sqllogictest

Check-in [3a6f90e718]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite amalgamation to a 3.7.14 beta.
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 3a6f90e7183d1a544015a0be3b3c43c4fcbcc281
User & Date: drh 2012-08-30 13:58:20.051
Context
2012-12-05
04:43
Improve the ability to compile and test on Windows using MinGW. check-in: b5fbadd16e user: mistachkin tags: trunk
2012-08-30
13:58
Update the built-in SQLite amalgamation to a 3.7.14 beta. check-in: 3a6f90e718 user: drh tags: trunk
2012-06-10
01:14
Update SQLite to the 3.7.13 beta. check-in: cca587b0a4 user: drh tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.7.13.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.7.14.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405



406

407

408
409



410
411
412
413
414
415
416

/*
** Exactly one of the following macros must be defined in order to
** specify which memory allocation subsystem to use.
**
**     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
**     SQLITE_WIN32_MALLOC           // Use Win32 native heap API

**     SQLITE_MEMDEBUG               // Debugging version of system malloc()
**
** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
** assert() macro is enabled, each call into the Win32 native heap subsystem
** will cause HeapValidate to be called.  If heap validation should fail, an
** assertion will be triggered.
**
** (Historical note:  There used to be several other options, but we've
** pared it down to just these three.)
**
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)>1



# error "At most one of the following compile-time configuration options\

 is allows: SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG"

#endif
#if defined(SQLITE_SYSTEM_MALLOC)+defined(SQLITE_WIN32_MALLOC)+defined(SQLITE_MEMDEBUG)==0



# define SQLITE_SYSTEM_MALLOC 1
#endif

/*
** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
** sizes of memory allocations below this value where possible.
*/







>













|
>
>
>
|
>
|
>

|
>
>
>







385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

/*
** Exactly one of the following macros must be defined in order to
** specify which memory allocation subsystem to use.
**
**     SQLITE_SYSTEM_MALLOC          // Use normal system malloc()
**     SQLITE_WIN32_MALLOC           // Use Win32 native heap API
**     SQLITE_ZERO_MALLOC            // Use a stub allocator that always fails
**     SQLITE_MEMDEBUG               // Debugging version of system malloc()
**
** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the
** assert() macro is enabled, each call into the Win32 native heap subsystem
** will cause HeapValidate to be called.  If heap validation should fail, an
** assertion will be triggered.
**
** (Historical note:  There used to be several other options, but we've
** pared it down to just these three.)
**
** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as
** the default.
*/
#if defined(SQLITE_SYSTEM_MALLOC) \
  + defined(SQLITE_WIN32_MALLOC) \
  + defined(SQLITE_ZERO_MALLOC) \
  + defined(SQLITE_MEMDEBUG)>1
# error "Two or more of the following compile-time configuration options\
 are defined but at most one is allowed:\
 SQLITE_SYSTEM_MALLOC, SQLITE_WIN32_MALLOC, SQLITE_MEMDEBUG,\
 SQLITE_ZERO_MALLOC"
#endif
#if defined(SQLITE_SYSTEM_MALLOC) \
  + defined(SQLITE_WIN32_MALLOC) \
  + defined(SQLITE_ZERO_MALLOC) \
  + defined(SQLITE_MEMDEBUG)==0
# define SQLITE_SYSTEM_MALLOC 1
#endif

/*
** If SQLITE_MALLOC_SOFT_LIMIT is not zero, then try to keep the
** sizes of memory allocations below this value where possible.
*/
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.13"
#define SQLITE_VERSION_NUMBER 3007013
#define SQLITE_SOURCE_ID      "2012-06-09 18:52:29 0ae0ce630a2e11f81dca50a9cfb04c4a41c03b2d"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.14"
#define SQLITE_VERSION_NUMBER 3007014
#define SQLITE_SOURCE_ID      "2012-08-30 11:22:16 59194311543b95c2aeebe2aba83da3c29b7c6460"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
772
773
774
775
776
777
778

779
780
781
782
783
784
785
786
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]

** is its destructor.  There are many other interfaces (such as
** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on an
** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;

/*







>
|







781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
** and [sqlite3_close_v2()] are its destructors.  There are many other
** interfaces (such as
** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on an
** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;

/*
819
820
821
822
823
824
825

826
827
828

829











830
831

832
833
834
835


836
837
838
839
840

841
842
843
844
845
846
847

848
849
850
851
852
853
854
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif

/*
** CAPI3REF: Closing A Database Connection
**

** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
** successfully destroyed and all associated resources are deallocated.

**











** Applications must [sqlite3_finalize | finalize] all [prepared statements]
** and [sqlite3_blob_close | close] all [BLOB handles] associated with

** the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close() is called on a [database connection] that still has
** outstanding [prepared statements] or [BLOB handles], then it returns
** SQLITE_BUSY.


**
** ^If [sqlite3_close()] is invoked while a transaction is open,
** the transaction is automatically rolled back.
**
** The C parameter to [sqlite3_close(C)] must be either a NULL

** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() with a NULL pointer argument is a 
** harmless no-op.
*/
SQLITE_API int sqlite3_close(sqlite3 *);


/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);







>
|
|
|
>

>
>
>
>
>
>
>
>
>
>
>
|
|
>
|

|
|
>
>

|


|
>



|
|

|
>







829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif

/*
** CAPI3REF: Closing A Database Connection
**
** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
** for the [sqlite3] object.
** ^Calls to sqlite3_close() and sqlite3_close_v2() return SQLITE_OK if
** the [sqlite3] object is successfully destroyed and all associated
** resources are deallocated.
**
** ^If the database connection is associated with unfinalized prepared
** statements or unfinished sqlite3_backup objects then sqlite3_close()
** will leave the database connection open and return [SQLITE_BUSY].
** ^If sqlite3_close_v2() is called with unfinalized prepared statements
** and unfinished sqlite3_backups, then the database connection becomes
** an unusable "zombie" which will automatically be deallocated when the
** last prepared statement is finalized or the last sqlite3_backup is
** finished.  The sqlite3_close_v2() interface is intended for use with
** host languages that are garbage collected, and where the order in which
** destructors are called is arbitrary.
**
** Applications should [sqlite3_finalize | finalize] all [prepared statements],
** [sqlite3_blob_close | close] all [BLOB handles], and 
** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
** with the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close() is called on a [database connection] that still has
** outstanding [prepared statements], [BLOB handles], and/or
** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation
** of resources is deferred until all [prepared statements], [BLOB handles],
** and [sqlite3_backup] objects are also destroyed.
**
** ^If an [sqlite3] object is destroyed while a transaction is open,
** the transaction is automatically rolled back.
**
** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
** must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
** argument is a harmless no-op.
*/
SQLITE_API int sqlite3_close(sqlite3*);
SQLITE_API int sqlite3_close_v2(sqlite3*);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

/* Reserved:                         0x00F00000 */

/*
** CAPI3REF: Device Characteristics
**
** The xDeviceCharacteristics method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and







|







1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093

/* Reserved:                         0x00F00000 */

/*
** CAPI3REF: Device Characteristics
**
** The xDeviceCharacteristics method of the [sqlite3_io_methods]
** object returns an integer which is a vector of these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
3201
3202
3203
3204
3205
3206
3207






3208
3209
3210
3211
3212
3213
3214
** the results are undefined.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().






*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */







>
>
>
>
>
>







3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
** the results are undefined.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
3693
3694
3695
3696
3697
3698
3699
3700

3701


3702
3703
3704
3705
3706
3707
3708
** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** ^The third argument is the value to bind to the parameter.
**
** ^(In those routines that have a fourth argument, its value is the
** number of bytes in the parameter.  To be clear: the value is the
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter is negative, the length of the string is

** the number of bytes up to the first zero terminator.


** If a non-negative fourth parameter is provided to sqlite3_bind_text()
** or sqlite3_bind_text16() then that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.







|
>

>
>







3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** ^The third argument is the value to bind to the parameter.
**
** ^(In those routines that have a fourth argument, its value is the
** number of bytes in the parameter.  To be clear: the value is the
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
** is negative, then the length of the string is
** the number of bytes up to the first zero terminator.
** If the fourth parameter to sqlite3_bind_blob() is negative, then
** the behavior is undefined.
** If a non-negative fourth parameter is provided to sqlite3_bind_text()
** or sqlite3_bind_text16() then that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
** they return.  Hence, the calling function can deallocate or
** modify the text after they return without harm.
** ^The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function.  ^By default,
** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** ^The sqlite3_result_toobig() interface causes SQLite to throw an error
** indicating that a string or BLOB is too long to represent.
**
** ^The sqlite3_result_nomem() interface causes SQLite to throw an error
** indicating that a memory allocation failed.
**
** ^The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** ^The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.







|
|

|
|







4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
** they return.  Hence, the calling function can deallocate or
** modify the text after they return without harm.
** ^The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function.  ^By default,
** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
** error indicating that a string or BLOB is too long to represent.
**
** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
** error indicating that a memory allocation failed.
**
** ^The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** ^The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
5002
5003
5004
5005
5006
5007
5008















5009
5010
5011
5012
5013
5014
5015
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.















*/
SQLITE_API char *sqlite3_temp_directory;

/*
** CAPI3REF: Name Of The Folder Holding Database Files
**
** ^(If this global variable is made to point to a string which is







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling [sqlite3_open] or [sqlite3_open_v2].  Otherwise, various
** features that require the use of temporary files may fail.  Here is an
** example of how to do this using C++ with the Windows Runtime:
**
** <blockquote><pre>
** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
** &nbsp;     TemporaryFolder->Path->Data();
** char zPathBuf&#91;MAX_PATH + 1&#93;;
** memset(zPathBuf, 0, sizeof(zPathBuf));
** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
** &nbsp;     NULL, NULL);
** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
** </pre></blockquote>
*/
SQLITE_API char *sqlite3_temp_directory;

/*
** CAPI3REF: Name Of The Folder Holding Database Files
**
** ^(If this global variable is made to point to a string which is
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_OS2
** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREADS, and SQLITE_MUTEX_W32 implementations
** are appropriate for use on OS/2, Unix, and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_







<







|
|
|







6099
6100
6101
6102
6103
6104
6105

6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>

** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_PTHREADS and
** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
** and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_
8368
8369
8370
8371
8372
8373
8374






8375
8376
8377
8378
8379
8380
8381
#define BTREE_FILE_FORMAT         2
#define BTREE_DEFAULT_CACHE_SIZE  3
#define BTREE_LARGEST_ROOT_PAGE   4
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7







SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);







>
>
>
>
>
>







8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
#define BTREE_FILE_FORMAT         2
#define BTREE_DEFAULT_CACHE_SIZE  3
#define BTREE_LARGEST_ROOT_PAGE   4
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7

/*
** Values that may be OR'd together to form the second argument of an
** sqlite3BtreeCursorHints() call.
*/
#define BTREE_BULKLOAD 0x00000001

SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);
8411
8412
8413
8414
8415
8416
8417
8418
8419

8420
8421
8422
8423
8424
8425
8426

SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);

SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);


#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);







<

>







8468
8469
8470
8471
8472
8473
8474

8475
8476
8477
8478
8479
8480
8481
8482
8483

SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeCacheOverflow(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);

SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);

#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

#ifndef SQLITE_OMIT_BTREECOUNT
SQLITE_PRIVATE int sqlite3BtreeCount(BtCursor *, i64 *);
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
*/
#ifndef _SQLITE_OS_H_
#define _SQLITE_OS_H_

/*
** Figure out if we are dealing with Unix, Windows, or some other
** operating system.  After the following block of preprocess macros,
** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, SQLITE_OS_OS2, and SQLITE_OS_OTHER 
** will defined to either 1 or 0.  One of the four will be 1.  The other 
** three will be 0.
*/
#if defined(SQLITE_OS_OTHER)
# if SQLITE_OS_OTHER==1
#   undef SQLITE_OS_UNIX
#   define SQLITE_OS_UNIX 0
#   undef SQLITE_OS_WIN
#   define SQLITE_OS_WIN 0
#   undef SQLITE_OS_OS2
#   define SQLITE_OS_OS2 0
# else
#   undef SQLITE_OS_OTHER
# endif
#endif
#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
# define SQLITE_OS_OTHER 0
# ifndef SQLITE_OS_WIN
#   if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
#     define SQLITE_OS_WIN 1
#     define SQLITE_OS_UNIX 0
#     define SQLITE_OS_OS2 0
#   elif defined(__EMX__) || defined(_OS2) || defined(OS2) || defined(_OS2_) || defined(__OS2__)
#     define SQLITE_OS_WIN 0
#     define SQLITE_OS_UNIX 0
#     define SQLITE_OS_OS2 1
#   else
#     define SQLITE_OS_WIN 0
#     define SQLITE_OS_UNIX 1
#     define SQLITE_OS_OS2 0
#  endif
# else
#  define SQLITE_OS_UNIX 0
#  define SQLITE_OS_OS2 0
# endif
#else
# ifndef SQLITE_OS_WIN
#  define SQLITE_OS_WIN 0
# endif
#endif

#if SQLITE_OS_WIN
# include <windows.h>
#endif

#if SQLITE_OS_OS2
# if (__GNUC__ > 3 || __GNUC__ == 3 && __GNUC_MINOR__ >= 3) && defined(OS2_HIGH_MEMORY)
#  include <os2safe.h> /* has to be included before os2.h for linking to work */
# endif
# define INCL_DOSDATETIME
# define INCL_DOSFILEMGR
# define INCL_DOSERRORS
# define INCL_DOSMISC
# define INCL_DOSPROCESS
# define INCL_DOSMODULEMGR
# define INCL_DOSSEMAPHORES
# include <os2.h>
# include <uconv.h>
#endif

/*
** Determine if we are dealing with Windows NT.
**
** We ought to be able to determine if we are compiling for win98 or winNT
** using the _WIN32_WINNT macro as follows:
**
** #if defined(_WIN32_WINNT)







|









<
<










<
<
<
<
<



<



<











<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359


9360
9361
9362
9363
9364
9365
9366
9367
9368
9369





9370
9371
9372

9373
9374
9375

9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386















9387
9388
9389
9390
9391
9392
9393
*/
#ifndef _SQLITE_OS_H_
#define _SQLITE_OS_H_

/*
** Figure out if we are dealing with Unix, Windows, or some other
** operating system.  After the following block of preprocess macros,
** all of SQLITE_OS_UNIX, SQLITE_OS_WIN, and SQLITE_OS_OTHER 
** will defined to either 1 or 0.  One of the four will be 1.  The other 
** three will be 0.
*/
#if defined(SQLITE_OS_OTHER)
# if SQLITE_OS_OTHER==1
#   undef SQLITE_OS_UNIX
#   define SQLITE_OS_UNIX 0
#   undef SQLITE_OS_WIN
#   define SQLITE_OS_WIN 0


# else
#   undef SQLITE_OS_OTHER
# endif
#endif
#if !defined(SQLITE_OS_UNIX) && !defined(SQLITE_OS_OTHER)
# define SQLITE_OS_OTHER 0
# ifndef SQLITE_OS_WIN
#   if defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || defined(__MINGW32__) || defined(__BORLANDC__)
#     define SQLITE_OS_WIN 1
#     define SQLITE_OS_UNIX 0





#   else
#     define SQLITE_OS_WIN 0
#     define SQLITE_OS_UNIX 1

#  endif
# else
#  define SQLITE_OS_UNIX 0

# endif
#else
# ifndef SQLITE_OS_WIN
#  define SQLITE_OS_WIN 0
# endif
#endif

#if SQLITE_OS_WIN
# include <windows.h>
#endif
















/*
** Determine if we are dealing with Windows NT.
**
** We ought to be able to determine if we are compiling for win98 or winNT
** using the _WIN32_WINNT macro as follows:
**
** #if defined(_WIN32_WINNT)
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
#if defined(_WIN32_WCE)
# define SQLITE_OS_WINCE 1
#else
# define SQLITE_OS_WINCE 0
#endif

/*
** Determine if we are dealing with WindowsRT (Metro) as this has a different and
** incompatible API from win32.
*/
#if !defined(SQLITE_OS_WINRT)
# define SQLITE_OS_WINRT 0
#endif

/*
** When compiled for WinCE or WinRT, there is no concept of the current







|
|







9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
#if defined(_WIN32_WCE)
# define SQLITE_OS_WINCE 1
#else
# define SQLITE_OS_WINCE 0
#endif

/*
** Determine if we are dealing with WinRT, which provides only a subset of
** the full Win32 API.
*/
#if !defined(SQLITE_OS_WINRT)
# define SQLITE_OS_WINRT 0
#endif

/*
** When compiled for WinCE or WinRT, there is no concept of the current
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
**                             mutual exclusion is provided.  But this
**                             implementation can be overridden at
**                             start-time.
**
**   SQLITE_MUTEX_PTHREADS     For multi-threaded applications on Unix.
**
**   SQLITE_MUTEX_W32          For multi-threaded applications on Win32.
**
**   SQLITE_MUTEX_OS2          For multi-threaded applications on OS/2.
*/
#if !SQLITE_THREADSAFE
# define SQLITE_MUTEX_OMIT
#endif
#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
#  if SQLITE_OS_UNIX
#    define SQLITE_MUTEX_PTHREADS
#  elif SQLITE_OS_WIN
#    define SQLITE_MUTEX_W32
#  elif SQLITE_OS_OS2
#    define SQLITE_MUTEX_OS2
#  else
#    define SQLITE_MUTEX_NOOP
#  endif
#endif

#ifdef SQLITE_MUTEX_OMIT
/*







<
<









<
<







9649
9650
9651
9652
9653
9654
9655


9656
9657
9658
9659
9660
9661
9662
9663
9664


9665
9666
9667
9668
9669
9670
9671
**                             mutual exclusion is provided.  But this
**                             implementation can be overridden at
**                             start-time.
**
**   SQLITE_MUTEX_PTHREADS     For multi-threaded applications on Unix.
**
**   SQLITE_MUTEX_W32          For multi-threaded applications on Win32.


*/
#if !SQLITE_THREADSAFE
# define SQLITE_MUTEX_OMIT
#endif
#if SQLITE_THREADSAFE && !defined(SQLITE_MUTEX_NOOP)
#  if SQLITE_OS_UNIX
#    define SQLITE_MUTEX_PTHREADS
#  elif SQLITE_OS_WIN
#    define SQLITE_MUTEX_W32


#  else
#    define SQLITE_MUTEX_NOOP
#  endif
#endif

#ifdef SQLITE_MUTEX_OMIT
/*
9949
9950
9951
9952
9953
9954
9955

9956
9957
9958
9959
9960
9961
9962
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
#define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
#define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
#define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
#define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */


/*
** Each SQL function is defined by an instance of the following
** structure.  A pointer to this structure is stored in the sqlite.aFunc
** hash table.  When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/







>







9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
** than being distinct from one another.
*/
#define SQLITE_MAGIC_OPEN     0xa029a697  /* Database is open */
#define SQLITE_MAGIC_CLOSED   0x9f3c2d33  /* Database is closed */
#define SQLITE_MAGIC_SICK     0x4b771290  /* Error and awaiting close */
#define SQLITE_MAGIC_BUSY     0xf03b7906  /* Database currently in use */
#define SQLITE_MAGIC_ERROR    0xb5357930  /* An SQLITE_MISUSE error occurred */
#define SQLITE_MAGIC_ZOMBIE   0x64cffc7f  /* Close with last statement close */

/*
** Each SQL function is defined by an instance of the following
** structure.  A pointer to this structure is stored in the sqlite.aFunc
** hash table.  When multiple functions have the same name, the hash table
** points to a linked list of these structures.
*/
10655
10656
10657
10658
10659
10660
10661
10662
10663

10664
10665
10666
10667
10668
10669
10670
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old */
  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
                         ** TK_VARIABLE: variable number (always >= 1). */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 flags2;             /* Second set of flags.  EP2_... */
  u8 op2;                /* If a TK_REGISTER, the original value of Expr.op */
                         /* If TK_COLUMN, the value of p5 for OP_Column */

  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
};








|
|
>







10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
                         ** TK_REGISTER: register number
                         ** TK_TRIGGER: 1 -> new, 0 -> old */
  ynVar iColumn;         /* TK_COLUMN: column index.  -1 for rowid.
                         ** TK_VARIABLE: variable number (always >= 1). */
  i16 iAgg;              /* Which entry in pAggInfo->aCol[] or ->aFunc[] */
  i16 iRightJoinTable;   /* If EP_FromJoin, the right table of the join */
  u8 flags2;             /* Second set of flags.  EP2_... */
  u8 op2;                /* TK_REGISTER: original value of Expr.op
                         ** TK_COLUMN: the value of p5 for OP_Column
                         ** TK_AGG_FUNCTION: nesting depth */
  AggInfo *pAggInfo;     /* Used by TK_AGG_COLUMN and TK_AGG_FUNCTION */
  Table *pTab;           /* Table for TK_COLUMN expressions. */
#if SQLITE_MAX_EXPR_DEPTH>0
  int nHeight;           /* Height of the tree headed by this node */
#endif
};

10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
    sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
  } u;
};

/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure.  This structure
** is intended to be private the the where.c module and should not be
** access or modified by other modules.
**
** The pIdxInfo field is used to help pick the best index on a
** virtual table.  The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
** All other information in the i-th WhereLevel object for the i-th table







|







10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
    sqlite3_index_info *pVtabIdx;  /* Virtual table index to use */
  } u;
};

/*
** For each nested loop in a WHERE clause implementation, the WhereInfo
** structure contains a single instance of this structure.  This structure
** is intended to be private to the where.c module and should not be
** access or modified by other modules.
**
** The pIdxInfo field is used to help pick the best index on a
** virtual table.  The pIdxInfo pointer contains indexing
** information for the i-th table in the FROM clause before reordering.
** All the pIdxInfo pointers are freed by whereInfoFree() in where.c.
** All other information in the i-th WhereLevel object for the i-th table
10911
10912
10913
10914
10915
10916
10917

10918
10919
10920
10921
10922
10923
10924
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */

  } u;

  /* The following field is really not part of the current level.  But
  ** we need a place to cache virtual table index information for each
  ** virtual table in the FROM clause and the WhereLevel structure is
  ** a convenient place since there is one WhereLevel for each FROM clause
  ** element.







>







10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
        int iCur;              /* The VDBE cursor used by this IN operator */
        int addrInTop;         /* Top of the IN loop */
      } *aInLoop;           /* Information about each nested IN operator */
    } in;                 /* Used when plan.wsFlags&WHERE_IN_ABLE */
    Index *pCovidx;       /* Possible covering index for WHERE_MULTI_OR */
  } u;

  /* The following field is really not part of the current level.  But
  ** we need a place to cache virtual table index information for each
  ** virtual table in the FROM clause and the WhereLevel structure is
  ** a convenient place since there is one WhereLevel for each FROM clause
  ** element.
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
/*
** A structure used to customize the behavior of sqlite3Select(). See
** comments above sqlite3Select() for details.
*/
typedef struct SelectDest SelectDest;
struct SelectDest {
  u8 eDest;         /* How to dispose of the results */
  u8 affinity;      /* Affinity used when eDest==SRT_Set */
  int iParm;        /* A parameter used by the eDest disposal method */
  int iMem;         /* Base register where results are written */
  int nMem;         /* Number of registers allocated */
};

/*
** During code generation of statements that do inserts into AUTOINCREMENT 
** tables, the following information is attached to the Table.u.autoInc.p
** pointer of each autoincrement table to record some side information that
** the code generator needs.  We have to keep per-table autoincrement







|
|
|
|







11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
/*
** A structure used to customize the behavior of sqlite3Select(). See
** comments above sqlite3Select() for details.
*/
typedef struct SelectDest SelectDest;
struct SelectDest {
  u8 eDest;         /* How to dispose of the results */
  u8 affSdst;       /* Affinity used when eDest==SRT_Set */
  int iSDParm;      /* A parameter used by the eDest disposal method */
  int iSdst;        /* Base register where results are written */
  int nSdst;        /* Number of registers allocated */
};

/*
** During code generation of statements that do inserts into AUTOINCREMENT 
** tables, the following information is attached to the Table.u.autoInc.p
** pointer of each autoincrement table to record some side information that
** the code generator needs.  We have to keep per-table autoincrement
11282
11283
11284
11285
11286
11287
11288


11289
11290
11291
11292
11293
11294
11295
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */



/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 







>
>







11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_CLEARCACHE    0x20    /* Clear pseudo-table cache in OP_Column */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
 * 1. In the "trigHash" hash table (part of the sqlite3* that represents the 
11461
11462
11463
11464
11465
11466
11467

11468
11469
11470
11471

11472
11473
11474
11475
11476
11477
11478
/*
** Context pointer passed down through the tree-walk.
*/
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */

  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */
    SrcList *pSrcList;                         /* FROM clause */

  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);







>




>







11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
/*
** Context pointer passed down through the tree-walk.
*/
struct Walker {
  int (*xExprCallback)(Walker*, Expr*);     /* Callback for expressions */
  int (*xSelectCallback)(Walker*,Select*);  /* Callback for SELECTs */
  Parse *pParse;                            /* Parser context.  */
  int walkerDepth;                          /* Number of subqueries */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int i;                                     /* Integer value */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
11766
11767
11768
11769
11770
11771
11772
11773

11774
11775
11776
11777
11778
11779
11780
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*, SrcList*, Expr*, ExprList**,ExprList*,u16);

SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);







|
>







11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int);
SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int);
#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse *, SrcList *, Expr *, ExprList *, Expr *, Expr *, char *);
#endif
SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*);
SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int);
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
    Parse*,SrcList*,Expr*,ExprList**,ExprList*,u16,int);
SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*);
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
11798
11799
11800
11801
11802
11803
11804

11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816

11817
11818
11819
11820
11821
11822
11823
SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*);
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);

SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
SQLITE_PRIVATE void sqlite3PrngSaveState(void);
SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
SQLITE_PRIVATE void sqlite3PrngResetState(void);
SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int);
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);

SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);







>












>







11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
SQLITE_PRIVATE void sqlite3Vacuum(Parse*);
SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*);
SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*);
SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*);
SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*);
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*);
SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*);
SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*);
SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*);
SQLITE_PRIVATE void sqlite3PrngSaveState(void);
SQLITE_PRIVATE void sqlite3PrngRestoreState(void);
SQLITE_PRIVATE void sqlite3PrngResetState(void);
SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3*,int);
SQLITE_PRIVATE void sqlite3CodeVerifySchema(Parse*, int);
SQLITE_PRIVATE void sqlite3CodeVerifyNamedSchema(Parse*, const char *zDb);
SQLITE_PRIVATE void sqlite3BeginTransaction(Parse*, int);
SQLITE_PRIVATE void sqlite3CommitTransaction(Parse*);
SQLITE_PRIVATE void sqlite3RollbackTransaction(Parse*);
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
# define sqlite3VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite3VdbeSorterNext(X,Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterCompare(X,Y,Z) SQLITE_OK
#else
SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(VdbeCursor *, Mem *, int *);
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
SQLITE_PRIVATE   void sqlite3VdbeEnter(Vdbe*);
SQLITE_PRIVATE   void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)







|
|
|
|
|







13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
# define sqlite3VdbeSorterRowkey(Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterRewind(X,Y,Z)  SQLITE_OK
# define sqlite3VdbeSorterNext(X,Y,Z)    SQLITE_OK
# define sqlite3VdbeSorterCompare(X,Y,Z) SQLITE_OK
#else
SQLITE_PRIVATE int sqlite3VdbeSorterInit(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *, VdbeCursor *);
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *, const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *, const VdbeCursor *, int *);
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(sqlite3 *, const VdbeCursor *, Mem *);
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(const VdbeCursor *, Mem *, int *);
#endif

#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
SQLITE_PRIVATE   void sqlite3VdbeEnter(Vdbe*);
SQLITE_PRIVATE   void sqlite3VdbeLeave(Vdbe*);
#else
# define sqlite3VdbeEnter(X)
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
  sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0);
  if( cpuCount>1 ){
    /* defer MT decisions to system malloc */
    _sqliteZone_ = malloc_default_zone();
  }else{
    /* only 1 core, use our own zone to contention over global locks, 
    ** e.g. we have our own dedicated locks */
    bool success;		
    malloc_zone_t* newzone = malloc_create_zone(4096, 0);
    malloc_set_zone_name(newzone, "Sqlite_Heap");
    do{
      success = OSAtomicCompareAndSwapPtrBarrier(NULL, newzone, 
                                 (void * volatile *)&_sqliteZone_);
    }while(!_sqliteZone_);
    if( !success ){	
      /* somebody registered a zone first */
      malloc_destroy_zone(newzone);
    }
  }
#endif
  UNUSED_PARAMETER(NotUsed);
  return SQLITE_OK;







|






|







15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
  sysctlbyname("hw.ncpu", &cpuCount, &len, NULL, 0);
  if( cpuCount>1 ){
    /* defer MT decisions to system malloc */
    _sqliteZone_ = malloc_default_zone();
  }else{
    /* only 1 core, use our own zone to contention over global locks, 
    ** e.g. we have our own dedicated locks */
    bool success;
    malloc_zone_t* newzone = malloc_create_zone(4096, 0);
    malloc_set_zone_name(newzone, "Sqlite_Heap");
    do{
      success = OSAtomicCompareAndSwapPtrBarrier(NULL, newzone, 
                                 (void * volatile *)&_sqliteZone_);
    }while(!_sqliteZone_);
    if( !success ){
      /* somebody registered a zone first */
      malloc_destroy_zone(newzone);
    }
  }
#endif
  UNUSED_PARAMETER(NotUsed);
  return SQLITE_OK;
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
  return sqlite3NoopMutex();
}
#endif /* defined(SQLITE_MUTEX_NOOP) */
#endif /* !defined(SQLITE_MUTEX_OMIT) */

/************** End of mutex_noop.c ******************************************/
/************** Begin file mutex_os2.c ***************************************/
/*
** 2007 August 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains the C functions that implement mutexes for OS/2
*/

/*
** The code in this file is only used if SQLITE_MUTEX_OS2 is defined.
** See the mutex.h file for details.
*/
#ifdef SQLITE_MUTEX_OS2

/********************** OS/2 Mutex Implementation **********************
**
** This implementation of mutexes is built using the OS/2 API.
*/

/*
** The mutex object
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  HMTX mutex;       /* Mutex controlling the lock */
  int  id;          /* Mutex type */
#ifdef SQLITE_DEBUG
 int   trace;       /* True to trace changes */
#endif
};

#ifdef SQLITE_DEBUG
#define SQLITE3_MUTEX_INITIALIZER { 0, 0, 0 }
#else
#define SQLITE3_MUTEX_INITIALIZER { 0, 0 }
#endif

/*
** Initialize and deinitialize the mutex subsystem.
*/
static int os2MutexInit(void){ return SQLITE_OK; }
static int os2MutexEnd(void){ return SQLITE_OK; }

/*
** The sqlite3_mutex_alloc() routine allocates a new
** mutex and returns a pointer to it.  If it returns NULL
** that means that a mutex could not be allocated. 
** SQLite will unwind its stack and return an error.  The argument
** to sqlite3_mutex_alloc() is one of these integer constants:
**
** <ul>
** <li>  SQLITE_MUTEX_FAST
** <li>  SQLITE_MUTEX_RECURSIVE
** <li>  SQLITE_MUTEX_STATIC_MASTER
** <li>  SQLITE_MUTEX_STATIC_MEM
** <li>  SQLITE_MUTEX_STATIC_MEM2
** <li>  SQLITE_MUTEX_STATIC_PRNG
** <li>  SQLITE_MUTEX_STATIC_LRU
** <li>  SQLITE_MUTEX_STATIC_LRU2
** </ul>
**
** The first two constants cause sqlite3_mutex_alloc() to create
** a new mutex.  The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
** The mutex implementation does not need to make a distinction
** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
** not want to.  But SQLite will only request a recursive mutex in
** cases where it really needs one.  If a faster non-recursive mutex
** implementation is available on the host platform, the mutex subsystem
** might return such a mutex in response to SQLITE_MUTEX_FAST.
**
** The other allowed parameters to sqlite3_mutex_alloc() each return
** a pointer to a static preexisting mutex.  Six static mutexes are
** used by the current version of SQLite.  Future versions of SQLite
** may add additional static mutexes.  Static mutexes are for internal
** use by SQLite only.  Applications that use SQLite mutexes should
** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
** SQLITE_MUTEX_RECURSIVE.
**
** Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
** returns a different mutex on every call.  But for the static
** mutex types, the same mutex is returned on every call that has
** the same type number.
*/
static sqlite3_mutex *os2MutexAlloc(int iType){
  sqlite3_mutex *p = NULL;
  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
        p->id = iType;
        if( DosCreateMutexSem( 0, &p->mutex, 0, FALSE ) != NO_ERROR ){
          sqlite3_free( p );
          p = NULL;
        }
      }
      break;
    }
    default: {
      static volatile int isInit = 0;
      static sqlite3_mutex staticMutexes[6] = {
        SQLITE3_MUTEX_INITIALIZER,
        SQLITE3_MUTEX_INITIALIZER,
        SQLITE3_MUTEX_INITIALIZER,
        SQLITE3_MUTEX_INITIALIZER,
        SQLITE3_MUTEX_INITIALIZER,
        SQLITE3_MUTEX_INITIALIZER,
      };
      if ( !isInit ){
        APIRET rc;
        PTIB ptib;
        PPIB ppib;
        HMTX mutex;
        char name[32];
        DosGetInfoBlocks( &ptib, &ppib );
        sqlite3_snprintf( sizeof(name), name, "\\SEM32\\SQLITE%04x",
                          ppib->pib_ulpid );
        while( !isInit ){
          mutex = 0;
          rc = DosCreateMutexSem( name, &mutex, 0, FALSE);
          if( rc == NO_ERROR ){
            unsigned int i;
            if( !isInit ){
              for( i = 0; i < sizeof(staticMutexes)/sizeof(staticMutexes[0]); i++ ){
                DosCreateMutexSem( 0, &staticMutexes[i].mutex, 0, FALSE );
              }
              isInit = 1;
            }
            DosCloseMutexSem( mutex );
          }else if( rc == ERROR_DUPLICATE_NAME ){
            DosSleep( 1 );
          }else{
            return p;
          }
        }
      }
      assert( iType-2 >= 0 );
      assert( iType-2 < sizeof(staticMutexes)/sizeof(staticMutexes[0]) );
      p = &staticMutexes[iType-2];
      p->id = iType;
      break;
    }
  }
  return p;
}


/*
** This routine deallocates a previously allocated mutex.
** SQLite is careful to deallocate every mutex that it allocates.
*/
static void os2MutexFree(sqlite3_mutex *p){
#ifdef SQLITE_DEBUG
  TID tid;
  PID pid;
  ULONG ulCount;
  DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
  assert( ulCount==0 );
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
#endif
  DosCloseMutexSem( p->mutex );
  sqlite3_free( p );
}

#ifdef SQLITE_DEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
static int os2MutexHeld(sqlite3_mutex *p){
  TID tid;
  PID pid;
  ULONG ulCount;
  PTIB ptib;
  DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
  if( ulCount==0 || ( ulCount>1 && p->id!=SQLITE_MUTEX_RECURSIVE ) )
    return 0;
  DosGetInfoBlocks(&ptib, NULL);
  return tid==ptib->tib_ptib2->tib2_ultid;
}
static int os2MutexNotheld(sqlite3_mutex *p){
  TID tid;
  PID pid;
  ULONG ulCount;
  PTIB ptib;
  DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
  if( ulCount==0 )
    return 1;
  DosGetInfoBlocks(&ptib, NULL);
  return tid!=ptib->tib_ptib2->tib2_ultid;
}
static void os2MutexTrace(sqlite3_mutex *p, char *pAction){
  TID   tid;
  PID   pid;
  ULONG ulCount;
  DosQueryMutexSem(p->mutex, &pid, &tid, &ulCount);
  printf("%s mutex %p (%d) with nRef=%ld\n", pAction, (void*)p, p->trace, ulCount);
}
#endif

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
** upon successful entry.  Mutexes created using SQLITE_MUTEX_RECURSIVE can
** be entered multiple times by the same thread.  In such cases the,
** mutex must be exited an equal number of times before another thread
** can enter.  If the same thread tries to enter any other kind of mutex
** more than once, the behavior is undefined.
*/
static void os2MutexEnter(sqlite3_mutex *p){
  assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
  DosRequestMutexSem(p->mutex, SEM_INDEFINITE_WAIT);
#ifdef SQLITE_DEBUG
  if( p->trace ) os2MutexTrace(p, "enter");
#endif
}
static int os2MutexTry(sqlite3_mutex *p){
  int rc = SQLITE_BUSY;
  assert( p->id==SQLITE_MUTEX_RECURSIVE || os2MutexNotheld(p) );
  if( DosRequestMutexSem(p->mutex, SEM_IMMEDIATE_RETURN) == NO_ERROR ) {
    rc = SQLITE_OK;
#ifdef SQLITE_DEBUG
    if( p->trace ) os2MutexTrace(p, "try");
#endif
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was
** previously entered by the same thread.  The behavior
** is undefined if the mutex is not currently entered or
** is not currently allocated.  SQLite will never do either.
*/
static void os2MutexLeave(sqlite3_mutex *p){
  assert( os2MutexHeld(p) );
  DosReleaseMutexSem(p->mutex);
#ifdef SQLITE_DEBUG
  if( p->trace ) os2MutexTrace(p, "leave");
#endif
}

SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
  static const sqlite3_mutex_methods sMutex = {
    os2MutexInit,
    os2MutexEnd,
    os2MutexAlloc,
    os2MutexFree,
    os2MutexEnter,
    os2MutexTry,
    os2MutexLeave,
#ifdef SQLITE_DEBUG
    os2MutexHeld,
    os2MutexNotheld
#else
    0,
    0
#endif
  };

  return &sMutex;
}
#endif /* SQLITE_MUTEX_OS2 */

/************** End of mutex_os2.c *******************************************/
/************** Begin file mutex_unix.c **************************************/
/*
** 2007 August 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







17754
17755
17756
17757
17758
17759
17760




















































































































































































































































































17761
17762
17763
17764
17765
17766
17767
SQLITE_PRIVATE sqlite3_mutex_methods const *sqlite3DefaultMutex(void){
  return sqlite3NoopMutex();
}
#endif /* defined(SQLITE_MUTEX_NOOP) */
#endif /* !defined(SQLITE_MUTEX_OMIT) */

/************** End of mutex_noop.c ******************************************/




















































































































































































































































































/************** Begin file mutex_unix.c **************************************/
/*
** 2007 August 28
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
/* As winMutexInit() and winMutexEnd() are called as part
** of the sqlite3_initialize and sqlite3_shutdown()
** processing, the "interlocked" magic is probably not
** strictly necessary.
*/
static long winMutex_lock = 0;

SQLITE_API extern void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){ 
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
    for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
#if SQLITE_OS_WINRT







|







18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
/* As winMutexInit() and winMutexEnd() are called as part
** of the sqlite3_initialize and sqlite3_shutdown()
** processing, the "interlocked" magic is probably not
** strictly necessary.
*/
static long winMutex_lock = 0;

SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){ 
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
    for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
#if SQLITE_OS_WINRT
19598
19599
19600
19601
19602
19603
19604
19605

19606
19607
19608
19609
19610
19611
19612
** The counter *cnt is incremented each time.  After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
  int digit;
  LONGDOUBLE_TYPE d;
  if( (*cnt)++ >= 16 ) return '0';

  digit = (int)*val;
  d = digit;
  digit += '0';
  *val = (*val - d)*10.0;
  return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */







|
>







19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
** The counter *cnt is incremented each time.  After counter exceeds
** 16 (the number of significant digits in a 64-bit float) '0' is
** always returned.
*/
static char et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){
  int digit;
  LONGDOUBLE_TYPE d;
  if( (*cnt)<=0 ) return '0';
  (*cnt)--;
  digit = (int)*val;
  d = digit;
  digit += '0';
  *val = (*val - d)*10.0;
  return (char)digit;
}
#endif /* SQLITE_OMIT_FLOATING_POINT */
19902
19903
19904
19905
19906
19907
19908

19909

19910
19911

19912
19913
19914
19915
19916
19917
19918
        exp = 0;
        if( sqlite3IsNaN((double)realvalue) ){
          bufpt = "NaN";
          length = 3;
          break;
        }
        if( realvalue>0.0 ){

          while( realvalue>=1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; }

          while( realvalue>=1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; }
          while( realvalue>=10.0 && exp<=350 ){ realvalue *= 0.1; exp++; }

          while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
          while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
          if( exp>350 ){
            if( prefix=='-' ){
              bufpt = "-Inf";
            }else if( prefix=='+' ){
              bufpt = "+Inf";







>
|
>
|
|
>







19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
        exp = 0;
        if( sqlite3IsNaN((double)realvalue) ){
          bufpt = "NaN";
          length = 3;
          break;
        }
        if( realvalue>0.0 ){
          LONGDOUBLE_TYPE scale = 1.0;
          while( realvalue>=1e100*scale && exp<=350 ){ scale *= 1e100;exp+=100;}
          while( realvalue>=1e64*scale && exp<=350 ){ scale *= 1e64; exp+=64; }
          while( realvalue>=1e8*scale && exp<=350 ){ scale *= 1e8; exp+=8; }
          while( realvalue>=10.0*scale && exp<=350 ){ scale *= 10.0; exp++; }
          realvalue /= scale;
          while( realvalue<1e-8 ){ realvalue *= 1e8; exp-=8; }
          while( realvalue<1.0 ){ realvalue *= 10.0; exp--; }
          if( exp>350 ){
            if( prefix=='-' ){
              bufpt = "-Inf";
            }else if( prefix=='+' ){
              bufpt = "+Inf";
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
          if( exp<-4 || exp>precision ){
            xtype = etEXP;
          }else{
            precision = precision - exp;
            xtype = etFLOAT;
          }
        }else{
          flag_rtz = 0;
        }
        if( xtype==etEXP ){
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( e2+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 );
          if( bufpt==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }
        zOut = bufpt;
        nsd = 0;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
        if( prefix ){
          *(bufpt++) = prefix;
        }
        /* Digits prior to the decimal point */
        if( e2<0 ){







|














|







19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
          if( exp<-4 || exp>precision ){
            xtype = etEXP;
          }else{
            precision = precision - exp;
            xtype = etFLOAT;
          }
        }else{
          flag_rtz = flag_altform2;
        }
        if( xtype==etEXP ){
          e2 = 0;
        }else{
          e2 = exp;
        }
        if( e2+precision+width > etBUFSIZE - 15 ){
          bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 );
          if( bufpt==0 ){
            pAccum->mallocFailed = 1;
            return;
          }
        }
        zOut = bufpt;
        nsd = 16 + flag_altform2*10;
        flag_dp = (precision>0 ?1:0) | flag_alternateform | flag_altform2;
        /* The sign in front of the number */
        if( prefix ){
          *(bufpt++) = prefix;
        }
        /* Digits prior to the decimal point */
        if( e2<0 ){
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539

    /* adjust the sign of significand */
    s = sign<0 ? -s : s;

    /* if exponent, scale significand as appropriate
    ** and store in result. */
    if( e ){
      double scale = 1.0;
      /* attempt to handle extremely small/large numbers better */
      if( e>307 && e<342 ){
        while( e%308 ) { scale *= 1.0e+1; e -= 1; }
        if( esign<0 ){
          result = s / scale;
          result /= 1.0e+308;
        }else{







|







21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306

    /* adjust the sign of significand */
    s = sign<0 ? -s : s;

    /* if exponent, scale significand as appropriate
    ** and store in result. */
    if( e ){
      LONGDOUBLE_TYPE scale = 1.0;
      /* attempt to handle extremely small/large numbers better */
      if( e>307 && e<342 ){
        while( e%308 ) { scale *= 1.0e+1; e -= 1; }
        if( esign<0 ){
          result = s / scale;
          result /= 1.0e+308;
        }else{
22454
22455
22456
22457
22458
22459
22460
22461




22462
22463
22464
22465
22466
22467
22468
    new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
  }
  if( new_size==pH->htsize ) return 0;
#endif

  /* The inability to allocates space for a larger hash table is
  ** a performance hit but it is not a fatal error.  So mark the
  ** allocation as a benign.




  */
  sqlite3BeginBenignMalloc();
  new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
  sqlite3EndBenignMalloc();

  if( new_ht==0 ) return 0;
  sqlite3_free(pH->ht);







|
>
>
>
>







22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
    new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht);
  }
  if( new_size==pH->htsize ) return 0;
#endif

  /* The inability to allocates space for a larger hash table is
  ** a performance hit but it is not a fatal error.  So mark the
  ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of 
  ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero()
  ** only zeroes the requested number of bytes whereas this module will
  ** use the actual amount of space allocated for the hash table (which
  ** may be larger than the requested amount).
  */
  sqlite3BeginBenignMalloc();
  new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) );
  sqlite3EndBenignMalloc();

  if( new_ht==0 ) return 0;
  sqlite3_free(pH->ht);
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
     /* 150 */ "Explain",
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_os2.c ******************************************/
/*
** 2006 Feb 14
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to OS/2.
*/


#if SQLITE_OS_OS2

/*
** A Note About Memory Allocation:
**
** This driver uses malloc()/free() directly rather than going through
** the SQLite-wrappers sqlite3_malloc()/sqlite3_free().  Those wrappers
** are designed for use on embedded systems where memory is scarce and
** malloc failures happen frequently.  OS/2 does not typically run on
** embedded systems, and when it does the developers normally have bigger
** problems to worry about than running out of memory.  So there is not
** a compelling need to use the wrappers.
**
** But there is a good reason to not use the wrappers.  If we use the
** wrappers then we will get simulated malloc() failures within this
** driver.  And that causes all kinds of problems for our tests.  We
** could enhance SQLite to deal with simulated malloc failures within
** the OS driver, but the code to deal with those failure would not
** be exercised on Linux (which does not need to malloc() in the driver)
** and so we would have difficulty writing coverage tests for that
** code.  Better to leave the code out, we think.
**
** The point of this discussion is as follows:  When creating a new
** OS layer for an embedded system, if you use this file as an example,
** avoid the use of malloc()/free().  Those routines work ok on OS/2
** desktops but not so well in embedded systems.
*/

/*
** Macros used to determine whether or not to use threads.
*/
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE
# define SQLITE_OS2_THREADS 1
#endif

/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_os2.c ****************/
/************** Begin file os_common.h ***************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains macros and a little bit of code that is common to
** all of the platform-specific files (os_*.c) and is #included into those
** files.
**
** This file should be #included by the os_*.c files only.  It is not a
** general purpose header file.
*/
#ifndef _OS_COMMON_H_
#define _OS_COMMON_H_

/*
** At least two bugs have slipped in because we changed the MEMORY_DEBUG
** macro to SQLITE_DEBUG and some older makefiles have not yet made the
** switch.  The following code should catch this problem at compile-time.
*/
#ifdef MEMORY_DEBUG
# error "The MEMORY_DEBUG macro is obsolete.  Use SQLITE_DEBUG instead."
#endif

#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
# ifndef SQLITE_DEBUG_OS_TRACE
#   define SQLITE_DEBUG_OS_TRACE 0
# endif
  int sqlite3OSTrace = SQLITE_DEBUG_OS_TRACE;
# define OSTRACE(X)          if( sqlite3OSTrace ) sqlite3DebugPrintf X
#else
# define OSTRACE(X)
#endif

/*
** Macros for performance tracing.  Normally turned off.  Only works
** on i486 hardware.
*/
#ifdef SQLITE_PERFORMANCE_TRACE

/* 
** hwtime.h contains inline assembler code for implementing 
** high-performance timing routines.
*/
/************** Include hwtime.h in the middle of os_common.h ****************/
/************** Begin file hwtime.h ******************************************/
/*
** 2008 May 27
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains inline asm code for retrieving "high-performance"
** counters for x86 class CPUs.
*/
#ifndef _HWTIME_H_
#define _HWTIME_H_

/*
** The following routine only works on pentium-class (or newer) processors.
** It uses the RDTSC opcode to read the cycle count value out of the
** processor and returns that value.  This can be used for high-res
** profiling.
*/
#if (defined(__GNUC__) || defined(_MSC_VER)) && \
      (defined(i386) || defined(__i386__) || defined(_M_IX86))

  #if defined(__GNUC__)

  __inline__ sqlite_uint64 sqlite3Hwtime(void){
     unsigned int lo, hi;
     __asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
     return (sqlite_uint64)hi << 32 | lo;
  }

  #elif defined(_MSC_VER)

  __declspec(naked) __inline sqlite_uint64 __cdecl sqlite3Hwtime(void){
     __asm {
        rdtsc
        ret       ; return value at EDX:EAX
     }
  }

  #endif

#elif (defined(__GNUC__) && defined(__x86_64__))

  __inline__ sqlite_uint64 sqlite3Hwtime(void){
      unsigned long val;
      __asm__ __volatile__ ("rdtsc" : "=A" (val));
      return val;
  }
 
#elif (defined(__GNUC__) && defined(__ppc__))

  __inline__ sqlite_uint64 sqlite3Hwtime(void){
      unsigned long long retval;
      unsigned long junk;
      __asm__ __volatile__ ("\n\
          1:      mftbu   %1\n\
                  mftb    %L0\n\
                  mftbu   %0\n\
                  cmpw    %0,%1\n\
                  bne     1b"
                  : "=r" (retval), "=r" (junk));
      return retval;
  }

#else

  #error Need implementation of sqlite3Hwtime() for your platform.

  /*
  ** To compile without implementing sqlite3Hwtime() for your platform,
  ** you can remove the above #error and use the following
  ** stub function.  You will lose timing support for many
  ** of the debugging and testing utilities, but it should at
  ** least compile and run.
  */
SQLITE_PRIVATE   sqlite_uint64 sqlite3Hwtime(void){ return ((sqlite_uint64)0); }

#endif

#endif /* !defined(_HWTIME_H_) */

/************** End of hwtime.h **********************************************/
/************** Continuing where we left off in os_common.h ******************/

static sqlite_uint64 g_start;
static sqlite_uint64 g_elapsed;
#define TIMER_START       g_start=sqlite3Hwtime()
#define TIMER_END         g_elapsed=sqlite3Hwtime()-g_start
#define TIMER_ELAPSED     g_elapsed
#else
#define TIMER_START
#define TIMER_END
#define TIMER_ELAPSED     ((sqlite_uint64)0)
#endif

/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_io_error_hit = 0;            /* Total number of I/O Errors */
SQLITE_API int sqlite3_io_error_hardhit = 0;        /* Number of non-benign errors */
SQLITE_API int sqlite3_io_error_pending = 0;        /* Count down to first I/O error */
SQLITE_API int sqlite3_io_error_persist = 0;        /* True if I/O errors persist */
SQLITE_API int sqlite3_io_error_benign = 0;         /* True if errors are benign */
SQLITE_API int sqlite3_diskfull_pending = 0;
SQLITE_API int sqlite3_diskfull = 0;
#define SimulateIOErrorBenign(X) sqlite3_io_error_benign=(X)
#define SimulateIOError(CODE)  \
  if( (sqlite3_io_error_persist && sqlite3_io_error_hit) \
       || sqlite3_io_error_pending-- == 1 )  \
              { local_ioerr(); CODE; }
static void local_ioerr(){
  IOTRACE(("IOERR\n"));
  sqlite3_io_error_hit++;
  if( !sqlite3_io_error_benign ) sqlite3_io_error_hardhit++;
}
#define SimulateDiskfullError(CODE) \
   if( sqlite3_diskfull_pending ){ \
     if( sqlite3_diskfull_pending == 1 ){ \
       local_ioerr(); \
       sqlite3_diskfull = 1; \
       sqlite3_io_error_hit = 1; \
       CODE; \
     }else{ \
       sqlite3_diskfull_pending--; \
     } \
   }
#else
#define SimulateIOErrorBenign(X)
#define SimulateIOError(A)
#define SimulateDiskfullError(A)
#endif

/*
** When testing, keep a count of the number of open files.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_open_file_count = 0;
#define OpenCounter(X)  sqlite3_open_file_count+=(X)
#else
#define OpenCounter(X)
#endif

#endif /* !defined(_OS_COMMON_H_) */

/************** End of os_common.h *******************************************/
/************** Continuing where we left off in os_os2.c *********************/

/* Forward references */
typedef struct os2File os2File;         /* The file structure */
typedef struct os2ShmNode os2ShmNode;   /* A shared descritive memory node */
typedef struct os2ShmLink os2ShmLink;   /* A connection to shared-memory */

/*
** The os2File structure is subclass of sqlite3_file specific for the OS/2
** protability layer.
*/
struct os2File {
  const sqlite3_io_methods *pMethod;  /* Always the first entry */
  HFILE h;                  /* Handle for accessing the file */
  int flags;                /* Flags provided to os2Open() */
  int locktype;             /* Type of lock currently held on this file */
  int szChunk;              /* Chunk size configured by FCNTL_CHUNK_SIZE */
  char *zFullPathCp;        /* Full path name of this file */
  os2ShmLink *pShmLink;     /* Instance of shared memory on this file */
};

#define LOCK_TIMEOUT 10L /* the default locking timeout */

/*
** Missing from some versions of the OS/2 toolkit -
** used to allocate from high memory if possible
*/
#ifndef OBJ_ANY
# define OBJ_ANY 0x00000400
#endif

/*****************************************************************************
** The next group of routines implement the I/O methods specified
** by the sqlite3_io_methods object.
******************************************************************************/

/*
** Close a file.
*/
static int os2Close( sqlite3_file *id ){
  APIRET rc;
  os2File *pFile = (os2File*)id;

  assert( id!=0 );
  OSTRACE(( "CLOSE %d (%s)\n", pFile->h, pFile->zFullPathCp ));

  rc = DosClose( pFile->h );

  if( pFile->flags & SQLITE_OPEN_DELETEONCLOSE )
    DosForceDelete( (PSZ)pFile->zFullPathCp );

  free( pFile->zFullPathCp );
  pFile->zFullPathCp = NULL;
  pFile->locktype = NO_LOCK;
  pFile->h = (HFILE)-1;
  pFile->flags = 0;

  OpenCounter( -1 );
  return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}

/*
** Read data from a file into a buffer.  Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
static int os2Read(
  sqlite3_file *id,               /* File to read from */
  void *pBuf,                     /* Write content into this buffer */
  int amt,                        /* Number of bytes to read */
  sqlite3_int64 offset            /* Begin reading at this offset */
){
  ULONG fileLocation = 0L;
  ULONG got;
  os2File *pFile = (os2File*)id;
  assert( id!=0 );
  SimulateIOError( return SQLITE_IOERR_READ );
  OSTRACE(( "READ %d lock=%d\n", pFile->h, pFile->locktype ));
  if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
    return SQLITE_IOERR;
  }
  if( DosRead( pFile->h, pBuf, amt, &got ) != NO_ERROR ){
    return SQLITE_IOERR_READ;
  }
  if( got == (ULONG)amt )
    return SQLITE_OK;
  else {
    /* Unread portions of the input buffer must be zero-filled */
    memset(&((char*)pBuf)[got], 0, amt-got);
    return SQLITE_IOERR_SHORT_READ;
  }
}

/*
** Write data from a buffer into a file.  Return SQLITE_OK on success
** or some other error code on failure.
*/
static int os2Write(
  sqlite3_file *id,               /* File to write into */
  const void *pBuf,               /* The bytes to be written */
  int amt,                        /* Number of bytes to write */
  sqlite3_int64 offset            /* Offset into the file to begin writing at */
){
  ULONG fileLocation = 0L;
  APIRET rc = NO_ERROR;
  ULONG wrote;
  os2File *pFile = (os2File*)id;
  assert( id!=0 );
  SimulateIOError( return SQLITE_IOERR_WRITE );
  SimulateDiskfullError( return SQLITE_FULL );
  OSTRACE(( "WRITE %d lock=%d\n", pFile->h, pFile->locktype ));
  if( DosSetFilePtr(pFile->h, offset, FILE_BEGIN, &fileLocation) != NO_ERROR ){
    return SQLITE_IOERR;
  }
  assert( amt>0 );
  while( amt > 0 &&
         ( rc = DosWrite( pFile->h, (PVOID)pBuf, amt, &wrote ) ) == NO_ERROR &&
         wrote > 0
  ){
    amt -= wrote;
    pBuf = &((char*)pBuf)[wrote];
  }

  return ( rc != NO_ERROR || amt > (int)wrote ) ? SQLITE_FULL : SQLITE_OK;
}

/*
** Truncate an open file to a specified size
*/
static int os2Truncate( sqlite3_file *id, i64 nByte ){
  APIRET rc;
  os2File *pFile = (os2File*)id;
  assert( id!=0 );
  OSTRACE(( "TRUNCATE %d %lld\n", pFile->h, nByte ));
  SimulateIOError( return SQLITE_IOERR_TRUNCATE );

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }
  
  rc = DosSetFileSize( pFile->h, nByte );
  return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR_TRUNCATE;
}

#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs.  This is used to test
** that syncs and fullsyncs are occuring at the right times.
*/
SQLITE_API int sqlite3_sync_count = 0;
SQLITE_API int sqlite3_fullsync_count = 0;
#endif

/*
** Make sure all writes to a particular file are committed to disk.
*/
static int os2Sync( sqlite3_file *id, int flags ){
  os2File *pFile = (os2File*)id;
  OSTRACE(( "SYNC %d lock=%d\n", pFile->h, pFile->locktype ));
#ifdef SQLITE_TEST
  if( flags & SQLITE_SYNC_FULL){
    sqlite3_fullsync_count++;
  }
  sqlite3_sync_count++;
#endif
  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op
  */
#ifdef SQLITE_NO_SYNC
  UNUSED_PARAMETER(pFile);
  return SQLITE_OK;
#else
  return DosResetBuffer( pFile->h ) == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
#endif
}

/*
** Determine the current size of a file in bytes
*/
static int os2FileSize( sqlite3_file *id, sqlite3_int64 *pSize ){
  APIRET rc = NO_ERROR;
  FILESTATUS3 fsts3FileInfo;
  memset(&fsts3FileInfo, 0, sizeof(fsts3FileInfo));
  assert( id!=0 );
  SimulateIOError( return SQLITE_IOERR_FSTAT );
  rc = DosQueryFileInfo( ((os2File*)id)->h, FIL_STANDARD, &fsts3FileInfo, sizeof(FILESTATUS3) );
  if( rc == NO_ERROR ){
    *pSize = fsts3FileInfo.cbFile;
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR_FSTAT;
  }
}

/*
** Acquire a reader lock.
*/
static int getReadLock( os2File *pFile ){
  FILELOCK  LockArea,
            UnlockArea;
  APIRET res;
  memset(&LockArea, 0, sizeof(LockArea));
  memset(&UnlockArea, 0, sizeof(UnlockArea));
  LockArea.lOffset = SHARED_FIRST;
  LockArea.lRange = SHARED_SIZE;
  UnlockArea.lOffset = 0L;
  UnlockArea.lRange = 0L;
  res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
  OSTRACE(( "GETREADLOCK %d res=%d\n", pFile->h, res ));
  return res;
}

/*
** Undo a readlock
*/
static int unlockReadLock( os2File *id ){
  FILELOCK  LockArea,
            UnlockArea;
  APIRET res;
  memset(&LockArea, 0, sizeof(LockArea));
  memset(&UnlockArea, 0, sizeof(UnlockArea));
  LockArea.lOffset = 0L;
  LockArea.lRange = 0L;
  UnlockArea.lOffset = SHARED_FIRST;
  UnlockArea.lRange = SHARED_SIZE;
  res = DosSetFileLocks( id->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 1L );
  OSTRACE(( "UNLOCK-READLOCK file handle=%d res=%d?\n", id->h, res ));
  return res;
}

/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
**
**     (1) SHARED_LOCK
**     (2) RESERVED_LOCK
**     (3) PENDING_LOCK
**     (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between.  The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal.  The following chart shows the allowed
** transitions and the inserted intermediate states:
**
**    UNLOCKED -> SHARED
**    SHARED -> RESERVED
**    SHARED -> (PENDING) -> EXCLUSIVE
**    RESERVED -> (PENDING) -> EXCLUSIVE
**    PENDING -> EXCLUSIVE
**
** This routine will only increase a lock.  The os2Unlock() routine
** erases all locks at once and returns us immediately to locking level 0.
** It is not possible to lower the locking level one step at a time.  You
** must go straight to locking level 0.
*/
static int os2Lock( sqlite3_file *id, int locktype ){
  int rc = SQLITE_OK;       /* Return code from subroutines */
  APIRET res = NO_ERROR;    /* Result of an OS/2 lock call */
  int newLocktype;       /* Set pFile->locktype to this value before exiting */
  int gotPendingLock = 0;/* True if we acquired a PENDING lock this time */
  FILELOCK  LockArea,
            UnlockArea;
  os2File *pFile = (os2File*)id;
  memset(&LockArea, 0, sizeof(LockArea));
  memset(&UnlockArea, 0, sizeof(UnlockArea));
  assert( pFile!=0 );
  OSTRACE(( "LOCK %d %d was %d\n", pFile->h, locktype, pFile->locktype ));

  /* If there is already a lock of this type or more restrictive on the
  ** os2File, do nothing. Don't use the end_lock: exit path, as
  ** sqlite3_mutex_enter() hasn't been called yet.
  */
  if( pFile->locktype>=locktype ){
    OSTRACE(( "LOCK %d %d ok (already held)\n", pFile->h, locktype ));
    return SQLITE_OK;
  }

  /* Make sure the locking sequence is correct
  */
  assert( pFile->locktype!=NO_LOCK || locktype==SHARED_LOCK );
  assert( locktype!=PENDING_LOCK );
  assert( locktype!=RESERVED_LOCK || pFile->locktype==SHARED_LOCK );

  /* Lock the PENDING_LOCK byte if we need to acquire a PENDING lock or
  ** a SHARED lock.  If we are acquiring a SHARED lock, the acquisition of
  ** the PENDING_LOCK byte is temporary.
  */
  newLocktype = pFile->locktype;
  if( pFile->locktype==NO_LOCK
      || (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
  ){
    LockArea.lOffset = PENDING_BYTE;
    LockArea.lRange = 1L;
    UnlockArea.lOffset = 0L;
    UnlockArea.lRange = 0L;

    /* wait longer than LOCK_TIMEOUT here not to have to try multiple times */
    res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 100L, 0L );
    if( res == NO_ERROR ){
      gotPendingLock = 1;
      OSTRACE(( "LOCK %d pending lock boolean set.  res=%d\n", pFile->h, res ));
    }
  }

  /* Acquire a shared lock
  */
  if( locktype==SHARED_LOCK && res == NO_ERROR ){
    assert( pFile->locktype==NO_LOCK );
    res = getReadLock(pFile);
    if( res == NO_ERROR ){
      newLocktype = SHARED_LOCK;
    }
    OSTRACE(( "LOCK %d acquire shared lock. res=%d\n", pFile->h, res ));
  }

  /* Acquire a RESERVED lock
  */
  if( locktype==RESERVED_LOCK && res == NO_ERROR ){
    assert( pFile->locktype==SHARED_LOCK );
    LockArea.lOffset = RESERVED_BYTE;
    LockArea.lRange = 1L;
    UnlockArea.lOffset = 0L;
    UnlockArea.lRange = 0L;
    res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    if( res == NO_ERROR ){
      newLocktype = RESERVED_LOCK;
    }
    OSTRACE(( "LOCK %d acquire reserved lock. res=%d\n", pFile->h, res ));
  }

  /* Acquire a PENDING lock
  */
  if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
    newLocktype = PENDING_LOCK;
    gotPendingLock = 0;
    OSTRACE(( "LOCK %d acquire pending lock. pending lock boolean unset.\n",
               pFile->h ));
  }

  /* Acquire an EXCLUSIVE lock
  */
  if( locktype==EXCLUSIVE_LOCK && res == NO_ERROR ){
    assert( pFile->locktype>=SHARED_LOCK );
    res = unlockReadLock(pFile);
    OSTRACE(( "unreadlock = %d\n", res ));
    LockArea.lOffset = SHARED_FIRST;
    LockArea.lRange = SHARED_SIZE;
    UnlockArea.lOffset = 0L;
    UnlockArea.lRange = 0L;
    res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    if( res == NO_ERROR ){
      newLocktype = EXCLUSIVE_LOCK;
    }else{
      OSTRACE(( "OS/2 error-code = %d\n", res ));
      getReadLock(pFile);
    }
    OSTRACE(( "LOCK %d acquire exclusive lock.  res=%d\n", pFile->h, res ));
  }

  /* If we are holding a PENDING lock that ought to be released, then
  ** release it now.
  */
  if( gotPendingLock && locktype==SHARED_LOCK ){
    int r;
    LockArea.lOffset = 0L;
    LockArea.lRange = 0L;
    UnlockArea.lOffset = PENDING_BYTE;
    UnlockArea.lRange = 1L;
    r = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    OSTRACE(( "LOCK %d unlocking pending/is shared. r=%d\n", pFile->h, r ));
  }

  /* Update the state of the lock has held in the file descriptor then
  ** return the appropriate result code.
  */
  if( res == NO_ERROR ){
    rc = SQLITE_OK;
  }else{
    OSTRACE(( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
              locktype, newLocktype ));
    rc = SQLITE_BUSY;
  }
  pFile->locktype = newLocktype;
  OSTRACE(( "LOCK %d now %d\n", pFile->h, pFile->locktype ));
  return rc;
}

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
static int os2CheckReservedLock( sqlite3_file *id, int *pOut ){
  int r = 0;
  os2File *pFile = (os2File*)id;
  assert( pFile!=0 );
  if( pFile->locktype>=RESERVED_LOCK ){
    r = 1;
    OSTRACE(( "TEST WR-LOCK %d %d (local)\n", pFile->h, r ));
  }else{
    FILELOCK  LockArea,
              UnlockArea;
    APIRET rc = NO_ERROR;
    memset(&LockArea, 0, sizeof(LockArea));
    memset(&UnlockArea, 0, sizeof(UnlockArea));
    LockArea.lOffset = RESERVED_BYTE;
    LockArea.lRange = 1L;
    UnlockArea.lOffset = 0L;
    UnlockArea.lRange = 0L;
    rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    OSTRACE(( "TEST WR-LOCK %d lock reserved byte rc=%d\n", pFile->h, rc ));
    if( rc == NO_ERROR ){
      APIRET rcu = NO_ERROR; /* return code for unlocking */
      LockArea.lOffset = 0L;
      LockArea.lRange = 0L;
      UnlockArea.lOffset = RESERVED_BYTE;
      UnlockArea.lRange = 1L;
      rcu = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
      OSTRACE(( "TEST WR-LOCK %d unlock reserved byte r=%d\n", pFile->h, rcu ));
    }
    r = !(rc == NO_ERROR);
    OSTRACE(( "TEST WR-LOCK %d %d (remote)\n", pFile->h, r ));
  }
  *pOut = r;
  return SQLITE_OK;
}

/*
** Lower the locking level on file descriptor id to locktype.  locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail if the second argument
** is NO_LOCK.  If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
static int os2Unlock( sqlite3_file *id, int locktype ){
  int type;
  os2File *pFile = (os2File*)id;
  APIRET rc = SQLITE_OK;
  APIRET res = NO_ERROR;
  FILELOCK  LockArea,
            UnlockArea;
  memset(&LockArea, 0, sizeof(LockArea));
  memset(&UnlockArea, 0, sizeof(UnlockArea));
  assert( pFile!=0 );
  assert( locktype<=SHARED_LOCK );
  OSTRACE(( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype ));
  type = pFile->locktype;
  if( type>=EXCLUSIVE_LOCK ){
    LockArea.lOffset = 0L;
    LockArea.lRange = 0L;
    UnlockArea.lOffset = SHARED_FIRST;
    UnlockArea.lRange = SHARED_SIZE;
    res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    OSTRACE(( "UNLOCK %d exclusive lock res=%d\n", pFile->h, res ));
    if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
      /* This should never happen.  We should always be able to
      ** reacquire the read lock */
      OSTRACE(( "UNLOCK %d to %d getReadLock() failed\n", pFile->h, locktype ));
      rc = SQLITE_IOERR_UNLOCK;
    }
  }
  if( type>=RESERVED_LOCK ){
    LockArea.lOffset = 0L;
    LockArea.lRange = 0L;
    UnlockArea.lOffset = RESERVED_BYTE;
    UnlockArea.lRange = 1L;
    res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    OSTRACE(( "UNLOCK %d reserved res=%d\n", pFile->h, res ));
  }
  if( locktype==NO_LOCK && type>=SHARED_LOCK ){
    res = unlockReadLock(pFile);
    OSTRACE(( "UNLOCK %d is %d want %d res=%d\n",
              pFile->h, type, locktype, res ));
  }
  if( type>=PENDING_LOCK ){
    LockArea.lOffset = 0L;
    LockArea.lRange = 0L;
    UnlockArea.lOffset = PENDING_BYTE;
    UnlockArea.lRange = 1L;
    res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, LOCK_TIMEOUT, 0L );
    OSTRACE(( "UNLOCK %d pending res=%d\n", pFile->h, res ));
  }
  pFile->locktype = locktype;
  OSTRACE(( "UNLOCK %d now %d\n", pFile->h, pFile->locktype ));
  return rc;
}

/*
** Control and query of the open file handle.
*/
static int os2FileControl(sqlite3_file *id, int op, void *pArg){
  switch( op ){
    case SQLITE_FCNTL_LOCKSTATE: {
      *(int*)pArg = ((os2File*)id)->locktype;
      OSTRACE(( "FCNTL_LOCKSTATE %d lock=%d\n",
                ((os2File*)id)->h, ((os2File*)id)->locktype ));
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_CHUNK_SIZE: {
      ((os2File*)id)->szChunk = *(int*)pArg;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SIZE_HINT: {
      sqlite3_int64 sz = *(sqlite3_int64*)pArg;
      SimulateIOErrorBenign(1);
      os2Truncate(id, sz);
      SimulateIOErrorBenign(0);
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SYNC_OMITTED: {
      return SQLITE_OK;
    }
  }
  return SQLITE_NOTFOUND;
}

/*
** Return the sector size in bytes of the underlying block device for
** the specified file. This is almost always 512 bytes, but may be
** larger for some devices.
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
** a database and its journal file) that the sector size will be the
** same for both.
*/
static int os2SectorSize(sqlite3_file *id){
  UNUSED_PARAMETER(id);
  return SQLITE_DEFAULT_SECTOR_SIZE;
}

/*
** Return a vector of device characteristics.
*/
static int os2DeviceCharacteristics(sqlite3_file *id){
  UNUSED_PARAMETER(id);
  return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN;
}


/*
** Character set conversion objects used by conversion routines.
*/
static UconvObject ucUtf8 = NULL; /* convert between UTF-8 and UCS-2 */
static UconvObject uclCp = NULL;  /* convert between local codepage and UCS-2 */

/*
** Helper function to initialize the conversion objects from and to UTF-8.
*/
static void initUconvObjects( void ){
  if( UniCreateUconvObject( UTF_8, &ucUtf8 ) != ULS_SUCCESS )
    ucUtf8 = NULL;
  if ( UniCreateUconvObject( (UniChar *)L"@path=yes", &uclCp ) != ULS_SUCCESS )
    uclCp = NULL;
}

/*
** Helper function to free the conversion objects from and to UTF-8.
*/
static void freeUconvObjects( void ){
  if ( ucUtf8 )
    UniFreeUconvObject( ucUtf8 );
  if ( uclCp )
    UniFreeUconvObject( uclCp );
  ucUtf8 = NULL;
  uclCp = NULL;
}

/*
** Helper function to convert UTF-8 filenames to local OS/2 codepage.
** The two-step process: first convert the incoming UTF-8 string
** into UCS-2 and then from UCS-2 to the current codepage.
** The returned char pointer has to be freed.
*/
static char *convertUtf8PathToCp( const char *in ){
  UniChar tempPath[CCHMAXPATH];
  char *out = (char *)calloc( CCHMAXPATH, 1 );

  if( !out )
    return NULL;

  if( !ucUtf8 || !uclCp )
    initUconvObjects();

  /* determine string for the conversion of UTF-8 which is CP1208 */
  if( UniStrToUcs( ucUtf8, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
    return out; /* if conversion fails, return the empty string */

  /* conversion for current codepage which can be used for paths */
  UniStrFromUcs( uclCp, out, tempPath, CCHMAXPATH );

  return out;
}

/*
** Helper function to convert filenames from local codepage to UTF-8.
** The two-step process: first convert the incoming codepage-specific
** string into UCS-2 and then from UCS-2 to the codepage of UTF-8.
** The returned char pointer has to be freed.
**
** This function is non-static to be able to use this in shell.c and
** similar applications that take command line arguments.
*/
char *convertCpPathToUtf8( const char *in ){
  UniChar tempPath[CCHMAXPATH];
  char *out = (char *)calloc( CCHMAXPATH, 1 );

  if( !out )
    return NULL;

  if( !ucUtf8 || !uclCp )
    initUconvObjects();

  /* conversion for current codepage which can be used for paths */
  if( UniStrToUcs( uclCp, tempPath, (char *)in, CCHMAXPATH ) != ULS_SUCCESS )
    return out; /* if conversion fails, return the empty string */

  /* determine string for the conversion of UTF-8 which is CP1208 */
  UniStrFromUcs( ucUtf8, out, tempPath, CCHMAXPATH );

  return out;
}


#ifndef SQLITE_OMIT_WAL

/*
** Use main database file for interprocess locking. If un-defined
** a separate file is created for this purpose. The file will be
** used only to set file locks. There will be no data written to it.
*/
#define SQLITE_OS2_NO_WAL_LOCK_FILE     

#if 0
static void _ERR_TRACE( const char *fmt, ... ) {
  va_list  ap;
  va_start(ap, fmt);
  vfprintf(stderr, fmt, ap);
  fflush(stderr);
}
#define ERR_TRACE(rc, msg)        \
        if( (rc) != SQLITE_OK ) _ERR_TRACE msg;
#else
#define ERR_TRACE(rc, msg)
#endif

/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect os2ShmNodeList.
**
** Function os2ShmMutexHeld() is used to assert() that the global mutex 
** is held when required. This function is only used as part of assert() 
** statements. e.g.
**
**   os2ShmEnterMutex()
**     assert( os2ShmMutexHeld() );
**   os2ShmLeaveMutex()
*/
static void os2ShmEnterMutex(void){
  sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
static void os2ShmLeaveMutex(void){
  sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
#ifdef SQLITE_DEBUG
static int os2ShmMutexHeld(void) {
  return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
}
int GetCurrentProcessId(void) {
  PPIB pib;
  DosGetInfoBlocks(NULL, &pib);
  return (int)pib->pib_ulpid;
}
#endif

/*
** Object used to represent a the shared memory area for a single log file.
** When multiple threads all reference the same log-summary, each thread has
** its own os2File object, but they all point to a single instance of this 
** object.  In other words, each log-summary is opened only once per process.
**
** os2ShmMutexHeld() must be true when creating or destroying
** this object or while reading or writing the following fields:
**
**      nRef
**      pNext 
**
** The following fields are read-only after the object is created:
** 
**      szRegion
**      hLockFile
**      shmBaseName
**
** Either os2ShmNode.mutex must be held or os2ShmNode.nRef==0 and
** os2ShmMutexHeld() is true when reading or writing any other field
** in this structure.
**
*/
struct os2ShmNode {
  sqlite3_mutex *mutex;      /* Mutex to access this object */
  os2ShmNode *pNext;         /* Next in list of all os2ShmNode objects */

  int szRegion;              /* Size of shared-memory regions */

  int nRegion;               /* Size of array apRegion */
  void **apRegion;           /* Array of pointers to shared-memory regions */

  int nRef;                  /* Number of os2ShmLink objects pointing to this */
  os2ShmLink *pFirst;        /* First os2ShmLink object pointing to this */

  HFILE hLockFile;           /* File used for inter-process memory locking */
  char shmBaseName[1];       /* Name of the memory object !!! must last !!! */
};


/*
** Structure used internally by this VFS to record the state of an
** open shared memory connection.
**
** The following fields are initialized when this object is created and
** are read-only thereafter:
**
**    os2Shm.pShmNode
**    os2Shm.id
**
** All other fields are read/write.  The os2Shm.pShmNode->mutex must be held
** while accessing any read/write fields.
*/
struct os2ShmLink {
  os2ShmNode *pShmNode;      /* The underlying os2ShmNode object */
  os2ShmLink *pNext;         /* Next os2Shm with the same os2ShmNode */
  u32 sharedMask;            /* Mask of shared locks held */
  u32 exclMask;              /* Mask of exclusive locks held */
#ifdef SQLITE_DEBUG
  u8 id;                     /* Id of this connection with its os2ShmNode */
#endif
};


/*
** A global list of all os2ShmNode objects.
**
** The os2ShmMutexHeld() must be true while reading or writing this list.
*/
static os2ShmNode *os2ShmNodeList = NULL;

/*
** Constants used for locking
*/
#ifdef  SQLITE_OS2_NO_WAL_LOCK_FILE
#define OS2_SHM_BASE   (PENDING_BYTE + 0x10000)         /* first lock byte */
#else
#define OS2_SHM_BASE   ((22+SQLITE_SHM_NLOCK)*4)        /* first lock byte */
#endif

#define OS2_SHM_DMS    (OS2_SHM_BASE+SQLITE_SHM_NLOCK)  /* deadman switch */

/*
** Apply advisory locks for all n bytes beginning at ofst.
*/
#define _SHM_UNLCK  1   /* no lock */
#define _SHM_RDLCK  2   /* shared lock, no wait */
#define _SHM_WRLCK  3   /* exlusive lock, no wait */
#define _SHM_WRLCK_WAIT 4 /* exclusive lock, wait */
static int os2ShmSystemLock(
  os2ShmNode *pNode,    /* Apply locks to this open shared-memory segment */
  int lockType,         /* _SHM_UNLCK, _SHM_RDLCK, _SHM_WRLCK or _SHM_WRLCK_WAIT */
  int ofst,             /* Offset to first byte to be locked/unlocked */
  int nByte             /* Number of bytes to lock or unlock */
){
  APIRET rc;
  FILELOCK area;
  ULONG mode, timeout;

  /* Access to the os2ShmNode object is serialized by the caller */
  assert( sqlite3_mutex_held(pNode->mutex) || pNode->nRef==0 );

  mode = 1;     /* shared lock */
  timeout = 0;  /* no wait */
  area.lOffset = ofst;
  area.lRange = nByte;

  switch( lockType ) {
    case _SHM_WRLCK_WAIT:
      timeout = (ULONG)-1;      /* wait forever */
    case _SHM_WRLCK:
      mode = 0;                 /* exclusive lock */
    case _SHM_RDLCK:
      rc = DosSetFileLocks(pNode->hLockFile, 
                           NULL, &area, timeout, mode);
      break;
    /* case _SHM_UNLCK: */
    default:
      rc = DosSetFileLocks(pNode->hLockFile, 
                           &area, NULL, 0, 0);
      break;
  }
                          
  OSTRACE(("SHM-LOCK %d %s %s 0x%08lx\n", 
           pNode->hLockFile,
           rc==SQLITE_OK ? "ok" : "failed",
           lockType==_SHM_UNLCK ? "Unlock" : "Lock",
           rc));

  ERR_TRACE(rc, ("os2ShmSystemLock: %d %s\n", rc, pNode->shmBaseName))

  return ( rc == 0 ) ?  SQLITE_OK : SQLITE_BUSY;
}

/*
** Find an os2ShmNode in global list or allocate a new one, if not found.
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static int os2OpenSharedMemory( os2File *fd, int szRegion ) {
  os2ShmLink *pLink;
  os2ShmNode *pNode;
  int cbShmName, rc = SQLITE_OK;
  char shmName[CCHMAXPATH + 30];
#ifndef SQLITE_OS2_NO_WAL_LOCK_FILE
  ULONG action;
#endif
  
  /* We need some additional space at the end to append the region number */
  cbShmName = sprintf(shmName, "\\SHAREMEM\\%s", fd->zFullPathCp );
  if( cbShmName >= CCHMAXPATH-8 )
    return SQLITE_IOERR_SHMOPEN; 

  /* Replace colon in file name to form a valid shared memory name */
  shmName[10+1] = '!';

  /* Allocate link object (we free it later in case of failure) */
  pLink = sqlite3_malloc( sizeof(*pLink) );
  if( !pLink )
    return SQLITE_NOMEM;

  /* Access node list */
  os2ShmEnterMutex();

  /* Find node by it's shared memory base name */
  for( pNode = os2ShmNodeList; 
       pNode && stricmp(shmName, pNode->shmBaseName) != 0; 
       pNode = pNode->pNext )   ;

  /* Not found: allocate a new node */
  if( !pNode ) {
    pNode = sqlite3_malloc( sizeof(*pNode) + cbShmName );
    if( pNode ) {
      memset(pNode, 0, sizeof(*pNode) );
      pNode->szRegion = szRegion;
      pNode->hLockFile = (HFILE)-1;      
      strcpy(pNode->shmBaseName, shmName);

#ifdef SQLITE_OS2_NO_WAL_LOCK_FILE
      if( DosDupHandle(fd->h, &pNode->hLockFile) != 0 ) {
#else
      sprintf(shmName, "%s-lck", fd->zFullPathCp);
      if( DosOpen((PSZ)shmName, &pNode->hLockFile, &action, 0, FILE_NORMAL, 
                  OPEN_ACTION_OPEN_IF_EXISTS | OPEN_ACTION_CREATE_IF_NEW,
                  OPEN_ACCESS_READWRITE | OPEN_SHARE_DENYNONE | 
                  OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR,
                  NULL) != 0 ) {
#endif
        sqlite3_free(pNode);  
        rc = SQLITE_IOERR;
      } else {
        pNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
        if( !pNode->mutex ) {
          sqlite3_free(pNode);  
          rc = SQLITE_NOMEM;
        }
      }   
    } else {
      rc = SQLITE_NOMEM;
    }
    
    if( rc == SQLITE_OK ) {
      pNode->pNext = os2ShmNodeList;
      os2ShmNodeList = pNode;
    } else {
      pNode = NULL;
    }
  } else if( pNode->szRegion != szRegion ) {
    rc = SQLITE_IOERR_SHMSIZE;
    pNode = NULL;
  }

  if( pNode ) {
    sqlite3_mutex_enter(pNode->mutex);

    memset(pLink, 0, sizeof(*pLink));

    pLink->pShmNode = pNode;
    pLink->pNext = pNode->pFirst;
    pNode->pFirst = pLink;
    pNode->nRef++;

    fd->pShmLink = pLink;

    sqlite3_mutex_leave(pNode->mutex);
    
  } else {
    /* Error occured. Free our link object. */
    sqlite3_free(pLink);  
  }

  os2ShmLeaveMutex();

  ERR_TRACE(rc, ("os2OpenSharedMemory: %d  %s\n", rc, fd->zFullPathCp))  
  
  return rc;
}

/*
** Purge the os2ShmNodeList list of all entries with nRef==0.
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void os2PurgeShmNodes( int deleteFlag ) {
  os2ShmNode *pNode;
  os2ShmNode **ppNode;

  os2ShmEnterMutex();
  
  ppNode = &os2ShmNodeList;

  while( *ppNode ) {
    pNode = *ppNode;

    if( pNode->nRef == 0 ) {
      *ppNode = pNode->pNext;   
     
      if( pNode->apRegion ) {
        /* Prevent other processes from resizing the shared memory */
        os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1);

        while( pNode->nRegion-- ) {
#ifdef SQLITE_DEBUG
          int rc = 
#endif          
          DosFreeMem(pNode->apRegion[pNode->nRegion]);

          OSTRACE(("SHM-PURGE pid-%d unmap region=%d %s\n",
                  (int)GetCurrentProcessId(), pNode->nRegion,
                  rc == 0 ? "ok" : "failed"));
        }

        /* Allow other processes to resize the shared memory */
        os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1);

        sqlite3_free(pNode->apRegion);
      }  

      DosClose(pNode->hLockFile);
      
#ifndef SQLITE_OS2_NO_WAL_LOCK_FILE
      if( deleteFlag ) {
         char fileName[CCHMAXPATH];
         /* Skip "\\SHAREMEM\\" */
         sprintf(fileName, "%s-lck", pNode->shmBaseName + 10);
         /* restore colon */
         fileName[1] = ':';
         
         DosForceDelete(fileName); 
      }
#endif

      sqlite3_mutex_free(pNode->mutex);

      sqlite3_free(pNode);
      
    } else {
      ppNode = &pNode->pNext;
    }
  } 

  os2ShmLeaveMutex();
}

/*
** This function is called to obtain a pointer to region iRegion of the
** shared-memory associated with the database file id. Shared-memory regions
** are numbered starting from zero. Each shared-memory region is szRegion
** bytes in size.
**
** If an error occurs, an error code is returned and *pp is set to NULL.
**
** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
** region has not been allocated (by any client, including one running in a
** separate process), then *pp is set to NULL and SQLITE_OK returned. If
** bExtend is non-zero and the requested shared-memory region has not yet
** been allocated, it is allocated by this function.
**
** If the shared-memory region has already been allocated or is allocated by
** this call as described above, then it is mapped into this processes
** address space (if it is not already), *pp is set to point to the mapped
** memory and SQLITE_OK returned.
*/
static int os2ShmMap(
  sqlite3_file *id,               /* Handle open on database file */
  int iRegion,                    /* Region to retrieve */
  int szRegion,                   /* Size of regions */
  int bExtend,                    /* True to extend block if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  PVOID pvTemp;
  void **apRegion;
  os2ShmNode *pNode;
  int n, rc = SQLITE_OK;
  char shmName[CCHMAXPATH];
  os2File *pFile = (os2File*)id;
  
  *pp = NULL;

  if( !pFile->pShmLink )
    rc = os2OpenSharedMemory( pFile, szRegion );
  
  if( rc == SQLITE_OK ) {
    pNode = pFile->pShmLink->pShmNode ;
    
    sqlite3_mutex_enter(pNode->mutex);
    
    assert( szRegion==pNode->szRegion );

    /* Unmapped region ? */
    if( iRegion >= pNode->nRegion ) {
      /* Prevent other processes from resizing the shared memory */
      os2ShmSystemLock(pNode, _SHM_WRLCK_WAIT, OS2_SHM_DMS, 1);

      apRegion = sqlite3_realloc(
        pNode->apRegion, (iRegion + 1) * sizeof(apRegion[0]));

      if( apRegion ) {
        pNode->apRegion = apRegion;

        while( pNode->nRegion <= iRegion ) {
          sprintf(shmName, "%s-%u", 
                  pNode->shmBaseName, pNode->nRegion);

          if( DosGetNamedSharedMem(&pvTemp, (PSZ)shmName, 
                PAG_READ | PAG_WRITE) != NO_ERROR ) {
            if( !bExtend )
              break;

            if( DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion,
                  PAG_READ | PAG_WRITE | PAG_COMMIT | OBJ_ANY) != NO_ERROR && 
                DosAllocSharedMem(&pvTemp, (PSZ)shmName, szRegion,
                  PAG_READ | PAG_WRITE | PAG_COMMIT) != NO_ERROR ) { 
              rc = SQLITE_NOMEM;
              break;
            }
          }

          apRegion[pNode->nRegion++] = pvTemp;
        }

        /* zero out remaining entries */ 
        for( n = pNode->nRegion; n <= iRegion; n++ )
          pNode->apRegion[n] = NULL;

        /* Return this region (maybe zero) */
        *pp = pNode->apRegion[iRegion];
      } else {
        rc = SQLITE_NOMEM;
      }

      /* Allow other processes to resize the shared memory */
      os2ShmSystemLock(pNode, _SHM_UNLCK, OS2_SHM_DMS, 1);
      
    } else {
      /* Region has been mapped previously */
      *pp = pNode->apRegion[iRegion];
    }

    sqlite3_mutex_leave(pNode->mutex);
  } 

  ERR_TRACE(rc, ("os2ShmMap: %s iRgn = %d, szRgn = %d, bExt = %d : %d\n", 
                 pFile->zFullPathCp, iRegion, szRegion, bExtend, rc))
          
  return rc;
}

/*
** Close a connection to shared-memory.  Delete the underlying
** storage if deleteFlag is true.
**
** If there is no shared memory associated with the connection then this
** routine is a harmless no-op.
*/
static int os2ShmUnmap(
  sqlite3_file *id,               /* The underlying database file */
  int deleteFlag                  /* Delete shared-memory if true */
){
  os2File *pFile = (os2File*)id;
  os2ShmLink *pLink = pFile->pShmLink;
  
  if( pLink ) {
    int nRef = -1;
    os2ShmLink **ppLink;
    os2ShmNode *pNode = pLink->pShmNode;

    sqlite3_mutex_enter(pNode->mutex);
    
    for( ppLink = &pNode->pFirst;
         *ppLink && *ppLink != pLink;
         ppLink = &(*ppLink)->pNext )   ;
         
    assert(*ppLink);

    if( *ppLink ) {
      *ppLink = pLink->pNext;
      nRef = --pNode->nRef;
    } else {
      ERR_TRACE(1, ("os2ShmUnmap: link not found ! %s\n", 
                    pNode->shmBaseName))
    }
    
    pFile->pShmLink = NULL;
    sqlite3_free(pLink);

    sqlite3_mutex_leave(pNode->mutex);
    
    if( nRef == 0 )
      os2PurgeShmNodes( deleteFlag );
  }

  return SQLITE_OK;
}

/*
** Change the lock state for a shared-memory segment.
**
** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
** different here than in posix.  In xShmLock(), one can go from unlocked
** to shared and back or from unlocked to exclusive and back.  But one may
** not go from shared to exclusive or from exclusive to shared.
*/
static int os2ShmLock(
  sqlite3_file *id,          /* Database file holding the shared memory */
  int ofst,                  /* First lock to acquire or release */
  int n,                     /* Number of locks to acquire or release */
  int flags                  /* What to do with the lock */
){
  u32 mask;                             /* Mask of locks to take or release */
  int rc = SQLITE_OK;                   /* Result code */
  os2File *pFile = (os2File*)id;
  os2ShmLink *p = pFile->pShmLink;      /* The shared memory being locked */
  os2ShmLink *pX;                       /* For looping over all siblings */
  os2ShmNode *pShmNode = p->pShmNode;   /* Our node */
  
  assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
  assert( n>=1 );
  assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
       || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
       || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
  assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );

  mask = (u32)((1U<<(ofst+n)) - (1U<<ofst));
  assert( n>1 || mask==(1<<ofst) );


  sqlite3_mutex_enter(pShmNode->mutex);

  if( flags & SQLITE_SHM_UNLOCK ){
    u32 allMask = 0; /* Mask of locks held by siblings */

    /* See if any siblings hold this same lock */
    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
      if( pX==p ) continue;
      assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
      allMask |= pX->sharedMask;
    }

    /* Unlock the system-level locks */
    if( (mask & allMask)==0 ){
      rc = os2ShmSystemLock(pShmNode, _SHM_UNLCK, ofst+OS2_SHM_BASE, n);
    }else{
      rc = SQLITE_OK;
    }

    /* Undo the local locks */
    if( rc==SQLITE_OK ){
      p->exclMask &= ~mask;
      p->sharedMask &= ~mask;
    } 
  }else if( flags & SQLITE_SHM_SHARED ){
    u32 allShared = 0;  /* Union of locks held by connections other than "p" */

    /* Find out which shared locks are already held by sibling connections.
    ** If any sibling already holds an exclusive lock, go ahead and return
    ** SQLITE_BUSY.
    */
    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
      if( (pX->exclMask & mask)!=0 ){
        rc = SQLITE_BUSY;
        break;
      }
      allShared |= pX->sharedMask;
    }

    /* Get shared locks at the system level, if necessary */
    if( rc==SQLITE_OK ){
      if( (allShared & mask)==0 ){
        rc = os2ShmSystemLock(pShmNode, _SHM_RDLCK, ofst+OS2_SHM_BASE, n);
      }else{
        rc = SQLITE_OK;
      }
    }

    /* Get the local shared locks */
    if( rc==SQLITE_OK ){
      p->sharedMask |= mask;
    }
  }else{
    /* Make sure no sibling connections hold locks that will block this
    ** lock.  If any do, return SQLITE_BUSY right away.
    */
    for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
      if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){
        rc = SQLITE_BUSY;
        break;
      }
    }
  
    /* Get the exclusive locks at the system level.  Then if successful
    ** also mark the local connection as being locked.
    */
    if( rc==SQLITE_OK ){
      rc = os2ShmSystemLock(pShmNode, _SHM_WRLCK, ofst+OS2_SHM_BASE, n);
      if( rc==SQLITE_OK ){
        assert( (p->sharedMask & mask)==0 );
        p->exclMask |= mask;
      }
    }
  }

  sqlite3_mutex_leave(pShmNode->mutex);
  
  OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x %s\n",
           p->id, (int)GetCurrentProcessId(), p->sharedMask, p->exclMask,
           rc ? "failed" : "ok"));

  ERR_TRACE(rc, ("os2ShmLock: ofst = %d, n = %d, flags = 0x%x -> %d \n", 
                 ofst, n, flags, rc))
                  
  return rc; 
}

/*
** Implement a memory barrier or memory fence on shared memory.
**
** All loads and stores begun before the barrier must complete before
** any load or store begun after the barrier.
*/
static void os2ShmBarrier(
  sqlite3_file *id                /* Database file holding the shared memory */
){
  UNUSED_PARAMETER(id);
  os2ShmEnterMutex();
  os2ShmLeaveMutex();
}

#else
# define os2ShmMap     0
# define os2ShmLock    0
# define os2ShmBarrier 0
# define os2ShmUnmap   0
#endif /* #ifndef SQLITE_OMIT_WAL */


/*
** This vector defines all the methods that can operate on an
** sqlite3_file for os2.
*/
static const sqlite3_io_methods os2IoMethod = {
  2,                              /* iVersion */
  os2Close,                       /* xClose */
  os2Read,                        /* xRead */
  os2Write,                       /* xWrite */
  os2Truncate,                    /* xTruncate */
  os2Sync,                        /* xSync */
  os2FileSize,                    /* xFileSize */
  os2Lock,                        /* xLock */
  os2Unlock,                      /* xUnlock */
  os2CheckReservedLock,           /* xCheckReservedLock */
  os2FileControl,                 /* xFileControl */
  os2SectorSize,                  /* xSectorSize */
  os2DeviceCharacteristics,       /* xDeviceCharacteristics */
  os2ShmMap,                      /* xShmMap */
  os2ShmLock,                     /* xShmLock */
  os2ShmBarrier,                  /* xShmBarrier */
  os2ShmUnmap                     /* xShmUnmap */
};


/***************************************************************************
** Here ends the I/O methods that form the sqlite3_io_methods object.
**
** The next block of code implements the VFS methods.
****************************************************************************/

/*
** Create a temporary file name in zBuf.  zBuf must be big enough to
** hold at pVfs->mxPathname characters.
*/
static int getTempname(int nBuf, char *zBuf ){
  static const char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    "0123456789";
  int i, j;
  PSZ zTempPathCp;      
  char zTempPath[CCHMAXPATH];
  ULONG ulDriveNum, ulDriveMap;
  
  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. 
  */
  SimulateIOError( return SQLITE_IOERR );

  if( sqlite3_temp_directory ) {
    sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", sqlite3_temp_directory);
  } else if( DosScanEnv( (PSZ)"TEMP",   &zTempPathCp ) == NO_ERROR ||
             DosScanEnv( (PSZ)"TMP",    &zTempPathCp ) == NO_ERROR ||
             DosScanEnv( (PSZ)"TMPDIR", &zTempPathCp ) == NO_ERROR ) {
    char *zTempPathUTF = convertCpPathToUtf8( (char *)zTempPathCp );
    sqlite3_snprintf(CCHMAXPATH-30, zTempPath, "%s", zTempPathUTF);
    free( zTempPathUTF );
  } else if( DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap ) == NO_ERROR ) {
    zTempPath[0] = (char)('A' + ulDriveNum - 1);
    zTempPath[1] = ':'; 
    zTempPath[2] = '\0'; 
  } else {
    zTempPath[0] = '\0'; 
  }
  
  /* Strip off a trailing slashes or backslashes, otherwise we would get *
   * multiple (back)slashes which causes DosOpen() to fail.              *
   * Trailing spaces are not allowed, either.                            */
  j = sqlite3Strlen30(zTempPath);
  while( j > 0 && ( zTempPath[j-1] == '\\' || zTempPath[j-1] == '/' || 
                    zTempPath[j-1] == ' ' ) ){
    j--;
  }
  zTempPath[j] = '\0';
  
  /* We use 20 bytes to randomize the name */
  sqlite3_snprintf(nBuf-22, zBuf,
                   "%s\\"SQLITE_TEMP_FILE_PREFIX, zTempPath);
  j = sqlite3Strlen30(zBuf);
  sqlite3_randomness( 20, &zBuf[j] );
  for( i = 0; i < 20; i++, j++ ){
    zBuf[j] = zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
  }
  zBuf[j] = 0;

  OSTRACE(( "TEMP FILENAME: %s\n", zBuf ));
  return SQLITE_OK;
}


/*
** Turn a relative pathname into a full pathname.  Write the full
** pathname into zFull[].  zFull[] will be at least pVfs->mxPathname
** bytes in size.
*/
static int os2FullPathname(
  sqlite3_vfs *pVfs,          /* Pointer to vfs object */
  const char *zRelative,      /* Possibly relative input path */
  int nFull,                  /* Size of output buffer in bytes */
  char *zFull                 /* Output buffer */
){
  char *zRelativeCp = convertUtf8PathToCp( zRelative );
  char zFullCp[CCHMAXPATH] = "\0";
  char *zFullUTF;
  APIRET rc = DosQueryPathInfo( (PSZ)zRelativeCp, FIL_QUERYFULLNAME, 
                                zFullCp, CCHMAXPATH );
  free( zRelativeCp );
  zFullUTF = convertCpPathToUtf8( zFullCp );
  sqlite3_snprintf( nFull, zFull, zFullUTF );
  free( zFullUTF );
  return rc == NO_ERROR ? SQLITE_OK : SQLITE_IOERR;
}


/*
** Open a file.
*/
static int os2Open(
  sqlite3_vfs *pVfs,            /* Not used */
  const char *zName,            /* Name of the file (UTF-8) */
  sqlite3_file *id,             /* Write the SQLite file handle here */
  int flags,                    /* Open mode flags */
  int *pOutFlags                /* Status return flags */
){
  HFILE h;
  ULONG ulOpenFlags = 0;
  ULONG ulOpenMode = 0;
  ULONG ulAction = 0;
  ULONG rc;
  os2File *pFile = (os2File*)id;
  const char *zUtf8Name = zName;
  char *zNameCp;
  char  zTmpname[CCHMAXPATH];

  int isExclusive  = (flags & SQLITE_OPEN_EXCLUSIVE);
  int isCreate     = (flags & SQLITE_OPEN_CREATE);
  int isReadWrite  = (flags & SQLITE_OPEN_READWRITE);
#ifndef NDEBUG
  int isDelete     = (flags & SQLITE_OPEN_DELETEONCLOSE);
  int isReadonly   = (flags & SQLITE_OPEN_READONLY);
  int eType        = (flags & 0xFFFFFF00);
  int isOpenJournal = (isCreate && (
        eType==SQLITE_OPEN_MASTER_JOURNAL 
     || eType==SQLITE_OPEN_MAIN_JOURNAL 
     || eType==SQLITE_OPEN_WAL
  ));
#endif

  UNUSED_PARAMETER(pVfs);
  assert( id!=0 );

  /* Check the following statements are true: 
  **
  **   (a) Exactly one of the READWRITE and READONLY flags must be set, and 
  **   (b) if CREATE is set, then READWRITE must also be set, and
  **   (c) if EXCLUSIVE is set, then CREATE must also be set.
  **   (d) if DELETEONCLOSE is set, then CREATE must also be set.
  */
  assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
  assert(isCreate==0 || isReadWrite);
  assert(isExclusive==0 || isCreate);
  assert(isDelete==0 || isCreate);

  /* The main DB, main journal, WAL file and master journal are never 
  ** automatically deleted. Nor are they ever temporary files.  */
  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL );
  assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );

  /* Assert that the upper layer has set one of the "file-type" flags. */
  assert( eType==SQLITE_OPEN_MAIN_DB      || eType==SQLITE_OPEN_TEMP_DB 
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  memset( pFile, 0, sizeof(*pFile) );
  pFile->h = (HFILE)-1;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
    assert(isDelete && !isOpenJournal);
    rc = getTempname(CCHMAXPATH, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zUtf8Name = zTmpname;
  }

  if( isReadWrite ){
    ulOpenMode |= OPEN_ACCESS_READWRITE;
  }else{
    ulOpenMode |= OPEN_ACCESS_READONLY;
  }

  /* Open in random access mode for possibly better speed.  Allow full
  ** sharing because file locks will provide exclusive access when needed.
  ** The handle should not be inherited by child processes and we don't 
  ** want popups from the critical error handler.
  */
  ulOpenMode |= OPEN_FLAGS_RANDOM | OPEN_SHARE_DENYNONE | 
                OPEN_FLAGS_NOINHERIT | OPEN_FLAGS_FAIL_ON_ERROR;

  /* SQLITE_OPEN_EXCLUSIVE is used to make sure that a new file is 
  ** created. SQLite doesn't use it to indicate "exclusive access" 
  ** as it is usually understood.
  */
  if( isExclusive ){
    /* Creates a new file, only if it does not already exist. */
    /* If the file exists, it fails. */
    ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_FAIL_IF_EXISTS;
  }else if( isCreate ){
    /* Open existing file, or create if it doesn't exist */
    ulOpenFlags |= OPEN_ACTION_CREATE_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS;
  }else{
    /* Opens a file, only if it exists. */
    ulOpenFlags |= OPEN_ACTION_FAIL_IF_NEW | OPEN_ACTION_OPEN_IF_EXISTS;
  }

  zNameCp = convertUtf8PathToCp( zUtf8Name );
  rc = DosOpen( (PSZ)zNameCp,
                &h,
                &ulAction,
                0L,
                FILE_NORMAL,
                ulOpenFlags,
                ulOpenMode,
                (PEAOP2)NULL );
  free( zNameCp );

  if( rc != NO_ERROR ){
    OSTRACE(( "OPEN Invalid handle rc=%d: zName=%s, ulAction=%#lx, ulFlags=%#lx, ulMode=%#lx\n",
              rc, zUtf8Name, ulAction, ulOpenFlags, ulOpenMode ));

    if( isReadWrite ){
      return os2Open( pVfs, zName, id,
                      ((flags|SQLITE_OPEN_READONLY)&~(SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE)),
                      pOutFlags );
    }else{
      return SQLITE_CANTOPEN;
    }
  }

  if( pOutFlags ){
    *pOutFlags = isReadWrite ? SQLITE_OPEN_READWRITE : SQLITE_OPEN_READONLY;
  }

  os2FullPathname( pVfs, zUtf8Name, sizeof( zTmpname ), zTmpname );
  pFile->zFullPathCp = convertUtf8PathToCp( zTmpname );
  pFile->pMethod = &os2IoMethod;
  pFile->flags = flags;
  pFile->h = h;

  OpenCounter(+1);
  OSTRACE(( "OPEN %d pOutFlags=%d\n", pFile->h, pOutFlags ));
  return SQLITE_OK;
}

/*
** Delete the named file.
*/
static int os2Delete(
  sqlite3_vfs *pVfs,                     /* Not used on os2 */
  const char *zFilename,                 /* Name of file to delete */
  int syncDir                            /* Not used on os2 */
){
  APIRET rc;
  char *zFilenameCp;
  SimulateIOError( return SQLITE_IOERR_DELETE );
  zFilenameCp = convertUtf8PathToCp( zFilename );
  rc = DosDelete( (PSZ)zFilenameCp );
  free( zFilenameCp );
  OSTRACE(( "DELETE \"%s\"\n", zFilename ));
  return (rc == NO_ERROR ||
          rc == ERROR_FILE_NOT_FOUND ||
          rc == ERROR_PATH_NOT_FOUND ) ? SQLITE_OK : SQLITE_IOERR_DELETE;
}

/*
** Check the existance and status of a file.
*/
static int os2Access(
  sqlite3_vfs *pVfs,        /* Not used on os2 */
  const char *zFilename,    /* Name of file to check */
  int flags,                /* Type of test to make on this file */
  int *pOut                 /* Write results here */
){
  APIRET rc;
  FILESTATUS3 fsts3ConfigInfo;
  char *zFilenameCp;

  UNUSED_PARAMETER(pVfs);
  SimulateIOError( return SQLITE_IOERR_ACCESS; );
  
  zFilenameCp = convertUtf8PathToCp( zFilename );
  rc = DosQueryPathInfo( (PSZ)zFilenameCp, FIL_STANDARD,
                         &fsts3ConfigInfo, sizeof(FILESTATUS3) );
  free( zFilenameCp );
  OSTRACE(( "ACCESS fsts3ConfigInfo.attrFile=%d flags=%d rc=%d\n",
            fsts3ConfigInfo.attrFile, flags, rc ));

  switch( flags ){
    case SQLITE_ACCESS_EXISTS:
      /* For an SQLITE_ACCESS_EXISTS query, treat a zero-length file
      ** as if it does not exist.
      */
      if( fsts3ConfigInfo.cbFile == 0 ) 
        rc = ERROR_FILE_NOT_FOUND;
      break;
    case SQLITE_ACCESS_READ:
      break;
    case SQLITE_ACCESS_READWRITE:
      if( fsts3ConfigInfo.attrFile & FILE_READONLY )
        rc = ERROR_ACCESS_DENIED;
      break;
    default:
      rc = ERROR_FILE_NOT_FOUND;
      assert( !"Invalid flags argument" );
  }

  *pOut = (rc == NO_ERROR);
  OSTRACE(( "ACCESS %s flags %d: rc=%d\n", zFilename, flags, *pOut ));

  return SQLITE_OK;
}


#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
static void *os2DlOpen(sqlite3_vfs *pVfs, const char *zFilename){
  HMODULE hmod;
  APIRET rc;
  char *zFilenameCp = convertUtf8PathToCp(zFilename);
  rc = DosLoadModule(NULL, 0, (PSZ)zFilenameCp, &hmod);
  free(zFilenameCp);
  return rc != NO_ERROR ? 0 : (void*)hmod;
}
/*
** A no-op since the error code is returned on the DosLoadModule call.
** os2Dlopen returns zero if DosLoadModule is not successful.
*/
static void os2DlError(sqlite3_vfs *pVfs, int nBuf, char *zBufOut){
/* no-op */
}
static void (*os2DlSym(sqlite3_vfs *pVfs, void *pHandle, const char *zSymbol))(void){
  PFN pfn;
  APIRET rc;
  rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)zSymbol, &pfn);
  if( rc != NO_ERROR ){
    /* if the symbol itself was not found, search again for the same
     * symbol with an extra underscore, that might be needed depending
     * on the calling convention */
    char _zSymbol[256] = "_";
    strncat(_zSymbol, zSymbol, 254);
    rc = DosQueryProcAddr((HMODULE)pHandle, 0L, (PSZ)_zSymbol, &pfn);
  }
  return rc != NO_ERROR ? 0 : (void(*)(void))pfn;
}
static void os2DlClose(sqlite3_vfs *pVfs, void *pHandle){
  DosFreeModule((HMODULE)pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
  #define os2DlOpen 0
  #define os2DlError 0
  #define os2DlSym 0
  #define os2DlClose 0
#endif


/*
** Write up to nBuf bytes of randomness into zBuf.
*/
static int os2Randomness(sqlite3_vfs *pVfs, int nBuf, char *zBuf ){
  int n = 0;
#if defined(SQLITE_TEST)
  n = nBuf;
  memset(zBuf, 0, nBuf);
#else
  int i;                           
  PPIB ppib;
  PTIB ptib;
  DATETIME dt; 
  static unsigned c = 0;
  /* Ordered by variation probability */
  static ULONG svIdx[6] = { QSV_MS_COUNT, QSV_TIME_LOW,
                            QSV_MAXPRMEM, QSV_MAXSHMEM,
                            QSV_TOTAVAILMEM, QSV_TOTRESMEM };

  /* 8 bytes; timezone and weekday don't increase the randomness much */
  if( (int)sizeof(dt)-3 <= nBuf - n ){
    c += 0x0100;
    DosGetDateTime(&dt);
    dt.year = (USHORT)((dt.year - 1900) | c);
    memcpy(&zBuf[n], &dt, sizeof(dt)-3);
    n += sizeof(dt)-3;
  }

  /* 4 bytes; PIDs and TIDs are 16 bit internally, so combine them */
  if( (int)sizeof(ULONG) <= nBuf - n ){
    DosGetInfoBlocks(&ptib, &ppib);
    *(PULONG)&zBuf[n] = MAKELONG(ppib->pib_ulpid,
                                 ptib->tib_ptib2->tib2_ultid);
    n += sizeof(ULONG);
  }

  /* Up to 6 * 4 bytes; variables depend on the system state */
  for( i = 0; i < 6 && (int)sizeof(ULONG) <= nBuf - n; i++ ){
    DosQuerySysInfo(svIdx[i], svIdx[i], 
                    (PULONG)&zBuf[n], sizeof(ULONG));
    n += sizeof(ULONG);
  } 
#endif

  return n;
}

/*
** Sleep for a little while.  Return the amount of time slept.
** The argument is the number of microseconds we want to sleep.
** The return value is the number of microseconds of sleep actually
** requested from the underlying operating system, a number which
** might be greater than or equal to the argument, but not less
** than the argument.
*/
static int os2Sleep( sqlite3_vfs *pVfs, int microsec ){
  DosSleep( (microsec/1000) );
  return microsec;
}

/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqlite3OsCurrentTime().  This is used for testing.
*/
#ifdef SQLITE_TEST
SQLITE_API int sqlite3_current_time = 0;
#endif

/*
** Find the current time (in Universal Coordinated Time).  Write into *piNow
** the current time and date as a Julian Day number times 86_400_000.  In
** other words, write into *piNow the number of milliseconds since the Julian
** epoch of noon in Greenwich on November 24, 4714 B.C according to the
** proleptic Gregorian calendar.
**
** On success, return 0.  Return 1 if the time and date cannot be found.
*/
static int os2CurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *piNow){
#ifdef SQLITE_TEST
  static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
#endif
  int year, month, datepart, timepart;
 
  DATETIME dt;
  DosGetDateTime( &dt );

  year = dt.year;
  month = dt.month;

  /* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
  ** http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c
  ** Calculate the Julian days
  */
  datepart = (int)dt.day - 32076 +
    1461*(year + 4800 + (month - 14)/12)/4 +
    367*(month - 2 - (month - 14)/12*12)/12 -
    3*((year + 4900 + (month - 14)/12)/100)/4;

  /* Time in milliseconds, hours to noon added */
  timepart = 12*3600*1000 + dt.hundredths*10 + dt.seconds*1000 +
    ((int)dt.minutes + dt.timezone)*60*1000 + dt.hours*3600*1000;

  *piNow = (sqlite3_int64)datepart*86400*1000 + timepart;
   
#ifdef SQLITE_TEST
  if( sqlite3_current_time ){
    *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
  }
#endif

  UNUSED_PARAMETER(pVfs);
  return 0;
}

/*
** Find the current time (in Universal Coordinated Time).  Write the
** current time and date as a Julian Day number into *prNow and
** return 0.  Return 1 if the time and date cannot be found.
*/
static int os2CurrentTime( sqlite3_vfs *pVfs, double *prNow ){
  int rc;
  sqlite3_int64 i;
  rc = os2CurrentTimeInt64(pVfs, &i);
  if( !rc ){
    *prNow = i/86400000.0;
  }
  return rc;
}

/*
** The idea is that this function works like a combination of
** GetLastError() and FormatMessage() on windows (or errno and
** strerror_r() on unix). After an error is returned by an OS
** function, SQLite calls this function with zBuf pointing to
** a buffer of nBuf bytes. The OS layer should populate the
** buffer with a nul-terminated UTF-8 encoded error message
** describing the last IO error to have occurred within the calling
** thread.
**
** If the error message is too large for the supplied buffer,
** it should be truncated. The return value of xGetLastError
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated). If non-zero is returned,
** then it is not necessary to include the nul-terminator character
** in the output buffer.
**
** Not supplying an error message will have no adverse effect
** on SQLite. It is fine to have an implementation that never
** returns an error message:
**
**   int xGetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
**     assert(zBuf[0]=='\0');
**     return 0;
**   }
**
** However if an error message is supplied, it will be incorporated
** by sqlite into the error message available to the user using
** sqlite3_errmsg(), possibly making IO errors easier to debug.
*/
static int os2GetLastError(sqlite3_vfs *pVfs, int nBuf, char *zBuf){
  assert(zBuf[0]=='\0');
  return 0;
}

/*
** Initialize and deinitialize the operating system interface.
*/
SQLITE_API int sqlite3_os_init(void){
  static sqlite3_vfs os2Vfs = {
    3,                 /* iVersion */
    sizeof(os2File),   /* szOsFile */
    CCHMAXPATH,        /* mxPathname */
    0,                 /* pNext */
    "os2",             /* zName */
    0,                 /* pAppData */

    os2Open,           /* xOpen */
    os2Delete,         /* xDelete */
    os2Access,         /* xAccess */
    os2FullPathname,   /* xFullPathname */
    os2DlOpen,         /* xDlOpen */
    os2DlError,        /* xDlError */
    os2DlSym,          /* xDlSym */
    os2DlClose,        /* xDlClose */
    os2Randomness,     /* xRandomness */
    os2Sleep,          /* xSleep */
    os2CurrentTime,    /* xCurrentTime */
    os2GetLastError,   /* xGetLastError */
    os2CurrentTimeInt64, /* xCurrentTimeInt64 */
    0,                 /* xSetSystemCall */
    0,                 /* xGetSystemCall */
    0                  /* xNextSystemCall */
  };
  sqlite3_vfs_register(&os2Vfs, 1);
  initUconvObjects();
/*  sqlite3OSTrace = 1; */
  return SQLITE_OK;
}
SQLITE_API int sqlite3_os_end(void){
  freeUconvObjects();
  return SQLITE_OK;
}

#endif /* SQLITE_OS_OS2 */

/************** End of os_os2.c **********************************************/
/************** Begin file os_unix.c *****************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







22551
22552
22553
22554
22555
22556
22557






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































22558
22559
22560
22561
22562
22563
22564
     /* 150 */ "Explain",
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































/************** Begin file os_unix.c *****************************************/
/*
** 2004 May 22
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
    /* random NFS retry error, unless during file system support 
     * introspection, in which it actually means what it says */
    return SQLITE_BUSY;
    
  case EACCES: 
    /* EACCES is like EAGAIN during locking operations, but not any other time*/
    if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
	(sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
	(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
	(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
      return SQLITE_BUSY;
    }
    /* else fall through */
  case EPERM: 
    return SQLITE_PERM;
    
  /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And







|
|
|







23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
    /* random NFS retry error, unless during file system support 
     * introspection, in which it actually means what it says */
    return SQLITE_BUSY;
    
  case EACCES: 
    /* EACCES is like EAGAIN during locking operations, but not any other time*/
    if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
        (sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
        (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
        (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
      return SQLITE_BUSY;
    }
    /* else fall through */
  case EPERM: 
    return SQLITE_PERM;
    
  /* EDEADLK is only possible if a call to fcntl(F_SETLKW) is made. And
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
** set. It logs a message using sqlite3_log() containing the current value of
** errno and, if possible, the human-readable equivalent from strerror() or
** strerror_r().
**
** The first argument passed to the macro should be the error code that
** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 
** The two subsequent arguments should be the name of the OS function that
** failed (e.g. "unlink", "open") and the the associated file-system path,
** if any.
*/
#define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
static int unixLogErrorAtLine(
  int errcode,                    /* SQLite error code */
  const char *zFunc,              /* Name of OS function that failed */
  const char *zPath,              /* File path associated with error */







|







23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
** set. It logs a message using sqlite3_log() containing the current value of
** errno and, if possible, the human-readable equivalent from strerror() or
** strerror_r().
**
** The first argument passed to the macro should be the error code that
** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 
** The two subsequent arguments should be the name of the OS function that
** failed (e.g. "unlink", "open") and the associated file-system path,
** if any.
*/
#define unixLogError(a,b,c)     unixLogErrorAtLine(a,b,c,__LINE__)
static int unixLogErrorAtLine(
  int errcode,                    /* SQLite error code */
  const char *zFunc,              /* Name of OS function that failed */
  const char *zPath,              /* File path associated with error */
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
  */ 
#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
  char aErr[80];
  memset(aErr, 0, sizeof(aErr));
  zErr = aErr;

  /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
  ** assume that the system provides the the GNU version of strerror_r() that 
  ** returns a pointer to a buffer containing the error message. That pointer 
  ** may point to aErr[], or it may point to some static storage somewhere. 
  ** Otherwise, assume that the system provides the POSIX version of 
  ** strerror_r(), which always writes an error message into aErr[].
  **
  ** If the code incorrectly assumes that it is the POSIX version that is
  ** available, the error message will often be an empty string. Not a







|







23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
  */ 
#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
  char aErr[80];
  memset(aErr, 0, sizeof(aErr));
  zErr = aErr;

  /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
  ** assume that the system provides the GNU version of strerror_r() that
  ** returns a pointer to a buffer containing the error message. That pointer 
  ** may point to aErr[], or it may point to some static storage somewhere. 
  ** Otherwise, assume that the system provides the POSIX version of 
  ** strerror_r(), which always writes an error message into aErr[].
  **
  ** If the code incorrectly assumes that it is the POSIX version that is
  ** available, the error message will often be an empty string. Not a
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      if( unixFileLock(pFile, &lock)==0 ){
        pInode->eFileLock = NO_LOCK;
      }else{
        rc = SQLITE_IOERR_UNLOCK;
	pFile->lastErrno = errno;
        pInode->eFileLock = NO_LOCK;
        pFile->eFileLock = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    pInode->nLock--;
    assert( pInode->nLock>=0 );
    if( pInode->nLock==0 ){
      closePendingFds(pFile);
    }
  }
	
end_unlock:
  unixLeaveMutex();
  if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
  return rc;
}

/*







|















|







24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      if( unixFileLock(pFile, &lock)==0 ){
        pInode->eFileLock = NO_LOCK;
      }else{
        rc = SQLITE_IOERR_UNLOCK;
        pFile->lastErrno = errno;
        pInode->eFileLock = NO_LOCK;
        pFile->eFileLock = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    pInode->nLock--;
    assert( pInode->nLock>=0 );
    if( pInode->nLock==0 ){
      closePendingFds(pFile);
    }
  }

end_unlock:
  unixLeaveMutex();
  if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock;
  return rc;
}

/*
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  char *zLockFile = (char *)pFile->lockingContext;
  int rc;

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
	   pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }








|







24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  char *zLockFile = (char *)pFile->lockingContext;
  int rc;

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
           pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }

27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
static int semUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  sem_t *pSem = pFile->pInode->pSem;

  assert( pFile );
  assert( pSem );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
	   pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }
  







|







25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
static int semUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  sem_t *pSem = pFile->pInode->pSem;

  assert( pFile );
  assert( pSem );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
           pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }
  
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
#else
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        ((unixFile*)id)->lastErrno = errno;
      }else{
        ((unixFile*)id)->lastErrno = 0;			
      }
      return -1;
    }
    got = osRead(id->h, pBuf, cnt);
#endif
    if( got==cnt ) break;
    if( got<0 ){







|







25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
#else
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        ((unixFile*)id)->lastErrno = errno;
      }else{
        ((unixFile*)id)->lastErrno = 0;
      }
      return -1;
    }
    got = osRead(id->h, pBuf, cnt);
#endif
    if( got==cnt ) break;
    if( got<0 ){
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
  do{
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        ((unixFile*)id)->lastErrno = errno;
      }else{
        ((unixFile*)id)->lastErrno = 0;			
      }
      return -1;
    }
    got = osWrite(id->h, pBuf, cnt);
  }while( got<0 && errno==EINTR );
#endif
  TIMER_END;







|







25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
  do{
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        ((unixFile*)id)->lastErrno = errno;
      }else{
        ((unixFile*)id)->lastErrno = 0;
      }
      return -1;
    }
    got = osWrite(id->h, pBuf, cnt);
  }while( got<0 && errno==EINTR );
#endif
  TIMER_END;
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
** as POSIX read & write locks over fixed set of locations (via fsctl),
** on AFP and SMB only exclusive byte-range locks are available via fsctl
** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
** address in the shared range is taken for a SHARED lock, the entire
** shared range is taken for an EXCLUSIVE lock):
**
**      PENDING_BYTE        0x40000000		   	
**      RESERVED_BYTE       0x40000001
**      SHARED_RANGE        0x40000002 -> 0x40000200
**
** This works well on the local file system, but shows a nearly 100x
** slowdown in read performance on AFP because the AFP client disables
** the read cache when byte-range locks are present.  Enabling the read
** cache exposes a cache coherency problem that is present on all OS X







|







28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
** as POSIX read & write locks over fixed set of locations (via fsctl),
** on AFP and SMB only exclusive byte-range locks are available via fsctl
** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
** address in the shared range is taken for a SHARED lock, the entire
** shared range is taken for an EXCLUSIVE lock):
**
**      PENDING_BYTE        0x40000000
**      RESERVED_BYTE       0x40000001
**      SHARED_RANGE        0x40000002 -> 0x40000200
**
** This works well on the local file system, but shows a nearly 100x
** slowdown in read performance on AFP because the AFP client disables
** the read cache when byte-range locks are present.  Enabling the read
** cache exposes a cache coherency problem that is present on all OS X
32270
32271
32272
32273
32274
32275
32276

32277
32278
32279

32280
32281
32282
32283
32284
32285
32286
# define FILE_FLAG_MASK          (0xFF3C0000)
#endif

#ifndef FILE_ATTRIBUTE_MASK
# define FILE_ATTRIBUTE_MASK     (0x0003FFF7)
#endif


/* Forward references */
typedef struct winShm winShm;           /* A connection to shared-memory */
typedef struct winShmNode winShmNode;   /* A region of shared-memory */


/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
*/
#if SQLITE_OS_WINCE
typedef struct winceLock {







>



>







29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
# define FILE_FLAG_MASK          (0xFF3C0000)
#endif

#ifndef FILE_ATTRIBUTE_MASK
# define FILE_ATTRIBUTE_MASK     (0x0003FFF7)
#endif

#ifndef SQLITE_OMIT_WAL
/* Forward references */
typedef struct winShm winShm;           /* A connection to shared-memory */
typedef struct winShmNode winShmNode;   /* A region of shared-memory */
#endif

/*
** WinCE lacks native support for file locking so we have to fake it
** with some code of our own.
*/
#if SQLITE_OS_WINCE
typedef struct winceLock {
32300
32301
32302
32303
32304
32305
32306

32307

32308
32309
32310
32311
32312
32313
32314
  const sqlite3_io_methods *pMethod; /*** Must be first ***/
  sqlite3_vfs *pVfs;      /* The VFS used to open this file */
  HANDLE h;               /* Handle for accessing the file */
  u8 locktype;            /* Type of lock currently held on this file */
  short sharedLockByte;   /* Randomly chosen byte used as a shared lock */
  u8 ctrlFlags;           /* Flags.  See WINFILE_* below */
  DWORD lastErrno;        /* The Windows errno from the last I/O error */

  winShm *pShm;           /* Instance of shared memory on this file */

  const char *zPath;      /* Full pathname of this file */
  int szChunk;            /* Chunk size configured by FCNTL_CHUNK_SIZE */
#if SQLITE_OS_WINCE
  LPWSTR zDeleteOnClose;  /* Name of file to delete when closing */
  HANDLE hMutex;          /* Mutex used to control access to shared lock */  
  HANDLE hShared;         /* Shared memory segment used for locking */
  winceLock local;        /* Locks obtained by this instance of winFile */







>

>







29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
  const sqlite3_io_methods *pMethod; /*** Must be first ***/
  sqlite3_vfs *pVfs;      /* The VFS used to open this file */
  HANDLE h;               /* Handle for accessing the file */
  u8 locktype;            /* Type of lock currently held on this file */
  short sharedLockByte;   /* Randomly chosen byte used as a shared lock */
  u8 ctrlFlags;           /* Flags.  See WINFILE_* below */
  DWORD lastErrno;        /* The Windows errno from the last I/O error */
#ifndef SQLITE_OMIT_WAL
  winShm *pShm;           /* Instance of shared memory on this file */
#endif
  const char *zPath;      /* Full pathname of this file */
  int szChunk;            /* Chunk size configured by FCNTL_CHUNK_SIZE */
#if SQLITE_OS_WINCE
  LPWSTR zDeleteOnClose;  /* Name of file to delete when closing */
  HANDLE hMutex;          /* Mutex used to control access to shared lock */  
  HANDLE hShared;         /* Shared memory segment used for locking */
  winceLock local;        /* Locks obtained by this instance of winFile */
32325
32326
32327
32328
32329
32330
32331
















32332
32333
32334
32335
32336
32337
32338
/*
 * The size of the buffer used by sqlite3_win32_write_debug().
 */
#ifndef SQLITE_WIN32_DBG_BUF_SIZE
#  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
#endif

















/*
 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
 * various Win32 API heap functions instead of our own.
 */
#ifdef SQLITE_WIN32_MALLOC

/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
/*
 * The size of the buffer used by sqlite3_win32_write_debug().
 */
#ifndef SQLITE_WIN32_DBG_BUF_SIZE
#  define SQLITE_WIN32_DBG_BUF_SIZE   ((int)(4096-sizeof(DWORD)))
#endif

/*
 * The value used with sqlite3_win32_set_directory() to specify that
 * the data directory should be changed.
 */
#ifndef SQLITE_WIN32_DATA_DIRECTORY_TYPE
#  define SQLITE_WIN32_DATA_DIRECTORY_TYPE (1)
#endif

/*
 * The value used with sqlite3_win32_set_directory() to specify that
 * the temporary directory should be changed.
 */
#ifndef SQLITE_WIN32_TEMP_DIRECTORY_TYPE
#  define SQLITE_WIN32_TEMP_DIRECTORY_TYPE (2)
#endif

/*
 * If compiled with SQLITE_WIN32_MALLOC on Windows, we will use the
 * various Win32 API heap functions instead of our own.
 */
#ifdef SQLITE_WIN32_MALLOC

/*
32512
32513
32514
32515
32516
32517
32518
32519

32520
32521
32522
32523
32524
32525
32526
#else
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if !SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE)

  { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
#else
  { "CreateFileMappingW",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCWSTR))aSyscall[6].pCurrent)







|
>







30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
#else
  { "CreateFileW",             (SYSCALL)0,                       0 },
#endif

#define osCreateFileW ((HANDLE(WINAPI*)(LPCWSTR,DWORD,DWORD, \
        LPSECURITY_ATTRIBUTES,DWORD,DWORD,HANDLE))aSyscall[5].pCurrent)

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && defined(SQLITE_WIN32_HAS_WIDE) && \
        !defined(SQLITE_OMIT_WAL))
  { "CreateFileMappingW",      (SYSCALL)CreateFileMappingW,      0 },
#else
  { "CreateFileMappingW",      (SYSCALL)0,                       0 },
#endif

#define osCreateFileMappingW ((HANDLE(WINAPI*)(HANDLE,LPSECURITY_ATTRIBUTES, \
        DWORD,DWORD,DWORD,LPCWSTR))aSyscall[6].pCurrent)
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
#endif

#ifndef osLockFileEx
#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[45].pCurrent)
#endif

#if !SQLITE_OS_WINRT
  { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
#else
  { "MapViewOfFile",           (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        SIZE_T))aSyscall[46].pCurrent)







|







30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
#endif

#ifndef osLockFileEx
#define osLockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[45].pCurrent)
#endif

#if SQLITE_OS_WINCE || (!SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL))
  { "MapViewOfFile",           (SYSCALL)MapViewOfFile,           0 },
#else
  { "MapViewOfFile",           (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFile ((LPVOID(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        SIZE_T))aSyscall[46].pCurrent)
32894
32895
32896
32897
32898
32899
32900

32901



32902
32903
32904
32905
32906
32907
32908
#else
  { "UnlockFileEx",            (SYSCALL)0,                       0 },
#endif

#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[55].pCurrent)


  { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },




#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[56].pCurrent)

  { "WideCharToMultiByte",     (SYSCALL)WideCharToMultiByte,     0 },

#define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \
        LPCSTR,LPBOOL))aSyscall[57].pCurrent)







>

>
>
>







30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
#else
  { "UnlockFileEx",            (SYSCALL)0,                       0 },
#endif

#define osUnlockFileEx ((BOOL(WINAPI*)(HANDLE,DWORD,DWORD,DWORD, \
        LPOVERLAPPED))aSyscall[55].pCurrent)

#if SQLITE_OS_WINCE || !defined(SQLITE_OMIT_WAL)
  { "UnmapViewOfFile",         (SYSCALL)UnmapViewOfFile,         0 },
#else
  { "UnmapViewOfFile",         (SYSCALL)0,                       0 },
#endif

#define osUnmapViewOfFile ((BOOL(WINAPI*)(LPCVOID))aSyscall[56].pCurrent)

  { "WideCharToMultiByte",     (SYSCALL)WideCharToMultiByte,     0 },

#define osWideCharToMultiByte ((int(WINAPI*)(UINT,DWORD,LPCWSTR,int,LPSTR,int, \
        LPCSTR,LPBOOL))aSyscall[57].pCurrent)
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
#else
  { "WaitForSingleObject",     (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
        DWORD))aSyscall[60].pCurrent)

#if !SQLITE_OS_WINCE
  { "WaitForSingleObjectEx",   (SYSCALL)WaitForSingleObjectEx,   0 },
#else
  { "WaitForSingleObjectEx",   (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
        BOOL))aSyscall[61].pCurrent)

#if !SQLITE_OS_WINCE
  { "SetFilePointerEx",        (SYSCALL)SetFilePointerEx,        0 },
#else
  { "SetFilePointerEx",        (SYSCALL)0,                       0 },
#endif

#define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \
        PLARGE_INTEGER,DWORD))aSyscall[62].pCurrent)

#if SQLITE_OS_WINRT
  { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 },
#else
  { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
#endif

#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
        FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[63].pCurrent)

#if SQLITE_OS_WINRT
  { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
#else
  { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
        SIZE_T))aSyscall[64].pCurrent)







|








|

















|







30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
#else
  { "WaitForSingleObject",     (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObject ((DWORD(WINAPI*)(HANDLE, \
        DWORD))aSyscall[60].pCurrent)

#if SQLITE_OS_WINRT
  { "WaitForSingleObjectEx",   (SYSCALL)WaitForSingleObjectEx,   0 },
#else
  { "WaitForSingleObjectEx",   (SYSCALL)0,                       0 },
#endif

#define osWaitForSingleObjectEx ((DWORD(WINAPI*)(HANDLE,DWORD, \
        BOOL))aSyscall[61].pCurrent)

#if SQLITE_OS_WINRT
  { "SetFilePointerEx",        (SYSCALL)SetFilePointerEx,        0 },
#else
  { "SetFilePointerEx",        (SYSCALL)0,                       0 },
#endif

#define osSetFilePointerEx ((BOOL(WINAPI*)(HANDLE,LARGE_INTEGER, \
        PLARGE_INTEGER,DWORD))aSyscall[62].pCurrent)

#if SQLITE_OS_WINRT
  { "GetFileInformationByHandleEx", (SYSCALL)GetFileInformationByHandleEx, 0 },
#else
  { "GetFileInformationByHandleEx", (SYSCALL)0,                  0 },
#endif

#define osGetFileInformationByHandleEx ((BOOL(WINAPI*)(HANDLE, \
        FILE_INFO_BY_HANDLE_CLASS,LPVOID,DWORD))aSyscall[63].pCurrent)

#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
  { "MapViewOfFileFromApp",    (SYSCALL)MapViewOfFileFromApp,    0 },
#else
  { "MapViewOfFileFromApp",    (SYSCALL)0,                       0 },
#endif

#define osMapViewOfFileFromApp ((LPVOID(WINAPI*)(HANDLE,ULONG,ULONG64, \
        SIZE_T))aSyscall[64].pCurrent)
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031

#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[70].pCurrent)

  { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },

#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[71].pCurrent)

#if SQLITE_OS_WINRT
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[72].pCurrent)







|







30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693

#define osOutputDebugStringW ((VOID(WINAPI*)(LPCWSTR))aSyscall[70].pCurrent)

  { "GetProcessHeap",          (SYSCALL)GetProcessHeap,          0 },

#define osGetProcessHeap ((HANDLE(WINAPI*)(VOID))aSyscall[71].pCurrent)

#if SQLITE_OS_WINRT && !defined(SQLITE_OMIT_WAL)
  { "CreateFileMappingFromApp", (SYSCALL)CreateFileMappingFromApp, 0 },
#else
  { "CreateFileMappingFromApp", (SYSCALL)0,                      0 },
#endif

#define osCreateFileMappingFromApp ((HANDLE(WINAPI*)(HANDLE, \
        LPSECURITY_ATTRIBUTES,ULONG,ULONG64,LPCWSTR))aSyscall[72].pCurrent)
33533
33534
33535
33536
33537
33538
33539




































33540
33541
33542
33543
33544
33545
33546
    return 0;
  }
  zFilenameMbcs = unicodeToMbcs(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameMbcs;
}






































/*
** The return value of getLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int getLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
    return 0;
  }
  zFilenameMbcs = unicodeToMbcs(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameMbcs;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
SQLITE_API int sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){
  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
  }else if( type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_temp_directory;
  }
  assert( !ppDirectory || type==SQLITE_WIN32_DATA_DIRECTORY_TYPE
          || type==SQLITE_WIN32_TEMP_DIRECTORY_TYPE
  );
  assert( !ppDirectory || sqlite3MemdebugHasType(*ppDirectory, MEMTYPE_HEAP) );
  if( ppDirectory ){
    char *zValueUtf8 = 0;
    if( zValue && zValue[0] ){
      zValueUtf8 = unicodeToUtf8(zValue);
      if ( zValueUtf8==0 ){
        return SQLITE_NOMEM;
      }
    }
    sqlite3_free(*ppDirectory);
    *ppDirectory = zValueUtf8;
    return SQLITE_OK;
  }
  return SQLITE_ERROR;
}

/*
** The return value of getLastErrorMsg
** is zero if the error message fits in the buffer, or non-zero
** otherwise (if the message was truncated).
*/
static int getLastErrorMsg(DWORD lastErrno, int nBuf, char *zBuf){
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
** It logs a message using sqlite3_log() containing the current value of
** error code and, if possible, the human-readable equivalent from 
** FormatMessage.
**
** The first argument passed to the macro should be the error code that
** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 
** The two subsequent arguments should be the name of the OS function that
** failed and the the associated file-system path, if any.
*/
#define winLogError(a,b,c,d)   winLogErrorAtLine(a,b,c,d,__LINE__)
static int winLogErrorAtLine(
  int errcode,                    /* SQLite error code */
  DWORD lastErrno,                /* Win32 last error */
  const char *zFunc,              /* Name of OS function that failed */
  const char *zPath,              /* File path associated with error */







|







31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
** It logs a message using sqlite3_log() containing the current value of
** error code and, if possible, the human-readable equivalent from 
** FormatMessage.
**
** The first argument passed to the macro should be the error code that
** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). 
** The two subsequent arguments should be the name of the OS function that
** failed and the associated file-system path, if any.
*/
#define winLogError(a,b,c,d)   winLogErrorAtLine(a,b,c,d,__LINE__)
static int winLogErrorAtLine(
  int errcode,                    /* SQLite error code */
  DWORD lastErrno,                /* Win32 last error */
  const char *zFunc,              /* Name of OS function that failed */
  const char *zPath,              /* File path associated with error */
34149
34150
34151
34152
34153
34154
34155

34156

34157
34158
34159
34160
34161
34162
34163
*/
#define MX_CLOSE_ATTEMPT 3
static int winClose(sqlite3_file *id){
  int rc, cnt = 0;
  winFile *pFile = (winFile*)id;

  assert( id!=0 );

  assert( pFile->pShm==0 );

  OSTRACE(("CLOSE %d\n", pFile->h));
  do{
    rc = osCloseHandle(pFile->h);
    /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
  }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3







>

>







31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
*/
#define MX_CLOSE_ATTEMPT 3
static int winClose(sqlite3_file *id){
  int rc, cnt = 0;
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  OSTRACE(("CLOSE %d\n", pFile->h));
  do{
    rc = osCloseHandle(pFile->h);
    /* SimulateIOError( rc=0; cnt=MX_CLOSE_ATTEMPT; ); */
  }while( rc==0 && ++cnt < MX_CLOSE_ATTEMPT && (sqlite3_win32_sleep(100), 1) );
#if SQLITE_OS_WINCE
#define WINCE_DELETION_ATTEMPTS 3
35750
35751
35752
35753
35754
35755
35756







35757
35758
35759
35760
35761
35762
35763
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  assert( id!=0 );
  UNUSED_PARAMETER(pVfs);








  pFile->h = INVALID_HANDLE_VALUE;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){







>
>
>
>
>
>
>







33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
       || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL 
       || eType==SQLITE_OPEN_SUBJOURNAL   || eType==SQLITE_OPEN_MASTER_JOURNAL 
       || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
  );

  assert( id!=0 );
  UNUSED_PARAMETER(pVfs);

#if SQLITE_OS_WINRT
  if( !sqlite3_temp_directory ){
    sqlite3_log(SQLITE_ERROR,
        "sqlite3_temp_directory variable should be set for WinRT");
  }
#endif

  pFile->h = INVALID_HANDLE_VALUE;

  /* If the second argument to this function is NULL, generate a 
  ** temporary file name to use 
  */
  if( !zUtf8Name ){
35899
35900
35901
35902
35903
35904
35905

35906

35907
35908
35909
35910
35911
35912
35913
  }

  memset(pFile, 0, sizeof(*pFile));
  pFile->pMethod = &winIoMethod;
  pFile->h = h;
  pFile->lastErrno = NO_ERROR;
  pFile->pVfs = pVfs;

  pFile->pShm = 0;

  pFile->zPath = zName;
  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }

#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB







>

>







33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
  }

  memset(pFile, 0, sizeof(*pFile));
  pFile->pMethod = &winIoMethod;
  pFile->h = h;
  pFile->lastErrno = NO_ERROR;
  pFile->pVfs = pVfs;
#ifndef SQLITE_OMIT_WAL
  pFile->pShm = 0;
#endif
  pFile->zPath = zName;
  if( sqlite3_uri_boolean(zName, "psow", SQLITE_POWERSAFE_OVERWRITE) ){
    pFile->ctrlFlags |= WINFILE_PSOW;
  }

#if SQLITE_OS_WINCE
  if( isReadWrite && eType==SQLITE_OPEN_MAIN_DB
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
  int rc = -1;
  int i, nx, pc, op;
  void *pTmpSpace;

  /* Allocate the Bitvec to be tested and a linear array of
  ** bits to act as the reference */
  pBitvec = sqlite3BitvecCreate( sz );
  pV = sqlite3_malloc( (sz+7)/8 + 1 );
  pTmpSpace = sqlite3_malloc(BITVEC_SZ);
  if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;
  memset(pV, 0, (sz+7)/8 + 1);

  /* NULL pBitvec tests */
  sqlite3BitvecSet(0, 1);
  sqlite3BitvecClear(0, 1, pTmpSpace);

  /* Run the program */
  pc = 0;







|


<







34584
34585
34586
34587
34588
34589
34590
34591
34592
34593

34594
34595
34596
34597
34598
34599
34600
  int rc = -1;
  int i, nx, pc, op;
  void *pTmpSpace;

  /* Allocate the Bitvec to be tested and a linear array of
  ** bits to act as the reference */
  pBitvec = sqlite3BitvecCreate( sz );
  pV = sqlite3MallocZero( (sz+7)/8 + 1 );
  pTmpSpace = sqlite3_malloc(BITVEC_SZ);
  if( pBitvec==0 || pV==0 || pTmpSpace==0  ) goto bitvec_end;


  /* NULL pBitvec tests */
  sqlite3BitvecSet(0, 1);
  sqlite3BitvecClear(0, 1, pTmpSpace);

  /* Run the program */
  pc = 0;
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
  nNew = p->nHash*2;
  if( nNew<256 ){
    nNew = 256;
  }

  pcache1LeaveMutex(p->pGroup);
  if( p->nHash ){ sqlite3BeginBenignMalloc(); }
  apNew = (PgHdr1 **)sqlite3_malloc(sizeof(PgHdr1 *)*nNew);
  if( p->nHash ){ sqlite3EndBenignMalloc(); }
  pcache1EnterMutex(p->pGroup);
  if( apNew ){
    memset(apNew, 0, sizeof(PgHdr1 *)*nNew);
    for(i=0; i<p->nHash; i++){
      PgHdr1 *pPage;
      PgHdr1 *pNext = p->apHash[i];
      while( (pPage = pNext)!=0 ){
        unsigned int h = pPage->iKey % nNew;
        pNext = pPage->pNext;
        pPage->pNext = apNew[h];







|



<







35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680

35681
35682
35683
35684
35685
35686
35687
  nNew = p->nHash*2;
  if( nNew<256 ){
    nNew = 256;
  }

  pcache1LeaveMutex(p->pGroup);
  if( p->nHash ){ sqlite3BeginBenignMalloc(); }
  apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
  if( p->nHash ){ sqlite3EndBenignMalloc(); }
  pcache1EnterMutex(p->pGroup);
  if( apNew ){

    for(i=0; i<p->nHash; i++){
      PgHdr1 *pPage;
      PgHdr1 *pNext = p->apHash[i];
      while( (pPage = pNext)!=0 ){
        unsigned int h = pPage->iKey % nNew;
        pNext = pPage->pNext;
        pPage->pNext = apNew[h];
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
  int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
#endif

  assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
  assert( szExtra < 300 );

  sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
  pCache = (PCache1 *)sqlite3_malloc(sz);
  if( pCache ){
    memset(pCache, 0, sz);
    if( separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1.grp;
    }
    pCache->pGroup = pGroup;







|

<







35857
35858
35859
35860
35861
35862
35863
35864
35865

35866
35867
35868
35869
35870
35871
35872
  int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
#endif

  assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
  assert( szExtra < 300 );

  sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
  pCache = (PCache1 *)sqlite3MallocZero(sz);
  if( pCache ){

    if( separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1.grp;
    }
    pCache->pGroup = pGroup;
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
    return 1;
  }else{
    return 0;
  }
}

/*
** Check to see if element iRowid was inserted into the the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.
**
** If this is the first test of a new batch and if there exist entires
** on pRowSet->pEntry, then sort those entires into the forest at
** pRowSet->pForest so that they can be tested.
*/
SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){







|







36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
    return 1;
  }else{
    return 0;
  }
}

/*
** Check to see if element iRowid was inserted into the rowset as
** part of any insert batch prior to iBatch.  Return 1 or 0.
**
** If this is the first test of a new batch and if there exist entires
** on pRowSet->pEntry, then sort those entires into the forest at
** pRowSet->pForest so that they can be tested.
*/
SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
**     being deleted, truncated, or zeroed.
** 
** (6) If a master journal file is used, then all writes to the database file
**     are synced prior to the master journal being deleted.
** 
** Definition: Two databases (or the same database at two points it time)
** are said to be "logically equivalent" if they give the same answer to
** all queries.  Note in particular the the content of freelist leaf
** pages can be changed arbitarily without effecting the logical equivalence
** of the database.
** 
** (7) At any time, if any subset, including the empty set and the total set,
**     of the unsynced changes to a rollback journal are removed and the 
**     journal is rolled back, the resulting database file will be logical
**     equivalent to the database file at the beginning of the transaction.







|







37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
**     being deleted, truncated, or zeroed.
** 
** (6) If a master journal file is used, then all writes to the database file
**     are synced prior to the master journal being deleted.
** 
** Definition: Two databases (or the same database at two points it time)
** are said to be "logically equivalent" if they give the same answer to
** all queries.  Note in particular the content of freelist leaf
** pages can be changed arbitarily without effecting the logical equivalence
** of the database.
** 
** (7) At any time, if any subset, including the empty set and the total set,
**     of the unsynced changes to a rollback journal are removed and the 
**     journal is rolled back, the resulting database file will be logical
**     equivalent to the database file at the beginning of the transaction.
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
/*
** Sync the journal. In other words, make sure all the pages that have
** been written to the journal have actually reached the surface of the
** disk and can be restored in the event of a hot-journal rollback.
**
** If the Pager.noSync flag is set, then this function is a no-op.
** Otherwise, the actions required depend on the journal-mode and the 
** device characteristics of the the file-system, as follows:
**
**   * If the journal file is an in-memory journal file, no action need
**     be taken.
**
**   * Otherwise, if the device does not support the SAFE_APPEND property,
**     then the nRec field of the most recently written journal header
**     is updated to contain the number of journal records that have







|







40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
/*
** Sync the journal. In other words, make sure all the pages that have
** been written to the journal have actually reached the surface of the
** disk and can be restored in the event of a hot-journal rollback.
**
** If the Pager.noSync flag is set, then this function is a no-op.
** Otherwise, the actions required depend on the journal-mode and the 
** device characteristics of the file-system, as follows:
**
**   * If the journal file is an in-memory journal file, no action need
**     be taken.
**
**   * Otherwise, if the device does not support the SAFE_APPEND property,
**     then the nRec field of the most recently written journal header
**     is updated to contain the number of journal records that have
46319
46320
46321
46322
46323
46324
46325
46326

46327
46328
46329
46330
46331
46332
46333
46334
46335
46336
46337
46338
46339
46340
** connection to it closes.  Because the wal-index is transient, it can
** use an architecture-specific format; it does not have to be cross-platform.
** Hence, unlike the database and WAL file formats which store all values
** as big endian, the wal-index can store multi-byte values in the native
** byte order of the host computer.
**
** The purpose of the wal-index is to answer this question quickly:  Given
** a page number P, return the index of the last frame for page P in the WAL,

** or return NULL if there are no frames for page P in the WAL.
**
** The wal-index consists of a header region, followed by an one or
** more index blocks.  
**
** The wal-index header contains the total number of frames within the WAL
** in the the mxFrame field.  
**
** Each index block except for the first contains information on 
** HASHTABLE_NPAGE frames. The first index block contains information on
** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 
** HASHTABLE_NPAGE are selected so that together the wal-index header and
** first index block are the same size as all other index blocks in the
** wal-index.







|
>
|





|







44025
44026
44027
44028
44029
44030
44031
44032
44033
44034
44035
44036
44037
44038
44039
44040
44041
44042
44043
44044
44045
44046
44047
** connection to it closes.  Because the wal-index is transient, it can
** use an architecture-specific format; it does not have to be cross-platform.
** Hence, unlike the database and WAL file formats which store all values
** as big endian, the wal-index can store multi-byte values in the native
** byte order of the host computer.
**
** The purpose of the wal-index is to answer this question quickly:  Given
** a page number P and a maximum frame index M, return the index of the 
** last frame in the wal before frame M for page P in the WAL, or return
** NULL if there are no frames for page P in the WAL prior to M.
**
** The wal-index consists of a header region, followed by an one or
** more index blocks.  
**
** The wal-index header contains the total number of frames within the WAL
** in the mxFrame field.
**
** Each index block except for the first contains information on 
** HASHTABLE_NPAGE frames. The first index block contains information on
** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and 
** HASHTABLE_NPAGE are selected so that together the wal-index header and
** first index block are the same size as all other index blocks in the
** wal-index.
47374
47375
47376
47377
47378
47379
47380

47381
47382
47383
47384
47385
47386
47387
    ** currently holding locks that exclude all other readers, writers and
    ** checkpointers.
    */
    pInfo = walCkptInfo(pWal);
    pInfo->nBackfill = 0;
    pInfo->aReadMark[0] = 0;
    for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;


    /* If more than one frame was recovered from the log file, report an
    ** event via sqlite3_log(). This is to help with identifying performance
    ** problems caused by applications routinely shutting down without
    ** checkpointing the log file.
    */
    if( pWal->hdr.nPage ){







>







45081
45082
45083
45084
45085
45086
45087
45088
45089
45090
45091
45092
45093
45094
45095
    ** currently holding locks that exclude all other readers, writers and
    ** checkpointers.
    */
    pInfo = walCkptInfo(pWal);
    pInfo->nBackfill = 0;
    pInfo->aReadMark[0] = 0;
    for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
    if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;

    /* If more than one frame was recovered from the log file, report an
    ** event via sqlite3_log(). This is to help with identifying performance
    ** problems caused by applications routinely shutting down without
    ** checkpointing the log file.
    */
    if( pWal->hdr.nPage ){
47874
47875
47876
47877
47878
47879
47880
47881
47882
47883
47884
47885
47886
47887
47888
  mxPage = pWal->hdr.nPage;
  for(i=1; i<WAL_NREADER; i++){
    u32 y = pInfo->aReadMark[i];
    if( mxSafeFrame>y ){
      assert( y<=pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
      if( rc==SQLITE_OK ){
        pInfo->aReadMark[i] = READMARK_NOT_USED;
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
      }else if( rc==SQLITE_BUSY ){
        mxSafeFrame = y;
        xBusy = 0;
      }else{
        goto walcheckpoint_out;
      }







|







45582
45583
45584
45585
45586
45587
45588
45589
45590
45591
45592
45593
45594
45595
45596
  mxPage = pWal->hdr.nPage;
  for(i=1; i<WAL_NREADER; i++){
    u32 y = pInfo->aReadMark[i];
    if( mxSafeFrame>y ){
      assert( y<=pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
      if( rc==SQLITE_OK ){
        pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
      }else if( rc==SQLITE_BUSY ){
        mxSafeFrame = y;
        xBusy = 0;
      }else{
        goto walcheckpoint_out;
      }
48787
48788
48789
48790
48791
48792
48793

48794
48795
48796
48797
48798
48799
48800
48801

        pWal->nCkpt++;
        pWal->hdr.mxFrame = 0;
        sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
        aSalt[1] = salt1;
        walIndexWriteHdr(pWal);
        pInfo->nBackfill = 0;

        for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
        assert( pInfo->aReadMark[0]==0 );
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
    walUnlockShared(pWal, WAL_READ_LOCK(0));







>
|







46495
46496
46497
46498
46499
46500
46501
46502
46503
46504
46505
46506
46507
46508
46509
46510

        pWal->nCkpt++;
        pWal->hdr.mxFrame = 0;
        sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
        aSalt[1] = salt1;
        walIndexWriteHdr(pWal);
        pInfo->nBackfill = 0;
        pInfo->aReadMark[1] = 0;
        for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
        assert( pInfo->aReadMark[0]==0 );
        walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
    walUnlockShared(pWal, WAL_READ_LOCK(0));
49790
49791
49792
49793
49794
49795
49796

49797
49798
49799
49800
49801
49802
49803
  u8 wrFlag;                /* True if writable */
  u8 atLast;                /* Cursor pointing to the last entry */
  u8 validNKey;             /* True if info.nKey is valid */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
#ifndef SQLITE_OMIT_INCRBLOB
  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
#endif

  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Potential values for BtCursor.eState.







>







47499
47500
47501
47502
47503
47504
47505
47506
47507
47508
47509
47510
47511
47512
47513
  u8 wrFlag;                /* True if writable */
  u8 atLast;                /* Cursor pointing to the last entry */
  u8 validNKey;             /* True if info.nKey is valid */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
#ifndef SQLITE_OMIT_INCRBLOB
  u8 isIncrblobHandle;      /* True if this cursor is an incr. io handle */
#endif
  u8 hints;                             /* As configured by CursorSetHints() */
  i16 iPage;                            /* Index of current page in apPage */
  u16 aiIdx[BTCURSOR_MAX_DEPTH];        /* Current index in apPage[i] */
  MemPage *apPage[BTCURSOR_MAX_DEPTH];  /* Pages from root to current page */
};

/*
** Potential values for BtCursor.eState.
51674
51675
51676
51677
51678
51679
51680
51681
51682
51683
51684
51685
51686
51687
51688
        /* Start of free block is off the page */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
	** the free-block must lie on the database page.  */
        return SQLITE_CORRUPT_BKPT; 
      }
      nFree = nFree + size;
      pc = next;
    }

    /* At this point, nFree contains the sum of the offset to the start







|







49384
49385
49386
49387
49388
49389
49390
49391
49392
49393
49394
49395
49396
49397
49398
        /* Start of free block is off the page */
        return SQLITE_CORRUPT_BKPT; 
      }
      next = get2byte(&data[pc]);
      size = get2byte(&data[pc+2]);
      if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
        /* Free blocks must be in ascending order. And the last byte of
        ** the free-block must lie on the database page.  */
        return SQLITE_CORRUPT_BKPT; 
      }
      nFree = nFree + size;
      pc = next;
    }

    /* At this point, nFree contains the sum of the offset to the start
52848
52849
52850
52851
52852
52853
52854
52855
52856
52857
52858
52859
52860
52861
52862
          btreeInvokeBusyHandler(pBt) );

  if( rc==SQLITE_OK ){
    if( p->inTrans==TRANS_NONE ){
      pBt->nTransaction++;
#ifndef SQLITE_OMIT_SHARED_CACHE
      if( p->sharable ){
	assert( p->lock.pBtree==p && p->lock.iTable==1 );
        p->lock.eLock = READ_LOCK;
        p->lock.pNext = pBt->pLock;
        pBt->pLock = &p->lock;
      }
#endif
    }
    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);







|







50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
          btreeInvokeBusyHandler(pBt) );

  if( rc==SQLITE_OK ){
    if( p->inTrans==TRANS_NONE ){
      pBt->nTransaction++;
#ifndef SQLITE_OMIT_SHARED_CACHE
      if( p->sharable ){
        assert( p->lock.pBtree==p && p->lock.iTable==1 );
        p->lock.eLock = READ_LOCK;
        p->lock.pNext = pBt->pLock;
        pBt->pLock = &p->lock;
      }
#endif
    }
    p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
56139
56140
56141
56142
56143
56144
56145
56146

56147
56148
56149
56150
56151
56152
56153
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/
static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot                      /* True if pParent is a root-page */

){
  BtShared *pBt;               /* The whole database */
  int nCell = 0;               /* Number of cells in apCell[] */
  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  int nNew = 0;                /* Number of pages in apNew[] */
  int nOld;                    /* Number of pages in apOld[] */
  int i, j, k;                 /* Loop counters */







|
>







53849
53850
53851
53852
53853
53854
53855
53856
53857
53858
53859
53860
53861
53862
53863
53864
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/
static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot,                     /* True if pParent is a root-page */
  int bBulk                       /* True if this call is part of a bulk load */
){
  BtShared *pBt;               /* The whole database */
  int nCell = 0;               /* Number of cells in apCell[] */
  int nMaxCells = 0;           /* Allocated size of apCell, szCell, aFrom. */
  int nNew = 0;                /* Number of pages in apNew[] */
  int nOld;                    /* Number of pages in apOld[] */
  int i, j, k;                 /* Loop counters */
56203
56204
56205
56206
56207
56208
56209
56210
56211
56212

56213
56214
56215
56216
56217

56218
56219
56220
56221

56222
56223
56224
56225
56226
56227
56228
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, since if any existed they will
  ** have already been removed.
  */
  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;
    nOld = i+1;
  }else{
    nOld = 3;

    if( iParentIdx==0 ){                 
      nxDiv = 0;
    }else if( iParentIdx==i ){
      nxDiv = i-2;
    }else{

      nxDiv = iParentIdx-1;
    }
    i = 2;
  }

  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){







<

<
>



|

>


|

>







53914
53915
53916
53917
53918
53919
53920

53921

53922
53923
53924
53925
53926
53927
53928
53929
53930
53931
53932
53933
53934
53935
53936
53937
53938
53939
53940
  ** way, the remainder of the function does not have to deal with any
  ** overflow cells in the parent page, since if any existed they will
  ** have already been removed.
  */
  i = pParent->nOverflow + pParent->nCell;
  if( i<2 ){
    nxDiv = 0;

  }else{

    assert( bBulk==0 || bBulk==1 );
    if( iParentIdx==0 ){                 
      nxDiv = 0;
    }else if( iParentIdx==i ){
      nxDiv = i-2+bBulk;
    }else{
      assert( bBulk==0 );
      nxDiv = iParentIdx-1;
    }
    i = 2-bBulk;
  }
  nOld = i+1;
  if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
    pRight = &pParent->aData[pParent->hdrOffset+8];
  }else{
    pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
  }
  pgno = get4byte(pRight);
  while( 1 ){
56294
56295
56296
56297
56298
56299
56300
56301
56302
56303
56304
56305
56306
56307
56308
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[] and remove the the divider Cells
  ** from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** apCell[] include child pointers.  Either way, all cells in apCell[]







|







54006
54007
54008
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
  szCell = (u16*)&apCell[nMaxCells];
  aSpace1 = (u8*)&szCell[nMaxCells];
  assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );

  /*
  ** Load pointers to all cells on sibling pages and the divider cells
  ** into the local apCell[] array.  Make copies of the divider cells
  ** into space obtained from aSpace1[] and remove the divider cells
  ** from pParent.
  **
  ** If the siblings are on leaf pages, then the child pointers of the
  ** divider cells are stripped from the cells before they are copied
  ** into aSpace1[].  In this way, all cells in apCell[] are without
  ** child pointers.  If siblings are not leaves, then all cell in
  ** apCell[] include child pointers.  Either way, all cells in apCell[]
56423
56424
56425
56426
56427
56428
56429

56430

56431
56432
56433
56434
56435
56436
56437
    int r;              /* Index of right-most cell in left sibling */
    int d;              /* Index of first cell to the left of right sibling */

    r = cntNew[i-1] - 1;
    d = r + 1 - leafData;
    assert( d<nMaxCells );
    assert( r<nMaxCells );

    while( szRight==0 || szRight+szCell[d]+2<=szLeft-(szCell[r]+2) ){

      szRight += szCell[d] + 2;
      szLeft -= szCell[r] + 2;
      cntNew[i-1]--;
      r = cntNew[i-1] - 1;
      d = r + 1 - leafData;
    }
    szNew[i] = szRight;







>
|
>







54135
54136
54137
54138
54139
54140
54141
54142
54143
54144
54145
54146
54147
54148
54149
54150
54151
    int r;              /* Index of right-most cell in left sibling */
    int d;              /* Index of first cell to the left of right sibling */

    r = cntNew[i-1] - 1;
    d = r + 1 - leafData;
    assert( d<nMaxCells );
    assert( r<nMaxCells );
    while( szRight==0 
       || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2)) 
    ){
      szRight += szCell[d] + 2;
      szLeft -= szCell[r] + 2;
      cntNew[i-1]--;
      r = cntNew[i-1] - 1;
      d = r + 1 - leafData;
    }
    szNew[i] = szRight;
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480
56481
56482
56483
56484
      pNew = apNew[i] = apOld[i];
      apOld[i] = 0;
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, pgno, 0);
      if( rc ) goto balance_cleanup;
      apNew[i] = pNew;
      nNew++;

      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);







|







54184
54185
54186
54187
54188
54189
54190
54191
54192
54193
54194
54195
54196
54197
54198
      pNew = apNew[i] = apOld[i];
      apOld[i] = 0;
      rc = sqlite3PagerWrite(pNew->pDbPage);
      nNew++;
      if( rc ) goto balance_cleanup;
    }else{
      assert( i>0 );
      rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
      if( rc ) goto balance_cleanup;
      apNew[i] = pNew;
      nNew++;

      /* Set the pointer-map entry for the new sibling page. */
      if( ISAUTOVACUUM ){
        ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
56682
56683
56684
56685
56686
56687
56688

56689
56690
56691
56692
56693
56694
56695
    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        assert( j+1 < ArraySize(apCopy) );

        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
        if( pOld->nOverflow ){
          nOverflow = pOld->nOverflow;
          iOverflow = i + !leafData + pOld->aiOvfl[0];
        }
        isDivider = !leafData;  







>







54396
54397
54398
54399
54400
54401
54402
54403
54404
54405
54406
54407
54408
54409
54410
    for(i=0; i<nCell; i++){
      int isDivider = 0;
      while( i==iNextOld ){
        /* Cell i is the cell immediately following the last cell on old
        ** sibling page j. If the siblings are not leaf pages of an
        ** intkey b-tree, then cell i was a divider cell. */
        assert( j+1 < ArraySize(apCopy) );
        assert( j+1 < nOld );
        pOld = apCopy[++j];
        iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
        if( pOld->nOverflow ){
          nOverflow = pOld->nOverflow;
          iOverflow = i + !leafData + pOld->aiOvfl[0];
        }
        isDivider = !leafData;  
56920
56921
56922
56923
56924
56925
56926
56927
56928
56929
56930
56931
56932
56933
56934
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1);
          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite3PageFree(pFree);
          }







|







54635
54636
54637
54638
54639
54640
54641
54642
54643
54644
54645
54646
54647
54648
54649
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite3PageFree(pFree);
          }
58507
58508
58509
58510
58511
58512
58513









58514
58515
58516
58517
58518
58519
58520
      }
    }
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}










/************** End of btree.c ***********************************************/
/************** Begin file backup.c ******************************************/
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of







>
>
>
>
>
>
>
>
>







56222
56223
56224
56225
56226
56227
56228
56229
56230
56231
56232
56233
56234
56235
56236
56237
56238
56239
56240
56241
56242
56243
56244
      }
    }
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*
** set the mask of hint flags for cursor pCsr. Currently the only valid
** values are 0 and BTREE_BULKLOAD.
*/
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
  assert( mask==BTREE_BULKLOAD || mask==0 );
  pCsr->hints = mask;
}

/************** End of btree.c ***********************************************/
/************** Begin file backup.c ******************************************/
/*
** 2009 January 28
**
** The author disclaims copyright to this source code.  In place of
58674
58675
58676
58677
58678
58679
58680
58681
58682
58683
58684
58685
58686
58687
58688
58689
58690
58691
58692
58693
58694
58695
58696
    );
    p = 0;
  }else {
    /* Allocate space for a new sqlite3_backup object...
    ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
    ** call to sqlite3_backup_init() and is destroyed by a call to
    ** sqlite3_backup_finish(). */
    p = (sqlite3_backup *)sqlite3_malloc(sizeof(sqlite3_backup));
    if( !p ){
      sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
    }
  }

  /* If the allocation succeeded, populate the new object. */
  if( p ){
    memset(p, 0, sizeof(sqlite3_backup));
    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;








|







<







56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412

56413
56414
56415
56416
56417
56418
56419
    );
    p = 0;
  }else {
    /* Allocate space for a new sqlite3_backup object...
    ** EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
    ** call to sqlite3_backup_init() and is destroyed by a call to
    ** sqlite3_backup_finish(). */
    p = (sqlite3_backup *)sqlite3MallocZero(sizeof(sqlite3_backup));
    if( !p ){
      sqlite3Error(pDestDb, SQLITE_NOMEM, 0);
    }
  }

  /* If the allocation succeeded, populate the new object. */
  if( p ){

    p->pSrc = findBtree(pDestDb, pSrcDb, zSrcDb);
    p->pDest = findBtree(pDestDb, pDestDb, zDestDb);
    p->pDestDb = pDestDb;
    p->pSrcDb = pSrcDb;
    p->iNext = 1;
    p->isAttached = 0;

59053
59054
59055
59056
59057
59058
59059
59060
59061
59062
59063
59064

59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
}

/*
** Release all resources associated with an sqlite3_backup* handle.
*/
SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
  sqlite3_backup **pp;                 /* Ptr to head of pagers backup list */
  MUTEX_LOGIC( sqlite3_mutex *mutex; ) /* Mutex to protect source database */
  int rc;                              /* Value to return */

  /* Enter the mutexes */
  if( p==0 ) return SQLITE_OK;

  sqlite3_mutex_enter(p->pSrcDb->mutex);
  sqlite3BtreeEnter(p->pSrc);
  MUTEX_LOGIC( mutex = p->pSrcDb->mutex; )
  if( p->pDestDb ){
    sqlite3_mutex_enter(p->pDestDb->mutex);
  }

  /* Detach this backup from the source pager. */
  if( p->pDestDb ){
    p->pSrc->nBackup--;







|




>
|

<







56776
56777
56778
56779
56780
56781
56782
56783
56784
56785
56786
56787
56788
56789
56790

56791
56792
56793
56794
56795
56796
56797
}

/*
** Release all resources associated with an sqlite3_backup* handle.
*/
SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
  sqlite3_backup **pp;                 /* Ptr to head of pagers backup list */
  sqlite3 *pSrcDb;                     /* Source database connection */
  int rc;                              /* Value to return */

  /* Enter the mutexes */
  if( p==0 ) return SQLITE_OK;
  pSrcDb = p->pSrcDb;
  sqlite3_mutex_enter(pSrcDb->mutex);
  sqlite3BtreeEnter(p->pSrc);

  if( p->pDestDb ){
    sqlite3_mutex_enter(p->pDestDb->mutex);
  }

  /* Detach this backup from the source pager. */
  if( p->pDestDb ){
    p->pSrc->nBackup--;
59086
59087
59088
59089
59090
59091
59092
59093
59094
59095
59096
59097
59098
59099
59100
59101
59102
59103
59104
59105
59106
59107
59108
59109

  /* Set the error code of the destination database handle. */
  rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
  sqlite3Error(p->pDestDb, rc, 0);

  /* Exit the mutexes and free the backup context structure. */
  if( p->pDestDb ){
    sqlite3_mutex_leave(p->pDestDb->mutex);
  }
  sqlite3BtreeLeave(p->pSrc);
  if( p->pDestDb ){
    /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
    ** call to sqlite3_backup_init() and is destroyed by a call to
    ** sqlite3_backup_finish(). */
    sqlite3_free(p);
  }
  sqlite3_mutex_leave(mutex);
  return rc;
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite3_backup_step().
*/







|








|







56809
56810
56811
56812
56813
56814
56815
56816
56817
56818
56819
56820
56821
56822
56823
56824
56825
56826
56827
56828
56829
56830
56831
56832

  /* Set the error code of the destination database handle. */
  rc = (p->rc==SQLITE_DONE) ? SQLITE_OK : p->rc;
  sqlite3Error(p->pDestDb, rc, 0);

  /* Exit the mutexes and free the backup context structure. */
  if( p->pDestDb ){
    sqlite3LeaveMutexAndCloseZombie(p->pDestDb);
  }
  sqlite3BtreeLeave(p->pSrc);
  if( p->pDestDb ){
    /* EVIDENCE-OF: R-64852-21591 The sqlite3_backup object is created by a
    ** call to sqlite3_backup_init() and is destroyed by a call to
    ** sqlite3_backup_finish(). */
    sqlite3_free(p);
  }
  sqlite3LeaveMutexAndCloseZombie(pSrcDb);
  return rc;
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite3_backup_step().
*/
61164
61165
61166
61167
61168
61169
61170
61171
61172
61173
61174
61175
61176
61177
61178
    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
    pOp->p4type = P4_DYNAMIC;
  }
}

#ifndef NDEBUG
/*
** Change the comment on the the most recently coded instruction.  Or
** insert a No-op and add the comment to that new instruction.  This
** makes the code easier to read during debugging.  None of this happens
** in a production build.
*/
static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
  assert( p->nOp>0 || p->aOp==0 );
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );







|







58887
58888
58889
58890
58891
58892
58893
58894
58895
58896
58897
58898
58899
58900
58901
    pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
    pOp->p4type = P4_DYNAMIC;
  }
}

#ifndef NDEBUG
/*
** Change the comment on the most recently coded instruction.  Or
** insert a No-op and add the comment to that new instruction.  This
** makes the code easier to read during debugging.  None of this happens
** in a production build.
*/
static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
  assert( p->nOp>0 || p->aOp==0 );
  assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
62859
62860
62861
62862
62863
62864
62865

62866
62867
62868
62869
62870
62871
62872
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;

  if( NEVER(p==0) ) return;
  db = p->db;

  if( p->pPrev ){
    p->pPrev->pNext = p->pNext;
  }else{
    assert( db->pVdbe==p );
    db->pVdbe = p->pNext;
  }
  if( p->pNext ){







>







60582
60583
60584
60585
60586
60587
60588
60589
60590
60591
60592
60593
60594
60595
60596
** Delete an entire VDBE.
*/
SQLITE_PRIVATE void sqlite3VdbeDelete(Vdbe *p){
  sqlite3 *db;

  if( NEVER(p==0) ) return;
  db = p->db;
  assert( sqlite3_mutex_held(db->mutex) );
  if( p->pPrev ){
    p->pPrev->pNext = p->pNext;
  }else{
    assert( db->pVdbe==p );
    db->pVdbe = p->pNext;
  }
  if( p->pNext ){
63698
63699
63700
63701
63702
63703
63704
63705
63706
63707
63708
63709
63710
63711
63712
63713
63714
63715
63716
63717
63718
63719
63720
63721
63722
  if( pStmt==0 ){
    /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
    ** pointer is a harmless no-op. */
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3 *db = v->db;
#if SQLITE_THREADSAFE
    sqlite3_mutex *mutex;
#endif
    if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
#if SQLITE_THREADSAFE
    mutex = v->db->mutex;
#endif
    sqlite3_mutex_enter(mutex);
    rc = sqlite3VdbeFinalize(v);
    rc = sqlite3ApiExit(db, rc);
    sqlite3_mutex_leave(mutex);
  }
  return rc;
}

/*
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from







<
<
<

<
<
<
|


|







61422
61423
61424
61425
61426
61427
61428



61429



61430
61431
61432
61433
61434
61435
61436
61437
61438
61439
61440
  if( pStmt==0 ){
    /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
    ** pointer is a harmless no-op. */
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3 *db = v->db;



    if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;



    sqlite3_mutex_enter(db->mutex);
    rc = sqlite3VdbeFinalize(v);
    rc = sqlite3ApiExit(db, rc);
    sqlite3LeaveMutexAndCloseZombie(db);
  }
  return rc;
}

/*
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from
65111
65112
65113
65114
65115
65116
65117
65118
65119
65120
65121
65122
65123
65124
65125
65126
65127
/*
** Allocate a new Explain object
*/
SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe *pVdbe){
  if( pVdbe ){
    Explain *p;
    sqlite3BeginBenignMalloc();
    p = sqlite3_malloc( sizeof(Explain) );
    if( p ){
      memset(p, 0, sizeof(*p));
      p->pVdbe = pVdbe;
      sqlite3_free(pVdbe->pExplain);
      pVdbe->pExplain = p;
      sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase),
                          SQLITE_MAX_LENGTH);
      p->str.useMalloc = 2;
    }else{







|

<







62829
62830
62831
62832
62833
62834
62835
62836
62837

62838
62839
62840
62841
62842
62843
62844
/*
** Allocate a new Explain object
*/
SQLITE_PRIVATE void sqlite3ExplainBegin(Vdbe *pVdbe){
  if( pVdbe ){
    Explain *p;
    sqlite3BeginBenignMalloc();
    p = (Explain *)sqlite3MallocZero( sizeof(Explain) );
    if( p ){

      p->pVdbe = pVdbe;
      sqlite3_free(pVdbe->pExplain);
      pVdbe->pExplain = p;
      sqlite3StrAccumInit(&p->str, p->zBase, sizeof(p->zBase),
                          SQLITE_MAX_LENGTH);
      p->str.useMalloc = 2;
    }else{
66382
66383
66384
66385
66386
66387
66388
66389
66390
66391
66392
66393
66394
66395
66396
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif

    /* On any opcode with the "out2-prerelase" tag, free any
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );







|







64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
64109
64110
64111
64112
64113
        }
        nProgressOps = 0;
      }
      nProgressOps++;
    }
#endif

    /* On any opcode with the "out2-prerelease" tag, free any
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
68894
68895
68896
68897
68898
68899
68900



68901
68902
68903
68904
68905
68906
68907
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;
#endif /* local variables moved into u.ax */




  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  u.ax.nField = 0;
  u.ax.pKeyInfo = 0;







>
>
>







66611
66612
66613
66614
66615
66616
66617
66618
66619
66620
66621
66622
66623
66624
66625
66626
66627
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;
#endif /* local variables moved into u.ax */

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );

  if( p->expired ){
    rc = SQLITE_ABORT;
    break;
  }

  u.ax.nField = 0;
  u.ax.pKeyInfo = 0;
68917
68918
68919
68920
68921
68922
68923
68924
68925
68926
68927
68928
68929
68930
68931
    assert( sqlite3SchemaMutexHeld(db, u.ax.iDb, 0) );
    if( u.ax.pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = u.ax.pDb->pSchema->file_format;
    }
  }else{
    u.ax.wrFlag = 0;
  }
  if( pOp->p5 ){
    assert( u.ax.p2>0 );
    assert( u.ax.p2<=p->nMem );
    pIn2 = &aMem[u.ax.p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    u.ax.p2 = (int)pIn2->u.i;







|







66637
66638
66639
66640
66641
66642
66643
66644
66645
66646
66647
66648
66649
66650
66651
    assert( sqlite3SchemaMutexHeld(db, u.ax.iDb, 0) );
    if( u.ax.pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = u.ax.pDb->pSchema->file_format;
    }
  }else{
    u.ax.wrFlag = 0;
  }
  if( pOp->p5 & OPFLAG_P2ISREG ){
    assert( u.ax.p2>0 );
    assert( u.ax.p2<=p->nMem );
    pIn2 = &aMem[u.ax.p2];
    assert( memIsValid(pIn2) );
    assert( (pIn2->flags & MEM_Int)!=0 );
    sqlite3VdbeMemIntegerify(pIn2);
    u.ax.p2 = (int)pIn2->u.i;
68948
68949
68950
68951
68952
68953
68954


68955
68956
68957
68958
68959
68960
68961
  assert( pOp->p1>=0 );
  u.ax.pCur = allocateCursor(p, pOp->p1, u.ax.nField, u.ax.iDb, 1);
  if( u.ax.pCur==0 ) goto no_mem;
  u.ax.pCur->nullRow = 1;
  u.ax.pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(u.ax.pX, u.ax.p2, u.ax.wrFlag, u.ax.pKeyInfo, u.ax.pCur->pCursor);
  u.ax.pCur->pKeyInfo = u.ax.pKeyInfo;



  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */
  assert( rc==SQLITE_OK );

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point







>
>







66668
66669
66670
66671
66672
66673
66674
66675
66676
66677
66678
66679
66680
66681
66682
66683
  assert( pOp->p1>=0 );
  u.ax.pCur = allocateCursor(p, pOp->p1, u.ax.nField, u.ax.iDb, 1);
  if( u.ax.pCur==0 ) goto no_mem;
  u.ax.pCur->nullRow = 1;
  u.ax.pCur->isOrdered = 1;
  rc = sqlite3BtreeCursor(u.ax.pX, u.ax.p2, u.ax.wrFlag, u.ax.pKeyInfo, u.ax.pCur->pCursor);
  u.ax.pCur->pKeyInfo = u.ax.pKeyInfo;
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  sqlite3BtreeCursorHints(u.ax.pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));

  /* Since it performs no memory allocation or IO, the only value that
  ** sqlite3BtreeCursor() may return is SQLITE_OK. */
  assert( rc==SQLITE_OK );

  /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
72567
72568
72569
72570
72571
72572
72573

72574
72575
72576
72577
72578
72579
72580
*/


#ifndef SQLITE_OMIT_MERGE_SORT

typedef struct VdbeSorterIter VdbeSorterIter;
typedef struct SorterRecord SorterRecord;


/*
** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
**
** As keys are added to the sorter, they are written to disk in a series
** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
** the same as the cache-size allowed for temporary databases. In order







>







70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
*/


#ifndef SQLITE_OMIT_MERGE_SORT

typedef struct VdbeSorterIter VdbeSorterIter;
typedef struct SorterRecord SorterRecord;
typedef struct FileWriter FileWriter;

/*
** NOTES ON DATA STRUCTURE USED FOR N-WAY MERGES:
**
** As keys are added to the sorter, they are written to disk in a series
** of sorted packed-memory-arrays (PMAs). The size of each PMA is roughly
** the same as the cache-size allowed for temporary databases. In order
72664
72665
72666
72667
72668
72669
72670


















72671
72672
72673
72674
72675
72676
72677
  i64 iReadOff;                   /* Current read offset */
  i64 iEof;                       /* 1 byte past EOF for this iterator */
  int nAlloc;                     /* Bytes of space at aAlloc */
  int nKey;                       /* Number of bytes in key */
  sqlite3_file *pFile;            /* File iterator is reading from */
  u8 *aAlloc;                     /* Allocated space */
  u8 *aKey;                       /* Pointer to current key */


















};

/*
** A structure to store a single record. All in-memory records are connected
** together into a linked list headed at VdbeSorter.pRecord using the 
** SorterRecord.pNext pointer.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
  i64 iReadOff;                   /* Current read offset */
  i64 iEof;                       /* 1 byte past EOF for this iterator */
  int nAlloc;                     /* Bytes of space at aAlloc */
  int nKey;                       /* Number of bytes in key */
  sqlite3_file *pFile;            /* File iterator is reading from */
  u8 *aAlloc;                     /* Allocated space */
  u8 *aKey;                       /* Pointer to current key */
  u8 *aBuffer;                    /* Current read buffer */
  int nBuffer;                    /* Size of read buffer in bytes */
};

/*
** An instance of this structure is used to organize the stream of records
** being written to files by the merge-sort code into aligned, page-sized
** blocks.  Doing all I/O in aligned page-sized blocks helps I/O to go
** faster on many operating systems.
*/
struct FileWriter {
  int eFWErr;                     /* Non-zero if in an error state */
  u8 *aBuffer;                    /* Pointer to write buffer */
  int nBuffer;                    /* Size of write buffer in bytes */
  int iBufStart;                  /* First byte of buffer to write */
  int iBufEnd;                    /* Last byte of buffer to write */
  i64 iWriteOff;                  /* Offset of start of buffer in file */
  sqlite3_file *pFile;            /* File to write to */
};

/*
** A structure to store a single record. All in-memory records are connected
** together into a linked list headed at VdbeSorter.pRecord using the 
** SorterRecord.pNext pointer.
*/
72689
72690
72691
72692
72693
72694
72695

72696
72697

















































































































72698
72699
72700
72701
72702
72703
72704
72705
72706
72707
72708
72709
72710
72711
72712
72713
72714
72715
72716
72717
72718
72719
72720
72721
72722
72723
72724
72725
72726
72727
72728
72729
72730
72731
72732
72733
72734
72735
72736
72737
72738
72739
72740
72741
72742
72743
72744
72745
72746
72747
72748
72749
72750
72751
72752
72753
72754
72755
72756
72757
72758
72759
72760
72761
72762
72763
72764
72765
72766
72767
72768
72769
72770
72771
72772
72773
72774
72775
72776
72777
72778
72779
72780
72781
72782
72783
72784
72785
72786
72787
72788
72789
72790
72791
72792
72793
72794
72795
72796
72797
72798
72799
72800
72801
72802
72803
72804
72805
72806
72807
72808
72809
72810
72811
72812
72813
72814
72815
72816



72817
72818
72819

72820
72821
72822
72823



72824
72825
72826

72827







72828



72829




72830

72831


72832
72833
72834
72835
72836
72837
72838

/*
** Free all memory belonging to the VdbeSorterIter object passed as the second
** argument. All structure fields are set to zero before returning.
*/
static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){
  sqlite3DbFree(db, pIter->aAlloc);

  memset(pIter, 0, sizeof(VdbeSorterIter));
}


















































































































/*
** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if
** no error occurs, or an SQLite error code if one does.
*/
static int vdbeSorterIterNext(
  sqlite3 *db,                    /* Database handle (for sqlite3DbMalloc() ) */
  VdbeSorterIter *pIter           /* Iterator to advance */
){
  int rc;                         /* Return Code */
  int nRead;                      /* Number of bytes read */
  int nRec = 0;                   /* Size of record in bytes */
  int iOff = 0;                   /* Size of serialized size varint in bytes */

  assert( pIter->iEof>=pIter->iReadOff );
  if( pIter->iEof-pIter->iReadOff>5 ){
    nRead = 5;
  }else{
    nRead = (int)(pIter->iEof - pIter->iReadOff);
  }
  if( nRead<=0 ){
    /* This is an EOF condition */
    vdbeSorterIterZero(db, pIter);
    return SQLITE_OK;
  }

  rc = sqlite3OsRead(pIter->pFile, pIter->aAlloc, nRead, pIter->iReadOff);
  if( rc==SQLITE_OK ){
    iOff = getVarint32(pIter->aAlloc, nRec);
    if( (iOff+nRec)>nRead ){
      int nRead2;                   /* Number of extra bytes to read */
      if( (iOff+nRec)>pIter->nAlloc ){
        int nNew = pIter->nAlloc*2;
        while( (iOff+nRec)>nNew ) nNew = nNew*2;
        pIter->aAlloc = sqlite3DbReallocOrFree(db, pIter->aAlloc, nNew);
        if( !pIter->aAlloc ) return SQLITE_NOMEM;
        pIter->nAlloc = nNew;
      }
  
      nRead2 = iOff + nRec - nRead;
      rc = sqlite3OsRead(
          pIter->pFile, &pIter->aAlloc[nRead], nRead2, pIter->iReadOff+nRead
      );
    }
  }

  assert( rc!=SQLITE_OK || nRec>0 );
  pIter->iReadOff += iOff+nRec;
  pIter->nKey = nRec;
  pIter->aKey = &pIter->aAlloc[iOff];
  return rc;
}

/*
** Write a single varint, value iVal, to file-descriptor pFile. Return
** SQLITE_OK if successful, or an SQLite error code if some error occurs.
**
** The value of *piOffset when this function is called is used as the byte
** offset in file pFile to write to. Before returning, *piOffset is 
** incremented by the number of bytes written.
*/
static int vdbeSorterWriteVarint(
  sqlite3_file *pFile,            /* File to write to */
  i64 iVal,                       /* Value to write as a varint */
  i64 *piOffset                   /* IN/OUT: Write offset in file pFile */
){
  u8 aVarint[9];                  /* Buffer large enough for a varint */
  int nVarint;                    /* Number of used bytes in varint */
  int rc;                         /* Result of write() call */

  nVarint = sqlite3PutVarint(aVarint, iVal);
  rc = sqlite3OsWrite(pFile, aVarint, nVarint, *piOffset);
  *piOffset += nVarint;

  return rc;
}

/*
** Read a single varint from file-descriptor pFile. Return SQLITE_OK if
** successful, or an SQLite error code if some error occurs.
**
** The value of *piOffset when this function is called is used as the
** byte offset in file pFile from whence to read the varint. If successful
** (i.e. if no IO error occurs), then *piOffset is set to the offset of
** the first byte past the end of the varint before returning. *piVal is
** set to the integer value read. If an error occurs, the final values of
** both *piOffset and *piVal are undefined.
*/
static int vdbeSorterReadVarint(
  sqlite3_file *pFile,            /* File to read from */
  i64 *piOffset,                  /* IN/OUT: Read offset in pFile */
  i64 *piVal                      /* OUT: Value read from file */
){
  u8 aVarint[9];                  /* Buffer large enough for a varint */
  i64 iOff = *piOffset;           /* Offset in file to read from */
  int rc;                         /* Return code */

  rc = sqlite3OsRead(pFile, aVarint, 9, iOff);
  if( rc==SQLITE_OK ){
    *piOffset += getVarint(aVarint, (u64 *)piVal);
  }

  return rc;
}

/*
** Initialize iterator pIter to scan through the PMA stored in file pFile
** starting at offset iStart and ending at offset iEof-1. This function 
** leaves the iterator pointing to the first key in the PMA (or EOF if the 
** PMA is empty).
*/
static int vdbeSorterIterInit(
  sqlite3 *db,                    /* Database handle */
  VdbeSorter *pSorter,            /* Sorter object */
  i64 iStart,                     /* Start offset in pFile */
  VdbeSorterIter *pIter,          /* Iterator to populate */
  i64 *pnByte                     /* IN/OUT: Increment this value by PMA size */
){
  int rc;




  assert( pSorter->iWriteOff>iStart );
  assert( pIter->aAlloc==0 );

  pIter->pFile = pSorter->pTemp1;
  pIter->iReadOff = iStart;
  pIter->nAlloc = 128;
  pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc);



  if( !pIter->aAlloc ){
    rc = SQLITE_NOMEM;
  }else{

    i64 nByte;                         /* Total size of PMA in bytes */







    rc = vdbeSorterReadVarint(pSorter->pTemp1, &pIter->iReadOff, &nByte);



    *pnByte += nByte;




    pIter->iEof = pIter->iReadOff + nByte;

  }


  if( rc==SQLITE_OK ){
    rc = vdbeSorterIterNext(db, pIter);
  }
  return rc;
}









>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>










<
|
<

<
|
<
<
<
<
<





|

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<













|




|
>
>
>



>




>
>
>
|


>
|
>
>
>
>
>
>
>
|
>
>
>
|
>
>
>
>
|
>
|
>
>







70430
70431
70432
70433
70434
70435
70436
70437
70438
70439
70440
70441
70442
70443
70444
70445
70446
70447
70448
70449
70450
70451
70452
70453
70454
70455
70456
70457
70458
70459
70460
70461
70462
70463
70464
70465
70466
70467
70468
70469
70470
70471
70472
70473
70474
70475
70476
70477
70478
70479
70480
70481
70482
70483
70484
70485
70486
70487
70488
70489
70490
70491
70492
70493
70494
70495
70496
70497
70498
70499
70500
70501
70502
70503
70504
70505
70506
70507
70508
70509
70510
70511
70512
70513
70514
70515
70516
70517
70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
70533
70534
70535
70536
70537
70538
70539
70540
70541
70542
70543
70544
70545
70546
70547
70548
70549
70550
70551
70552
70553
70554
70555
70556
70557
70558
70559
70560
70561
70562

70563

70564

70565





70566
70567
70568
70569
70570
70571
70572




















70573



70574















































70575
70576
70577
70578
70579
70580
70581
70582
70583
70584
70585
70586
70587
70588
70589
70590
70591
70592
70593
70594
70595
70596
70597
70598
70599
70600
70601
70602
70603
70604
70605
70606
70607
70608
70609
70610
70611
70612
70613
70614
70615
70616
70617
70618
70619
70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639
70640

/*
** Free all memory belonging to the VdbeSorterIter object passed as the second
** argument. All structure fields are set to zero before returning.
*/
static void vdbeSorterIterZero(sqlite3 *db, VdbeSorterIter *pIter){
  sqlite3DbFree(db, pIter->aAlloc);
  sqlite3DbFree(db, pIter->aBuffer);
  memset(pIter, 0, sizeof(VdbeSorterIter));
}

/*
** Read nByte bytes of data from the stream of data iterated by object p.
** If successful, set *ppOut to point to a buffer containing the data
** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
** error code.
**
** The buffer indicated by *ppOut may only be considered valid until the
** next call to this function.
*/
static int vdbeSorterIterRead(
  sqlite3 *db,                    /* Database handle (for malloc) */
  VdbeSorterIter *p,              /* Iterator */
  int nByte,                      /* Bytes of data to read */
  u8 **ppOut                      /* OUT: Pointer to buffer containing data */
){
  int iBuf;                       /* Offset within buffer to read from */
  int nAvail;                     /* Bytes of data available in buffer */
  assert( p->aBuffer );

  /* If there is no more data to be read from the buffer, read the next 
  ** p->nBuffer bytes of data from the file into it. Or, if there are less
  ** than p->nBuffer bytes remaining in the PMA, read all remaining data.  */
  iBuf = p->iReadOff % p->nBuffer;
  if( iBuf==0 ){
    int nRead;                    /* Bytes to read from disk */
    int rc;                       /* sqlite3OsRead() return code */

    /* Determine how many bytes of data to read. */
    nRead = (int)(p->iEof - p->iReadOff);
    if( nRead>p->nBuffer ) nRead = p->nBuffer;
    assert( nRead>0 );

    /* Read data from the file. Return early if an error occurs. */
    rc = sqlite3OsRead(p->pFile, p->aBuffer, nRead, p->iReadOff);
    assert( rc!=SQLITE_IOERR_SHORT_READ );
    if( rc!=SQLITE_OK ) return rc;
  }
  nAvail = p->nBuffer - iBuf; 

  if( nByte<=nAvail ){
    /* The requested data is available in the in-memory buffer. In this
    ** case there is no need to make a copy of the data, just return a 
    ** pointer into the buffer to the caller.  */
    *ppOut = &p->aBuffer[iBuf];
    p->iReadOff += nByte;
  }else{
    /* The requested data is not all available in the in-memory buffer.
    ** In this case, allocate space at p->aAlloc[] to copy the requested
    ** range into. Then return a copy of pointer p->aAlloc to the caller.  */
    int nRem;                     /* Bytes remaining to copy */

    /* Extend the p->aAlloc[] allocation if required. */
    if( p->nAlloc<nByte ){
      int nNew = p->nAlloc*2;
      while( nByte>nNew ) nNew = nNew*2;
      p->aAlloc = sqlite3DbReallocOrFree(db, p->aAlloc, nNew);
      if( !p->aAlloc ) return SQLITE_NOMEM;
      p->nAlloc = nNew;
    }

    /* Copy as much data as is available in the buffer into the start of
    ** p->aAlloc[].  */
    memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
    p->iReadOff += nAvail;
    nRem = nByte - nAvail;

    /* The following loop copies up to p->nBuffer bytes per iteration into
    ** the p->aAlloc[] buffer.  */
    while( nRem>0 ){
      int rc;                     /* vdbeSorterIterRead() return code */
      int nCopy;                  /* Number of bytes to copy */
      u8 *aNext;                  /* Pointer to buffer to copy data from */

      nCopy = nRem;
      if( nRem>p->nBuffer ) nCopy = p->nBuffer;
      rc = vdbeSorterIterRead(db, p, nCopy, &aNext);
      if( rc!=SQLITE_OK ) return rc;
      assert( aNext!=p->aAlloc );
      memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
      nRem -= nCopy;
    }

    *ppOut = p->aAlloc;
  }

  return SQLITE_OK;
}

/*
** Read a varint from the stream of data accessed by p. Set *pnOut to
** the value read.
*/
static int vdbeSorterIterVarint(sqlite3 *db, VdbeSorterIter *p, u64 *pnOut){
  int iBuf;

  iBuf = p->iReadOff % p->nBuffer;
  if( iBuf && (p->nBuffer-iBuf)>=9 ){
    p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
  }else{
    u8 aVarint[16], *a;
    int i = 0, rc;
    do{
      rc = vdbeSorterIterRead(db, p, 1, &a);
      if( rc ) return rc;
      aVarint[(i++)&0xf] = a[0];
    }while( (a[0]&0x80)!=0 );
    sqlite3GetVarint(aVarint, pnOut);
  }

  return SQLITE_OK;
}


/*
** Advance iterator pIter to the next key in its PMA. Return SQLITE_OK if
** no error occurs, or an SQLite error code if one does.
*/
static int vdbeSorterIterNext(
  sqlite3 *db,                    /* Database handle (for sqlite3DbMalloc() ) */
  VdbeSorterIter *pIter           /* Iterator to advance */
){
  int rc;                         /* Return Code */

  u64 nRec = 0;                   /* Size of record in bytes */



  if( pIter->iReadOff>=pIter->iEof ){





    /* This is an EOF condition */
    vdbeSorterIterZero(db, pIter);
    return SQLITE_OK;
  }

  rc = vdbeSorterIterVarint(db, pIter, &nRec);
  if( rc==SQLITE_OK ){




















    pIter->nKey = (int)nRec;



    rc = vdbeSorterIterRead(db, pIter, (int)nRec, &pIter->aKey);















































  }

  return rc;
}

/*
** Initialize iterator pIter to scan through the PMA stored in file pFile
** starting at offset iStart and ending at offset iEof-1. This function 
** leaves the iterator pointing to the first key in the PMA (or EOF if the 
** PMA is empty).
*/
static int vdbeSorterIterInit(
  sqlite3 *db,                    /* Database handle */
  const VdbeSorter *pSorter,      /* Sorter object */
  i64 iStart,                     /* Start offset in pFile */
  VdbeSorterIter *pIter,          /* Iterator to populate */
  i64 *pnByte                     /* IN/OUT: Increment this value by PMA size */
){
  int rc = SQLITE_OK;
  int nBuf;

  nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt);

  assert( pSorter->iWriteOff>iStart );
  assert( pIter->aAlloc==0 );
  assert( pIter->aBuffer==0 );
  pIter->pFile = pSorter->pTemp1;
  pIter->iReadOff = iStart;
  pIter->nAlloc = 128;
  pIter->aAlloc = (u8 *)sqlite3DbMallocRaw(db, pIter->nAlloc);
  pIter->nBuffer = nBuf;
  pIter->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf);

  if( !pIter->aBuffer ){
    rc = SQLITE_NOMEM;
  }else{
    int iBuf;

    iBuf = iStart % nBuf;
    if( iBuf ){
      int nRead = nBuf - iBuf;
      if( (iStart + nRead) > pSorter->iWriteOff ){
        nRead = (int)(pSorter->iWriteOff - iStart);
      }
      rc = sqlite3OsRead(
          pSorter->pTemp1, &pIter->aBuffer[iBuf], nRead, iStart
      );
      assert( rc!=SQLITE_IOERR_SHORT_READ );
    }

    if( rc==SQLITE_OK ){
      u64 nByte;                       /* Size of PMA in bytes */
      pIter->iEof = pSorter->iWriteOff;
      rc = vdbeSorterIterVarint(db, pIter, &nByte);
      pIter->iEof = pIter->iReadOff + nByte;
      *pnByte += nByte;
    }
  }

  if( rc==SQLITE_OK ){
    rc = vdbeSorterIterNext(db, pIter);
  }
  return rc;
}


72848
72849
72850
72851
72852
72853
72854
72855
72856
72857
72858
72859
72860
72861
72862
72863
72864
72865
** is true and key1 contains even a single NULL value, it is considered to
** be less than key2. Even if key2 also contains NULL values.
**
** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace
** has been allocated and contains an unpacked record that is used as key2.
*/
static void vdbeSorterCompare(
  VdbeCursor *pCsr,               /* Cursor object (for pKeyInfo) */
  int bOmitRowid,                 /* Ignore rowid field at end of keys */
  void *pKey1, int nKey1,         /* Left side of comparison */
  void *pKey2, int nKey2,         /* Right side of comparison */
  int *pRes                       /* OUT: Result of comparison */
){
  KeyInfo *pKeyInfo = pCsr->pKeyInfo;
  VdbeSorter *pSorter = pCsr->pSorter;
  UnpackedRecord *r2 = pSorter->pUnpacked;
  int i;








|

|
|







70650
70651
70652
70653
70654
70655
70656
70657
70658
70659
70660
70661
70662
70663
70664
70665
70666
70667
** is true and key1 contains even a single NULL value, it is considered to
** be less than key2. Even if key2 also contains NULL values.
**
** If pKey2 is passed a NULL pointer, then it is assumed that the pCsr->aSpace
** has been allocated and contains an unpacked record that is used as key2.
*/
static void vdbeSorterCompare(
  const VdbeCursor *pCsr,         /* Cursor object (for pKeyInfo) */
  int bOmitRowid,                 /* Ignore rowid field at end of keys */
  const void *pKey1, int nKey1,   /* Left side of comparison */
  const void *pKey2, int nKey2,   /* Right side of comparison */
  int *pRes                       /* OUT: Result of comparison */
){
  KeyInfo *pKeyInfo = pCsr->pKeyInfo;
  VdbeSorter *pSorter = pCsr->pSorter;
  UnpackedRecord *r2 = pSorter->pUnpacked;
  int i;

72883
72884
72885
72886
72887
72888
72889
72890
72891
72892
72893
72894
72895
72896
72897
}

/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/
static int vdbeSorterDoCompare(VdbeCursor *pCsr, int iOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  int i1;
  int i2;
  int iRes;
  VdbeSorterIter *p1;
  VdbeSorterIter *p2;








|







70685
70686
70687
70688
70689
70690
70691
70692
70693
70694
70695
70696
70697
70698
70699
}

/*
** This function is called to compare two iterator keys when merging 
** multiple b-tree segments. Parameter iOut is the index of the aTree[] 
** value to recalculate.
*/
static int vdbeSorterDoCompare(const VdbeCursor *pCsr, int iOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  int i1;
  int i2;
  int iRes;
  VdbeSorterIter *p1;
  VdbeSorterIter *p2;

73009
73010
73011
73012
73013
73014
73015
73016
73017
73018
73019
73020
73021
73022
73023
}

/*
** Merge the two sorted lists p1 and p2 into a single list.
** Set *ppOut to the head of the new list.
*/
static void vdbeSorterMerge(
  VdbeCursor *pCsr,               /* For pKeyInfo */
  SorterRecord *p1,               /* First list to merge */
  SorterRecord *p2,               /* Second list to merge */
  SorterRecord **ppOut            /* OUT: Head of merged list */
){
  SorterRecord *pFinal = 0;
  SorterRecord **pp = &pFinal;
  void *pVal2 = p2 ? p2->pVal : 0;







|







70811
70812
70813
70814
70815
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825
}

/*
** Merge the two sorted lists p1 and p2 into a single list.
** Set *ppOut to the head of the new list.
*/
static void vdbeSorterMerge(
  const VdbeCursor *pCsr,         /* For pKeyInfo */
  SorterRecord *p1,               /* First list to merge */
  SorterRecord *p2,               /* Second list to merge */
  SorterRecord **ppOut            /* OUT: Head of merged list */
){
  SorterRecord *pFinal = 0;
  SorterRecord **pp = &pFinal;
  void *pVal2 = p2 ? p2->pVal : 0;
73043
73044
73045
73046
73047
73048
73049
73050
73051
73052
73053
73054
73055
73056
73057
}

/*
** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
** occurs.
*/
static int vdbeSorterSort(VdbeCursor *pCsr){
  int i;
  SorterRecord **aSlot;
  SorterRecord *p;
  VdbeSorter *pSorter = pCsr->pSorter;

  aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
  if( !aSlot ){







|







70845
70846
70847
70848
70849
70850
70851
70852
70853
70854
70855
70856
70857
70858
70859
}

/*
** Sort the linked list of records headed at pCsr->pRecord. Return SQLITE_OK
** if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if an error
** occurs.
*/
static int vdbeSorterSort(const VdbeCursor *pCsr){
  int i;
  SorterRecord **aSlot;
  SorterRecord *p;
  VdbeSorter *pSorter = pCsr->pSorter;

  aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
  if( !aSlot ){
73076
73077
73078
73079
73080
73081
73082





















































































73083
73084
73085
73086
73087
73088
73089
73090
73091
73092
73093
73094
73095
73096
73097
73098
73099



73100
73101
73102
73103
73104
73105
73106
73107
73108
73109
73110
73111
73112
73113
73114
73115
73116
73117
73118
73119
73120
73121

73122
73123
73124
73125
73126
73127
73128
73129
73130
73131
73132
73133
73134
73135
73136
73137
73138
73139
73140
73141
73142
73143
73144
73145
73146
73147
73148
73149

73150
73151
73152
73153
73154
73155
73156
73157
73158
73159
73160
73161
73162
73163
73164
73165
73166
73167
  }
  pSorter->pRecord = p;

  sqlite3_free(aSlot);
  return SQLITE_OK;
}























































































/*
** Write the current contents of the in-memory linked-list to a PMA. Return
** SQLITE_OK if successful, or an SQLite error code otherwise.
**
** The format of a PMA is:
**
**     * A varint. This varint contains the total number of bytes of content
**       in the PMA (not including the varint itself).
**
**     * One or more records packed end-to-end in order of ascending keys. 
**       Each record consists of a varint followed by a blob of data (the 
**       key). The varint is the number of bytes in the blob of data.
*/
static int vdbeSorterListToPMA(sqlite3 *db, VdbeCursor *pCsr){
  int rc = SQLITE_OK;             /* Return code */
  VdbeSorter *pSorter = pCsr->pSorter;




  if( pSorter->nInMemory==0 ){
    assert( pSorter->pRecord==0 );
    return rc;
  }

  rc = vdbeSorterSort(pCsr);

  /* If the first temporary PMA file has not been opened, open it now. */
  if( rc==SQLITE_OK && pSorter->pTemp1==0 ){
    rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
    assert( rc!=SQLITE_OK || pSorter->pTemp1 );
    assert( pSorter->iWriteOff==0 );
    assert( pSorter->nPMA==0 );
  }

  if( rc==SQLITE_OK ){
    i64 iOff = pSorter->iWriteOff;
    SorterRecord *p;
    SorterRecord *pNext = 0;
    static const char eightZeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };


    pSorter->nPMA++;
    rc = vdbeSorterWriteVarint(pSorter->pTemp1, pSorter->nInMemory, &iOff);
    for(p=pSorter->pRecord; rc==SQLITE_OK && p; p=pNext){
      pNext = p->pNext;
      rc = vdbeSorterWriteVarint(pSorter->pTemp1, p->nVal, &iOff);

      if( rc==SQLITE_OK ){
        rc = sqlite3OsWrite(pSorter->pTemp1, p->pVal, p->nVal, iOff);
        iOff += p->nVal;
      }

      sqlite3DbFree(db, p);
    }

    /* This assert verifies that unless an error has occurred, the size of 
    ** the PMA on disk is the same as the expected size stored in
    ** pSorter->nInMemory. */ 
    assert( rc!=SQLITE_OK || pSorter->nInMemory==(
          iOff-pSorter->iWriteOff-sqlite3VarintLen(pSorter->nInMemory)
    ));

    pSorter->iWriteOff = iOff;
    if( rc==SQLITE_OK ){
      /* Terminate each file with 8 extra bytes so that from any offset
      ** in the file we can always read 9 bytes without a SHORT_READ error */
      rc = sqlite3OsWrite(pSorter->pTemp1, eightZeros, 8, iOff);
    }
    pSorter->pRecord = p;

  }

  return rc;
}

/*
** Add a record to the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
  sqlite3 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return Code */
  SorterRecord *pNew;             /* New list element */

  assert( pSorter );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>














|


>
>
>

















<


<

>

|
|

<
|
<
|
<
<
<


<
<
<
<
<
<
<
<
<
<
<
<
<
<

>










|







70878
70879
70880
70881
70882
70883
70884
70885
70886
70887
70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902
70903
70904
70905
70906
70907
70908
70909
70910
70911
70912
70913
70914
70915
70916
70917
70918
70919
70920
70921
70922
70923
70924
70925
70926
70927
70928
70929
70930
70931
70932
70933
70934
70935
70936
70937
70938
70939
70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
70982
70983
70984
70985
70986
70987
70988
70989
70990
70991
70992
70993
70994
70995
70996
70997
70998
70999
71000
71001
71002
71003
71004
71005
71006

71007
71008

71009
71010
71011
71012
71013
71014

71015

71016



71017
71018














71019
71020
71021
71022
71023
71024
71025
71026
71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
  }
  pSorter->pRecord = p;

  sqlite3_free(aSlot);
  return SQLITE_OK;
}

/*
** Initialize a file-writer object.
*/
static void fileWriterInit(
  sqlite3 *db,                    /* Database (for malloc) */
  sqlite3_file *pFile,            /* File to write to */
  FileWriter *p,                  /* Object to populate */
  i64 iStart                      /* Offset of pFile to begin writing at */
){
  int nBuf = sqlite3BtreeGetPageSize(db->aDb[0].pBt);

  memset(p, 0, sizeof(FileWriter));
  p->aBuffer = (u8 *)sqlite3DbMallocRaw(db, nBuf);
  if( !p->aBuffer ){
    p->eFWErr = SQLITE_NOMEM;
  }else{
    p->iBufEnd = p->iBufStart = (iStart % nBuf);
    p->iWriteOff = iStart - p->iBufStart;
    p->nBuffer = nBuf;
    p->pFile = pFile;
  }
}

/*
** Write nData bytes of data to the file-write object. Return SQLITE_OK
** if successful, or an SQLite error code if an error occurs.
*/
static void fileWriterWrite(FileWriter *p, u8 *pData, int nData){
  int nRem = nData;
  while( nRem>0 && p->eFWErr==0 ){
    int nCopy = nRem;
    if( nCopy>(p->nBuffer - p->iBufEnd) ){
      nCopy = p->nBuffer - p->iBufEnd;
    }

    memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
    p->iBufEnd += nCopy;
    if( p->iBufEnd==p->nBuffer ){
      p->eFWErr = sqlite3OsWrite(p->pFile, 
          &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 
          p->iWriteOff + p->iBufStart
      );
      p->iBufStart = p->iBufEnd = 0;
      p->iWriteOff += p->nBuffer;
    }
    assert( p->iBufEnd<p->nBuffer );

    nRem -= nCopy;
  }
}

/*
** Flush any buffered data to disk and clean up the file-writer object.
** The results of using the file-writer after this call are undefined.
** Return SQLITE_OK if flushing the buffered data succeeds or is not 
** required. Otherwise, return an SQLite error code.
**
** Before returning, set *piEof to the offset immediately following the
** last byte written to the file.
*/
static int fileWriterFinish(sqlite3 *db, FileWriter *p, i64 *piEof){
  int rc;
  if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
    p->eFWErr = sqlite3OsWrite(p->pFile, 
        &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart, 
        p->iWriteOff + p->iBufStart
    );
  }
  *piEof = (p->iWriteOff + p->iBufEnd);
  sqlite3DbFree(db, p->aBuffer);
  rc = p->eFWErr;
  memset(p, 0, sizeof(FileWriter));
  return rc;
}

/*
** Write value iVal encoded as a varint to the file-write object. Return 
** SQLITE_OK if successful, or an SQLite error code if an error occurs.
*/
static void fileWriterWriteVarint(FileWriter *p, u64 iVal){
  int nByte; 
  u8 aByte[10];
  nByte = sqlite3PutVarint(aByte, iVal);
  fileWriterWrite(p, aByte, nByte);
}

/*
** Write the current contents of the in-memory linked-list to a PMA. Return
** SQLITE_OK if successful, or an SQLite error code otherwise.
**
** The format of a PMA is:
**
**     * A varint. This varint contains the total number of bytes of content
**       in the PMA (not including the varint itself).
**
**     * One or more records packed end-to-end in order of ascending keys. 
**       Each record consists of a varint followed by a blob of data (the 
**       key). The varint is the number of bytes in the blob of data.
*/
static int vdbeSorterListToPMA(sqlite3 *db, const VdbeCursor *pCsr){
  int rc = SQLITE_OK;             /* Return code */
  VdbeSorter *pSorter = pCsr->pSorter;
  FileWriter writer;

  memset(&writer, 0, sizeof(FileWriter));

  if( pSorter->nInMemory==0 ){
    assert( pSorter->pRecord==0 );
    return rc;
  }

  rc = vdbeSorterSort(pCsr);

  /* If the first temporary PMA file has not been opened, open it now. */
  if( rc==SQLITE_OK && pSorter->pTemp1==0 ){
    rc = vdbeSorterOpenTempFile(db, &pSorter->pTemp1);
    assert( rc!=SQLITE_OK || pSorter->pTemp1 );
    assert( pSorter->iWriteOff==0 );
    assert( pSorter->nPMA==0 );
  }

  if( rc==SQLITE_OK ){

    SorterRecord *p;
    SorterRecord *pNext = 0;


    fileWriterInit(db, pSorter->pTemp1, &writer, pSorter->iWriteOff);
    pSorter->nPMA++;
    fileWriterWriteVarint(&writer, pSorter->nInMemory);
    for(p=pSorter->pRecord; p; p=pNext){
      pNext = p->pNext;

      fileWriterWriteVarint(&writer, p->nVal);

      fileWriterWrite(&writer, p->pVal, p->nVal);



      sqlite3DbFree(db, p);
    }














    pSorter->pRecord = p;
    rc = fileWriterFinish(db, &writer, &pSorter->iWriteOff);
  }

  return rc;
}

/*
** Add a record to the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
  sqlite3 *db,                    /* Database handle */
  const VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return Code */
  SorterRecord *pNew;             /* New list element */

  assert( pSorter );
73187
73188
73189
73190
73191
73192
73193





73194
73195

73196
73197
73198
73199
73200
73201
73202
73203
73204
73205
73206
73207
73208
73209
73210
73211
73212
73213
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
  */
  if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (
        (pSorter->nInMemory>pSorter->mxPmaSize)
     || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull())
  )){





    rc = vdbeSorterListToPMA(db, pCsr);
    pSorter->nInMemory = 0;

  }

  return rc;
}

/*
** Helper function for sqlite3VdbeSorterRewind(). 
*/
static int vdbeSorterInitMerge(
  sqlite3 *db,                    /* Database handle */
  VdbeCursor *pCsr,               /* Cursor handle for this sorter */
  i64 *pnByte                     /* Sum of bytes in all opened PMAs */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Used to iterator through aIter[] */
  i64 nByte = 0;                  /* Total bytes in all opened PMAs */








>
>
>
>
>


>










|







71058
71059
71060
71061
71062
71063
71064
71065
71066
71067
71068
71069
71070
71071
71072
71073
71074
71075
71076
71077
71078
71079
71080
71081
71082
71083
71084
71085
71086
71087
71088
71089
71090
  **   * The total memory allocated for the in-memory list is greater 
  **     than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
  */
  if( rc==SQLITE_OK && pSorter->mxPmaSize>0 && (
        (pSorter->nInMemory>pSorter->mxPmaSize)
     || (pSorter->nInMemory>pSorter->mnPmaSize && sqlite3HeapNearlyFull())
  )){
#ifdef SQLITE_DEBUG
    i64 nExpect = pSorter->iWriteOff
                + sqlite3VarintLen(pSorter->nInMemory)
                + pSorter->nInMemory;
#endif
    rc = vdbeSorterListToPMA(db, pCsr);
    pSorter->nInMemory = 0;
    assert( rc!=SQLITE_OK || (nExpect==pSorter->iWriteOff) );
  }

  return rc;
}

/*
** Helper function for sqlite3VdbeSorterRewind(). 
*/
static int vdbeSorterInitMerge(
  sqlite3 *db,                    /* Database handle */
  const VdbeCursor *pCsr,         /* Cursor handle for this sorter */
  i64 *pnByte                     /* Sum of bytes in all opened PMAs */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* Used to iterator through aIter[] */
  i64 nByte = 0;                  /* Total bytes in all opened PMAs */

73229
73230
73231
73232
73233
73234
73235
73236
73237
73238
73239
73240
73241
73242
73243
73244
73245
73246
73247
73248
73249
73250
73251
73252
73253
73254
73255
73256
73257
73258
73259
73260
73261
73262
73263
  return rc;
}

/*
** Once the sorter has been populated, this function is called to prepare
** for iterating through its contents in sorted order.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *db, VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */
  sqlite3_file *pTemp2 = 0;       /* Second temp file to use */
  i64 iWrite2 = 0;                /* Write offset for pTemp2 */
  int nIter;                      /* Number of iterators used */
  int nByte;                      /* Bytes of space required for aIter/aTree */
  int N = 2;                      /* Power of 2 >= nIter */

  assert( pSorter );

  /* If no data has been written to disk, then do not do so now. Instead,
  ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
  ** from the in-memory list.  */
  if( pSorter->nPMA==0 ){
    *pbEof = !pSorter->pRecord;
    assert( pSorter->aTree==0 );
    return vdbeSorterSort(pCsr);
  }

  /* Write the current b-tree to a PMA. Close the b-tree cursor. */
  rc = vdbeSorterListToPMA(db, pCsr);
  if( rc!=SQLITE_OK ) return rc;

  /* Allocate space for aIter[] and aTree[]. */
  nIter = pSorter->nPMA;
  if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
  assert( nIter>0 );







|



















|







71106
71107
71108
71109
71110
71111
71112
71113
71114
71115
71116
71117
71118
71119
71120
71121
71122
71123
71124
71125
71126
71127
71128
71129
71130
71131
71132
71133
71134
71135
71136
71137
71138
71139
71140
  return rc;
}

/*
** Once the sorter has been populated, this function is called to prepare
** for iterating through its contents in sorted order.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */
  sqlite3_file *pTemp2 = 0;       /* Second temp file to use */
  i64 iWrite2 = 0;                /* Write offset for pTemp2 */
  int nIter;                      /* Number of iterators used */
  int nByte;                      /* Bytes of space required for aIter/aTree */
  int N = 2;                      /* Power of 2 >= nIter */

  assert( pSorter );

  /* If no data has been written to disk, then do not do so now. Instead,
  ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
  ** from the in-memory list.  */
  if( pSorter->nPMA==0 ){
    *pbEof = !pSorter->pRecord;
    assert( pSorter->aTree==0 );
    return vdbeSorterSort(pCsr);
  }

  /* Write the current in-memory list to a PMA. */
  rc = vdbeSorterListToPMA(db, pCsr);
  if( rc!=SQLITE_OK ) return rc;

  /* Allocate space for aIter[] and aTree[]. */
  nIter = pSorter->nPMA;
  if( nIter>SORTER_MAX_MERGE_COUNT ) nIter = SORTER_MAX_MERGE_COUNT;
  assert( nIter>0 );
73271
73272
73273
73274
73275
73276
73277


73278


73279
73280
73281
73282
73283
73284
73285
  do {
    int iNew;                     /* Index of new, merged, PMA */

    for(iNew=0; 
        rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA; 
        iNew++
    ){


      i64 nWrite;                 /* Number of bytes in new PMA */



      /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1,
      ** initialize an iterator for each of them and break out of the loop.
      ** These iterators will be incrementally merged as the VDBE layer calls
      ** sqlite3VdbeSorterNext().
      **
      ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs,







>
>

>
>







71148
71149
71150
71151
71152
71153
71154
71155
71156
71157
71158
71159
71160
71161
71162
71163
71164
71165
71166
  do {
    int iNew;                     /* Index of new, merged, PMA */

    for(iNew=0; 
        rc==SQLITE_OK && iNew*SORTER_MAX_MERGE_COUNT<pSorter->nPMA; 
        iNew++
    ){
      int rc2;                    /* Return code from fileWriterFinish() */
      FileWriter writer;          /* Object used to write to disk */
      i64 nWrite;                 /* Number of bytes in new PMA */

      memset(&writer, 0, sizeof(FileWriter));

      /* If there are SORTER_MAX_MERGE_COUNT or less PMAs in file pTemp1,
      ** initialize an iterator for each of them and break out of the loop.
      ** These iterators will be incrementally merged as the VDBE layer calls
      ** sqlite3VdbeSorterNext().
      **
      ** Otherwise, if pTemp1 contains more than SORTER_MAX_MERGE_COUNT PMAs,
73294
73295
73296
73297
73298
73299
73300
73301
73302
73303
73304
73305
73306


73307
73308
73309
73310
73311
73312
73313
73314
73315
73316
73317


73318
73319
73320
73321
73322
73323
73324

      /* Open the second temp file, if it is not already open. */
      if( pTemp2==0 ){
        assert( iWrite2==0 );
        rc = vdbeSorterOpenTempFile(db, &pTemp2);
      }

      if( rc==SQLITE_OK ){
        rc = vdbeSorterWriteVarint(pTemp2, nWrite, &iWrite2);
      }

      if( rc==SQLITE_OK ){
        int bEof = 0;


        while( rc==SQLITE_OK && bEof==0 ){
          int nToWrite;
          VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ];
          assert( pIter->pFile );
          nToWrite = pIter->nKey + sqlite3VarintLen(pIter->nKey);
          rc = sqlite3OsWrite(pTemp2, pIter->aAlloc, nToWrite, iWrite2);
          iWrite2 += nToWrite;
          if( rc==SQLITE_OK ){
            rc = sqlite3VdbeSorterNext(db, pCsr, &bEof);
          }
        }


      }
    }

    if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
      break;
    }else{
      sqlite3_file *pTmp = pSorter->pTemp1;








<
<
<
<

>
>

<


|
|
|
<
|
|
<
>
>







71175
71176
71177
71178
71179
71180
71181
71182




71183
71184
71185
71186

71187
71188
71189
71190
71191

71192
71193

71194
71195
71196
71197
71198
71199
71200
71201
71202

      /* Open the second temp file, if it is not already open. */
      if( pTemp2==0 ){
        assert( iWrite2==0 );
        rc = vdbeSorterOpenTempFile(db, &pTemp2);
      }

      if( rc==SQLITE_OK ){




        int bEof = 0;
        fileWriterInit(db, pTemp2, &writer, iWrite2);
        fileWriterWriteVarint(&writer, nWrite);
        while( rc==SQLITE_OK && bEof==0 ){

          VdbeSorterIter *pIter = &pSorter->aIter[ pSorter->aTree[1] ];
          assert( pIter->pFile );

          fileWriterWriteVarint(&writer, pIter->nKey);
          fileWriterWrite(&writer, pIter->aKey, pIter->nKey);

          rc = sqlite3VdbeSorterNext(db, pCsr, &bEof);
        }

        rc2 = fileWriterFinish(db, &writer, &iWrite2);
        if( rc==SQLITE_OK ) rc = rc2;
      }
    }

    if( pSorter->nPMA<=SORTER_MAX_MERGE_COUNT ){
      break;
    }else{
      sqlite3_file *pTmp = pSorter->pTemp1;
73337
73338
73339
73340
73341
73342
73343
73344
73345
73346
73347
73348
73349
73350
73351
  *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
  return rc;
}

/*
** Advance to the next element in the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */

  if( pSorter->aTree ){
    int iPrev = pSorter->aTree[1];/* Index of iterator to advance */
    int i;                        /* Index of aTree[] to recalculate */








|







71215
71216
71217
71218
71219
71220
71221
71222
71223
71224
71225
71226
71227
71228
71229
  *pbEof = (pSorter->aIter[pSorter->aTree[1]].pFile==0);
  return rc;
}

/*
** Advance to the next element in the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */

  if( pSorter->aTree ){
    int iPrev = pSorter->aTree[1];/* Index of iterator to advance */
    int i;                        /* Index of aTree[] to recalculate */

73367
73368
73369
73370
73371
73372
73373
73374
73375
73376
73377
73378
73379
73380
73381
73382
73383
73384
73385
73386
73387
73388
73389
73390
73391
73392
73393
73394
73395
73396
73397
73398
73399
73400
}

/*
** Return a pointer to a buffer owned by the sorter that contains the 
** current key.
*/
static void *vdbeSorterRowkey(
  VdbeSorter *pSorter,            /* Sorter object */
  int *pnKey                      /* OUT: Size of current key in bytes */
){
  void *pKey;
  if( pSorter->aTree ){
    VdbeSorterIter *pIter;
    pIter = &pSorter->aIter[ pSorter->aTree[1] ];
    *pnKey = pIter->nKey;
    pKey = pIter->aKey;
  }else{
    *pnKey = pSorter->pRecord->nVal;
    pKey = pSorter->pRecord->pVal;
  }
  return pKey;
}

/*
** Copy the current sorter key into the memory cell pOut.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){
    return SQLITE_NOMEM;
  }







|


















|







71245
71246
71247
71248
71249
71250
71251
71252
71253
71254
71255
71256
71257
71258
71259
71260
71261
71262
71263
71264
71265
71266
71267
71268
71269
71270
71271
71272
71273
71274
71275
71276
71277
71278
}

/*
** Return a pointer to a buffer owned by the sorter that contains the 
** current key.
*/
static void *vdbeSorterRowkey(
  const VdbeSorter *pSorter,      /* Sorter object */
  int *pnKey                      /* OUT: Size of current key in bytes */
){
  void *pKey;
  if( pSorter->aTree ){
    VdbeSorterIter *pIter;
    pIter = &pSorter->aIter[ pSorter->aTree[1] ];
    *pnKey = pIter->nKey;
    pKey = pIter->aKey;
  }else{
    *pnKey = pSorter->pRecord->nVal;
    pKey = pSorter->pRecord->pVal;
  }
  return pKey;
}

/*
** Copy the current sorter key into the memory cell pOut.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemGrow(pOut, nKey, 0) ){
    return SQLITE_NOMEM;
  }
73412
73413
73414
73415
73416
73417
73418
73419
73420
73421
73422
73423
73424
73425
73426
**
** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
** Otherwise, set *pRes to a negative, zero or positive value if the
** key in pVal is smaller than, equal to or larger than the current sorter
** key.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
  VdbeCursor *pCsr,               /* Sorter cursor */
  Mem *pVal,                      /* Value to compare to current sorter key */
  int *pRes                       /* OUT: Result of comparison */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to compare pVal with */

  pKey = vdbeSorterRowkey(pSorter, &nKey);







|







71290
71291
71292
71293
71294
71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
**
** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
** Otherwise, set *pRes to a negative, zero or positive value if the
** key in pVal is smaller than, equal to or larger than the current sorter
** key.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
  const VdbeCursor *pCsr,         /* Sorter cursor */
  Mem *pVal,                      /* Value to compare to current sorter key */
  int *pRes                       /* OUT: Result of comparison */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to compare pVal with */

  pKey = vdbeSorterRowkey(pSorter, &nKey);
74055
74056
74057
74058
74059
74060
74061

74062
74063
74064
74065
74066




74067
74068

74069
74070
74071
74072
74073
74074
74075
** If the Walker does not have an xSelectCallback() then this routine
** is a no-op returning WRC_Continue.
*/
SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
  int rc;
  if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
  rc = WRC_Continue;

  while( p  ){
    rc = pWalker->xSelectCallback(pWalker, p);
    if( rc ) break;
    if( sqlite3WalkSelectExpr(pWalker, p) ) return WRC_Abort;
    if( sqlite3WalkSelectFrom(pWalker, p) ) return WRC_Abort;




    p = p->pPrior;
  }

  return rc & WRC_Abort;
}

/************** End of walker.c **********************************************/
/************** Begin file resolve.c *****************************************/
/*
** 2008 August 18







>
|


|
|
>
>
>
>


>







71933
71934
71935
71936
71937
71938
71939
71940
71941
71942
71943
71944
71945
71946
71947
71948
71949
71950
71951
71952
71953
71954
71955
71956
71957
71958
71959
** If the Walker does not have an xSelectCallback() then this routine
** is a no-op returning WRC_Continue.
*/
SQLITE_PRIVATE int sqlite3WalkSelect(Walker *pWalker, Select *p){
  int rc;
  if( p==0 || pWalker->xSelectCallback==0 ) return WRC_Continue;
  rc = WRC_Continue;
  pWalker->walkerDepth++;
  while( p ){
    rc = pWalker->xSelectCallback(pWalker, p);
    if( rc ) break;
    if( sqlite3WalkSelectExpr(pWalker, p)
     || sqlite3WalkSelectFrom(pWalker, p)
    ){
      pWalker->walkerDepth--;
      return WRC_Abort;
    }
    p = p->pPrior;
  }
  pWalker->walkerDepth--;
  return rc & WRC_Abort;
}

/************** End of walker.c **********************************************/
/************** Begin file resolve.c *****************************************/
/*
** 2008 August 18
74085
74086
74087
74088
74089
74090
74091























74092
74093
74094
74095
74096
74097
74098
**
** This file contains routines used for walking the parser tree and
** resolve all identifiers by associating them with a particular
** table and column.
*/
/* #include <stdlib.h> */
/* #include <string.h> */
























/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
**
** If the result set column is a simple column reference, then this routine
** makes an exact copy.  But for any other kind of expression, this







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







71969
71970
71971
71972
71973
71974
71975
71976
71977
71978
71979
71980
71981
71982
71983
71984
71985
71986
71987
71988
71989
71990
71991
71992
71993
71994
71995
71996
71997
71998
71999
72000
72001
72002
72003
72004
72005
**
** This file contains routines used for walking the parser tree and
** resolve all identifiers by associating them with a particular
** table and column.
*/
/* #include <stdlib.h> */
/* #include <string.h> */

/*
** Walk the expression tree pExpr and increase the aggregate function
** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node.
** This needs to occur when copying a TK_AGG_FUNCTION node from an
** outer query into an inner subquery.
**
** incrAggFunctionDepth(pExpr,n) is the main routine.  incrAggDepth(..)
** is a helper function - a callback for the tree walker.
*/
static int incrAggDepth(Walker *pWalker, Expr *pExpr){
  if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.i;
  return WRC_Continue;
}
static void incrAggFunctionDepth(Expr *pExpr, int N){
  if( N>0 ){
    Walker w;
    memset(&w, 0, sizeof(w));
    w.xExprCallback = incrAggDepth;
    w.u.i = N;
    sqlite3WalkExpr(&w, pExpr);
  }
}

/*
** Turn the pExpr expression into an alias for the iCol-th column of the
** result set in pEList.
**
** If the result set column is a simple column reference, then this routine
** makes an exact copy.  But for any other kind of expression, this
74112
74113
74114
74115
74116
74117
74118






74119
74120
74121
74122
74123
74124
74125

74126
74127
74128
74129
74130
74131
74132
74133
74134
74135
74136
74137

74138
74139
74140
74141
74142
74143
74144
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  We might fix this someday.  Or
** then again, we might not...






*/
static void resolveAlias(
  Parse *pParse,         /* Parsing context */
  ExprList *pEList,      /* A result set */
  int iCol,              /* A column in the result set.  0..pEList->nExpr-1 */
  Expr *pExpr,           /* Transform this into an alias to the result set */
  const char *zType      /* "GROUP" or "ORDER" or "" */

){
  Expr *pOrig;           /* The iCol-th column of the result set */
  Expr *pDup;            /* Copy of pOrig */
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  assert( pOrig->flags & EP_Resolved );
  db = pParse->db;
  if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
    pDup = sqlite3ExprDup(db, pOrig, 0);

    pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
    if( pDup==0 ) return;
    if( pEList->a[iCol].iAlias==0 ){
      pEList->a[iCol].iAlias = (u16)(++pParse->nAlias);
    }
    pDup->iTable = pEList->a[iCol].iAlias;
  }else if( ExprHasProperty(pOrig, EP_IntValue) || pOrig->u.zToken==0 ){







>
>
>
>
>
>






|
>












>







72019
72020
72021
72022
72023
72024
72025
72026
72027
72028
72029
72030
72031
72032
72033
72034
72035
72036
72037
72038
72039
72040
72041
72042
72043
72044
72045
72046
72047
72048
72049
72050
72051
72052
72053
72054
72055
72056
72057
72058
72059
** Is equivalent to:
**
**     SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5
**
** The result of random()%5 in the GROUP BY clause is probably different
** from the result in the result-set.  We might fix this someday.  Or
** then again, we might not...
**
** The nSubquery parameter specifies how many levels of subquery the
** alias is removed from the original expression.  The usually value is
** zero but it might be more if the alias is contained within a subquery
** of the original expression.  The Expr.op2 field of TK_AGG_FUNCTION
** structures must be increased by the nSubquery amount.
*/
static void resolveAlias(
  Parse *pParse,         /* Parsing context */
  ExprList *pEList,      /* A result set */
  int iCol,              /* A column in the result set.  0..pEList->nExpr-1 */
  Expr *pExpr,           /* Transform this into an alias to the result set */
  const char *zType,     /* "GROUP" or "ORDER" or "" */
  int nSubquery          /* Number of subqueries that the label is moving */
){
  Expr *pOrig;           /* The iCol-th column of the result set */
  Expr *pDup;            /* Copy of pOrig */
  sqlite3 *db;           /* The database connection */

  assert( iCol>=0 && iCol<pEList->nExpr );
  pOrig = pEList->a[iCol].pExpr;
  assert( pOrig!=0 );
  assert( pOrig->flags & EP_Resolved );
  db = pParse->db;
  if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){
    pDup = sqlite3ExprDup(db, pOrig, 0);
    incrAggFunctionDepth(pDup, nSubquery);
    pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0);
    if( pDup==0 ) return;
    if( pEList->a[iCol].iAlias==0 ){
      pEList->a[iCol].iAlias = (u16)(++pParse->nAlias);
    }
    pDup->iTable = pEList->a[iCol].iAlias;
  }else if( ExprHasProperty(pOrig, EP_IntValue) || pOrig->u.zToken==0 ){
74219
74220
74221
74222
74223
74224
74225
74226
74227
74228

74229
74230
74231
74232
74233
74234
74235
  Parse *pParse,       /* The parsing context */
  const char *zDb,     /* Name of the database containing table, or NULL */
  const char *zTab,    /* Name of table containing column, or NULL */
  const char *zCol,    /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  int i, j;            /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */

  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int isTrigger = 0;








|


>







72134
72135
72136
72137
72138
72139
72140
72141
72142
72143
72144
72145
72146
72147
72148
72149
72150
72151
  Parse *pParse,       /* The parsing context */
  const char *zDb,     /* Name of the database containing table, or NULL */
  const char *zTab,    /* Name of table containing column, or NULL */
  const char *zCol,    /* Name of the column. */
  NameContext *pNC,    /* The name context used to resolve the name */
  Expr *pExpr          /* Make this EXPR node point to the selected column */
){
  int i, j;                         /* Loop counters */
  int cnt = 0;                      /* Number of matching column names */
  int cntTab = 0;                   /* Number of matching table names */
  int nSubquery = 0;                /* How many levels of subquery */
  sqlite3 *db = pParse->db;         /* The database connection */
  struct SrcList_item *pItem;       /* Use for looping over pSrcList items */
  struct SrcList_item *pMatch = 0;  /* The matching pSrcList item */
  NameContext *pTopNC = pNC;        /* First namecontext in the list */
  Schema *pSchema = 0;              /* Schema of the expression */
  int isTrigger = 0;

74383
74384
74385
74386
74387
74388
74389
74390
74391
74392
74393
74394
74395
74396
74397
74398
74399
74400
74401
74402
74403

74404
74405
74406
74407
74408
74409
74410
          assert( pExpr->x.pList==0 );
          assert( pExpr->x.pSelect==0 );
          pOrig = pEList->a[j].pExpr;
          if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
            return WRC_Abort;
          }
          resolveAlias(pParse, pEList, j, pExpr, "");
          cnt = 1;
          pMatch = 0;
          assert( zTab==0 && zDb==0 );
          goto lookupname_end;
        }
      } 
    }

    /* Advance to the next name context.  The loop will exit when either
    ** we have a match (cnt>0) or when we run out of name contexts.
    */
    if( cnt==0 ){
      pNC = pNC->pNext;

    }
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that







|













>







72299
72300
72301
72302
72303
72304
72305
72306
72307
72308
72309
72310
72311
72312
72313
72314
72315
72316
72317
72318
72319
72320
72321
72322
72323
72324
72325
72326
72327
          assert( pExpr->x.pList==0 );
          assert( pExpr->x.pSelect==0 );
          pOrig = pEList->a[j].pExpr;
          if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){
            sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs);
            return WRC_Abort;
          }
          resolveAlias(pParse, pEList, j, pExpr, "", nSubquery);
          cnt = 1;
          pMatch = 0;
          assert( zTab==0 && zDb==0 );
          goto lookupname_end;
        }
      } 
    }

    /* Advance to the next name context.  The loop will exit when either
    ** we have a match (cnt>0) or when we run out of name contexts.
    */
    if( cnt==0 ){
      pNC = pNC->pNext;
      nSubquery++;
    }
  }

  /*
  ** If X and Y are NULL (in other words if only the column name Z is
  ** supplied) and the value of Z is enclosed in double-quotes, then
  ** Z is a string literal if it doesn't match any column names.  In that
74636
74637
74638
74639
74640
74641
74642


74643

74644



74645
74646
74647
74648
74649

74650
74651
74652
74653
74654
74655
74656
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }


      if( is_agg ){

        pExpr->op = TK_AGG_FUNCTION;



        pNC->ncFlags |= NC_HasAgg;
      }
      if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg;
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ) pNC->ncFlags |= NC_AllowAgg;

      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:







>
>

>

>
>
>
|
|
|
<
|
>







72553
72554
72555
72556
72557
72558
72559
72560
72561
72562
72563
72564
72565
72566
72567
72568
72569
72570

72571
72572
72573
72574
72575
72576
72577
72578
72579
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
        pNC->nErr++;
      }else if( wrong_num_args ){
        sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()",
             nId, zId);
        pNC->nErr++;
      }
      if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg;
      sqlite3WalkExprList(pWalker, pList);
      if( is_agg ){
        NameContext *pNC2 = pNC;
        pExpr->op = TK_AGG_FUNCTION;
        pExpr->op2 = 0;
        while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){
          pExpr->op2++;
          pNC2 = pNC2->pNext;
        }
        if( pNC2 ) pNC2->ncFlags |= NC_HasAgg;

        pNC->ncFlags |= NC_AllowAgg;
      }
      /* FIX ME:  Compute pExpr->affinity based on the expected return
      ** type of the function 
      */
      return WRC_Prune;
    }
#ifndef SQLITE_OMIT_SUBQUERY
    case TK_SELECT:
74921
74922
74923
74924
74925
74926
74927
74928
74929
74930
74931
74932
74933
74934
74935
  assert( pEList!=0 );  /* sqlite3SelectNew() guarantees this */
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    if( pItem->iOrderByCol ){
      if( pItem->iOrderByCol>pEList->nExpr ){
        resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
        return 1;
      }
      resolveAlias(pParse, pEList, pItem->iOrderByCol-1, pItem->pExpr, zType);
    }
  }
  return 0;
}

/*
** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.







|







72844
72845
72846
72847
72848
72849
72850
72851
72852
72853
72854
72855
72856
72857
72858
  assert( pEList!=0 );  /* sqlite3SelectNew() guarantees this */
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    if( pItem->iOrderByCol ){
      if( pItem->iOrderByCol>pEList->nExpr ){
        resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
        return 1;
      }
      resolveAlias(pParse, pEList, pItem->iOrderByCol-1, pItem->pExpr, zType,0);
    }
  }
  return 0;
}

/*
** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
76999
77000
77001
77002
77003
77004
77005
77006
77007
77008
77009
77010
77011
77012
77013
        ** table allocated and opened above.
        */
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affinity = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;
        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;
        if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 







|







74922
74923
74924
74925
74926
74927
74928
74929
74930
74931
74932
74933
74934
74935
74936
        ** table allocated and opened above.
        */
        SelectDest dest;
        ExprList *pEList;

        assert( !isRowid );
        sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
        dest.affSdst = (u8)affinity;
        assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
        pExpr->x.pSelect->iLimit = 0;
        if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
          return 0;
        }
        pEList = pExpr->x.pSelect->pEList;
        if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ 
77092
77093
77094
77095
77096
77097
77098
77099
77100
77101
77102
77103
77104
77105
77106
77107
77108
77109
77110
77111
77112
77113
77114
77115
77116
77117
77118
77119
77120
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );

      assert( ExprHasProperty(pExpr, EP_xIsSelect) );
      pSel = pExpr->x.pSelect;
      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iParm);
        VdbeComment((v, "Init subquery result"));
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
                                  &sqlite3IntTokens[1]);
      pSel->iLimit = 0;
      if( sqlite3Select(pParse, pSel, &dest) ){
        return 0;
      }
      rReg = dest.iParm;
      ExprSetIrreducible(pExpr);
      break;
    }
  }

  if( testAddr>=0 ){
    sqlite3VdbeJumpHere(v, testAddr);







|



|









|







75015
75016
75017
75018
75019
75020
75021
75022
75023
75024
75025
75026
75027
75028
75029
75030
75031
75032
75033
75034
75035
75036
75037
75038
75039
75040
75041
75042
75043
      assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );

      assert( ExprHasProperty(pExpr, EP_xIsSelect) );
      pSel = pExpr->x.pSelect;
      sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
      if( pExpr->op==TK_SELECT ){
        dest.eDest = SRT_Mem;
        sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
        VdbeComment((v, "Init subquery result"));
      }else{
        dest.eDest = SRT_Exists;
        sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
        VdbeComment((v, "Init EXISTS result"));
      }
      sqlite3ExprDelete(pParse->db, pSel->pLimit);
      pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
                                  &sqlite3IntTokens[1]);
      pSel->iLimit = 0;
      if( sqlite3Select(pParse, pSel, &dest) ){
        return 0;
      }
      rReg = dest.iSDParm;
      ExprSetIrreducible(pExpr);
      break;
    }
  }

  if( testAddr>=0 ){
    sqlite3VdbeJumpHere(v, testAddr);
78421
78422
78423
78424
78425
78426
78427

78428
78429


78430

78431
78432
78433
78434
78435
78436
78437
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */
      if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }

      sqlite3ExplainPrintf(pOut, "%sFUNCTION:%s(",
                           op==TK_AGG_FUNCTION ? "AGG_" : "",


                           pExpr->u.zToken);

      if( pFarg ){
        sqlite3ExplainExprList(pOut, pFarg);
      }
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY







>
|
<
>
>
|
>







76344
76345
76346
76347
76348
76349
76350
76351
76352

76353
76354
76355
76356
76357
76358
76359
76360
76361
76362
76363
    case TK_FUNCTION: {
      ExprList *pFarg;       /* List of function arguments */
      if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
        pFarg = 0;
      }else{
        pFarg = pExpr->x.pList;
      }
      if( op==TK_AGG_FUNCTION ){
        sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",

                             pExpr->op2, pExpr->u.zToken);
      }else{
        sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
      }
      if( pFarg ){
        sqlite3ExplainExprList(pOut, pFarg);
      }
      sqlite3ExplainPrintf(pOut, ")");
      break;
    }
#ifndef SQLITE_OMIT_SUBQUERY
79114
79115
79116
79117
79118
79119
79120



79121
79122





79123
79124


79125
79126





79127
79128

79129
79130
79131
79132
79133


79134
79135

79136


79137
79138
79139
79140
79141
79142
79143
79144
79145
79146

79147
79148
79149

79150


79151
79152
79153
79154
79155
79156
79157
79158
79159
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
  }
  return 0;
}

/*



** This is the expression callback for sqlite3FunctionUsesOtherSrc().
**





** Determine if an expression references any table other than one of the
** tables in pWalker->u.pSrcList and abort if it does.


*/
static int exprUsesOtherSrc(Walker *pWalker, Expr *pExpr){





  if( pExpr->op==TK_COLUMN || pExpr->op==TK_AGG_COLUMN ){
    int i;

    SrcList *pSrc = pWalker->u.pSrcList;
    for(i=0; i<pSrc->nSrc; i++){
      if( pExpr->iTable==pSrc->a[i].iCursor ) return WRC_Continue;
    }
    return WRC_Abort;


  }else{
    return WRC_Continue;

  }


}

/*
** Determine if any of the arguments to the pExpr Function references
** any SrcList other than pSrcList.  Return true if they do.  Return
** false if pExpr has no argument or has only constant arguments or
** only references tables named in pSrcList.
*/
static int sqlite3FunctionUsesOtherSrc(Expr *pExpr, SrcList *pSrcList){
  Walker w;

  assert( pExpr->op==TK_AGG_FUNCTION );
  memset(&w, 0, sizeof(w));
  w.xExprCallback = exprUsesOtherSrc;

  w.u.pSrcList = pSrcList;


  if( sqlite3WalkExprList(&w, pExpr->x.pList)!=WRC_Continue ) return 1;
  return 0;
}

/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){







>
>
>
|
|
>
>
>
>
>
|
<
>
>

|
>
>
>
>
>
|

>
|

|

<
>
>
|
<
>
|
>
>



|
|
|
|

|

>


|
>
|
>
>
|
|







77040
77041
77042
77043
77044
77045
77046
77047
77048
77049
77050
77051
77052
77053
77054
77055
77056
77057

77058
77059
77060
77061
77062
77063
77064
77065
77066
77067
77068
77069
77070
77071
77072
77073

77074
77075
77076

77077
77078
77079
77080
77081
77082
77083
77084
77085
77086
77087
77088
77089
77090
77091
77092
77093
77094
77095
77096
77097
77098
77099
77100
77101
77102
77103
77104
77105
77106
77107
    if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
    if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
  }
  return 0;
}

/*
** An instance of the following structure is used by the tree walker
** to count references to table columns in the arguments of an 
** aggregate function, in order to implement the
** sqlite3FunctionThisSrc() routine.
*/
struct SrcCount {
  SrcList *pSrc;   /* One particular FROM clause in a nested query */
  int nThis;       /* Number of references to columns in pSrcList */
  int nOther;      /* Number of references to columns in other FROM clauses */
};


/*
** Count the number of references to columns.
*/
static int exprSrcCount(Walker *pWalker, Expr *pExpr){
  /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
  ** is always called before sqlite3ExprAnalyzeAggregates() and so the
  ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN.  If
  ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
  ** NEVER() will need to be removed. */
  if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
    int i;
    struct SrcCount *p = pWalker->u.pSrcCount;
    SrcList *pSrc = p->pSrc;
    for(i=0; i<pSrc->nSrc; i++){
      if( pExpr->iTable==pSrc->a[i].iCursor ) break;
    }

    if( i<pSrc->nSrc ){
      p->nThis++;
    }else{

      p->nOther++;
    }
  }
  return WRC_Continue;
}

/*
** Determine if any of the arguments to the pExpr Function reference
** pSrcList.  Return true if they do.  Also return true if the function
** has no arguments or has only constant arguments.  Return false if pExpr
** references columns but not columns of tables found in pSrcList.
*/
SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
  Walker w;
  struct SrcCount cnt;
  assert( pExpr->op==TK_AGG_FUNCTION );
  memset(&w, 0, sizeof(w));
  w.xExprCallback = exprSrcCount;
  w.u.pSrcCount = &cnt;
  cnt.pSrc = pSrcList;
  cnt.nThis = 0;
  cnt.nOther = 0;
  sqlite3WalkExprList(&w, pExpr->x.pList);
  return cnt.nThis>0 || cnt.nOther==0;
}

/*
** Add a new element to the pAggInfo->aCol[] array.  Return the index of
** the new element.  Return a negative number if malloc fails.
*/
static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
79264
79265
79266
79267
79268
79269
79270
79271
79272
79273
79274
79275
79276
79277
79278
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      if( (pNC->ncFlags & NC_InAggFunc)==0
       && !sqlite3FunctionUsesOtherSrc(pExpr, pSrcList)
      ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){







|







77212
77213
77214
77215
77216
77217
77218
77219
77220
77221
77222
77223
77224
77225
77226
          } /* endif pExpr->iTable==pItem->iCursor */
        } /* end loop over pSrcList */
      }
      return WRC_Prune;
    }
    case TK_AGG_FUNCTION: {
      if( (pNC->ncFlags & NC_InAggFunc)==0
       && pWalker->walkerDepth==pExpr->op2
      ){
        /* Check to see if pExpr is a duplicate of another aggregate 
        ** function that is already in the pAggInfo structure
        */
        struct AggInfo_func *pItem = pAggInfo->aFunc;
        for(i=0; i<pAggInfo->nFunc; i++, pItem++){
          if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
80420
80421
80422
80423
80424
80425
80426
80427
80428
80429
80430
80431
80432
80433
80434
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
      );
      aRoot[i] = pParse->regRoot;
      aCreateTbl[i] = 1;
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){







|







78368
78369
78370
78371
78372
78373
78374
78375
78376
78377
78378
78379
78380
78381
78382
      ** side-effect of the CREATE TABLE statement is to leave the rootpage 
      ** of the new table in register pParse->regRoot. This is important 
      ** because the OpenWrite opcode below will be needing it. */
      sqlite3NestedParse(pParse,
          "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
      );
      aRoot[i] = pParse->regRoot;
      aCreateTbl[i] = OPFLAG_P2ISREG;
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
80500
80501
80502
80503
80504
80505
80506
80507
80508
80509
80510
80511
80512
80513
80514
80515
80516
80517
80518
80519
  int mxSample;
  int n;

  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  mxSample = sqlite3_value_int(argv[1]);
  n = sizeof(*p) + sizeof(p->a[0])*mxSample;
  p = sqlite3_malloc( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }
  memset(p, 0, n);
  p->a = (struct Stat3Sample*)&p[1];
  p->nRow = nRow;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}







|




<







78448
78449
78450
78451
78452
78453
78454
78455
78456
78457
78458
78459

78460
78461
78462
78463
78464
78465
78466
  int mxSample;
  int n;

  UNUSED_PARAMETER(argc);
  nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
  mxSample = sqlite3_value_int(argv[1]);
  n = sizeof(*p) + sizeof(p->a[0])*mxSample;
  p = sqlite3MallocZero( n );
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }

  p->a = (struct Stat3Sample*)&p[1];
  p->nRow = nRow;
  p->mxSample = mxSample;
  p->nPSample = p->nRow/(mxSample/3+1) + 1;
  sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
  sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
}
82715
82716
82717
82718
82719
82720
82721
82722
82723
82724
82725
82726
82727
82728
82729
  /* Delete all indices associated with this table. */
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    pNext = pIndex->pNext;
    assert( pIndex->pSchema==pTable->pSchema );
    if( !db || db->pnBytesFreed==0 ){
      char *zName = pIndex->zName; 
      TESTONLY ( Index *pOld = ) sqlite3HashInsert(
	  &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
      );
      assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
      assert( pOld==pIndex || pOld==0 );
    }
    freeIndex(db, pIndex);
  }








|







80662
80663
80664
80665
80666
80667
80668
80669
80670
80671
80672
80673
80674
80675
80676
  /* Delete all indices associated with this table. */
  for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
    pNext = pIndex->pNext;
    assert( pIndex->pSchema==pTable->pSchema );
    if( !db || db->pnBytesFreed==0 ){
      char *zName = pIndex->zName; 
      TESTONLY ( Index *pOld = ) sqlite3HashInsert(
         &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
      );
      assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
      assert( pOld==pIndex || pOld==0 );
    }
    freeIndex(db, pIndex);
  }

83762
83763
83764
83765
83766
83767
83768
83769
83770
83771
83772
83773
83774
83775
83776
    */
    if( pSelect ){
      SelectDest dest;
      Table *pSelTab;

      assert(pParse->nTab==1);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, 1);
      pParse->nTab = 2;
      sqlite3SelectDestInit(&dest, SRT_Table, 1);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeAddOp1(v, OP_Close, 1);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
        if( pSelTab==0 ) return;







|







81709
81710
81711
81712
81713
81714
81715
81716
81717
81718
81719
81720
81721
81722
81723
    */
    if( pSelect ){
      SelectDest dest;
      Table *pSelTab;

      assert(pParse->nTab==1);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;
      sqlite3SelectDestInit(&dest, SRT_Table, 1);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeAddOp1(v, OP_Close, 1);
      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
        if( pSelTab==0 ) return;
84578
84579
84580
84581
84582
84583
84584
84585
84586
84587
84588
84589
84590
84591
84592
84593
84594
  }else{
    tnum = pIndex->tnum;
    sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  }
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO_HANDOFF);
  if( memRootPage>=0 ){
    sqlite3VdbeChangeP5(v, 1);
  }

#ifndef SQLITE_OMIT_MERGE_SORT
  /* Open the sorter cursor if we are to use one. */
  iSorter = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
#else
  iSorter = iTab;







<
|
<







82525
82526
82527
82528
82529
82530
82531

82532

82533
82534
82535
82536
82537
82538
82539
  }else{
    tnum = pIndex->tnum;
    sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
  }
  pKey = sqlite3IndexKeyinfo(pParse, pIndex);
  sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb, 
                    (char *)pKey, P4_KEYINFO_HANDOFF);

  sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));


#ifndef SQLITE_OMIT_MERGE_SORT
  /* Open the sorter cursor if we are to use one. */
  iSorter = pParse->nTab++;
  sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
#else
  iSorter = iTab;
84719
84720
84721
84722
84723
84724
84725
84726
84727
84728
84729
84730
84731
84732
84733
    */
    assert( pName1 && pName2 );
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ) goto exit_create_index;
    assert( pName && pName->z );

#ifndef SQLITE_OMIT_TEMPDB
    /* If the index name was unqualified, check if the the table
    ** is a temp table. If so, set the database to 1. Do not do this
    ** if initialising a database schema.
    */
    if( !db->init.busy ){
      pTab = sqlite3SrcListLookup(pParse, pTblName);
      if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
        iDb = 1;







|







82664
82665
82666
82667
82668
82669
82670
82671
82672
82673
82674
82675
82676
82677
82678
    */
    assert( pName1 && pName2 );
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ) goto exit_create_index;
    assert( pName && pName->z );

#ifndef SQLITE_OMIT_TEMPDB
    /* If the index name was unqualified, check if the table
    ** is a temp table. If so, set the database to 1. Do not do this
    ** if initialising a database schema.
    */
    if( !db->init.busy ){
      pTab = sqlite3SrcListLookup(pParse, pTblName);
      if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
        iDb = 1;
86873
86874
86875
86876
86877
86878
86879
86880
86881
86882
86883
86884
86885
86886
86887
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(
        pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK
    );
    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }







|







84818
84819
84820
84821
84822
84823
84824
84825
84826
84827
84828
84829
84830
84831
84832
    int iRowid = ++pParse->nMem;    /* Used for storing rowid values. */
    int regRowid;                   /* Actual register containing rowids */

    /* Collect rowids of every row to be deleted.
    */
    sqlite3VdbeAddOp2(v, OP_Null, 0, iRowSet);
    pWInfo = sqlite3WhereBegin(
        pParse, pTabList, pWhere, 0, 0, WHERE_DUPLICATES_OK, 0
    );
    if( pWInfo==0 ) goto delete_from_cleanup;
    regRowid = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, iRowid, 0);
    sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, regRowid);
    if( db->flags & SQLITE_CountRows ){
      sqlite3VdbeAddOp2(v, OP_AddImm, memCnt, 1);
    }
88017
88018
88019
88020
88021
88022
88023
88024











88025
88026
88027
88028
88029
88030
88031
88032
** "NULL".  Otherwise, the argument is enclosed in single quotes with
** single-quote escapes.
*/
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  assert( argc==1 );
  UNUSED_PARAMETER(argc);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_INTEGER:











    case SQLITE_FLOAT: {
      sqlite3_result_value(context, argv[0]);
      break;
    }
    case SQLITE_BLOB: {
      char *zText = 0;
      char const *zBlob = sqlite3_value_blob(argv[0]);
      int nBlob = sqlite3_value_bytes(argv[0]);







|
>
>
>
>
>
>
>
>
>
>
>
|







85962
85963
85964
85965
85966
85967
85968
85969
85970
85971
85972
85973
85974
85975
85976
85977
85978
85979
85980
85981
85982
85983
85984
85985
85986
85987
85988
** "NULL".  Otherwise, the argument is enclosed in single quotes with
** single-quote escapes.
*/
static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
  assert( argc==1 );
  UNUSED_PARAMETER(argc);
  switch( sqlite3_value_type(argv[0]) ){
    case SQLITE_FLOAT: {
      double r1, r2;
      char zBuf[50];
      r1 = sqlite3_value_double(argv[0]);
      sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
      sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8);
      if( r1!=r2 ){
        sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1);
      }
      sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
      break;
    }
    case SQLITE_INTEGER: {
      sqlite3_result_value(context, argv[0]);
      break;
    }
    case SQLITE_BLOB: {
      char *zText = 0;
      char const *zBlob = sqlite3_value_blob(argv[0]);
      int nBlob = sqlite3_value_bytes(argv[0]);
89330
89331
89332
89333
89334
89335
89336
89337
89338
89339
89340
89341
89342
89343
89344
  sNameContext.pParse = pParse;
  sqlite3ResolveExprNames(&sNameContext, pWhere);

  /* Create VDBE to loop through the entries in pSrc that match the WHERE
  ** clause. If the constraint is not deferred, throw an exception for
  ** each row found. Otherwise, for deferred constraints, increment the
  ** deferred constraint counter by nIncr for each row selected.  */
  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0);
  if( nIncr>0 && pFKey->isDeferred==0 ){
    sqlite3ParseToplevel(pParse)->mayAbort = 1;
  }
  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  if( pWInfo ){
    sqlite3WhereEnd(pWInfo);
  }







|







87286
87287
87288
87289
87290
87291
87292
87293
87294
87295
87296
87297
87298
87299
87300
  sNameContext.pParse = pParse;
  sqlite3ResolveExprNames(&sNameContext, pWhere);

  /* Create VDBE to loop through the entries in pSrc that match the WHERE
  ** clause. If the constraint is not deferred, throw an exception for
  ** each row found. Otherwise, for deferred constraints, increment the
  ** deferred constraint counter by nIncr for each row selected.  */
  pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
  if( nIncr>0 && pFKey->isDeferred==0 ){
    sqlite3ParseToplevel(pParse)->mayAbort = 1;
  }
  sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
  if( pWInfo ){
    sqlite3WhereEnd(pWInfo);
  }
90588
90589
90590
90591
90592
90593
90594
90595
90596
90597
90598
90599
90600
90601
90602
90603
90604
90605
90606
90607
90608
90609
90610
90611
90612
90613
90614
90615
90616
90617
90618
90619
90620
90621
    int rc, j1;

    regEof = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
    VdbeComment((v, "SELECT eof flag"));
    sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
    addrSelect = sqlite3VdbeCurrentAddr(v)+2;
    sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
    j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    VdbeComment((v, "Jump over SELECT coroutine"));

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest);
    assert( pParse->nErr==0 || rc );
    if( rc || NEVER(pParse->nErr) || db->mallocFailed ){
      goto insert_cleanup;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
    sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);   /* yield X */
    sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
    VdbeComment((v, "End of SELECT coroutine"));
    sqlite3VdbeJumpHere(v, j1);                          /* label B: */

    regFromSelect = dest.iMem;
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;
    assert( dest.nMem==nColumn );

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table (template 4).  Set to
    ** FALSE if each* row of the SELECT can be written directly into
    ** the destination table (template 3).
    **
    ** A temp table must be used if the table being updated is also one







|










|




|


|







88544
88545
88546
88547
88548
88549
88550
88551
88552
88553
88554
88555
88556
88557
88558
88559
88560
88561
88562
88563
88564
88565
88566
88567
88568
88569
88570
88571
88572
88573
88574
88575
88576
88577
    int rc, j1;

    regEof = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof);      /* EOF <- 0 */
    VdbeComment((v, "SELECT eof flag"));
    sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
    addrSelect = sqlite3VdbeCurrentAddr(v)+2;
    sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iSDParm);
    j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
    VdbeComment((v, "Jump over SELECT coroutine"));

    /* Resolve the expressions in the SELECT statement and execute it. */
    rc = sqlite3Select(pParse, pSelect, &dest);
    assert( pParse->nErr==0 || rc );
    if( rc || NEVER(pParse->nErr) || db->mallocFailed ){
      goto insert_cleanup;
    }
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof);         /* EOF <- 1 */
    sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);   /* yield X */
    sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
    VdbeComment((v, "End of SELECT coroutine"));
    sqlite3VdbeJumpHere(v, j1);                          /* label B: */

    regFromSelect = dest.iSdst;
    assert( pSelect->pEList );
    nColumn = pSelect->pEList->nExpr;
    assert( dest.nSdst==nColumn );

    /* Set useTempTable to TRUE if the result of the SELECT statement
    ** should be written into a temporary table (template 4).  Set to
    ** FALSE if each* row of the SELECT can be written directly into
    ** the destination table (template 3).
    **
    ** A temp table must be used if the table being updated is also one
90643
90644
90645
90646
90647
90648
90649
90650
90651
90652
90653
90654
90655
90656
90657
      int addrTop;         /* Label "L" */
      int addrIf;          /* Address of jump to M */

      srcTab = pParse->nTab++;
      regRec = sqlite3GetTempReg(pParse);
      regTempRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
      addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
      addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
      sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
      sqlite3VdbeJumpHere(v, addrIf);
      sqlite3ReleaseTempReg(pParse, regRec);







|







88599
88600
88601
88602
88603
88604
88605
88606
88607
88608
88609
88610
88611
88612
88613
      int addrTop;         /* Label "L" */
      int addrIf;          /* Address of jump to M */

      srcTab = pParse->nTab++;
      regRec = sqlite3GetTempReg(pParse);
      regTempRowid = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
      addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
      addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
      sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
      sqlite3VdbeJumpHere(v, addrIf);
      sqlite3ReleaseTempReg(pParse, regRec);
90780
90781
90782
90783
90784
90785
90786
90787
90788
90789
90790
90791
90792
90793
90794
    **
    **      C: yield X
    **         if EOF goto D
    **         insert the select result into <table> from R..R+n
    **         goto C
    **      D: ...
    */
    addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
    addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
  }

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assemblied row record.
  */
  regRowid = regIns = pParse->nMem+1;







|







88736
88737
88738
88739
88740
88741
88742
88743
88744
88745
88746
88747
88748
88749
88750
    **
    **      C: yield X
    **         if EOF goto D
    **         insert the select result into <table> from R..R+n
    **         goto C
    **      D: ...
    */
    addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
    addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
  }

  /* Allocate registers for holding the rowid of the new row,
  ** the content of the new row, and the assemblied row record.
  */
  regRowid = regIns = pParse->nMem+1;
91262
91263
91264
91265
91266
91267
91268
91269
91270
91271
91272
91273
91274
91275
91276
        sqlite3HaltConstraint(
          pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the the table. This will fire
        ** the triggers and remove both the table and index b-tree entries.
        **
        ** Otherwise, if there are no triggers or the recursive-triggers
        ** flag is not set, but the table has one or more indexes, call 
        ** GenerateRowIndexDelete(). This removes the index b-tree entries 
        ** only. The table b-tree entry will be replaced by the new entry 
        ** when it is inserted.  







|







89218
89219
89220
89221
89222
89223
89224
89225
89226
89227
89228
89229
89230
89231
89232
        sqlite3HaltConstraint(
          pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
        break;
      }
      case OE_Replace: {
        /* If there are DELETE triggers on this table and the
        ** recursive-triggers flag is set, call GenerateRowDelete() to
        ** remove the conflicting row from the table. This will fire
        ** the triggers and remove both the table and index b-tree entries.
        **
        ** Otherwise, if there are no triggers or the recursive-triggers
        ** flag is not set, but the table has one or more indexes, call 
        ** GenerateRowIndexDelete(). This removes the index b-tree entries 
        ** only. The table b-tree entry will be replaced by the new entry 
        ** when it is inserted.  
94262
94263
94264
94265
94266
94267
94268













94269
94270
94271
94272
94273
94274
94275
      { OP_AddImm,      1, 0,        0},    /* 0 */
      { OP_IfNeg,       1, 0,        0},    /* 1 */
      { OP_String8,     0, 3,        0},    /* 2 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (sqlite3Tolower(zLeft[0])=='q');














    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pParse->nMem = 6;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC);








>
>
>
>
>
>
>
>
>
>
>
>
>







92218
92219
92220
92221
92222
92223
92224
92225
92226
92227
92228
92229
92230
92231
92232
92233
92234
92235
92236
92237
92238
92239
92240
92241
92242
92243
92244
      { OP_AddImm,      1, 0,        0},    /* 0 */
      { OP_IfNeg,       1, 0,        0},    /* 1 */
      { OP_String8,     0, 3,        0},    /* 2 */
      { OP_ResultRow,   3, 1,        0},
    };

    int isQuick = (sqlite3Tolower(zLeft[0])=='q');

    /* If the PRAGMA command was of the form "PRAGMA <db>.integrity_check",
    ** then iDb is set to the index of the database identified by <db>.
    ** In this case, the integrity of database iDb only is verified by
    ** the VDBE created below.
    **
    ** Otherwise, if the command was simply "PRAGMA integrity_check" (or
    ** "PRAGMA quick_check"), then iDb is set to 0. In this case, set iDb
    ** to -1 here, to indicate that the VDBE should verify the integrity
    ** of all attached databases.  */
    assert( iDb>=0 );
    assert( iDb==0 || pId2->z );
    if( pId2->z==0 ) iDb = -1;

    /* Initialize the VDBE program */
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
    pParse->nMem = 6;
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "integrity_check", SQLITE_STATIC);

94286
94287
94288
94289
94290
94291
94292

94293
94294
94295
94296
94297
94298
94299
94300
94301
94302
94303
94304
94305
94306
94307
94308
94309
94310
94311
    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;


      sqlite3CodeVerifySchema(pParse, i);
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
      sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Do an integrity check of the B-Tree
      **
      ** Begin by filling registers 2, 3, ... with the root pages numbers
      ** for all tables and indices in the database.
      */
      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){







>











|







92255
92256
92257
92258
92259
92260
92261
92262
92263
92264
92265
92266
92267
92268
92269
92270
92271
92272
92273
92274
92275
92276
92277
92278
92279
92280
92281
    /* Do an integrity check on each database file */
    for(i=0; i<db->nDb; i++){
      HashElem *x;
      Hash *pTbls;
      int cnt = 0;

      if( OMIT_TEMPDB && i==1 ) continue;
      if( iDb>=0 && i!=iDb ) continue;

      sqlite3CodeVerifySchema(pParse, i);
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Halt if out of errors */
      sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
      sqlite3VdbeJumpHere(v, addr);

      /* Do an integrity check of the B-Tree
      **
      ** Begin by filling registers 2, 3, ... with the root pages numbers
      ** for all tables and indices in the database.
      */
      assert( sqlite3SchemaMutexHeld(db, i, 0) );
      pTbls = &db->aDb[i].pSchema->tblHash;
      for(x=sqliteHashFirst(pTbls); x; x=sqliteHashNext(x)){
        Table *pTab = sqliteHashData(x);
        Index *pIdx;
        sqlite3VdbeAddOp2(v, OP_Integer, pTab->tnum, 2+cnt);
        cnt++;
        for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
95621
95622
95623
95624
95625
95626
95627
95628
95629
95630
95631
95632
95633
95634
95635
95636
95637
95638
}

/*
** Initialize a SelectDest structure.
*/
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
  pDest->iParm = iParm;
  pDest->affinity = 0;
  pDest->iMem = 0;
  pDest->nMem = 0;
}


/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/







|
|
|
|







93591
93592
93593
93594
93595
93596
93597
93598
93599
93600
93601
93602
93603
93604
93605
93606
93607
93608
}

/*
** Initialize a SelectDest structure.
*/
SQLITE_PRIVATE void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
  pDest->eDest = (u8)eDest;
  pDest->iSDParm = iParm;
  pDest->affSdst = 0;
  pDest->iSdst = 0;
  pDest->nSdst = 0;
}


/*
** Allocate a new Select structure and return a pointer to that
** structure.
*/
96136
96137
96138
96139
96140
96141
96142
96143
96144
96145
96146
96147
96148
96149
96150
96151
96152
96153
96154
96155
96156
96157
96158
96159
96160
96161
96162
96163
96164
96165
96166
96167
96168
96169
96170
96171
96172
96173
96174
96175
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;        /* True if the DISTINCT keyword is present */
  int regResult;              /* Start of memory holding result set */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iParm;   /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */

  assert( v );
  if( NEVER(v==0) ) return;
  assert( pEList!=0 );
  hasDistinct = distinct>=0;
  if( pOrderBy==0 && !hasDistinct ){
    codeOffset(v, p, iContinue);
  }

  /* Pull the requested columns.
  */
  if( nColumn>0 ){
    nResultCol = nColumn;
  }else{
    nResultCol = pEList->nExpr;
  }
  if( pDest->iMem==0 ){
    pDest->iMem = pParse->nMem+1;
    pDest->nMem = nResultCol;
    pParse->nMem += nResultCol;
  }else{ 
    assert( pDest->nMem==nResultCol );
  }
  regResult = pDest->iMem;
  if( nColumn>0 ){
    for(i=0; i<nColumn; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.







|

















|
|
|


|

|







94106
94107
94108
94109
94110
94111
94112
94113
94114
94115
94116
94117
94118
94119
94120
94121
94122
94123
94124
94125
94126
94127
94128
94129
94130
94131
94132
94133
94134
94135
94136
94137
94138
94139
94140
94141
94142
94143
94144
94145
  int iBreak              /* Jump here to break out of the inner loop */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  int hasDistinct;        /* True if the DISTINCT keyword is present */
  int regResult;              /* Start of memory holding result set */
  int eDest = pDest->eDest;   /* How to dispose of results */
  int iParm = pDest->iSDParm; /* First argument to disposal method */
  int nResultCol;             /* Number of result columns */

  assert( v );
  if( NEVER(v==0) ) return;
  assert( pEList!=0 );
  hasDistinct = distinct>=0;
  if( pOrderBy==0 && !hasDistinct ){
    codeOffset(v, p, iContinue);
  }

  /* Pull the requested columns.
  */
  if( nColumn>0 ){
    nResultCol = nColumn;
  }else{
    nResultCol = pEList->nExpr;
  }
  if( pDest->iSdst==0 ){
    pDest->iSdst = pParse->nMem+1;
    pDest->nSdst = nResultCol;
    pParse->nMem += nResultCol;
  }else{ 
    assert( pDest->nSdst==nResultCol );
  }
  regResult = pDest->iSdst;
  if( nColumn>0 ){
    for(i=0; i<nColumn; i++){
      sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
    }
  }else if( eDest!=SRT_Exists ){
    /* If the destination is an EXISTS(...) expression, the actual
    ** values returned by the SELECT are not required.
96240
96241
96242
96243
96244
96245
96246
96247
96248
96249
96250
96251
96252
96253
96254
#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      assert( nColumn==1 );
      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affinity);
      if( pOrderBy ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(pParse, pOrderBy, p, regResult);
      }else{







|







94210
94211
94212
94213
94214
94215
94216
94217
94218
94219
94220
94221
94222
94223
94224
#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      assert( nColumn==1 );
      p->affinity = sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst);
      if( pOrderBy ){
        /* At first glance you would think we could optimize out the
        ** ORDER BY in this case since the order of entries in the set
        ** does not matter.  But there might be a LIMIT clause, in which
        ** case the order does matter */
        pushOntoSorter(pParse, pOrderBy, p, regResult);
      }else{
96295
96296
96297
96298
96299
96300
96301
96302
96303
96304
96305
96306
96307
96308
96309
      testcase( eDest==SRT_Output );
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
      }
      break;
    }








|







94265
94266
94267
94268
94269
94270
94271
94272
94273
94274
94275
94276
94277
94278
94279
      testcase( eDest==SRT_Output );
      if( pOrderBy ){
        int r1 = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nColumn, r1);
        pushOntoSorter(pParse, pOrderBy, p, r1);
        sqlite3ReleaseTempReg(pParse, r1);
      }else if( eDest==SRT_Coroutine ){
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }else{
        sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, regResult, nColumn);
      }
      break;
    }

96475
96476
96477
96478
96479
96480
96481
96482
96483
96484
96485
96486
96487
96488
96489
  int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  int addr;
  int iTab;
  int pseudoTab = 0;
  ExprList *pOrderBy = p->pOrderBy;

  int eDest = pDest->eDest;
  int iParm = pDest->iParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;
  regRow = sqlite3GetTempReg(pParse);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){







|







94445
94446
94447
94448
94449
94450
94451
94452
94453
94454
94455
94456
94457
94458
94459
  int addrContinue = sqlite3VdbeMakeLabel(v);  /* Jump here for next cycle */
  int addr;
  int iTab;
  int pseudoTab = 0;
  ExprList *pOrderBy = p->pOrderBy;

  int eDest = pDest->eDest;
  int iParm = pDest->iSDParm;

  int regRow;
  int regRowid;

  iTab = pOrderBy->iECursor;
  regRow = sqlite3GetTempReg(pParse);
  if( eDest==SRT_Output || eDest==SRT_Coroutine ){
96534
96535
96536
96537
96538
96539
96540
96541
96542
96543
96544
96545
96546
96547
96548
96549
96550
96551
96552
96553
96554
96555
96556
96557
96558
#endif
    default: {
      int i;
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );
      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iMem+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iMem+i);
        if( i==0 ){
          sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
        }
      }
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iMem, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iMem, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      }
      break;
    }
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);








|
|





|
|

|







94504
94505
94506
94507
94508
94509
94510
94511
94512
94513
94514
94515
94516
94517
94518
94519
94520
94521
94522
94523
94524
94525
94526
94527
94528
#endif
    default: {
      int i;
      assert( eDest==SRT_Output || eDest==SRT_Coroutine ); 
      testcase( eDest==SRT_Output );
      testcase( eDest==SRT_Coroutine );
      for(i=0; i<nColumn; i++){
        assert( regRow!=pDest->iSdst+i );
        sqlite3VdbeAddOp3(v, OP_Column, pseudoTab, i, pDest->iSdst+i);
        if( i==0 ){
          sqlite3VdbeChangeP5(v, OPFLAG_CLEARCACHE);
        }
      }
      if( eDest==SRT_Output ){
        sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
        sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn);
      }else{
        sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      }
      break;
    }
  }
  sqlite3ReleaseTempReg(pParse, regRow);
  sqlite3ReleaseTempReg(pParse, regRowid);

97195
97196
97197
97198
97199
97200
97201
97202
97203
97204
97205
97206
97207
97208
97209
  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );  /* The VDBE already created by calling function */

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iParm, p->pEList->nExpr);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    dest.eDest = SRT_Table;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */







|







95165
95166
95167
95168
95169
95170
95171
95172
95173
95174
95175
95176
95177
95178
95179
  v = sqlite3GetVdbe(pParse);
  assert( v!=0 );  /* The VDBE already created by calling function */

  /* Create the destination temporary table if necessary
  */
  if( dest.eDest==SRT_EphemTab ){
    assert( p->pEList );
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
    sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
    dest.eDest = SRT_Table;
  }

  /* Make sure all SELECTs in the statement have the same number of elements
  ** in their result sets.
  */
97281
97282
97283
97284
97285
97286
97287
97288
97289
97290
97291
97292
97293
97294
97295
        /* We can reuse a temporary table generated by a SELECT to our
        ** right.
        */
        assert( p->pRightmost!=p );  /* Can only happen for leftward elements
                                     ** of a 3-way or more compound */
        assert( p->pLimit==0 );      /* Not allowed on leftward elements */
        assert( p->pOffset==0 );     /* Not allowed on leftward elements */
        unionTab = dest.iParm;
      }else{
        /* We will need to create our own temporary table to hold the
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);







|







95251
95252
95253
95254
95255
95256
95257
95258
95259
95260
95261
95262
95263
95264
95265
        /* We can reuse a temporary table generated by a SELECT to our
        ** right.
        */
        assert( p->pRightmost!=p );  /* Can only happen for leftward elements
                                     ** of a 3-way or more compound */
        assert( p->pLimit==0 );      /* Not allowed on leftward elements */
        assert( p->pOffset==0 );     /* Not allowed on leftward elements */
        unionTab = dest.iSDParm;
      }else{
        /* We will need to create our own temporary table to hold the
        ** intermediate results.
        */
        unionTab = pParse->nTab++;
        assert( p->pOrderBy==0 );
        addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
97338
97339
97340
97341
97342
97343
97344
97345
97346
97347
97348
97349
97350
97351
97352
      p->pOffset = pOffset;
      p->iLimit = 0;
      p->iOffset = 0;

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */
      assert( unionTab==dest.iParm || dest.eDest!=priorOp );
      if( dest.eDest!=priorOp ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Output ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);







|







95308
95309
95310
95311
95312
95313
95314
95315
95316
95317
95318
95319
95320
95321
95322
      p->pOffset = pOffset;
      p->iLimit = 0;
      p->iOffset = 0;

      /* Convert the data in the temporary table into whatever form
      ** it is that we currently need.
      */
      assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
      if( dest.eDest!=priorOp ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Output ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
97402
97403
97404
97405
97406
97407
97408
97409
97410
97411
97412
97413
97414
97415
97416
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      intersectdest.iParm = tab2;
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &intersectdest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
      sqlite3ExprDelete(db, p->pLimit);







|







95372
95373
95374
95375
95376
95377
95378
95379
95380
95381
95382
95383
95384
95385
95386
      assert( p->addrOpenEphm[1] == -1 );
      p->addrOpenEphm[1] = addr;
      p->pPrior = 0;
      pLimit = p->pLimit;
      p->pLimit = 0;
      pOffset = p->pOffset;
      p->pOffset = 0;
      intersectdest.iSDParm = tab2;
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &intersectdest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
      if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
      sqlite3ExprDelete(db, p->pLimit);
97496
97497
97498
97499
97500
97501
97502
97503
97504
97505
97506
97507
97508
97509
97510
97511
97512
97513
97514
97515
97516
97517
97518
97519
97520
97521
97522
        pLoop->addrOpenEphm[i] = -1;
      }
    }
    sqlite3DbFree(db, pKeyInfo);
  }

multi_select_end:
  pDest->iMem = dest.iMem;
  pDest->nMem = dest.nMem;
  sqlite3SelectDelete(db, pDelete);
  return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Code an output subroutine for a coroutine implementation of a
** SELECT statment.
**
** The data to be output is contained in pIn->iMem.  There are
** pIn->nMem columns to be output.  pDest is where the output should
** be sent.
**
** regReturn is the number of the register holding the subroutine
** return address.
**
** If regPrev>0 then it is the first register in a vector that
** records the previous output.  mem[regPrev] is a flag that is false







|
|









|
|







95466
95467
95468
95469
95470
95471
95472
95473
95474
95475
95476
95477
95478
95479
95480
95481
95482
95483
95484
95485
95486
95487
95488
95489
95490
95491
95492
        pLoop->addrOpenEphm[i] = -1;
      }
    }
    sqlite3DbFree(db, pKeyInfo);
  }

multi_select_end:
  pDest->iSdst = dest.iSdst;
  pDest->nSdst = dest.nSdst;
  sqlite3SelectDelete(db, pDelete);
  return rc;
}
#endif /* SQLITE_OMIT_COMPOUND_SELECT */

/*
** Code an output subroutine for a coroutine implementation of a
** SELECT statment.
**
** The data to be output is contained in pIn->iSdst.  There are
** pIn->nSdst columns to be output.  pDest is where the output should
** be sent.
**
** regReturn is the number of the register holding the subroutine
** return address.
**
** If regPrev>0 then it is the first register in a vector that
** records the previous output.  mem[regPrev] is a flag that is false
97546
97547
97548
97549
97550
97551
97552
97553
97554
97555
97556
97557
97558
97559
97560
97561
97562
97563
97564
97565
97566
97567
97568
97569
97570
97571
97572
97573
97574
97575
97576
97577
97578
97579
97580
97581
97582
97583
97584
97585
97586
97587
97588
97589
97590
97591
97592
97593
97594
97595
97596
97597
97598
97599
97600
97601
97602
97603
97604
97605
97606
97607
97608
97609
97610
97611
97612
97613
97614
97615
97616
97617
97618
97619
97620
97621
97622
97623
97624
97625
97626
97627
97628
97629
97630
97631
97632
97633
97634
97635
97636
97637
97638
97639
97640
97641
97642
97643
97644
97645
97646
97647
97648
97649
97650
97651
97652
97653
97654
97655
  iContinue = sqlite3VdbeMakeLabel(v);

  /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
  */
  if( regPrev ){
    int j1, j2;
    j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
    j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iMem, regPrev+1, pIn->nMem,
                              (char*)pKeyInfo, p4type);
    sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
    sqlite3VdbeJumpHere(v, j1);
    sqlite3ExprCodeCopy(pParse, pIn->iMem, regPrev+1, pIn->nMem);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
  }
  if( pParse->db->mallocFailed ) return 0;

  /* Suppress the the first OFFSET entries if there is an OFFSET clause
  */
  codeOffset(v, p, iContinue);

  switch( pDest->eDest ){
    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      int r2 = sqlite3GetTempReg(pParse);
      testcase( pDest->eDest==SRT_Table );
      testcase( pDest->eDest==SRT_EphemTab );
      sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iMem, pIn->nMem, r1);
      sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iParm, r2);
      sqlite3VdbeAddOp3(v, OP_Insert, pDest->iParm, r1, r2);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      sqlite3ReleaseTempReg(pParse, r2);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int r1;
      assert( pIn->nMem==1 );
      p->affinity = 
         sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affinity);
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iMem, 1, r1, &p->affinity, 1);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#if 0  /* Never occurs on an ORDER BY query */
    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( pIn->nMem==1 );
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iParm, 1);
      /* The LIMIT clause will jump out of the loop for us */
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* The results are stored in a sequence of registers
    ** starting at pDest->iMem.  Then the co-routine yields.
    */
    case SRT_Coroutine: {
      if( pDest->iMem==0 ){
        pDest->iMem = sqlite3GetTempRange(pParse, pIn->nMem);
        pDest->nMem = pIn->nMem;
      }
      sqlite3ExprCodeMove(pParse, pIn->iMem, pDest->iMem, pDest->nMem);
      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iParm);
      break;
    }

    /* If none of the above, then the result destination must be
    ** SRT_Output.  This routine is never called with any other
    ** destination other than the ones handled above or SRT_Output.
    **
    ** For SRT_Output, results are stored in a sequence of registers.  
    ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
    ** return the next row of result.
    */
    default: {
      assert( pDest->eDest==SRT_Output );
      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iMem, pIn->nMem);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iMem, pIn->nMem);
      break;
    }
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){







|



|




|












|
|
|













|

|

|
|
|








|










|
|






|


|
|
|

|
|













|
|







95516
95517
95518
95519
95520
95521
95522
95523
95524
95525
95526
95527
95528
95529
95530
95531
95532
95533
95534
95535
95536
95537
95538
95539
95540
95541
95542
95543
95544
95545
95546
95547
95548
95549
95550
95551
95552
95553
95554
95555
95556
95557
95558
95559
95560
95561
95562
95563
95564
95565
95566
95567
95568
95569
95570
95571
95572
95573
95574
95575
95576
95577
95578
95579
95580
95581
95582
95583
95584
95585
95586
95587
95588
95589
95590
95591
95592
95593
95594
95595
95596
95597
95598
95599
95600
95601
95602
95603
95604
95605
95606
95607
95608
95609
95610
95611
95612
95613
95614
95615
95616
95617
95618
95619
95620
95621
95622
95623
95624
95625
  iContinue = sqlite3VdbeMakeLabel(v);

  /* Suppress duplicates for UNION, EXCEPT, and INTERSECT 
  */
  if( regPrev ){
    int j1, j2;
    j1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev);
    j2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
                              (char*)pKeyInfo, p4type);
    sqlite3VdbeAddOp3(v, OP_Jump, j2+2, iContinue, j2+2);
    sqlite3VdbeJumpHere(v, j1);
    sqlite3ExprCodeCopy(pParse, pIn->iSdst, regPrev+1, pIn->nSdst);
    sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
  }
  if( pParse->db->mallocFailed ) return 0;

  /* Suppress the first OFFSET entries if there is an OFFSET clause
  */
  codeOffset(v, p, iContinue);

  switch( pDest->eDest ){
    /* Store the result as data using a unique key.
    */
    case SRT_Table:
    case SRT_EphemTab: {
      int r1 = sqlite3GetTempReg(pParse);
      int r2 = sqlite3GetTempReg(pParse);
      testcase( pDest->eDest==SRT_Table );
      testcase( pDest->eDest==SRT_EphemTab );
      sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
      sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
      sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
      sqlite3ReleaseTempReg(pParse, r2);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#ifndef SQLITE_OMIT_SUBQUERY
    /* If we are creating a set for an "expr IN (SELECT ...)" construct,
    ** then there should be a single item on the stack.  Write this
    ** item into the set table with bogus data.
    */
    case SRT_Set: {
      int r1;
      assert( pIn->nSdst==1 );
      p->affinity = 
         sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst);
      r1 = sqlite3GetTempReg(pParse);
      sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &p->affinity, 1);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1);
      sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1);
      sqlite3ReleaseTempReg(pParse, r1);
      break;
    }

#if 0  /* Never occurs on an ORDER BY query */
    /* If any row exist in the result set, record that fact and abort.
    */
    case SRT_Exists: {
      sqlite3VdbeAddOp2(v, OP_Integer, 1, pDest->iSDParm);
      /* The LIMIT clause will terminate the loop for us */
      break;
    }
#endif

    /* If this is a scalar select that is part of an expression, then
    ** store the results in the appropriate memory cell and break out
    ** of the scan loop.
    */
    case SRT_Mem: {
      assert( pIn->nSdst==1 );
      sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1);
      /* The LIMIT clause will jump out of the loop for us */
      break;
    }
#endif /* #ifndef SQLITE_OMIT_SUBQUERY */

    /* The results are stored in a sequence of registers
    ** starting at pDest->iSdst.  Then the co-routine yields.
    */
    case SRT_Coroutine: {
      if( pDest->iSdst==0 ){
        pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
        pDest->nSdst = pIn->nSdst;
      }
      sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pDest->nSdst);
      sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
      break;
    }

    /* If none of the above, then the result destination must be
    ** SRT_Output.  This routine is never called with any other
    ** destination other than the ones handled above or SRT_Output.
    **
    ** For SRT_Output, results are stored in a sequence of registers.  
    ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
    ** return the next row of result.
    */
    default: {
      assert( pDest->eDest==SRT_Output );
      sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
      sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst);
      break;
    }
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){
98060
98061
98062
98063
98064
98065
98066
98067
98068
98069
98070
98071
98072
98073
98074
  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);

  /* Implement the main merge loop
  */
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iMem, destB.iMem, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);

  /* Release temporary registers
  */
  if( regPrev ){
    sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);







|







96030
96031
96032
96033
96034
96035
96036
96037
96038
96039
96040
96041
96042
96043
96044
  sqlite3VdbeAddOp2(v, OP_If, regEofA, addrEofA);
  sqlite3VdbeAddOp2(v, OP_If, regEofB, addrEofB);

  /* Implement the main merge loop
  */
  sqlite3VdbeResolveLabel(v, labelCmpr);
  sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
  sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
                         (char*)pKeyMerge, P4_KEYINFO_HANDOFF);
  sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB);

  /* Release temporary registers
  */
  if( regPrev ){
    sqlite3ReleaseTempRange(pParse, regPrev, nOrderBy+1);
98273
98274
98275
98276
98277
98278
98279






98280
98281
98282
98283
98284
98285
98286
**
**        The parent and sub-query may contain WHERE clauses. Subject to
**        rules (11), (13) and (14), they may also contain ORDER BY,
**        LIMIT and OFFSET clauses.  The subquery cannot use any compound
**        operator other than UNION ALL because all the other compound
**        operators have an implied DISTINCT which is disallowed by
**        restriction (4).






**
**  (18)  If the sub-query is a compound select, then all terms of the
**        ORDER by clause of the parent must be simple references to 
**        columns of the sub-query.
**
**  (19)  The subquery does not use LIMIT or the outer query does not
**        have a WHERE clause.







>
>
>
>
>
>







96243
96244
96245
96246
96247
96248
96249
96250
96251
96252
96253
96254
96255
96256
96257
96258
96259
96260
96261
96262
**
**        The parent and sub-query may contain WHERE clauses. Subject to
**        rules (11), (13) and (14), they may also contain ORDER BY,
**        LIMIT and OFFSET clauses.  The subquery cannot use any compound
**        operator other than UNION ALL because all the other compound
**        operators have an implied DISTINCT which is disallowed by
**        restriction (4).
**
**        Also, each component of the sub-query must return the same number
**        of result columns. This is actually a requirement for any compound
**        SELECT statement, but all the code here does is make sure that no
**        such (illegal) sub-query is flattened. The caller will detect the
**        syntax error and return a detailed message.
**
**  (18)  If the sub-query is a compound select, then all terms of the
**        ORDER by clause of the parent must be simple references to 
**        columns of the sub-query.
**
**  (19)  The subquery does not use LIMIT or the outer query does not
**        have a WHERE clause.
98417
98418
98419
98420
98421
98422
98423

98424
98425
98426
98427
98428
98429
98430
    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
      testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
      testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
      assert( pSub->pSrc!=0 );
      if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
       || (pSub1->pPrior && pSub1->op!=TK_ALL) 
       || pSub1->pSrc->nSrc<1

      ){
        return 0;
      }
      testcase( pSub1->pSrc->nSrc>1 );
    }

    /* Restriction 18. */







>







96393
96394
96395
96396
96397
96398
96399
96400
96401
96402
96403
96404
96405
96406
96407
    for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
      testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
      testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
      assert( pSub->pSrc!=0 );
      if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0
       || (pSub1->pPrior && pSub1->op!=TK_ALL) 
       || pSub1->pSrc->nSrc<1
       || pSub->pEList->nExpr!=pSub1->pEList->nExpr
      ){
        return 0;
      }
      testcase( pSub1->pSrc->nSrc>1 );
    }

    /* Restriction 18. */
98734
98735
98736
98737
98738
98739
98740
98741
98742
98743
98744
98745
98746
98747
98748
  }
  pTab = p->pSrc->a[0].pTab;
  pExpr = p->pEList->a[0].pExpr;
  assert( pTab && !pTab->pSelect && pExpr );

  if( IsVirtual(pTab) ) return 0;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( pAggInfo->nFunc==0 ) return 0;
  if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
  if( pExpr->flags&EP_Distinct ) return 0;

  return pTab;
}

/*







|







96711
96712
96713
96714
96715
96716
96717
96718
96719
96720
96721
96722
96723
96724
96725
  }
  pTab = p->pSrc->a[0].pTab;
  pExpr = p->pEList->a[0].pExpr;
  assert( pTab && !pTab->pSelect && pExpr );

  if( IsVirtual(pTab) ) return 0;
  if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
  if( NEVER(pAggInfo->nFunc==0) ) return 0;
  if( (pAggInfo->aFunc[0].pFunc->flags&SQLITE_FUNC_COUNT)==0 ) return 0;
  if( pExpr->flags&EP_Distinct ) return 0;

  return pTab;
}

/*
99106
99107
99108
99109
99110
99111
99112
99113
99114
99115
99116
99117
99118
99119
99120
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
#endif
}


/*
** This routine sets of a SELECT statement for processing.  The
** following is accomplished:
**
**     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
**     *  Ephemeral Table objects are created for all FROM-clause subqueries.
**     *  ON and USING clauses are shifted into WHERE statements
**     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
**     *  Identifiers in expression are matched to tables.







|







97083
97084
97085
97086
97087
97088
97089
97090
97091
97092
97093
97094
97095
97096
97097
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
#endif
}


/*
** This routine sets up a SELECT statement for processing.  The
** following is accomplished:
**
**     *  VDBE Cursor numbers are assigned to all FROM-clause terms.
**     *  Ephemeral Table objects are created for all FROM-clause subqueries.
**     *  ON and USING clauses are shifted into WHERE statements
**     *  Wildcards "*" and "TABLE.*" in result sets are expanded.
**     *  Identifiers in expression are matched to tables.
99138
99139
99140
99141
99142
99143
99144
99145

99146
99147
99148
99149
99150
99151
99152
}

/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This
** routine simply stores NULLs in all of those memory cells.

*/
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pFunc;
  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
    return;







|
>







97115
97116
97117
97118
97119
97120
97121
97122
97123
97124
97125
97126
97127
97128
97129
97130
}

/*
** Reset the aggregate accumulator.
**
** The aggregate accumulator is a set of memory cells that hold
** intermediate results while calculating an aggregate.  This
** routine generates code that stores NULLs in all of those memory
** cells.
*/
static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct AggInfo_func *pFunc;
  if( pAggInfo->nFunc+pAggInfo->nColumn==0 ){
    return;
99306
99307
99308
99309
99310
99311
99312
99313
99314
99315
99316
99317
99318
99319
99320
99321

99322
99323
99324
99325
99326
99327
99328
99329
99330
99331
99332
99333
99334
99335
99336
99337
99338
99339
99340
99341
99342
99343
99344
99345
99346
**     pDest->eDest    Result
**     ------------    -------------------------------------------
**     SRT_Output      Generate a row of output (using the OP_ResultRow
**                     opcode) for each row in the result set.
**
**     SRT_Mem         Only valid if the result is a single column.
**                     Store the first column of the first result row
**                     in register pDest->iParm then abandon the rest
**                     of the query.  This destination implies "LIMIT 1".
**
**     SRT_Set         The result must be a single column.  Store each
**                     row of result as the key in table pDest->iParm. 
**                     Apply the affinity pDest->affinity before storing
**                     results.  Used to implement "IN (SELECT ...)".
**
**     SRT_Union       Store results as a key in a temporary table pDest->iParm.

**
**     SRT_Except      Remove results from the temporary table pDest->iParm.
**
**     SRT_Table       Store results in temporary table pDest->iParm.
**                     This is like SRT_EphemTab except that the table
**                     is assumed to already be open.
**
**     SRT_EphemTab    Create an temporary table pDest->iParm and store
**                     the result there. The cursor is left open after
**                     returning.  This is like SRT_Table except that
**                     this destination uses OP_OpenEphemeral to create
**                     the table first.
**
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iParm.
**
**     SRT_Exists      Store a 1 in memory cell pDest->iParm if the result
**                     set is not empty.
**
**     SRT_Discard     Throw the results away.  This is used by SELECT
**                     statements within triggers whose only purpose is
**                     the side-effects of functions.
**
** This routine returns the number of errors.  If any errors are







|



|
|


|
>

|

|



|







|

|







97284
97285
97286
97287
97288
97289
97290
97291
97292
97293
97294
97295
97296
97297
97298
97299
97300
97301
97302
97303
97304
97305
97306
97307
97308
97309
97310
97311
97312
97313
97314
97315
97316
97317
97318
97319
97320
97321
97322
97323
97324
97325
**     pDest->eDest    Result
**     ------------    -------------------------------------------
**     SRT_Output      Generate a row of output (using the OP_ResultRow
**                     opcode) for each row in the result set.
**
**     SRT_Mem         Only valid if the result is a single column.
**                     Store the first column of the first result row
**                     in register pDest->iSDParm then abandon the rest
**                     of the query.  This destination implies "LIMIT 1".
**
**     SRT_Set         The result must be a single column.  Store each
**                     row of result as the key in table pDest->iSDParm. 
**                     Apply the affinity pDest->affSdst before storing
**                     results.  Used to implement "IN (SELECT ...)".
**
**     SRT_Union       Store results as a key in a temporary table 
**                     identified by pDest->iSDParm.
**
**     SRT_Except      Remove results from the temporary table pDest->iSDParm.
**
**     SRT_Table       Store results in temporary table pDest->iSDParm.
**                     This is like SRT_EphemTab except that the table
**                     is assumed to already be open.
**
**     SRT_EphemTab    Create an temporary table pDest->iSDParm and store
**                     the result there. The cursor is left open after
**                     returning.  This is like SRT_Table except that
**                     this destination uses OP_OpenEphemeral to create
**                     the table first.
**
**     SRT_Coroutine   Generate a co-routine that returns a new row of
**                     results each time it is invoked.  The entry point
**                     of the co-routine is stored in register pDest->iSDParm.
**
**     SRT_Exists      Store a 1 in memory cell pDest->iSDParm if the result
**                     set is not empty.
**
**     SRT_Discard     Throw the results away.  This is used by SELECT
**                     statements within triggers whose only purpose is
**                     the side-effects of functions.
**
** This routine returns the number of errors.  If any errors are
99576
99577
99578
99579
99580
99581
99582
99583
99584
99585
99586
99587
99588
99589
99590
  }else{
    addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);







|







97555
97556
97557
97558
97559
97560
97561
97562
97563
97564
97565
97566
97567
97568
97569
  }else{
    addrSortIndex = -1;
  }

  /* If the output is destined for a temporary table, open that table.
  */
  if( pDest->eDest==SRT_EphemTab ){
    sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
  }

  /* Set the limiter.
  */
  iEnd = sqlite3VdbeMakeLabel(v);
  p->nSelectRow = (double)LARGEST_INT64;
  computeLimitRegisters(pParse, p, iEnd);
99607
99608
99609
99610
99611
99612
99613
99614
99615
99616
99617
99618
99619
99620
99621
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    ExprList *pDist = (isDistinct ? p->pEList : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0);
    if( pWInfo==0 ) goto select_end;
    if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */







|







97586
97587
97588
97589
97590
97591
97592
97593
97594
97595
97596
97597
97598
97599
97600
  }

  /* Aggregate and non-aggregate queries are handled differently */
  if( !isAgg && pGroupBy==0 ){
    ExprList *pDist = (isDistinct ? p->pEList : 0);

    /* Begin the database scan. */
    pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pOrderBy, pDist, 0,0);
    if( pWInfo==0 ) goto select_end;
    if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut;

    /* If sorting index that was created by a prior OP_OpenEphemeral 
    ** instruction ended up not being needed, then change the OP_OpenEphemeral
    ** into an OP_Noop.
    */
99780
99781
99782
99783
99784
99785
99786
99787
99788
99789
99790
99791
99792
99793
99794

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;







|







97759
97760
97761
97762
97763
97764
97765
97766
97767
97768
97769
97770
97771
97772
97773

      /* Begin a loop that will extract all source rows in GROUP BY order.
      ** This might involve two separate loops with an OP_Sort in between, or
      ** it might be a single loop that uses an index to extract information
      ** in the right order to begin with.
      */
      sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
      pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pGroupBy, 0, 0, 0);
      if( pWInfo==0 ) goto select_end;
      if( pGroupBy==0 ){
        /* The optimizer is able to deliver rows in group by order so
        ** we do not have to sort.  The OP_OpenEphemeral table will be
        ** cancelled later because we still need to use the pKeyInfo
        */
        pGroupBy = p->pGroupBy;
100049
100050
100051
100052
100053
100054
100055
100056
100057
100058
100059
100060
100061
100062
100063
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        resetAccumulator(pParse, &sAggInfo);
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax, 0, flag);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        if( !pMinMax && flag ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);







|







98028
98029
98030
98031
98032
98033
98034
98035
98036
98037
98038
98039
98040
98041
98042
        }
  
        /* This case runs if the aggregate has no GROUP BY clause.  The
        ** processing is much simpler since there is only a single row
        ** of output.
        */
        resetAccumulator(pParse, &sAggInfo);
        pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, &pMinMax,0,flag,0);
        if( pWInfo==0 ){
          sqlite3ExprListDelete(db, pDel);
          goto select_end;
        }
        updateAccumulator(pParse, &sAggInfo);
        if( !pMinMax && flag ){
          sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak);
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
    if( pName2->n>0 ){
      sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
      goto trigger_cleanup;
    }
    iDb = 1;
    pName = pName1;
  }else{
    /* Figure out the db that the the trigger will be created in */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ){
      goto trigger_cleanup;
    }
  }
  if( !pTableName || db->mallocFailed ){
    goto trigger_cleanup;







|







98500
98501
98502
98503
98504
98505
98506
98507
98508
98509
98510
98511
98512
98513
98514
    if( pName2->n>0 ){
      sqlite3ErrorMsg(pParse, "temporary trigger may not have qualified name");
      goto trigger_cleanup;
    }
    iDb = 1;
    pName = pName1;
  }else{
    /* Figure out the db that the trigger will be created in */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
    if( iDb<0 ){
      goto trigger_cleanup;
    }
  }
  if( !pTableName || db->mallocFailed ){
    goto trigger_cleanup;
101849
101850
101851
101852
101853
101854
101855
101856
101857
101858
101859
101860
101861
101862
101863
    goto update_cleanup;
  }

  /* Begin the database scan
  */
  sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = pWInfo->okOnePass;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);







|







99828
99829
99830
99831
99832
99833
99834
99835
99836
99837
99838
99839
99840
99841
99842
    goto update_cleanup;
  }

  /* Begin the database scan
  */
  sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid);
  pWInfo = sqlite3WhereBegin(
      pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0
  );
  if( pWInfo==0 ) goto update_cleanup;
  okOnePass = pWInfo->okOnePass;

  /* Remember the rowid of every item to be updated.
  */
  sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid);
102690
102691
102692
102693
102694
102695
102696
102697
102698
102699
102700
102701
102702
102703
102704
** reaches zero, call the xDisconnect() method to delete the object.
*/
SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
  sqlite3 *db = pVTab->db;

  assert( db );
  assert( pVTab->nRef>0 );
  assert( sqlite3SafetyCheckOk(db) );

  pVTab->nRef--;
  if( pVTab->nRef==0 ){
    sqlite3_vtab *p = pVTab->pVtab;
    if( p ){
      p->pModule->xDisconnect(p);
    }







|







100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
** reaches zero, call the xDisconnect() method to delete the object.
*/
SQLITE_PRIVATE void sqlite3VtabUnlock(VTable *pVTab){
  sqlite3 *db = pVTab->db;

  assert( db );
  assert( pVTab->nRef>0 );
  assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE );

  pVTab->nRef--;
  if( pVTab->nRef==0 ){
    sqlite3_vtab *p = pVTab->pVtab;
    if( p ){
      p->pModule->xDisconnect(p);
    }
107278
107279
107280
107281
107282
107283
107284
107285
107286
107287
107288
107289
107290
107291
107292
  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
    if( NEVER(pTerm==0) ) break;
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){







|







105257
105258
105259
105260
105261
105262
105263
105264
105265
105266
105267
105268
105269
105270
105271
  /* Evaluate the equality constraints
  */
  assert( pIdx->nColumn>=nEq );
  for(j=0; j<nEq; j++){
    int r1;
    int k = pIdx->aiColumn[j];
    pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
    if( pTerm==0 ) break;
    /* The following true for indices with redundant columns. 
    ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
    testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
    testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */
    r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
    if( r1!=regBase+j ){
      if( nReg==1 ){
107953
107954
107955
107956
107957
107958
107959


107960
107961
107962
107963
107964
107965
107966
107967
107968
107969
107970
107971
107972
107973
107974
107975
107976
107977
107978
107979
107980
107981
107982
107983
107984
107985
    **          Return     2                # Jump back to the Gosub
    **
    **       B: <after the loop>
    **
    */
    WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
    SrcList *pOrTab;       /* Shortened table list or OR-clause generation */



    int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
    int regRowset = 0;                        /* Register for RowSet object */
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator==WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList ni pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
    ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
    */
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;







>
>


















|







105932
105933
105934
105935
105936
105937
105938
105939
105940
105941
105942
105943
105944
105945
105946
105947
105948
105949
105950
105951
105952
105953
105954
105955
105956
105957
105958
105959
105960
105961
105962
105963
105964
105965
105966
    **          Return     2                # Jump back to the Gosub
    **
    **       B: <after the loop>
    **
    */
    WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
    SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
    Index *pCov = 0;             /* Potential covering index (or NULL) */
    int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */

    int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
    int regRowset = 0;                        /* Register for RowSet object */
    int regRowid = 0;                         /* Register holding rowid */
    int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
    int iRetInit;                             /* Address of regReturn init */
    int untestedTerms = 0;             /* Some terms not completely tested */
    int ii;                            /* Loop counter */
    Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
   
    pTerm = pLevel->plan.u.pTerm;
    assert( pTerm!=0 );
    assert( pTerm->eOperator==WO_OR );
    assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
    pOrWc = &pTerm->u.pOrInfo->wc;
    pLevel->op = OP_Return;
    pLevel->p1 = regReturn;

    /* Set up a new SrcList in pOrTab containing the table being scanned
    ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
    ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
    */
    if( pWInfo->nLevel>1 ){
      int nNotReady;                 /* The number of notReady tables */
      struct SrcList_item *origSrc;     /* Original list of tables */
      nNotReady = pWInfo->nLevel - iLevel - 1;
108048
108049
108050
108051
108052
108053
108054
108055

108056

108057
108058
108059
108060
108061
108062
108063
108064
108065
108066
108067
108068
108069
108070
108071
108072
108073
108074
108075























108076
108077
108078
108079
108080
108081


108082
108083
108084
108085
108086
108087
108088
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY);

        if( pSubWInfo ){

          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
          sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);

          /* The pSubWInfo->untestedTerms flag means that this OR term
          ** contained one or more AND term from a notReady table.  The
          ** terms from the notReady table could not be tested and will
          ** need to be tested later.
          */
          if( pSubWInfo->untestedTerms ) untestedTerms = 1;
























          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }


    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(pParse->db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);







|
>

>



















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






>
>







106029
106030
106031
106032
106033
106034
106035
106036
106037
106038
106039
106040
106041
106042
106043
106044
106045
106046
106047
106048
106049
106050
106051
106052
106053
106054
106055
106056
106057
106058
106059
106060
106061
106062
106063
106064
106065
106066
106067
106068
106069
106070
106071
106072
106073
106074
106075
106076
106077
106078
106079
106080
106081
106082
106083
106084
106085
106086
106087
106088
106089
106090
106091
106092
106093
106094
106095
106096
        if( pAndExpr ){
          pAndExpr->pLeft = pOrExpr;
          pOrExpr = pAndExpr;
        }
        /* Loop through table entries that match term pOrTerm. */
        pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
                        WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
                        WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
        assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed );
        if( pSubWInfo ){
          WhereLevel *pLvl;
          explainOneScan(
              pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
          );
          if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
            int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
            int r;
            r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 
                                         regRowid, 0);
            sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset,
                                 sqlite3VdbeCurrentAddr(v)+2, r, iSet);
          }
          sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);

          /* The pSubWInfo->untestedTerms flag means that this OR term
          ** contained one or more AND term from a notReady table.  The
          ** terms from the notReady table could not be tested and will
          ** need to be tested later.
          */
          if( pSubWInfo->untestedTerms ) untestedTerms = 1;

          /* If all of the OR-connected terms are optimized using the same
          ** index, and the index is opened using the same cursor number
          ** by each call to sqlite3WhereBegin() made by this loop, it may
          ** be possible to use that index as a covering index.
          **
          ** If the call to sqlite3WhereBegin() above resulted in a scan that
          ** uses an index, and this is either the first OR-connected term
          ** processed or the index is the same as that used by all previous
          ** terms, set pCov to the candidate covering index. Otherwise, set 
          ** pCov to NULL to indicate that no candidate covering index will 
          ** be available.
          */
          pLvl = &pSubWInfo->a[0];
          if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0
           && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0
           && (ii==0 || pLvl->plan.u.pIdx==pCov)
          ){
            assert( pLvl->iIdxCur==iCovCur );
            pCov = pLvl->plan.u.pIdx;
          }else{
            pCov = 0;
          }

          /* Finish the loop through table entries that match term pOrTerm. */
          sqlite3WhereEnd(pSubWInfo);
        }
      }
    }
    pLevel->u.pCovidx = pCov;
    pLevel->iIdxCur = iCovCur;
    if( pAndExpr ){
      pAndExpr->pLeft = 0;
      sqlite3ExprDelete(pParse->db, pAndExpr);
    }
    sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
    sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
    sqlite3VdbeResolveLabel(v, iLoopBody);
108292
108293
108294
108295
108296
108297
108298
108299

108300
108301
108302
108303
108304
108305
108306
*/
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
  u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */

){
  int i;                     /* Loop counter */
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */







|
>







106300
106301
106302
106303
106304
106305
106306
106307
106308
106309
106310
106311
106312
106313
106314
106315
*/
SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(
  Parse *pParse,        /* The parser context */
  SrcList *pTabList,    /* A list of all tables to be scanned */
  Expr *pWhere,         /* The WHERE clause */
  ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
  ExprList *pDistinct,  /* The select-list for DISTINCT queries - or NULL */
  u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
  int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
){
  int i;                     /* Loop counter */
  int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
  int nTabList;              /* Number of elements in pTabList */
  WhereInfo *pWInfo;         /* Will become the return value of this function */
  Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
  Bitmask notReady;          /* Cursors that are not yet positioned */
108612
108613
108614
108615
108616
108617
108618





108619

108620
108621
108622
108623
108624
108625
108626
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }
    andFlags &= bestPlan.plan.wsFlags;
    pLevel->plan = bestPlan.plan;
    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){





      pLevel->iIdxCur = pParse->nTab++;

    }else{
      pLevel->iIdxCur = -1;
    }
    notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
    pLevel->iFrom = (u8)bestJ;
    if( bestPlan.plan.nRow>=(double)1 ){
      pParse->nQueryLoop *= bestPlan.plan.nRow;







>
>
>
>
>
|
>







106621
106622
106623
106624
106625
106626
106627
106628
106629
106630
106631
106632
106633
106634
106635
106636
106637
106638
106639
106640
106641
      pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
    }
    andFlags &= bestPlan.plan.wsFlags;
    pLevel->plan = bestPlan.plan;
    testcase( bestPlan.plan.wsFlags & WHERE_INDEXED );
    testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX );
    if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){
      if( (wctrlFlags & WHERE_ONETABLE_ONLY) 
       && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0 
      ){
        pLevel->iIdxCur = iIdxCur;
      }else{
        pLevel->iIdxCur = pParse->nTab++;
      }
    }else{
      pLevel->iIdxCur = -1;
    }
    notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
    pLevel->iFrom = (u8)bestJ;
    if( bestPlan.plan.nRow>=(double)1 ){
      pParse->nQueryLoop *= bestPlan.plan.nRow;
108713
108714
108715
108716
108717
108718
108719
108720
108721
108722
108723
108724
108725
108726
108727
108728
108729
108730
    if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
      constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
    }else
#endif
    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
      Index *pIx = pLevel->plan.u.pIdx;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      int iIdxCur = pLevel->iIdxCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIdxCur>=0 );
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      VdbeComment((v, "%s", pIx->zName));
    }
    sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);







|

|
|







106728
106729
106730
106731
106732
106733
106734
106735
106736
106737
106738
106739
106740
106741
106742
106743
106744
106745
    if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){
      constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel);
    }else
#endif
    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
      Index *pIx = pLevel->plan.u.pIdx;
      KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
      int iIndexCur = pLevel->iIdxCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb,
                        (char*)pKey, P4_KEYINFO_HANDOFF);
      VdbeComment((v, "%s", pIx->zName));
    }
    sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
108864
108865
108866
108867
108868
108869
108870

108871
108872
108873
108874
108875
108876
108877
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){

    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){







>







106879
106880
106881
106882
106883
106884
106885
106886
106887
106888
106889
106890
106891
106892
106893
  */
  sqlite3VdbeResolveLabel(v, pWInfo->iBreak);

  /* Close all of the cursors that were opened by sqlite3WhereBegin.
  */
  assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc );
  for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
    Index *pIdx = 0;
    struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
    Table *pTab = pTabItem->pTab;
    assert( pTab!=0 );
    if( (pTab->tabFlags & TF_Ephemeral)==0
     && pTab->pSelect==0
     && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
    ){
108893
108894
108895
108896
108897
108898
108899
108900





108901
108902
108903
108904
108905
108906
108907
108908
108909
108910
108911
108912
    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){





      int k, j, last;
      VdbeOp *pOp;
      Index *pIdx = pLevel->plan.u.pIdx;

      assert( pIdx!=0 );
      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);
      for(k=pWInfo->iTop; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){







|
>
>
>
>
>


<

<







106909
106910
106911
106912
106913
106914
106915
106916
106917
106918
106919
106920
106921
106922
106923

106924

106925
106926
106927
106928
106929
106930
106931
    ** 
    ** Calls to the code generator in between sqlite3WhereBegin and
    ** sqlite3WhereEnd will have created code that references the table
    ** directly.  This loop scans all that code looking for opcodes
    ** that reference the table and converts them into opcodes that
    ** reference the index.
    */
    if( pLevel->plan.wsFlags & WHERE_INDEXED ){
      pIdx = pLevel->plan.u.pIdx;
    }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
      pIdx = pLevel->u.pCovidx;
    }
    if( pIdx && !db->mallocFailed){
      int k, j, last;
      VdbeOp *pOp;



      pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
      last = sqlite3VdbeCurrentAddr(v);
      for(k=pWInfo->iTop; k<last; k++, pOp++){
        if( pOp->p1!=pLevel->iTabCur ) continue;
        if( pOp->opcode==OP_Column ){
          for(j=0; j<pIdx->nColumn; j++){
            if( pOp->p2==pIdx->aiColumn[j] ){
114345
114346
114347
114348
114349
114350
114351















114352
114353
114354
114355
114356
114357
114358
114359
114360
114361
114362
114363
114364
114365
114366
114367
114368
114369
114370
114371
114372
114373
114374
114375
114376
114377
114378
114379

114380

114381
114382
114383
114384
114385
114386
114387





114388
114389











114390
114391








114392


114393





114394
114395
114396
114397





114398
114399
114400
114401
114402
114403
114404
    }
  }
  sqlite3BtreeLeaveAll(db);
#else
  UNUSED_PARAMETER(db);
#endif
}
















/*
** Close an existing SQLite database
*/
SQLITE_API int sqlite3_close(sqlite3 *db){
  HashElem *i;                    /* Hash table iterator */
  int j;

  if( !db ){
    return SQLITE_OK;
  }
  if( !sqlite3SafetyCheckSickOrOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  sqlite3_mutex_enter(db->mutex);

  /* Force xDisconnect calls on all virtual tables */
  disconnectAllVtab(db);

  /* If a transaction is open, the disconnectAllVtab() call above
  ** will not have called the xDisconnect() method on any virtual
  ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
  ** call will do so. We need to do this before the check for active
  ** SQL statements below, as the v-table implementation may be storing
  ** some prepared statements internally.
  */
  sqlite3VtabRollback(db);


  /* If there are any outstanding VMs, return SQLITE_BUSY. */

  if( db->pVdbe ){
    sqlite3Error(db, SQLITE_BUSY, 
        "unable to close due to unfinalised statements");
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_BUSY;
  }
  assert( sqlite3SafetyCheckSickOrOk(db) );






  for(j=0; j<db->nDb; j++){











    Btree *pBt = db->aDb[j].pBt;
    if( pBt && sqlite3BtreeIsInBackup(pBt) ){








      sqlite3Error(db, SQLITE_BUSY, 


          "unable to close due to unfinished backup operation");





      sqlite3_mutex_leave(db->mutex);
      return SQLITE_BUSY;
    }
  }






  /* Free any outstanding Savepoint structures. */
  sqlite3CloseSavepoints(db);

  /* Close all database connections */
  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>




<
<
<
|




















>
|
>
|
|
|



|
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
>
>
>
|
|
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
|
|
|
|
>
>
>
>
>







112364
112365
112366
112367
112368
112369
112370
112371
112372
112373
112374
112375
112376
112377
112378
112379
112380
112381
112382
112383
112384
112385
112386
112387
112388
112389



112390
112391
112392
112393
112394
112395
112396
112397
112398
112399
112400
112401
112402
112403
112404
112405
112406
112407
112408
112409
112410
112411
112412
112413
112414
112415
112416
112417
112418
112419
112420
112421
112422
112423
112424
112425
112426
112427
112428
112429
112430
112431
112432
112433
112434
112435
112436
112437
112438
112439
112440
112441
112442
112443
112444
112445
112446
112447
112448
112449
112450
112451
112452
112453
112454
112455
112456
112457
112458
112459
112460
112461
112462
112463
112464
112465
112466
112467
112468
112469
112470
112471
112472
112473
    }
  }
  sqlite3BtreeLeaveAll(db);
#else
  UNUSED_PARAMETER(db);
#endif
}

/*
** Return TRUE if database connection db has unfinalized prepared
** statements or unfinished sqlite3_backup objects.  
*/
static int connectionIsBusy(sqlite3 *db){
  int j;
  assert( sqlite3_mutex_held(db->mutex) );
  if( db->pVdbe ) return 1;
  for(j=0; j<db->nDb; j++){
    Btree *pBt = db->aDb[j].pBt;
    if( pBt && sqlite3BtreeIsInBackup(pBt) ) return 1;
  }
  return 0;
}

/*
** Close an existing SQLite database
*/



static int sqlite3Close(sqlite3 *db, int forceZombie){
  if( !db ){
    return SQLITE_OK;
  }
  if( !sqlite3SafetyCheckSickOrOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  sqlite3_mutex_enter(db->mutex);

  /* Force xDisconnect calls on all virtual tables */
  disconnectAllVtab(db);

  /* If a transaction is open, the disconnectAllVtab() call above
  ** will not have called the xDisconnect() method on any virtual
  ** tables in the db->aVTrans[] array. The following sqlite3VtabRollback()
  ** call will do so. We need to do this before the check for active
  ** SQL statements below, as the v-table implementation may be storing
  ** some prepared statements internally.
  */
  sqlite3VtabRollback(db);

  /* Legacy behavior (sqlite3_close() behavior) is to return
  ** SQLITE_BUSY if the connection can not be closed immediately.
  */
  if( !forceZombie && connectionIsBusy(db) ){
    sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized "
       "statements or unfinished backups");
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_BUSY;
  }

  /* Convert the connection into a zombie and then close it.
  */
  db->magic = SQLITE_MAGIC_ZOMBIE;
  sqlite3LeaveMutexAndCloseZombie(db);
  return SQLITE_OK;
}

/*
** Two variations on the public interface for closing a database
** connection. The sqlite3_close() version returns SQLITE_BUSY and
** leaves the connection option if there are unfinalized prepared
** statements or unfinished sqlite3_backups.  The sqlite3_close_v2()
** version forces the connection to become a zombie if there are
** unclosed resources, and arranges for deallocation when the last
** prepare statement or sqlite3_backup closes.
*/
SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }


/*
** Close the mutex on database connection db.
**
** Furthermore, if database connection db is a zombie (meaning that there
** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
** every sqlite3_stmt has now been finalized and every sqlite3_backup has
** finished, then free all resources.
*/
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3 *db){
  HashElem *i;                    /* Hash table iterator */
  int j;

  /* If there are outstanding sqlite3_stmt or sqlite3_backup objects
  ** or if the connection has not yet been closed by sqlite3_close_v2(),
  ** then just leave the mutex and return.
  */
  if( db->magic!=SQLITE_MAGIC_ZOMBIE || connectionIsBusy(db) ){
    sqlite3_mutex_leave(db->mutex);
    return;
  }

  /* If we reach this point, it means that the database connection has
  ** closed all sqlite3_stmt and sqlite3_backup objects and has been
  ** pased to sqlite3_close (meaning that it is a zombie).  Therefore,
  ** go ahead and free all resources.
  */

  /* Free any outstanding Savepoint structures. */
  sqlite3CloseSavepoints(db);

  /* Close all database connections */
  for(j=0; j<db->nDb; j++){
    struct Db *pDb = &db->aDb[j];
114479
114480
114481
114482
114483
114484
114485
114486
114487
114488
114489
114490
114491
114492
114493
  db->magic = SQLITE_MAGIC_CLOSED;
  sqlite3_mutex_free(db->mutex);
  assert( db->lookaside.nOut==0 );  /* Fails on a lookaside memory leak */
  if( db->lookaside.bMalloced ){
    sqlite3_free(db->lookaside.pStart);
  }
  sqlite3_free(db);
  return SQLITE_OK;
}

/*
** Rollback all database files.  If tripCode is not SQLITE_OK, then
** any open cursors are invalidated ("tripped" - as in "tripping a circuit
** breaker") and made to return tripCode if there are any further
** attempts to use that cursor.







<







112548
112549
112550
112551
112552
112553
112554

112555
112556
112557
112558
112559
112560
112561
  db->magic = SQLITE_MAGIC_CLOSED;
  sqlite3_mutex_free(db->mutex);
  assert( db->lookaside.nOut==0 );  /* Fails on a lookaside memory leak */
  if( db->lookaside.bMalloced ){
    sqlite3_free(db->lookaside.pStart);
  }
  sqlite3_free(db);

}

/*
** Rollback all database files.  If tripCode is not SQLITE_OK, then
** any open cursors are invalidated ("tripped" - as in "tripping a circuit
** breaker") and made to return tripCode if there are any further
** attempts to use that cursor.
118023
118024
118025
118026
118027
118028
118029

118030
118031
118032
118033









118034
118035
118036
118037
118038
118039
118040
SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *);
SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);

SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);


SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);









SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *);
SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *);

/* Special values interpreted by sqlite3SegReaderCursor() */
#define FTS3_SEGCURSOR_PENDING        -1
#define FTS3_SEGCURSOR_ALL            -2








>




>
>
>
>
>
>
>
>
>







116091
116092
116093
116094
116095
116096
116097
116098
116099
116100
116101
116102
116103
116104
116105
116106
116107
116108
116109
116110
116111
116112
116113
116114
116115
116116
116117
116118
SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **);
SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *);
SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*);

SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **);
SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **);

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *);
SQLITE_PRIVATE int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int);
SQLITE_PRIVATE int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *);
SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *);
SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);
#else
# define sqlite3Fts3FreeDeferredTokens(x)
# define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK
# define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK
# define sqlite3Fts3FreeDeferredDoclists(x)
# define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK
#endif

SQLITE_PRIVATE void sqlite3Fts3SegmentsClose(Fts3Table *);
SQLITE_PRIVATE int sqlite3Fts3MaxLevel(Fts3Table *, int *);

/* Special values interpreted by sqlite3SegReaderCursor() */
#define FTS3_SEGCURSOR_PENDING        -1
#define FTS3_SEGCURSOR_ALL            -2

118135
118136
118137
118138
118139
118140
118141
118142
118143
118144
118145
118146
118147
118148
118149
118150
    Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
    Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **); 
SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);

SQLITE_PRIVATE int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *);

/* fts3_unicode2.c (functions generated by parsing unicode text files) */
#ifdef SQLITE_ENABLE_FTS4_UNICODE61
SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int);
SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int);
SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int);
#endif








<
<







116213
116214
116215
116216
116217
116218
116219


116220
116221
116222
116223
116224
116225
116226
    Fts3Table*, Fts3MultiSegReader*, int, const char*, int);
SQLITE_PRIVATE int sqlite3Fts3MsrIncrNext(
    Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *);
SQLITE_PRIVATE int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **); 
SQLITE_PRIVATE int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *);
SQLITE_PRIVATE int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr);



/* fts3_unicode2.c (functions generated by parsing unicode text files) */
#ifdef SQLITE_ENABLE_FTS4_UNICODE61
SQLITE_PRIVATE int sqlite3FtsUnicodeFold(int, int);
SQLITE_PRIVATE int sqlite3FtsUnicodeIsalnum(int);
SQLITE_PRIVATE int sqlite3FtsUnicodeIsdiacritic(int);
#endif

122294
122295
122296
122297
122298
122299
122300

122301
122302
122303
122304
122305
122306
122307
  int nToken = 0;
  int nOr = 0;

  /* Allocate a MultiSegReader for each token in the expression. */
  fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);

  /* Determine which, if any, tokens in the expression should be deferred. */

  if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
    Fts3TokenAndCost *aTC;
    Fts3Expr **apOr;
    aTC = (Fts3TokenAndCost *)sqlite3_malloc(
        sizeof(Fts3TokenAndCost) * nToken
      + sizeof(Fts3Expr *) * nOr * 2
    );







>







120370
120371
120372
120373
120374
120375
120376
120377
120378
120379
120380
120381
120382
120383
120384
  int nToken = 0;
  int nOr = 0;

  /* Allocate a MultiSegReader for each token in the expression. */
  fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc);

  /* Determine which, if any, tokens in the expression should be deferred. */
#ifndef SQLITE_DISABLE_FTS4_DEFERRED
  if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){
    Fts3TokenAndCost *aTC;
    Fts3Expr **apOr;
    aTC = (Fts3TokenAndCost *)sqlite3_malloc(
        sizeof(Fts3TokenAndCost) * nToken
      + sizeof(Fts3Expr *) * nOr * 2
    );
122324
122325
122326
122327
122328
122329
122330

122331
122332
122333
122334
122335
122336
122337
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }

      sqlite3_free(aTC);
    }
  }


  fts3EvalStartReaders(pCsr, pCsr->pExpr, 1, &rc);
  return rc;
}

/*
** Invalidate the current position list for phrase pPhrase.







>







120401
120402
120403
120404
120405
120406
120407
120408
120409
120410
120411
120412
120413
120414
120415
          rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken);
        }
      }

      sqlite3_free(aTC);
    }
  }
#endif

  fts3EvalStartReaders(pCsr, pCsr->pExpr, 1, &rc);
  return rc;
}

/*
** Invalidate the current position list for phrase pPhrase.
122707
122708
122709
122710
122711
122712
122713

122714
122715
122716
122717
122718
122719
122720
122721
122722
122723
122724
122725


122726
122727
122728
122729
122730
122731
122732
        bHit = (
            fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
         && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
        );
        break;

      default: {

        if( pCsr->pDeferred 
         && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
        ){
          Fts3Phrase *pPhrase = pExpr->pPhrase;
          assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
          if( pExpr->bDeferred ){
            fts3EvalInvalidatePoslist(pPhrase);
          }
          *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
          bHit = (pPhrase->doclist.pList!=0);
          pExpr->iDocid = pCsr->iPrevId;
        }else{


          bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
        }
        break;
      }
    }
  }
  return bHit;







>











|
>
>







120785
120786
120787
120788
120789
120790
120791
120792
120793
120794
120795
120796
120797
120798
120799
120800
120801
120802
120803
120804
120805
120806
120807
120808
120809
120810
120811
120812
120813
        bHit = (
            fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc)
         && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc)
        );
        break;

      default: {
#ifndef SQLITE_DISABLE_FTS4_DEFERRED
        if( pCsr->pDeferred 
         && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred)
        ){
          Fts3Phrase *pPhrase = pExpr->pPhrase;
          assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 );
          if( pExpr->bDeferred ){
            fts3EvalInvalidatePoslist(pPhrase);
          }
          *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase);
          bHit = (pPhrase->doclist.pList!=0);
          pExpr->iDocid = pCsr->iPrevId;
        }else
#endif
        {
          bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId);
        }
        break;
      }
    }
  }
  return bHit;
129417
129418
129419
129420
129421
129422
129423
129424
129425
129426
129427
129428
129429
129430
129431
  assert( iIndex>=0 && iIndex<p->nIndex );

  rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
  if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;

  if( iLevel==FTS3_SEGCURSOR_ALL ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the the numerically 
    ** greatest segment level currently present in the database for this
    ** index. The idx of the new segment is always 0.  */
    if( csr.nSegment==1 ){
      rc = SQLITE_DONE;
      goto finished;
    }
    rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iNewLevel);







|







127498
127499
127500
127501
127502
127503
127504
127505
127506
127507
127508
127509
127510
127511
127512
  assert( iIndex>=0 && iIndex<p->nIndex );

  rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
  if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;

  if( iLevel==FTS3_SEGCURSOR_ALL ){
    /* This call is to merge all segments in the database to a single
    ** segment. The level of the new segment is equal to the numerically
    ** greatest segment level currently present in the database for this
    ** index. The idx of the new segment is always 0.  */
    if( csr.nSegment==1 ){
      rc = SQLITE_DONE;
      goto finished;
    }
    rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iNewLevel);
130047
130048
130049
130050
130051
130052
130053
130054
130055
130056
130057
130058
130059
130060
130061
        memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
        pBlk->n += nSuffix;

        memcpy(pNode->key.a, zTerm, nTerm);
        pNode->key.n = nTerm;
      }
    }else{
      /* Otherwise, flush the the current node of layer iLayer to disk.
      ** Then allocate a new, empty sibling node. The key will be written
      ** into the parent of this node. */
      rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);

      assert( pNode->block.nAlloc>=p->nNodeSize );
      pNode->block.a[0] = (char)iLayer;
      pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);







|







128128
128129
128130
128131
128132
128133
128134
128135
128136
128137
128138
128139
128140
128141
128142
        memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
        pBlk->n += nSuffix;

        memcpy(pNode->key.a, zTerm, nTerm);
        pNode->key.n = nTerm;
      }
    }else{
      /* Otherwise, flush the current node of layer iLayer to disk.
      ** Then allocate a new, empty sibling node. The key will be written
      ** into the parent of this node. */
      rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);

      assert( pNode->block.nAlloc>=p->nNodeSize );
      pNode->block.a[0] = (char)iLayer;
      pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
131494
131495
131496
131497
131498
131499
131500

131501
131502
131503
131504
131505
131506
131507
  }else{
    rc = SQLITE_ERROR;
  }

  return rc;
}


/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){







>







129575
129576
129577
129578
129579
129580
129581
129582
129583
129584
129585
129586
129587
129588
129589
  }else{
    rc = SQLITE_ERROR;
  }

  return rc;
}

#ifndef SQLITE_DISABLE_FTS4_DEFERRED
/*
** Delete all cached deferred doclists. Deferred doclists are cached
** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
*/
SQLITE_PRIVATE void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
  Fts3DeferredToken *pDef;
  for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
131631
131632
131633
131634
131635
131636
131637

131638
131639
131640
131641
131642
131643
131644
  pCsr->pDeferred = pDeferred;

  assert( pToken->pDeferred==0 );
  pToken->pDeferred = pDeferred;

  return SQLITE_OK;
}


/*
** SQLite value pRowid contains the rowid of a row that may or may not be
** present in the FTS3 table. If it is, delete it and adjust the contents
** of subsiduary data structures accordingly.
*/
static int fts3DeleteByRowid(







>







129713
129714
129715
129716
129717
129718
129719
129720
129721
129722
129723
129724
129725
129726
129727
  pCsr->pDeferred = pDeferred;

  assert( pToken->pDeferred==0 );
  pToken->pDeferred = pDeferred;

  return SQLITE_OK;
}
#endif

/*
** SQLite value pRowid contains the rowid of a row that may or may not be
** present in the FTS3 table. If it is, delete it and adjust the contents
** of subsiduary data structures accordingly.
*/
static int fts3DeleteByRowid(
133895
133896
133897
133898
133899
133900
133901
133902
133903
133904
133905
133906
133907
133908
133909
        iLo = iTest+1;
      }else{
        iHi = iTest-1;
      }
    }
    assert( aEntry[0]<key );
    assert( key>=aEntry[iRes] );
    return (c >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
  }
  return 1;
}


/*
** If the argument is a codepoint corresponding to a lowercase letter







|







131978
131979
131980
131981
131982
131983
131984
131985
131986
131987
131988
131989
131990
131991
131992
        iLo = iTest+1;
      }else{
        iHi = iTest-1;
      }
    }
    assert( aEntry[0]<key );
    assert( key>=aEntry[iRes] );
    return (((unsigned int)c) >= ((aEntry[iRes]>>10) + (aEntry[iRes]&0x3FF)));
  }
  return 1;
}


/*
** If the argument is a codepoint corresponding to a lowercase letter
138175
138176
138177
138178
138179
138180
138181
138182
138183
138184
138185
138186
138187
138188
138189
    iEnd = ubrk_next(pCsr->pIter);
    if( iEnd==UBRK_DONE ){
      return SQLITE_DONE;
    }

    while( iStart<iEnd ){
      int iWhite = iStart;
      U8_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
      if( u_isspace(c) ){
        iStart = iWhite;
      }else{
        break;
      }
    }
    assert(iStart<=iEnd);







|







136258
136259
136260
136261
136262
136263
136264
136265
136266
136267
136268
136269
136270
136271
136272
    iEnd = ubrk_next(pCsr->pIter);
    if( iEnd==UBRK_DONE ){
      return SQLITE_DONE;
    }

    while( iStart<iEnd ){
      int iWhite = iStart;
      U16_NEXT(pCsr->aChar, iWhite, pCsr->nChar, c);
      if( u_isspace(c) ){
        iStart = iWhite;
      }else{
        break;
      }
    }
    assert(iStart<=iEnd);
Changes to src/sqlite3.h.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.13"
#define SQLITE_VERSION_NUMBER 3007013
#define SQLITE_SOURCE_ID      "2012-06-09 18:52:29 0ae0ce630a2e11f81dca50a9cfb04c4a41c03b2d"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.7.14"
#define SQLITE_VERSION_NUMBER 3007014
#define SQLITE_SOURCE_ID      "2012-08-30 11:22:16 59194311543b95c2aeebe2aba83da3c29b7c6460"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
215
216
217
218
219
220
221

222
223
224
225
226
227
228
229
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]

** is its destructor.  There are many other interfaces (such as
** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on an
** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;

/*







>
|







215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
** pointer as an object.  The [sqlite3_open()], [sqlite3_open16()], and
** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
** and [sqlite3_close_v2()] are its destructors.  There are many other
** interfaces (such as
** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
** [sqlite3_busy_timeout()] to name but three) that are methods on an
** sqlite3 object.
*/
typedef struct sqlite3 sqlite3;

/*
262
263
264
265
266
267
268

269
270
271

272











273
274

275
276
277
278


279
280
281
282
283

284
285
286
287
288
289
290

291
292
293
294
295
296
297
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif

/*
** CAPI3REF: Closing A Database Connection
**

** ^The sqlite3_close() routine is the destructor for the [sqlite3] object.
** ^Calls to sqlite3_close() return SQLITE_OK if the [sqlite3] object is
** successfully destroyed and all associated resources are deallocated.

**











** Applications must [sqlite3_finalize | finalize] all [prepared statements]
** and [sqlite3_blob_close | close] all [BLOB handles] associated with

** the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close() is called on a [database connection] that still has
** outstanding [prepared statements] or [BLOB handles], then it returns
** SQLITE_BUSY.


**
** ^If [sqlite3_close()] is invoked while a transaction is open,
** the transaction is automatically rolled back.
**
** The C parameter to [sqlite3_close(C)] must be either a NULL

** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() with a NULL pointer argument is a 
** harmless no-op.
*/
SQLITE_API int sqlite3_close(sqlite3 *);


/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);







>
|
|
|
>

>
>
>
>
>
>
>
>
>
>
>
|
|
>
|

|
|
>
>

|


|
>



|
|

|
>







263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
#ifdef SQLITE_OMIT_FLOATING_POINT
# define double sqlite3_int64
#endif

/*
** CAPI3REF: Closing A Database Connection
**
** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
** for the [sqlite3] object.
** ^Calls to sqlite3_close() and sqlite3_close_v2() return SQLITE_OK if
** the [sqlite3] object is successfully destroyed and all associated
** resources are deallocated.
**
** ^If the database connection is associated with unfinalized prepared
** statements or unfinished sqlite3_backup objects then sqlite3_close()
** will leave the database connection open and return [SQLITE_BUSY].
** ^If sqlite3_close_v2() is called with unfinalized prepared statements
** and unfinished sqlite3_backups, then the database connection becomes
** an unusable "zombie" which will automatically be deallocated when the
** last prepared statement is finalized or the last sqlite3_backup is
** finished.  The sqlite3_close_v2() interface is intended for use with
** host languages that are garbage collected, and where the order in which
** destructors are called is arbitrary.
**
** Applications should [sqlite3_finalize | finalize] all [prepared statements],
** [sqlite3_blob_close | close] all [BLOB handles], and 
** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
** with the [sqlite3] object prior to attempting to close the object.  ^If
** sqlite3_close() is called on a [database connection] that still has
** outstanding [prepared statements], [BLOB handles], and/or
** [sqlite3_backup] objects then it returns SQLITE_OK but the deallocation
** of resources is deferred until all [prepared statements], [BLOB handles],
** and [sqlite3_backup] objects are also destroyed.
**
** ^If an [sqlite3] object is destroyed while a transaction is open,
** the transaction is automatically rolled back.
**
** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
** must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
** argument is a harmless no-op.
*/
SQLITE_API int sqlite3_close(sqlite3*);
SQLITE_API int sqlite3_close_v2(sqlite3*);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

/* Reserved:                         0x00F00000 */

/*
** CAPI3REF: Device Characteristics
**
** The xDeviceCharacteristics method of the [sqlite3_io_methods]
** object returns an integer which is a vector of the these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and







|







513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

/* Reserved:                         0x00F00000 */

/*
** CAPI3REF: Device Characteristics
**
** The xDeviceCharacteristics method of the [sqlite3_io_methods]
** object returns an integer which is a vector of these
** bit values expressing I/O characteristics of the mass storage
** device that holds the file that the [sqlite3_io_methods]
** refers to.
**
** The SQLITE_IOCAP_ATOMIC property means that all writes of
** any size are atomic.  The SQLITE_IOCAP_ATOMICnnn values
** mean that writes of blocks that are nnn bytes in size and
2644
2645
2646
2647
2648
2649
2650






2651
2652
2653
2654
2655
2656
2657
** the results are undefined.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().






*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */







>
>
>
>
>
>







2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
** the results are undefined.
**
** <b>Note to Windows users:</b>  The encoding used for the filename argument
** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
** codepage is currently defined.  Filenames containing international
** characters must be converted to UTF-8 prior to passing them into
** sqlite3_open() or sqlite3_open_v2().
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
3136
3137
3138
3139
3140
3141
3142
3143

3144


3145
3146
3147
3148
3149
3150
3151
** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** ^The third argument is the value to bind to the parameter.
**
** ^(In those routines that have a fourth argument, its value is the
** number of bytes in the parameter.  To be clear: the value is the
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter is negative, the length of the string is

** the number of bytes up to the first zero terminator.


** If a non-negative fourth parameter is provided to sqlite3_bind_text()
** or sqlite3_bind_text16() then that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.







|
>

>
>







3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
**
** ^The third argument is the value to bind to the parameter.
**
** ^(In those routines that have a fourth argument, its value is the
** number of bytes in the parameter.  To be clear: the value is the
** number of <u>bytes</u> in the value, not the number of characters.)^
** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
** is negative, then the length of the string is
** the number of bytes up to the first zero terminator.
** If the fourth parameter to sqlite3_bind_blob() is negative, then
** the behavior is undefined.
** If a non-negative fourth parameter is provided to sqlite3_bind_text()
** or sqlite3_bind_text16() then that parameter must be the byte offset
** where the NUL terminator would occur assuming the string were NUL
** terminated.  If any NUL characters occur at byte offsets less than 
** the value of the fourth parameter then the resulting string value will
** contain embedded NULs.  The result of expressions involving strings
** with embedded NULs is undefined.
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
** they return.  Hence, the calling function can deallocate or
** modify the text after they return without harm.
** ^The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function.  ^By default,
** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** ^The sqlite3_result_toobig() interface causes SQLite to throw an error
** indicating that a string or BLOB is too long to represent.
**
** ^The sqlite3_result_nomem() interface causes SQLite to throw an error
** indicating that a memory allocation failed.
**
** ^The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** ^The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.







|
|

|
|







4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
** they return.  Hence, the calling function can deallocate or
** modify the text after they return without harm.
** ^The sqlite3_result_error_code() function changes the error code
** returned by SQLite as a result of an error in a function.  ^By default,
** the error code is SQLITE_ERROR.  ^A subsequent call to sqlite3_result_error()
** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
**
** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
** error indicating that a string or BLOB is too long to represent.
**
** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
** error indicating that a memory allocation failed.
**
** ^The sqlite3_result_int() interface sets the return value
** of the application-defined function to be the 32-bit signed integer
** value given in the 2nd argument.
** ^The sqlite3_result_int64() interface sets the return value
** of the application-defined function to be the 64-bit signed integer
** value given in the 2nd argument.
4445
4446
4447
4448
4449
4450
4451















4452
4453
4454
4455
4456
4457
4458
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.















*/
SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;

/*
** CAPI3REF: Name Of The Folder Holding Database Files
**
** ^(If this global variable is made to point to a string which is







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
** the [temp_store_directory pragma] always assumes that any string
** that this variable points to is held in memory obtained from 
** [sqlite3_malloc] and the pragma may attempt to free that memory
** using [sqlite3_free].
** Hence, if this variable is modified directly, either it should be
** made NULL or made to point to memory obtained from [sqlite3_malloc]
** or else the use of the [temp_store_directory pragma] should be avoided.
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling [sqlite3_open] or [sqlite3_open_v2].  Otherwise, various
** features that require the use of temporary files may fail.  Here is an
** example of how to do this using C++ with the Windows Runtime:
**
** <blockquote><pre>
** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
** &nbsp;     TemporaryFolder->Path->Data();
** char zPathBuf&#91;MAX_PATH + 1&#93;;
** memset(zPathBuf, 0, sizeof(zPathBuf));
** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
** &nbsp;     NULL, NULL);
** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
** </pre></blockquote>
*/
SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;

/*
** CAPI3REF: Name Of The Folder Holding Database Files
**
** ^(If this global variable is made to point to a string which is
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>
** <li>   SQLITE_MUTEX_OS2
** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_OS2,
** SQLITE_MUTEX_PTHREADS, and SQLITE_MUTEX_W32 implementations
** are appropriate for use on OS/2, Unix, and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_







<







|
|
|







5533
5534
5535
5536
5537
5538
5539

5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
**
** The SQLite source code contains multiple implementations
** of these mutex routines.  An appropriate implementation
** is selected automatically at compile-time.  ^(The following
** implementations are available in the SQLite core:
**
** <ul>

** <li>   SQLITE_MUTEX_PTHREADS
** <li>   SQLITE_MUTEX_W32
** <li>   SQLITE_MUTEX_NOOP
** </ul>)^
**
** ^The SQLITE_MUTEX_NOOP implementation is a set of routines
** that does no real locking and is appropriate for use in
** a single-threaded application.  ^The SQLITE_MUTEX_PTHREADS and
** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
** and Windows.
**
** ^(If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
** implementation is included with the library. In this case the
** application must supply a custom mutex implementation using the
** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
** before calling sqlite3_initialize() or any other public sqlite3_