150205
150206
150207
             yyTracePrompt,yyTokenName[yymajor]);
        }
#endif
        yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion);
        yymajor = YYNOCODE;
      }else{
        while( yypParser->yytos >= yypParser->yystack
            && yymx != YYERRORSYMBOL
            && (yyact = yy_find_reduce_action(
                        yypParser->yytos->stateno,
                        YYERRORSYMBOL)) >= YY_MIN_REDUCE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yytos < yypParser->yystack || yymajor==0 ){
          yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
#ifndef YYNOERRORRECOVERY







<


|







151111
151112
151113
151114
151115
151116
151117

151118
151119
151120
151121
151122
151123
151124
151125
151126
151127
             yyTracePrompt,yyTokenName[yymajor]);
        }
#endif
        yy_destructor(yypParser, (YYCODETYPE)yymajor, &yyminorunion);
        yymajor = YYNOCODE;
      }else{
        while( yypParser->yytos >= yypParser->yystack

            && (yyact = yy_find_reduce_action(
                        yypParser->yytos->stateno,
                        YYERRORSYMBOL)) > YY_MAX_SHIFTREDUCE
        ){
          yy_pop_parser_stack(yypParser);
        }
        if( yypParser->yytos < yypParser->yystack || yymajor==0 ){
          yy_destructor(yypParser,(YYCODETYPE)yymajor,&yyminorunion);
          yy_parse_failed(yypParser);
#ifndef YYNOERRORRECOVERY
151160
151161
151162
151163
151164
151165
151166



































































151167
151168
151169
151170
151171
151172
151173
    }
  }
  while( IdChar(z[i]) ){ i++; }
  *tokenType = TK_ID;
  return i;
}




































































/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** then an and attempt is made to write an error message into 
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







152080
152081
152082
152083
152084
152085
152086
152087
152088
152089
152090
152091
152092
152093
152094
152095
152096
152097
152098
152099
152100
152101
152102
152103
152104
152105
152106
152107
152108
152109
152110
152111
152112
152113
152114
152115
152116
152117
152118
152119
152120
152121
152122
152123
152124
152125
152126
152127
152128
152129
152130
152131
152132
152133
152134
152135
152136
152137
152138
152139
152140
152141
152142
152143
152144
152145
152146
152147
152148
152149
152150
152151
152152
152153
152154
152155
152156
152157
152158
152159
152160
    }
  }
  while( IdChar(z[i]) ){ i++; }
  *tokenType = TK_ID;
  return i;
}

#ifdef SQLITE_ENABLE_NORMALIZE
/*
** Return the length (in bytes) of the token that begins at z[0].
** Store the token type in *tokenType before returning.  If flags has
** SQLITE_TOKEN_NORMALIZE flag enabled, use the identifier token type
** for keywords.  Add SQLITE_TOKEN_QUOTED to flags if the token was
** actually a quoted identifier.  Add SQLITE_TOKEN_KEYWORD to flags
** if the token was recognized as a keyword; this is useful when the
** SQLITE_TOKEN_NORMALIZE flag is used, because it enables the caller
** to differentiate between a keyword being treated as an identifier
** (for normalization purposes) and an actual identifier.
*/
SQLITE_PRIVATE int sqlite3GetTokenNormalized(
  const unsigned char *z,
  int *tokenType,
  int *flags
){
  int n;
  unsigned char iClass = aiClass[*z];
  if( iClass==CC_KYWD ){
    int i;
    for(i=1; aiClass[z[i]]<=CC_KYWD; i++){}
    if( IdChar(z[i]) ){
      /* This token started out using characters that can appear in keywords,
      ** but z[i] is a character not allowed within keywords, so this must
      ** be an identifier instead */
      i++;
      while( IdChar(z[i]) ){ i++; }
      *tokenType = TK_ID;
      return i;
    }
    *tokenType = TK_ID;
    n = keywordCode((char*)z, i, tokenType);
    /* If the token is no longer considered to be an identifier, then it is a
    ** keyword of some kind.  Make the token back into an identifier and then
    ** set the SQLITE_TOKEN_KEYWORD flag.  Several non-identifier tokens are
    ** used verbatim, including IN, IS, NOT, and NULL. */
    switch( *tokenType ){
      case TK_ID: {
        /* do nothing, handled by caller */
        break;
      }
      case TK_IN:
      case TK_IS:
      case TK_NOT:
      case TK_NULL: {
        *flags |= SQLITE_TOKEN_KEYWORD;
        break;
      }
      default: {
        *tokenType = TK_ID;
        *flags |= SQLITE_TOKEN_KEYWORD;
        break;
      }
    }
  }else{
    n = sqlite3GetToken(z, tokenType);
    /* If the token is considered to be an identifier and the character class
    ** of the first character is a quote, set the SQLITE_TOKEN_QUOTED flag. */
    if( *tokenType==TK_ID && (iClass==CC_QUOTE || iClass==CC_QUOTE2) ){
      *flags |= SQLITE_TOKEN_QUOTED;
    }
  }
  return n;
}
#endif /* SQLITE_ENABLE_NORMALIZE */

/*
** Run the parser on the given SQL string.  The parser structure is
** passed in.  An SQLITE_ status code is returned.  If an error occurs
** then an and attempt is made to write an error message into 
** memory obtained from sqlite3_malloc() and to make *pzErrMsg point to that
** error message.
*/
152557
152558
152559
152560
152561
152562
152563

152564
152565
152566
152567
152568
152569
152570
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },
        { SQLITE_DBCONFIG_RESET_DATABASE,        SQLITE_ResetDatabase  },

      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);







>







153544
153545
153546
153547
153548
153549
153550
153551
153552
153553
153554
153555
153556
153557
153558
        { SQLITE_DBCONFIG_ENABLE_TRIGGER,        SQLITE_EnableTrigger  },
        { SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER, SQLITE_Fts3Tokenizer  },
        { SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION, SQLITE_LoadExtension  },
        { SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE,      SQLITE_NoCkptOnClose  },
        { SQLITE_DBCONFIG_ENABLE_QPSG,           SQLITE_EnableQPSG     },
        { SQLITE_DBCONFIG_TRIGGER_EQP,           SQLITE_TriggerEQP     },
        { SQLITE_DBCONFIG_RESET_DATABASE,        SQLITE_ResetDatabase  },
        { SQLITE_DBCONFIG_DEFENSIVE,             SQLITE_Defensive      },
      };
      unsigned int i;
      rc = SQLITE_ERROR; /* IMP: R-42790-23372 */
      for(i=0; i<ArraySize(aFlagOp); i++){
        if( aFlagOp[i].op==op ){
          int onoff = va_arg(ap, int);
          int *pRes = va_arg(ap, int*);
154743
154744
154745
154746
154747
154748
154749

154750
154751
154752
154753
154754
154755
154756
    }
  }
  sqlite3_mutex_enter(db->mutex);
  db->errMask = 0xff;
  db->nDb = 2;
  db->magic = SQLITE_MAGIC_BUSY;
  db->aDb = db->aDbStatic;


  assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
  memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
  db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS;
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->szMmap = sqlite3GlobalConfig.szMmap;







>







155731
155732
155733
155734
155735
155736
155737
155738
155739
155740
155741
155742
155743
155744
155745
    }
  }
  sqlite3_mutex_enter(db->mutex);
  db->errMask = 0xff;
  db->nDb = 2;
  db->magic = SQLITE_MAGIC_BUSY;
  db->aDb = db->aDbStatic;
  db->lookaside.bDisable = 1;

  assert( sizeof(db->aLimit)==sizeof(aHardLimit) );
  memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit));
  db->aLimit[SQLITE_LIMIT_WORKER_THREADS] = SQLITE_DEFAULT_WORKER_THREADS;
  db->autoCommit = 1;
  db->nextAutovac = -1;
  db->szMmap = sqlite3GlobalConfig.szMmap;
154782
154783
154784
154785
154786
154787
154788



154789
154790
154791
154792
154793
154794
154795
                 | SQLITE_CellSizeCk
#endif
#if defined(SQLITE_ENABLE_FTS3_TOKENIZER)
                 | SQLITE_Fts3Tokenizer
#endif
#if defined(SQLITE_ENABLE_QPSG)
                 | SQLITE_EnableQPSG



#endif
      ;
  sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif








>
>
>







155771
155772
155773
155774
155775
155776
155777
155778
155779
155780
155781
155782
155783
155784
155785
155786
155787
                 | SQLITE_CellSizeCk
#endif
#if defined(SQLITE_ENABLE_FTS3_TOKENIZER)
                 | SQLITE_Fts3Tokenizer
#endif
#if defined(SQLITE_ENABLE_QPSG)
                 | SQLITE_EnableQPSG
#endif
#if defined(SQLITE_DEFAULT_DEFENSIVE)
                 | SQLITE_Defensive
#endif
      ;
  sqlite3HashInit(&db->aCollSeq);
#ifndef SQLITE_OMIT_VIRTUALTABLE
  sqlite3HashInit(&db->aModule);
#endif

155670
155671
155672
155673
155674
155675
155676
155677
155678
155679
155680
155681
155682
155683
155684












155685
155686
155687
155688
155689
155690
155691
      sqlite3 *db = va_arg(ap, sqlite3*);
      db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
      break;
    }

    /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
    **
    ** If parameter onoff is non-zero, configure the wrappers so that all
    ** subsequent calls to localtime() and variants fail. If onoff is zero,
    ** undo this setting.
    */
    case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
      sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
      break;
    }













    /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
    **
    ** Set or clear a flag that indicates that the database file is always well-
    ** formed and never corrupt.  This flag is clear by default, indicating that
    ** database files might have arbitrary corruption.  Setting the flag during
    ** testing causes certain assert() statements in the code to be activated







|
|
<





>
>
>
>
>
>
>
>
>
>
>
>







156662
156663
156664
156665
156666
156667
156668
156669
156670

156671
156672
156673
156674
156675
156676
156677
156678
156679
156680
156681
156682
156683
156684
156685
156686
156687
156688
156689
156690
156691
156692
156693
156694
      sqlite3 *db = va_arg(ap, sqlite3*);
      db->dbOptFlags = (u16)(va_arg(ap, int) & 0xffff);
      break;
    }

    /*   sqlite3_test_control(SQLITE_TESTCTRL_LOCALTIME_FAULT, int onoff);
    **
    ** If parameter onoff is non-zero, subsequent calls to localtime()
    ** and its variants fail. If onoff is zero, undo this setting.

    */
    case SQLITE_TESTCTRL_LOCALTIME_FAULT: {
      sqlite3GlobalConfig.bLocaltimeFault = va_arg(ap, int);
      break;
    }

    /*   sqlite3_test_control(SQLITE_TESTCTRL_INTERNAL_FUNCS, int onoff);
    **
    ** If parameter onoff is non-zero, internal-use-only SQL functions
    ** are visible to ordinary SQL.  This is useful for testing but is
    ** unsafe because invalid parameters to those internal-use-only functions
    ** can result in crashes or segfaults.
    */
    case SQLITE_TESTCTRL_INTERNAL_FUNCTIONS: {
      sqlite3GlobalConfig.bInternalFunctions = va_arg(ap, int);
      break;
    }

    /*   sqlite3_test_control(SQLITE_TESTCTRL_NEVER_CORRUPT, int);
    **
    ** Set or clear a flag that indicates that the database file is always well-
    ** formed and never corrupt.  This flag is clear by default, indicating that
    ** database files might have arbitrary corruption.  Setting the flag during
    ** testing causes certain assert() statements in the code to be activated
159121
159122
159123
159124
159125
159126
159127
159128
159129
159130
159131
159132
159133
159134
159135
  sqlite3_int64 *piFirst,         /* OUT: Selected child node */
  sqlite3_int64 *piLast           /* OUT: Selected child node */
){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  int nAlloc = 0;                 /* Size of allocated buffer */
  int isFirstTerm = 1;            /* True when processing first term on page */
  sqlite3_int64 iChild;           /* Block id of child node to descend to */

  /* Skip over the 'height' varint that occurs at the start of every 
  ** interior node. Then load the blockid of the left-child of the b-tree
  ** node into variable iChild.  
  **







|







160124
160125
160126
160127
160128
160129
160130
160131
160132
160133
160134
160135
160136
160137
160138
  sqlite3_int64 *piFirst,         /* OUT: Selected child node */
  sqlite3_int64 *piLast           /* OUT: Selected child node */
){
  int rc = SQLITE_OK;             /* Return code */
  const char *zCsr = zNode;       /* Cursor to iterate through node */
  const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
  char *zBuffer = 0;              /* Buffer to load terms into */
  i64 nAlloc = 0;                 /* Size of allocated buffer */
  int isFirstTerm = 1;            /* True when processing first term on page */
  sqlite3_int64 iChild;           /* Block id of child node to descend to */

  /* Skip over the 'height' varint that occurs at the start of every 
  ** interior node. Then load the blockid of the left-child of the b-tree
  ** node into variable iChild.  
  **
159159
159160
159161
159162
159163
159164
159165
159166
159167
159168
159169
159170
159171
159172
159173
159174
159175
159176
159177
159178
159179
159180
    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    
    assert( nPrefix>=0 && nSuffix>=0 );
    if( &zCsr[nSuffix]>zEnd ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = (nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
      if( !zNew ){
        rc = SQLITE_NOMEM;
        goto finish_scan;
      }
      zBuffer = zNew;
    }
    assert( zBuffer );







|



|

|
|







160162
160163
160164
160165
160166
160167
160168
160169
160170
160171
160172
160173
160174
160175
160176
160177
160178
160179
160180
160181
160182
160183
    if( !isFirstTerm ){
      zCsr += fts3GetVarint32(zCsr, &nPrefix);
    }
    isFirstTerm = 0;
    zCsr += fts3GetVarint32(zCsr, &nSuffix);
    
    assert( nPrefix>=0 && nSuffix>=0 );
    if( nPrefix>zCsr-zNode || nSuffix>zEnd-zCsr ){
      rc = FTS_CORRUPT_VTAB;
      goto finish_scan;
    }
    if( (i64)nPrefix+nSuffix>nAlloc ){
      char *zNew;
      nAlloc = ((i64)nPrefix+nSuffix) * 2;
      zNew = (char *)sqlite3_realloc64(zBuffer, nAlloc);
      if( !zNew ){
        rc = SQLITE_NOMEM;
        goto finish_scan;
      }
      zBuffer = zNew;
    }
    assert( zBuffer );
161145
161146
161147
161148
161149
161150
161151
161152















161153
161154
161155
161156
161157
161158
161159
161160
161161
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);
  return SQLITE_OK;
}
















static const sqlite3_module fts3Module = {
  /* iVersion      */ 2,
  /* xCreate       */ fts3CreateMethod,
  /* xConnect      */ fts3ConnectMethod,
  /* xBestIndex    */ fts3BestIndexMethod,
  /* xDisconnect   */ fts3DisconnectMethod,
  /* xDestroy      */ fts3DestroyMethod,
  /* xOpen         */ fts3OpenMethod,
  /* xClose        */ fts3CloseMethod,








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|







162148
162149
162150
162151
162152
162153
162154
162155
162156
162157
162158
162159
162160
162161
162162
162163
162164
162165
162166
162167
162168
162169
162170
162171
162172
162173
162174
162175
162176
162177
162178
162179
  UNUSED_PARAMETER(iSavepoint);
  assert( p->inTransaction );
  assert( p->mxSavepoint >= iSavepoint );
  TESTONLY( p->mxSavepoint = iSavepoint );
  sqlite3Fts3PendingTermsClear(p);
  return SQLITE_OK;
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts3ShadowName(const char *zName){
  static const char *azName[] = {
    "content", "docsize", "segdir", "segments", "stat", 
  };
  unsigned int i;
  for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
    if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
  }
  return 0;
}

static const sqlite3_module fts3Module = {
  /* iVersion      */ 3,
  /* xCreate       */ fts3CreateMethod,
  /* xConnect      */ fts3ConnectMethod,
  /* xBestIndex    */ fts3BestIndexMethod,
  /* xDisconnect   */ fts3DisconnectMethod,
  /* xDestroy      */ fts3DestroyMethod,
  /* xOpen         */ fts3OpenMethod,
  /* xClose        */ fts3CloseMethod,
161170
161171
161172
161173
161174
161175
161176

161177
161178
161179
161180
161181
161182
161183
  /* xCommit       */ fts3CommitMethod,
  /* xRollback     */ fts3RollbackMethod,
  /* xFindFunction */ fts3FindFunctionMethod,
  /* xRename */       fts3RenameMethod,
  /* xSavepoint    */ fts3SavepointMethod,
  /* xRelease      */ fts3ReleaseMethod,
  /* xRollbackTo   */ fts3RollbackToMethod,

};

/*
** This function is registered as the module destructor (called when an
** FTS3 enabled database connection is closed). It frees the memory
** allocated for the tokenizer hash table.
*/







>







162188
162189
162190
162191
162192
162193
162194
162195
162196
162197
162198
162199
162200
162201
162202
  /* xCommit       */ fts3CommitMethod,
  /* xRollback     */ fts3RollbackMethod,
  /* xFindFunction */ fts3FindFunctionMethod,
  /* xRename */       fts3RenameMethod,
  /* xSavepoint    */ fts3SavepointMethod,
  /* xRelease      */ fts3ReleaseMethod,
  /* xRollbackTo   */ fts3RollbackToMethod,
  /* xShadowName   */ fts3ShadowName,
};

/*
** This function is registered as the module destructor (called when an
** FTS3 enabled database connection is closed). It frees the memory
** allocated for the tokenizer hash table.
*/
161450
161451
161452
161453
161454
161455
161456

161457
161458
161459
161460
161461
161462
161463
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}


/*
** This function is called on each phrase after the position lists for
** any deferred tokens have been loaded into memory. It updates the phrases
** current position list to include only those positions that are really
** instances of the phrase (after considering deferred tokens). If this
** means that the phrase does not appear in the current row, doclist.pList
** and doclist.nList are both zeroed.







>







162469
162470
162471
162472
162473
162474
162475
162476
162477
162478
162479
162480
162481
162482
162483
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
/*
** This function is called on each phrase after the position lists for
** any deferred tokens have been loaded into memory. It updates the phrases
** current position list to include only those positions that are really
** instances of the phrase (after considering deferred tokens). If this
** means that the phrase does not appear in the current row, doclist.pList
** and doclist.nList are both zeroed.
161553
161554
161555
161556
161557
161558
161559

161560
161561
161562
161563
161564
161565
161566
      }
      sqlite3_free(aPoslist);
    }
  }

  return SQLITE_OK;
}


/*
** Maximum number of tokens a phrase may have to be considered for the
** incremental doclists strategy.
*/
#define MAX_INCR_PHRASE_TOKENS 4








>







162573
162574
162575
162576
162577
162578
162579
162580
162581
162582
162583
162584
162585
162586
162587
      }
      sqlite3_free(aPoslist);
    }
  }

  return SQLITE_OK;
}
#endif /* SQLITE_DISABLE_FTS4_DEFERRED */

/*
** Maximum number of tokens a phrase may have to be considered for the
** incremental doclists strategy.
*/
#define MAX_INCR_PHRASE_TOKENS 4

163801
163802
163803
163804
163805
163806
163807
163808

163809
163810
163811
163812
163813
163814
163815
     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0                            /* xRollbackTo   */

  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
  return rc;
}








|
>







164822
164823
164824
164825
164826
164827
164828
164829
164830
164831
164832
164833
164834
164835
164836
164837
     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0,                           /* xRollbackTo   */
     0                            /* xShadowName   */
  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts4aux", &fts3aux_module, 0);
  return rc;
}

167360
167361
167362
167363
167364
167365
167366
167367

167368
167369
167370
167371
167372
167373
167374
     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0                            /* xRollbackTo   */

  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts3tokenize", &fts3tok_module, (void*)pHash);
  return rc;
}








|
>







168382
168383
168384
168385
168386
168387
168388
168389
168390
168391
168392
168393
168394
168395
168396
168397
     0,                           /* xSync         */
     0,                           /* xCommit       */
     0,                           /* xRollback     */
     0,                           /* xFindFunction */
     0,                           /* xRename       */
     0,                           /* xSavepoint    */
     0,                           /* xRelease      */
     0,                           /* xRollbackTo   */
     0                            /* xShadowName   */
  };
  int rc;                         /* Return code */

  rc = sqlite3_create_module(db, "fts3tokenize", &fts3tok_module, (void*)pHash);
  return rc;
}

168748
168749
168750
168751
168752
168753
168754
168755
168756

168757
168758
168759
168760



168761
168762
168763
168764
168765
168766
168767
168768
168769
168770
  rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
  if( rc!=SQLITE_OK ) return rc;
  
  /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 
  ** safe (no risk of overread) even if the node data is corrupted. */
  pNext += fts3GetVarint32(pNext, &nPrefix);
  pNext += fts3GetVarint32(pNext, &nSuffix);
  if( nPrefix<0 || nSuffix<=0 
   || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] 

  ){
    return FTS_CORRUPT_VTAB;
  }




  if( nPrefix+nSuffix>pReader->nTermAlloc ){
    int nNew = (nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pReader->zTerm = zNew;
    pReader->nTermAlloc = nNew;
  }








|
|
>




>
>
>
|
|
|







169771
169772
169773
169774
169775
169776
169777
169778
169779
169780
169781
169782
169783
169784
169785
169786
169787
169788
169789
169790
169791
169792
169793
169794
169795
169796
169797
  rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
  if( rc!=SQLITE_OK ) return rc;
  
  /* Because of the FTS3_NODE_PADDING bytes of padding, the following is 
  ** safe (no risk of overread) even if the node data is corrupted. */
  pNext += fts3GetVarint32(pNext, &nPrefix);
  pNext += fts3GetVarint32(pNext, &nSuffix);
  if( nSuffix<=0 
   || (&pReader->aNode[pReader->nNode] - pNext)<nSuffix
   || nPrefix>pReader->nTermAlloc
  ){
    return FTS_CORRUPT_VTAB;
  }

  /* Both nPrefix and nSuffix were read by fts3GetVarint32() and so are
  ** between 0 and 0x7FFFFFFF. But the sum of the two may cause integer
  ** overflow - hence the (i64) casts.  */
  if( (i64)nPrefix+nSuffix>(i64)pReader->nTermAlloc ){
    i64 nNew = ((i64)nPrefix+nSuffix)*2;
    char *zNew = sqlite3_realloc64(pReader->zTerm, nNew);
    if( !zNew ){
      return SQLITE_NOMEM;
    }
    pReader->zTerm = zNew;
    pReader->nTermAlloc = nNew;
  }

168778
168779
168780
168781
168782
168783
168784
168785
168786
168787
168788
168789
168790
168791
168792
  pReader->aDoclist = pNext;
  pReader->pOffsetList = 0;

  /* Check that the doclist does not appear to extend past the end of the
  ** b-tree node. And that the final byte of the doclist is 0x00. If either 
  ** of these statements is untrue, then the data structure is corrupt.
  */
  if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] 
   || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
  ){
    return FTS_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}








|







169805
169806
169807
169808
169809
169810
169811
169812
169813
169814
169815
169816
169817
169818
169819
  pReader->aDoclist = pNext;
  pReader->pOffsetList = 0;

  /* Check that the doclist does not appear to extend past the end of the
  ** b-tree node. And that the final byte of the doclist is 0x00. If either 
  ** of these statements is untrue, then the data structure is corrupt.
  */
  if( (&pReader->aNode[pReader->nNode] - pReader->aDoclist)<pReader->nDoclist
   || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
  ){
    return FTS_CORRUPT_VTAB;
  }
  return SQLITE_OK;
}

171104
171105
171106
171107
171108
171109
171110



171111
171112
171113
171114
171115
171116
171117



171118
171119
171120
171121
171122
171123
171124
171125
171126
171127
171128
171129
171130
171131
171132
    p->aNode = 0;
  }else{
    if( bFirst==0 ){
      p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
    }
    p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);




    blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
    if( rc==SQLITE_OK ){
      memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
      p->term.n = nPrefix+nSuffix;
      p->iOff += nSuffix;
      if( p->iChild==0 ){
        p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);



        p->aDoclist = &p->aNode[p->iOff];
        p->iOff += p->nDoclist;
      }
    }
  }

  assert( p->iOff<=p->nNode );

  return rc;
}

/*
** Release all dynamic resources held by node-reader object *p.
*/
static void nodeReaderRelease(NodeReader *p){







>
>
>







>
>
>







<







172131
172132
172133
172134
172135
172136
172137
172138
172139
172140
172141
172142
172143
172144
172145
172146
172147
172148
172149
172150
172151
172152
172153
172154
172155
172156
172157

172158
172159
172160
172161
172162
172163
172164
    p->aNode = 0;
  }else{
    if( bFirst==0 ){
      p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
    }
    p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);

    if( nPrefix>p->iOff || nSuffix>p->nNode-p->iOff ){
      return SQLITE_CORRUPT_VTAB;
    }
    blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
    if( rc==SQLITE_OK ){
      memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
      p->term.n = nPrefix+nSuffix;
      p->iOff += nSuffix;
      if( p->iChild==0 ){
        p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
        if( (p->nNode-p->iOff)<p->nDoclist ){
          return SQLITE_CORRUPT_VTAB;
        }
        p->aDoclist = &p->aNode[p->iOff];
        p->iOff += p->nDoclist;
      }
    }
  }

  assert( p->iOff<=p->nNode );

  return rc;
}

/*
** Release all dynamic resources held by node-reader object *p.
*/
static void nodeReaderRelease(NodeReader *p){
177528
177529
177530
177531
177532
177533
177534



177535
177536
177537
177538
177539
177540
177541
#define JEACH_VALUE   1
#define JEACH_TYPE    2
#define JEACH_ATOM    3
#define JEACH_ID      4
#define JEACH_PARENT  5
#define JEACH_FULLKEY 6
#define JEACH_PATH    7



#define JEACH_JSON    8
#define JEACH_ROOT    9

  UNUSED_PARAM(pzErr);
  UNUSED_PARAM(argv);
  UNUSED_PARAM(argc);
  UNUSED_PARAM(pAux);







>
>
>







178560
178561
178562
178563
178564
178565
178566
178567
178568
178569
178570
178571
178572
178573
178574
178575
178576
#define JEACH_VALUE   1
#define JEACH_TYPE    2
#define JEACH_ATOM    3
#define JEACH_ID      4
#define JEACH_PARENT  5
#define JEACH_FULLKEY 6
#define JEACH_PATH    7
/* The xBestIndex method assumes that the JSON and ROOT columns are
** the last two columns in the table.  Should this ever changes, be
** sure to update the xBestIndex method. */
#define JEACH_JSON    8
#define JEACH_ROOT    9

  UNUSED_PARAM(pzErr);
  UNUSED_PARAM(argv);
  UNUSED_PARAM(argc);
  UNUSED_PARAM(pAux);
177785
177786
177787
177788
177789
177790
177791
177792
177793
177794

177795
177796



177797

177798
177799






177800

177801
177802
177803
177804
177805
177806
177807





177808



177809
177810
177811
177812

177813
177814
177815
177816
177817

177818
177819
177820
177821
177822
177823
177824
177825
177826
177827
** 1 if the constraint is found, 3 if the constraint and zRoot are found,
** and 0 otherwise.
*/
static int jsonEachBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;
  int jsonIdx = -1;
  int rootIdx = -1;

  const struct sqlite3_index_constraint *pConstraint;




  UNUSED_PARAM(tab);

  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){






    if( pConstraint->usable==0 ) continue;

    if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    switch( pConstraint->iColumn ){
      case JEACH_JSON:   jsonIdx = i;    break;
      case JEACH_ROOT:   rootIdx = i;    break;
      default:           /* no-op */     break;
    }
  }





  if( jsonIdx<0 ){



    pIdxInfo->idxNum = 0;
    pIdxInfo->estimatedCost = 1e99;
  }else{
    pIdxInfo->estimatedCost = 1.0;

    pIdxInfo->aConstraintUsage[jsonIdx].argvIndex = 1;
    pIdxInfo->aConstraintUsage[jsonIdx].omit = 1;
    if( rootIdx<0 ){
      pIdxInfo->idxNum = 1;
    }else{

      pIdxInfo->aConstraintUsage[rootIdx].argvIndex = 2;
      pIdxInfo->aConstraintUsage[rootIdx].omit = 1;
      pIdxInfo->idxNum = 3;
    }
  }
  return SQLITE_OK;
}

/* Start a search on a new JSON string */
static int jsonEachFilter(







|
|
|
>


>
>
>

>


>
>
>
>
>
>
|
>
|
|
|
<
<


>
>
>
>
>
|
>
>
>

<


>
|
|
|
|

>
|
|
|







178820
178821
178822
178823
178824
178825
178826
178827
178828
178829
178830
178831
178832
178833
178834
178835
178836
178837
178838
178839
178840
178841
178842
178843
178844
178845
178846
178847
178848
178849
178850


178851
178852
178853
178854
178855
178856
178857
178858
178859
178860
178861
178862

178863
178864
178865
178866
178867
178868
178869
178870
178871
178872
178873
178874
178875
178876
178877
178878
178879
178880
178881
** 1 if the constraint is found, 3 if the constraint and zRoot are found,
** and 0 otherwise.
*/
static int jsonEachBestIndex(
  sqlite3_vtab *tab,
  sqlite3_index_info *pIdxInfo
){
  int i;                     /* Loop counter or computed array index */
  int aIdx[2];               /* Index of constraints for JSON and ROOT */
  int unusableMask = 0;      /* Mask of unusable JSON and ROOT constraints */
  int idxMask = 0;           /* Mask of usable == constraints JSON and ROOT */
  const struct sqlite3_index_constraint *pConstraint;

  /* This implementation assumes that JSON and ROOT are the last two
  ** columns in the table */
  assert( JEACH_ROOT == JEACH_JSON+1 );
  UNUSED_PARAM(tab);
  aIdx[0] = aIdx[1] = -1;
  pConstraint = pIdxInfo->aConstraint;
  for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
    int iCol;
    int iMask;
    if( pConstraint->iColumn < JEACH_JSON ) continue;
    iCol = pConstraint->iColumn - JEACH_JSON;
    assert( iCol==0 || iCol==1 );
    iMask = 1 << iCol;
    if( pConstraint->usable==0 ){
      unusableMask |= iMask;
    }else if( pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){
      aIdx[iCol] = i;
      idxMask |= iMask;


    }
  }
  if( (unusableMask & ~idxMask)!=0 ){
    /* If there are any unusable constraints on JSON or ROOT, then reject
    ** this entire plan */
    return SQLITE_CONSTRAINT;
  }
  if( aIdx[0]<0 ){
    /* No JSON input.  Leave estimatedCost at the huge value that it was
    ** initialized to to discourage the query planner from selecting this
    ** plan. */
    pIdxInfo->idxNum = 0;

  }else{
    pIdxInfo->estimatedCost = 1.0;
    i = aIdx[0];
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    if( aIdx[1]<0 ){
      pIdxInfo->idxNum = 1;  /* Only JSON supplied.  Plan 1 */
    }else{
      i = aIdx[1];
      pIdxInfo->aConstraintUsage[i].argvIndex = 2;
      pIdxInfo->aConstraintUsage[i].omit = 1;
      pIdxInfo->idxNum = 3;  /* Both JSON and ROOT are supplied.  Plan 3 */
    }
  }
  return SQLITE_OK;
}

/* Start a search on a new JSON string */
static int jsonEachFilter(
177922
177923
177924
177925
177926
177927
177928
177929

177930
177931
177932
177933
177934
177935
177936
  0,                         /* xSync */
  0,                         /* xCommit */
  0,                         /* xRollback */
  0,                         /* xFindMethod */
  0,                         /* xRename */
  0,                         /* xSavepoint */
  0,                         /* xRelease */
  0                          /* xRollbackTo */

};

/* The methods of the json_tree virtual table. */
static sqlite3_module jsonTreeModule = {
  0,                         /* iVersion */
  0,                         /* xCreate */
  jsonEachConnect,           /* xConnect */







|
>







178976
178977
178978
178979
178980
178981
178982
178983
178984
178985
178986
178987
178988
178989
178990
178991
  0,                         /* xSync */
  0,                         /* xCommit */
  0,                         /* xRollback */
  0,                         /* xFindMethod */
  0,                         /* xRename */
  0,                         /* xSavepoint */
  0,                         /* xRelease */
  0,                         /* xRollbackTo */
  0                          /* xShadowName */
};

/* The methods of the json_tree virtual table. */
static sqlite3_module jsonTreeModule = {
  0,                         /* iVersion */
  0,                         /* xCreate */
  jsonEachConnect,           /* xConnect */
177949
177950
177951
177952
177953
177954
177955
177956

177957
177958
177959
177960
177961
177962
177963
  0,                         /* xSync */
  0,                         /* xCommit */
  0,                         /* xRollback */
  0,                         /* xFindMethod */
  0,                         /* xRename */
  0,                         /* xSavepoint */
  0,                         /* xRelease */
  0                          /* xRollbackTo */

};
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/****************************************************************************
** The following routines are the only publically visible identifiers in this
** file.  Call the following routines in order to register the various SQL
** functions and the virtual table implemented by this file.







|
>







179004
179005
179006
179007
179008
179009
179010
179011
179012
179013
179014
179015
179016
179017
179018
179019
  0,                         /* xSync */
  0,                         /* xCommit */
  0,                         /* xRollback */
  0,                         /* xFindMethod */
  0,                         /* xRename */
  0,                         /* xSavepoint */
  0,                         /* xRelease */
  0,                         /* xRollbackTo */
  0                          /* xShadowName */
};
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/****************************************************************************
** The following routines are the only publically visible identifiers in this
** file.  Call the following routines in order to register the various SQL
** functions and the virtual table implemented by this file.
181379
181380
181381
181382
181383
181384
181385
















181386
181387
181388
181389
181390
181391
181392
181393
181394
    }
    sqlite3_free(zSql);
  }

  return rc;
}

















static sqlite3_module rtreeModule = {
  2,                          /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|







182435
182436
182437
182438
182439
182440
182441
182442
182443
182444
182445
182446
182447
182448
182449
182450
182451
182452
182453
182454
182455
182456
182457
182458
182459
182460
182461
182462
182463
182464
182465
182466
    }
    sqlite3_free(zSql);
  }

  return rc;
}


/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int rtreeShadowName(const char *zName){
  static const char *azName[] = {
    "node", "parent", "rowid"
  };
  unsigned int i;
  for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
    if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
  }
  return 0;
}

static sqlite3_module rtreeModule = {
  3,                          /* iVersion */
  rtreeCreate,                /* xCreate - create a table */
  rtreeConnect,               /* xConnect - connect to an existing table */
  rtreeBestIndex,             /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
181403
181404
181405
181406
181407
181408
181409

181410
181411
181412
181413
181414
181415
181416
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */

};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 







>







182475
182476
182477
182478
182479
182480
182481
182482
182483
182484
182485
182486
182487
182488
182489
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  0,                          /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
  rtreeShadowName             /* xShadowName */
};

static int rtreeSqlInit(
  Rtree *pRtree, 
  sqlite3 *db, 
  const char *zDb, 
  const char *zPrefix, 
182393
182394
182395
182396
182397
182398
182399





182400
182401
182402
182403
182404
182405
182406





182407
182408
182409
182410
182411
182412
182413
** each segment is "outside" and the area to the left is "inside".
**
** The on-disk representation consists of a 4-byte header followed by
** the values.  The 4-byte header is:
**
**      encoding    (1 byte)   0=big-endian, 1=little-endian
**      nvertex     (3 bytes)  Number of vertexes as a big-endian integer





*/
typedef struct GeoPoly GeoPoly;
struct GeoPoly {
  int nVertex;          /* Number of vertexes */
  unsigned char hdr[4]; /* Header for on-disk representation */
  GeoCoord a[2];    /* 2*nVertex values. X (longitude) first, then Y */
};






/*
** State of a parse of a GeoJSON input.
*/
typedef struct GeoParse GeoParse;
struct GeoParse {
  const unsigned char *z;   /* Unparsed input */







>
>
>
>
>





|

>
>
>
>
>







183466
183467
183468
183469
183470
183471
183472
183473
183474
183475
183476
183477
183478
183479
183480
183481
183482
183483
183484
183485
183486
183487
183488
183489
183490
183491
183492
183493
183494
183495
183496
** each segment is "outside" and the area to the left is "inside".
**
** The on-disk representation consists of a 4-byte header followed by
** the values.  The 4-byte header is:
**
**      encoding    (1 byte)   0=big-endian, 1=little-endian
**      nvertex     (3 bytes)  Number of vertexes as a big-endian integer
**
** Enough space is allocated for 4 coordinates, to work around over-zealous
** warnings coming from some compiler (notably, clang). In reality, the size
** of each GeoPoly memory allocate is adjusted as necessary so that the
** GeoPoly.a[] array at the end is the appropriate size.
*/
typedef struct GeoPoly GeoPoly;
struct GeoPoly {
  int nVertex;          /* Number of vertexes */
  unsigned char hdr[4]; /* Header for on-disk representation */
  GeoCoord a[8];        /* 2*nVertex values. X (longitude) first, then Y */
};

/* The size of a memory allocation needed for a GeoPoly object sufficient
** to hold N coordinate pairs.
*/
#define GEOPOLY_SZ(N)  (sizeof(GeoPoly) + sizeof(GeoCoord)*2*((N)-4))

/*
** State of a parse of a GeoJSON input.
*/
typedef struct GeoParse GeoParse;
struct GeoParse {
  const unsigned char *z;   /* Unparsed input */
182425
182426
182427
182428
182429
182430
182431
182432
182433
182434
182435
182436
182437
182438
182439
182440
182441
182442
182443
182444
182445
182446
182447
182448
182449
182450
182451
182452
182453
182454
182455
182456
182457
182458
182459
  t = a[1];
  a[1] = a[2];
  a[2] = t;
}

/* Skip whitespace.  Return the next non-whitespace character. */
static char geopolySkipSpace(GeoParse *p){
  while( p->z[0] && safe_isspace(p->z[0]) ) p->z++;
  return p->z[0];
}

/* Parse out a number.  Write the value into *pVal if pVal!=0.
** return non-zero on success and zero if the next token is not a number.
*/
static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){
  char c = geopolySkipSpace(p);
  const unsigned char *z = p->z;
  int j = 0;
  int seenDP = 0;
  int seenE = 0;
  if( c=='-' ){
    j = 1;
    c = z[j];
  }
  if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0;
  for(;; j++){
    c = z[j];
    if( c>='0' && c<='9' ) continue;
    if( c=='.' ){
      if( z[j-1]=='-' ) return 0;
      if( seenDP ) return 0;
      seenDP = 1;
      continue;
    }
    if( c=='e' || c=='E' ){







|



















|







183508
183509
183510
183511
183512
183513
183514
183515
183516
183517
183518
183519
183520
183521
183522
183523
183524
183525
183526
183527
183528
183529
183530
183531
183532
183533
183534
183535
183536
183537
183538
183539
183540
183541
183542
  t = a[1];
  a[1] = a[2];
  a[2] = t;
}

/* Skip whitespace.  Return the next non-whitespace character. */
static char geopolySkipSpace(GeoParse *p){
  while( safe_isspace(p->z[0]) ) p->z++;
  return p->z[0];
}

/* Parse out a number.  Write the value into *pVal if pVal!=0.
** return non-zero on success and zero if the next token is not a number.
*/
static int geopolyParseNumber(GeoParse *p, GeoCoord *pVal){
  char c = geopolySkipSpace(p);
  const unsigned char *z = p->z;
  int j = 0;
  int seenDP = 0;
  int seenE = 0;
  if( c=='-' ){
    j = 1;
    c = z[j];
  }
  if( c=='0' && z[j+1]>='0' && z[j+1]<='9' ) return 0;
  for(;; j++){
    c = z[j];
    if( safe_isdigit(c) ) continue;
    if( c=='.' ){
      if( z[j-1]=='-' ) return 0;
      if( seenDP ) return 0;
      seenDP = 1;
      continue;
    }
    if( c=='e' || c=='E' ){
182467
182468
182469
182470
182471
182472
182473








182474


182475
182476
182477
182478
182479
182480
182481
      }
      if( c<'0' || c>'9' ) return 0;
      continue;
    }
    break;
  }
  if( z[j-1]<'0' ) return 0;








  if( pVal ) *pVal = (GeoCoord)atof((const char*)p->z);


  p->z += j;
  return 1;
}

/*
** If the input is a well-formed JSON array of coordinates with at least
** four coordinates and where each coordinate is itself a two-value array,







>
>
>
>
>
>
>
>
|
>
>







183550
183551
183552
183553
183554
183555
183556
183557
183558
183559
183560
183561
183562
183563
183564
183565
183566
183567
183568
183569
183570
183571
183572
183573
183574
      }
      if( c<'0' || c>'9' ) return 0;
      continue;
    }
    break;
  }
  if( z[j-1]<'0' ) return 0;
  if( pVal ){
#ifdef SQLITE_AMALGAMATION
     /* The sqlite3AtoF() routine is much much faster than atof(), if it
     ** is available */
     double r;
     (void)sqlite3AtoF((const char*)p->z, &r, j, SQLITE_UTF8);
     *pVal = r;
#else
     *pVal = (GeoCoord)atof((const char*)p->z);
#endif
  }
  p->z += j;
  return 1;
}

/*
** If the input is a well-formed JSON array of coordinates with at least
** four coordinates and where each coordinate is itself a two-value array,
182525
182526
182527
182528
182529
182530
182531
182532
182533
182534
182535
182536
182537
182538
182539
182540
182541
182542
182543
182544
    }
    if( geopolySkipSpace(&s)==']'
     && s.nVertex>=4
     && s.a[0]==s.a[s.nVertex*2-2]
     && s.a[1]==s.a[s.nVertex*2-1]
     && (s.z++, geopolySkipSpace(&s)==0)
    ){
      int nByte;
      GeoPoly *pOut;
      int x = 1;
      s.nVertex--;  /* Remove the redundant vertex at the end */
      nByte = sizeof(GeoPoly) * s.nVertex*2*sizeof(GeoCoord);
      pOut = sqlite3_malloc64( nByte );
      x = 1;
      if( pOut==0 ) goto parse_json_err;
      pOut->nVertex = s.nVertex;
      memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord));
      pOut->hdr[0] = *(unsigned char*)&x;
      pOut->hdr[1] = (s.nVertex>>16)&0xff;
      pOut->hdr[2] = (s.nVertex>>8)&0xff;







<



<
|







183618
183619
183620
183621
183622
183623
183624

183625
183626
183627

183628
183629
183630
183631
183632
183633
183634
183635
    }
    if( geopolySkipSpace(&s)==']'
     && s.nVertex>=4
     && s.a[0]==s.a[s.nVertex*2-2]
     && s.a[1]==s.a[s.nVertex*2-1]
     && (s.z++, geopolySkipSpace(&s)==0)
    ){

      GeoPoly *pOut;
      int x = 1;
      s.nVertex--;  /* Remove the redundant vertex at the end */

      pOut = sqlite3_malloc64( GEOPOLY_SZ(s.nVertex) );
      x = 1;
      if( pOut==0 ) goto parse_json_err;
      pOut->nVertex = s.nVertex;
      memcpy(pOut->a, s.a, s.nVertex*2*sizeof(GeoCoord));
      pOut->hdr[0] = *(unsigned char*)&x;
      pOut->hdr[1] = (s.nVertex>>16)&0xff;
      pOut->hdr[2] = (s.nVertex>>8)&0xff;
182732
182733
182734
182735
182736
182737
182738





















182739
182740
182741
182742
182743
182744
182745
182746
182747
182748
182749
182750
182751
182752
182753
182754




182755





















182756
182757

182758

182759

182760
182761
182762
182763
182764

182765

182766
182767
182768


























































182769
182770
182771
182772
182773
182774
182775
      p->a[ii*2+1] = y1;
    }
    sqlite3_result_blob(context, p->hdr, 
       4+8*p->nVertex, SQLITE_TRANSIENT);
    sqlite3_free(p);
  }
}






















/*
** Implementation of the geopoly_area(X) function.
**
** If the input is a well-formed Geopoly BLOB then return the area
** enclosed by the polygon.  If the polygon circulates clockwise instead
** of counterclockwise (as it should) then return the negative of the
** enclosed area.  Otherwise return NULL.
*/
static void geopolyAreaFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
  if( p ){




    double rArea = 0.0;





















    int ii;
    for(ii=0; ii<p->nVertex-1; ii++){

      rArea += (p->a[ii*2] - p->a[ii*2+2])           /* (x0 - x1) */

                * (p->a[ii*2+1] + p->a[ii*2+3])      /* (y0 + y1) */

                * 0.5;
    }
    rArea += (p->a[ii*2] - p->a[0])                  /* (xN - x0) */
             * (p->a[ii*2+1] + p->a[1])              /* (yN + y0) */
             * 0.5;

    sqlite3_result_double(context, rArea);

    sqlite3_free(p);
  }            
}



























































/*
** If pPoly is a polygon, compute its bounding box. Then:
**
**    (1) if aCoord!=0 store the bounding box in aCoord, returning NULL
**    (2) otherwise, compute a GeoPoly for the bounding box and return the
**        new GeoPoly







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
>
|
>
|
>
|
|
<
<
<
>
|
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







183823
183824
183825
183826
183827
183828
183829
183830
183831
183832
183833
183834
183835
183836
183837
183838
183839
183840
183841
183842
183843
183844
183845
183846
183847
183848
183849
183850
183851
183852
183853
183854
183855
183856
183857
183858
183859
183860
183861
183862
183863
183864
183865
183866
183867
183868
183869
183870
183871
183872
183873
183874
183875
183876
183877
183878
183879
183880
183881
183882
183883
183884
183885
183886
183887
183888
183889
183890
183891
183892
183893
183894
183895
183896
183897
183898
183899
183900
183901



183902
183903
183904
183905
183906
183907
183908
183909
183910
183911
183912
183913
183914
183915
183916
183917
183918
183919
183920
183921
183922
183923
183924
183925
183926
183927
183928
183929
183930
183931
183932
183933
183934
183935
183936
183937
183938
183939
183940
183941
183942
183943
183944
183945
183946
183947
183948
183949
183950
183951
183952
183953
183954
183955
183956
183957
183958
183959
183960
183961
183962
183963
183964
183965
183966
183967
183968
183969
183970
183971
183972
      p->a[ii*2+1] = y1;
    }
    sqlite3_result_blob(context, p->hdr, 
       4+8*p->nVertex, SQLITE_TRANSIENT);
    sqlite3_free(p);
  }
}

/*
** Compute the area enclosed by the polygon.
**
** This routine can also be used to detect polygons that rotate in
** the wrong direction.  Polygons are suppose to be counter-clockwise (CCW).
** This routine returns a negative value for clockwise (CW) polygons.
*/
static double geopolyArea(GeoPoly *p){
  double rArea = 0.0;
  int ii;
  for(ii=0; ii<p->nVertex-1; ii++){
    rArea += (p->a[ii*2] - p->a[ii*2+2])           /* (x0 - x1) */
              * (p->a[ii*2+1] + p->a[ii*2+3])      /* (y0 + y1) */
              * 0.5;
  }
  rArea += (p->a[ii*2] - p->a[0])                  /* (xN - x0) */
           * (p->a[ii*2+1] + p->a[1])              /* (yN + y0) */
           * 0.5;
  return rArea;
}

/*
** Implementation of the geopoly_area(X) function.
**
** If the input is a well-formed Geopoly BLOB then return the area
** enclosed by the polygon.  If the polygon circulates clockwise instead
** of counterclockwise (as it should) then return the negative of the
** enclosed area.  Otherwise return NULL.
*/
static void geopolyAreaFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
  if( p ){
    sqlite3_result_double(context, geopolyArea(p));
    sqlite3_free(p);
  }            
}

/*
** Implementation of the geopoly_ccw(X) function.
**
** If the rotation of polygon X is clockwise (incorrect) instead of
** counter-clockwise (the correct winding order according to RFC7946)
** then reverse the order of the vertexes in polygon X.  
**
** In other words, this routine returns a CCW polygon regardless of the
** winding order of its input.
**
** Use this routine to sanitize historical inputs that that sometimes
** contain polygons that wind in the wrong direction.
*/
static void geopolyCcwFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  GeoPoly *p = geopolyFuncParam(context, argv[0], 0);
  if( p ){
    if( geopolyArea(p)<0.0 ){
      int ii, jj;
      for(ii=2, jj=p->nVertex*2 - 2; ii<jj; ii+=2, jj-=2){
        GeoCoord t = p->a[ii];
        p->a[ii] = p->a[jj];
        p->a[jj] = t;
        t = p->a[ii+1];
        p->a[ii+1] = p->a[jj+1];
        p->a[jj+1] = t;
      }



    }
    sqlite3_result_blob(context, p->hdr, 
       4+8*p->nVertex, SQLITE_TRANSIENT);
    sqlite3_free(p);
  }            
}

#define GEOPOLY_PI 3.1415926535897932385

/* Fast approximation for cosine(X) for X between -0.5*pi and 2*pi
*/
static double geopolyCosine(double r){
  assert( r>=-0.5*GEOPOLY_PI && r<=2.0*GEOPOLY_PI );
  if( r>=1.5*GEOPOLY_PI ){
    r -= 2.0*GEOPOLY_PI;
  }
  if( r>=0.5*GEOPOLY_PI ){
    return -geopolyCosine(r-GEOPOLY_PI);
  }else{
    double r2 = r*r;
    double r3 = r2*r;
    double r5 = r3*r2;
    return 0.9996949*r - 0.1656700*r3 + 0.0075134*r5;
  }
}

/*
** Function:   geopoly_regular(X,Y,R,N)
**
** Construct a simple, convex, regular polygon centered at X, Y
** with circumradius R and with N sides.
*/
static void geopolyRegularFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  double x = sqlite3_value_double(argv[0]);
  double y = sqlite3_value_double(argv[1]);
  double r = sqlite3_value_double(argv[2]);
  int n = sqlite3_value_int(argv[3]);
  int i;
  GeoPoly *p;

  if( n<3 || r<=0.0 ) return;
  if( n>1000 ) n = 1000;
  p = sqlite3_malloc64( sizeof(*p) + (n-1)*2*sizeof(GeoCoord) );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }
  i = 1;
  p->hdr[0] = *(unsigned char*)&i;
  p->hdr[1] = 0;
  p->hdr[2] = (n>>8)&0xff;
  p->hdr[3] = n&0xff;
  for(i=0; i<n; i++){
    double rAngle = 2.0*GEOPOLY_PI*i/n;
    p->a[i*2] = x - r*geopolyCosine(rAngle-0.5*GEOPOLY_PI);
    p->a[i*2+1] = y + r*geopolyCosine(rAngle);
  }
  sqlite3_result_blob(context, p->hdr, 4+8*n, SQLITE_TRANSIENT);
  sqlite3_free(p);
}

/*
** If pPoly is a polygon, compute its bounding box. Then:
**
**    (1) if aCoord!=0 store the bounding box in aCoord, returning NULL
**    (2) otherwise, compute a GeoPoly for the bounding box and return the
**        new GeoPoly
182807
182808
182809
182810
182811
182812
182813
182814
182815
182816
182817
182818
182819
182820
182821
      r = p->a[ii*2+1];
      if( r<mnY ) mnY = (float)r;
      else if( r>mxY ) mxY = (float)r;
    }
    if( pRc ) *pRc = SQLITE_OK;
    if( aCoord==0 ){
      geopolyBboxFill:
      pOut = sqlite3_realloc(p, sizeof(GeoPoly)+sizeof(GeoCoord)*6);
      if( pOut==0 ){
        sqlite3_free(p);
        if( context ) sqlite3_result_error_nomem(context);
        if( pRc ) *pRc = SQLITE_NOMEM;
        return 0;
      }
      pOut->nVertex = 4;







|







184004
184005
184006
184007
184008
184009
184010
184011
184012
184013
184014
184015
184016
184017
184018
      r = p->a[ii*2+1];
      if( r<mnY ) mnY = (float)r;
      else if( r>mxY ) mxY = (float)r;
    }
    if( pRc ) *pRc = SQLITE_OK;
    if( aCoord==0 ){
      geopolyBboxFill:
      pOut = sqlite3_realloc(p, GEOPOLY_SZ(4));
      if( pOut==0 ){
        sqlite3_free(p);
        if( context ) sqlite3_result_error_nomem(context);
        if( pRc ) *pRc = SQLITE_NOMEM;
        return 0;
      }
      pOut->nVertex = 4;
183835
183836
183837
183838
183839
183840
183841







183842


183843
183844
183845
183846
183847
183848
183849
    int jj;
    int nChange = 0;
    sqlite3_bind_int64(pUp, 1, cell.iRowid);
    assert( pRtree->nAux>=1 );
    if( sqlite3_value_nochange(aData[2]) ){
      sqlite3_bind_null(pUp, 2);
    }else{







      sqlite3_bind_value(pUp, 2, aData[2]);


      nChange = 1;
    }
    for(jj=1; jj<pRtree->nAux; jj++){
      nChange++;
      sqlite3_bind_value(pUp, jj+2, aData[jj+2]);
    }
    if( nChange ){







>
>
>
>
>
>
>
|
>
>







185032
185033
185034
185035
185036
185037
185038
185039
185040
185041
185042
185043
185044
185045
185046
185047
185048
185049
185050
185051
185052
185053
185054
185055
    int jj;
    int nChange = 0;
    sqlite3_bind_int64(pUp, 1, cell.iRowid);
    assert( pRtree->nAux>=1 );
    if( sqlite3_value_nochange(aData[2]) ){
      sqlite3_bind_null(pUp, 2);
    }else{
      GeoPoly *p = 0;
      if( sqlite3_value_type(aData[2])==SQLITE_TEXT
       && (p = geopolyFuncParam(0, aData[2], &rc))!=0
       && rc==SQLITE_OK
      ){
        sqlite3_bind_blob(pUp, 2, p->hdr, 4+8*p->nVertex, SQLITE_TRANSIENT);
      }else{
        sqlite3_bind_value(pUp, 2, aData[2]);
      }
      sqlite3_free(p);
      nChange = 1;
    }
    for(jj=1; jj<pRtree->nAux; jj++){
      nChange++;
      sqlite3_bind_value(pUp, jj+2, aData[jj+2]);
    }
    if( nChange ){
183879
183880
183881
183882
183883
183884
183885
183886
183887
183888
183889
183890
183891
183892
183893
    return SQLITE_INDEX_CONSTRAINT_FUNCTION+1;
  }
  return 0;
}


static sqlite3_module geopolyModule = {
  2,                          /* iVersion */
  geopolyCreate,              /* xCreate - create a table */
  geopolyConnect,             /* xConnect - connect to an existing table */
  geopolyBestIndex,           /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */







|







185085
185086
185087
185088
185089
185090
185091
185092
185093
185094
185095
185096
185097
185098
185099
    return SQLITE_INDEX_CONSTRAINT_FUNCTION+1;
  }
  return 0;
}


static sqlite3_module geopolyModule = {
  3,                          /* iVersion */
  geopolyCreate,              /* xCreate - create a table */
  geopolyConnect,             /* xConnect - connect to an existing table */
  geopolyBestIndex,           /* xBestIndex - Determine search strategy */
  rtreeDisconnect,            /* xDisconnect - Disconnect from a table */
  rtreeDestroy,               /* xDestroy - Drop a table */
  rtreeOpen,                  /* xOpen - open a cursor */
  rtreeClose,                 /* xClose - close a cursor */
183902
183903
183904
183905
183906
183907
183908

183909
183910
183911
183912
183913
183914
183915

183916
183917
183918
183919
183920
183921
183922
183923
183924
183925
183926
183927


183928
183929
183930
183931
183932
183933
183934
183935
183936
183937

183938
183939
183940
183941
183942
183943
183944
183945
183946
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  geopolyFindFunction,        /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */

};

static int sqlite3_geopoly_init(sqlite3 *db){
  int rc = SQLITE_OK;
  static const struct {
    void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
    int nArg;

    const char *zName;
  } aFunc[] = {
     { geopolyAreaFunc,          1,    "geopoly_area"             },
     { geopolyBlobFunc,          1,    "geopoly_blob"             },
     { geopolyJsonFunc,          1,    "geopoly_json"             },
     { geopolySvgFunc,          -1,    "geopoly_svg"              },
     { geopolyWithinFunc,        2,    "geopoly_within"           },
     { geopolyContainsPointFunc, 3,    "geopoly_contains_point"   },
     { geopolyOverlapFunc,       2,    "geopoly_overlap"          },
     { geopolyDebugFunc,         1,    "geopoly_debug"            },
     { geopolyBBoxFunc,          1,    "geopoly_bbox"             },
     { geopolyXformFunc,         7,    "geopoly_xform"            },


  };
  static const struct {
    void (*xStep)(sqlite3_context*,int,sqlite3_value**);
    void (*xFinal)(sqlite3_context*);
    const char *zName;
  } aAgg[] = {
     { geopolyBBoxStep, geopolyBBoxFinal, "geopoly_group_bbox"    },
  };
  int i;
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){

    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8, 0,
                                 aFunc[i].xFunc, 0, 0);
  }
  for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aAgg[i].zName, 1, SQLITE_UTF8, 0,
                                 0, aAgg[i].xStep, aAgg[i].xFinal);
  }
  if( rc==SQLITE_OK ){







>






|
>


|
|
|
|
|
|
|
|
|
|
>
>










>

|







185108
185109
185110
185111
185112
185113
185114
185115
185116
185117
185118
185119
185120
185121
185122
185123
185124
185125
185126
185127
185128
185129
185130
185131
185132
185133
185134
185135
185136
185137
185138
185139
185140
185141
185142
185143
185144
185145
185146
185147
185148
185149
185150
185151
185152
185153
185154
185155
185156
185157
  rtreeEndTransaction,        /* xCommit - commit transaction */
  rtreeEndTransaction,        /* xRollback - rollback transaction */
  geopolyFindFunction,        /* xFindFunction - function overloading */
  rtreeRename,                /* xRename - rename the table */
  rtreeSavepoint,             /* xSavepoint */
  0,                          /* xRelease */
  0,                          /* xRollbackTo */
  rtreeShadowName             /* xShadowName */
};

static int sqlite3_geopoly_init(sqlite3 *db){
  int rc = SQLITE_OK;
  static const struct {
    void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
    signed char nArg;
    unsigned char bPure;
    const char *zName;
  } aFunc[] = {
     { geopolyAreaFunc,          1, 1,    "geopoly_area"             },
     { geopolyBlobFunc,          1, 1,    "geopoly_blob"             },
     { geopolyJsonFunc,          1, 1,    "geopoly_json"             },
     { geopolySvgFunc,          -1, 1,    "geopoly_svg"              },
     { geopolyWithinFunc,        2, 1,    "geopoly_within"           },
     { geopolyContainsPointFunc, 3, 1,    "geopoly_contains_point"   },
     { geopolyOverlapFunc,       2, 1,    "geopoly_overlap"          },
     { geopolyDebugFunc,         1, 0,    "geopoly_debug"            },
     { geopolyBBoxFunc,          1, 1,    "geopoly_bbox"             },
     { geopolyXformFunc,         7, 1,    "geopoly_xform"            },
     { geopolyRegularFunc,       4, 1,    "geopoly_regular"          },
     { geopolyCcwFunc,           1, 1,    "geopoly_ccw"              },
  };
  static const struct {
    void (*xStep)(sqlite3_context*,int,sqlite3_value**);
    void (*xFinal)(sqlite3_context*);
    const char *zName;
  } aAgg[] = {
     { geopolyBBoxStep, geopolyBBoxFinal, "geopoly_group_bbox"    },
  };
  int i;
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    int enc = aFunc[i].bPure ? SQLITE_UTF8|SQLITE_DETERMINISTIC : SQLITE_UTF8;
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 enc, 0,
                                 aFunc[i].xFunc, 0, 0);
  }
  for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aAgg[i].zName, 1, SQLITE_UTF8, 0,
                                 0, aAgg[i].xStep, aAgg[i].xFinal);
  }
  if( rc==SQLITE_OK ){
185959
185960
185961
185962
185963
185964
185965
185966

185967
185968
185969
185970
185971
185972
185973
** space used by the RBU handle.
*/
struct rbu_vfs {
  sqlite3_vfs base;               /* rbu VFS shim methods */
  sqlite3_vfs *pRealVfs;          /* Underlying VFS */
  sqlite3_mutex *mutex;           /* Mutex to protect pMain */
  sqlite3rbu *pRbu;               /* Owner RBU object */
  rbu_file *pMain;                /* Linked list of main db files */

};

/*
** Each file opened by an rbu VFS is represented by an instance of
** the following structure.
**
** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable







|
>







187170
187171
187172
187173
187174
187175
187176
187177
187178
187179
187180
187181
187182
187183
187184
187185
** space used by the RBU handle.
*/
struct rbu_vfs {
  sqlite3_vfs base;               /* rbu VFS shim methods */
  sqlite3_vfs *pRealVfs;          /* Underlying VFS */
  sqlite3_mutex *mutex;           /* Mutex to protect pMain */
  sqlite3rbu *pRbu;               /* Owner RBU object */
  rbu_file *pMain;                /* List of main db files */
  rbu_file *pMainRbu;             /* List of main db files with pRbu!=0 */
};

/*
** Each file opened by an rbu VFS is represented by an instance of
** the following structure.
**
** If this is a temporary file (pRbu!=0 && flags&DELETE_ON_CLOSE), variable
185988
185989
185990
185991
185992
185993
185994

185995
185996
185997
185998
185999
186000
186001
  int nShm;                       /* Number of entries in apShm[] array */
  char **apShm;                   /* Array of mmap'd *-shm regions */
  char *zDel;                     /* Delete this when closing file */

  const char *zWal;               /* Wal filename for this main db file */
  rbu_file *pWalFd;               /* Wal file descriptor for this main db */
  rbu_file *pMainNext;            /* Next MAIN_DB file */

};

/*
** True for an RBU vacuum handle, or false otherwise.
*/
#define rbuIsVacuum(p) ((p)->zTarget==0)








>







187200
187201
187202
187203
187204
187205
187206
187207
187208
187209
187210
187211
187212
187213
187214
  int nShm;                       /* Number of entries in apShm[] array */
  char **apShm;                   /* Array of mmap'd *-shm regions */
  char *zDel;                     /* Delete this when closing file */

  const char *zWal;               /* Wal filename for this main db file */
  rbu_file *pWalFd;               /* Wal file descriptor for this main db */
  rbu_file *pMainNext;            /* Next MAIN_DB file */
  rbu_file *pMainRbuNext;         /* Next MAIN_DB file with pRbu!=0 */
};

/*
** True for an RBU vacuum handle, or false otherwise.
*/
#define rbuIsVacuum(p) ((p)->zTarget==0)

189583
189584
189585
189586
189587
189588
189589































































189590
189591
189592
189593
189594
189595
189596
189597
189598
189599
189600
189601
189602
189603
189604
189605
189606
189607
189608
189609
189610
189611
189612
189613
189614
189615
189616
189617
189618

189619
189620
189621
189622
189623
189624
189625
  i64 nDiff = nNew - pFd->sz;
  pRbu->szTemp += nDiff;
  pFd->sz = nNew;
  assert( pRbu->szTemp>=0 );
  if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
  return SQLITE_OK;
}
































































/*
** Close an rbu file.
*/
static int rbuVfsClose(sqlite3_file *pFile){
  rbu_file *p = (rbu_file*)pFile;
  int rc;
  int i;

  /* Free the contents of the apShm[] array. And the array itself. */
  for(i=0; i<p->nShm; i++){
    sqlite3_free(p->apShm[i]);
  }
  sqlite3_free(p->apShm);
  p->apShm = 0;
  sqlite3_free(p->zDel);

  if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
    rbu_file **pp;
    sqlite3_mutex_enter(p->pRbuVfs->mutex);
    for(pp=&p->pRbuVfs->pMain; *pp!=p; pp=&((*pp)->pMainNext));
    *pp = p->pMainNext;
    sqlite3_mutex_leave(p->pRbuVfs->mutex);
    rbuUnlockShm(p);
    p->pReal->pMethods->xShmUnmap(p->pReal, 0);
  }
  else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
    rbuUpdateTempSize(p, 0);
  }


  /* Close the underlying file handle */
  rc = p->pReal->pMethods->xClose(p->pReal);
  return rc;
}









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


















<
<
<
|
<






>







190796
190797
190798
190799
190800
190801
190802
190803
190804
190805
190806
190807
190808
190809
190810
190811
190812
190813
190814
190815
190816
190817
190818
190819
190820
190821
190822
190823
190824
190825
190826
190827
190828
190829
190830
190831
190832
190833
190834
190835
190836
190837
190838
190839
190840
190841
190842
190843
190844
190845
190846
190847
190848
190849
190850
190851
190852
190853
190854
190855
190856
190857
190858
190859
190860
190861
190862
190863
190864
190865
190866
190867
190868
190869
190870
190871
190872
190873
190874
190875
190876
190877
190878
190879
190880
190881
190882
190883



190884

190885
190886
190887
190888
190889
190890
190891
190892
190893
190894
190895
190896
190897
190898
  i64 nDiff = nNew - pFd->sz;
  pRbu->szTemp += nDiff;
  pFd->sz = nNew;
  assert( pRbu->szTemp>=0 );
  if( pRbu->szTempLimit && pRbu->szTemp>pRbu->szTempLimit ) return SQLITE_FULL;
  return SQLITE_OK;
}

/*
** Add an item to the main-db lists, if it is not already present.
**
** There are two main-db lists. One for all file descriptors, and one
** for all file descriptors with rbu_file.pDb!=0. If the argument has
** rbu_file.pDb!=0, then it is assumed to already be present on the
** main list and is only added to the pDb!=0 list.
*/
static void rbuMainlistAdd(rbu_file *p){
  rbu_vfs *pRbuVfs = p->pRbuVfs;
  rbu_file *pIter;
  assert( (p->openFlags & SQLITE_OPEN_MAIN_DB) );
  sqlite3_mutex_enter(pRbuVfs->mutex);
  if( p->pRbu==0 ){
    for(pIter=pRbuVfs->pMain; pIter; pIter=pIter->pMainNext);
    p->pMainNext = pRbuVfs->pMain;
    pRbuVfs->pMain = p;
  }else{
    for(pIter=pRbuVfs->pMainRbu; pIter && pIter!=p; pIter=pIter->pMainRbuNext){}
    if( pIter==0 ){
      p->pMainRbuNext = pRbuVfs->pMainRbu;
      pRbuVfs->pMainRbu = p;
    }
  }
  sqlite3_mutex_leave(pRbuVfs->mutex);
}

/*
** Remove an item from the main-db lists.
*/
static void rbuMainlistRemove(rbu_file *p){
  rbu_file **pp;
  sqlite3_mutex_enter(p->pRbuVfs->mutex);
  for(pp=&p->pRbuVfs->pMain; *pp && *pp!=p; pp=&((*pp)->pMainNext)){}
  if( *pp ) *pp = p->pMainNext;
  p->pMainNext = 0;
  for(pp=&p->pRbuVfs->pMainRbu; *pp && *pp!=p; pp=&((*pp)->pMainRbuNext)){}
  if( *pp ) *pp = p->pMainRbuNext;
  p->pMainRbuNext = 0;
  sqlite3_mutex_leave(p->pRbuVfs->mutex);
}

/*
** Given that zWal points to a buffer containing a wal file name passed to 
** either the xOpen() or xAccess() VFS method, search the main-db list for
** a file-handle opened by the same database connection on the corresponding
** database file.
**
** If parameter bRbu is true, only search for file-descriptors with
** rbu_file.pDb!=0.
*/
static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal, int bRbu){
  rbu_file *pDb;
  sqlite3_mutex_enter(pRbuVfs->mutex);
  if( bRbu ){
    for(pDb=pRbuVfs->pMainRbu; pDb && pDb->zWal!=zWal; pDb=pDb->pMainRbuNext){}
  }else{
    for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
  }
  sqlite3_mutex_leave(pRbuVfs->mutex);
  return pDb;
}

/*
** Close an rbu file.
*/
static int rbuVfsClose(sqlite3_file *pFile){
  rbu_file *p = (rbu_file*)pFile;
  int rc;
  int i;

  /* Free the contents of the apShm[] array. And the array itself. */
  for(i=0; i<p->nShm; i++){
    sqlite3_free(p->apShm[i]);
  }
  sqlite3_free(p->apShm);
  p->apShm = 0;
  sqlite3_free(p->zDel);

  if( p->openFlags & SQLITE_OPEN_MAIN_DB ){



    rbuMainlistRemove(p);

    rbuUnlockShm(p);
    p->pReal->pMethods->xShmUnmap(p->pReal, 0);
  }
  else if( (p->openFlags & SQLITE_OPEN_DELETEONCLOSE) && p->pRbu ){
    rbuUpdateTempSize(p, 0);
  }
  assert( p->pMainNext==0 && p->pRbuVfs->pMain!=p );

  /* Close the underlying file handle */
  rc = p->pReal->pMethods->xClose(p->pReal);
  return rc;
}


189870
189871
189872
189873
189874
189875
189876



189877
189878
189879
189880
189881
189882
189883
      rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
      if( rc==SQLITE_OK ){
        rc = SQLITE_ERROR;
        pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
      }else if( rc==SQLITE_NOTFOUND ){
        pRbu->pTargetFd = p;
        p->pRbu = pRbu;



        if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
        rc = SQLITE_OK;
      }
    }
    return rc;
  }
  else if( op==SQLITE_FCNTL_RBUCNT ){







>
>
>







191143
191144
191145
191146
191147
191148
191149
191150
191151
191152
191153
191154
191155
191156
191157
191158
191159
      rc = xControl(p->pReal, SQLITE_FCNTL_ZIPVFS, &dummy);
      if( rc==SQLITE_OK ){
        rc = SQLITE_ERROR;
        pRbu->zErrmsg = sqlite3_mprintf("rbu/zipvfs setup error");
      }else if( rc==SQLITE_NOTFOUND ){
        pRbu->pTargetFd = p;
        p->pRbu = pRbu;
        if( p->openFlags & SQLITE_OPEN_MAIN_DB ){
          rbuMainlistAdd(p);
        }
        if( p->pWalFd ) p->pWalFd->pRbu = pRbu;
        rc = SQLITE_OK;
      }
    }
    return rc;
  }
  else if( op==SQLITE_FCNTL_RBUCNT ){
190031
190032
190033
190034
190035
190036
190037
190038
190039
190040
190041
190042
190043
190044
190045
190046
190047
190048
190049
190050
190051
190052
190053
190054
190055
190056
190057
190058
    /* Release the checkpointer and writer locks */
    rbuUnlockShm(p);
    rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
  }
  return rc;
}

/*
** Given that zWal points to a buffer containing a wal file name passed to 
** either the xOpen() or xAccess() VFS method, return a pointer to the
** file-handle opened by the same database connection on the corresponding
** database file.
*/
static rbu_file *rbuFindMaindb(rbu_vfs *pRbuVfs, const char *zWal){
  rbu_file *pDb;
  sqlite3_mutex_enter(pRbuVfs->mutex);
  for(pDb=pRbuVfs->pMain; pDb && pDb->zWal!=zWal; pDb=pDb->pMainNext){}
  sqlite3_mutex_leave(pRbuVfs->mutex);
  return pDb;
}

/* 
** A main database named zName has just been opened. The following 
** function returns a pointer to a buffer owned by SQLite that contains
** the name of the *-wal file this db connection will use. SQLite
** happens to pass a pointer to this buffer when using xAccess()
** or xOpen() to operate on the *-wal file.  
*/







<
<
<
<
<
<
<
<
<
<
<
<
<
<







191307
191308
191309
191310
191311
191312
191313














191314
191315
191316
191317
191318
191319
191320
    /* Release the checkpointer and writer locks */
    rbuUnlockShm(p);
    rc = p->pReal->pMethods->xShmUnmap(p->pReal, delFlag);
  }
  return rc;
}















/* 
** A main database named zName has just been opened. The following 
** function returns a pointer to a buffer owned by SQLite that contains
** the name of the *-wal file this db connection will use. SQLite
** happens to pass a pointer to this buffer when using xAccess()
** or xOpen() to operate on the *-wal file.  
*/
190123
190124
190125
190126
190127
190128
190129
190130
190131
190132
190133
190134
190135
190136
190137
      ** (pFd->zWal) to point to a buffer owned by SQLite that contains
      ** the name of the *-wal file this db connection will use. SQLite
      ** happens to pass a pointer to this buffer when using xAccess()
      ** or xOpen() to operate on the *-wal file.  */
      pFd->zWal = rbuMainToWal(zName, flags);
    }
    else if( flags & SQLITE_OPEN_WAL ){
      rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName);
      if( pDb ){
        if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
          /* This call is to open a *-wal file. Intead, open the *-oal. This
          ** code ensures that the string passed to xOpen() is terminated by a
          ** pair of '\0' bytes in case the VFS attempts to extract a URI 
          ** parameter from it.  */
          const char *zBase = zName;







|







191385
191386
191387
191388
191389
191390
191391
191392
191393
191394
191395
191396
191397
191398
191399
      ** (pFd->zWal) to point to a buffer owned by SQLite that contains
      ** the name of the *-wal file this db connection will use. SQLite
      ** happens to pass a pointer to this buffer when using xAccess()
      ** or xOpen() to operate on the *-wal file.  */
      pFd->zWal = rbuMainToWal(zName, flags);
    }
    else if( flags & SQLITE_OPEN_WAL ){
      rbu_file *pDb = rbuFindMaindb(pRbuVfs, zName, 0);
      if( pDb ){
        if( pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
          /* This call is to open a *-wal file. Intead, open the *-oal. This
          ** code ensures that the string passed to xOpen() is terminated by a
          ** pair of '\0' bytes in case the VFS attempts to extract a URI 
          ** parameter from it.  */
          const char *zBase = zName;
190175
190176
190177
190178
190179
190180
190181
190182
190183
190184
190185
190186
190187
190188
190189
190190
190191
190192
  }
  if( pFd->pReal->pMethods ){
    /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
    ** pointer and, if the file is a main database file, link it into the
    ** mutex protected linked list of all such files.  */
    pFile->pMethods = &rbuvfs_io_methods;
    if( flags & SQLITE_OPEN_MAIN_DB ){
      sqlite3_mutex_enter(pRbuVfs->mutex);
      pFd->pMainNext = pRbuVfs->pMain;
      pRbuVfs->pMain = pFd;
      sqlite3_mutex_leave(pRbuVfs->mutex);
    }
  }else{
    sqlite3_free(pFd->zDel);
  }

  return rc;
}







<
<
|
<







191437
191438
191439
191440
191441
191442
191443


191444

191445
191446
191447
191448
191449
191450
191451
  }
  if( pFd->pReal->pMethods ){
    /* The xOpen() operation has succeeded. Set the sqlite3_file.pMethods
    ** pointer and, if the file is a main database file, link it into the
    ** mutex protected linked list of all such files.  */
    pFile->pMethods = &rbuvfs_io_methods;
    if( flags & SQLITE_OPEN_MAIN_DB ){


      rbuMainlistAdd(pFd);

    }
  }else{
    sqlite3_free(pFd->zDel);
  }

  return rc;
}
190226
190227
190228
190229
190230
190231
190232
190233
190234
190235
190236
190237
190238
190239
190240
  **
  **   b) if the *-wal file does not exist, claim that it does anyway,
  **      causing SQLite to call xOpen() to open it. This call will also
  **      be intercepted (see the rbuVfsOpen() function) and the *-oal
  **      file opened instead.
  */
  if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
    rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath);
    if( pDb && pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
      if( *pResOut ){
        rc = SQLITE_CANTOPEN;
      }else{
        sqlite3_int64 sz = 0;
        rc = rbuVfsFileSize(&pDb->base, &sz);
        *pResOut = (sz>0);







|







191485
191486
191487
191488
191489
191490
191491
191492
191493
191494
191495
191496
191497
191498
191499
  **
  **   b) if the *-wal file does not exist, claim that it does anyway,
  **      causing SQLite to call xOpen() to open it. This call will also
  **      be intercepted (see the rbuVfsOpen() function) and the *-oal
  **      file opened instead.
  */
  if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){
    rbu_file *pDb = rbuFindMaindb(pRbuVfs, zPath, 1);
    if( pDb && pDb->pRbu && pDb->pRbu->eStage==RBU_STAGE_OAL ){
      if( *pResOut ){
        rc = SQLITE_CANTOPEN;
      }else{
        sqlite3_int64 sz = 0;
        rc = rbuVfsFileSize(&pDb->base, &sz);
        *pResOut = (sz>0);
190639
190640
190641
190642
190643
190644
190645
190646
190647
190648
190649
190650
190651
190652
190653

190654
190655
190656
190657
190658
190659
190660
190661
190662
190663
** operate on a different database schema, so check for it.
**
** idxNum is normally 0, but will be 1 if a schema=? constraint exists.
*/
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int i;

  pIdxInfo->estimatedCost = 1.0e6;  /* Initial cost estimate */

  /* Look for a valid schema=? constraint.  If found, change the idxNum to
  ** 1 and request the value of that constraint be sent to xFilter.  And
  ** lower the cost estimate to encourage the constrained version to be
  ** used.
  */
  for(i=0; i<pIdxInfo->nConstraint; i++){

    if( pIdxInfo->aConstraint[i].usable==0 ) continue;
    if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    if( pIdxInfo->aConstraint[i].iColumn!=10 ) continue;
    pIdxInfo->idxNum = 1;
    pIdxInfo->estimatedCost = 1.0;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    break;
  }








<
<






>
|

<







191898
191899
191900
191901
191902
191903
191904


191905
191906
191907
191908
191909
191910
191911
191912
191913

191914
191915
191916
191917
191918
191919
191920
** operate on a different database schema, so check for it.
**
** idxNum is normally 0, but will be 1 if a schema=? constraint exists.
*/
static int statBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  int i;



  /* Look for a valid schema=? constraint.  If found, change the idxNum to
  ** 1 and request the value of that constraint be sent to xFilter.  And
  ** lower the cost estimate to encourage the constrained version to be
  ** used.
  */
  for(i=0; i<pIdxInfo->nConstraint; i++){
    if( pIdxInfo->aConstraint[i].iColumn!=10 ) continue;
    if( pIdxInfo->aConstraint[i].usable==0 ) return SQLITE_CONSTRAINT;
    if( pIdxInfo->aConstraint[i].op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;

    pIdxInfo->idxNum = 1;
    pIdxInfo->estimatedCost = 1.0;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    break;
  }

190699
190700
190701
190702
190703
190704
190705
190706
190707
190708
190709
190710
190711
190712
190713






190714
190715
190716
190717
190718
190719
190720
    pCsr->iDb = pTab->iDb;
  }

  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
  return SQLITE_OK;
}

static void statClearPage(StatPage *p){
  int i;
  if( p->aCell ){
    for(i=0; i<p->nCell; i++){
      sqlite3_free(p->aCell[i].aOvfl);
    }
    sqlite3_free(p->aCell);
  }






  sqlite3PagerUnref(p->pPg);
  sqlite3_free(p->zPath);
  memset(p, 0, sizeof(StatPage));
}

static void statResetCsr(StatCursor *pCsr){
  int i;







|







>
>
>
>
>
>







191956
191957
191958
191959
191960
191961
191962
191963
191964
191965
191966
191967
191968
191969
191970
191971
191972
191973
191974
191975
191976
191977
191978
191979
191980
191981
191982
191983
    pCsr->iDb = pTab->iDb;
  }

  *ppCursor = (sqlite3_vtab_cursor *)pCsr;
  return SQLITE_OK;
}

static void statClearCells(StatPage *p){
  int i;
  if( p->aCell ){
    for(i=0; i<p->nCell; i++){
      sqlite3_free(p->aCell[i].aOvfl);
    }
    sqlite3_free(p->aCell);
  }
  p->nCell = 0;
  p->aCell = 0;
}

static void statClearPage(StatPage *p){
  statClearCells(p);
  sqlite3PagerUnref(p->pPg);
  sqlite3_free(p->zPath);
  memset(p, 0, sizeof(StatPage));
}

static void statResetCsr(StatCursor *pCsr){
  int i;
190769
190770
190771
190772
190773
190774
190775










190776
190777
190778
190779
190780
190781
190782
190783
190784
190785


190786
190787


190788
190789
190790
190791
190792
190793
190794
190795
190796
190797
190798
190799
190800
190801
190802
190803
190804
190805
190806
190807

190808
190809
190810
190811
190812
190813
190814
190815
190816
190817
190818
190819
190820
190821
190822
190823

190824
190825
190826
190827
190828
190829
190830

190831
190832
190833
190834
190835
190836
190837
  int isLeaf;
  int szPage;

  u8 *aData = sqlite3PagerGetData(p->pPg);
  u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];

  p->flags = aHdr[0];










  p->nCell = get2byte(&aHdr[3]);
  p->nMxPayload = 0;

  isLeaf = (p->flags==0x0A || p->flags==0x0D);
  nHdr = 12 - isLeaf*4 + (p->iPgno==1)*100;

  nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
  nUnused += (int)aHdr[7];
  iOff = get2byte(&aHdr[1]);
  while( iOff ){


    nUnused += get2byte(&aData[iOff+2]);
    iOff = get2byte(&aData[iOff]);


  }
  p->nUnused = nUnused;
  p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);
  szPage = sqlite3BtreeGetPageSize(pBt);

  if( p->nCell ){
    int i;                        /* Used to iterate through cells */
    int nUsable;                  /* Usable bytes per page */

    sqlite3BtreeEnter(pBt);
    nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
    sqlite3BtreeLeave(pBt);
    p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
    if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
    memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));

    for(i=0; i<p->nCell; i++){
      StatCell *pCell = &p->aCell[i];

      iOff = get2byte(&aData[nHdr+i*2]);

      if( !isLeaf ){
        pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
        iOff += 4;
      }
      if( p->flags==0x05 ){
        /* A table interior node. nPayload==0. */
      }else{
        u32 nPayload;             /* Bytes of payload total (local+overflow) */
        int nLocal;               /* Bytes of payload stored locally */
        iOff += getVarint32(&aData[iOff], nPayload);
        if( p->flags==0x0D ){
          u64 dummy;
          iOff += sqlite3GetVarint(&aData[iOff], &dummy);
        }
        if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
        getLocalPayload(nUsable, p->flags, nPayload, &nLocal);

        pCell->nLocal = nLocal;
        assert( nLocal>=0 );
        assert( nPayload>=(u32)nLocal );
        assert( nLocal<=(nUsable-35) );
        if( nPayload>(u32)nLocal ){
          int j;
          int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);

          pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
          pCell->nOvfl = nOvfl;
          pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
          if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
          pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
          for(j=1; j<nOvfl; j++){
            int rc;







>
>
>
>
>
>
>
>
>
>


|
<
<





>
>

|
>
>



<
















>
















>

<





>







192032
192033
192034
192035
192036
192037
192038
192039
192040
192041
192042
192043
192044
192045
192046
192047
192048
192049
192050
192051


192052
192053
192054
192055
192056
192057
192058
192059
192060
192061
192062
192063
192064
192065

192066
192067
192068
192069
192070
192071
192072
192073
192074
192075
192076
192077
192078
192079
192080
192081
192082
192083
192084
192085
192086
192087
192088
192089
192090
192091
192092
192093
192094
192095
192096
192097
192098
192099
192100

192101
192102
192103
192104
192105
192106
192107
192108
192109
192110
192111
192112
192113
  int isLeaf;
  int szPage;

  u8 *aData = sqlite3PagerGetData(p->pPg);
  u8 *aHdr = &aData[p->iPgno==1 ? 100 : 0];

  p->flags = aHdr[0];
  if( p->flags==0x0A || p->flags==0x0D ){
    isLeaf = 1;
    nHdr = 8;
  }else if( p->flags==0x05 || p->flags==0x02 ){
    isLeaf = 0;
    nHdr = 12;
  }else{
    goto statPageIsCorrupt;
  }
  if( p->iPgno==1 ) nHdr += 100;
  p->nCell = get2byte(&aHdr[3]);
  p->nMxPayload = 0;
  szPage = sqlite3BtreeGetPageSize(pBt);



  nUnused = get2byte(&aHdr[5]) - nHdr - 2*p->nCell;
  nUnused += (int)aHdr[7];
  iOff = get2byte(&aHdr[1]);
  while( iOff ){
    int iNext;
    if( iOff>=szPage ) goto statPageIsCorrupt;
    nUnused += get2byte(&aData[iOff+2]);
    iNext = get2byte(&aData[iOff]);
    if( iNext<iOff+4 && iNext>0 ) goto statPageIsCorrupt;
    iOff = iNext;
  }
  p->nUnused = nUnused;
  p->iRightChildPg = isLeaf ? 0 : sqlite3Get4byte(&aHdr[8]);


  if( p->nCell ){
    int i;                        /* Used to iterate through cells */
    int nUsable;                  /* Usable bytes per page */

    sqlite3BtreeEnter(pBt);
    nUsable = szPage - sqlite3BtreeGetReserveNoMutex(pBt);
    sqlite3BtreeLeave(pBt);
    p->aCell = sqlite3_malloc64((p->nCell+1) * sizeof(StatCell));
    if( p->aCell==0 ) return SQLITE_NOMEM_BKPT;
    memset(p->aCell, 0, (p->nCell+1) * sizeof(StatCell));

    for(i=0; i<p->nCell; i++){
      StatCell *pCell = &p->aCell[i];

      iOff = get2byte(&aData[nHdr+i*2]);
      if( iOff<nHdr || iOff>=szPage ) goto statPageIsCorrupt;
      if( !isLeaf ){
        pCell->iChildPg = sqlite3Get4byte(&aData[iOff]);
        iOff += 4;
      }
      if( p->flags==0x05 ){
        /* A table interior node. nPayload==0. */
      }else{
        u32 nPayload;             /* Bytes of payload total (local+overflow) */
        int nLocal;               /* Bytes of payload stored locally */
        iOff += getVarint32(&aData[iOff], nPayload);
        if( p->flags==0x0D ){
          u64 dummy;
          iOff += sqlite3GetVarint(&aData[iOff], &dummy);
        }
        if( nPayload>(u32)p->nMxPayload ) p->nMxPayload = nPayload;
        getLocalPayload(nUsable, p->flags, nPayload, &nLocal);
        if( nLocal<0 ) goto statPageIsCorrupt;
        pCell->nLocal = nLocal;

        assert( nPayload>=(u32)nLocal );
        assert( nLocal<=(nUsable-35) );
        if( nPayload>(u32)nLocal ){
          int j;
          int nOvfl = ((nPayload - nLocal) + nUsable-4 - 1) / (nUsable - 4);
          if( iOff+nLocal>nUsable ) goto statPageIsCorrupt;
          pCell->nLastOvfl = (nPayload-nLocal) - (nOvfl-1) * (nUsable-4);
          pCell->nOvfl = nOvfl;
          pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
          if( pCell->aOvfl==0 ) return SQLITE_NOMEM_BKPT;
          pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
          for(j=1; j<nOvfl; j++){
            int rc;
190847
190848
190849
190850
190851
190852
190853





190854
190855
190856
190857
190858
190859
190860
          }
        }
      }
    }
  }

  return SQLITE_OK;





}

/*
** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
** the current value of pCsr->iPageno.
*/
static void statSizeAndOffset(StatCursor *pCsr){







>
>
>
>
>







192123
192124
192125
192126
192127
192128
192129
192130
192131
192132
192133
192134
192135
192136
192137
192138
192139
192140
192141
          }
        }
      }
    }
  }

  return SQLITE_OK;

statPageIsCorrupt:
  p->flags = 0;
  statClearCells(p);
  return SQLITE_OK;
}

/*
** Populate the pCsr->iOffset and pCsr->szPage member variables. Based on
** the current value of pCsr->iPageno.
*/
static void statSizeAndOffset(StatCursor *pCsr){
191142
191143
191144
191145
191146
191147
191148

191149
191150
191151
191152
191153
191154
191155
    0,                            /* xCommit */
    0,                            /* xRollback */
    0,                            /* xFindMethod */
    0,                            /* xRename */
    0,                            /* xSavepoint */
    0,                            /* xRelease */
    0,                            /* xRollbackTo */

  };
  return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
}
#elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
#endif /* SQLITE_ENABLE_DBSTAT_VTAB */








>







192423
192424
192425
192426
192427
192428
192429
192430
192431
192432
192433
192434
192435
192436
192437
    0,                            /* xCommit */
    0,                            /* xRollback */
    0,                            /* xFindMethod */
    0,                            /* xRename */
    0,                            /* xSavepoint */
    0,                            /* xRelease */
    0,                            /* xRollbackTo */
    0                             /* xShadowName */
  };
  return sqlite3_create_module(db, "dbstat", &dbstat_module, 0);
}
#elif defined(SQLITE_ENABLE_DBSTAT_VTAB)
SQLITE_PRIVATE int sqlite3DbstatRegister(sqlite3 *db){ return SQLITE_OK; }
#endif /* SQLITE_ENABLE_DBSTAT_VTAB */

191272
191273
191274
191275
191276
191277
191278
191279
191280
191281
191282
191283
191284
191285
191286
191287
191288
  ** unavailable
  */
  for(i=0; i<pIdxInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i];
    if( p->iColumn!=DBPAGE_COLUMN_SCHEMA ) continue;
    if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    if( !p->usable ){
      /* No solution.  Use the default SQLITE_BIG_DBL cost */
      pIdxInfo->estimatedRows = 0x7fffffff;
      return SQLITE_OK;
    }
    iPlan = 2;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    break;
  }








|
<
|







192554
192555
192556
192557
192558
192559
192560
192561

192562
192563
192564
192565
192566
192567
192568
192569
  ** unavailable
  */
  for(i=0; i<pIdxInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[i];
    if( p->iColumn!=DBPAGE_COLUMN_SCHEMA ) continue;
    if( p->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
    if( !p->usable ){
      /* No solution. */

      return SQLITE_CONSTRAINT;
    }
    iPlan = 2;
    pIdxInfo->aConstraintUsage[i].argvIndex = 1;
    pIdxInfo->aConstraintUsage[i].omit = 1;
    break;
  }

191466
191467
191468
191469
191470
191471
191472




191473
191474
191475
191476
191477
191478
191479
  char *zErr = 0;
  const char *zSchema;
  int iDb;
  Btree *pBt;
  Pager *pPager;
  int szPage;





  if( argc==1 ){
    zErr = "cannot delete";
    goto update_fail;
  }
  pgno = sqlite3_value_int(argv[0]);
  if( (Pgno)sqlite3_value_int(argv[1])!=pgno ){
    zErr = "cannot insert";







>
>
>
>







192747
192748
192749
192750
192751
192752
192753
192754
192755
192756
192757
192758
192759
192760
192761
192762
192763
192764
  char *zErr = 0;
  const char *zSchema;
  int iDb;
  Btree *pBt;
  Pager *pPager;
  int szPage;

  if( pTab->db->flags & SQLITE_Defensive ){
    zErr = "read-only";
    goto update_fail;
  }
  if( argc==1 ){
    zErr = "cannot delete";
    goto update_fail;
  }
  pgno = sqlite3_value_int(argv[0]);
  if( (Pgno)sqlite3_value_int(argv[1])!=pgno ){
    zErr = "cannot insert";
191556
191557
191558
191559
191560
191561
191562

191563
191564
191565
191566
191567
191568
191569
    0,                            /* xCommit */
    0,                            /* xRollback */
    0,                            /* xFindMethod */
    0,                            /* xRename */
    0,                            /* xSavepoint */
    0,                            /* xRelease */
    0,                            /* xRollbackTo */

  };
  return sqlite3_create_module(db, "sqlite_dbpage", &dbpage_module, 0);
}
#elif defined(SQLITE_ENABLE_DBPAGE_VTAB)
SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){ return SQLITE_OK; }
#endif /* SQLITE_ENABLE_DBSTAT_VTAB */








>







192841
192842
192843
192844
192845
192846
192847
192848
192849
192850
192851
192852
192853
192854
192855
    0,                            /* xCommit */
    0,                            /* xRollback */
    0,                            /* xFindMethod */
    0,                            /* xRename */
    0,                            /* xSavepoint */
    0,                            /* xRelease */
    0,                            /* xRollbackTo */
    0                             /* xShadowName */
  };
  return sqlite3_create_module(db, "sqlite_dbpage", &dbpage_module, 0);
}
#elif defined(SQLITE_ENABLE_DBPAGE_VTAB)
SQLITE_PRIVATE int sqlite3DbpageRegister(sqlite3 *db){ return SQLITE_OK; }
#endif /* SQLITE_ENABLE_DBSTAT_VTAB */

191591
191592
191593
191594
191595
191596
191597


191598
191599
191600
191601
191602
191603
191604
#ifndef SESSIONS_STRM_CHUNK_SIZE
# ifdef SQLITE_TEST
#   define SESSIONS_STRM_CHUNK_SIZE 64
# else
#   define SESSIONS_STRM_CHUNK_SIZE 1024
# endif
#endif



typedef struct SessionHook SessionHook;
struct SessionHook {
  void *pCtx;
  int (*xOld)(void*,int,sqlite3_value**);
  int (*xNew)(void*,int,sqlite3_value**);
  int (*xCount)(void*);







>
>







192877
192878
192879
192880
192881
192882
192883
192884
192885
192886
192887
192888
192889
192890
192891
192892
#ifndef SESSIONS_STRM_CHUNK_SIZE
# ifdef SQLITE_TEST
#   define SESSIONS_STRM_CHUNK_SIZE 64
# else
#   define SESSIONS_STRM_CHUNK_SIZE 1024
# endif
#endif

static int sessions_strm_chunk_size = SESSIONS_STRM_CHUNK_SIZE;

typedef struct SessionHook SessionHook;
struct SessionHook {
  void *pCtx;
  int (*xOld)(void*,int,sqlite3_value**);
  int (*xNew)(void*,int,sqlite3_value**);
  int (*xCount)(void*);
191654
191655
191656
191657
191658
191659
191660

191661
191662
191663
191664
191665
191666
191667
/*
** Structure for changeset iterators.
*/
struct sqlite3_changeset_iter {
  SessionInput in;                /* Input buffer or stream */
  SessionBuffer tblhdr;           /* Buffer to hold apValue/zTab/abPK/ */
  int bPatchset;                  /* True if this is a patchset */

  int rc;                         /* Iterator error code */
  sqlite3_stmt *pConflict;        /* Points to conflicting row, if any */
  char *zTab;                     /* Current table */
  int nCol;                       /* Number of columns in zTab */
  int op;                         /* Current operation */
  int bIndirect;                  /* True if current change was indirect */
  u8 *abPK;                       /* Primary key array */







>







192942
192943
192944
192945
192946
192947
192948
192949
192950
192951
192952
192953
192954
192955
192956
/*
** Structure for changeset iterators.
*/
struct sqlite3_changeset_iter {
  SessionInput in;                /* Input buffer or stream */
  SessionBuffer tblhdr;           /* Buffer to hold apValue/zTab/abPK/ */
  int bPatchset;                  /* True if this is a patchset */
  int bInvert;                    /* True to invert changeset */
  int rc;                         /* Iterator error code */
  sqlite3_stmt *pConflict;        /* Points to conflicting row, if any */
  char *zTab;                     /* Current table */
  int nCol;                       /* Number of columns in zTab */
  int op;                         /* Current operation */
  int bIndirect;                  /* True if current change was indirect */
  u8 *abPK;                       /* Primary key array */
191810
191811
191812
191813
191814
191815
191816




































191817
191818
191819
191820
191821
191822
191823
** columns and columns that are modified by the UPDATE are set to "undefined".
** PRIMARY KEY fields contain the values identifying the table row to update,
** and fields associated with modified columns contain the new column values.
**
** The records associated with INSERT changes are in the same format as for
** changesets. It is not possible for a record associated with an INSERT
** change to contain a field set to "undefined".




































*/

/*
** For each row modified during a session, there exists a single instance of
** this structure stored in a SessionTable.aChange[] hash table.
*/
struct SessionChange {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







193099
193100
193101
193102
193103
193104
193105
193106
193107
193108
193109
193110
193111
193112
193113
193114
193115
193116
193117
193118
193119
193120
193121
193122
193123
193124
193125
193126
193127
193128
193129
193130
193131
193132
193133
193134
193135
193136
193137
193138
193139
193140
193141
193142
193143
193144
193145
193146
193147
193148
** columns and columns that are modified by the UPDATE are set to "undefined".
** PRIMARY KEY fields contain the values identifying the table row to update,
** and fields associated with modified columns contain the new column values.
**
** The records associated with INSERT changes are in the same format as for
** changesets. It is not possible for a record associated with an INSERT
** change to contain a field set to "undefined".
**
** REBASE BLOB FORMAT:
**
** A rebase blob may be output by sqlite3changeset_apply_v2() and its 
** streaming equivalent for use with the sqlite3_rebaser APIs to rebase
** existing changesets. A rebase blob contains one entry for each conflict
** resolved using either the OMIT or REPLACE strategies within the apply_v2()
** call.
**
** The format used for a rebase blob is very similar to that used for
** changesets. All entries related to a single table are grouped together.
**
** Each group of entries begins with a table header in changeset format:
**
**   1 byte: Constant 0x54 (capital 'T')
**   Varint: Number of columns in the table.
**   nCol bytes: 0x01 for PK columns, 0x00 otherwise.
**   N bytes: Unqualified table name (encoded using UTF-8). Nul-terminated.
**
** Followed by one or more entries associated with the table.
**
**   1 byte: Either SQLITE_INSERT (0x12), DELETE (0x09).
**   1 byte: Flag. 0x01 for REPLACE, 0x00 for OMIT.
**   record: (in the record format defined above).
**
** In a rebase blob, the first field is set to SQLITE_INSERT if the change
** that caused the conflict was an INSERT or UPDATE, or to SQLITE_DELETE if
** it was a DELETE. The second field is set to 0x01 if the conflict 
** resolution strategy was REPLACE, or 0x00 if it was OMIT.
**
** If the change that caused the conflict was a DELETE, then the single
** record is a copy of the old.* record from the original changeset. If it
** was an INSERT, then the single record is a copy of the new.* record. If
** the conflicting change was an UPDATE, then the single record is a copy
** of the new.* record with the PK fields filled in based on the original
** old.* record.
*/

/*
** For each row modified during a session, there exists a single instance of
** this structure stored in a SessionTable.aChange[] hash table.
*/
struct SessionChange {
193360
193361
193362
193363
193364
193365
193366
193367
193368
193369
193370
193371
193372
193373
193374
193375
193376
193377
193378
193379
**
** If successful, return zero. Otherwise, if an OOM condition is encountered,
** set *pRc to SQLITE_NOMEM and return non-zero.
*/
static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){
  if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){
    u8 *aNew;
    int nNew = p->nAlloc ? p->nAlloc : 128;
    do {
      nNew = nNew*2;
    }while( nNew<(p->nBuf+nByte) );

    aNew = (u8 *)sqlite3_realloc(p->aBuf, nNew);
    if( 0==aNew ){
      *pRc = SQLITE_NOMEM;
    }else{
      p->aBuf = aNew;
      p->nAlloc = nNew;
    }
  }







|


|

|







194685
194686
194687
194688
194689
194690
194691
194692
194693
194694
194695
194696
194697
194698
194699
194700
194701
194702
194703
194704
**
** If successful, return zero. Otherwise, if an OOM condition is encountered,
** set *pRc to SQLITE_NOMEM and return non-zero.
*/
static int sessionBufferGrow(SessionBuffer *p, int nByte, int *pRc){
  if( *pRc==SQLITE_OK && p->nAlloc-p->nBuf<nByte ){
    u8 *aNew;
    i64 nNew = p->nAlloc ? p->nAlloc : 128;
    do {
      nNew = nNew*2;
    }while( (nNew-p->nBuf)<nByte );

    aNew = (u8 *)sqlite3_realloc64(p->aBuf, nNew);
    if( 0==aNew ){
      *pRc = SQLITE_NOMEM;
    }else{
      p->aBuf = aNew;
      p->nAlloc = nNew;
    }
  }
193963
193964
193965
193966
193967
193968
193969
193970
193971
193972
193973
193974
193975
193976
193977
193978
193979
193980
193981
193982
          }else if( p->op!=SQLITE_INSERT ){
            rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK);
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3_reset(pSel);
          }

          /* If the buffer is now larger than SESSIONS_STRM_CHUNK_SIZE, pass
          ** its contents to the xOutput() callback. */
          if( xOutput 
           && rc==SQLITE_OK 
           && buf.nBuf>nNoop 
           && buf.nBuf>SESSIONS_STRM_CHUNK_SIZE 
          ){
            rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
            nNoop = -1;
            buf.nBuf = 0;
          }

        }







|




|







195288
195289
195290
195291
195292
195293
195294
195295
195296
195297
195298
195299
195300
195301
195302
195303
195304
195305
195306
195307
          }else if( p->op!=SQLITE_INSERT ){
            rc = sessionAppendDelete(&buf, bPatchset, p, nCol, abPK);
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3_reset(pSel);
          }

          /* If the buffer is now larger than sessions_strm_chunk_size, pass
          ** its contents to the xOutput() callback. */
          if( xOutput 
           && rc==SQLITE_OK 
           && buf.nBuf>nNoop 
           && buf.nBuf>sessions_strm_chunk_size 
          ){
            rc = xOutput(pOut, (void*)buf.aBuf, buf.nBuf);
            nNoop = -1;
            buf.nBuf = 0;
          }

        }
194107
194108
194109
194110
194111
194112
194113
194114

194115
194116
194117
194118
194119
194120
194121
194122
194123
194124
194125
194126
194127
194128
194129
194130
194131
194132
194133

194134
194135
194136
194137
194138
194139
194140
194141
194142
194143
194144
194145
194146
194147
194148









194149
194150
194151
194152
194153
194154
194155
194156
194157
194158
194159









194160
194161
194162
194163
194164
194165
194166
194167
194168
194169
194170
194171
194172
194173
194174
** Do the work for either sqlite3changeset_start() or start_strm().
*/
static int sessionChangesetStart(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int nChangeset,                 /* Size of buffer pChangeset in bytes */
  void *pChangeset                /* Pointer to buffer containing changeset */

){
  sqlite3_changeset_iter *pRet;   /* Iterator to return */
  int nByte;                      /* Number of bytes to allocate for iterator */

  assert( xInput==0 || (pChangeset==0 && nChangeset==0) );

  /* Zero the output variable in case an error occurs. */
  *pp = 0;

  /* Allocate and initialize the iterator structure. */
  nByte = sizeof(sqlite3_changeset_iter);
  pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
  if( !pRet ) return SQLITE_NOMEM;
  memset(pRet, 0, sizeof(sqlite3_changeset_iter));
  pRet->in.aData = (u8 *)pChangeset;
  pRet->in.nData = nChangeset;
  pRet->in.xInput = xInput;
  pRet->in.pIn = pIn;
  pRet->in.bEof = (xInput ? 0 : 1);


  /* Populate the output variable and return success. */
  *pp = pRet;
  return SQLITE_OK;
}

/*
** Create an iterator used to iterate through the contents of a changeset.
*/
SQLITE_API int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int nChangeset,                 /* Size of buffer pChangeset in bytes */
  void *pChangeset                /* Pointer to buffer containing changeset */
){
  return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset);









}

/*
** Streaming version of sqlite3changeset_start().
*/
SQLITE_API int sqlite3changeset_start_strm(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn
){
  return sessionChangesetStart(pp, xInput, pIn, 0, 0);









}

/*
** If the SessionInput object passed as the only argument is a streaming
** object and the buffer is full, discard some data to free up space.
*/
static void sessionDiscardData(SessionInput *pIn){
  if( pIn->xInput && pIn->iNext>=SESSIONS_STRM_CHUNK_SIZE ){
    int nMove = pIn->buf.nBuf - pIn->iNext;
    assert( nMove>=0 );
    if( nMove>0 ){
      memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove);
    }
    pIn->buf.nBuf -= pIn->iNext;
    pIn->iNext = 0;







|
>



















>














|
>
>
>
>
>
>
>
>
>










|
>
>
>
>
>
>
>
>
>







|







195432
195433
195434
195435
195436
195437
195438
195439
195440
195441
195442
195443
195444
195445
195446
195447
195448
195449
195450
195451
195452
195453
195454
195455
195456
195457
195458
195459
195460
195461
195462
195463
195464
195465
195466
195467
195468
195469
195470
195471
195472
195473
195474
195475
195476
195477
195478
195479
195480
195481
195482
195483
195484
195485
195486
195487
195488
195489
195490
195491
195492
195493
195494
195495
195496
195497
195498
195499
195500
195501
195502
195503
195504
195505
195506
195507
195508
195509
195510
195511
195512
195513
195514
195515
195516
195517
195518
195519
** Do the work for either sqlite3changeset_start() or start_strm().
*/
static int sessionChangesetStart(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int nChangeset,                 /* Size of buffer pChangeset in bytes */
  void *pChangeset,               /* Pointer to buffer containing changeset */
  int bInvert                     /* True to invert changeset */
){
  sqlite3_changeset_iter *pRet;   /* Iterator to return */
  int nByte;                      /* Number of bytes to allocate for iterator */

  assert( xInput==0 || (pChangeset==0 && nChangeset==0) );

  /* Zero the output variable in case an error occurs. */
  *pp = 0;

  /* Allocate and initialize the iterator structure. */
  nByte = sizeof(sqlite3_changeset_iter);
  pRet = (sqlite3_changeset_iter *)sqlite3_malloc(nByte);
  if( !pRet ) return SQLITE_NOMEM;
  memset(pRet, 0, sizeof(sqlite3_changeset_iter));
  pRet->in.aData = (u8 *)pChangeset;
  pRet->in.nData = nChangeset;
  pRet->in.xInput = xInput;
  pRet->in.pIn = pIn;
  pRet->in.bEof = (xInput ? 0 : 1);
  pRet->bInvert = bInvert;

  /* Populate the output variable and return success. */
  *pp = pRet;
  return SQLITE_OK;
}

/*
** Create an iterator used to iterate through the contents of a changeset.
*/
SQLITE_API int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int nChangeset,                 /* Size of buffer pChangeset in bytes */
  void *pChangeset                /* Pointer to buffer containing changeset */
){
  return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, 0);
}
SQLITE_API int sqlite3changeset_start_v2(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int nChangeset,                 /* Size of buffer pChangeset in bytes */
  void *pChangeset,               /* Pointer to buffer containing changeset */
  int flags
){
  int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
  return sessionChangesetStart(pp, 0, 0, nChangeset, pChangeset, bInvert);
}

/*
** Streaming version of sqlite3changeset_start().
*/
SQLITE_API int sqlite3changeset_start_strm(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn
){
  return sessionChangesetStart(pp, xInput, pIn, 0, 0, 0);
}
SQLITE_API int sqlite3changeset_start_v2_strm(
  sqlite3_changeset_iter **pp,    /* OUT: Changeset iterator handle */
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int flags
){
  int bInvert = !!(flags & SQLITE_CHANGESETSTART_INVERT);
  return sessionChangesetStart(pp, xInput, pIn, 0, 0, bInvert);
}

/*
** If the SessionInput object passed as the only argument is a streaming
** object and the buffer is full, discard some data to free up space.
*/
static void sessionDiscardData(SessionInput *pIn){
  if( pIn->xInput && pIn->iNext>=sessions_strm_chunk_size ){
    int nMove = pIn->buf.nBuf - pIn->iNext;
    assert( nMove>=0 );
    if( nMove>0 ){
      memmove(pIn->buf.aBuf, &pIn->buf.aBuf[pIn->iNext], nMove);
    }
    pIn->buf.nBuf -= pIn->iNext;
    pIn->iNext = 0;
194183
194184
194185
194186
194187
194188
194189
194190
194191
194192
194193
194194
194195
194196
194197
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
*/
static int sessionInputBuffer(SessionInput *pIn, int nByte){
  int rc = SQLITE_OK;
  if( pIn->xInput ){
    while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){
      int nNew = SESSIONS_STRM_CHUNK_SIZE;

      if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn);
      if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){
        rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew);
        if( nNew==0 ){
          pIn->bEof = 1;
        }else{







|







195528
195529
195530
195531
195532
195533
195534
195535
195536
195537
195538
195539
195540
195541
195542
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
*/
static int sessionInputBuffer(SessionInput *pIn, int nByte){
  int rc = SQLITE_OK;
  if( pIn->xInput ){
    while( !pIn->bEof && (pIn->iNext+nByte)>=pIn->nData && rc==SQLITE_OK ){
      int nNew = sessions_strm_chunk_size;

      if( pIn->bNoDiscard==0 ) sessionDiscardData(pIn);
      if( SQLITE_OK==sessionBufferGrow(&pIn->buf, nNew, &rc) ){
        rc = pIn->xInput(pIn->pIn, &pIn->buf.aBuf[pIn->buf.nBuf], &nNew);
        if( nNew==0 ){
          pIn->bEof = 1;
        }else{
194531
194532
194533
194534
194535
194536
194537
194538
194539
194540
194541
194542
194543
194544
194545
194546
194547
194548
    if( sessionChangesetReadTblhdr(p) ) return p->rc;
    if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc;
    p->in.iCurrent = p->in.iNext;
    if( p->in.iNext>=p->in.nData ) return SQLITE_DONE;
    op = p->in.aData[p->in.iNext++];
  }

  if( p->zTab==0 ){
    /* The first record in the changeset is not a table header. Must be a
    ** corrupt changeset. */
    assert( p->in.iNext==1 );
    return (p->rc = SQLITE_CORRUPT_BKPT);
  }

  p->op = op;
  p->bIndirect = p->in.aData[p->in.iNext++];
  if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
    return (p->rc = SQLITE_CORRUPT_BKPT);







|


|







195876
195877
195878
195879
195880
195881
195882
195883
195884
195885
195886
195887
195888
195889
195890
195891
195892
195893
    if( sessionChangesetReadTblhdr(p) ) return p->rc;
    if( (p->rc = sessionInputBuffer(&p->in, 2)) ) return p->rc;
    p->in.iCurrent = p->in.iNext;
    if( p->in.iNext>=p->in.nData ) return SQLITE_DONE;
    op = p->in.aData[p->in.iNext++];
  }

  if( p->zTab==0 || (p->bPatchset && p->bInvert) ){
    /* The first record in the changeset is not a table header. Must be a
    ** corrupt changeset. */
    assert( p->in.iNext==1 || p->zTab );
    return (p->rc = SQLITE_CORRUPT_BKPT);
  }

  p->op = op;
  p->bIndirect = p->in.aData[p->in.iNext++];
  if( p->op!=SQLITE_UPDATE && p->op!=SQLITE_DELETE && p->op!=SQLITE_INSERT ){
    return (p->rc = SQLITE_CORRUPT_BKPT);
194559
194560
194561
194562
194563
194564
194565


194566
194567
194568
194569
194570
194571
194572
194573
194574
194575
194576
194577
194578
194579
194580
194581
194582
194583
194584
194585
194586
194587

194588
194589
194590
194591
194592



194593
194594
194595
194596
194597
194598
194599
      nVal = p->nCol;
    }
    p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec);
    if( p->rc!=SQLITE_OK ) return p->rc;
    *paRec = &p->in.aData[p->in.iNext];
    p->in.iNext += *pnRec;
  }else{



    /* If this is an UPDATE or DELETE, read the old.* record. */
    if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){
      u8 *abPK = p->bPatchset ? p->abPK : 0;
      p->rc = sessionReadRecord(&p->in, p->nCol, abPK, p->apValue);
      if( p->rc!=SQLITE_OK ) return p->rc;
    }

    /* If this is an INSERT or UPDATE, read the new.* record. */
    if( p->op!=SQLITE_DELETE ){
      p->rc = sessionReadRecord(&p->in, p->nCol, 0, &p->apValue[p->nCol]);
      if( p->rc!=SQLITE_OK ) return p->rc;
    }

    if( p->bPatchset && p->op==SQLITE_UPDATE ){
      /* If this is an UPDATE that is part of a patchset, then all PK and
      ** modified fields are present in the new.* record. The old.* record
      ** is currently completely empty. This block shifts the PK fields from
      ** new.* to old.*, to accommodate the code that reads these arrays.  */
      for(i=0; i<p->nCol; i++){
        assert( p->apValue[i]==0 );
        if( p->abPK[i] ){

          p->apValue[i] = p->apValue[i+p->nCol];
          if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT);
          p->apValue[i+p->nCol] = 0;
        }
      }



    }
  }

  return SQLITE_ROW;
}

/*







>
>




|





|



|





|

>





>
>
>







195904
195905
195906
195907
195908
195909
195910
195911
195912
195913
195914
195915
195916
195917
195918
195919
195920
195921
195922
195923
195924
195925
195926
195927
195928
195929
195930
195931
195932
195933
195934
195935
195936
195937
195938
195939
195940
195941
195942
195943
195944
195945
195946
195947
195948
195949
195950
      nVal = p->nCol;
    }
    p->rc = sessionChangesetBufferRecord(&p->in, nVal, pnRec);
    if( p->rc!=SQLITE_OK ) return p->rc;
    *paRec = &p->in.aData[p->in.iNext];
    p->in.iNext += *pnRec;
  }else{
    sqlite3_value **apOld = (p->bInvert ? &p->apValue[p->nCol] : p->apValue);
    sqlite3_value **apNew = (p->bInvert ? p->apValue : &p->apValue[p->nCol]);

    /* If this is an UPDATE or DELETE, read the old.* record. */
    if( p->op!=SQLITE_INSERT && (p->bPatchset==0 || p->op==SQLITE_DELETE) ){
      u8 *abPK = p->bPatchset ? p->abPK : 0;
      p->rc = sessionReadRecord(&p->in, p->nCol, abPK, apOld);
      if( p->rc!=SQLITE_OK ) return p->rc;
    }

    /* If this is an INSERT or UPDATE, read the new.* record. */
    if( p->op!=SQLITE_DELETE ){
      p->rc = sessionReadRecord(&p->in, p->nCol, 0, apNew);
      if( p->rc!=SQLITE_OK ) return p->rc;
    }

    if( (p->bPatchset || p->bInvert) && p->op==SQLITE_UPDATE ){
      /* If this is an UPDATE that is part of a patchset, then all PK and
      ** modified fields are present in the new.* record. The old.* record
      ** is currently completely empty. This block shifts the PK fields from
      ** new.* to old.*, to accommodate the code that reads these arrays.  */
      for(i=0; i<p->nCol; i++){
        assert( p->bPatchset==0 || p->apValue[i]==0 );
        if( p->abPK[i] ){
          assert( p->apValue[i]==0 );
          p->apValue[i] = p->apValue[i+p->nCol];
          if( p->apValue[i]==0 ) return (p->rc = SQLITE_CORRUPT_BKPT);
          p->apValue[i+p->nCol] = 0;
        }
      }
    }else if( p->bInvert ){
      if( p->op==SQLITE_INSERT ) p->op = SQLITE_DELETE;
      else if( p->op==SQLITE_DELETE ) p->op = SQLITE_INSERT;
    }
  }

  return SQLITE_ROW;
}

/*
194902
194903
194904
194905
194906
194907
194908
194909
194910
194911
194912
194913
194914
194915
194916

      default:
        rc = SQLITE_CORRUPT_BKPT;
        goto finished_invert;
    }

    assert( rc==SQLITE_OK );
    if( xOutput && sOut.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){
      rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
      sOut.nBuf = 0;
      if( rc!=SQLITE_OK ) goto finished_invert;
    }
  }

  assert( rc==SQLITE_OK );







|







196253
196254
196255
196256
196257
196258
196259
196260
196261
196262
196263
196264
196265
196266
196267

      default:
        rc = SQLITE_CORRUPT_BKPT;
        goto finished_invert;
    }

    assert( rc==SQLITE_OK );
    if( xOutput && sOut.nBuf>=sessions_strm_chunk_size ){
      rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
      sOut.nBuf = 0;
      if( rc!=SQLITE_OK ) goto finished_invert;
    }
  }

  assert( rc==SQLITE_OK );
194981
194982
194983
194984
194985
194986
194987
194988

194989
194990
194991
194992
194993
194994
194995
  int nCol;                       /* Size of azCol[] and abPK[] arrays */
  const char **azCol;             /* Array of column names */
  u8 *abPK;                       /* Boolean array - true if column is in PK */
  int bStat1;                     /* True if table is sqlite_stat1 */
  int bDeferConstraints;          /* True to defer constraints */
  SessionBuffer constraints;      /* Deferred constraints are stored here */
  SessionBuffer rebase;           /* Rebase information (if any) here */
  int bRebaseStarted;             /* If table header is already in rebase */

};

/*
** Formulate a statement to DELETE a row from database db. Assuming a table
** structure like this:
**
**     CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));







|
>







196332
196333
196334
196335
196336
196337
196338
196339
196340
196341
196342
196343
196344
196345
196346
196347
  int nCol;                       /* Size of azCol[] and abPK[] arrays */
  const char **azCol;             /* Array of column names */
  u8 *abPK;                       /* Boolean array - true if column is in PK */
  int bStat1;                     /* True if table is sqlite_stat1 */
  int bDeferConstraints;          /* True to defer constraints */
  SessionBuffer constraints;      /* Deferred constraints are stored here */
  SessionBuffer rebase;           /* Rebase information (if any) here */
  u8 bRebaseStarted;              /* If table header is already in rebase */
  u8 bRebase;                     /* True to collect rebase information */
};

/*
** Formulate a statement to DELETE a row from database db. Assuming a table
** structure like this:
**
**     CREATE TABLE x(a, b, c, d, PRIMARY KEY(a, c));
195378
195379
195380
195381
195382
195383
195384

195385
195386
195387
195388
195389
195390
195391
195392
195393
195394
195395
195396
195397
195398
195399
195400
195401
195402
195403
195404
195405
195406
195407
195408
195409
195410
195411
195412
195413
195414
195415
195416
195417
195418
195419
195420
*/
static int sessionRebaseAdd(
  SessionApplyCtx *p,             /* Apply context */
  int eType,                      /* Conflict resolution (OMIT or REPLACE) */
  sqlite3_changeset_iter *pIter   /* Iterator pointing at current change */
){
  int rc = SQLITE_OK;

  int i;
  int eOp = pIter->op;
  if( p->bRebaseStarted==0 ){
    /* Append a table-header to the rebase buffer */
    const char *zTab = pIter->zTab;
    sessionAppendByte(&p->rebase, 'T', &rc);
    sessionAppendVarint(&p->rebase, p->nCol, &rc);
    sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc);
    sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc);
    p->bRebaseStarted = 1;
  }

  assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT );
  assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE );

  sessionAppendByte(&p->rebase, 
      (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc
  );
  sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc);
  for(i=0; i<p->nCol; i++){
    sqlite3_value *pVal = 0;
    if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){
      sqlite3changeset_old(pIter, i, &pVal);
    }else{
      sqlite3changeset_new(pIter, i, &pVal);
    }
    sessionAppendValue(&p->rebase, pVal, &rc);
  }

  return rc;
}

/*
** Invoke the conflict handler for the change that the changeset iterator
** currently points to.
**







>
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|







196730
196731
196732
196733
196734
196735
196736
196737
196738
196739
196740
196741
196742
196743
196744
196745
196746
196747
196748
196749
196750
196751
196752
196753
196754
196755
196756
196757
196758
196759
196760
196761
196762
196763
196764
196765
196766
196767
196768
196769
196770
196771
196772
196773
*/
static int sessionRebaseAdd(
  SessionApplyCtx *p,             /* Apply context */
  int eType,                      /* Conflict resolution (OMIT or REPLACE) */
  sqlite3_changeset_iter *pIter   /* Iterator pointing at current change */
){
  int rc = SQLITE_OK;
  if( p->bRebase ){
    int i;
    int eOp = pIter->op;
    if( p->bRebaseStarted==0 ){
      /* Append a table-header to the rebase buffer */
      const char *zTab = pIter->zTab;
      sessionAppendByte(&p->rebase, 'T', &rc);
      sessionAppendVarint(&p->rebase, p->nCol, &rc);
      sessionAppendBlob(&p->rebase, p->abPK, p->nCol, &rc);
      sessionAppendBlob(&p->rebase, (u8*)zTab, (int)strlen(zTab)+1, &rc);
      p->bRebaseStarted = 1;
    }

    assert( eType==SQLITE_CHANGESET_REPLACE||eType==SQLITE_CHANGESET_OMIT );
    assert( eOp==SQLITE_DELETE || eOp==SQLITE_INSERT || eOp==SQLITE_UPDATE );

    sessionAppendByte(&p->rebase, 
        (eOp==SQLITE_DELETE ? SQLITE_DELETE : SQLITE_INSERT), &rc
        );
    sessionAppendByte(&p->rebase, (eType==SQLITE_CHANGESET_REPLACE), &rc);
    for(i=0; i<p->nCol; i++){
      sqlite3_value *pVal = 0;
      if( eOp==SQLITE_DELETE || (eOp==SQLITE_UPDATE && p->abPK[i]) ){
        sqlite3changeset_old(pIter, i, &pVal);
      }else{
        sqlite3changeset_new(pIter, i, &pVal);
      }
      sessionAppendValue(&p->rebase, pVal, &rc);
    }
  }
  return rc;
}

/*
** Invoke the conflict handler for the change that the changeset iterator
** currently points to.
**
195749
195750
195751
195752
195753
195754
195755
195756
195757
195758
195759
195760
195761
195762
195763
  int rc = SQLITE_OK;

  while( pApply->constraints.nBuf ){
    sqlite3_changeset_iter *pIter2 = 0;
    SessionBuffer cons = pApply->constraints;
    memset(&pApply->constraints, 0, sizeof(SessionBuffer));

    rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf);
    if( rc==SQLITE_OK ){
      int nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
      int rc2;
      pIter2->bPatchset = bPatchset;
      pIter2->zTab = (char*)zTab;
      pIter2->nCol = pApply->nCol;
      pIter2->abPK = pApply->abPK;







|







197102
197103
197104
197105
197106
197107
197108
197109
197110
197111
197112
197113
197114
197115
197116
  int rc = SQLITE_OK;

  while( pApply->constraints.nBuf ){
    sqlite3_changeset_iter *pIter2 = 0;
    SessionBuffer cons = pApply->constraints;
    memset(&pApply->constraints, 0, sizeof(SessionBuffer));

    rc = sessionChangesetStart(&pIter2, 0, 0, cons.nBuf, cons.aBuf, 0);
    if( rc==SQLITE_OK ){
      int nByte = 2*pApply->nCol*sizeof(sqlite3_value*);
      int rc2;
      pIter2->bPatchset = bPatchset;
      pIter2->zTab = (char*)zTab;
      pIter2->nCol = pApply->nCol;
      pIter2->abPK = pApply->abPK;
195815
195816
195817
195818
195819
195820
195821

195822
195823
195824
195825
195826
195827
195828
  SessionApplyCtx sApply;         /* changeset_apply() context object */
  int bPatchset;

  assert( xConflict!=0 );

  pIter->in.bNoDiscard = 1;
  memset(&sApply, 0, sizeof(sApply));

  sqlite3_mutex_enter(sqlite3_db_mutex(db));
  if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
    rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0);
  }







>







197168
197169
197170
197171
197172
197173
197174
197175
197176
197177
197178
197179
197180
197181
197182
  SessionApplyCtx sApply;         /* changeset_apply() context object */
  int bPatchset;

  assert( xConflict!=0 );

  pIter->in.bNoDiscard = 1;
  memset(&sApply, 0, sizeof(sApply));
  sApply.bRebase = (ppRebase && pnRebase);
  sqlite3_mutex_enter(sqlite3_db_mutex(db));
  if( (flags & SQLITE_CHANGESETAPPLY_NOSAVEPOINT)==0 ){
    rc = sqlite3_exec(db, "SAVEPOINT changeset_apply", 0, 0, 0);
  }
  if( rc==SQLITE_OK ){
    rc = sqlite3_exec(db, "PRAGMA defer_foreign_keys = 1", 0, 0, 0);
  }
195965
195966
195967
195968
195969
195970
195971

195972
195973
195974
195975
195976
195977
195978
195979
      rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
    }else{
      sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
      sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
    }
  }


  if( rc==SQLITE_OK && bPatchset==0 && ppRebase && pnRebase ){
    *ppRebase = (void*)sApply.rebase.aBuf;
    *pnRebase = sApply.rebase.nBuf;
    sApply.rebase.aBuf = 0;
  }
  sqlite3_finalize(sApply.pInsert);
  sqlite3_finalize(sApply.pDelete);
  sqlite3_finalize(sApply.pUpdate);







>
|







197319
197320
197321
197322
197323
197324
197325
197326
197327
197328
197329
197330
197331
197332
197333
197334
      rc = sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
    }else{
      sqlite3_exec(db, "ROLLBACK TO changeset_apply", 0, 0, 0);
      sqlite3_exec(db, "RELEASE changeset_apply", 0, 0, 0);
    }
  }

  assert( sApply.bRebase || sApply.rebase.nBuf==0 );
  if( rc==SQLITE_OK && bPatchset==0 && sApply.bRebase ){
    *ppRebase = (void*)sApply.rebase.aBuf;
    *pnRebase = sApply.rebase.nBuf;
    sApply.rebase.aBuf = 0;
  }
  sqlite3_finalize(sApply.pInsert);
  sqlite3_finalize(sApply.pDelete);
  sqlite3_finalize(sApply.pUpdate);
196003
196004
196005
196006
196007
196008
196009

196010
196011
196012
196013
196014
196015
196016
196017
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase,
  int flags
){
  sqlite3_changeset_iter *pIter;  /* Iterator to skip through changeset */  

  int rc = sqlite3changeset_start(&pIter, nChangeset, pChangeset);
  if( rc==SQLITE_OK ){
    rc = sessionChangesetApply(
        db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
    );
  }
  return rc;
}







>
|







197358
197359
197360
197361
197362
197363
197364
197365
197366
197367
197368
197369
197370
197371
197372
197373
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase,
  int flags
){
  sqlite3_changeset_iter *pIter;  /* Iterator to skip through changeset */  
  int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
  int rc = sessionChangesetStart(&pIter, 0, 0, nChangeset, pChangeset,bInverse);
  if( rc==SQLITE_OK ){
    rc = sessionChangesetApply(
        db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
    );
  }
  return rc;
}
196060
196061
196062
196063
196064
196065
196066

196067
196068
196069
196070
196071
196072
196073
196074
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase,
  int flags
){
  sqlite3_changeset_iter *pIter;  /* Iterator to skip through changeset */  

  int rc = sqlite3changeset_start_strm(&pIter, xInput, pIn);
  if( rc==SQLITE_OK ){
    rc = sessionChangesetApply(
        db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
    );
  }
  return rc;
}







>
|







197416
197417
197418
197419
197420
197421
197422
197423
197424
197425
197426
197427
197428
197429
197430
197431
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase,
  int flags
){
  sqlite3_changeset_iter *pIter;  /* Iterator to skip through changeset */  
  int bInverse = !!(flags & SQLITE_CHANGESETAPPLY_INVERT);
  int rc = sessionChangesetStart(&pIter, xInput, pIn, 0, 0, bInverse);
  if( rc==SQLITE_OK ){
    rc = sessionChangesetApply(
        db, pIter, xFilter, xConflict, pCtx, ppRebase, pnRebase, flags
    );
  }
  return rc;
}
196433
196434
196435
196436
196437
196438
196439
196440
196441
196442
196443
196444
196445
196446


196447
196448
196449
196450
196451
196452
196453
    sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc);
    for(i=0; i<pTab->nChange; i++){
      SessionChange *p;
      for(p=pTab->apChange[i]; p; p=p->pNext){
        sessionAppendByte(&buf, p->op, &rc);
        sessionAppendByte(&buf, p->bIndirect, &rc);
        sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);
      }
    }

    if( rc==SQLITE_OK && xOutput && buf.nBuf>=SESSIONS_STRM_CHUNK_SIZE ){
      rc = xOutput(pOut, buf.aBuf, buf.nBuf);
      buf.nBuf = 0;
    }


  }

  if( rc==SQLITE_OK ){
    if( xOutput ){
      if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf);
    }else{
      *ppOut = buf.aBuf;







<
<
<
|
|
|
|
>
>







197790
197791
197792
197793
197794
197795
197796



197797
197798
197799
197800
197801
197802
197803
197804
197805
197806
197807
197808
197809
    sessionAppendTableHdr(&buf, pGrp->bPatch, pTab, &rc);
    for(i=0; i<pTab->nChange; i++){
      SessionChange *p;
      for(p=pTab->apChange[i]; p; p=p->pNext){
        sessionAppendByte(&buf, p->op, &rc);
        sessionAppendByte(&buf, p->bIndirect, &rc);
        sessionAppendBlob(&buf, p->aRecord, p->nRecord, &rc);



        if( rc==SQLITE_OK && xOutput && buf.nBuf>=sessions_strm_chunk_size ){
          rc = xOutput(pOut, buf.aBuf, buf.nBuf);
          buf.nBuf = 0;
        }
      }
    }
  }

  if( rc==SQLITE_OK ){
    if( xOutput ){
      if( buf.nBuf>0 ) rc = xOutput(pOut, buf.aBuf, buf.nBuf);
    }else{
      *ppOut = buf.aBuf;
196830
196831
196832
196833
196834
196835
196836
196837
196838
196839
196840
196841
196842
196843
196844
    }

    if( bDone==0 ){
      sessionAppendByte(&sOut, pIter->op, &rc);
      sessionAppendByte(&sOut, pIter->bIndirect, &rc);
      sessionAppendBlob(&sOut, aRec, nRec, &rc);
    }
    if( rc==SQLITE_OK && xOutput && sOut.nBuf>SESSIONS_STRM_CHUNK_SIZE ){
      rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
      sOut.nBuf = 0;
    }
    if( rc ) break;
  }

  if( rc!=SQLITE_OK ){







|







198186
198187
198188
198189
198190
198191
198192
198193
198194
198195
198196
198197
198198
198199
198200
    }

    if( bDone==0 ){
      sessionAppendByte(&sOut, pIter->op, &rc);
      sessionAppendByte(&sOut, pIter->bIndirect, &rc);
      sessionAppendBlob(&sOut, aRec, nRec, &rc);
    }
    if( rc==SQLITE_OK && xOutput && sOut.nBuf>sessions_strm_chunk_size ){
      rc = xOutput(pOut, sOut.aBuf, sOut.nBuf);
      sOut.nBuf = 0;
    }
    if( rc ) break;
  }

  if( rc!=SQLITE_OK ){
196940
196941
196942
196943
196944
196945
196946





















196947
196948
196949
196950
196951
196952
196953
*/
SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p){
  if( p ){
    sessionDeleteTable(p->grp.pList);
    sqlite3_free(p);
  }
}






















#endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */

/************** End of sqlite3session.c **************************************/
/************** Begin file fts5.c ********************************************/









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







198296
198297
198298
198299
198300
198301
198302
198303
198304
198305
198306
198307
198308
198309
198310
198311
198312
198313
198314
198315
198316
198317
198318
198319
198320
198321
198322
198323
198324
198325
198326
198327
198328
198329
198330
*/
SQLITE_API void sqlite3rebaser_delete(sqlite3_rebaser *p){
  if( p ){
    sessionDeleteTable(p->grp.pList);
    sqlite3_free(p);
  }
}

/* 
** Global configuration
*/
SQLITE_API int sqlite3session_config(int op, void *pArg){
  int rc = SQLITE_OK;
  switch( op ){
    case SQLITE_SESSION_CONFIG_STRMSIZE: {
      int *pInt = (int*)pArg;
      if( *pInt>0 ){
        sessions_strm_chunk_size = *pInt;
      }
      *pInt = sessions_strm_chunk_size;
      break;
    }
    default:
      rc = SQLITE_MISUSE;
      break;
  }
  return rc;
}

#endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */

/************** End of sqlite3session.c **************************************/
/************** Begin file fts5.c ********************************************/


197402
197403
197404
197405
197406
197407
197408
197409
197410
197411
197412
197413
197414
197415
197416
**            document such as "I won first place" is tokenized, entries are
**            added to the FTS index for "i", "won", "first", "1st" and
**            "place".
**
**            This way, even if the tokenizer does not provide synonyms
**            when tokenizing query text (it should not - to do would be
**            inefficient), it doesn't matter if the user queries for 
**            'first + place' or '1st + place', as there are entires in the
**            FTS index corresponding to both forms of the first token.
**   </ol>
**
**   Whether it is parsing document or query text, any call to xToken that
**   specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
**   is considered to supply a synonym for the previous token. For example,
**   when parsing the document "I won first place", a tokenizer that supports







|







198779
198780
198781
198782
198783
198784
198785
198786
198787
198788
198789
198790
198791
198792
198793
**            document such as "I won first place" is tokenized, entries are
**            added to the FTS index for "i", "won", "first", "1st" and
**            "place".
**
**            This way, even if the tokenizer does not provide synonyms
**            when tokenizing query text (it should not - to do would be
**            inefficient), it doesn't matter if the user queries for 
**            'first + place' or '1st + place', as there are entries in the
**            FTS index corresponding to both forms of the first token.
**   </ol>
**
**   Whether it is parsing document or query text, any call to xToken that
**   specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
**   is considered to supply a synonym for the previous token. For example,
**   when parsing the document "I won first place", a tokenizer that supports
197430
197431
197432
197433
197434
197435
197436
197437
197438
197439
197440
197441
197442
197443
197444
**   There is no limit to the number of synonyms that may be provided for a
**   single token.
**
**   In many cases, method (1) above is the best approach. It does not add 
**   extra data to the FTS index or require FTS5 to query for multiple terms,
**   so it is efficient in terms of disk space and query speed. However, it
**   does not support prefix queries very well. If, as suggested above, the
**   token "first" is subsituted for "1st" by the tokenizer, then the query:
**
**   <codeblock>
**     ... MATCH '1s*'</codeblock>
**
**   will not match documents that contain the token "1st" (as the tokenizer
**   will probably not map "1s" to any prefix of "first").
**







|







198807
198808
198809
198810
198811
198812
198813
198814
198815
198816
198817
198818
198819
198820
198821
**   There is no limit to the number of synonyms that may be provided for a
**   single token.
**
**   In many cases, method (1) above is the best approach. It does not add 
**   extra data to the FTS index or require FTS5 to query for multiple terms,
**   so it is efficient in terms of disk space and query speed. However, it
**   does not support prefix queries very well. If, as suggested above, the
**   token "first" is substituted for "1st" by the tokenizer, then the query:
**
**   <codeblock>
**     ... MATCH '1s*'</codeblock>
**
**   will not match documents that contain the token "1st" (as the tokenizer
**   will probably not map "1s" to any prefix of "first").
**
198375
198376
198377
198378
198379
198380
198381

198382
198383
198384
198385
198386
198387
198388
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/* #include <stdio.h> */

/************ Begin %include sections from the grammar ************************/

/* #include "fts5Int.h" */
/* #include "fts5parse.h" */

/*
** Disable all error recovery processing in the parser push-down







>







199752
199753
199754
199755
199756
199757
199758
199759
199760
199761
199762
199763
199764
199765
199766
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/* #include <stdio.h> */
/* #include <assert.h> */
/************ Begin %include sections from the grammar ************************/

/* #include "fts5Int.h" */
/* #include "fts5parse.h" */

/*
** Disable all error recovery processing in the parser push-down
199702
199703
199704
199705
199706
199707
199708
199709
199710
199711
199712
199713
199714
199715
199716
199717
199718
199719
             fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
        }
#endif
        fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion);
        fts5yymajor = fts5YYNOCODE;
      }else{
        while( fts5yypParser->fts5yytos >= fts5yypParser->fts5yystack
            && fts5yymx != fts5YYERRORSYMBOL
            && (fts5yyact = fts5yy_find_reduce_action(
                        fts5yypParser->fts5yytos->stateno,
                        fts5YYERRORSYMBOL)) >= fts5YY_MIN_REDUCE
        ){
          fts5yy_pop_parser_stack(fts5yypParser);
        }
        if( fts5yypParser->fts5yytos < fts5yypParser->fts5yystack || fts5yymajor==0 ){
          fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
          fts5yy_parse_failed(fts5yypParser);
#ifndef fts5YYNOERRORRECOVERY







<


|







201080
201081
201082
201083
201084
201085
201086

201087
201088
201089
201090
201091
201092
201093
201094
201095
201096
             fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
        }
#endif
        fts5yy_destructor(fts5yypParser, (fts5YYCODETYPE)fts5yymajor, &fts5yyminorunion);
        fts5yymajor = fts5YYNOCODE;
      }else{
        while( fts5yypParser->fts5yytos >= fts5yypParser->fts5yystack

            && (fts5yyact = fts5yy_find_reduce_action(
                        fts5yypParser->fts5yytos->stateno,
                        fts5YYERRORSYMBOL)) > fts5YY_MAX_SHIFTREDUCE
        ){
          fts5yy_pop_parser_stack(fts5yypParser);
        }
        if( fts5yypParser->fts5yytos < fts5yypParser->fts5yystack || fts5yymajor==0 ){
          fts5yy_destructor(fts5yypParser,(fts5YYCODETYPE)fts5yymajor,&fts5yyminorunion);
          fts5yy_parse_failed(fts5yypParser);
#ifndef fts5YYNOERRORRECOVERY
210655
210656
210657
210658
210659
210660
210661
210662
210663
210664
210665
210666
210667
210668
210669

    if( p->rc ){
      sqlite3Fts5IterClose((Fts5IndexIter*)pRet);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = &pRet->base;
    sqlite3Fts5BufferFree(&buf);
  }
  return fts5IndexReturn(p);
}

/*
** Return true if the iterator passed as the only argument is at EOF.







|







212032
212033
212034
212035
212036
212037
212038
212039
212040
212041
212042
212043
212044
212045
212046

    if( p->rc ){
      sqlite3Fts5IterClose((Fts5IndexIter*)pRet);
      pRet = 0;
      fts5CloseReader(p);
    }

    *ppIter = (Fts5IndexIter*)pRet;
    sqlite3Fts5BufferFree(&buf);
  }
  return fts5IndexReturn(p);
}

/*
** Return true if the iterator passed as the only argument is at EOF.
214404
214405
214406
214407
214408
214409
214410


214411













214412
214413
214414
214415
214416
214417
214418
214419
214420
214421
214422
214423
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);


  sqlite3_result_text(pCtx, "fts5: 2018-09-11 19:05:32 0af18674ca5b34e67e1685be3adcdd99a7b8650589c6a7cde7ad9ef1852a8777", -1, SQLITE_TRANSIENT);













}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,
    /* xBestIndex    */ fts5BestIndexMethod,
    /* xDisconnect   */ fts5DisconnectMethod,
    /* xDestroy      */ fts5DestroyMethod,
    /* xOpen         */ fts5OpenMethod,
    /* xClose        */ fts5CloseMethod,







>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>




|







215781
215782
215783
215784
215785
215786
215787
215788
215789
215790
215791
215792
215793
215794
215795
215796
215797
215798
215799
215800
215801
215802
215803
215804
215805
215806
215807
215808
215809
215810
215811
215812
215813
215814
215815
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apUnused        /* Function arguments */
){
  assert( nArg==0 );
  UNUSED_PARAM2(nArg, apUnused);
  sqlite3_result_text(pCtx, "fts5: 2018-11-27 17:02:38 3c893d9bcc34c391505b08cc35808dd3abddf3c5d952798334c296547bcae6a6", -1, SQLITE_TRANSIENT);
}

/*
** Return true if zName is the extension on one of the shadow tables used
** by this module.
*/
static int fts5ShadowName(const char *zName){
  static const char *azName[] = {
    "config", "content", "data", "docsize", "idx"
  };
  unsigned int i;
  for(i=0; i<sizeof(azName)/sizeof(azName[0]); i++){
    if( sqlite3_stricmp(zName, azName[i])==0 ) return 1;
  }
  return 0;
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 3,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,
    /* xBestIndex    */ fts5BestIndexMethod,
    /* xDisconnect   */ fts5DisconnectMethod,
    /* xDestroy      */ fts5DestroyMethod,
    /* xOpen         */ fts5OpenMethod,
    /* xClose        */ fts5CloseMethod,
214432
214433
214434
214435
214436
214437
214438

214439
214440
214441
214442
214443
214444
214445
    /* xCommit       */ fts5CommitMethod,
    /* xRollback     */ fts5RollbackMethod,
    /* xFindFunction */ fts5FindFunctionMethod,
    /* xRename       */ fts5RenameMethod,
    /* xSavepoint    */ fts5SavepointMethod,
    /* xRelease      */ fts5ReleaseMethod,
    /* xRollbackTo   */ fts5RollbackToMethod,

  };

  int rc;
  Fts5Global *pGlobal = 0;

  pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global));
  if( pGlobal==0 ){







>







215824
215825
215826
215827
215828
215829
215830
215831
215832
215833
215834
215835
215836
215837
215838
    /* xCommit       */ fts5CommitMethod,
    /* xRollback     */ fts5RollbackMethod,
    /* xFindFunction */ fts5FindFunctionMethod,
    /* xRename       */ fts5RenameMethod,
    /* xSavepoint    */ fts5SavepointMethod,
    /* xRelease      */ fts5ReleaseMethod,
    /* xRollbackTo   */ fts5RollbackToMethod,
    /* xShadowName   */ fts5ShadowName
  };

  int rc;
  Fts5Global *pGlobal = 0;

  pGlobal = (Fts5Global*)sqlite3_malloc(sizeof(Fts5Global));
  if( pGlobal==0 ){
218476
218477
218478
218479
218480
218481
218482


218483
218484
218485
218486
218487
218488
218489
218490
218491
218492
218493
218494
218495
218496
218497
218498
218499
static int fts5VocabInstanceNext(Fts5VocabCursor *pCsr){
  int eDetail = pCsr->pConfig->eDetail;
  int rc = SQLITE_OK;
  Fts5IndexIter *pIter = pCsr->pIter;
  i64 *pp = &pCsr->iInstPos;
  int *po = &pCsr->iInstOff;
  


  while( eDetail==FTS5_DETAIL_NONE
      || sqlite3Fts5PoslistNext64(pIter->pData, pIter->nData, po, pp) 
  ){
    pCsr->iInstPos = 0;
    pCsr->iInstOff = 0;

    rc = sqlite3Fts5IterNextScan(pCsr->pIter);
    if( rc==SQLITE_OK ){
      rc = fts5VocabInstanceNewTerm(pCsr);
      if( eDetail==FTS5_DETAIL_NONE ) break;
    }
    if( rc ){
      pCsr->bEof = 1;
      break;
    }
  }








>
>









|







219869
219870
219871
219872
219873
219874
219875
219876
219877
219878
219879
219880
219881
219882
219883
219884
219885
219886
219887
219888
219889
219890
219891
219892
219893
219894
static int fts5VocabInstanceNext(Fts5VocabCursor *pCsr){
  int eDetail = pCsr->pConfig->eDetail;
  int rc = SQLITE_OK;
  Fts5IndexIter *pIter = pCsr->pIter;
  i64 *pp = &pCsr->iInstPos;
  int *po = &pCsr->iInstOff;
  
  assert( sqlite3Fts5IterEof(pIter)==0 );
  assert( pCsr->bEof==0 );
  while( eDetail==FTS5_DETAIL_NONE
      || sqlite3Fts5PoslistNext64(pIter->pData, pIter->nData, po, pp) 
  ){
    pCsr->iInstPos = 0;
    pCsr->iInstOff = 0;

    rc = sqlite3Fts5IterNextScan(pCsr->pIter);
    if( rc==SQLITE_OK ){
      rc = fts5VocabInstanceNewTerm(pCsr);
      if( pCsr->bEof || eDetail==FTS5_DETAIL_NONE ) break;
    }
    if( rc ){
      pCsr->bEof = 1;
      break;
    }
  }

218800
218801
218802
218803
218804
218805
218806

218807
218808
218809
218810
218811
218812
218813
218814
218815
218816
218817
218818
218819
218820
    /* xCommit       */ 0,
    /* xRollback     */ 0,
    /* xFindFunction */ 0,
    /* xRename       */ 0,
    /* xSavepoint    */ 0,
    /* xRelease      */ 0,
    /* xRollbackTo   */ 0,

  };
  void *p = (void*)pGlobal;

  return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0);
}




    
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) */

/************** End of fts5.c ************************************************/
/************** Begin file stmt.c ********************************************/







>





<
<







220195
220196
220197
220198
220199
220200
220201
220202
220203
220204
220205
220206
220207


220208
220209
220210
220211
220212
220213
220214
    /* xCommit       */ 0,
    /* xRollback     */ 0,
    /* xFindFunction */ 0,
    /* xRename       */ 0,
    /* xSavepoint    */ 0,
    /* xRelease      */ 0,
    /* xRollbackTo   */ 0,
    /* xShadowName   */ 0
  };
  void *p = (void*)pGlobal;

  return sqlite3_create_module_v2(db, "fts5vocab", &fts5Vocab, p, 0);
}




    
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) */

/************** End of fts5.c ************************************************/
/************** Begin file stmt.c ********************************************/
219082
219083
219084
219085
219086
219087
219088

219089
219090
219091
219092
219093
219094
219095
  0,                         /* xCommit */
  0,                         /* xRollback */
  0,                         /* xFindMethod */
  0,                         /* xRename */
  0,                         /* xSavepoint */
  0,                         /* xRelease */
  0,                         /* xRollbackTo */

};

#endif /* SQLITE_OMIT_VIRTUALTABLE */

SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3 *db){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_VIRTUALTABLE







>







220476
220477
220478
220479
220480
220481
220482
220483
220484
220485
220486
220487
220488
220489
220490
  0,                         /* xCommit */
  0,                         /* xRollback */
  0,                         /* xFindMethod */
  0,                         /* xRename */
  0,                         /* xSavepoint */
  0,                         /* xRelease */
  0,                         /* xRollbackTo */
  0,                         /* xShadowName */
};

#endif /* SQLITE_OMIT_VIRTUALTABLE */

SQLITE_PRIVATE int sqlite3StmtVtabInit(sqlite3 *db){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_VIRTUALTABLE
219114
219115
219116
219117
219118
219119
219120
219121
219122
219123
219124
219125
219126
219127
#endif
  return rc;
}
#endif /* SQLITE_CORE */
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */

/************** End of stmt.c ************************************************/
#if __LINE__!=219121
#undef SQLITE_SOURCE_ID
#define SQLITE_SOURCE_ID      "2018-09-12 08:51:48 572de7e4e33562c72cd90790b267ba389370f21ddcaebc4db609fd76ae9balt2"
#endif
/* Return the source-id for this library */
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
/************************** End of sqlite3.c ******************************/







|

|




220509
220510
220511
220512
220513
220514
220515
220516
220517
220518
220519
220520
220521
220522
#endif
  return rc;
}
#endif /* SQLITE_CORE */
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_STMTVTAB) */

/************** End of stmt.c ************************************************/
#if __LINE__!=220516
#undef SQLITE_SOURCE_ID
#define SQLITE_SOURCE_ID      "2018-11-27 19:47:55 0ea049f342d11c676e148239e45d252164081362e921a4beb735d6899eb7alt2"
#endif
/* Return the source-id for this library */
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }
/************************** End of sqlite3.c ******************************/
Changes to src/sqlite3.h.
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.25.0"
#define SQLITE_VERSION_NUMBER 3025000
#define SQLITE_SOURCE_ID      "2018-09-12 08:51:48 572de7e4e33562c72cd90790b267ba389370f21ddcaebc4db609fd76ae9b7ada"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
** been edited in any way since it was last checked in, then the last
** four hexadecimal digits of the hash may be modified.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.26.0"
#define SQLITE_VERSION_NUMBER 3026000
#define SQLITE_SOURCE_ID      "2018-11-27 19:47:55 0ea049f342d11c676e148239e45d252164081362e921a4beb735d6899eb77344"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096

1097
1098
1099
1100
1101
1102
1103
**
** <li>[[SQLITE_FCNTL_DATA_VERSION]]
** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
** a database file.  The argument is a pointer to a 32-bit unsigned integer.
** The "data version" for the pager is written into the pointer.  The
** "data version" changes whenever any change occurs to the corresponding
** database file, either through SQL statements on the same database
** connection, or through transactions committed by separate database
** connections possibly in other processes. The [sqlite3_total_changes()]
** interface can be used to find if any database on the connection has changed,
** but that interface response to changes on TEMP as well as MAIN and does
** not provide a mechanism to detect changes to MAIN only.  Also, the
** [sqlite3_total_changes()] interface response to internal changes only and
** omits changes made by other database connections.  The
** [PRAGMA data_version] command provide a mechanism to detect changes to
** a single attached database that occur due to other database connections,
** but omits changes implemented by the database connection for which it is
** called.  This file control is the only mechanism to detect changes that
** happen either internally or externally on a single database.

** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
#define SQLITE_FCNTL_LAST_ERRNO              4
#define SQLITE_FCNTL_SIZE_HINT               5







|


|

|



|

|
>







1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
**
** <li>[[SQLITE_FCNTL_DATA_VERSION]]
** The [SQLITE_FCNTL_DATA_VERSION] opcode is used to detect changes to
** a database file.  The argument is a pointer to a 32-bit unsigned integer.
** The "data version" for the pager is written into the pointer.  The
** "data version" changes whenever any change occurs to the corresponding
** database file, either through SQL statements on the same database
** connection or through transactions committed by separate database
** connections possibly in other processes. The [sqlite3_total_changes()]
** interface can be used to find if any database on the connection has changed,
** but that interface responds to changes on TEMP as well as MAIN and does
** not provide a mechanism to detect changes to MAIN only.  Also, the
** [sqlite3_total_changes()] interface responds to internal changes only and
** omits changes made by other database connections.  The
** [PRAGMA data_version] command provide a mechanism to detect changes to
** a single attached database that occur due to other database connections,
** but omits changes implemented by the database connection on which it is
** called.  This file control is the only mechanism to detect changes that
** happen either internally or externally and that are associated with
** a particular attached database.
** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
#define SQLITE_FCNTL_LAST_ERRNO              4
#define SQLITE_FCNTL_SIZE_HINT               5
2012
2013
2014
2015
2016
2017
2018

2019
2020
2021
2022
2023
2024
2025
** Existing configuration options might be discontinued.  Applications
** should check the return code from [sqlite3_db_config()] to make sure that
** the call worked.  ^The [sqlite3_db_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>

** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd> ^This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** ^The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to a memory buffer to use for lookaside memory.
** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
** may be NULL in which case SQLite will allocate the







>







2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
** Existing configuration options might be discontinued.  Applications
** should check the return code from [sqlite3_db_config()] to make sure that
** the call worked.  ^The [sqlite3_db_config()] interface will return a
** non-zero [error code] if a discontinued or unsupported configuration option
** is invoked.
**
** <dl>
** [[SQLITE_DBCONFIG_LOOKASIDE]]
** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
** <dd> ^This option takes three additional arguments that determine the 
** [lookaside memory allocator] configuration for the [database connection].
** ^The first argument (the third parameter to [sqlite3_db_config()] is a
** pointer to a memory buffer to use for lookaside memory.
** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
** may be NULL in which case SQLite will allocate the
2034
2035
2036
2037
2038
2039
2040

2041
2042
2043
2044
2045
2046
2047
2048
2049
2050

2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073

2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099

2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159












2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172

2173
2174
2175
2176
2177
2178
2179
2180
** connection is not currently using lookaside memory, or in other words
** when the "current value" returned by
** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
** Any attempt to change the lookaside memory configuration when lookaside
** memory is in use leaves the configuration unchanged and returns 
** [SQLITE_BUSY].)^</dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
** <dd> ^This option is used to enable or disable the enforcement of
** [foreign key constraints].  There should be two additional arguments.
** The first argument is an integer which is 0 to disable FK enforcement,
** positive to enable FK enforcement or negative to leave FK enforcement
** unchanged.  The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether FK enforcement is off or on
** following this call.  The second parameter may be a NULL pointer, in
** which case the FK enforcement setting is not reported back. </dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable triggers,
** positive to enable triggers or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether triggers are disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the trigger setting is not reported back. </dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
** <dd> ^This option is used to enable or disable the two-argument
** version of the [fts3_tokenizer()] function which is part of the
** [FTS3] full-text search engine extension.
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable fts3_tokenizer() or
** positive to enable fts3_tokenizer() or negative to leave the setting
** unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the new setting is not reported back. </dd>
**

** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
** interface independently of the [load_extension()] SQL function.
** The [sqlite3_enable_load_extension()] API enables or disables both the
** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
** There should be two additional arguments.
** When the first argument to this interface is 1, then only the C-API is
** enabled and the SQL function remains disabled.  If the first argument to
** this interface is 0, then both the C-API and the SQL function are disabled.
** If the first argument is -1, then no changes are made to state of either the
** C-API or the SQL function.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
** is disabled or enabled following this call.  The second parameter may
** be a NULL pointer, in which case the new setting is not reported back.
** </dd>
**
** <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
** <dd> ^This option is used to change the name of the "main" database
** schema.  ^The sole argument is a pointer to a constant UTF8 string
** which will become the new schema name in place of "main".  ^SQLite
** does not make a copy of the new main schema name string, so the application
** must ensure that the argument passed into this DBCONFIG option is unchanged
** until after the database connection closes.
** </dd>
**

** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
** <dd> Usually, when a database in wal mode is closed or detached from a 
** database handle, SQLite checks if this will mean that there are now no 
** connections at all to the database. If so, it performs a checkpoint 
** operation before closing the connection. This option may be used to
** override this behaviour. The first parameter passed to this operation
** is an integer - positive to disable checkpoints-on-close, or zero (the
** default) to enable them, and negative to leave the setting unchanged.
** The second parameter is a pointer to an integer
** into which is written 0 or 1 to indicate whether checkpoints-on-close
** have been disabled - 0 if they are not disabled, 1 if they are.
** </dd>
**
** <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
** the [query planner stability guarantee] (QPSG).  When the QPSG is active,
** a single SQL query statement will always use the same algorithm regardless
** of values of [bound parameters].)^ The QPSG disables some query optimizations
** that look at the values of bound parameters, which can make some queries
** slower.  But the QPSG has the advantage of more predictable behavior.  With
** the QPSG active, SQLite will always use the same query plan in the field as
** was used during testing in the lab.
** The first argument to this setting is an integer which is 0 to disable 
** the QPSG, positive to enable QPSG, or negative to leave the setting
** unchanged. The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
** following this call.
** </dd>
**
** <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
** include output for any operations performed by trigger programs. This
** option is used to set or clear (the default) a flag that governs this
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
**
** <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
** [VACUUM] in order to reset a database back to an empty database
** with no schema and no content. The following process works even for
** a badly corrupted database file:
** <ol>
** <li> If the database connection is newly opened, make sure it has read the
**      database schema by preparing then discarding some query against the
**      database, or calling sqlite3_table_column_metadata(), ignoring any
**      errors.  This step is only necessary if the application desires to keep
**      the database in WAL mode after the reset if it was in WAL mode before
**      the reset.  
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
** </ol>
** Because resetting a database is destructive and irreversible, the
** process requires the use of this obscure API and multiple steps to help
** ensure that it does not happen by accident.












** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */

#define SQLITE_DBCONFIG_MAX                   1009 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result







>










>










>













>

















|








>













|















|











|


















>
>
>
>
>
>
>
>
>
>
>
>













>
|







2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
** connection is not currently using lookaside memory, or in other words
** when the "current value" returned by
** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
** Any attempt to change the lookaside memory configuration when lookaside
** memory is in use leaves the configuration unchanged and returns 
** [SQLITE_BUSY].)^</dd>
**
** [[SQLITE_DBCONFIG_ENABLE_FKEY]]
** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
** <dd> ^This option is used to enable or disable the enforcement of
** [foreign key constraints].  There should be two additional arguments.
** The first argument is an integer which is 0 to disable FK enforcement,
** positive to enable FK enforcement or negative to leave FK enforcement
** unchanged.  The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether FK enforcement is off or on
** following this call.  The second parameter may be a NULL pointer, in
** which case the FK enforcement setting is not reported back. </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_TRIGGER]]
** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable triggers,
** positive to enable triggers or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether triggers are disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the trigger setting is not reported back. </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER]]
** <dt>SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER</dt>
** <dd> ^This option is used to enable or disable the two-argument
** version of the [fts3_tokenizer()] function which is part of the
** [FTS3] full-text search engine extension.
** There should be two additional arguments.
** The first argument is an integer which is 0 to disable fts3_tokenizer() or
** positive to enable fts3_tokenizer() or negative to leave the setting
** unchanged.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether fts3_tokenizer is disabled or enabled
** following this call.  The second parameter may be a NULL pointer, in
** which case the new setting is not reported back. </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION]]
** <dt>SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION</dt>
** <dd> ^This option is used to enable or disable the [sqlite3_load_extension()]
** interface independently of the [load_extension()] SQL function.
** The [sqlite3_enable_load_extension()] API enables or disables both the
** C-API [sqlite3_load_extension()] and the SQL function [load_extension()].
** There should be two additional arguments.
** When the first argument to this interface is 1, then only the C-API is
** enabled and the SQL function remains disabled.  If the first argument to
** this interface is 0, then both the C-API and the SQL function are disabled.
** If the first argument is -1, then no changes are made to state of either the
** C-API or the SQL function.
** The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether [sqlite3_load_extension()] interface
** is disabled or enabled following this call.  The second parameter may
** be a NULL pointer, in which case the new setting is not reported back.
** </dd>
**
** [[SQLITE_DBCONFIG_MAINDBNAME]] <dt>SQLITE_DBCONFIG_MAINDBNAME</dt>
** <dd> ^This option is used to change the name of the "main" database
** schema.  ^The sole argument is a pointer to a constant UTF8 string
** which will become the new schema name in place of "main".  ^SQLite
** does not make a copy of the new main schema name string, so the application
** must ensure that the argument passed into this DBCONFIG option is unchanged
** until after the database connection closes.
** </dd>
**
** [[SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE]] 
** <dt>SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE</dt>
** <dd> Usually, when a database in wal mode is closed or detached from a 
** database handle, SQLite checks if this will mean that there are now no 
** connections at all to the database. If so, it performs a checkpoint 
** operation before closing the connection. This option may be used to
** override this behaviour. The first parameter passed to this operation
** is an integer - positive to disable checkpoints-on-close, or zero (the
** default) to enable them, and negative to leave the setting unchanged.
** The second parameter is a pointer to an integer
** into which is written 0 or 1 to indicate whether checkpoints-on-close
** have been disabled - 0 if they are not disabled, 1 if they are.
** </dd>
**
** [[SQLITE_DBCONFIG_ENABLE_QPSG]] <dt>SQLITE_DBCONFIG_ENABLE_QPSG</dt>
** <dd>^(The SQLITE_DBCONFIG_ENABLE_QPSG option activates or deactivates
** the [query planner stability guarantee] (QPSG).  When the QPSG is active,
** a single SQL query statement will always use the same algorithm regardless
** of values of [bound parameters].)^ The QPSG disables some query optimizations
** that look at the values of bound parameters, which can make some queries
** slower.  But the QPSG has the advantage of more predictable behavior.  With
** the QPSG active, SQLite will always use the same query plan in the field as
** was used during testing in the lab.
** The first argument to this setting is an integer which is 0 to disable 
** the QPSG, positive to enable QPSG, or negative to leave the setting
** unchanged. The second parameter is a pointer to an integer into which
** is written 0 or 1 to indicate whether the QPSG is disabled or enabled
** following this call.
** </dd>
**
** [[SQLITE_DBCONFIG_TRIGGER_EQP]] <dt>SQLITE_DBCONFIG_TRIGGER_EQP</dt>
** <dd> By default, the output of EXPLAIN QUERY PLAN commands does not 
** include output for any operations performed by trigger programs. This
** option is used to set or clear (the default) a flag that governs this
** behavior. The first parameter passed to this operation is an integer -
** positive to enable output for trigger programs, or zero to disable it,
** or negative to leave the setting unchanged.
** The second parameter is a pointer to an integer into which is written 
** 0 or 1 to indicate whether output-for-triggers has been disabled - 0 if 
** it is not disabled, 1 if it is.  
** </dd>
**
** [[SQLITE_DBCONFIG_RESET_DATABASE]] <dt>SQLITE_DBCONFIG_RESET_DATABASE</dt>
** <dd> Set the SQLITE_DBCONFIG_RESET_DATABASE flag and then run
** [VACUUM] in order to reset a database back to an empty database
** with no schema and no content. The following process works even for
** a badly corrupted database file:
** <ol>
** <li> If the database connection is newly opened, make sure it has read the
**      database schema by preparing then discarding some query against the
**      database, or calling sqlite3_table_column_metadata(), ignoring any
**      errors.  This step is only necessary if the application desires to keep
**      the database in WAL mode after the reset if it was in WAL mode before
**      the reset.  
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 1, 0);
** <li> [sqlite3_exec](db, "[VACUUM]", 0, 0, 0);
** <li> sqlite3_db_config(db, SQLITE_DBCONFIG_RESET_DATABASE, 0, 0);
** </ol>
** Because resetting a database is destructive and irreversible, the
** process requires the use of this obscure API and multiple steps to help
** ensure that it does not happen by accident.
**
** [[SQLITE_DBCONFIG_DEFENSIVE]] <dt>SQLITE_DBCONFIG_DEFENSIVE</dt>
** <dd>The SQLITE_DBCONFIG_DEFENSIVE option activates or deactivates the
** "defensive" flag for a database connection.  When the defensive
** flag is enabled, language features that allow ordinary SQL to 
** deliberately corrupt the database file are disabled.  The disabled
** features include but are not limited to the following:
** <ul>
** <li> The [PRAGMA writable_schema=ON] statement.
** <li> Writes to the [sqlite_dbpage] virtual table.
** <li> Direct writes to [shadow tables].
** </ul>
** </dd>
** </dl>
*/
#define SQLITE_DBCONFIG_MAINDBNAME            1000 /* const char* */
#define SQLITE_DBCONFIG_LOOKASIDE             1001 /* void* int int */
#define SQLITE_DBCONFIG_ENABLE_FKEY           1002 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_TRIGGER        1003 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_FTS3_TOKENIZER 1004 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_LOAD_EXTENSION 1005 /* int int* */
#define SQLITE_DBCONFIG_NO_CKPT_ON_CLOSE      1006 /* int int* */
#define SQLITE_DBCONFIG_ENABLE_QPSG           1007 /* int int* */
#define SQLITE_DBCONFIG_TRIGGER_EQP           1008 /* int int* */
#define SQLITE_DBCONFIG_RESET_DATABASE        1009 /* int int* */
#define SQLITE_DBCONFIG_DEFENSIVE             1010 /* int int* */
#define SQLITE_DBCONFIG_MAX                   1010 /* Largest DBCONFIG */

/*
** CAPI3REF: Enable Or Disable Extended Result Codes
** METHOD: sqlite3
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
3604
3605
3606
3607
3608
3609
3610









3611
3612
3613

3614
3615
3616
3617
3618
3619
3620
** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
** and [sqlite3_prepare16_v3()] assume that the prepared statement will 
** be used just once or at most a few times and then destroyed using
** [sqlite3_finalize()] relatively soon. The current implementation acts
** on this hint by avoiding the use of [lookaside memory] so as not to
** deplete the limited store of lookaside memory. Future versions of
** SQLite may act on this hint differently.









** </dl>
*/
#define SQLITE_PREPARE_PERSISTENT              0x01


/*
** CAPI3REF: Compiling An SQL Statement
** KEYWORDS: {SQL statement compiler}
** METHOD: sqlite3
** CONSTRUCTOR: sqlite3_stmt
**







>
>
>
>
>
>
>
>
>



>







3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
** probably reused many times.)^ ^Without this flag, [sqlite3_prepare_v3()]
** and [sqlite3_prepare16_v3()] assume that the prepared statement will 
** be used just once or at most a few times and then destroyed using
** [sqlite3_finalize()] relatively soon. The current implementation acts
** on this hint by avoiding the use of [lookaside memory] so as not to
** deplete the limited store of lookaside memory. Future versions of
** SQLite may act on this hint differently.
**
** [[SQLITE_PREPARE_NORMALIZE]] ^(<dt>SQLITE_PREPARE_NORMALIZE</dt>
** <dd>The SQLITE_PREPARE_NORMALIZE flag indicates that a normalized
** representation of the SQL statement should be calculated and then
** associated with the prepared statement, which can be obtained via
** the [sqlite3_normalized_sql()] interface.  The semantics used to
** normalize a SQL statement are unspecified and subject to change.
** At a minimum, literal values will be replaced with suitable
** placeholders.
** </dl>
*/
#define SQLITE_PREPARE_PERSISTENT              0x01
#define SQLITE_PREPARE_NORMALIZE               0x02

/*
** CAPI3REF: Compiling An SQL Statement
** KEYWORDS: {SQL statement compiler}
** METHOD: sqlite3
** CONSTRUCTOR: sqlite3_stmt
**
3764
3765
3766
3767
3768
3769
3770





3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787

3788
3789
3790
3791
3792
3793

3794
3795
3796
3797
3798
3799
3800
** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
** SQL text used to create [prepared statement] P if P was
** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
** string containing the SQL text of prepared statement P with
** [bound parameters] expanded.





**
** ^(For example, if a prepared statement is created using the SQL
** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
** and parameter :xyz is unbound, then sqlite3_sql() will return
** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
** will return "SELECT 2345,NULL".)^
**
** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
** is available to hold the result, or if the result would exceed the
** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
**
** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
** bound parameter expansions.  ^The [SQLITE_OMIT_TRACE] compile-time
** option causes sqlite3_expanded_sql() to always return NULL.
**
** ^The string returned by sqlite3_sql(P) is managed by SQLite and is
** automatically freed when the prepared statement is finalized.

** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
** is obtained from [sqlite3_malloc()] and must be free by the application
** by passing it to [sqlite3_free()].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);


/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
** METHOD: sqlite3_stmt
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to







>
>
>
>
>















|
|
>






>







3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
** ^The sqlite3_sql(P) interface returns a pointer to a copy of the UTF-8
** SQL text used to create [prepared statement] P if P was
** created by [sqlite3_prepare_v2()], [sqlite3_prepare_v3()],
** [sqlite3_prepare16_v2()], or [sqlite3_prepare16_v3()].
** ^The sqlite3_expanded_sql(P) interface returns a pointer to a UTF-8
** string containing the SQL text of prepared statement P with
** [bound parameters] expanded.
** ^The sqlite3_normalized_sql(P) interface returns a pointer to a UTF-8
** string containing the normalized SQL text of prepared statement P.  The
** semantics used to normalize a SQL statement are unspecified and subject
** to change.  At a minimum, literal values will be replaced with suitable
** placeholders.
**
** ^(For example, if a prepared statement is created using the SQL
** text "SELECT $abc,:xyz" and if parameter $abc is bound to integer 2345
** and parameter :xyz is unbound, then sqlite3_sql() will return
** the original string, "SELECT $abc,:xyz" but sqlite3_expanded_sql()
** will return "SELECT 2345,NULL".)^
**
** ^The sqlite3_expanded_sql() interface returns NULL if insufficient memory
** is available to hold the result, or if the result would exceed the
** the maximum string length determined by the [SQLITE_LIMIT_LENGTH].
**
** ^The [SQLITE_TRACE_SIZE_LIMIT] compile-time option limits the size of
** bound parameter expansions.  ^The [SQLITE_OMIT_TRACE] compile-time
** option causes sqlite3_expanded_sql() to always return NULL.
**
** ^The strings returned by sqlite3_sql(P) and sqlite3_normalized_sql(P)
** are managed by SQLite and are automatically freed when the prepared
** statement is finalized.
** ^The string returned by sqlite3_expanded_sql(P), on the other hand,
** is obtained from [sqlite3_malloc()] and must be free by the application
** by passing it to [sqlite3_free()].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);
SQLITE_API char *sqlite3_expanded_sql(sqlite3_stmt *pStmt);
SQLITE_API const char *sqlite3_normalized_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
** METHOD: sqlite3_stmt
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
** parameters. ^An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
** SQL function or aggregate, pass NULL pointers for all three function
** callbacks.
**
** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue 
** and xInverse) passed to sqlite3_create_window_function are pointers to
** C-lanugage callbacks that implement the new function. xStep and xFinal
** must both be non-NULL. xValue and xInverse may either both be NULL, in
** which case a regular aggregate function is created, or must both be 
** non-NULL, in which case the new function may be used as either an aggregate
** or aggregate window function. More details regarding the implementation
** of aggregate window functions are 
** [user-defined window functions|available here].
**







|







4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
** parameters. ^An aggregate SQL function requires an implementation of xStep
** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
** SQL function or aggregate, pass NULL pointers for all three function
** callbacks.
**
** ^The sixth, seventh, eighth and ninth parameters (xStep, xFinal, xValue 
** and xInverse) passed to sqlite3_create_window_function are pointers to
** C-language callbacks that implement the new function. xStep and xFinal
** must both be non-NULL. xValue and xInverse may either both be NULL, in
** which case a regular aggregate function is created, or must both be 
** non-NULL, in which case the new function may be used as either an aggregate
** or aggregate window function. More details regarding the implementation
** of aggregate window functions are 
** [user-defined window functions|available here].
**
6276
6277
6278
6279
6280
6281
6282



6283
6284
6285
6286
6287
6288
6289
                       void **ppArg);
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
  /* The methods above are in version 1 of the sqlite_module object. Those 
  ** below are for version 2 and greater. */
  int (*xSavepoint)(sqlite3_vtab *pVTab, int);
  int (*xRelease)(sqlite3_vtab *pVTab, int);
  int (*xRollbackTo)(sqlite3_vtab *pVTab, int);



};

/*
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
**
** The sqlite3_index_info structure and its substructures is used as part







>
>
>







6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
                       void **ppArg);
  int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
  /* The methods above are in version 1 of the sqlite_module object. Those 
  ** below are for version 2 and greater. */
  int (*xSavepoint)(sqlite3_vtab *pVTab, int);
  int (*xRelease)(sqlite3_vtab *pVTab, int);
  int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
  /* The methods above are in versions 1 and 2 of the sqlite_module object.
  ** Those below are for version 3 and greater. */
  int (*xShadowName)(const char*);
};

/*
** CAPI3REF: Virtual Table Indexing Information
** KEYWORDS: sqlite3_index_info
**
** The sqlite3_index_info structure and its substructures is used as part
7198
7199
7200
7201
7202
7203
7204

7205
7206
7207
7208
7209
7210
7211
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16  /* NOT USED */
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */

#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23







>







7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
#define SQLITE_TESTCTRL_PENDING_BYTE            11
#define SQLITE_TESTCTRL_ASSERT                  12
#define SQLITE_TESTCTRL_ALWAYS                  13
#define SQLITE_TESTCTRL_RESERVE                 14
#define SQLITE_TESTCTRL_OPTIMIZATIONS           15
#define SQLITE_TESTCTRL_ISKEYWORD               16  /* NOT USED */
#define SQLITE_TESTCTRL_SCRATCHMALLOC           17  /* NOT USED */
#define SQLITE_TESTCTRL_INTERNAL_FUNCTIONS      17
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_ONCE_RESET_THRESHOLD    19
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
8610
8611
8612
8613
8614
8615
8616

8617
8618
8619
8620
8621
8622
8623
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
**
** <dl>

** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
** <dd>Calls of the form
** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
** where X is an integer.  If X is zero, then the [virtual table] whose
** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
** support constraints.  In this configuration (which is the default) if
** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire







>







8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
**
** <dl>
** [[SQLITE_VTAB_CONSTRAINT_SUPPORT]]
** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
** <dd>Calls of the form
** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
** where X is an integer.  If X is zero, then the [virtual table] whose
** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
** support constraints.  In this configuration (which is the default) if
** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
** The following are allowed values for 6th argument (the F argument) to
** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
**
** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
** in the P argument is held in memory obtained from [sqlite3_malloc64()]
** and that SQLite should take ownership of this memory and automatically
** free it when it has finished using it.  Without this flag, the caller
** is resposible for freeing any dynamically allocated memory.
**
** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
** grow the size of the database using calls to [sqlite3_realloc64()].  This
** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
** Without this flag, the deserialized database cannot increase in size beyond
** the number of bytes specified by the M parameter.
**







|







9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
** The following are allowed values for 6th argument (the F argument) to
** the [sqlite3_deserialize(D,S,P,N,M,F)] interface.
**
** The SQLITE_DESERIALIZE_FREEONCLOSE means that the database serialization
** in the P argument is held in memory obtained from [sqlite3_malloc64()]
** and that SQLite should take ownership of this memory and automatically
** free it when it has finished using it.  Without this flag, the caller
** is responsible for freeing any dynamically allocated memory.
**
** The SQLITE_DESERIALIZE_RESIZEABLE flag means that SQLite is allowed to
** grow the size of the database using calls to [sqlite3_realloc64()].  This
** flag should only be used if SQLITE_DESERIALIZE_FREEONCLOSE is also used.
** Without this flag, the deserialized database cannot increase in size beyond
** the number of bytes specified by the M parameter.
**
9875
9876
9877
9878
9879
9880
9881







9882
9883
9884
9885
9886
9887



















9888
9889
9890
9891
9892
9893
9894
** [sqlite3changeset_invert()] functions, all changes within the changeset 
** that apply to a single table are grouped together. This means that when 
** an application iterates through a changeset using an iterator created by 
** this function, all changes that relate to a single table are visited 
** consecutively. There is no chance that the iterator will visit a change 
** the applies to table X, then one for table Y, and then later on visit 
** another change for table X.







*/
SQLITE_API int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset                /* Pointer to blob containing changeset */
);





















/*
** CAPI3REF: Advance A Changeset Iterator
** METHOD: sqlite3_changeset_iter
**
** This function may only be used with iterators created by function







>
>
>
>
>
>
>






>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
** [sqlite3changeset_invert()] functions, all changes within the changeset 
** that apply to a single table are grouped together. This means that when 
** an application iterates through a changeset using an iterator created by 
** this function, all changes that relate to a single table are visited 
** consecutively. There is no chance that the iterator will visit a change 
** the applies to table X, then one for table Y, and then later on visit 
** another change for table X.
**
** The behavior of sqlite3changeset_start_v2() and its streaming equivalent
** may be modified by passing a combination of
** [SQLITE_CHANGESETSTART_INVERT | supported flags] as the 4th parameter.
**
** Note that the sqlite3changeset_start_v2() API is still <b>experimental</b>
** and therefore subject to change.
*/
SQLITE_API int sqlite3changeset_start(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset                /* Pointer to blob containing changeset */
);
SQLITE_API int sqlite3changeset_start_v2(
  sqlite3_changeset_iter **pp,    /* OUT: New changeset iterator handle */
  int nChangeset,                 /* Size of changeset blob in bytes */
  void *pChangeset,               /* Pointer to blob containing changeset */
  int flags                       /* SESSION_CHANGESETSTART_* flags */
);

/*
** CAPI3REF: Flags for sqlite3changeset_start_v2
**
** The following flags may passed via the 4th parameter to
** [sqlite3changeset_start_v2] and [sqlite3changeset_start_v2_strm]:
**
** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
**   Invert the changeset while iterating through it. This is equivalent to
**   inverting a changeset using sqlite3changeset_invert() before applying it.
**   It is an error to specify this flag with a patchset.
*/
#define SQLITE_CHANGESETSTART_INVERT        0x0002


/*
** CAPI3REF: Advance A Changeset Iterator
** METHOD: sqlite3_changeset_iter
**
** This function may only be used with iterators created by function
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559





10560
10561

10562
10563
10564
10565
10566
10567
10568
  int(*xConflict)(
    void *pCtx,                   /* Copy of sixth arg to _apply() */
    int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase, /* OUT: Rebase data */
  int flags                       /* Combination of SESSION_APPLY_* flags */
);

/*
** CAPI3REF: Flags for sqlite3changeset_apply_v2
**
** The following flags may passed via the 9th parameter to
** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
**
** <dl>
** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
**   Usually, the sessions module encloses all operations performed by
**   a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
**   SAVEPOINT is committed if the changeset or patchset is successfully
**   applied, or rolled back if an error occurs. Specifying this flag
**   causes the sessions module to omit this savepoint. In this case, if the
**   caller has an open transaction or savepoint when apply_v2() is called, 
**   it may revert the partially applied changeset by rolling it back.





*/
#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT   0x0001


/* 
** CAPI3REF: Constants Passed To The Conflict Handler
**
** Values that may be passed as the second argument to a conflict-handler.
**
** <dl>







|

















>
>
>
>
>


>







10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
  int(*xConflict)(
    void *pCtx,                   /* Copy of sixth arg to _apply() */
    int eConflict,                /* DATA, MISSING, CONFLICT, CONSTRAINT */
    sqlite3_changeset_iter *p     /* Handle describing change and conflict */
  ),
  void *pCtx,                     /* First argument passed to xConflict */
  void **ppRebase, int *pnRebase, /* OUT: Rebase data */
  int flags                       /* SESSION_CHANGESETAPPLY_* flags */
);

/*
** CAPI3REF: Flags for sqlite3changeset_apply_v2
**
** The following flags may passed via the 9th parameter to
** [sqlite3changeset_apply_v2] and [sqlite3changeset_apply_v2_strm]:
**
** <dl>
** <dt>SQLITE_CHANGESETAPPLY_NOSAVEPOINT <dd>
**   Usually, the sessions module encloses all operations performed by
**   a single call to apply_v2() or apply_v2_strm() in a [SAVEPOINT]. The
**   SAVEPOINT is committed if the changeset or patchset is successfully
**   applied, or rolled back if an error occurs. Specifying this flag
**   causes the sessions module to omit this savepoint. In this case, if the
**   caller has an open transaction or savepoint when apply_v2() is called, 
**   it may revert the partially applied changeset by rolling it back.
**
** <dt>SQLITE_CHANGESETAPPLY_INVERT <dd>
**   Invert the changeset before applying it. This is equivalent to inverting
**   a changeset using sqlite3changeset_invert() before applying it. It is
**   an error to specify this flag with a patchset.
*/
#define SQLITE_CHANGESETAPPLY_NOSAVEPOINT   0x0001
#define SQLITE_CHANGESETAPPLY_INVERT        0x0002

/* 
** CAPI3REF: Constants Passed To The Conflict Handler
**
** Values that may be passed as the second argument to a conflict-handler.
**
** <dl>
10947
10948
10949
10950
10951
10952
10953






10954
10955
10956
10957
10958
10959
10960
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3changeset_start_strm(
  sqlite3_changeset_iter **pp,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn






);
SQLITE_API int sqlite3session_changeset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(







>
>
>
>
>
>







11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3changeset_start_strm(
  sqlite3_changeset_iter **pp,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn
);
SQLITE_API int sqlite3changeset_start_v2_strm(
  sqlite3_changeset_iter **pp,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int flags
);
SQLITE_API int sqlite3session_changeset_strm(
  sqlite3_session *pSession,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);
SQLITE_API int sqlite3session_patchset_strm(
10974
10975
10976
10977
10978
10979
10980







































10981
10982
10983
10984
10985
10986
10987
  sqlite3_rebaser *pRebaser,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);









































/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
}
#endif







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
  sqlite3_rebaser *pRebaser,
  int (*xInput)(void *pIn, void *pData, int *pnData),
  void *pIn,
  int (*xOutput)(void *pOut, const void *pData, int nData),
  void *pOut
);

/*
** CAPI3REF: Configure global parameters
**
** The sqlite3session_config() interface is used to make global configuration
** changes to the sessions module in order to tune it to the specific needs 
** of the application.
**
** The sqlite3session_config() interface is not threadsafe. If it is invoked
** while any other thread is inside any other sessions method then the
** results are undefined. Furthermore, if it is invoked after any sessions
** related objects have been created, the results are also undefined. 
**
** The first argument to the sqlite3session_config() function must be one
** of the SQLITE_SESSION_CONFIG_XXX constants defined below. The 
** interpretation of the (void*) value passed as the second parameter and
** the effect of calling this function depends on the value of the first
** parameter.
**
** <dl>
** <dt>SQLITE_SESSION_CONFIG_STRMSIZE<dd>
**    By default, the sessions module streaming interfaces attempt to input
**    and output data in approximately 1 KiB chunks. This operand may be used
**    to set and query the value of this configuration setting. The pointer
**    passed as the second argument must point to a value of type (int).
**    If this value is greater than 0, it is used as the new streaming data
**    chunk size for both input and output. Before returning, the (int) value
**    pointed to by pArg is set to the final value of the streaming interface
**    chunk size.
** </dl>
**
** This function returns SQLITE_OK if successful, or an SQLite error code
** otherwise.
*/
SQLITE_API int sqlite3session_config(int op, void *pArg);

/*
** CAPI3REF: Values for sqlite3session_config().
*/
#define SQLITE_SESSION_CONFIG_STRMSIZE 1

/*
** Make sure we can call this stuff from C++.
*/
#ifdef __cplusplus
}
#endif
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
**            document such as "I won first place" is tokenized, entries are
**            added to the FTS index for "i", "won", "first", "1st" and
**            "place".
**
**            This way, even if the tokenizer does not provide synonyms
**            when tokenizing query text (it should not - to do would be
**            inefficient), it doesn't matter if the user queries for 
**            'first + place' or '1st + place', as there are entires in the
**            FTS index corresponding to both forms of the first token.
**   </ol>
**
**   Whether it is parsing document or query text, any call to xToken that
**   specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
**   is considered to supply a synonym for the previous token. For example,
**   when parsing the document "I won first place", a tokenizer that supports







|







11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
**            document such as "I won first place" is tokenized, entries are
**            added to the FTS index for "i", "won", "first", "1st" and
**            "place".
**
**            This way, even if the tokenizer does not provide synonyms
**            when tokenizing query text (it should not - to do would be
**            inefficient), it doesn't matter if the user queries for 
**            'first + place' or '1st + place', as there are entries in the
**            FTS index corresponding to both forms of the first token.
**   </ol>
**
**   Whether it is parsing document or query text, any call to xToken that
**   specifies a <i>tflags</i> argument with the FTS5_TOKEN_COLOCATED bit
**   is considered to supply a synonym for the previous token. For example,
**   when parsing the document "I won first place", a tokenizer that supports
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
**   There is no limit to the number of synonyms that may be provided for a
**   single token.
**
**   In many cases, method (1) above is the best approach. It does not add 
**   extra data to the FTS index or require FTS5 to query for multiple terms,
**   so it is efficient in terms of disk space and query speed. However, it
**   does not support prefix queries very well. If, as suggested above, the
**   token "first" is subsituted for "1st" by the tokenizer, then the query:
**
**   <codeblock>
**     ... MATCH '1s*'</codeblock>
**
**   will not match documents that contain the token "1st" (as the tokenizer
**   will probably not map "1s" to any prefix of "first").
**







|







11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
**   There is no limit to the number of synonyms that may be provided for a
**   single token.
**
**   In many cases, method (1) above is the best approach. It does not add 
**   extra data to the FTS index or require FTS5 to query for multiple terms,
**   so it is efficient in terms of disk space and query speed. However, it
**   does not support prefix queries very well. If, as suggested above, the
**   token "first" is substituted for "1st" by the tokenizer, then the query:
**
**   <codeblock>
**     ... MATCH '1s*'</codeblock>
**
**   will not match documents that contain the token "1st" (as the tokenizer
**   will probably not map "1s" to any prefix of "first").
**