sqllogictest

Check-in [21890161c0]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Update the built-in SQLite to the third 3.8.9 beta.
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 21890161c022e21b6ef34885dfb3ce27676d437c
User & Date: drh 2015-04-06 20:40:32.825
Context
2015-05-06
01:28
Check in the second 3.8.10 beta. check-in: 3f320d5068 user: drh tags: trunk
2015-04-06
20:40
Update the built-in SQLite to the third 3.8.9 beta. check-in: 21890161c0 user: drh tags: trunk
2015-01-15
19:43
Update SQLite to the latest 3.8.8 release candidate. check-in: 22f3649555 user: drh tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.8.8.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.8.9.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
** separate file. This file contains only code for the core SQLite library.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif
#ifndef SQLITE_API
# define SQLITE_API
#endif
/************** Begin file sqliteInt.h ***************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**







<
<
<







18
19
20
21
22
23
24



25
26
27
28
29
30
31
** separate file. This file contains only code for the core SQLite library.
*/
#define SQLITE_CORE 1
#define SQLITE_AMALGAMATION 1
#ifndef SQLITE_PRIVATE
# define SQLITE_PRIVATE static
#endif



/************** Begin file sqliteInt.h ***************************************/
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
86
87
88
89
90
91
92






































93
94
95
96
97
98
99
#endif /* defined(_MSC_VER) */

#endif /* _MSVC_H_ */

/************** End of msvc.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/







































/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it.  If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
** system #includes.  Hence, this block of code must be the very first







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
#endif /* defined(_MSC_VER) */

#endif /* _MSVC_H_ */

/************** End of msvc.h ************************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/*
** Special setup for VxWorks
*/
/************** Include vxworks.h in the middle of sqliteInt.h ***************/
/************** Begin file vxworks.h *****************************************/
/*
** 2015-03-02
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to Wind River's VxWorks
*/
#if defined(__RTP__) || defined(_WRS_KERNEL)
/* This is VxWorks.  Set up things specially for that OS
*/
#include <vxWorks.h>
#include <pthread.h>  /* amalgamator: dontcache */
#define OS_VXWORKS 1
#define SQLITE_OS_OTHER 0
#define SQLITE_HOMEGROWN_RECURSIVE_MUTEX 1
#define SQLITE_OMIT_LOAD_EXTENSION 1
#define SQLITE_ENABLE_LOCKING_STYLE 0
#define HAVE_UTIME 1
#else
/* This is not VxWorks. */
#define OS_VXWORKS 0
#endif /* defined(_WRS_KERNEL) */

/************** End of vxworks.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

/*
** These #defines should enable >2GB file support on POSIX if the
** underlying operating system supports it.  If the OS lacks
** large file support, or if the OS is windows, these should be no-ops.
**
** Ticket #2739:  The _LARGEFILE_SOURCE macro must appear before any
** system #includes.  Hence, this block of code must be the very first
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226





227
228
229
230
231
232
233
*/
#if 0
extern "C" {
#endif


/*
** Add the ability to override 'extern'
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

#ifndef SQLITE_API
# define SQLITE_API
#endif







/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are supported for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.







|




<



|
>
>
>
>
>







245
246
247
248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
*/
#if 0
extern "C" {
#endif


/*
** Provide the ability to override linkage features of the interface.
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

#ifndef SQLITE_API
# define SQLITE_API
#endif
#ifndef SQLITE_CDECL
# define SQLITE_CDECL
#endif
#ifndef SQLITE_STDCALL
# define SQLITE_STDCALL
#endif

/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are supported for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.8"
#define SQLITE_VERSION_NUMBER 3008008
#define SQLITE_SOURCE_ID      "2015-01-15 17:38:35 8f45217cbafef2297cdcec3fd69f4371dfb83922"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.9"
#define SQLITE_VERSION_NUMBER 3008009
#define SQLITE_SOURCE_ID      "2015-04-06 11:04:51 3ad829e50faca538db3abb2afb898b5521550c5c"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
** [SQLITE_VERSION_NUMBER].  ^The sqlite3_sourceid() function returns 
** a pointer to a string constant whose value is the same as the 
** [SQLITE_SOURCE_ID] C preprocessor macro.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
SQLITE_API const char *sqlite3_libversion(void);
SQLITE_API const char *sqlite3_sourceid(void);
SQLITE_API int sqlite3_libversion_number(void);

/*
** CAPI3REF: Run-Time Library Compilation Options Diagnostics
**
** ^The sqlite3_compileoption_used() function returns 0 or 1 
** indicating whether the specified option was defined at 
** compile time.  ^The SQLITE_ prefix may be omitted from the 







|
|
|







348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
** [SQLITE_VERSION_NUMBER].  ^The sqlite3_sourceid() function returns 
** a pointer to a string constant whose value is the same as the 
** [SQLITE_SOURCE_ID] C preprocessor macro.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
SQLITE_API const char *SQLITE_STDCALL sqlite3_libversion(void);
SQLITE_API const char *SQLITE_STDCALL sqlite3_sourceid(void);
SQLITE_API int SQLITE_STDCALL sqlite3_libversion_number(void);

/*
** CAPI3REF: Run-Time Library Compilation Options Diagnostics
**
** ^The sqlite3_compileoption_used() function returns 0 or 1 
** indicating whether the specified option was defined at 
** compile time.  ^The SQLITE_ prefix may be omitted from the 
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
** and sqlite3_compileoption_get() may be omitted by specifying the 
** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
**
** See also: SQL functions [sqlite_compileoption_used()] and
** [sqlite_compileoption_get()] and the [compile_options pragma].
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
SQLITE_API const char *sqlite3_compileoption_get(int N);
#endif

/*
** CAPI3REF: Test To See If The Library Is Threadsafe
**
** ^The sqlite3_threadsafe() function returns zero if and only if
** SQLite was compiled with mutexing code omitted due to the







|
|







375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
** and sqlite3_compileoption_get() may be omitted by specifying the 
** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
**
** See also: SQL functions [sqlite_compileoption_used()] and
** [sqlite_compileoption_get()] and the [compile_options pragma].
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
SQLITE_API int SQLITE_STDCALL sqlite3_compileoption_used(const char *zOptName);
SQLITE_API const char *SQLITE_STDCALL sqlite3_compileoption_get(int N);
#endif

/*
** CAPI3REF: Test To See If The Library Is Threadsafe
**
** ^The sqlite3_threadsafe() function returns zero if and only if
** SQLite was compiled with mutexing code omitted due to the
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
SQLITE_API int sqlite3_threadsafe(void);

/*
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3







|







415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_threadsafe(void);

/*
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
** must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
** argument is a harmless no-op.
*/
SQLITE_API int sqlite3_close(sqlite3*);
SQLITE_API int sqlite3_close_v2(sqlite3*);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);







|
|







511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
** must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
** argument is a harmless no-op.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_close(sqlite3*);
SQLITE_API int SQLITE_STDCALL sqlite3_close_v2(sqlite3*);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/
SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);








|







582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/
SQLITE_API int SQLITE_STDCALL sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);

923
924
925
926
927
928
929


930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
** CAPI3REF: Standard File Control Opcodes
** KEYWORDS: {file control opcodes} {file control opcode}
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**


** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
** opcode causes the xFileControl method to write the current state of
** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
** into an integer that the pArg argument points to. This capability
** is used during testing and only needs to be supported when SQLITE_TEST
** is defined.
** <ul>
** <li>[[SQLITE_FCNTL_SIZE_HINT]]
** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
** layer a hint of how large the database file will grow to be during the
** current transaction.  This hint is not guaranteed to be accurate but it
** is often close.  The underlying VFS might choose to preallocate database
** file space based on this hint in order to help writes to the database
** file run faster.







>
>





|
|
|







962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
** CAPI3REF: Standard File Control Opcodes
** KEYWORDS: {file control opcodes} {file control opcode}
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**
** <ul>
** <li>[[SQLITE_FCNTL_LOCKSTATE]]
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
** opcode causes the xFileControl method to write the current state of
** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
** into an integer that the pArg argument points to. This capability
** is used during testing and is only available when the SQLITE_TEST
** compile-time option is used.
**
** <li>[[SQLITE_FCNTL_SIZE_HINT]]
** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
** layer a hint of how large the database file will grow to be during the
** current transaction.  This hint is not guaranteed to be accurate but it
** is often close.  The underlying VFS might choose to preallocate database
** file space based on this hint in order to help writes to the database
** file run faster.
1055
1056
1057
1058
1059
1060
1061


1062
1063
1064
1065
1066
1067
1068
1069
** of the char** argument point to a string obtained from [sqlite3_mprintf()]
** or the equivalent and that string will become the result of the pragma or
** the error message if the pragma fails. ^If the
** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal 
** [PRAGMA] processing continues.  ^If the [SQLITE_FCNTL_PRAGMA]
** file control returns [SQLITE_OK], then the parser assumes that the
** VFS has handled the PRAGMA itself and the parser generates a no-op


** prepared statement.  ^If the [SQLITE_FCNTL_PRAGMA] file control returns
** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
** that the VFS encountered an error while handling the [PRAGMA] and the
** compilation of the PRAGMA fails with an error.  ^The [SQLITE_FCNTL_PRAGMA]
** file control occurs at the beginning of pragma statement analysis and so
** it is able to override built-in [PRAGMA] statements.
**
** <li>[[SQLITE_FCNTL_BUSYHANDLER]]







>
>
|







1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
** of the char** argument point to a string obtained from [sqlite3_mprintf()]
** or the equivalent and that string will become the result of the pragma or
** the error message if the pragma fails. ^If the
** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal 
** [PRAGMA] processing continues.  ^If the [SQLITE_FCNTL_PRAGMA]
** file control returns [SQLITE_OK], then the parser assumes that the
** VFS has handled the PRAGMA itself and the parser generates a no-op
** prepared statement if result string is NULL, or that returns a copy
** of the result string if the string is non-NULL.
** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
** that the VFS encountered an error while handling the [PRAGMA] and the
** compilation of the PRAGMA fails with an error.  ^The [SQLITE_FCNTL_PRAGMA]
** file control occurs at the beginning of pragma statement analysis and so
** it is able to override built-in [PRAGMA] statements.
**
** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
1113
1114
1115
1116
1117
1118
1119







1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143







1144
1145
1146
1147
1148
1149
1150
**
** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging.  This
** opcode causes the xFileControl method to swap the file handle with the one
** pointed to by the pArg argument.  This capability is used during testing
** and only needs to be supported when SQLITE_TEST is defined.
**







** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_GET_LOCKPROXYFILE             2
#define SQLITE_SET_LOCKPROXYFILE             3
#define SQLITE_LAST_ERRNO                    4
#define SQLITE_FCNTL_SIZE_HINT               5
#define SQLITE_FCNTL_CHUNK_SIZE              6
#define SQLITE_FCNTL_FILE_POINTER            7
#define SQLITE_FCNTL_SYNC_OMITTED            8
#define SQLITE_FCNTL_WIN32_AV_RETRY          9
#define SQLITE_FCNTL_PERSIST_WAL            10
#define SQLITE_FCNTL_OVERWRITE              11
#define SQLITE_FCNTL_VFSNAME                12
#define SQLITE_FCNTL_POWERSAFE_OVERWRITE    13
#define SQLITE_FCNTL_PRAGMA                 14
#define SQLITE_FCNTL_BUSYHANDLER            15
#define SQLITE_FCNTL_TEMPFILENAME           16
#define SQLITE_FCNTL_MMAP_SIZE              18
#define SQLITE_FCNTL_TRACE                  19
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23








/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only







>
>
>
>
>
>
>



|
|
|


















>
>
>
>
>
>
>







1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
**
** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging.  This
** opcode causes the xFileControl method to swap the file handle with the one
** pointed to by the pArg argument.  This capability is used during testing
** and only needs to be supported when SQLITE_TEST is defined.
**
** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
** be advantageous to block on the next WAL lock if the lock is not immediately
** available.  The WAL subsystem issues this signal during rare
** circumstances in order to fix a problem with priority inversion.
** Applications should <em>not</em> use this file-control.
**
** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
#define SQLITE_FCNTL_LAST_ERRNO              4
#define SQLITE_FCNTL_SIZE_HINT               5
#define SQLITE_FCNTL_CHUNK_SIZE              6
#define SQLITE_FCNTL_FILE_POINTER            7
#define SQLITE_FCNTL_SYNC_OMITTED            8
#define SQLITE_FCNTL_WIN32_AV_RETRY          9
#define SQLITE_FCNTL_PERSIST_WAL            10
#define SQLITE_FCNTL_OVERWRITE              11
#define SQLITE_FCNTL_VFSNAME                12
#define SQLITE_FCNTL_POWERSAFE_OVERWRITE    13
#define SQLITE_FCNTL_PRAGMA                 14
#define SQLITE_FCNTL_BUSYHANDLER            15
#define SQLITE_FCNTL_TEMPFILENAME           16
#define SQLITE_FCNTL_MMAP_SIZE              18
#define SQLITE_FCNTL_TRACE                  19
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
#define SQLITE_FCNTL_WAL_BLOCK              24

/* deprecated names */
#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO


/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
** (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int sqlite3_initialize(void);
SQLITE_API int sqlite3_shutdown(void);
SQLITE_API int sqlite3_os_init(void);
SQLITE_API int sqlite3_os_end(void);

/*
** CAPI3REF: Configuring The SQLite Library
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most







|
|
|
|







1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
** (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_initialize(void);
SQLITE_API int SQLITE_STDCALL sqlite3_shutdown(void);
SQLITE_API int SQLITE_STDCALL sqlite3_os_init(void);
SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void);

/*
** CAPI3REF: Configuring The SQLite Library
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
** vary depending on the [configuration option]
** in the first argument.
**
** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
** ^If the option is unknown or SQLite is unable to set the option
** then this routine returns a non-zero [error code].
*/
SQLITE_API int sqlite3_config(int, ...);

/*
** CAPI3REF: Configure database connections
**
** The sqlite3_db_config() interface is used to make configuration
** changes to a [database connection].  The interface is similar to
** [sqlite3_config()] except that the changes apply to a single
** [database connection] (specified in the first argument).
**
** The second argument to sqlite3_db_config(D,V,...)  is the
** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code 
** that indicates what aspect of the [database connection] is being configured.
** Subsequent arguments vary depending on the configuration verb.
**
** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
** the call is considered successful.
*/
SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Memory Allocation Routines
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**







|

















|







1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
** vary depending on the [configuration option]
** in the first argument.
**
** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
** ^If the option is unknown or SQLite is unable to set the option
** then this routine returns a non-zero [error code].
*/
SQLITE_API int SQLITE_CDECL sqlite3_config(int, ...);

/*
** CAPI3REF: Configure database connections
**
** The sqlite3_db_config() interface is used to make configuration
** changes to a [database connection].  The interface is similar to
** [sqlite3_config()] except that the changes apply to a single
** [database connection] (specified in the first argument).
**
** The second argument to sqlite3_db_config(D,V,...)  is the
** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code 
** that indicates what aspect of the [database connection] is being configured.
** Subsequent arguments vary depending on the configuration verb.
**
** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
** the call is considered successful.
*/
SQLITE_API int SQLITE_CDECL sqlite3_db_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Memory Allocation Routines
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>







|







1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status64()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>
**
** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
** is a pointer to an integer and writes into that integer the number of extra
** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
** The amount of extra space required can change depending on the compiler,







<







1965
1966
1967
1968
1969
1970
1971

1972
1973
1974
1975
1976
1977
1978
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.

**
** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
** is a pointer to an integer and writes into that integer the number of extra
** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
** The amount of extra space required can change depending on the compiler,
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
/*
** CAPI3REF: Enable Or Disable Extended Result Codes
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
** codes are disabled by default for historical compatibility.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);

/*
** CAPI3REF: Last Insert Rowid
**
** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
** has a unique 64-bit signed
** integer key called the [ROWID | "rowid"]. ^The rowid is always available







|







2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
/*
** CAPI3REF: Enable Or Disable Extended Result Codes
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
** codes are disabled by default for historical compatibility.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_extended_result_codes(sqlite3*, int onoff);

/*
** CAPI3REF: Last Insert Rowid
**
** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
** has a unique 64-bit signed
** integer key called the [ROWID | "rowid"]. ^The rowid is always available
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
** If a separate thread performs a new [INSERT] on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert [rowid],
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of rows modified, inserted or
** deleted by the most recently completed INSERT, UPDATE or DELETE
** statement on the database connection specified by the only parameter.







|







2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
** If a separate thread performs a new [INSERT] on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert [rowid],
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of rows modified, inserted or
** deleted by the most recently completed INSERT, UPDATE or DELETE
** statement on the database connection specified by the only parameter.
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the total number of rows inserted, modified or
** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
** since the database connection was opened, including those executed as







|







2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the total number of rows inserted, modified or
** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
** since the database connection was opened, including those executed as
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_total_changes(sqlite3*);

/*
** CAPI3REF: Interrupt A Long-Running Query
**
** ^This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"







|







2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_total_changes(sqlite3*);

/*
** CAPI3REF: Interrupt A Long-Running Query
**
** ^This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into







|







2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
** KEYWORDS: {busy-handler callback} {busy handler}
**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever







|
|







2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_complete(const char *sql);
SQLITE_API int SQLITE_STDCALL sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
** KEYWORDS: {busy-handler callback} {busy handler}
**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
** database connection that invoked the busy handler.  In other words,
** the busy handler is not reentrant.  Any such actions
** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout
**
** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  ^The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping







|







2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
** database connection that invoked the busy handler.  In other words,
** the busy handler is not reentrant.  Any such actions
** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout
**
** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  ^The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
** ^(There can only be a single busy handler for a particular
** [database connection] at any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.
** Use of this interface is not recommended.
**







|







2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
** ^(There can only be a single busy handler for a particular
** [database connection] at any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.
** Use of this interface is not recommended.
**
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404




2405
2406
2407
2408
2409
2410
2411
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].
*/
SQLITE_API int sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.




**
** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  ^Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.







|







|






>
>
>
>







2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void SQLITE_STDCALL sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
** These routines understand most of the common K&R formatting options,
** plus some additional non-standard formats, detailed below.
** Note that some of the more obscure formatting options from recent
** C-library standards are omitted from this implementation.
**
** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  ^Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
** written will be n-1 characters.
**
** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", and "%z" options.
**
** ^(The %q option works like %s in that it substitutes a nul-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.)^  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**







|







2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
** written will be n-1 characters.
**
** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", "%w" and "%z" options.
**
** ^(The %q option works like %s in that it substitutes a nul-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.)^  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
2482
2483
2484
2485
2486
2487
2488






2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.






**
** ^(The "%z" formatting option works like "%s" but with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string.)^
*/
SQLITE_API char *sqlite3_mprintf(const char*,...);
SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);

/*
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The







>
>
>
>
>
>





|
|
|
|







2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.
**
** ^(The "%w" formatting option is like "%q" except that it expects to
** be contained within double-quotes instead of single quotes, and it
** escapes the double-quote character instead of the single-quote
** character.)^  The "%w" formatting option is intended for safely inserting
** table and column names into a constructed SQL statement.
**
** ^(The "%z" formatting option works like "%s" but with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string.)^
*/
SQLITE_API char *SQLITE_CDECL sqlite3_mprintf(const char*,...);
SQLITE_API char *SQLITE_STDCALL sqlite3_vmprintf(const char*, va_list);
SQLITE_API char *SQLITE_CDECL sqlite3_snprintf(int,char*,const char*, ...);
SQLITE_API char *SQLITE_STDCALL sqlite3_vsnprintf(int,char*,const char*, va_list);

/*
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
SQLITE_API void *sqlite3_malloc(int);
SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
SQLITE_API void *sqlite3_realloc(void*, int);
SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
SQLITE_API void sqlite3_free(void*);
SQLITE_API sqlite3_uint64 sqlite3_msize(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.







|
|
|
|
|
|







2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_malloc(int);
SQLITE_API void *SQLITE_STDCALL sqlite3_malloc64(sqlite3_uint64);
SQLITE_API void *SQLITE_STDCALL sqlite3_realloc(void*, int);
SQLITE_API void *SQLITE_STDCALL sqlite3_realloc64(void*, sqlite3_uint64);
SQLITE_API void SQLITE_STDCALL sqlite3_free(void*);
SQLITE_API sqlite3_uint64 SQLITE_STDCALL sqlite3_msize(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
**
** ^The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true.  ^The value returned
** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for







|
|







2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
**
** ^The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true.  ^The value returned
** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
** seeded using randomness obtained from the xRandomness method of
** the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more and a
** non-NULL P then the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled







|







2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
** seeded using randomness obtained from the xRandomness method of
** the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more and a
** non-NULL P then the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
**
** ^Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
*/
SQLITE_API int sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes







|







2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
**
** ^Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
** time is in units of nanoseconds, however the current implementation
** is only capable of millisecond resolution so the six least significant
** digits in the time are meaningless.  Future versions of SQLite
** might provide greater resolution on the profiler callback.  The
** sqlite3_profile() function is considered experimental and is
** subject to change in future versions of SQLite.
*/
SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks
**
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to







|
|







2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
** time is in units of nanoseconds, however the current implementation
** is only capable of millisecond resolution so the six least significant
** digits in the time are meaningless.  Future versions of SQLite
** might provide greater resolution on the profiler callback.  The
** sqlite3_profile() function is considered experimental and is
** subject to change in future versions of SQLite.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *SQLITE_STDCALL sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks
**
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
**
** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
*/
SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection
**
** ^These routines open an SQLite database file as specified by the 
** filename argument. ^The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte







|







2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
**
** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
*/
SQLITE_API void SQLITE_STDCALL sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection
**
** ^These routines open an SQLite database file as specified by the 
** filename argument. ^The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*







|



|



|







3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int SQLITE_STDCALL sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int SQLITE_STDCALL sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151

3152
3153
3154
3155

3156
3157
3158
3159
3160
3161
3162
3163
** 
** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
** is not a database file pathname pointer that SQLite passed into the xOpen
** VFS method, then the behavior of this routine is undefined and probably
** undesirable.
*/
SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);


/*
** CAPI3REF: Error Codes And Messages
**

** ^The sqlite3_errcode() interface returns the numeric [result code] or
** [extended result code] for the most recent failed sqlite3_* API call
** associated with a [database connection]. If a prior API call failed
** but the most recent API call succeeded, the return value from

** sqlite3_errcode() is undefined.  ^The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** ^(Memory to hold the error message string is managed internally.







|
|
|





>
|
|
|
|
>
|







3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
** 
** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
** is not a database file pathname pointer that SQLite passed into the xOpen
** VFS method, then the behavior of this routine is undefined and probably
** undesirable.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_uri_parameter(const char *zFilename, const char *zParam);
SQLITE_API int SQLITE_STDCALL sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_uri_int64(const char*, const char*, sqlite3_int64);


/*
** CAPI3REF: Error Codes And Messages
**
** ^If the most recent sqlite3_* API call associated with 
** [database connection] D failed, then the sqlite3_errcode(D) interface
** returns the numeric [result code] or [extended result code] for that
** API call.
** If the most recent API call was successful,
** then the return value from sqlite3_errcode() is undefined.
** ^The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** ^(Memory to hold the error message string is managed internally.
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.
*/
SQLITE_API int sqlite3_errcode(sqlite3 *db);
SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
SQLITE_API const char *sqlite3_errmsg(sqlite3*);
SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
SQLITE_API const char *sqlite3_errstr(int);

/*
** CAPI3REF: SQL Statement Object
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a







|
|
|
|
|







3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_errcode(sqlite3 *db);
SQLITE_API int SQLITE_STDCALL sqlite3_extended_errcode(sqlite3 *db);
SQLITE_API const char *SQLITE_STDCALL sqlite3_errmsg(sqlite3*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_errmsg16(sqlite3*);
SQLITE_API const char *SQLITE_STDCALL sqlite3_errstr(int);

/*
** CAPI3REF: SQL Statement Object
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.
*/
SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].







|







3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
** [sqlite3_open16()].  The database connection must not have been closed.
**
** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16.
**
** ^If the nByte argument is less than zero, then zSql is read up to the
** first zero terminator. ^If nByte is non-negative, then it is the maximum
** number of  bytes read from zSql.  ^When nByte is non-negative, the
** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
** performance advantage to be gained by passing an nByte parameter that
** is equal to the number of bytes in the input string <i>including</i>
** the nul-terminator bytes as this saves SQLite from having to
** make a copy of the input string.
**
** ^If pzTail is not NULL then *pzTail is made to point to the first byte
** past the end of the first SQL statement in zSql.  These routines only
** compile the first statement in zSql, so *pzTail is left pointing to
** what remains uncompiled.
**
** ^*ppStmt is left pointing to a compiled [prepared statement] that can be







|
|
|
|
<
|
|
|
|
<







3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416

3417
3418
3419
3420

3421
3422
3423
3424
3425
3426
3427
** [sqlite3_open16()].  The database connection must not have been closed.
**
** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16.
**
** ^If the nByte argument is negative, then zSql is read up to the
** first zero terminator. ^If nByte is positive, then it is the
** number of bytes read from zSql.  ^If nByte is zero, then no prepared
** statement is generated.

** If the caller knows that the supplied string is nul-terminated, then
** there is a small performance advantage to passing an nByte parameter that
** is the number of bytes in the input string <i>including</i>
** the nul-terminator.

**
** ^If pzTail is not NULL then *pzTail is made to point to the first byte
** past the end of the first SQL statement in zSql.  These routines only
** compile the first statement in zSql, so *pzTail is left pointing to
** what remains uncompiled.
**
** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
** ^The specific value of WHERE-clause [parameter] might influence the 
** choice of query plan if the parameter is the left-hand side of a [LIKE]
** or [GLOB] operator or if the parameter is compared to an indexed column
** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
** </li>
** </ol>
*/
SQLITE_API int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare_v2(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare16(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare16_v2(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** CAPI3REF: Retrieving Statement SQL
**
** ^This interface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement] if that statement was
** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to
** the content of the database file.







|






|






|






|














|







3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
** ^The specific value of WHERE-clause [parameter] might influence the 
** choice of query plan if the parameter is the left-hand side of a [LIKE]
** or [GLOB] operator or if the parameter is compared to an indexed column
** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
** </li>
** </ol>
*/
SQLITE_API int SQLITE_STDCALL sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int SQLITE_STDCALL sqlite3_prepare_v2(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int SQLITE_STDCALL sqlite3_prepare16(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int SQLITE_STDCALL sqlite3_prepare16_v2(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** CAPI3REF: Retrieving Statement SQL
**
** ^This interface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement] if that statement was
** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to
** the content of the database file.
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
** since the statements themselves do not actually modify the database but
** rather they control the timing of when other statements modify the 
** database.  ^The [ATTACH] and [DETACH] statements also cause
** sqlite3_stmt_readonly() to return true since, while those statements
** change the configuration of a database connection, they do not make 
** changes to the content of the database files on disk.
*/
SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If A Prepared Statement Has Been Reset
**
** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
** [prepared statement] S has been stepped at least once using 
** [sqlite3_step(S)] but has not run to completion and/or has not 
** been reset using [sqlite3_reset(S)].  ^The sqlite3_stmt_busy(S)
** interface returns false if S is a NULL pointer.  If S is not a 
** NULL pointer and is not a pointer to a valid [prepared statement]
** object, then the behavior is undefined and probably undesirable.
**
** This interface can be used in combination [sqlite3_next_stmt()]
** to locate all prepared statements associated with a database 
** connection that are in need of being reset.  This can be used,
** for example, in diagnostic routines to search for prepared 
** statements that are holding a transaction open.
*/
SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);

/*
** CAPI3REF: Dynamically Typed Value Object
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table. SQLite uses dynamic typing







|


















|







3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
** since the statements themselves do not actually modify the database but
** rather they control the timing of when other statements modify the 
** database.  ^The [ATTACH] and [DETACH] statements also cause
** sqlite3_stmt_readonly() to return true since, while those statements
** change the configuration of a database connection, they do not make 
** changes to the content of the database files on disk.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_readonly(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If A Prepared Statement Has Been Reset
**
** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
** [prepared statement] S has been stepped at least once using 
** [sqlite3_step(S)] but has not run to completion and/or has not 
** been reset using [sqlite3_reset(S)].  ^The sqlite3_stmt_busy(S)
** interface returns false if S is a NULL pointer.  If S is not a 
** NULL pointer and is not a pointer to a valid [prepared statement]
** object, then the behavior is undefined and probably undesirable.
**
** This interface can be used in combination [sqlite3_next_stmt()]
** to locate all prepared statements associated with a database 
** connection that are in need of being reset.  This can be used,
** for example, in diagnostic routines to search for prepared 
** statements that are holding a transaction open.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_busy(sqlite3_stmt*);

/*
** CAPI3REF: Dynamically Typed Value Object
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table. SQLite uses dynamic typing
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
** [SQLITE_MAX_LENGTH].
** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
*/
SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
                        void(*)(void*));
SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
                         void(*)(void*), unsigned char encoding);
SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]
** in a [prepared statement].  SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** ^(This routine actually returns the index of the largest (rightmost)
** parameter. For all forms except ?NNN, this will correspond to the
** number of unique parameters.  If parameters of the ?NNN form are used,
** there may be gaps in the list.)^
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);

/*
** CAPI3REF: Name Of A Host Parameter
**
** ^The sqlite3_bind_parameter_name(P,N) interface returns
** the name of the N-th [SQL parameter] in the [prepared statement] P.
** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"







|
|

|
|
|
|
|
|
|

|
|



















|







3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
** [SQLITE_MAX_LENGTH].
** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
                        void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_double(sqlite3_stmt*, int, double);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_int(sqlite3_stmt*, int, int);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_null(sqlite3_stmt*, int);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
                         void(*)(void*), unsigned char encoding);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]
** in a [prepared statement].  SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** ^(This routine actually returns the index of the largest (rightmost)
** parameter. For all forms except ?NNN, this will correspond to the
** number of unique parameters.  If parameters of the ?NNN form are used,
** there may be gaps in the list.)^
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_count(sqlite3_stmt*);

/*
** CAPI3REF: Name Of A Host Parameter
**
** ^The sqlite3_bind_parameter_name(P,N) interface returns
** the name of the N-th [SQL parameter] in the [prepared statement] P.
** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);

/*
** CAPI3REF: Index Of A Parameter With A Given Name
**
** ^Return the index of an SQL parameter given its name.  ^The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
** is returned if no matching parameter is found.  ^The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);

/*
** CAPI3REF: Reset All Bindings On A Prepared Statement
**
** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
** the [sqlite3_bind_blob | bindings] on a [prepared statement].
** ^Use this routine to reset all host parameters to NULL.
*/
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);

/*
** CAPI3REF: Number Of Columns In A Result Set
**
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
**
** See also: [sqlite3_data_count()]
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Column Names In A Result Set
**
** ^These routines return the name assigned to a particular column
** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF-8 string







|















|








|










|







3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_bind_parameter_name(sqlite3_stmt*, int);

/*
** CAPI3REF: Index Of A Parameter With A Given Name
**
** ^Return the index of an SQL parameter given its name.  ^The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
** is returned if no matching parameter is found.  ^The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);

/*
** CAPI3REF: Reset All Bindings On A Prepared Statement
**
** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
** the [sqlite3_bind_blob | bindings] on a [prepared statement].
** ^Use this routine to reset all host parameters to NULL.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_clear_bindings(sqlite3_stmt*);

/*
** CAPI3REF: Number Of Columns In A Result Set
**
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
**
** See also: [sqlite3_data_count()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Column Names In A Result Set
**
** ^These routines return the name assigned to a particular column
** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF-8 string
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
** NULL pointer is returned.
**
** ^The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause.  If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.
*/
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);

/*
** CAPI3REF: Source Of Data In A Query Result
**
** ^These routines provide a means to determine the database, table, and
** table column that is the origin of a particular result column in
** [SELECT] statement.







|
|







3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
** NULL pointer is returned.
**
** ^The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause.  If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_name(sqlite3_stmt*, int N);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_name16(sqlite3_stmt*, int N);

/*
** CAPI3REF: Source Of Data In A Query Result
**
** ^These routines provide a means to determine the database, table, and
** table column that is the origin of a particular result column in
** [SELECT] statement.
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
** undefined.
**
** If two or more threads call one or more
** [sqlite3_column_database_name | column metadata interfaces]
** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);

/*
** CAPI3REF: Declared Datatype Of A Query Result
**
** ^(The first parameter is a [prepared statement].
** If this statement is a [SELECT] statement and the Nth column of the
** returned result set of that [SELECT] is a table column (not an







|
|
|
|
|
|







3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
** undefined.
**
** If two or more threads call one or more
** [sqlite3_column_database_name | column metadata interfaces]
** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_database_name(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_database_name16(sqlite3_stmt*,int);
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_table_name(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_table_name16(sqlite3_stmt*,int);
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_origin_name(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_origin_name16(sqlite3_stmt*,int);

/*
** CAPI3REF: Declared Datatype Of A Query Result
**
** ^(The first parameter is a [prepared statement].
** If this statement is a [SELECT] statement and the Nth column of the
** returned result set of that [SELECT] is a table column (not an
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
** ^SQLite uses dynamic run-time typing.  ^So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type.  SQLite is
** strongly typed, but the typing is dynamic not static.  ^Type
** is associated with individual values, not with the containers
** used to hold those values.
*/
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);

/*
** CAPI3REF: Evaluate An SQL Statement
**
** After a [prepared statement] has been prepared using either
** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function







|
|







3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
** ^SQLite uses dynamic run-time typing.  ^So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type.  SQLite is
** strongly typed, but the typing is dynamic not static.  ^Type
** is associated with individual values, not with the containers
** used to hold those values.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_decltype(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_decltype16(sqlite3_stmt*,int);

/*
** CAPI3REF: Evaluate An SQL Statement
**
** After a [prepared statement] has been prepared using either
** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
** We admit that this is a goofy design.  The problem has been fixed
** with the "v2" interface.  If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
** then the more specific [error codes] are returned directly
** by sqlite3_step().  The use of the "v2" interface is recommended.
*/
SQLITE_API int sqlite3_step(sqlite3_stmt*);

/*
** CAPI3REF: Number of columns in a result set
**
** ^The sqlite3_data_count(P) interface returns the number of columns in the
** current row of the result set of [prepared statement] P.
** ^If prepared statement P does not have results ready to return
** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
** interfaces) then sqlite3_data_count(P) returns 0.
** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
** [sqlite3_step](P) returned [SQLITE_DONE].  ^The sqlite3_data_count(P)
** will return non-zero if previous call to [sqlite3_step](P) returned
** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
** where it always returns zero since each step of that multi-step
** pragma returns 0 columns of data.
**
** See also: [sqlite3_column_count()]
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Fundamental Datatypes
** KEYWORDS: SQLITE_TEXT
**
** ^(Every value in SQLite has one of five fundamental datatypes:
**







|



















|







4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
** We admit that this is a goofy design.  The problem has been fixed
** with the "v2" interface.  If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
** then the more specific [error codes] are returned directly
** by sqlite3_step().  The use of the "v2" interface is recommended.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_step(sqlite3_stmt*);

/*
** CAPI3REF: Number of columns in a result set
**
** ^The sqlite3_data_count(P) interface returns the number of columns in the
** current row of the result set of [prepared statement] P.
** ^If prepared statement P does not have results ready to return
** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
** interfaces) then sqlite3_data_count(P) returns 0.
** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
** [sqlite3_step](P) returned [SQLITE_DONE].  ^The sqlite3_data_count(P)
** will return non-zero if previous call to [sqlite3_step](P) returned
** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
** where it always returns zero since each step of that multi-step
** pragma returns 0 columns of data.
**
** See also: [sqlite3_column_count()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Fundamental Datatypes
** KEYWORDS: SQLITE_TEXT
**
** ^(Every value in SQLite has one of five fundamental datatypes:
**
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^
*/
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the most recent evaluation of the statement encountered no errors
** or if the statement is never been evaluated, then sqlite3_finalize() returns







|
|
|
|
|
|
|
|
|
|







4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_blob(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
SQLITE_API double SQLITE_STDCALL sqlite3_column_double(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_int(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_column_int64(sqlite3_stmt*, int iCol);
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_column_text(sqlite3_stmt*, int iCol);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_text16(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_type(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_value *SQLITE_STDCALL sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the most recent evaluation of the statement encountered no errors
** or if the statement is never been evaluated, then sqlite3_finalize() returns
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
**
** The application must finalize every [prepared statement] in order to avoid
** resource leaks.  It is a grievous error for the application to try to use
** a prepared statement after it has been finalized.  Any use of a prepared
** statement after it has been finalized can result in undefined and
** undesirable behavior such as segfaults and heap corruption.
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Reset A Prepared Statement Object
**
** The sqlite3_reset() function is called to reset a [prepared statement]
** object back to its initial state, ready to be re-executed.
** ^Any SQL statement variables that had values bound to them using







|







4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
**
** The application must finalize every [prepared statement] in order to avoid
** resource leaks.  It is a grievous error for the application to try to use
** a prepared statement after it has been finalized.  Any use of a prepared
** statement after it has been finalized can result in undefined and
** undesirable behavior such as segfaults and heap corruption.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_finalize(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Reset A Prepared Statement Object
**
** The sqlite3_reset() function is called to reset a [prepared statement]
** object back to its initial state, ready to be re-executed.
** ^Any SQL statement variables that had values bound to them using
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
** ^If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
** ^The [sqlite3_reset(S)] interface does not change the values
** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Create Or Redefine SQL Functions
** KEYWORDS: {function creation routines}
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**







|







4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
** ^If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
** ^The [sqlite3_reset(S)] interface does not change the values
** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_reset(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Create Or Redefine SQL Functions
** KEYWORDS: {function creation routines}
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
** ^Built-in functions may be overloaded by new application-defined functions.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
*/
SQLITE_API int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),







|









|









|







4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
** ^Built-in functions may be overloaded by new application-defined functions.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 
** to be supported.  However, new applications should avoid
** the use of these functions.  To help encourage people to avoid
** using these functions, we are not going to tell you what they do.
*/
#ifndef SQLITE_OMIT_DEPRECATED
SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses







|
|


|
|
|
|
|
|







4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 
** to be supported.  However, new applications should avoid
** the use of these functions.  To encourage programmers to avoid
** these functions, we will not explain what they do.
*/
#ifndef SQLITE_OMIT_DEPRECATED
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_aggregate_count(sqlite3_context*);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_expired(sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_global_recover(void);
SQLITE_API SQLITE_DEPRECATED void SQLITE_STDCALL sqlite3_thread_cleanup(void);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
*/
SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
SQLITE_API double sqlite3_value_double(sqlite3_value*);
SQLITE_API int sqlite3_value_int(sqlite3_value*);
SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
SQLITE_API int sqlite3_value_type(sqlite3_value*);
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**







|
|
|
|
|
|
|
|
|
|
|
|







4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_blob(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes16(sqlite3_value*);
SQLITE_API double SQLITE_STDCALL sqlite3_value_double(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value*);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value*);
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16le(sqlite3_value*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16be(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_type(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
** [sqlite3_context | SQL function context] that is the first parameter
** to the xStep or xFinal callback routine that implements the aggregate
** function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
*/
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);

/*
** CAPI3REF: User Data For Functions
**
** ^The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** This routine must be called from the same thread in which
** the application-defined function is running.
*/
SQLITE_API void *sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Database Connection For Functions
**
** ^The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
*/
SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** These functions may be used by (non-aggregate) SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under







|













|










|







4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
** [sqlite3_context | SQL function context] that is the first parameter
** to the xStep or xFinal callback routine that implements the aggregate
** function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_aggregate_context(sqlite3_context*, int nBytes);

/*
** CAPI3REF: User Data For Functions
**
** ^The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** This routine must be called from the same thread in which
** the application-defined function is running.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Database Connection For Functions
**
** ^The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** These functions may be used by (non-aggregate) SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior
**
** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()].  ^If the destructor







|
|







4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void SQLITE_STDCALL sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior
**
** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()].  ^If the destructor
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
                           sqlite3_uint64,void(*)(void*));
SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
SQLITE_API void sqlite3_result_null(sqlite3_context*);
SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
                           void(*)(void*), unsigned char encoding);
SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
** CAPI3REF: Define New Collating Sequences
**
** ^These functions add, remove, or modify a [collation] associated
** with the [database connection] specified as the first argument.
**







|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|







4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_blob64(sqlite3_context*,const void*,
                           sqlite3_uint64,void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_double(sqlite3_context*, double);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error(sqlite3_context*, const char*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error16(sqlite3_context*, const void*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_toobig(sqlite3_context*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_nomem(sqlite3_context*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_code(sqlite3_context*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_int(sqlite3_context*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
SQLITE_API void SQLITE_STDCALL sqlite3_result_null(sqlite3_context*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
                           void(*)(void*), unsigned char encoding);
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_value(sqlite3_context*, sqlite3_value*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
** CAPI3REF: Define New Collating Sequences
**
** ^These functions add, remove, or modify a [collation] associated
** with the [database connection] specified as the first argument.
**
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
** themselves rather than expecting SQLite to deal with it for them.
** This is different from every other SQLite interface.  The inconsistency 
** is unfortunate but cannot be changed without breaking backwards 
** compatibility.
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
*/
SQLITE_API int sqlite3_create_collation(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDestroy)(void*)
);
SQLITE_API int sqlite3_create_collation16(
  sqlite3*, 
  const void *zName,
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);








|






|







|







4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
** themselves rather than expecting SQLite to deal with it for them.
** This is different from every other SQLite interface.  The inconsistency 
** is unfortunate but cannot be changed without breaking backwards 
** compatibility.
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation_v2(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDestroy)(void*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation16(
  sqlite3*, 
  const void *zName,
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);

4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
** sequence function required.  The fourth parameter is the name of the
** required collation sequence.)^
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].
*/
SQLITE_API int sqlite3_collation_needed(
  sqlite3*, 
  void*, 
  void(*)(void*,sqlite3*,int eTextRep,const char*)
);
SQLITE_API int sqlite3_collation_needed16(
  sqlite3*, 
  void*,
  void(*)(void*,sqlite3*,int eTextRep,const void*)
);

#ifdef SQLITE_HAS_CODEC
/*
** Specify the key for an encrypted database.  This routine should be
** called right after sqlite3_open().
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int sqlite3_key(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The key */
);
SQLITE_API int sqlite3_key_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The key */
);

/*
** Change the key on an open database.  If the current database is not
** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
** database is decrypted.
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int sqlite3_rekey(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The new key */
);
SQLITE_API int sqlite3_rekey_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The new key */
);

/*
** Specify the activation key for a SEE database.  Unless 
** activated, none of the SEE routines will work.
*/
SQLITE_API void sqlite3_activate_see(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

#ifdef SQLITE_ENABLE_CEROD
/*
** Specify the activation key for a CEROD database.  Unless 
** activated, none of the CEROD routines will work.
*/
SQLITE_API void sqlite3_activate_cerod(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

/*
** CAPI3REF: Suspend Execution For A Short Time
**







|




|













|



|













|



|









|









|







4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
** sequence function required.  The fourth parameter is the name of the
** required collation sequence.)^
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed(
  sqlite3*, 
  void*, 
  void(*)(void*,sqlite3*,int eTextRep,const char*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed16(
  sqlite3*, 
  void*,
  void(*)(void*,sqlite3*,int eTextRep,const void*)
);

#ifdef SQLITE_HAS_CODEC
/*
** Specify the key for an encrypted database.  This routine should be
** called right after sqlite3_open().
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_key(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The key */
);
SQLITE_API int SQLITE_STDCALL sqlite3_key_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The key */
);

/*
** Change the key on an open database.  If the current database is not
** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
** database is decrypted.
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rekey(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The new key */
);
SQLITE_API int SQLITE_STDCALL sqlite3_rekey_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The new key */
);

/*
** Specify the activation key for a SEE database.  Unless 
** activated, none of the SEE routines will work.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_activate_see(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

#ifdef SQLITE_ENABLE_CEROD
/*
** Specify the activation key for a CEROD database.  Unless 
** activated, none of the CEROD routines will work.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_activate_cerod(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

/*
** CAPI3REF: Suspend Execution For A Short Time
**
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
**
** ^SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.  If the xSleep() method
** of the default VFS is not implemented correctly, or not implemented at
** all, then the behavior of sqlite3_sleep() may deviate from the description
** in the previous paragraphs.
*/
SQLITE_API int sqlite3_sleep(int);

/*
** CAPI3REF: Name Of The Folder Holding Temporary Files
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]







|







5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
**
** ^SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.  If the xSleep() method
** of the default VFS is not implemented correctly, or not implemented at
** all, then the behavior of sqlite3_sleep() may deviate from the description
** in the previous paragraphs.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_sleep(int);

/*
** CAPI3REF: Name Of The Folder Holding Temporary Files
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3*);

/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement
**
** ^The sqlite3_db_handle interface returns the [database connection] handle
** to which a [prepared statement] belongs.  ^The [database connection]
** returned by sqlite3_db_handle is the same [database connection]
** that was the first argument
** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
** create the statement in the first place.
*/
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);

/*
** CAPI3REF: Return The Filename For A Database Connection
**
** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename
** associated with database N of connection D.  ^The main database file
** has the name "main".  If there is no attached database N on the database
** connection D, or if database N is a temporary or in-memory database, then
** a NULL pointer is returned.
**
** ^The filename returned by this function is the output of the
** xFullPathname method of the [VFS].  ^In other words, the filename
** will be an absolute pathname, even if the filename used
** to open the database originally was a URI or relative pathname.
*/
SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Determine if a database is read-only
**
** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
** of connection D is read-only, 0 if it is read/write, or -1 if N is not
** the name of a database on connection D.
*/
SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement
** satisfies the conditions of this routine, it returns NULL.
**
** The [database connection] pointer D in a call to
** [sqlite3_next_stmt(D,S)] must refer to an open database
** connection and in particular must not be a NULL pointer.
*/
SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks
**
** ^The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** ^Any callback set by a previous call to sqlite3_commit_hook()







|











|















|








|














|







5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_get_autocommit(sqlite3*);

/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement
**
** ^The sqlite3_db_handle interface returns the [database connection] handle
** to which a [prepared statement] belongs.  ^The [database connection]
** returned by sqlite3_db_handle is the same [database connection]
** that was the first argument
** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
** create the statement in the first place.
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_db_handle(sqlite3_stmt*);

/*
** CAPI3REF: Return The Filename For A Database Connection
**
** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename
** associated with database N of connection D.  ^The main database file
** has the name "main".  If there is no attached database N on the database
** connection D, or if database N is a temporary or in-memory database, then
** a NULL pointer is returned.
**
** ^The filename returned by this function is the output of the
** xFullPathname method of the [VFS].  ^In other words, the filename
** will be an absolute pathname, even if the filename used
** to open the database originally was a URI or relative pathname.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_db_filename(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Determine if a database is read-only
**
** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
** of connection D is read-only, 0 if it is read/write, or -1 if N is not
** the name of a database on connection D.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_readonly(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement
** satisfies the conditions of this routine, it returns NULL.
**
** The [database connection] pointer D in a call to
** [sqlite3_next_stmt(D,S)] must refer to an open database
** connection and in particular must not be a NULL pointer.
*/
SQLITE_API sqlite3_stmt *SQLITE_STDCALL sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks
**
** ^The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** ^Any callback set by a previous call to sqlite3_commit_hook()
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** ^The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
**
** See also the [sqlite3_update_hook()] interface.
*/
SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);

/*
** CAPI3REF: Data Change Notification Callbacks
**
** ^The sqlite3_update_hook() interface registers a callback function
** with the [database connection] identified by the first argument
** to be invoked whenever a row is updated, inserted or deleted in







|
|







5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** ^The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
**
** See also the [sqlite3_update_hook()] interface.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
SQLITE_API void *SQLITE_STDCALL sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);

/*
** CAPI3REF: Data Change Notification Callbacks
**
** ^The sqlite3_update_hook() interface registers a callback function
** with the [database connection] identified by the first argument
** to be invoked whenever a row is updated, inserted or deleted in
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
** returns the P argument from the previous call
** on the same [database connection] D, or NULL for
** the first call on D.
**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.
*/
SQLITE_API void *sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache







|







5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
** returns the P argument from the previous call
** on the same [database connection] D, or NULL for
** the first call on D.
**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache
5232
5233
5234
5235
5236
5237
5238





5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
**
** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.)^
**
** ^Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.





**
** This interface is threadsafe on processors where writing a
** 32-bit integer is atomic.
**
** See Also:  [SQLite Shared-Cache Mode]
*/
SQLITE_API int sqlite3_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite3_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
** ^The sqlite3_release_memory() routine is a no-op returning zero
** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** See also: [sqlite3_db_release_memory()]
*/
SQLITE_API int sqlite3_release_memory(int);

/*
** CAPI3REF: Free Memory Used By A Database Connection
**
** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
** memory as possible from database connection D. Unlike the
** [sqlite3_release_memory()] interface, this interface is in effect even
** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
** omitted.
**
** See also: [sqlite3_release_memory()]
*/
SQLITE_API int sqlite3_db_release_memory(sqlite3*);

/*
** CAPI3REF: Impose A Limit On Heap Size
**
** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
** soft limit on the amount of heap memory that may be allocated by SQLite.
** ^SQLite strives to keep heap memory utilization below the soft heap







>
>
>
>
>






|















|












|







5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
**
** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.)^
**
** ^Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.
**
** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
** and will always return SQLITE_MISUSE. On those systems, 
** shared cache mode should be enabled per-database connection via 
** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
**
** This interface is threadsafe on processors where writing a
** 32-bit integer is atomic.
**
** See Also:  [SQLite Shared-Cache Mode]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite3_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
** ^The sqlite3_release_memory() routine is a no-op returning zero
** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** See also: [sqlite3_db_release_memory()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_release_memory(int);

/*
** CAPI3REF: Free Memory Used By A Database Connection
**
** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
** memory as possible from database connection D. Unlike the
** [sqlite3_release_memory()] interface, this interface is in effect even
** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
** omitted.
**
** See also: [sqlite3_release_memory()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_release_memory(sqlite3*);

/*
** CAPI3REF: Impose A Limit On Heap Size
**
** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
** soft limit on the amount of heap memory that may be allocated by SQLite.
** ^SQLite strives to keep heap memory utilization below the soft heap
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
** the page cache is the predominate memory user in SQLite, most
** applications will achieve adequate soft heap limit enforcement without
** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** The circumstances under which SQLite will enforce the soft heap limit may
** changes in future releases of SQLite.
*/
SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);

/*
** CAPI3REF: Deprecated Soft Heap Limit Interface
** DEPRECATED
**
** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
** interface.  This routine is provided for historical compatibility
** only.  All new applications should use the
** [sqlite3_soft_heap_limit64()] interface rather than this one.
*/
SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);


/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
** information about column C of table T in database D







|










|







5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
** the page cache is the predominate memory user in SQLite, most
** applications will achieve adequate soft heap limit enforcement without
** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** The circumstances under which SQLite will enforce the soft heap limit may
** changes in future releases of SQLite.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_soft_heap_limit64(sqlite3_int64 N);

/*
** CAPI3REF: Deprecated Soft Heap Limit Interface
** DEPRECATED
**
** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
** interface.  This routine is provided for historical compatibility
** only.  All new applications should use the
** [sqlite3_soft_heap_limit64()] interface rather than this one.
*/
SQLITE_API SQLITE_DEPRECATED void SQLITE_STDCALL sqlite3_soft_heap_limit(int N);


/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
** information about column C of table T in database D
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
**     auto increment: 0
** </pre>)^
**
** ^This function causes all database schemas to be read from disk and
** parsed, if that has not already been done, and returns an error if
** any errors are encountered while loading the schema.
*/
SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */







|







5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
**     auto increment: 0
** </pre>)^
**
** ^This function causes all database schemas to be read from disk and
** parsed, if that has not already been done, and returns an error if
** any errors are encountered while loading the schema.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
**
** ^Extension loading must be enabled using
** [sqlite3_enable_load_extension()] prior to calling this API,
** otherwise an error will be returned.
**
** See also the [load_extension() SQL function].
*/
SQLITE_API int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
);

/*
** CAPI3REF: Enable Or Disable Extension Loading
**
** ^So as not to open security holes in older applications that are
** unprepared to deal with [extension loading], and as a means of disabling
** [extension loading] while evaluating user-entered SQL, the following API
** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
** ^Extension loading is off by default.
** ^Call the sqlite3_enable_load_extension() routine with onoff==1
** to turn extension loading on and call it with onoff==0 to turn
** it back off again.
*/
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);

/*
** CAPI3REF: Automatically Load Statically Linked Extensions
**
** ^This interface causes the xEntryPoint() function to be invoked for
** each new [database connection] that is created.  The idea here is that
** xEntryPoint() is the entry point for a statically linked [SQLite extension]







|



















|







5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
**
** ^Extension loading must be enabled using
** [sqlite3_enable_load_extension()] prior to calling this API,
** otherwise an error will be returned.
**
** See also the [load_extension() SQL function].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
);

/*
** CAPI3REF: Enable Or Disable Extension Loading
**
** ^So as not to open security holes in older applications that are
** unprepared to deal with [extension loading], and as a means of disabling
** [extension loading] while evaluating user-entered SQL, the following API
** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
** ^Extension loading is off by default.
** ^Call the sqlite3_enable_load_extension() routine with onoff==1
** to turn extension loading on and call it with onoff==0 to turn
** it back off again.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_enable_load_extension(sqlite3 *db, int onoff);

/*
** CAPI3REF: Automatically Load Statically Linked Extensions
**
** ^This interface causes the xEntryPoint() function to be invoked for
** each new [database connection] that is created.  The idea here is that
** xEntryPoint() is the entry point for a statically linked [SQLite extension]
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
** on the list of automatic extensions is a harmless no-op. ^No entry point
** will be called more than once for each database connection that is opened.
**
** See also: [sqlite3_reset_auto_extension()]
** and [sqlite3_cancel_auto_extension()]
*/
SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Cancel Automatic Extension Loading
**
** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
** initialization routine X that was registered using a prior call to
** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
** routine returns 1 if initialization routine X was successfully 
** unregistered and it returns 0 if X was not on the list of initialization
** routines.
*/
SQLITE_API int sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^This interface disables all automatic extensions previously
** registered using [sqlite3_auto_extension()].
*/
SQLITE_API void sqlite3_reset_auto_extension(void);

/*
** The interface to the virtual-table mechanism is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the







|











|







|







5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
** on the list of automatic extensions is a harmless no-op. ^No entry point
** will be called more than once for each database connection that is opened.
**
** See also: [sqlite3_reset_auto_extension()]
** and [sqlite3_cancel_auto_extension()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Cancel Automatic Extension Loading
**
** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
** initialization routine X that was registered using a prior call to
** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
** routine returns 1 if initialization routine X was successfully 
** unregistered and it returns 0 if X was not on the list of initialization
** routines.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^This interface disables all automatic extensions previously
** registered using [sqlite3_auto_extension()].
*/
SQLITE_API void SQLITE_STDCALL sqlite3_reset_auto_extension(void);

/*
** The interface to the virtual-table mechanism is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  ^The destructor will also
** be invoked if the call to sqlite3_create_module_v2() fails.
** ^The sqlite3_create_module()
** interface is equivalent to sqlite3_create_module_v2() with a NULL
** destructor.
*/
SQLITE_API int sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);
SQLITE_API int sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);








|





|







5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  ^The destructor will also
** be invoked if the call to sqlite3_create_module_v2() fails.
** ^The sqlite3_create_module()
** interface is equivalent to sqlite3_create_module_v2() with a NULL
** destructor.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);

5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  ^After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* NO LONGER USED */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}







|







5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  ^After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* Number of open cursors */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
** CAPI3REF: Declare The Schema Of A Virtual Table
**
** ^The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table
**
** ^(Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.)^
**
** ^(This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.)^  ^The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].
*/
SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**







|

















|







5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
** CAPI3REF: Declare The Schema Of A Virtual Table
**
** ^The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table
**
** ^(Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.)^
**
** ^(This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.)^  ^The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob







|







5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
** handle is still closed.)^







|







6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
** handle is still closed.)^
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
** Calling this function with an argument that is not a NULL pointer or an
** open blob handle results in undefined behaviour. ^Calling this routine 
** with a null pointer (such as would be returned by a failed call to 
** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
** is passed a valid open blob handle, the values returned by the 
** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  ^The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
*/
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally
**
** ^(This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.)^







|














|







6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
** Calling this function with an argument that is not a NULL pointer or an
** open blob handle results in undefined behaviour. ^Calling this routine 
** with a null pointer (such as would be returned by a failed call to 
** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
** is passed a valid open blob handle, the values returned by the 
** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  ^The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_bytes(sqlite3_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally
**
** ^(This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.)^
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^(This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.)^







|







6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^(This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.)^
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a







|







6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
** ^(If the default VFS is unregistered, another VFS is chosen as
** the default.  The choice for the new VFS is arbitrary.)^
*/
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);

/*
** CAPI3REF: Mutexes
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is







|
|
|







6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
** ^(If the default VFS is unregistered, another VFS is chosen as
** the default.  The choice for the new VFS is arbitrary.)^
*/
SQLITE_API sqlite3_vfs *SQLITE_STDCALL sqlite3_vfs_find(const char *zVfsName);
SQLITE_API int SQLITE_STDCALL sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
SQLITE_API int SQLITE_STDCALL sqlite3_vfs_unregister(sqlite3_vfs*);

/*
** CAPI3REF: Mutexes
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);

/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**







|
|
|
|
|







6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_mutex_alloc(int);
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_free(sqlite3_mutex*);
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_enter(sqlite3_mutex*);
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_try(sqlite3_mutex*);
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_leave(sqlite3_mutex*);

/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

/*
** CAPI3REF: Mutex Types
**
** The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants.







|
|







6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

/*
** CAPI3REF: Mutex Types
**
** The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants.
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
** ^If the [threading mode] is Single-thread or Multi-thread then this
** routine returns a NULL pointer.
*/
SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);

/*
** CAPI3REF: Low-Level Control Of Database Files
**
** ^The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. ^The







|







6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
** ^If the [threading mode] is Single-thread or Multi-thread then this
** routine returns a NULL pointer.
*/
SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_db_mutex(sqlite3*);

/*
** CAPI3REF: Low-Level Control Of Database Files
**
** ^The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. ^The
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
** or [sqlite3_errmsg()].  The underlying xFileControl method might
** also return SQLITE_ERROR.  There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method.
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);

/*
** CAPI3REF: Testing Interface
**
** ^The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes.  ^The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications.  It exists solely
** for verifying the correct operation of the SQLite library.  Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
SQLITE_API int sqlite3_test_control(int op, ...);

/*
** CAPI3REF: Testing Interface Operation Codes
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**







|


















|







6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
** or [sqlite3_errmsg()].  The underlying xFileControl method might
** also return SQLITE_ERROR.  There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method.
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);

/*
** CAPI3REF: Testing Interface
**
** ^The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes.  ^The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications.  It exists solely
** for verifying the correct operation of the SQLite library.  Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
SQLITE_API int SQLITE_CDECL sqlite3_test_control(int op, ...);

/*
** CAPI3REF: Testing Interface Operation Codes
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
6432
6433
6434
6435
6436
6437
6438

6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466

6467
6468
6469
6470






6471
6472
6473
6474
6475
6476
6477
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24

#define SQLITE_TESTCTRL_LAST                    24

/*
** CAPI3REF: SQLite Runtime Status
**
** ^This interface is used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [status parameters | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.

**
** See also: [sqlite3_db_status()]
*/
SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);








/*
** CAPI3REF: Status Parameters
** KEYWORDS: {status parameters}
**
** These integer constants designate various run-time status parameters







>
|




|













|
|

<
|
|
<
<
<
>



|
>
>
>
>
>
>







6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532

6533
6534



6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_LAST                    25

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [status parameters | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_status() and sqlite3_status64() routines return
** SQLITE_OK on success and a non-zero [error code] on failure.
**

** If either the current value or the highwater mark is too large to
** be represented by a 32-bit integer, then the values returned by



** sqlite3_status() are undefined.
**
** See also: [sqlite3_db_status()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
SQLITE_API int SQLITE_STDCALL sqlite3_status64(
  int op,
  sqlite3_int64 *pCurrent,
  sqlite3_int64 *pHighwater,
  int resetFlag
);


/*
** CAPI3REF: Status Parameters
** KEYWORDS: {status parameters}
**
** These integer constants designate various run-time status parameters
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
** reset back down to the current value.
**
** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections
** KEYWORDS: {SQLITE_DBSTATUS options}
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.







|







6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
** reset back down to the current value.
**
** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections
** KEYWORDS: {SQLITE_DBSTATUS options}
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
** to be interrogated.)^
** ^The current value of the requested counter is returned.
** ^If the resetFlg is true, then the counter is reset to zero after this
** interface call returns.
**
** See also: [sqlite3_status()] and [sqlite3_db_status()].
*/
SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);

/*
** CAPI3REF: Status Parameters for prepared statements
** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
**
** These preprocessor macros define integer codes that name counter
** values associated with the [sqlite3_stmt_status()] interface.







|







6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
** to be interrogated.)^
** ^The current value of the requested counter is returned.
** ^If the resetFlg is true, then the counter is reset to zero after this
** interface call returns.
**
** See also: [sqlite3_status()] and [sqlite3_db_status()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);

/*
** CAPI3REF: Status Parameters for prepared statements
** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
**
** These preprocessor macros define integer codes that name counter
** values associated with the [sqlite3_stmt_status()] interface.
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142

7143
7144
7145
7146
7147
7148
7149
7150
7151
7152


7153
7154
7155
7156
7157
7158
7159
7160
** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
** sqlite3_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]]
** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
**

** ^Each call to sqlite3_backup_step() sets two values inside
** the [sqlite3_backup] object: the number of pages still to be backed
** up and the total number of pages in the source database file.
** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
** ^The values returned by these functions are only updated by
** sqlite3_backup_step(). ^If the source database is modified during a backup
** operation, then the values are not updated to account for any extra
** pages that need to be updated or the size of the source database file


** changing.
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently







|


>
|
|
|
|
<
<
|
|
<
|
>
>
|







7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222


7223
7224

7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
** sqlite3_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
**
** ^The sqlite3_backup_remaining() routine returns the number of pages still
** to be backed up at the conclusion of the most recent sqlite3_backup_step().
** ^The sqlite3_backup_pagecount() routine returns the total number of pages
** in the source database at the conclusion of the most recent
** sqlite3_backup_step().


** ^(The values returned by these functions are only updated by
** sqlite3_backup_step(). If the source database is modified in a way that

** changes the size of the source database or the number of pages remaining,
** those changes are not reflected in the output of sqlite3_backup_pagecount()
** and sqlite3_backup_remaining() until after the next
** sqlite3_backup_step().)^
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
** same time as another thread is invoking sqlite3_backup_step() it is
** possible that they return invalid values.
*/
SQLITE_API sqlite3_backup *sqlite3_backup_init(
  sqlite3 *pDest,                        /* Destination database handle */
  const char *zDestName,                 /* Destination database name */
  sqlite3 *pSource,                      /* Source database handle */
  const char *zSourceName                /* Source database name */
);
SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See







|





|
|
|
|







7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
** same time as another thread is invoking sqlite3_backup_step() it is
** possible that they return invalid values.
*/
SQLITE_API sqlite3_backup *SQLITE_STDCALL sqlite3_backup_init(
  sqlite3 *pDest,                        /* Destination database handle */
  const char *zDestName,                 /* Destination database name */
  sqlite3 *pSource,                      /* Source database handle */
  const char *zSourceName                /* Source database name */
);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_step(sqlite3_backup *p, int nPage);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_finish(sqlite3_backup *p);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_remaining(sqlite3_backup *p);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. ^(If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.)^
*/
SQLITE_API int sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
**
** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
** and extensions to compare the contents of two buffers containing UTF-8
** strings in a case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_stricmp(const char *, const char *);
SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
*/
SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are







|














|
|














|







7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. ^(If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.)^
*/
SQLITE_API int SQLITE_STDCALL sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
**
** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
** and extensions to compare the contents of two buffers containing UTF-8
** strings in a case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
**
** To avoid deadlocks and other threading problems, the sqlite3_log() routine
** will not use dynamically allocated memory.  The log message is stored in
** a fixed-length buffer on the stack.  If the log message is longer than
** a few hundred characters, it will be truncated to the length of the
** buffer.
*/
SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** is invoked each time data is committed to a database in wal mode.
**







|







7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
**
** To avoid deadlocks and other threading problems, the sqlite3_log() routine
** will not use dynamically allocated memory.  The log message is stored in
** a fixed-length buffer on the stack.  If the log message is longer than
** a few hundred characters, it will be truncated to the length of the
** buffer.
*/
SQLITE_API void SQLITE_CDECL sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** is invoked each time data is committed to a database in wal mode.
**
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
** A single database handle may have at most a single write-ahead log callback 
** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
** previously registered write-ahead log callback. ^Note that the
** [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
** those overwrite any prior [sqlite3_wal_hook()] settings.
*/
SQLITE_API void *sqlite3_wal_hook(
  sqlite3*, 
  int(*)(void *,sqlite3*,const char*,int),
  void*
);

/*
** CAPI3REF: Configure an auto-checkpoint







|







7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
** A single database handle may have at most a single write-ahead log callback 
** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
** previously registered write-ahead log callback. ^Note that the
** [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
** those overwrite any prior [sqlite3_wal_hook()] settings.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_wal_hook(
  sqlite3*, 
  int(*)(void *,sqlite3*,const char*,int),
  void*
);

/*
** CAPI3REF: Configure an auto-checkpoint
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
**
** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the 
** [write-ahead log] for database X on [database connection] D to be
** transferred into the database file and for the write-ahead log to
** be reset.  See the [checkpointing] documentation for addition
** information.
**
** This interface used to be the only way to cause a checkpoint to
** occur.  But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
** interface was added.  This interface is retained for backwards
** compatibility and as a convenience for applications that need to manually
** start a callback but which do not need the full power (and corresponding
** complication) of [sqlite3_wal_checkpoint_v2()].
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
** operation on database X of [database connection] D in mode M.  Status
** information is written back into integers pointed to by L and C.)^







|




















|







7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
**
** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the 
** [write-ahead log] for database X on [database connection] D to be
** transferred into the database file and for the write-ahead log to
** be reset.  See the [checkpointing] documentation for addition
** information.
**
** This interface used to be the only way to cause a checkpoint to
** occur.  But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
** interface was added.  This interface is retained for backwards
** compatibility and as a convenience for applications that need to manually
** start a callback but which do not need the full power (and corresponding
** complication) of [sqlite3_wal_checkpoint_v2()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
** operation on database X of [database connection] D in mode M.  Status
** information is written back into integers pointed to by L and C.)^
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
** the sqlite3_wal_checkpoint_v2() interface
** sets the error information that is queried by
** [sqlite3_errcode()] and [sqlite3_errmsg()].
**
** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
** from SQL.
*/
SQLITE_API int sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);








|







7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
** the sqlite3_wal_checkpoint_v2() interface
** sets the error information that is queried by
** [sqlite3_errcode()] and [sqlite3_errmsg()].
**
** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
** from SQL.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);

7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
** If this interface is invoked outside the context of an xConnect or
** xCreate virtual table method then the behavior is undefined.
**
** At present, there is only one option that may be configured using
** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].)  Further options
** may be added in the future.
*/
SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.







|







7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
** If this interface is invoked outside the context of an xConnect or
** xCreate virtual table method then the behavior is undefined.
**
** At present, there is only one option that may be configured using
** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].)  Further options
** may be added in the future.
*/
SQLITE_API int SQLITE_CDECL sqlite3_vtab_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
** This function may only be called from within a call to the [xUpdate] method
** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
** of the SQL statement that triggered the call to the [xUpdate] method of the
** [virtual table].
*/
SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);

/*
** CAPI3REF: Conflict resolution modes
** KEYWORDS: {conflict resolution mode}
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode







|







7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
** This function may only be called from within a call to the [xUpdate] method
** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
** of the SQL statement that triggered the call to the [xUpdate] method of the
** [virtual table].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_vtab_on_conflict(sqlite3 *);

/*
** CAPI3REF: Conflict resolution modes
** KEYWORDS: {conflict resolution mode}
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT







|














|







7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818

/*
** Register a geometry callback named zGeom that can be used as part of an
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
  void *pContext
);









|







7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893

/*
** Register a geometry callback named zGeom that can be used as part of an
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
  void *pContext
);


7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844

/*
** Register a 2nd-generation geometry callback named zScore that can be 
** used as part of an R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
*/
SQLITE_API int sqlite3_rtree_query_callback(
  sqlite3 *db,
  const char *zQueryFunc,
  int (*xQueryFunc)(sqlite3_rtree_query_info*),
  void *pContext,
  void (*xDestructor)(void*)
);








|







7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919

/*
** Register a 2nd-generation geometry callback named zScore that can be 
** used as part of an R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_query_callback(
  sqlite3 *db,
  const char *zQueryFunc,
  int (*xQueryFunc)(sqlite3_rtree_query_info*),
  void *pContext,
  void (*xDestructor)(void*)
);

7994
7995
7996
7997
7998
7999
8000
8001
8002





8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
** The maximum number of arguments to an SQL function.
*/
#ifndef SQLITE_MAX_FUNCTION_ARG
# define SQLITE_MAX_FUNCTION_ARG 127
#endif

/*
** The maximum number of in-memory pages to use for the main database
** table and for temporary tables.  The SQLITE_DEFAULT_CACHE_SIZE





*/
#ifndef SQLITE_DEFAULT_CACHE_SIZE
# define SQLITE_DEFAULT_CACHE_SIZE  2000
#endif
#ifndef SQLITE_DEFAULT_TEMP_CACHE_SIZE
# define SQLITE_DEFAULT_TEMP_CACHE_SIZE  500
#endif

/*
** The default number of frames to accumulate in the log file before
** checkpointing the database in WAL mode.
*/
#ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
# define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT  1000







|
|
>
>
>
>
>




<
<
<







8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086



8087
8088
8089
8090
8091
8092
8093
** The maximum number of arguments to an SQL function.
*/
#ifndef SQLITE_MAX_FUNCTION_ARG
# define SQLITE_MAX_FUNCTION_ARG 127
#endif

/*
** The suggested maximum number of in-memory pages to use for
** the main database table and for temporary tables.
**
** IMPLEMENTATION-OF: R-31093-59126 The default suggested cache size
** is 2000 pages.
** IMPLEMENTATION-OF: R-48205-43578 The default suggested cache size can be
** altered using the SQLITE_DEFAULT_CACHE_SIZE compile-time options.
*/
#ifndef SQLITE_DEFAULT_CACHE_SIZE
# define SQLITE_DEFAULT_CACHE_SIZE  2000
#endif




/*
** The default number of frames to accumulate in the log file before
** checkpointing the database in WAL mode.
*/
#ifndef SQLITE_DEFAULT_WAL_AUTOCHECKPOINT
# define SQLITE_DEFAULT_WAL_AUTOCHECKPOINT  1000
8846
8847
8848
8849
8850
8851
8852














8853
8854
8855
8856
8857
8858
8859
** The LogEst can be negative to indicate fractional values. 
** Examples:
**
**    0.5 -> -10           0.1 -> -33        0.0625 -> -40
*/
typedef INT16_TYPE LogEst;















/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined







>
>
>
>
>
>
>
>
>
>
>
>
>
>







8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
** The LogEst can be negative to indicate fractional values. 
** Examples:
**
**    0.5 -> -10           0.1 -> -33        0.0625 -> -40
*/
typedef INT16_TYPE LogEst;

/*
** Set the SQLITE_PTRSIZE macro to the number of bytes in a pointer
*/
#ifndef SQLITE_PTRSIZE
# if defined(__SIZEOF_POINTER__)
#   define SQLITE_PTRSIZE __SIZEOF_POINTER__
# elif defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
       defined(_M_ARM)   || defined(__arm__)    || defined(__x86)
#   define SQLITE_PTRSIZE 4
# else
#   define SQLITE_PTRSIZE 8
# endif
#endif

/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
** macros become no-ops and have zero performance impact.
*/
#ifdef SQLITE_OMIT_WSD
  #define SQLITE_WSD const
  #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
  #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
SQLITE_API   int sqlite3_wsd_init(int N, int J);
SQLITE_API   void *sqlite3_wsd_find(void *K, int L);
#else
  #define SQLITE_WSD 
  #define GLOBAL(t,v) v
  #define sqlite3GlobalConfig sqlite3Config
#endif

/*







|
|







9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
** In the usual case where WSD is supported, the SQLITE_WSD and GLOBAL
** macros become no-ops and have zero performance impact.
*/
#ifdef SQLITE_OMIT_WSD
  #define SQLITE_WSD const
  #define GLOBAL(t,v) (*(t*)sqlite3_wsd_find((void*)&(v), sizeof(v)))
  #define sqlite3GlobalConfig GLOBAL(struct Sqlite3Config, sqlite3Config)
SQLITE_API int SQLITE_STDCALL sqlite3_wsd_init(int N, int J);
SQLITE_API void *SQLITE_STDCALL sqlite3_wsd_find(void *K, int L);
#else
  #define SQLITE_WSD 
  #define GLOBAL(t,v) v
  #define sqlite3GlobalConfig sqlite3Config
#endif

/*
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*);
#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p);
#endif
SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int);







|
<

<







9308
9309
9310
9311
9312
9313
9314
9315

9316

9317
9318
9319
9320
9321
9322
9323
SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int);
SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeGetOptimalReserve(Btree*);

SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p);

SQLITE_PRIVATE int sqlite3BtreeSetAutoVacuum(Btree *, int);
SQLITE_PRIVATE int sqlite3BtreeGetAutoVacuum(Btree *);
SQLITE_PRIVATE int sqlite3BtreeBeginTrans(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseOne(Btree*, const char *zMaster);
SQLITE_PRIVATE int sqlite3BtreeCommitPhaseTwo(Btree*, int);
SQLITE_PRIVATE int sqlite3BtreeCommit(Btree*);
SQLITE_PRIVATE int sqlite3BtreeRollback(Btree*,int,int);
9298
9299
9300
9301
9302
9303
9304









9305
9306

9307
9308
9309
9310
9311
9312
9313
#define BTREE_INCR_VACUUM         7
#define BTREE_APPLICATION_ID      8
#define BTREE_DATA_VERSION        15  /* A virtual meta-value */

/*
** Values that may be OR'd together to form the second argument of an
** sqlite3BtreeCursorHints() call.









*/
#define BTREE_BULKLOAD 0x00000001


SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */







>
>
>
>
>
>
>
>
>

|
>







9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
#define BTREE_INCR_VACUUM         7
#define BTREE_APPLICATION_ID      8
#define BTREE_DATA_VERSION        15  /* A virtual meta-value */

/*
** Values that may be OR'd together to form the second argument of an
** sqlite3BtreeCursorHints() call.
**
** The BTREE_BULKLOAD flag is set on index cursors when the index is going
** to be filled with content that is already in sorted order.
**
** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or
** OP_SeekLE opcodes for a range search, but where the range of entries
** selected will all have the same key.  In other words, the cursor will
** be used only for equality key searches.
**
*/
#define BTREE_BULKLOAD 0x00000001  /* Used to full index in sorted order */
#define BTREE_SEEK_EQ  0x00000002  /* EQ seeks only - no range seeks */

SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
9345
9346
9347
9348
9349
9350
9351



9352
9353
9354
9355
9356
9357
9358
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);



SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);

#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif








>
>
>







9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
#endif
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);

#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

9711
9712
9713
9714
9715
9716
9717
9718


9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
#define OP_Param         132
#define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */
#define OP_FkCounter     134 /* synopsis: fkctr[P1]+=P2                    */
#define OP_FkIfZero      135 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        136 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         137 /* synopsis: if r[P1]>0 goto P2               */
#define OP_IfNeg         138 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2    */
#define OP_IfZero        139 /* synopsis: r[P1]+=P3, if r[P1]==0 goto P2   */


#define OP_AggFinal      140 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    141
#define OP_Expire        142
#define OP_TableLock     143 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        144
#define OP_VCreate       145
#define OP_VDestroy      146
#define OP_VOpen         147
#define OP_VColumn       148 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         149
#define OP_VRename       150
#define OP_Pagecount     151
#define OP_MaxPgcnt      152
#define OP_Init          153 /* synopsis: Start at P2                      */
#define OP_Noop          154
#define OP_Explain       155


/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */







|
>
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
#define OP_Param         132
#define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */
#define OP_FkCounter     134 /* synopsis: fkctr[P1]+=P2                    */
#define OP_FkIfZero      135 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        136 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         137 /* synopsis: if r[P1]>0 goto P2               */
#define OP_IfNeg         138 /* synopsis: r[P1]+=P3, if r[P1]<0 goto P2    */
#define OP_IfNotZero     139 /* synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2 */
#define OP_DecrJumpZero  140 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  141 /* synopsis: if (r[P1]++)==0 ) goto P2        */
#define OP_AggFinal      142 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    143
#define OP_Expire        144
#define OP_TableLock     145 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        146
#define OP_VCreate       147
#define OP_VDestroy      148
#define OP_VOpen         149
#define OP_VColumn       150 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         151
#define OP_VRename       152
#define OP_Pagecount     153
#define OP_MaxPgcnt      154
#define OP_Init          155 /* synopsis: Start at P2                      */
#define OP_Noop          156
#define OP_Explain       157


/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
/*  80 */ 0x15, 0x15, 0x15, 0x15, 0x00, 0x4c, 0x4c, 0x4c,\
/*  88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x00,\
/*  96 */ 0x24, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,\
/* 104 */ 0x00, 0x01, 0x01, 0x01, 0x01, 0x08, 0x08, 0x00,\
/* 112 */ 0x02, 0x01, 0x01, 0x01, 0x01, 0x02, 0x00, 0x00,\
/* 120 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x02, 0x00, 0x01,\
/* 136 */ 0x08, 0x05, 0x05, 0x05, 0x00, 0x01, 0x00, 0x00,\
/* 144 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02,\
/* 152 */ 0x02, 0x01, 0x00, 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.







|
|
|







9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
/*  80 */ 0x15, 0x15, 0x15, 0x15, 0x00, 0x4c, 0x4c, 0x4c,\
/*  88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x00,\
/*  96 */ 0x24, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,\
/* 104 */ 0x00, 0x01, 0x01, 0x01, 0x01, 0x08, 0x08, 0x00,\
/* 112 */ 0x02, 0x01, 0x01, 0x01, 0x01, 0x02, 0x00, 0x00,\
/* 120 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x02, 0x00, 0x01,\
/* 136 */ 0x08, 0x05, 0x05, 0x05, 0x05, 0x05, 0x00, 0x01,\
/* 144 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,\
/* 152 */ 0x00, 0x02, 0x02, 0x01, 0x00, 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
10837
10838
10839
10840
10841
10842
10843

10844
10845
10846
10847
10848

10849
10850
10851
10852
10853
10854
10855
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
    int newTnum;                /* Rootpage of table being initialized */
    u8 iDb;                     /* Which db file is being initialized */
    u8 busy;                    /* TRUE if currently initializing */
    u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */

  } init;
  int nVdbeActive;              /* Number of VDBEs currently running */
  int nVdbeRead;                /* Number of active VDBEs that read or write */
  int nVdbeWrite;               /* Number of active VDBEs that read and write */
  int nVdbeExec;                /* Number of nested calls to VdbeExec() */

  int nExtension;               /* Number of loaded extensions */
  void **aExtension;            /* Array of shared library handles */
  void (*xTrace)(void*,const char*);        /* Trace function */
  void *pTraceArg;                          /* Argument to the trace function */
  void (*xProfile)(void*,const char*,u64);  /* Profiling function */
  void *pProfileArg;                        /* Argument to profile function */
  void *pCommitArg;                 /* Argument to xCommitCallback() */   







>





>







10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
  int aLimit[SQLITE_N_LIMIT];   /* Limits */
  int nMaxSorterMmap;           /* Maximum size of regions mapped by sorter */
  struct sqlite3InitInfo {      /* Information used during initialization */
    int newTnum;                /* Rootpage of table being initialized */
    u8 iDb;                     /* Which db file is being initialized */
    u8 busy;                    /* TRUE if currently initializing */
    u8 orphanTrigger;           /* Last statement is orphaned TEMP trigger */
    u8 imposterTable;           /* Building an imposter table */
  } init;
  int nVdbeActive;              /* Number of VDBEs currently running */
  int nVdbeRead;                /* Number of active VDBEs that read or write */
  int nVdbeWrite;               /* Number of active VDBEs that read and write */
  int nVdbeExec;                /* Number of nested calls to VdbeExec() */
  int nVDestroy;                /* Number of active OP_VDestroy operations */
  int nExtension;               /* Number of loaded extensions */
  void **aExtension;            /* Array of shared library handles */
  void (*xTrace)(void*,const char*);        /* Trace function */
  void *pTraceArg;                          /* Argument to the trace function */
  void (*xProfile)(void*,const char*,u64);  /* Profiling function */
  void *pProfileArg;                        /* Argument to profile function */
  void *pCommitArg;                 /* Argument to xCommitCallback() */   
11793
11794
11795
11796
11797
11798
11799
11800
11801






11802
11803
11804
11805
11806
11807
11808
#define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
#define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_Constant  0x080000 /* Node is a constant */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */







/*
** These macros can be used to test, set, or clear bits in the 
** Expr.flags field.
*/
#define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
#define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))







|

>
>
>
>
>
>







11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
#define EP_Skip      0x001000 /* COLLATE, AS, or UNLIKELY */
#define EP_Reduced   0x002000 /* Expr struct EXPR_REDUCEDSIZE bytes only */
#define EP_TokenOnly 0x004000 /* Expr struct EXPR_TOKENONLYSIZE bytes only */
#define EP_Static    0x008000 /* Held in memory not obtained from malloc() */
#define EP_MemToken  0x010000 /* Need to sqlite3DbFree() Expr.zToken */
#define EP_NoReduce  0x020000 /* Cannot EXPRDUP_REDUCE this Expr */
#define EP_Unlikely  0x040000 /* unlikely() or likelihood() function */
#define EP_ConstFunc 0x080000 /* Node is a SQLITE_FUNC_CONSTANT function */
#define EP_CanBeNull 0x100000 /* Can be null despite NOT NULL constraint */
#define EP_Subquery  0x200000 /* Tree contains a TK_SELECT operator */

/*
** Combinations of two or more EP_* flags
*/
#define EP_Propagate (EP_Collate|EP_Subquery) /* Propagate these bits up tree */

/*
** These macros can be used to test, set, or clear bits in the 
** Expr.flags field.
*/
#define ExprHasProperty(E,P)     (((E)->flags&(P))!=0)
#define ExprHasAllProperty(E,P)  (((E)->flags&(P))==(P))
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
                          /*   0x0080 // not currently used */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */

/* Allowed return values from sqlite3WhereIsDistinct()







|







12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
#define WHERE_ORDERBY_MIN      0x0001 /* ORDER BY processing for min() func */
#define WHERE_ORDERBY_MAX      0x0002 /* ORDER BY processing for max() func */
#define WHERE_ONEPASS_DESIRED  0x0004 /* Want to do one-pass UPDATE/DELETE */
#define WHERE_DUPLICATES_OK    0x0008 /* Ok to return a row more than once */
#define WHERE_OMIT_OPEN_CLOSE  0x0010 /* Table cursors are already open */
#define WHERE_FORCE_TABLE      0x0020 /* Do not use an index-only search */
#define WHERE_ONETABLE_ONLY    0x0040 /* Only code the 1st table in pTabList */
#define WHERE_NO_AUTOINDEX     0x0080 /* Disallow automatic indexes */
#define WHERE_GROUPBY          0x0100 /* pOrderBy is really a GROUP BY */
#define WHERE_DISTINCTBY       0x0200 /* pOrderby is really a DISTINCT clause */
#define WHERE_WANT_DISTINCT    0x0400 /* All output needs to be distinct */
#define WHERE_SORTBYGROUP      0x0800 /* Support sqlite3WhereIsSorted() */
#define WHERE_REOPEN_IDX       0x1000 /* Try to use OP_ReopenIdx */

/* Allowed return values from sqlite3WhereIsDistinct()
12112
12113
12114
12115
12116
12117
12118

12119
12120
12121
12122
12123
12124
12125
#define SF_Compound        0x0040  /* Part of a compound query */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_AllValues       0x0100  /* All terms of compound are VALUES */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */



/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**







>







12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
#define SF_Compound        0x0040  /* Part of a compound query */
#define SF_Values          0x0080  /* Synthesized from VALUES clause */
#define SF_AllValues       0x0100  /* All terms of compound are VALUES */
#define SF_NestedFrom      0x0200  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0400  /* Need convertCompoundSelectToSubquery() */
#define SF_Recursive       0x0800  /* The recursive part of a recursive CTE */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
#define SF_Converted       0x2000  /* By convertCompoundSelectToSubquery() */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
12430
12431
12432
12433
12434
12435
12436

12437
12438
12439
12440
12441
12442
12443
12444
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */

#define OPFLAG_P2ISREG       0x02    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.







>
|







12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
#define OPFLAG_LASTROWID     0x02    /* Set to update db->lastRowid */
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
#define OPFLAG_P2ISREG       0x04    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
12834
12835
12836
12837
12838
12839
12840

12841
12842
12843
12844




12845
12846
12847
12848
12849
12850
12851
SQLITE_PRIVATE   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
SQLITE_PRIVATE   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
SQLITE_PRIVATE   sqlite3_mutex *sqlite3MutexAlloc(int);
SQLITE_PRIVATE   int sqlite3MutexInit(void);
SQLITE_PRIVATE   int sqlite3MutexEnd(void);
#endif


SQLITE_PRIVATE int sqlite3StatusValue(int);
SQLITE_PRIVATE void sqlite3StatusAdd(int, int);
SQLITE_PRIVATE void sqlite3StatusSet(int, int);





#ifndef SQLITE_OMIT_FLOATING_POINT
SQLITE_PRIVATE   int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X)  0
#endif

/*







>
|
|


>
>
>
>







12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
SQLITE_PRIVATE   sqlite3_mutex_methods const *sqlite3DefaultMutex(void);
SQLITE_PRIVATE   sqlite3_mutex_methods const *sqlite3NoopMutex(void);
SQLITE_PRIVATE   sqlite3_mutex *sqlite3MutexAlloc(int);
SQLITE_PRIVATE   int sqlite3MutexInit(void);
SQLITE_PRIVATE   int sqlite3MutexEnd(void);
#endif

SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int);
SQLITE_PRIVATE void sqlite3StatusUp(int, int);
SQLITE_PRIVATE void sqlite3StatusDown(int, int);
SQLITE_PRIVATE void sqlite3StatusSet(int, int);

/* Access to mutexes used by sqlite3_status() */
SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void);
SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void);

#ifndef SQLITE_OMIT_FLOATING_POINT
SQLITE_PRIVATE   int sqlite3IsNaN(double);
#else
# define sqlite3IsNaN(X)  0
#endif

/*
12902
12903
12904
12905
12906
12907
12908

12909
12910
12911
12912
12913
12914
12915
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);

SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);
SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);







>







13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
SQLITE_PRIVATE Expr *sqlite3ExprFunction(Parse*,ExprList*, Token*);
SQLITE_PRIVATE void sqlite3ExprAssignVarNumber(Parse*, Expr*);
SQLITE_PRIVATE void sqlite3ExprDelete(sqlite3*, Expr*);
SQLITE_PRIVATE ExprList *sqlite3ExprListAppend(Parse*,ExprList*,Expr*);
SQLITE_PRIVATE void sqlite3ExprListSetName(Parse*,ExprList*,Token*,int);
SQLITE_PRIVATE void sqlite3ExprListSetSpan(Parse*,ExprList*,ExprSpan*);
SQLITE_PRIVATE void sqlite3ExprListDelete(sqlite3*, ExprList*);
SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList*);
SQLITE_PRIVATE int sqlite3Init(sqlite3*, char**);
SQLITE_PRIVATE int sqlite3InitCallback(void*, int, char**, char**);
SQLITE_PRIVATE void sqlite3Pragma(Parse*,Token*,Token*,Token*,int);
SQLITE_PRIVATE void sqlite3ResetAllSchemasOfConnection(sqlite3*);
SQLITE_PRIVATE void sqlite3ResetOneSchema(sqlite3*,int);
SQLITE_PRIVATE void sqlite3CollapseDatabaseArray(sqlite3*);
SQLITE_PRIVATE void sqlite3BeginParse(Parse*,int);
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
#endif

SQLITE_PRIVATE const char *sqlite3ErrStr(int);
SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);







|







13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
#endif

SQLITE_PRIVATE const char *sqlite3ErrStr(int);
SQLITE_PRIVATE int sqlite3ReadSchema(Parse *pParse);
SQLITE_PRIVATE CollSeq *sqlite3FindCollSeq(sqlite3*,u8 enc, const char*,int);
SQLITE_PRIVATE CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char*zName);
SQLITE_PRIVATE CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr*, const Token*, int);
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse*,Expr*,const char*);
SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr*);
SQLITE_PRIVATE int sqlite3CheckCollSeq(Parse *, CollSeq *);
SQLITE_PRIVATE int sqlite3CheckObjectName(Parse *, const char *);
SQLITE_PRIVATE void sqlite3VdbeSetChanges(sqlite3 *, int);
SQLITE_PRIVATE int sqlite3AddInt64(i64*,i64);
SQLITE_PRIVATE int sqlite3SubInt64(i64*,i64);
13485
13486
13487
13488
13489
13490
13491

13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
  #define sqlite3JournalExists(p) 1
#endif

SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
SQLITE_PRIVATE int sqlite3MemJournalSize(void);
SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *);


#if SQLITE_MAX_EXPR_DEPTH>0
SQLITE_PRIVATE   void sqlite3ExprSetHeight(Parse *pParse, Expr *p);
SQLITE_PRIVATE   int sqlite3SelectExprHeight(Select *);
SQLITE_PRIVATE   int sqlite3ExprCheckHeight(Parse*, int);
#else
  #define sqlite3ExprSetHeight(x,y)
  #define sqlite3SelectExprHeight(x) 0
  #define sqlite3ExprCheckHeight(x,y)
#endif

SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);








>

<



<







13605
13606
13607
13608
13609
13610
13611
13612
13613

13614
13615
13616

13617
13618
13619
13620
13621
13622
13623
  #define sqlite3JournalExists(p) 1
#endif

SQLITE_PRIVATE void sqlite3MemJournalOpen(sqlite3_file *);
SQLITE_PRIVATE int sqlite3MemJournalSize(void);
SQLITE_PRIVATE int sqlite3IsMemJournal(sqlite3_file *);

SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p);
#if SQLITE_MAX_EXPR_DEPTH>0

SQLITE_PRIVATE   int sqlite3SelectExprHeight(Select *);
SQLITE_PRIVATE   int sqlite3ExprCheckHeight(Parse*, int);
#else

  #define sqlite3SelectExprHeight(x) 0
  #define sqlite3ExprCheckHeight(x,y)
#endif

SQLITE_PRIVATE u32 sqlite3Get4byte(const u8*);
SQLITE_PRIVATE void sqlite3Put4byte(u8*, u32);

13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages. 
*/
#ifdef SQLITE_ENABLE_IOTRACE
# define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
SQLITE_PRIVATE   void sqlite3VdbeIOTraceSql(Vdbe*);
void (*sqlite3IoTrace)(const char*,...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif

/*
** These routines are available for the mem2.c debugging memory allocator







|







13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
** If the SQLITE_ENABLE IOTRACE exists then the global variable
** sqlite3IoTrace is a pointer to a printf-like routine used to
** print I/O tracing messages. 
*/
#ifdef SQLITE_ENABLE_IOTRACE
# define IOTRACE(A)  if( sqlite3IoTrace ){ sqlite3IoTrace A; }
SQLITE_PRIVATE   void sqlite3VdbeIOTraceSql(Vdbe*);
SQLITE_API SQLITE_EXTERN void (SQLITE_CDECL *sqlite3IoTrace)(const char*,...);
#else
# define IOTRACE(A)
# define sqlite3VdbeIOTraceSql(X)
#endif

/*
** These routines are available for the mem2.c debugging memory allocator
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
#ifdef SQLITE_EBCDIC
      0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, /* 0x */
     16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
     32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
     48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
     64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
     80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
     96, 97, 66, 67, 68, 69, 70, 71, 72, 73,106,107,108,109,110,111, /* 6x */
    112, 81, 82, 83, 84, 85, 86, 87, 88, 89,122,123,124,125,126,127, /* 7x */
    128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
    144,145,146,147,148,149,150,151,152,153,154,155,156,157,156,159, /* 9x */
    160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
    176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
    192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
    208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
    224,225,162,163,164,165,166,167,168,169,232,203,204,205,206,207, /* Ex */
    239,240,241,242,243,244,245,246,247,248,249,219,220,221,222,255, /* Fx */
#endif
};

/*
** The following 256 byte lookup table is used to support SQLites built-in
** equivalents to the following standard library functions:
**







|
|

|




|
|







13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
#ifdef SQLITE_EBCDIC
      0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, /* 0x */
     16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, /* 1x */
     32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, /* 2x */
     48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, /* 3x */
     64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, /* 4x */
     80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, /* 5x */
     96, 97, 98, 99,100,101,102,103,104,105,106,107,108,109,110,111, /* 6x */
    112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127, /* 7x */
    128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143, /* 8x */
    144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159, /* 9x */
    160,161,162,163,164,165,166,167,168,169,170,171,140,141,142,175, /* Ax */
    176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191, /* Bx */
    192,129,130,131,132,133,134,135,136,137,202,203,204,205,206,207, /* Cx */
    208,145,146,147,148,149,150,151,152,153,218,219,220,221,222,223, /* Dx */
    224,225,162,163,164,165,166,167,168,169,234,235,236,237,238,239, /* Ex */
    240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255, /* Fx */
#endif
};

/*
** The following 256 byte lookup table is used to support SQLites built-in
** equivalents to the following standard library functions:
**
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
/*
** Given the name of a compile-time option, return true if that option
** was used and false if not.
**
** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
** is not required for a match.
*/
SQLITE_API int sqlite3_compileoption_used(const char *zOptName){
  int i, n;

#if SQLITE_ENABLE_API_ARMOR
  if( zOptName==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }







|







14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
/*
** Given the name of a compile-time option, return true if that option
** was used and false if not.
**
** The name can optionally begin with "SQLITE_" but the "SQLITE_" prefix
** is not required for a match.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_compileoption_used(const char *zOptName){
  int i, n;

#if SQLITE_ENABLE_API_ARMOR
  if( zOptName==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
  return 0;
}

/*
** Return the N-th compile-time option string.  If N is out of range,
** return a NULL pointer.
*/
SQLITE_API const char *sqlite3_compileoption_get(int N){
  if( N>=0 && N<ArraySize(azCompileOpt) ){
    return azCompileOpt[N];
  }
  return 0;
}

#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */







|







14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
  return 0;
}

/*
** Return the N-th compile-time option string.  If N is out of range,
** return a NULL pointer.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_compileoption_get(int N){
  if( N>=0 && N<ArraySize(azCompileOpt) ){
    return azCompileOpt[N];
  }
  return 0;
}

#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625

/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.
**
** The Vdbe.inVtabMethod variable is set to non-zero for the duration of
** any virtual table method invocations made by the vdbe program. It is
** set to 2 for xDestroy method calls and 1 for all other methods. This
** variable is used for two purposes: to allow xDestroy methods to execute
** "DROP TABLE" statements and to prevent some nasty side effects of
** malloc failure when SQLite is invoked recursively by a virtual table 
** method function.
*/
struct Vdbe {
  sqlite3 *db;            /* The database connection that owns this statement */
  Op *aOp;                /* Space to hold the virtual machine's program */
  Mem *aMem;              /* The memory locations */
  Mem **apArg;            /* Arguments to currently executing user function */
  Mem *aColName;          /* Column names to return */







<
<
<
<
<
<
<
<







14723
14724
14725
14726
14727
14728
14729








14730
14731
14732
14733
14734
14735
14736

/*
** An instance of the virtual machine.  This structure contains the complete
** state of the virtual machine.
**
** The "sqlite3_stmt" structure pointer that is returned by sqlite3_prepare()
** is really a pointer to an instance of this structure.








*/
struct Vdbe {
  sqlite3 *db;            /* The database connection that owns this statement */
  Op *aOp;                /* Space to hold the virtual machine's program */
  Mem *aMem;              /* The memory locations */
  Mem **apArg;            /* Arguments to currently executing user function */
  Mem *aColName;          /* Column names to return */
14635
14636
14637
14638
14639
14640
14641



14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */
  ynVar nzVar;            /* Number of entries in azVar[] */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */



  u16 nResColumn;         /* Number of columns in one row of the result set */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  bft explain:2;          /* True if EXPLAIN present on SQL command */
  bft inVtabMethod:2;     /* See comments above */
  bft changeCntOn:1;      /* True to update the change-counter */
  bft expired:1;          /* True if the VM needs to be recompiled */
  bft runOnlyOnce:1;      /* Automatically expire on reset */
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */
  bft isPrepareV2:1;      /* True if prepared with prepare_v2() */







>
>
>




<







14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759

14760
14761
14762
14763
14764
14765
14766
  Mem *aVar;              /* Values for the OP_Variable opcode. */
  char **azVar;           /* Name of variables */
  ynVar nVar;             /* Number of entries in aVar[] */
  ynVar nzVar;            /* Number of entries in azVar[] */
  u32 cacheCtr;           /* VdbeCursor row cache generation counter */
  int pc;                 /* The program counter */
  int rc;                 /* Value to return */
#ifdef SQLITE_DEBUG
  int rcApp;              /* errcode set by sqlite3_result_error_code() */
#endif
  u16 nResColumn;         /* Number of columns in one row of the result set */
  u8 errorAction;         /* Recovery action to do in case of an error */
  u8 minWriteFileFormat;  /* Minimum file format for writable database files */
  bft explain:2;          /* True if EXPLAIN present on SQL command */

  bft changeCntOn:1;      /* True to update the change-counter */
  bft expired:1;          /* True if the VM needs to be recompiled */
  bft runOnlyOnce:1;      /* Automatically expire on reset */
  bft usesStmtJournal:1;  /* True if uses a statement journal */
  bft readOnly:1;         /* True for statements that do not write */
  bft bIsReader:1;        /* True for statements that read */
  bft isPrepareV2:1;      /* True if prepared with prepare_v2() */
14799
14800
14801
14802
14803
14804
14805

14806
14807




14808

















14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826

14827
14828
14829
14830



14831
14832
14833
14834
14835
14836







14837
14838
14839
14840



14841
14842
14843
14844
14845








14846

14847
14848

14849
14850
14851
14852



14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865




14866


14867
14868
14869
14870
14871
14872
14873


14874
14875
14876
14877
14878


14879













14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
/************** Continuing where we left off in status.c *********************/

/*
** Variables in which to record status information.
*/
typedef struct sqlite3StatType sqlite3StatType;
static SQLITE_WSD struct sqlite3StatType {

  int nowValue[10];         /* Current value */
  int mxValue[10];          /* Maximum value */




} sqlite3Stat = { {0,}, {0,} };



















/* The "wsdStat" macro will resolve to the status information
** state vector.  If writable static data is unsupported on the target,
** we have to locate the state vector at run-time.  In the more common
** case where writable static data is supported, wsdStat can refer directly
** to the "sqlite3Stat" state vector declared above.
*/
#ifdef SQLITE_OMIT_WSD
# define wsdStatInit  sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
# define wsdStat x[0]
#else
# define wsdStatInit
# define wsdStat sqlite3Stat
#endif

/*
** Return the current value of a status parameter.

*/
SQLITE_PRIVATE int sqlite3StatusValue(int op){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );



  return wsdStat.nowValue[op];
}

/*
** Add N to the value of a status record.  It is assumed that the
** caller holds appropriate locks.







*/
SQLITE_PRIVATE void sqlite3StatusAdd(int op, int N){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );



  wsdStat.nowValue[op] += N;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}










/*
** Set the value of a status to X.

*/
SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );



  wsdStat.nowValue[op] = X;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}

/*
** Query status information.
**
** This implementation assumes that reading or writing an aligned
** 32-bit integer is an atomic operation.  If that assumption is not true,
** then this routine is not threadsafe.
*/




SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){


  wsdStatInit;
  if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
    return SQLITE_MISUSE_BKPT;
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif


  *pCurrent = wsdStat.nowValue[op];
  *pHighwater = wsdStat.mxValue[op];
  if( resetFlag ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }


  return SQLITE_OK;













}

/*
** Query status information for a single database connection
*/
SQLITE_API int sqlite3_db_status(
  sqlite3 *db,          /* The database connection whose status is desired */
  int op,               /* Status verb */
  int *pCurrent,        /* Write current value here */
  int *pHighwater,      /* Write high-water mark here */
  int resetFlag         /* Reset high-water mark if true */
){
  int rc = SQLITE_OK;   /* Return code */







>
|
|
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















|
>

|


>
>
>




|
|
>
>
>
>
>
>
>

|


>
>
>





>
>
>
>
>
>
>
>
|
>

|
>




>
>
>








<
<
<
<

>
>
>
>
|
>
>







>
>





>
>

>
>
>
>
>
>
>
>
>
>
>
>
>





|







14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022




15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
/************** Continuing where we left off in status.c *********************/

/*
** Variables in which to record status information.
*/
typedef struct sqlite3StatType sqlite3StatType;
static SQLITE_WSD struct sqlite3StatType {
#if SQLITE_PTRSIZE>4
  sqlite3_int64 nowValue[10];         /* Current value */
  sqlite3_int64 mxValue[10];          /* Maximum value */
#else
  u32 nowValue[10];                   /* Current value */
  u32 mxValue[10];                    /* Maximum value */
#endif
} sqlite3Stat = { {0,}, {0,} };

/*
** Elements of sqlite3Stat[] are protected by either the memory allocator
** mutex, or by the pcache1 mutex.  The following array determines which.
*/
static const char statMutex[] = {
  0,  /* SQLITE_STATUS_MEMORY_USED */
  1,  /* SQLITE_STATUS_PAGECACHE_USED */
  1,  /* SQLITE_STATUS_PAGECACHE_OVERFLOW */
  0,  /* SQLITE_STATUS_SCRATCH_USED */
  0,  /* SQLITE_STATUS_SCRATCH_OVERFLOW */
  0,  /* SQLITE_STATUS_MALLOC_SIZE */
  0,  /* SQLITE_STATUS_PARSER_STACK */
  1,  /* SQLITE_STATUS_PAGECACHE_SIZE */
  0,  /* SQLITE_STATUS_SCRATCH_SIZE */
  0,  /* SQLITE_STATUS_MALLOC_COUNT */
};


/* The "wsdStat" macro will resolve to the status information
** state vector.  If writable static data is unsupported on the target,
** we have to locate the state vector at run-time.  In the more common
** case where writable static data is supported, wsdStat can refer directly
** to the "sqlite3Stat" state vector declared above.
*/
#ifdef SQLITE_OMIT_WSD
# define wsdStatInit  sqlite3StatType *x = &GLOBAL(sqlite3StatType,sqlite3Stat)
# define wsdStat x[0]
#else
# define wsdStatInit
# define wsdStat sqlite3Stat
#endif

/*
** Return the current value of a status parameter.  The caller must
** be holding the appropriate mutex.
*/
SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int op){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  return wsdStat.nowValue[op];
}

/*
** Add N to the value of a status record.  The caller must hold the
** appropriate mutex.  (Locking is checked by assert()).
**
** The StatusUp() routine can accept positive or negative values for N.
** The value of N is added to the current status value and the high-water
** mark is adjusted if necessary.
**
** The StatusDown() routine lowers the current value by N.  The highwater
** mark is unchanged.  N must be non-negative for StatusDown().
*/
SQLITE_PRIVATE void sqlite3StatusUp(int op, int N){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  wsdStat.nowValue[op] += N;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}
SQLITE_PRIVATE void sqlite3StatusDown(int op, int N){
  wsdStatInit;
  assert( N>=0 );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  wsdStat.nowValue[op] -= N;
}

/*
** Set the value of a status to X.  The highwater mark is adjusted if
** necessary.  The caller must hold the appropriate mutex.
*/
SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){
  wsdStatInit;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  wsdStat.nowValue[op] = X;
  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}

/*
** Query status information.




*/
SQLITE_API int SQLITE_STDCALL sqlite3_status64(
  int op,
  sqlite3_int64 *pCurrent,
  sqlite3_int64 *pHighwater,
  int resetFlag
){
  sqlite3_mutex *pMutex;
  wsdStatInit;
  if( op<0 || op>=ArraySize(wsdStat.nowValue) ){
    return SQLITE_MISUSE_BKPT;
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif
  pMutex = statMutex[op] ? sqlite3Pcache1Mutex() : sqlite3MallocMutex();
  sqlite3_mutex_enter(pMutex);
  *pCurrent = wsdStat.nowValue[op];
  *pHighwater = wsdStat.mxValue[op];
  if( resetFlag ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
  sqlite3_mutex_leave(pMutex);
  (void)pMutex;  /* Prevent warning when SQLITE_THREADSAFE=0 */
  return SQLITE_OK;
}
SQLITE_API int SQLITE_STDCALL sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag){
  sqlite3_int64 iCur, iHwtr;
  int rc;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pCurrent==0 || pHighwater==0 ) return SQLITE_MISUSE_BKPT;
#endif
  rc = sqlite3_status64(op, &iCur, &iHwtr, resetFlag);
  if( rc==0 ){
    *pCurrent = (int)iCur;
    *pHighwater = (int)iHwtr;
  }
  return rc;
}

/*
** Query status information for a single database connection
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_status(
  sqlite3 *db,          /* The database connection whose status is desired */
  int op,               /* Status verb */
  int *pCurrent,        /* Write current value here */
  int *pHighwater,      /* Write high-water mark here */
  int resetFlag         /* Reset high-water mark if true */
){
  int rc = SQLITE_OK;   /* Return code */
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
static sqlite3_vfs * SQLITE_WSD vfsList = 0;
#define vfsList GLOBAL(sqlite3_vfs *, vfsList)

/*
** Locate a VFS by name.  If no name is given, simply return the
** first VFS on the list.
*/
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){
  sqlite3_vfs *pVfs = 0;
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex;
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return 0;







|







16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
static sqlite3_vfs * SQLITE_WSD vfsList = 0;
#define vfsList GLOBAL(sqlite3_vfs *, vfsList)

/*
** Locate a VFS by name.  If no name is given, simply return the
** first VFS on the list.
*/
SQLITE_API sqlite3_vfs *SQLITE_STDCALL sqlite3_vfs_find(const char *zVfs){
  sqlite3_vfs *pVfs = 0;
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex;
#endif
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return 0;
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
}

/*
** Register a VFS with the system.  It is harmless to register the same
** VFS multiple times.  The new VFS becomes the default if makeDflt is
** true.
*/
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
  MUTEX_LOGIC(sqlite3_mutex *mutex;)
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pVfs==0 ) return SQLITE_MISUSE_BKPT;







|







16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
}

/*
** Register a VFS with the system.  It is harmless to register the same
** VFS multiple times.  The new VFS becomes the default if makeDflt is
** true.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){
  MUTEX_LOGIC(sqlite3_mutex *mutex;)
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
#ifdef SQLITE_ENABLE_API_ARMOR
  if( pVfs==0 ) return SQLITE_MISUSE_BKPT;
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
  sqlite3_mutex_leave(mutex);
  return SQLITE_OK;
}

/*
** Unregister a VFS so that it is no longer accessible.
*/
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
  sqlite3_mutex_enter(mutex);
  vfsUnlink(pVfs);
  sqlite3_mutex_leave(mutex);
  return SQLITE_OK;







|







16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
  sqlite3_mutex_leave(mutex);
  return SQLITE_OK;
}

/*
** Unregister a VFS so that it is no longer accessible.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_vfs_unregister(sqlite3_vfs *pVfs){
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
  sqlite3_mutex_enter(mutex);
  vfsUnlink(pVfs);
  sqlite3_mutex_leave(mutex);
  return SQLITE_OK;
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993

  return rc;
}

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
  if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
  }
  assert( GLOBAL(int, mutexIsInit) );
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

/*
** Free a dynamic mutex.
*/
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex *p){
  if( p ){
    sqlite3GlobalConfig.mutex.xMutexFree(p);
  }
}

/*
** Obtain the mutex p. If some other thread already has the mutex, block
** until it can be obtained.
*/
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex *p){
  if( p ){
    sqlite3GlobalConfig.mutex.xMutexEnter(p);
  }
}

/*
** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
*/
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex *p){
  int rc = SQLITE_OK;
  if( p ){
    return sqlite3GlobalConfig.mutex.xMutexTry(p);
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was previously
** entered by the same thread.  The behavior is undefined if the mutex 
** is not currently entered. If a NULL pointer is passed as an argument
** this function is a no-op.
*/
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex *p){
  if( p ){
    sqlite3GlobalConfig.mutex.xMutexLeave(p);
  }
}

#ifndef NDEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex *p){
  return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
}
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex *p){
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */

/************** End of mutex.c ***********************************************/







|


















|









|









|













|










|


|







19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174

  return rc;
}

/*
** Retrieve a pointer to a static mutex or allocate a new dynamic one.
*/
SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_mutex_alloc(int id){
#ifndef SQLITE_OMIT_AUTOINIT
  if( id<=SQLITE_MUTEX_RECURSIVE && sqlite3_initialize() ) return 0;
  if( id>SQLITE_MUTEX_RECURSIVE && sqlite3MutexInit() ) return 0;
#endif
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

SQLITE_PRIVATE sqlite3_mutex *sqlite3MutexAlloc(int id){
  if( !sqlite3GlobalConfig.bCoreMutex ){
    return 0;
  }
  assert( GLOBAL(int, mutexIsInit) );
  return sqlite3GlobalConfig.mutex.xMutexAlloc(id);
}

/*
** Free a dynamic mutex.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_free(sqlite3_mutex *p){
  if( p ){
    sqlite3GlobalConfig.mutex.xMutexFree(p);
  }
}

/*
** Obtain the mutex p. If some other thread already has the mutex, block
** until it can be obtained.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_enter(sqlite3_mutex *p){
  if( p ){
    sqlite3GlobalConfig.mutex.xMutexEnter(p);
  }
}

/*
** Obtain the mutex p. If successful, return SQLITE_OK. Otherwise, if another
** thread holds the mutex and it cannot be obtained, return SQLITE_BUSY.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_try(sqlite3_mutex *p){
  int rc = SQLITE_OK;
  if( p ){
    return sqlite3GlobalConfig.mutex.xMutexTry(p);
  }
  return rc;
}

/*
** The sqlite3_mutex_leave() routine exits a mutex that was previously
** entered by the same thread.  The behavior is undefined if the mutex 
** is not currently entered. If a NULL pointer is passed as an argument
** this function is a no-op.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_leave(sqlite3_mutex *p){
  if( p ){
    sqlite3GlobalConfig.mutex.xMutexLeave(p);
  }
}

#ifndef NDEBUG
/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use inside assert() statements.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_held(sqlite3_mutex *p){
  return p==0 || sqlite3GlobalConfig.mutex.xMutexHeld(p);
}
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_notheld(sqlite3_mutex *p){
  return p==0 || sqlite3GlobalConfig.mutex.xMutexNotheld(p);
}
#endif

#endif /* !defined(SQLITE_MUTEX_OMIT) */

/************** End of mutex.c ***********************************************/
19109
19110
19111
19112
19113
19114
19115

19116
19117




19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133





19134
19135
19136
19137
19138
19139
19140
      if( pNew ){
        pNew->id = id;
        pNew->cnt = 0;
      }
      break;
    }
    default: {

      assert( id-2 >= 0 );
      assert( id-2 < (int)(sizeof(aStatic)/sizeof(aStatic[0])) );




      pNew = &aStatic[id-2];
      pNew->id = id;
      break;
    }
  }
  return (sqlite3_mutex*)pNew;
}

/*
** This routine deallocates a previously allocated mutex.
*/
static void debugMutexFree(sqlite3_mutex *pX){
  sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
  assert( p->cnt==0 );
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
  sqlite3_free(p);





}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK







>
|
<
>
>
>
>














|
|
>
>
>
>
>







19290
19291
19292
19293
19294
19295
19296
19297
19298

19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
      if( pNew ){
        pNew->id = id;
        pNew->cnt = 0;
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( id-2<0 || id-2>=ArraySize(aStatic) ){

        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      pNew = &aStatic[id-2];
      pNew->id = id;
      break;
    }
  }
  return (sqlite3_mutex*)pNew;
}

/*
** This routine deallocates a previously allocated mutex.
*/
static void debugMutexFree(sqlite3_mutex *pX){
  sqlite3_debug_mutex *p = (sqlite3_debug_mutex*)pX;
  assert( p->cnt==0 );
  if( p->id==SQLITE_MUTEX_RECURSIVE || p->id==SQLITE_MUTEX_FAST ){
    sqlite3_free(p);
  }else{
#ifdef SQLITE_ENABLE_API_ARMOR
    (void)SQLITE_MISUSE_BKPT;
#endif
  }
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
19237
19238
19239
19240
19241
19242
19243
19244
19245


19246
19247
19248
19249
19250
19251
19252
#endif

/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
#if SQLITE_MUTEX_NREF
  int id;                    /* Mutex type */


  volatile int nRef;         /* Number of entrances */
  volatile pthread_t owner;  /* Thread that is within this mutex */
  int trace;                 /* True to trace changes */
#endif
};
#if SQLITE_MUTEX_NREF
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }







|

>
>







19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
#endif

/*
** Each recursive mutex is an instance of the following structure.
*/
struct sqlite3_mutex {
  pthread_mutex_t mutex;     /* Mutex controlling the lock */
#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
  int id;                    /* Mutex type */
#endif
#if SQLITE_MUTEX_NREF
  volatile int nRef;         /* Number of entrances */
  volatile pthread_t owner;  /* Thread that is within this mutex */
  int trace;                 /* True to trace changes */
#endif
};
#if SQLITE_MUTEX_NREF
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391



19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402

19403


19404
19405






19406
19407
19408
19409
19410
19411
19412
        /* Use a recursive mutex if it is available */
        pthread_mutexattr_t recursiveAttr;
        pthread_mutexattr_init(&recursiveAttr);
        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
        pthread_mutex_init(&p->mutex, &recursiveAttr);
        pthread_mutexattr_destroy(&recursiveAttr);
#endif
#if SQLITE_MUTEX_NREF
        p->id = iType;
#endif
      }
      break;
    }
    case SQLITE_MUTEX_FAST: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
#if SQLITE_MUTEX_NREF
        p->id = iType;
#endif
        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      p = &staticMutexes[iType-2];
#if SQLITE_MUTEX_NREF
      p->id = iType;
#endif
      break;
    }
  }



  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
static void pthreadMutexFree(sqlite3_mutex *p){
  assert( p->nRef==0 );

  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );


  pthread_mutex_destroy(&p->mutex);
  sqlite3_free(p);






}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK







<
<
<






<
<
<












<
<
<



>
>
>











>
|
>
>
|
|
>
>
>
>
>
>







19547
19548
19549
19550
19551
19552
19553



19554
19555
19556
19557
19558
19559



19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571



19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
        /* Use a recursive mutex if it is available */
        pthread_mutexattr_t recursiveAttr;
        pthread_mutexattr_init(&recursiveAttr);
        pthread_mutexattr_settype(&recursiveAttr, PTHREAD_MUTEX_RECURSIVE);
        pthread_mutex_init(&p->mutex, &recursiveAttr);
        pthread_mutexattr_destroy(&recursiveAttr);
#endif



      }
      break;
    }
    case SQLITE_MUTEX_FAST: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){



        pthread_mutex_init(&p->mutex, 0);
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      p = &staticMutexes[iType-2];



      break;
    }
  }
#if SQLITE_MUTEX_NREF || defined(SQLITE_ENABLE_API_ARMOR)
  if( p ) p->id = iType;
#endif
  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
static void pthreadMutexFree(sqlite3_mutex *p){
  assert( p->nRef==0 );
#if SQLITE_ENABLE_API_ARMOR
  if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE )
#endif
  {
    pthread_mutex_destroy(&p->mutex);
    sqlite3_free(p);
  }
#ifdef SQLITE_ENABLE_API_ARMOR
  else{
    (void)SQLITE_MISUSE_BKPT;
  }
#endif
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
19868
19869
19870
19871
19872
19873
19874











19875
19876
19877
19878
19879
19880
19881
*/
#if SQLITE_OS_WINCE
# define SQLITE_WIN32_VOLATILE
#else
# define SQLITE_WIN32_VOLATILE volatile
#endif












#endif /* _OS_WIN_H_ */

/************** End of os_win.h **********************************************/
/************** Continuing where we left off in mutex_w32.c ******************/
#endif

/*







>
>
>
>
>
>
>
>
>
>
>







20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
*/
#if SQLITE_OS_WINCE
# define SQLITE_WIN32_VOLATILE
#else
# define SQLITE_WIN32_VOLATILE volatile
#endif

/*
** For some Windows sub-platforms, the _beginthreadex() / _endthreadex()
** functions are not available (e.g. those not using MSVC, Cygwin, etc).
*/
#if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && \
    SQLITE_THREADSAFE>0 && !defined(__CYGWIN__)
# define SQLITE_OS_WIN_THREADS 1
#else
# define SQLITE_OS_WIN_THREADS 0
#endif

#endif /* _OS_WIN_H_ */

/************** End of os_win.h **********************************************/
/************** Continuing where we left off in mutex_w32.c ******************/
#endif

/*
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965

/* As the winMutexInit() and winMutexEnd() functions are called as part
** of the sqlite3_initialize() and sqlite3_shutdown() processing, the
** "interlocked" magic used here is probably not strictly necessary.
*/
static LONG SQLITE_WIN32_VOLATILE winMutex_lock = 0;

SQLITE_API int sqlite3_win32_is_nt(void); /* os_win.c */
SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
    for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
#if SQLITE_OS_WINRT







|
|







20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171

/* As the winMutexInit() and winMutexEnd() functions are called as part
** of the sqlite3_initialize() and sqlite3_shutdown() processing, the
** "interlocked" magic used here is probably not strictly necessary.
*/
static LONG SQLITE_WIN32_VOLATILE winMutex_lock = 0;

SQLITE_API int SQLITE_STDCALL sqlite3_win32_is_nt(void); /* os_win.c */
SQLITE_API void SQLITE_STDCALL sqlite3_win32_sleep(DWORD milliseconds); /* os_win.c */

static int winMutexInit(void){
  /* The first to increment to 1 does actual initialization */
  if( InterlockedCompareExchange(&winMutex_lock, 1, 0)==0 ){
    int i;
    for(i=0; i<ArraySize(winMutex_staticMutexes); i++){
#if SQLITE_OS_WINRT
20043
20044
20045
20046
20047
20048
20049
20050
20051

20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076

20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101





20102
20103
20104
20105
20106
20107
20108
  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){
#ifdef SQLITE_DEBUG
        p->id = iType;

#ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC
        p->trace = 1;
#endif
#endif
#if SQLITE_OS_WINRT
        InitializeCriticalSectionEx(&p->mutex, 0, 0);
#else
        InitializeCriticalSection(&p->mutex);
#endif
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif
      assert( iType-2 >= 0 );
      assert( iType-2 < ArraySize(winMutex_staticMutexes) );
      assert( winMutex_isInit==1 );
      p = &winMutex_staticMutexes[iType-2];
#ifdef SQLITE_DEBUG
      p->id = iType;

#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
      p->trace = 1;
#endif
#endif
      break;
    }
  }
  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
static void winMutexFree(sqlite3_mutex *p){
  assert( p );
#ifdef SQLITE_DEBUG
  assert( p->nRef==0 && p->owner==0 );
  assert( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE );
#endif
  assert( winMutex_isInit==1 );
  DeleteCriticalSection(&p->mutex);
  sqlite3_free(p);





}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK







<

>



















<
<
<

<

>


















<

|
<
<
|
|
>
>
>
>
>







20249
20250
20251
20252
20253
20254
20255

20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276



20277

20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297

20298
20299


20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
  sqlite3_mutex *p;

  switch( iType ){
    case SQLITE_MUTEX_FAST:
    case SQLITE_MUTEX_RECURSIVE: {
      p = sqlite3MallocZero( sizeof(*p) );
      if( p ){

        p->id = iType;
#ifdef SQLITE_DEBUG
#ifdef SQLITE_WIN32_MUTEX_TRACE_DYNAMIC
        p->trace = 1;
#endif
#endif
#if SQLITE_OS_WINRT
        InitializeCriticalSectionEx(&p->mutex, 0, 0);
#else
        InitializeCriticalSection(&p->mutex);
#endif
      }
      break;
    }
    default: {
#ifdef SQLITE_ENABLE_API_ARMOR
      if( iType-2<0 || iType-2>=ArraySize(winMutex_staticMutexes) ){
        (void)SQLITE_MISUSE_BKPT;
        return 0;
      }
#endif



      p = &winMutex_staticMutexes[iType-2];

      p->id = iType;
#ifdef SQLITE_DEBUG
#ifdef SQLITE_WIN32_MUTEX_TRACE_STATIC
      p->trace = 1;
#endif
#endif
      break;
    }
  }
  return p;
}


/*
** This routine deallocates a previously
** allocated mutex.  SQLite is careful to deallocate every
** mutex that it allocates.
*/
static void winMutexFree(sqlite3_mutex *p){
  assert( p );

  assert( p->nRef==0 && p->owner==0 );
  if( p->id==SQLITE_MUTEX_FAST || p->id==SQLITE_MUTEX_RECURSIVE ){


    DeleteCriticalSection(&p->mutex);
    sqlite3_free(p);
  }else{
#ifdef SQLITE_ENABLE_API_ARMOR
    (void)SQLITE_MISUSE_BKPT;
#endif
  }
}

/*
** The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
** to enter a mutex.  If another thread is already within the mutex,
** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
** SQLITE_BUSY.  The sqlite3_mutex_try() interface returns SQLITE_OK
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
/* #include <stdarg.h> */

/*
** Attempt to release up to n bytes of non-essential memory currently
** held by SQLite. An example of non-essential memory is memory used to
** cache database pages that are not currently in use.
*/
SQLITE_API int sqlite3_release_memory(int n){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  return sqlite3PcacheReleaseMemory(n);
#else
  /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
  ** is a no-op returning zero if SQLite is not compiled with
  ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
  UNUSED_PARAMETER(n);







|







20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
/* #include <stdarg.h> */

/*
** Attempt to release up to n bytes of non-essential memory currently
** held by SQLite. An example of non-essential memory is memory used to
** cache database pages that are not currently in use.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_release_memory(int n){
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  return sqlite3PcacheReleaseMemory(n);
#else
  /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
  ** is a no-op returning zero if SQLite is not compiled with
  ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
  UNUSED_PARAMETER(n);
20302
20303
20304
20305
20306
20307
20308







20309
20310
20311
20312
20313
20314
20315
  ** True if heap is nearly "full" where "full" is defined by the
  ** sqlite3_soft_heap_limit() setting.
  */
  int nearlyFull;
} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };

#define mem0 GLOBAL(struct Mem0Global, mem0)








/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void softHeapLimitEnforcer(







>
>
>
>
>
>
>







20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
  ** True if heap is nearly "full" where "full" is defined by the
  ** sqlite3_soft_heap_limit() setting.
  */
  int nearlyFull;
} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };

#define mem0 GLOBAL(struct Mem0Global, mem0)

/*
** Return the memory allocator mutex. sqlite3_status() needs it.
*/
SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void){
  return mem0.mutex;
}

/*
** This routine runs when the memory allocator sees that the
** total memory allocation is about to exceed the soft heap
** limit.
*/
static void softHeapLimitEnforcer(
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389

20390
20391
20392
20393
20394
20395
20396
** Change the alarm callback
*/
static int sqlite3MemoryAlarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  int nUsed;
  sqlite3_mutex_enter(mem0.mutex);
  mem0.alarmCallback = xCallback;
  mem0.alarmArg = pArg;
  mem0.alarmThreshold = iThreshold;
  nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
  mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
  sqlite3_mutex_leave(mem0.mutex);
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  Internal/core SQLite code
** should call sqlite3MemoryAlarm.
*/
SQLITE_API int sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
}
#endif

/*
** Set the soft heap-size limit for the library. Passing a zero or 
** negative value indicates no limit.
*/
SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
  sqlite3_int64 priorLimit;
  sqlite3_int64 excess;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return -1;
#endif
  sqlite3_mutex_enter(mem0.mutex);
  priorLimit = mem0.alarmThreshold;
  sqlite3_mutex_leave(mem0.mutex);
  if( n<0 ) return priorLimit;
  if( n>0 ){
    sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
  }else{
    sqlite3MemoryAlarm(0, 0, 0);
  }
  excess = sqlite3_memory_used() - n;
  if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
  return priorLimit;
}
SQLITE_API void sqlite3_soft_heap_limit(int n){
  if( n<0 ) n = 0;
  sqlite3_soft_heap_limit64(n);
}

/*
** Initialize the memory allocation subsystem.
*/
SQLITE_PRIVATE int sqlite3MallocInit(void){

  if( sqlite3GlobalConfig.m.xMalloc==0 ){
    sqlite3MemSetDefault();
  }
  memset(&mem0, 0, sizeof(mem0));
  if( sqlite3GlobalConfig.bCoreMutex ){
    mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }







|















|












|



















|








>







20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
** Change the alarm callback
*/
static int sqlite3MemoryAlarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  sqlite3_int64 nUsed;
  sqlite3_mutex_enter(mem0.mutex);
  mem0.alarmCallback = xCallback;
  mem0.alarmArg = pArg;
  mem0.alarmThreshold = iThreshold;
  nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
  mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
  sqlite3_mutex_leave(mem0.mutex);
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_DEPRECATED
/*
** Deprecated external interface.  Internal/core SQLite code
** should call sqlite3MemoryAlarm.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_memory_alarm(
  void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
  void *pArg,
  sqlite3_int64 iThreshold
){
  return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
}
#endif

/*
** Set the soft heap-size limit for the library. Passing a zero or 
** negative value indicates no limit.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_soft_heap_limit64(sqlite3_int64 n){
  sqlite3_int64 priorLimit;
  sqlite3_int64 excess;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return -1;
#endif
  sqlite3_mutex_enter(mem0.mutex);
  priorLimit = mem0.alarmThreshold;
  sqlite3_mutex_leave(mem0.mutex);
  if( n<0 ) return priorLimit;
  if( n>0 ){
    sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
  }else{
    sqlite3MemoryAlarm(0, 0, 0);
  }
  excess = sqlite3_memory_used() - n;
  if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
  return priorLimit;
}
SQLITE_API void SQLITE_STDCALL sqlite3_soft_heap_limit(int n){
  if( n<0 ) n = 0;
  sqlite3_soft_heap_limit64(n);
}

/*
** Initialize the memory allocation subsystem.
*/
SQLITE_PRIVATE int sqlite3MallocInit(void){
  int rc;
  if( sqlite3GlobalConfig.m.xMalloc==0 ){
    sqlite3MemSetDefault();
  }
  memset(&mem0, 0, sizeof(mem0));
  if( sqlite3GlobalConfig.bCoreMutex ){
    mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }
20418
20419
20420
20421
20422
20423
20424
20425


20426
20427
20428
20429
20430
20431
20432
  }
  if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
      || sqlite3GlobalConfig.nPage<1 ){
    sqlite3GlobalConfig.pPage = 0;
    sqlite3GlobalConfig.szPage = 0;
    sqlite3GlobalConfig.nPage = 0;
  }
  return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);


}

/*
** Return true if the heap is currently under memory pressure - in other
** words if the amount of heap used is close to the limit set by
** sqlite3_soft_heap_limit().
*/







|
>
>







20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
  }
  if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
      || sqlite3GlobalConfig.nPage<1 ){
    sqlite3GlobalConfig.pPage = 0;
    sqlite3GlobalConfig.szPage = 0;
    sqlite3GlobalConfig.nPage = 0;
  }
  rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
  if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
  return rc;
}

/*
** Return true if the heap is currently under memory pressure - in other
** words if the amount of heap used is close to the limit set by
** sqlite3_soft_heap_limit().
*/
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
  }
  memset(&mem0, 0, sizeof(mem0));
}

/*
** Return the amount of memory currently checked out.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_used(void){
  int n, mx;
  sqlite3_int64 res;
  sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
  res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
  return res;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
  int n, mx;
  sqlite3_int64 res;
  sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
  res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
  return res;
}








|












|







20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
  }
  memset(&mem0, 0, sizeof(mem0));
}

/*
** Return the amount of memory currently checked out.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_used(void){
  int n, mx;
  sqlite3_int64 res;
  sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
  res = (sqlite3_int64)n;  /* Work around bug in Borland C. Ticket #3216 */
  return res;
}

/*
** Return the maximum amount of memory that has ever been
** checked out since either the beginning of this process
** or since the most recent reset.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_highwater(int resetFlag){
  int n, mx;
  sqlite3_int64 res;
  sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
  res = (sqlite3_int64)mx;  /* Work around bug in Borland C. Ticket #3216 */
  return res;
}

20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmCallback!=0 ){
    int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmCallback ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it







|
















|
|







20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmCallback!=0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
    }
  }
  p = sqlite3GlobalConfig.m.xMalloc(nFull);
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
  if( p==0 && mem0.alarmCallback ){
    sqlite3MallocAlarm(nFull);
    p = sqlite3GlobalConfig.m.xMalloc(nFull);
  }
#endif
  if( p ){
    nFull = sqlite3MallocSize(p);
    sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
    sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
  }
  *pp = p;
  return nFull;
}

/*
** Allocate memory.  This routine is like sqlite3_malloc() except that it
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
}

/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
*/
SQLITE_API void *sqlite3_malloc(int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return n<=0 ? 0 : sqlite3Malloc(n);
}
SQLITE_API void *sqlite3_malloc64(sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Malloc(n);
}

/*







|





|







20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
}

/*
** This version of the memory allocation is for use by the application.
** First make sure the memory subsystem is initialized, then do the
** allocation.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_malloc(int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return n<=0 ? 0 : sqlite3Malloc(n);
}
SQLITE_API void *SQLITE_STDCALL sqlite3_malloc64(sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Malloc(n);
}

/*
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3_mutex_leave(mem0.mutex);
    p = sqlite3Malloc(n);
    if( sqlite3GlobalConfig.bMemstat && p ){
      sqlite3_mutex_enter(mem0.mutex);
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
      sqlite3_mutex_leave(mem0.mutex);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );









|






|







20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3_mutex_leave(mem0.mutex);
    p = sqlite3Malloc(n);
    if( sqlite3GlobalConfig.bMemstat && p ){
      sqlite3_mutex_enter(mem0.mutex);
      sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p));
      sqlite3_mutex_leave(mem0.mutex);
    }
    sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
  }
  assert( sqlite3_mutex_notheld(mem0.mutex) );


20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
      assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
      sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      /* Release memory back to the heap */
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
        sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }
  }







|




|




|
|
|







20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
      assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
      sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1);
      sqlite3_mutex_leave(mem0.mutex);
    }else{
      /* Release memory back to the heap */
      assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      if( sqlite3GlobalConfig.bMemstat ){
        int iSize = sqlite3MallocSize(p);
        sqlite3_mutex_enter(mem0.mutex);
        sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize);
        sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize);
        sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
        sqlite3GlobalConfig.m.xFree(p);
        sqlite3_mutex_leave(mem0.mutex);
      }else{
        sqlite3GlobalConfig.m.xFree(p);
      }
    }
  }
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
*/
SQLITE_PRIVATE int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return sqlite3GlobalConfig.m.xSize(p);
}
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
  if( db==0 ){
    assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
    assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
    return sqlite3MallocSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    if( isLookaside(db, p) ){
      return db->lookaside.sz;
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      return sqlite3GlobalConfig.m.xSize(p);
    }
  }
}
SQLITE_API sqlite3_uint64 sqlite3_msize(void *p){
  assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
SQLITE_API void sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
    sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3GlobalConfig.m.xFree(p);
  }
}








|








|




|
|







|


|


|
|







20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
*/
SQLITE_PRIVATE int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return sqlite3GlobalConfig.m.xSize(p);
}
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
  if( db==0 ){
    assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
    assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
    return sqlite3MallocSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    if( isLookaside(db, p) ){
      return db->lookaside.sz;
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      return sqlite3GlobalConfig.m.xSize(p);
    }
  }
}
SQLITE_API sqlite3_uint64 SQLITE_STDCALL sqlite3_msize(void *p){
  assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
SQLITE_API void SQLITE_STDCALL sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
  if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
    sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
    sqlite3GlobalConfig.m.xFree(p);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    sqlite3GlobalConfig.m.xFree(p);
  }
}

20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
      pBuf->pNext = db->lookaside.pFree;
      db->lookaside.pFree = pBuf;
      db->lookaside.nOut--;
      return;
    }
  }
  assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}

/*
** Change the size of an existing memory allocation
*/
SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;
  void *pNew;
  assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
  if( pOld==0 ){
    return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
  }
  if( nBytes==0 ){
    sqlite3_free(pOld); /* IMP: R-26507-47431 */
    return 0;
  }







|












|







20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
      pBuf->pNext = db->lookaside.pFree;
      db->lookaside.pFree = pBuf;
      db->lookaside.nOut--;
      return;
    }
  }
  assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
  assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
  sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
  sqlite3_free(p);
}

/*
** Change the size of an existing memory allocation
*/
SQLITE_PRIVATE void *sqlite3Realloc(void *pOld, u64 nBytes){
  int nOld, nNew, nDiff;
  void *pNew;
  assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
  assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
  if( pOld==0 ){
    return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
  }
  if( nBytes==0 ){
    sqlite3_free(pOld); /* IMP: R-26507-47431 */
    return 0;
  }
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
  return pNew;
}

/*
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
SQLITE_API void *sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
  return sqlite3Realloc(pOld, n);
}
SQLITE_API void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Realloc(pOld, n);
}









|













|






|







21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmCallback ){
      sqlite3MallocAlarm((int)nBytes);
      pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    }
    if( pNew ){
      nNew = sqlite3MallocSize(pNew);
      sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
    }
    sqlite3_mutex_leave(mem0.mutex);
  }else{
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
  }
  assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
  return pNew;
}

/*
** The public interface to sqlite3Realloc.  Make sure that the memory
** subsystem is initialized prior to invoking sqliteRealloc.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_realloc(void *pOld, int n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  if( n<0 ) n = 0;  /* IMP: R-26507-47431 */
  return sqlite3Realloc(pOld, n);
}
SQLITE_API void *SQLITE_STDCALL sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  return sqlite3Realloc(pOld, n);
}


20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));







|







21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
      pNew = sqlite3DbMallocRaw(db, n);
      if( pNew ){
        memcpy(pNew, p, db->lookaside.sz);
        sqlite3DbFree(db, p);
      }
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
      pNew = sqlite3_realloc64(p, n);
      if( !pNew ){
        db->mallocFailed = 1;
      }
      sqlite3MemdebugSetType(pNew,
            (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
  double rounder;            /* Used for rounding floating point values */
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( ap==0 ){
    (void)SQLITE_MISUSE_BKPT;
    sqlite3StrAccumReset(pAccum);
    return;
  }
#endif
  bufpt = 0;
  if( bFlags ){
    if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{







<
<
<
<
<
<
<







21473
21474
21475
21476
21477
21478
21479







21480
21481
21482
21483
21484
21485
21486
  double rounder;            /* Used for rounding floating point values */
  etByte flag_dp;            /* True if decimal point should be shown */
  etByte flag_rtz;           /* True if trailing zeros should be removed */
#endif
  PrintfArguments *pArgList = 0; /* Arguments for SQLITE_PRINTF_SQLFUNC */
  char buf[etBUFSIZE];       /* Conversion buffer */








  bufpt = 0;
  if( bFlags ){
    if( (bArgList = (bFlags & SQLITE_PRINTF_SQLFUNC))!=0 ){
      pArgList = va_arg(ap, PrintfArguments*);
    }
    useIntern = bFlags & SQLITE_PRINTF_INTERNAL;
  }else{
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc().  Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *sqlite3_vmprintf(const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;

#ifdef SQLITE_ENABLE_API_ARMOR  
  if( zFormat==0 ){
    (void)SQLITE_MISUSE_BKPT;







|







22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc().  Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *SQLITE_STDCALL sqlite3_vmprintf(const char *zFormat, va_list ap){
  char *z;
  char zBase[SQLITE_PRINT_BUF_SIZE];
  StrAccum acc;

#ifdef SQLITE_ENABLE_API_ARMOR  
  if( zFormat==0 ){
    (void)SQLITE_MISUSE_BKPT;
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc()().  Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *sqlite3_mprintf(const char *zFormat, ...){
  va_list ap;
  char *z;
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  va_start(ap, zFormat);
  z = sqlite3_vmprintf(zFormat, ap);







|







22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
  return z;
}

/*
** Print into memory obtained from sqlite3_malloc()().  Omit the internal
** %-conversion extensions.
*/
SQLITE_API char *SQLITE_CDECL sqlite3_mprintf(const char *zFormat, ...){
  va_list ap;
  char *z;
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize() ) return 0;
#endif
  va_start(ap, zFormat);
  z = sqlite3_vmprintf(zFormat, ap);
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
** Oops:  The first two arguments of sqlite3_snprintf() are backwards
** from the snprintf() standard.  Unfortunately, it is too late to change
** this without breaking compatibility, so we just have to live with the
** mistake.
**
** sqlite3_vsnprintf() is the varargs version.
*/
SQLITE_API char *sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
  StrAccum acc;
  if( n<=0 ) return zBuf;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf && n>0 ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, zBuf, n, 0);
  acc.useMalloc = 0;
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  return sqlite3StrAccumFinish(&acc);
}
SQLITE_API char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;
  va_start(ap,zFormat);
  z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
  va_end(ap);
  return z;
}







|





|








|







22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
** Oops:  The first two arguments of sqlite3_snprintf() are backwards
** from the snprintf() standard.  Unfortunately, it is too late to change
** this without breaking compatibility, so we just have to live with the
** mistake.
**
** sqlite3_vsnprintf() is the varargs version.
*/
SQLITE_API char *SQLITE_STDCALL sqlite3_vsnprintf(int n, char *zBuf, const char *zFormat, va_list ap){
  StrAccum acc;
  if( n<=0 ) return zBuf;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( zBuf==0 || zFormat==0 ) {
    (void)SQLITE_MISUSE_BKPT;
    if( zBuf ) zBuf[0] = 0;
    return zBuf;
  }
#endif
  sqlite3StrAccumInit(&acc, zBuf, n, 0);
  acc.useMalloc = 0;
  sqlite3VXPrintf(&acc, 0, zFormat, ap);
  return sqlite3StrAccumFinish(&acc);
}
SQLITE_API char *SQLITE_CDECL sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){
  char *z;
  va_list ap;
  va_start(ap,zFormat);
  z = sqlite3_vsnprintf(n, zBuf, zFormat, ap);
  va_end(ap);
  return z;
}
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
  sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
                           sqlite3StrAccumFinish(&acc));
}

/*
** Format and write a message to the log if logging is enabled.
*/
SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...){
  va_list ap;                             /* Vararg list */
  if( sqlite3GlobalConfig.xLog ){
    va_start(ap, zFormat);
    renderLogMsg(iErrCode, zFormat, ap);
    va_end(ap);
  }
}







|







22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
  sqlite3GlobalConfig.xLog(sqlite3GlobalConfig.pLogArg, iErrCode,
                           sqlite3StrAccumFinish(&acc));
}

/*
** Format and write a message to the log if logging is enabled.
*/
SQLITE_API void SQLITE_CDECL sqlite3_log(int iErrCode, const char *zFormat, ...){
  va_list ap;                             /* Vararg list */
  if( sqlite3GlobalConfig.xLog ){
    va_start(ap, zFormat);
    renderLogMsg(iErrCode, zFormat, ap);
    va_end(ap);
  }
}
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
  unsigned char i, j;            /* State variables */
  unsigned char s[256];          /* State variables */
} sqlite3Prng;

/*
** Return N random bytes.
*/
SQLITE_API void sqlite3_randomness(int N, void *pBuf){
  unsigned char t;
  unsigned char *zBuf = pBuf;

  /* The "wsdPrng" macro will resolve to the pseudo-random number generator
  ** state vector.  If writable static data is unsupported on the target,
  ** we have to locate the state vector at run-time.  In the more common
  ** case where writable static data is supported, wsdPrng can refer directly







|







22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
  unsigned char i, j;            /* State variables */
  unsigned char s[256];          /* State variables */
} sqlite3Prng;

/*
** Return N random bytes.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_randomness(int N, void *pBuf){
  unsigned char t;
  unsigned char *zBuf = pBuf;

  /* The "wsdPrng" macro will resolve to the pseudo-random number generator
  ** state vector.  If writable static data is unsupported on the target,
  ** we have to locate the state vector at run-time.  In the more common
  ** case where writable static data is supported, wsdPrng can refer directly
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
}

#endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */
/******************************** End Unix Pthreads *************************/


/********************************* Win32 Threads ****************************/
#if SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_THREADSAFE>0

#define SQLITE_THREADS_IMPLEMENTED 1  /* Prevent the single-thread code below */
#include <process.h>

/* A running thread */
struct SQLiteThread {
  void *tid;               /* The thread handle */







|







22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
}

#endif /* SQLITE_OS_UNIX && defined(SQLITE_MUTEX_PTHREADS) */
/******************************** End Unix Pthreads *************************/


/********************************* Win32 Threads ****************************/
#if SQLITE_OS_WIN_THREADS

#define SQLITE_THREADS_IMPLEMENTED 1  /* Prevent the single-thread code below */
#include <process.h>

/* A running thread */
struct SQLiteThread {
  void *tid;               /* The thread handle */
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
    assert( bRc );
  }
  if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult;
  sqlite3_free(p);
  return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR;
}

#endif /* SQLITE_OS_WIN && !SQLITE_OS_WINCE && !SQLITE_OS_WINRT */
/******************************** End Win32 Threads *************************/


/********************************* Single-Threaded **************************/
#ifndef SQLITE_THREADS_IMPLEMENTED
/*
** This implementation does not actually create a new thread.  It does the







|







22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
    assert( bRc );
  }
  if( rc==WAIT_OBJECT_0 ) *ppOut = p->pResult;
  sqlite3_free(p);
  return (rc==WAIT_OBJECT_0) ? SQLITE_OK : SQLITE_ERROR;
}

#endif /* SQLITE_OS_WIN_THREADS */
/******************************** End Win32 Threads *************************/


/********************************* Single-Threaded **************************/
#ifndef SQLITE_THREADS_IMPLEMENTED
/*
** This implementation does not actually create a new thread.  It does the
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
**
** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_stricmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];
}
SQLITE_API int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;







|











|







23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
**
** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
** sqlite3_strnicmp() APIs allow applications and extensions to compare
** the contents of two buffers containing UTF-8 strings in a
** case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *zLeft, const char *zRight){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;
  b = (unsigned char *)zRight;
  while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
  return UpperToLower[*a] - UpperToLower[*b];
}
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
  register unsigned char *a, *b;
  if( zLeft==0 ){
    return zRight ? -1 : 0;
  }else if( zRight==0 ){
    return 1;
  }
  a = (unsigned char *)zLeft;
24920
24921
24922
24923
24924
24925
24926

24927

24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
     /* 132 */ "Param"            OpHelp(""),
     /* 133 */ "Real"             OpHelp("r[P2]=P4"),
     /* 134 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
     /* 135 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
     /* 136 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
     /* 137 */ "IfPos"            OpHelp("if r[P1]>0 goto P2"),
     /* 138 */ "IfNeg"            OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"),

     /* 139 */ "IfZero"           OpHelp("r[P1]+=P3, if r[P1]==0 goto P2"),

     /* 140 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
     /* 141 */ "IncrVacuum"       OpHelp(""),
     /* 142 */ "Expire"           OpHelp(""),
     /* 143 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
     /* 144 */ "VBegin"           OpHelp(""),
     /* 145 */ "VCreate"          OpHelp(""),
     /* 146 */ "VDestroy"         OpHelp(""),
     /* 147 */ "VOpen"            OpHelp(""),
     /* 148 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
     /* 149 */ "VNext"            OpHelp(""),
     /* 150 */ "VRename"          OpHelp(""),
     /* 151 */ "Pagecount"        OpHelp(""),
     /* 152 */ "MaxPgcnt"         OpHelp(""),
     /* 153 */ "Init"             OpHelp("Start at P2"),
     /* 154 */ "Noop"             OpHelp(""),
     /* 155 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/







>
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
     /* 132 */ "Param"            OpHelp(""),
     /* 133 */ "Real"             OpHelp("r[P2]=P4"),
     /* 134 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
     /* 135 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
     /* 136 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
     /* 137 */ "IfPos"            OpHelp("if r[P1]>0 goto P2"),
     /* 138 */ "IfNeg"            OpHelp("r[P1]+=P3, if r[P1]<0 goto P2"),
     /* 139 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]+=P3, goto P2"),
     /* 140 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
     /* 141 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),
     /* 142 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
     /* 143 */ "IncrVacuum"       OpHelp(""),
     /* 144 */ "Expire"           OpHelp(""),
     /* 145 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
     /* 146 */ "VBegin"           OpHelp(""),
     /* 147 */ "VCreate"          OpHelp(""),
     /* 148 */ "VDestroy"         OpHelp(""),
     /* 149 */ "VOpen"            OpHelp(""),
     /* 150 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
     /* 151 */ "VNext"            OpHelp(""),
     /* 152 */ "VRename"          OpHelp(""),
     /* 153 */ "Pagecount"        OpHelp(""),
     /* 154 */ "MaxPgcnt"         OpHelp(""),
     /* 155 */ "Init"             OpHelp("Start at P2"),
     /* 156 */ "Noop"             OpHelp(""),
     /* 157 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050




25051

25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
#endif

/*
** Define the OS_VXWORKS pre-processor macro to 1 if building on 
** vxworks, or 0 otherwise.
*/
#ifndef OS_VXWORKS
#  if defined(__RTP__) || defined(_WRS_KERNEL)
#    define OS_VXWORKS 1
#  else
#    define OS_VXWORKS 0
#  endif
#endif

/*
** standard include files.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
/* #include <time.h> */
#include <sys/time.h>
#include <errno.h>
#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
# include <sys/mman.h>
#endif

#if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
# include <sys/ioctl.h>




# if OS_VXWORKS

#  include <semaphore.h>
#  include <limits.h>
# else
#  include <sys/file.h>
#  include <sys/param.h>
# endif
#endif /* SQLITE_ENABLE_LOCKING_STYLE */

#if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
# include <sys/mount.h>
#endif

#ifdef HAVE_UTIME
# include <utime.h>
#endif








<
<
<
<
<
<
<
<
<
<
<
<














|

>
>
>
>
|
>
|
|
<
<
<
|
<

|







25226
25227
25228
25229
25230
25231
25232












25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256



25257

25258
25259
25260
25261
25262
25263
25264
25265
25266
#  if defined(__APPLE__)
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
#endif













/*
** standard include files.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
/* #include <time.h> */
#include <sys/time.h>
#include <errno.h>
#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
# include <sys/mman.h>
#endif

#if SQLITE_ENABLE_LOCKING_STYLE
# include <sys/ioctl.h>
# include <sys/file.h>
# include <sys/param.h>
#endif /* SQLITE_ENABLE_LOCKING_STYLE */

#if OS_VXWORKS
/* # include <sys/ioctl.h> */
# include <semaphore.h>
# include <limits.h>



#endif /* OS_VXWORKS */


#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
# include <sys/mount.h>
#endif

#ifdef HAVE_UTIME
# include <utime.h>
#endif

25093
25094
25095
25096
25097
25098
25099




25100
25101
25102
25103
25104
25105
25106
# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
#endif

/*
** Maximum supported path-length.
*/
#define MAX_PATHNAME 512





/*
** Only set the lastErrno if the error code is a real error and not 
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
*/
#define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))








>
>
>
>







25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
#endif

/*
** Maximum supported path-length.
*/
#define MAX_PATHNAME 512

/* Always cast the getpid() return type for compatibility with
** kernel modules in VxWorks. */
#define osGetpid(X) (pid_t)getpid()

/*
** Only set the lastErrno if the error code is a real error and not 
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
*/
#define IS_LOCK_ERROR(x)  ((x != SQLITE_OK) && (x != SQLITE_BUSY))

25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206

25207
25208
25209
25210
25211
25212
25213
#endif
};

/* This variable holds the process id (pid) from when the xRandomness()
** method was called.  If xOpen() is called from a different process id,
** indicating that a fork() has occurred, the PRNG will be reset.
*/
static int randomnessPid = 0;

/*
** Allowed values for the unixFile.ctrlFlags bitmask:
*/
#define UNIXFILE_EXCL        0x01     /* Connections from one process only */
#define UNIXFILE_RDONLY      0x02     /* Connection is read only */
#define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
#ifndef SQLITE_DISABLE_DIRSYNC
# define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
#else
# define UNIXFILE_DIRSYNC    0x00
#endif
#define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
#define UNIXFILE_DELETE      0x20     /* Delete on close */
#define UNIXFILE_URI         0x40     /* Filename might have query parameters */
#define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
#define UNIXFILE_WARNED    0x0100     /* verifyDbFile() warnings have been issued */


/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*







|
















|
>







25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
#endif
};

/* This variable holds the process id (pid) from when the xRandomness()
** method was called.  If xOpen() is called from a different process id,
** indicating that a fork() has occurred, the PRNG will be reset.
*/
static pid_t randomnessPid = 0;

/*
** Allowed values for the unixFile.ctrlFlags bitmask:
*/
#define UNIXFILE_EXCL        0x01     /* Connections from one process only */
#define UNIXFILE_RDONLY      0x02     /* Connection is read only */
#define UNIXFILE_PERSIST_WAL 0x04     /* Persistent WAL mode */
#ifndef SQLITE_DISABLE_DIRSYNC
# define UNIXFILE_DIRSYNC    0x08     /* Directory sync needed */
#else
# define UNIXFILE_DIRSYNC    0x00
#endif
#define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
#define UNIXFILE_DELETE      0x20     /* Delete on close */
#define UNIXFILE_URI         0x40     /* Filename might have query parameters */
#define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
#define UNIXFILE_WARNED    0x0100     /* verifyDbFile() warnings issued */
#define UNIXFILE_BLOCK     0x0200     /* Next SHM lock might block */

/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569

  { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
#define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)

  { "read",         (sqlite3_syscall_ptr)read,       0  },
#define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)

#if defined(USE_PREAD) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
  { "pread",        (sqlite3_syscall_ptr)pread,      0  },
#else
  { "pread",        (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)

#if defined(USE_PREAD64)
  { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
#else
  { "pread64",      (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)

  { "write",        (sqlite3_syscall_ptr)write,      0  },
#define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)

#if defined(USE_PREAD) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS)
  { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
#else
  { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[12].pCurrent)








|
















|







25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773

  { "fcntl",        (sqlite3_syscall_ptr)fcntl,      0  },
#define osFcntl     ((int(*)(int,int,...))aSyscall[7].pCurrent)

  { "read",         (sqlite3_syscall_ptr)read,       0  },
#define osRead      ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)

#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
  { "pread",        (sqlite3_syscall_ptr)pread,      0  },
#else
  { "pread",        (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPread     ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)

#if defined(USE_PREAD64)
  { "pread64",      (sqlite3_syscall_ptr)pread64,    0  },
#else
  { "pread64",      (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPread64   ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent)

  { "write",        (sqlite3_syscall_ptr)write,      0  },
#define osWrite     ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)

#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
  { "pwrite",       (sqlite3_syscall_ptr)pwrite,     0  },
#else
  { "pwrite",       (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite    ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[12].pCurrent)

25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
#undef osFcntl
#define osFcntl lockTrace
#endif /* SQLITE_LOCK_TRACE */

/*
** Retry ftruncate() calls that fail due to EINTR
**
** All calls to ftruncate() within this file should be made through this wrapper.
** On the Android platform, bypassing the logic below could lead to a corrupt
** database.
*/
static int robust_ftruncate(int h, sqlite3_int64 sz){
  int rc;
#ifdef __ANDROID__
  /* On Android, ftruncate() always uses 32-bit offsets, even if 
  ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
  ** truncate a file to any size larger than 2GiB. Silently ignore any







|
|
|







26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
#undef osFcntl
#define osFcntl lockTrace
#endif /* SQLITE_LOCK_TRACE */

/*
** Retry ftruncate() calls that fail due to EINTR
**
** All calls to ftruncate() within this file should be made through
** this wrapper.  On the Android platform, bypassing the logic below
** could lead to a corrupt database.
*/
static int robust_ftruncate(int h, sqlite3_int64 sz){
  int rc;
#ifdef __ANDROID__
  /* On Android, ftruncate() always uses 32-bit offsets, even if 
  ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
  ** truncate a file to any size larger than 2GiB. Silently ignore any
26330
26331
26332
26333
26334
26335
26336








26337
26338
26339
26340
26341
26342
26343
*/
static void robust_close(unixFile *pFile, int h, int lineno){
  if( osClose(h) ){
    unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
                       pFile ? pFile->zPath : 0, lineno);
  }
}









/*
** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
*/ 
static void closePendingFds(unixFile *pFile){
  unixInodeInfo *pInode = pFile->pInode;
  UnixUnusedFd *p;







>
>
>
>
>
>
>
>







26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
*/
static void robust_close(unixFile *pFile, int h, int lineno){
  if( osClose(h) ){
    unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
                       pFile ? pFile->zPath : 0, lineno);
  }
}

/*
** Set the pFile->lastErrno.  Do this in a subroutine as that provides
** a convenient place to set a breakpoint.
*/
static void storeLastErrno(unixFile *pFile, int error){
  pFile->lastErrno = error;
}

/*
** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
*/ 
static void closePendingFds(unixFile *pFile){
  unixInodeInfo *pInode = pFile->pInode;
  UnixUnusedFd *p;
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444

  /* Get low-level information about the file that we can used to
  ** create a unique name for the file.
  */
  fd = pFile->h;
  rc = osFstat(fd, &statbuf);
  if( rc!=0 ){
    pFile->lastErrno = errno;
#ifdef EOVERFLOW
    if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
#endif
    return SQLITE_IOERR;
  }

#ifdef __APPLE__
  /* On OS X on an msdos filesystem, the inode number is reported
  ** incorrectly for zero-size files.  See ticket #3260.  To work
  ** around this problem (we consider it a bug in OS X, not SQLite)
  ** we always increase the file size to 1 by writing a single byte
  ** prior to accessing the inode number.  The one byte written is
  ** an ASCII 'S' character which also happens to be the first byte
  ** in the header of every SQLite database.  In this way, if there
  ** is a race condition such that another thread has already populated
  ** the first page of the database, no damage is done.
  */
  if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
    do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
    if( rc!=1 ){
      pFile->lastErrno = errno;
      return SQLITE_IOERR;
    }
    rc = osFstat(fd, &statbuf);
    if( rc!=0 ){
      pFile->lastErrno = errno;
      return SQLITE_IOERR;
    }
  }
#endif

  memset(&fileId, 0, sizeof(fileId));
  fileId.dev = statbuf.st_dev;







|




















|




|







26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656

  /* Get low-level information about the file that we can used to
  ** create a unique name for the file.
  */
  fd = pFile->h;
  rc = osFstat(fd, &statbuf);
  if( rc!=0 ){
    storeLastErrno(pFile, errno);
#ifdef EOVERFLOW
    if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
#endif
    return SQLITE_IOERR;
  }

#ifdef __APPLE__
  /* On OS X on an msdos filesystem, the inode number is reported
  ** incorrectly for zero-size files.  See ticket #3260.  To work
  ** around this problem (we consider it a bug in OS X, not SQLite)
  ** we always increase the file size to 1 by writing a single byte
  ** prior to accessing the inode number.  The one byte written is
  ** an ASCII 'S' character which also happens to be the first byte
  ** in the header of every SQLite database.  In this way, if there
  ** is a race condition such that another thread has already populated
  ** the first page of the database, no damage is done.
  */
  if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
    do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
    if( rc!=1 ){
      storeLastErrno(pFile, errno);
      return SQLITE_IOERR;
    }
    rc = osFstat(fd, &statbuf);
    if( rc!=0 ){
      storeLastErrno(pFile, errno);
      return SQLITE_IOERR;
    }
  }
#endif

  memset(&fileId, 0, sizeof(fileId));
  fileId.dev = statbuf.st_dev;
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
    struct flock lock;
    lock.l_whence = SEEK_SET;
    lock.l_start = RESERVED_BYTE;
    lock.l_len = 1;
    lock.l_type = F_WRLCK;
    if( osFcntl(pFile->h, F_GETLK, &lock) ){
      rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
      pFile->lastErrno = errno;
    } else if( lock.l_type!=F_UNLCK ){
      reserved = 1;
    }
  }
#endif
  
  unixLeaveMutex();







|







26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
    struct flock lock;
    lock.l_whence = SEEK_SET;
    lock.l_start = RESERVED_BYTE;
    lock.l_len = 1;
    lock.l_type = F_WRLCK;
    if( osFcntl(pFile->h, F_GETLK, &lock) ){
      rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
      storeLastErrno(pFile, errno);
    } else if( lock.l_type!=F_UNLCK ){
      reserved = 1;
    }
  }
#endif
  
  unixLeaveMutex();
26686
26687
26688
26689
26690
26691
26692
26693

26694
26695
26696
26697
26698
26699
26700
  unixInodeInfo *pInode;
  struct flock lock;
  int tErrno = 0;

  assert( pFile );
  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
      azFileLock(eFileLock), azFileLock(pFile->eFileLock),
      azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid()));


  /* If there is already a lock of this type or more restrictive on the
  ** unixFile, do nothing. Don't use the end_lock: exit path, as
  ** unixEnterMutex() hasn't been called yet.
  */
  if( pFile->eFileLock>=eFileLock ){
    OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,







|
>







26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
  unixInodeInfo *pInode;
  struct flock lock;
  int tErrno = 0;

  assert( pFile );
  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
      azFileLock(eFileLock), azFileLock(pFile->eFileLock),
      azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
      osGetpid(0)));

  /* If there is already a lock of this type or more restrictive on the
  ** unixFile, do nothing. Don't use the end_lock: exit path, as
  ** unixEnterMutex() hasn't been called yet.
  */
  if( pFile->eFileLock>=eFileLock ){
    OSTRACE(("LOCK    %d %s ok (already held) (unix)\n", pFile->h,
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
  ){
    lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
    lock.l_start = PENDING_BYTE;
    if( unixFileLock(pFile, &lock) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }
  }


  /* If control gets to this point, then actually go ahead and make







|







26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
  ){
    lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
    lock.l_start = PENDING_BYTE;
    if( unixFileLock(pFile, &lock) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        storeLastErrno(pFile, tErrno);
      }
      goto end_lock;
    }
  }


  /* If control gets to this point, then actually go ahead and make
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
      /* This could happen with a network mount */
      tErrno = errno;
      rc = SQLITE_IOERR_UNLOCK; 
    }

    if( rc ){
      if( rc!=SQLITE_BUSY ){
        pFile->lastErrno = tErrno;
      }
      goto end_lock;
    }else{
      pFile->eFileLock = SHARED_LOCK;
      pInode->nLock++;
      pInode->nShared = 1;
    }







|







27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
      /* This could happen with a network mount */
      tErrno = errno;
      rc = SQLITE_IOERR_UNLOCK; 
    }

    if( rc ){
      if( rc!=SQLITE_BUSY ){
        storeLastErrno(pFile, tErrno);
      }
      goto end_lock;
    }else{
      pFile->eFileLock = SHARED_LOCK;
      pInode->nLock++;
      pInode->nShared = 1;
    }
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
      lock.l_len = SHARED_SIZE;
    }

    if( unixFileLock(pFile, &lock) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        pFile->lastErrno = tErrno;
      }
    }
  }
  

#ifdef SQLITE_DEBUG
  /* Set up the transaction-counter change checking flags when







|







27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
      lock.l_len = SHARED_SIZE;
    }

    if( unixFileLock(pFile, &lock) ){
      tErrno = errno;
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        storeLastErrno(pFile, tErrno);
      }
    }
  }
  

#ifdef SQLITE_DEBUG
  /* Set up the transaction-counter change checking flags when
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
  unixInodeInfo *pInode;
  struct flock lock;
  int rc = SQLITE_OK;

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
      pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
      getpid()));

  assert( eFileLock<=SHARED_LOCK );
  if( pFile->eFileLock<=eFileLock ){
    return SQLITE_OK;
  }
  unixEnterMutex();
  pInode = pFile->pInode;







|







27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
  unixInodeInfo *pInode;
  struct flock lock;
  int rc = SQLITE_OK;

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
      pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
      osGetpid(0)));

  assert( eFileLock<=SHARED_LOCK );
  if( pFile->eFileLock<=eFileLock ){
    return SQLITE_OK;
  }
  unixEnterMutex();
  pInode = pFile->pInode;
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
    ** write lock until the rest is covered by a read lock:
    **  1:   [WWWWW]
    **  2:   [....W]
    **  3:   [RRRRW]
    **  4:   [RRRR.]
    */
    if( eFileLock==SHARED_LOCK ){

#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
      (void)handleNFSUnlock;
      assert( handleNFSUnlock==0 );
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
      if( handleNFSUnlock ){
        int tErrno;               /* Error code from system call errors */
        off_t divSize = SHARED_SIZE - 1;
        
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST+divSize;
        lock.l_len = SHARED_SIZE-divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            pFile->lastErrno = tErrno;
          }
          goto end_unlock;
        }
      }else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
      {
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        if( unixFileLock(pFile, &lock) ){
          /* In theory, the call to unixFileLock() cannot fail because another
          ** process is holding an incompatible lock. If it does, this 
          ** indicates that the other process is not following the locking
          ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
          ** SQLITE_BUSY would confuse the upper layer (in practice it causes 
          ** an assert to fail). */ 
          rc = SQLITE_IOERR_RDLOCK;
          pFile->lastErrno = errno;
          goto end_unlock;
        }
      }
    }
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    if( unixFileLock(pFile, &lock)==0 ){
      pInode->eFileLock = SHARED_LOCK;
    }else{
      rc = SQLITE_IOERR_UNLOCK;
      pFile->lastErrno = errno;
      goto end_unlock;
    }
  }
  if( eFileLock==NO_LOCK ){
    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pInode->nShared--;
    if( pInode->nShared==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      if( unixFileLock(pFile, &lock)==0 ){
        pInode->eFileLock = NO_LOCK;
      }else{
        rc = SQLITE_IOERR_UNLOCK;
        pFile->lastErrno = errno;
        pInode->eFileLock = NO_LOCK;
        pFile->eFileLock = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close







<

















|











|











|


















|












|

















|







27141
27142
27143
27144
27145
27146
27147

27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
    ** write lock until the rest is covered by a read lock:
    **  1:   [WWWWW]
    **  2:   [....W]
    **  3:   [RRRRW]
    **  4:   [RRRR.]
    */
    if( eFileLock==SHARED_LOCK ){

#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
      (void)handleNFSUnlock;
      assert( handleNFSUnlock==0 );
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
      if( handleNFSUnlock ){
        int tErrno;               /* Error code from system call errors */
        off_t divSize = SHARED_SIZE - 1;
        
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            storeLastErrno(pFile, tErrno);
          }
          goto end_unlock;
        }
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
          if( IS_LOCK_ERROR(rc) ){
            storeLastErrno(pFile, tErrno);
          }
          goto end_unlock;
        }
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST+divSize;
        lock.l_len = SHARED_SIZE-divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            storeLastErrno(pFile, tErrno);
          }
          goto end_unlock;
        }
      }else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
      {
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        if( unixFileLock(pFile, &lock) ){
          /* In theory, the call to unixFileLock() cannot fail because another
          ** process is holding an incompatible lock. If it does, this 
          ** indicates that the other process is not following the locking
          ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
          ** SQLITE_BUSY would confuse the upper layer (in practice it causes 
          ** an assert to fail). */ 
          rc = SQLITE_IOERR_RDLOCK;
          storeLastErrno(pFile, errno);
          goto end_unlock;
        }
      }
    }
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    if( unixFileLock(pFile, &lock)==0 ){
      pInode->eFileLock = SHARED_LOCK;
    }else{
      rc = SQLITE_IOERR_UNLOCK;
      storeLastErrno(pFile, errno);
      goto end_unlock;
    }
  }
  if( eFileLock==NO_LOCK ){
    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pInode->nShared--;
    if( pInode->nShared==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      if( unixFileLock(pFile, &lock)==0 ){
        pInode->eFileLock = NO_LOCK;
      }else{
        rc = SQLITE_IOERR_UNLOCK;
        storeLastErrno(pFile, errno);
        pInode->eFileLock = NO_LOCK;
        pFile->eFileLock = NO_LOCK;
      }
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
    /* failed to open/create the lock directory */
    int tErrno = errno;
    if( EEXIST == tErrno ){
      rc = SQLITE_BUSY;
    } else {
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        pFile->lastErrno = tErrno;
      }
    }
    return rc;
  } 
  
  /* got it, set the type and return ok */
  pFile->eFileLock = eFileLock;







|







27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
    /* failed to open/create the lock directory */
    int tErrno = errno;
    if( EEXIST == tErrno ){
      rc = SQLITE_BUSY;
    } else {
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        storeLastErrno(pFile, tErrno);
      }
    }
    return rc;
  } 
  
  /* got it, set the type and return ok */
  pFile->eFileLock = eFileLock;
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  char *zLockFile = (char *)pFile->lockingContext;
  int rc;

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
           pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }








|







27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  char *zLockFile = (char *)pFile->lockingContext;
  int rc;

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
           pFile->eFileLock, osGetpid(0)));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }

27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
  if( rc<0 ){
    int tErrno = errno;
    rc = 0;
    if( ENOENT != tErrno ){
      rc = SQLITE_IOERR_UNLOCK;
    }
    if( IS_LOCK_ERROR(rc) ){
      pFile->lastErrno = tErrno;
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
  return SQLITE_OK;
}








|







27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
  if( rc<0 ){
    int tErrno = errno;
    rc = 0;
    if( ENOENT != tErrno ){
      rc = SQLITE_IOERR_UNLOCK;
    }
    if( IS_LOCK_ERROR(rc) ){
      storeLastErrno(pFile, tErrno);
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
  return SQLITE_OK;
}

27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
** flock() locking is like dot-file locking in that the various
** fine-grain locking levels supported by SQLite are collapsed into
** a single exclusive lock.  In other words, SHARED, RESERVED, and
** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
** still works when you do this, but concurrency is reduced since
** only a single process can be reading the database at a time.
**
** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if
** compiling for VXWORKS.
*/
#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS

/*
** Retry flock() calls that fail with EINTR
*/
#ifdef EINTR
static int robust_flock(int fd, int op){
  int rc;







|
<

|







27597
27598
27599
27600
27601
27602
27603
27604

27605
27606
27607
27608
27609
27610
27611
27612
27613
** flock() locking is like dot-file locking in that the various
** fine-grain locking levels supported by SQLite are collapsed into
** a single exclusive lock.  In other words, SHARED, RESERVED, and
** PENDING locks are the same thing as an EXCLUSIVE lock.  SQLite
** still works when you do this, but concurrency is reduced since
** only a single process can be reading the database at a time.
**
** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off

*/
#if SQLITE_ENABLE_LOCKING_STYLE

/*
** Retry flock() calls that fail with EINTR
*/
#ifdef EINTR
static int robust_flock(int fd, int op){
  int rc;
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
      /* got the lock, unlock it */
      lrc = robust_flock(pFile->h, LOCK_UN);
      if ( lrc ) {
        int tErrno = errno;
        /* unlock failed with an error */
        lrc = SQLITE_IOERR_UNLOCK; 
        if( IS_LOCK_ERROR(lrc) ){
          pFile->lastErrno = tErrno;
          rc = lrc;
        }
      }
    } else {
      int tErrno = errno;
      reserved = 1;
      /* someone else might have it reserved */
      lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
      if( IS_LOCK_ERROR(lrc) ){
        pFile->lastErrno = tErrno;
        rc = lrc;
      }
    }
  }
  OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));

#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS







|









|







27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
      /* got the lock, unlock it */
      lrc = robust_flock(pFile->h, LOCK_UN);
      if ( lrc ) {
        int tErrno = errno;
        /* unlock failed with an error */
        lrc = SQLITE_IOERR_UNLOCK; 
        if( IS_LOCK_ERROR(lrc) ){
          storeLastErrno(pFile, tErrno);
          rc = lrc;
        }
      }
    } else {
      int tErrno = errno;
      reserved = 1;
      /* someone else might have it reserved */
      lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
      if( IS_LOCK_ERROR(lrc) ){
        storeLastErrno(pFile, tErrno);
        rc = lrc;
      }
    }
  }
  OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));

#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
  /* grab an exclusive lock */
  
  if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
    int tErrno = errno;
    /* didn't get, must be busy */
    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
    if( IS_LOCK_ERROR(rc) ){
      pFile->lastErrno = tErrno;
    }
  } else {
    /* got it, set the type and return ok */
    pFile->eFileLock = eFileLock;
  }
  OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), 
           rc==SQLITE_OK ? "ok" : "failed"));







|







27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
  /* grab an exclusive lock */
  
  if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
    int tErrno = errno;
    /* didn't get, must be busy */
    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
    if( IS_LOCK_ERROR(rc) ){
      storeLastErrno(pFile, tErrno);
    }
  } else {
    /* got it, set the type and return ok */
    pFile->eFileLock = eFileLock;
  }
  OSTRACE(("LOCK    %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), 
           rc==SQLITE_OK ? "ok" : "failed"));
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
** the requested locking level, this routine is a no-op.
*/
static int flockUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  
  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
           pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }
  







|







27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
** the requested locking level, this routine is a no-op.
*/
static int flockUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  
  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
           pFile->eFileLock, osGetpid(0)));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }
  
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero.  The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int semCheckReservedLock(sqlite3_file *id, int *pResOut) {
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  
  assert( pFile );







|







27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero.  The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  
  assert( pFile );
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
  if( !reserved ){
    sem_t *pSem = pFile->pInode->pSem;

    if( sem_trywait(pSem)==-1 ){
      int tErrno = errno;
      if( EAGAIN != tErrno ){
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
        pFile->lastErrno = tErrno;
      } else {
        /* someone else has the lock when we are in NO_LOCK */
        reserved = (pFile->eFileLock < SHARED_LOCK);
      }
    }else{
      /* we could have it if we want it */
      sem_post(pSem);







|







27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
  if( !reserved ){
    sem_t *pSem = pFile->pInode->pSem;

    if( sem_trywait(pSem)==-1 ){
      int tErrno = errno;
      if( EAGAIN != tErrno ){
        rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
        storeLastErrno(pFile, tErrno);
      } else {
        /* someone else has the lock when we are in NO_LOCK */
        reserved = (pFile->eFileLock < SHARED_LOCK);
      }
    }else{
      /* we could have it if we want it */
      sem_post(pSem);
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
** lock states in the sqlite3_file structure, but all locks SHARED or
** above are really EXCLUSIVE locks and exclude all other processes from
** access the file.
**
** This routine will only increase a lock.  Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int semLock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  sem_t *pSem = pFile->pInode->pSem;
  int rc = SQLITE_OK;

  /* if we already have a lock, it is exclusive.  
  ** Just adjust level and punt on outta here. */
  if (pFile->eFileLock > NO_LOCK) {







|







27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
** lock states in the sqlite3_file structure, but all locks SHARED or
** above are really EXCLUSIVE locks and exclude all other processes from
** access the file.
**
** This routine will only increase a lock.  Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int semXLock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  sem_t *pSem = pFile->pInode->pSem;
  int rc = SQLITE_OK;

  /* if we already have a lock, it is exclusive.  
  ** Just adjust level and punt on outta here. */
  if (pFile->eFileLock > NO_LOCK) {
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
/*
** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int semUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  sem_t *pSem = pFile->pInode->pSem;

  assert( pFile );
  assert( pSem );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
           pFile->eFileLock, getpid()));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }
  
  /* shared can just be set because we always have an exclusive */
  if (eFileLock==SHARED_LOCK) {
    pFile->eFileLock = eFileLock;
    return SQLITE_OK;
  }
  
  /* no, really unlock. */
  if ( sem_post(pSem)==-1 ) {
    int rc, tErrno = errno;
    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
    if( IS_LOCK_ERROR(rc) ){
      pFile->lastErrno = tErrno;
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
  return SQLITE_OK;
}

/*
 ** Close a file.
 */
static int semClose(sqlite3_file *id) {
  if( id ){
    unixFile *pFile = (unixFile*)id;
    semUnlock(id, NO_LOCK);
    assert( pFile );
    unixEnterMutex();
    releaseInodeInfo(pFile);
    unixLeaveMutex();
    closeUnixFile(id);
  }
  return SQLITE_OK;







|






|


















|










|


|







27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
/*
** Lower the locking level on file descriptor pFile to eFileLock.  eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int semXUnlock(sqlite3_file *id, int eFileLock) {
  unixFile *pFile = (unixFile*)id;
  sem_t *pSem = pFile->pInode->pSem;

  assert( pFile );
  assert( pSem );
  OSTRACE(("UNLOCK  %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
           pFile->eFileLock, osGetpid(0)));
  assert( eFileLock<=SHARED_LOCK );
  
  /* no-op if possible */
  if( pFile->eFileLock==eFileLock ){
    return SQLITE_OK;
  }
  
  /* shared can just be set because we always have an exclusive */
  if (eFileLock==SHARED_LOCK) {
    pFile->eFileLock = eFileLock;
    return SQLITE_OK;
  }
  
  /* no, really unlock. */
  if ( sem_post(pSem)==-1 ) {
    int rc, tErrno = errno;
    rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
    if( IS_LOCK_ERROR(rc) ){
      storeLastErrno(pFile, tErrno);
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
  return SQLITE_OK;
}

/*
 ** Close a file.
 */
static int semXClose(sqlite3_file *id) {
  if( id ){
    unixFile *pFile = (unixFile*)id;
    semXUnlock(id, NO_LOCK);
    assert( pFile );
    unixEnterMutex();
    releaseInodeInfo(pFile);
    unixLeaveMutex();
    closeUnixFile(id);
  }
  return SQLITE_OK;
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
    rc = SQLITE_BUSY;
#else
    rc = sqliteErrorFromPosixError(tErrno,
                    setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
    if( IS_LOCK_ERROR(rc) ){
      pFile->lastErrno = tErrno;
    }
    return rc;
  } else {
    return SQLITE_OK;
  }
}








|







28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
    rc = SQLITE_BUSY;
#else
    rc = sqliteErrorFromPosixError(tErrno,
                    setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
    if( IS_LOCK_ERROR(rc) ){
      storeLastErrno(pFile, tErrno);
    }
    return rc;
  } else {
    return SQLITE_OK;
  }
}

27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode = pFile->pInode;
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  
  assert( pFile );
  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
           azFileLock(eFileLock), azFileLock(pFile->eFileLock),
           azFileLock(pInode->eFileLock), pInode->nShared , getpid()));

  /* If there is already a lock of this type or more restrictive on the
  ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
  ** unixEnterMutex() hasn't been called yet.
  */
  if( pFile->eFileLock>=eFileLock ){
    OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,







|







28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
  unixFile *pFile = (unixFile*)id;
  unixInodeInfo *pInode = pFile->pInode;
  afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
  
  assert( pFile );
  OSTRACE(("LOCK    %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
           azFileLock(eFileLock), azFileLock(pFile->eFileLock),
           azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));

  /* If there is already a lock of this type or more restrictive on the
  ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
  ** unixEnterMutex() hasn't been called yet.
  */
  if( pFile->eFileLock>=eFileLock ){
    OSTRACE(("LOCK    %d %s ok (already held) (afp)\n", pFile->h,
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
    if( IS_LOCK_ERROR(lrc1) ){
      lrc1Errno = pFile->lastErrno;
    }
    /* Drop the temporary PENDING lock */
    lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
    
    if( IS_LOCK_ERROR(lrc1) ) {
      pFile->lastErrno = lrc1Errno;
      rc = lrc1;
      goto afp_end_lock;
    } else if( IS_LOCK_ERROR(lrc2) ){
      rc = lrc2;
      goto afp_end_lock;
    } else if( lrc1 != SQLITE_OK ) {
      rc = lrc1;







|







28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
    if( IS_LOCK_ERROR(lrc1) ){
      lrc1Errno = pFile->lastErrno;
    }
    /* Drop the temporary PENDING lock */
    lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
    
    if( IS_LOCK_ERROR(lrc1) ) {
      storeLastErrno(pFile, lrc1Errno);
      rc = lrc1;
      goto afp_end_lock;
    } else if( IS_LOCK_ERROR(lrc2) ){
      rc = lrc2;
      goto afp_end_lock;
    } else if( lrc1 != SQLITE_OK ) {
      rc = lrc1;
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
#ifdef SQLITE_TEST
  int h = pFile->h;
#endif

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
           pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
           getpid()));

  assert( eFileLock<=SHARED_LOCK );
  if( pFile->eFileLock<=eFileLock ){
    return SQLITE_OK;
  }
  unixEnterMutex();
  pInode = pFile->pInode;







|







28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
#ifdef SQLITE_TEST
  int h = pFile->h;
#endif

  assert( pFile );
  OSTRACE(("UNLOCK  %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
           pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
           osGetpid(0)));

  assert( eFileLock<=SHARED_LOCK );
  if( pFile->eFileLock<=eFileLock ){
    return SQLITE_OK;
  }
  unixEnterMutex();
  pInode = pFile->pInode;
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
    got = osPread64(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#else
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        ((unixFile*)id)->lastErrno = errno;
      }else{
        ((unixFile*)id)->lastErrno = 0;
      }
      return -1;
    }
    got = osRead(id->h, pBuf, cnt);
#endif
    if( got==cnt ) break;
    if( got<0 ){
      if( errno==EINTR ){ got = 1; continue; }
      prior = 0;
      ((unixFile*)id)->lastErrno = errno;
      break;
    }else if( got>0 ){
      cnt -= got;
      offset += got;
      prior += got;
      pBuf = (void*)(got + (char*)pBuf);
    }







|

|









|







28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
    got = osPread64(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#else
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        storeLastErrno((unixFile*)id, errno);
      }else{
        storeLastErrno((unixFile*)id, 0);
      }
      return -1;
    }
    got = osRead(id->h, pBuf, cnt);
#endif
    if( got==cnt ) break;
    if( got<0 ){
      if( errno==EINTR ){ got = 1; continue; }
      prior = 0;
      storeLastErrno((unixFile*)id,  errno);
      break;
    }else if( got>0 ){
      cnt -= got;
      offset += got;
      prior += got;
      pBuf = (void*)(got + (char*)pBuf);
    }
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
  got = seekAndRead(pFile, offset, pBuf, amt);
  if( got==amt ){
    return SQLITE_OK;
  }else if( got<0 ){
    /* lastErrno set by seekAndRead */
    return SQLITE_IOERR_READ;
  }else{
    pFile->lastErrno = 0; /* not a system error */
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[got], 0, amt-got);
    return SQLITE_IOERR_SHORT_READ;
  }
}

/*







|







28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
  got = seekAndRead(pFile, offset, pBuf, amt);
  if( got==amt ){
    return SQLITE_OK;
  }else if( got<0 ){
    /* lastErrno set by seekAndRead */
    return SQLITE_IOERR_READ;
  }else{
    storeLastErrno(pFile, 0);   /* not a system error */
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[got], 0, amt-got);
    return SQLITE_IOERR_SHORT_READ;
  }
}

/*
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422

  assert( nBuf==(nBuf&0x1ffff) );
  assert( fd>2 );
  nBuf &= 0x1ffff;
  TIMER_START;

#if defined(USE_PREAD)
  do{ rc = osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ rc = osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
#else
  do{
    i64 iSeek = lseek(fd, iOff, SEEK_SET);
    SimulateIOError( iSeek-- );

    if( iSeek!=iOff ){
      if( piErrno ) *piErrno = (iSeek==-1 ? errno : 0);







|

|







28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633

  assert( nBuf==(nBuf&0x1ffff) );
  assert( fd>2 );
  nBuf &= 0x1ffff;
  TIMER_START;

#if defined(USE_PREAD)
  do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
#else
  do{
    i64 iSeek = lseek(fd, iOff, SEEK_SET);
    SimulateIOError( iSeek-- );

    if( iSeek!=iOff ){
      if( piErrno ) *piErrno = (iSeek==-1 ? errno : 0);
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
  SimulateDiskfullError(( wrote=0, amt=1 ));

  if( amt>0 ){
    if( wrote<0 && pFile->lastErrno!=ENOSPC ){
      /* lastErrno set by seekAndWrite */
      return SQLITE_IOERR_WRITE;
    }else{
      pFile->lastErrno = 0; /* not a system error */
      return SQLITE_FULL;
    }
  }

  return SQLITE_OK;
}








|







28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
  SimulateDiskfullError(( wrote=0, amt=1 ));

  if( amt>0 ){
    if( wrote<0 && pFile->lastErrno!=ENOSPC ){
      /* lastErrno set by seekAndWrite */
      return SQLITE_IOERR_WRITE;
    }else{
      storeLastErrno(pFile, 0); /* not a system error */
      return SQLITE_FULL;
    }
  }

  return SQLITE_OK;
}

28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
  SimulateDiskfullError( return SQLITE_FULL );

  assert( pFile );
  OSTRACE(("SYNC    %-3d\n", pFile->h));
  rc = full_fsync(pFile->h, isFullsync, isDataOnly);
  SimulateIOError( rc=1 );
  if( rc ){
    pFile->lastErrno = errno;
    return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
  }

  /* Also fsync the directory containing the file if the DIRSYNC flag
  ** is set.  This is a one-time occurrence.  Many systems (examples: AIX)
  ** are unable to fsync a directory, so ignore errors on the fsync.
  */







|







28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
  SimulateDiskfullError( return SQLITE_FULL );

  assert( pFile );
  OSTRACE(("SYNC    %-3d\n", pFile->h));
  rc = full_fsync(pFile->h, isFullsync, isDataOnly);
  SimulateIOError( rc=1 );
  if( rc ){
    storeLastErrno(pFile, errno);
    return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
  }

  /* Also fsync the directory containing the file if the DIRSYNC flag
  ** is set.  This is a one-time occurrence.  Many systems (examples: AIX)
  ** are unable to fsync a directory, so ignore errors on the fsync.
  */
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, nByte);
  if( rc ){
    pFile->lastErrno = errno;
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
  }else{
#ifdef SQLITE_DEBUG
    /* If we are doing a normal write to a database file (as opposed to
    ** doing a hot-journal rollback or a write to some file other than a
    ** normal database file) and we truncate the file to zero length,
    ** that effectively updates the change counter.  This might happen







|







28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
  */
  if( pFile->szChunk>0 ){
    nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
  }

  rc = robust_ftruncate(pFile->h, nByte);
  if( rc ){
    storeLastErrno(pFile, errno);
    return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
  }else{
#ifdef SQLITE_DEBUG
    /* If we are doing a normal write to a database file (as opposed to
    ** doing a hot-journal rollback or a write to some file other than a
    ** normal database file) and we truncate the file to zero length,
    ** that effectively updates the change counter.  This might happen
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
static int unixFileSize(sqlite3_file *id, i64 *pSize){
  int rc;
  struct stat buf;
  assert( id );
  rc = osFstat(((unixFile*)id)->h, &buf);
  SimulateIOError( rc=1 );
  if( rc!=0 ){
    ((unixFile*)id)->lastErrno = errno;
    return SQLITE_IOERR_FSTAT;
  }
  *pSize = buf.st_size;

  /* When opening a zero-size database, the findInodeInfo() procedure
  ** writes a single byte into that file in order to work around a bug
  ** in the OS-X msdos filesystem.  In order to avoid problems with upper







|







29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
static int unixFileSize(sqlite3_file *id, i64 *pSize){
  int rc;
  struct stat buf;
  assert( id );
  rc = osFstat(((unixFile*)id)->h, &buf);
  SimulateIOError( rc=1 );
  if( rc!=0 ){
    storeLastErrno((unixFile*)id, errno);
    return SQLITE_IOERR_FSTAT;
  }
  *pSize = buf.st_size;

  /* When opening a zero-size database, the findInodeInfo() procedure
  ** writes a single byte into that file in order to work around a bug
  ** in the OS-X msdos filesystem.  In order to avoid problems with upper
28847
28848
28849
28850
28851
28852
28853
28854


28855
28856
28857
28858
28859
28860
28861
** nBytes or larger, this routine is a no-op.
*/
static int fcntlSizeHint(unixFile *pFile, i64 nByte){
  if( pFile->szChunk>0 ){
    i64 nSize;                    /* Required file size */
    struct stat buf;              /* Used to hold return values of fstat() */
   
    if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT;



    nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
    if( nSize>(i64)buf.st_size ){

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 







|
>
>







29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
** nBytes or larger, this routine is a no-op.
*/
static int fcntlSizeHint(unixFile *pFile, i64 nByte){
  if( pFile->szChunk>0 ){
    i64 nSize;                    /* Required file size */
    struct stat buf;              /* Used to hold return values of fstat() */
   
    if( osFstat(pFile->h, &buf) ){
      return SQLITE_IOERR_FSTAT;
    }

    nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
    if( nSize>(i64)buf.st_size ){

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
      /* The code below is handling the return value of osFallocate() 
      ** correctly. posix_fallocate() is defined to "returns zero on success, 
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
    int rc;
    if( pFile->szChunk<=0 ){
      if( robust_ftruncate(pFile->h, nByte) ){
        pFile->lastErrno = errno;
        return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
      }
    }

    rc = unixMapfile(pFile, nByte);
    return rc;
  }







|







29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
    int rc;
    if( pFile->szChunk<=0 ){
      if( robust_ftruncate(pFile->h, nByte) ){
        storeLastErrno(pFile, errno);
        return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
      }
    }

    rc = unixMapfile(pFile, nByte);
    return rc;
  }
28932
28933
28934
28935
28936
28937
28938




28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950

/*
** Information and control of an open file handle.
*/
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
  unixFile *pFile = (unixFile*)id;
  switch( op ){




    case SQLITE_FCNTL_LOCKSTATE: {
      *(int*)pArg = pFile->eFileLock;
      return SQLITE_OK;
    }
    case SQLITE_LAST_ERRNO: {
      *(int*)pArg = pFile->lastErrno;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_CHUNK_SIZE: {
      pFile->szChunk = *(int *)pArg;
      return SQLITE_OK;
    }







>
>
>
>




|







29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167

/*
** Information and control of an open file handle.
*/
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
  unixFile *pFile = (unixFile*)id;
  switch( op ){
    case SQLITE_FCNTL_WAL_BLOCK: {
      /* pFile->ctrlFlags |= UNIXFILE_BLOCK; // Deferred feature */
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_LOCKSTATE: {
      *(int*)pArg = pFile->eFileLock;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_LAST_ERRNO: {
      *(int*)pArg = pFile->lastErrno;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_CHUNK_SIZE: {
      pFile->szChunk = *(int *)pArg;
      return SQLITE_OK;
    }
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
    */
    case SQLITE_FCNTL_DB_UNCHANGED: {
      ((unixFile*)id)->dbUpdate = 0;
      return SQLITE_OK;
    }
#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    case SQLITE_SET_LOCKPROXYFILE:
    case SQLITE_GET_LOCKPROXYFILE: {
      return proxyFileControl(id,op,pArg);
    }
#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
  }
  return SQLITE_NOTFOUND;
}








|
|







29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
    */
    case SQLITE_FCNTL_DB_UNCHANGED: {
      ((unixFile*)id)->dbUpdate = 0;
      return SQLITE_OK;
    }
#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    case SQLITE_FCNTL_SET_LOCKPROXYFILE:
    case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
      return proxyFileControl(id,op,pArg);
    }
#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
  }
  return SQLITE_NOTFOUND;
}

29146
29147
29148
29149
29150
29151
29152


29153
29154
29155
29156
29157
29158
29159
29160
/*
** Return the system page size.
**
** This function should not be called directly by other code in this file. 
** Instead, it should be called via macro osGetpagesize().
*/
static int unixGetpagesize(void){


#if defined(_BSD_SOURCE)
  return getpagesize();
#else
  return (int)sysconf(_SC_PAGESIZE);
#endif
}

#endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */







>
>
|







29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
/*
** Return the system page size.
**
** This function should not be called directly by other code in this file. 
** Instead, it should be called via macro osGetpagesize().
*/
static int unixGetpagesize(void){
#if OS_VXWORKS
  return 1024;
#elif defined(_BSD_SOURCE)
  return getpagesize();
#else
  return (int)sysconf(_SC_PAGESIZE);
#endif
}

#endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250

29251
29252
29253
29254

29255
29256
29257
29258
29259
29260
29261
29262
29263

29264
29265
29266
29267
29268
29269
29270

29271
29272

29273
29274
29275
29276
29277
29278
29279
/*
** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
**
** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
** otherwise.
*/
static int unixShmSystemLock(
  unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */
  int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
  int ofst,              /* First byte of the locking range */
  int n                  /* Number of bytes to lock */
){

  struct flock f;       /* The posix advisory locking structure */
  int rc = SQLITE_OK;   /* Result code form fcntl() */

  /* Access to the unixShmNode object is serialized by the caller */

  assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );

  /* Shared locks never span more than one byte */
  assert( n==1 || lockType!=F_RDLCK );

  /* Locks are within range */
  assert( n>=1 && n<SQLITE_SHM_NLOCK );

  if( pShmNode->h>=0 ){

    /* Initialize the locking parameters */
    memset(&f, 0, sizeof(f));
    f.l_type = lockType;
    f.l_whence = SEEK_SET;
    f.l_start = ofst;
    f.l_len = n;


    rc = osFcntl(pShmNode->h, F_SETLK, &f);
    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;

  }

  /* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
  { u16 mask;
  OSTRACE(("SHM-LOCK "));
  mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);







|




>
|
|


>









>







>
|

>







29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
/*
** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
**
** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
** otherwise.
*/
static int unixShmSystemLock(
  unixFile *pFile,       /* Open connection to the WAL file */
  int lockType,          /* F_UNLCK, F_RDLCK, or F_WRLCK */
  int ofst,              /* First byte of the locking range */
  int n                  /* Number of bytes to lock */
){
  unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
  struct flock f;        /* The posix advisory locking structure */
  int rc = SQLITE_OK;    /* Result code form fcntl() */

  /* Access to the unixShmNode object is serialized by the caller */
  pShmNode = pFile->pInode->pShmNode;
  assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );

  /* Shared locks never span more than one byte */
  assert( n==1 || lockType!=F_RDLCK );

  /* Locks are within range */
  assert( n>=1 && n<SQLITE_SHM_NLOCK );

  if( pShmNode->h>=0 ){
    int lkType;
    /* Initialize the locking parameters */
    memset(&f, 0, sizeof(f));
    f.l_type = lockType;
    f.l_whence = SEEK_SET;
    f.l_start = ofst;
    f.l_len = n;

    lkType = (pFile->ctrlFlags & UNIXFILE_BLOCK)!=0 ? F_SETLKW : F_SETLK;
    rc = osFcntl(pShmNode->h, lkType, &f);
    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
    pFile->ctrlFlags &= ~UNIXFILE_BLOCK;
  }

  /* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
  { u16 mask;
  OSTRACE(("SHM-LOCK "));
  mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
29411
29412
29413
29414
29415
29416
29417



29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
  ** one if present. Create a new one if necessary.
  */
  unixEnterMutex();
  pInode = pDbFd->pInode;
  pShmNode = pInode->pShmNode;
  if( pShmNode==0 ){
    struct stat sStat;                 /* fstat() info for database file */




    /* Call fstat() to figure out the permissions on the database file. If
    ** a new *-shm file is created, an attempt will be made to create it
    ** with the same permissions.
    */
    if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
      rc = SQLITE_IOERR_FSTAT;
      goto shm_open_err;
    }

#ifdef SQLITE_SHM_DIRECTORY
    nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
#else
    nShmFilename = 6 + (int)strlen(pDbFd->zPath);
#endif
    pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
    if( pShmNode==0 ){
      rc = SQLITE_NOMEM;
      goto shm_open_err;
    }
    memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
    zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
#ifdef SQLITE_SHM_DIRECTORY
    sqlite3_snprintf(nShmFilename, zShmFilename, 
                     SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
                     (u32)sStat.st_ino, (u32)sStat.st_dev);
#else
    sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath);
    sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
#endif
    pShmNode->h = -1;
    pDbFd->pInode->pShmNode = pShmNode;
    pShmNode->pInode = pDbFd->pInode;
    pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
    if( pShmNode->mutex==0 ){







>
>
>













|













|







29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
  ** one if present. Create a new one if necessary.
  */
  unixEnterMutex();
  pInode = pDbFd->pInode;
  pShmNode = pInode->pShmNode;
  if( pShmNode==0 ){
    struct stat sStat;                 /* fstat() info for database file */
#ifndef SQLITE_SHM_DIRECTORY
    const char *zBasePath = pDbFd->zPath;
#endif

    /* Call fstat() to figure out the permissions on the database file. If
    ** a new *-shm file is created, an attempt will be made to create it
    ** with the same permissions.
    */
    if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
      rc = SQLITE_IOERR_FSTAT;
      goto shm_open_err;
    }

#ifdef SQLITE_SHM_DIRECTORY
    nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
#else
    nShmFilename = 6 + (int)strlen(zBasePath);
#endif
    pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename );
    if( pShmNode==0 ){
      rc = SQLITE_NOMEM;
      goto shm_open_err;
    }
    memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
    zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1];
#ifdef SQLITE_SHM_DIRECTORY
    sqlite3_snprintf(nShmFilename, zShmFilename, 
                     SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
                     (u32)sStat.st_ino, (u32)sStat.st_dev);
#else
    sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", zBasePath);
    sqlite3FileSuffix3(pDbFd->zPath, zShmFilename);
#endif
    pShmNode->h = -1;
    pDbFd->pInode->pShmNode = pShmNode;
    pShmNode->pInode = pDbFd->pInode;
    pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
    if( pShmNode->mutex==0 ){
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
      */
      osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
        if( robust_ftruncate(pShmNode->h, 0) ){
          rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
        }
      }
      if( rc==SQLITE_OK ){
        rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1);
      }
      if( rc ) goto shm_open_err;
    }
  }

  /* Make the new connection a child of the unixShmNode */
  p->pShmNode = pShmNode;







|





|







29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
      */
      osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
        if( robust_ftruncate(pShmNode->h, 0) ){
          rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename);
        }
      }
      if( rc==SQLITE_OK ){
        rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
      }
      if( rc ) goto shm_open_err;
    }
  }

  /* Make the new connection a child of the unixShmNode */
  p->pShmNode = pShmNode;
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
      if( pX==p ) continue;
      assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
      allMask |= pX->sharedMask;
    }

    /* Unlock the system-level locks */
    if( (mask & allMask)==0 ){
      rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n);
    }else{
      rc = SQLITE_OK;
    }

    /* Undo the local locks */
    if( rc==SQLITE_OK ){
      p->exclMask &= ~mask;







|







29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
      if( pX==p ) continue;
      assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 );
      allMask |= pX->sharedMask;
    }

    /* Unlock the system-level locks */
    if( (mask & allMask)==0 ){
      rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
    }else{
      rc = SQLITE_OK;
    }

    /* Undo the local locks */
    if( rc==SQLITE_OK ){
      p->exclMask &= ~mask;
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
      }
      allShared |= pX->sharedMask;
    }

    /* Get shared locks at the system level, if necessary */
    if( rc==SQLITE_OK ){
      if( (allShared & mask)==0 ){
        rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n);
      }else{
        rc = SQLITE_OK;
      }
    }

    /* Get the local shared locks */
    if( rc==SQLITE_OK ){







|







29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
      }
      allShared |= pX->sharedMask;
    }

    /* Get shared locks at the system level, if necessary */
    if( rc==SQLITE_OK ){
      if( (allShared & mask)==0 ){
        rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
      }else{
        rc = SQLITE_OK;
      }
    }

    /* Get the local shared locks */
    if( rc==SQLITE_OK ){
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
      }
    }
  
    /* Get the exclusive locks at the system level.  Then if successful
    ** also mark the local connection as being locked.
    */
    if( rc==SQLITE_OK ){
      rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n);
      if( rc==SQLITE_OK ){
        assert( (p->sharedMask & mask)==0 );
        p->exclMask |= mask;
      }
    }
  }
  sqlite3_mutex_leave(pShmNode->mutex);
  OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
           p->id, getpid(), p->sharedMask, p->exclMask));
  return rc;
}

/*
** Implement a memory barrier or memory fence on shared memory.  
**
** All loads and stores begun before the barrier must complete before







|








|







29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
      }
    }
  
    /* Get the exclusive locks at the system level.  Then if successful
    ** also mark the local connection as being locked.
    */
    if( rc==SQLITE_OK ){
      rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
      if( rc==SQLITE_OK ){
        assert( (p->sharedMask & mask)==0 );
        p->exclMask |= mask;
      }
    }
  }
  sqlite3_mutex_leave(pShmNode->mutex);
  OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
           p->id, osGetpid(0), p->sharedMask, p->exclMask));
  return rc;
}

/*
** Implement a memory barrier or memory fence on shared memory.  
**
** All loads and stores begun before the barrier must complete before
29831
29832
29833
29834
29835
29836
29837
29838


29839
29840
29841
29842
29843
29844
29845

  /* If pShmNode->nRef has reached 0, then close the underlying
  ** shared-memory file, too */
  unixEnterMutex();
  assert( pShmNode->nRef>0 );
  pShmNode->nRef--;
  if( pShmNode->nRef==0 ){
    if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename);


    unixShmPurge(pDbFd);
  }
  unixLeaveMutex();

  return SQLITE_OK;
}








|
>
>







30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074

  /* If pShmNode->nRef has reached 0, then close the underlying
  ** shared-memory file, too */
  unixEnterMutex();
  assert( pShmNode->nRef>0 );
  pShmNode->nRef--;
  if( pShmNode->nRef==0 ){
    if( deleteFlag && pShmNode->h>=0 ){
      osUnlink(pShmNode->zFilename);
    }
    unixShmPurge(pDbFd);
  }
  unixLeaveMutex();

  return SQLITE_OK;
}

30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
**
**   *  A constant sqlite3_io_methods object call METHOD that has locking
**      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
**
**   *  An I/O method finder function called FINDER that returns a pointer
**      to the METHOD object in the previous bullet.
*/
#define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK, SHMMAP) \
static const sqlite3_io_methods METHOD = {                                   \
   VERSION,                    /* iVersion */                                \
   CLOSE,                      /* xClose */                                  \
   unixRead,                   /* xRead */                                   \
   unixWrite,                  /* xWrite */                                  \
   unixTruncate,               /* xTruncate */                               \
   unixSync,                   /* xSync */                                   \







|







30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
**
**   *  A constant sqlite3_io_methods object call METHOD that has locking
**      methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
**
**   *  An I/O method finder function called FINDER that returns a pointer
**      to the METHOD object in the previous bullet.
*/
#define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP)     \
static const sqlite3_io_methods METHOD = {                                   \
   VERSION,                    /* iVersion */                                \
   CLOSE,                      /* xClose */                                  \
   unixRead,                   /* xRead */                                   \
   unixWrite,                  /* xWrite */                                  \
   unixTruncate,               /* xTruncate */                               \
   unixSync,                   /* xSync */                                   \
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
  dotlockClose,             /* xClose method */
  dotlockLock,              /* xLock method */
  dotlockUnlock,            /* xUnlock method */
  dotlockCheckReservedLock, /* xCheckReservedLock method */
  0                         /* xShmMap method */
)

#if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS
IOMETHODS(
  flockIoFinder,            /* Finder function name */
  flockIoMethods,           /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  flockClose,               /* xClose method */
  flockLock,                /* xLock method */
  flockUnlock,              /* xUnlock method */
  flockCheckReservedLock,   /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

#if OS_VXWORKS
IOMETHODS(
  semIoFinder,              /* Finder function name */
  semIoMethods,             /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  semClose,                 /* xClose method */
  semLock,                  /* xLock method */
  semUnlock,                /* xUnlock method */
  semCheckReservedLock,     /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  afpIoFinder,              /* Finder function name */







|

















|
|
|
|







30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
  dotlockClose,             /* xClose method */
  dotlockLock,              /* xLock method */
  dotlockUnlock,            /* xUnlock method */
  dotlockCheckReservedLock, /* xCheckReservedLock method */
  0                         /* xShmMap method */
)

#if SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  flockIoFinder,            /* Finder function name */
  flockIoMethods,           /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  flockClose,               /* xClose method */
  flockLock,                /* xLock method */
  flockUnlock,              /* xUnlock method */
  flockCheckReservedLock,   /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

#if OS_VXWORKS
IOMETHODS(
  semIoFinder,              /* Finder function name */
  semIoMethods,             /* sqlite3_io_methods object name */
  1,                        /* shared memory is disabled */
  semXClose,                /* xClose method */
  semXLock,                 /* xLock method */
  semXUnlock,               /* xUnlock method */
  semXCheckReservedLock,    /* xCheckReservedLock method */
  0                         /* xShmMap method */
)
#endif

#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
  afpIoFinder,              /* Finder function name */
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
  }
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */

#if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE
/* 
** This "finder" function attempts to determine the best locking strategy 
** for the database file "filePath".  It then returns the sqlite3_io_methods
** object that implements that strategy.
**
** This is for VXWorks only.
*/
static const sqlite3_io_methods *autolockIoFinderImpl(
  const char *filePath,    /* name of the database file */
  unixFile *pNew           /* the open file object */
){
  struct flock lockInfo;

  if( !filePath ){
    /* If filePath==NULL that means we are dealing with a transient file







|
|
|
|
|
<
<

|







30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558


30559
30560
30561
30562
30563
30564
30565
30566
30567
  }
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */

#if OS_VXWORKS
/*
** This "finder" function for VxWorks checks to see if posix advisory
** locking works.  If it does, then that is what is used.  If it does not
** work, then fallback to named semaphore locking.


*/
static const sqlite3_io_methods *vxworksIoFinderImpl(
  const char *filePath,    /* name of the database file */
  unixFile *pNew           /* the open file object */
){
  struct flock lockInfo;

  if( !filePath ){
    /* If filePath==NULL that means we are dealing with a transient file
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
  if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
    return &posixIoMethods;
  }else{
    return &semIoMethods;
  }
}
static const sqlite3_io_methods 
  *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;

#endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */

/*
** An abstract type for a pointer to an IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);









|

|







30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
  if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
    return &posixIoMethods;
  }else{
    return &semIoMethods;
  }
}
static const sqlite3_io_methods 
  *(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;

#endif /* OS_VXWORKS */

/*
** An abstract type for a pointer to an IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);


30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
        pNew->pInode->aSemName[0] = '\0';
      }
    }
    unixLeaveMutex();
  }
#endif
  
  pNew->lastErrno = 0;
#if OS_VXWORKS
  if( rc!=SQLITE_OK ){
    if( h>=0 ) robust_close(pNew, h, __LINE__);
    h = -1;
    osUnlink(zFilename);
    pNew->ctrlFlags |= UNIXFILE_DELETE;
  }







|







30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
        pNew->pInode->aSemName[0] = '\0';
      }
    }
    unixLeaveMutex();
  }
#endif
  
  storeLastErrno(pNew, 0);
#if OS_VXWORKS
  if( rc!=SQLITE_OK ){
    if( h>=0 ) robust_close(pNew, h, __LINE__);
    h = -1;
    osUnlink(zFilename);
    pNew->ctrlFlags |= UNIXFILE_DELETE;
  }
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
  );

  /* Detect a pid change and reset the PRNG.  There is a race condition
  ** here such that two or more threads all trying to open databases at
  ** the same instant might all reset the PRNG.  But multiple resets
  ** are harmless.
  */
  if( randomnessPid!=getpid() ){
    randomnessPid = getpid();
    sqlite3_randomness(0,0);
  }

  memset(p, 0, sizeof(unixFile));

  if( eType==SQLITE_OPEN_MAIN_DB ){
    UnixUnusedFd *pUnused;







|
|







31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
  );

  /* Detect a pid change and reset the PRNG.  There is a race condition
  ** here such that two or more threads all trying to open databases at
  ** the same instant might all reset the PRNG.  But multiple resets
  ** are harmless.
  */
  if( randomnessPid!=osGetpid(0) ){
    randomnessPid = osGetpid(0);
    sqlite3_randomness(0,0);
  }

  memset(p, 0, sizeof(unixFile));

  if( eType==SQLITE_OPEN_MAIN_DB ){
    UnixUnusedFd *pUnused;
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997



30998
30999
31000
31001
31002
31003
31004
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  if( fstatfs(fd, &fsInfo) == -1 ){
    ((unixFile*)pFile)->lastErrno = errno;
    robust_close(p, fd, __LINE__);
    return SQLITE_IOERR_ACCESS;
  }
  if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
    ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
  }



#endif

  /* Set up appropriate ctrlFlags */
  if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
  if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
  if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
  if( syncDir )                 ctrlFlags |= UNIXFILE_DIRSYNC;







|






>
>
>







31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
#endif

  noLock = eType!=SQLITE_OPEN_MAIN_DB;

  
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
  if( fstatfs(fd, &fsInfo) == -1 ){
    storeLastErrno(p, errno);
    robust_close(p, fd, __LINE__);
    return SQLITE_IOERR_ACCESS;
  }
  if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
    ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
  }
  if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
    ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
  }
#endif

  /* Set up appropriate ctrlFlags */
  if( isDelete )                ctrlFlags |= UNIXFILE_DELETE;
  if( isReadonly )              ctrlFlags |= UNIXFILE_RDONLY;
  if( noLock )                  ctrlFlags |= UNIXFILE_NOLOCK;
  if( syncDir )                 ctrlFlags |= UNIXFILE_DIRSYNC;
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
    int useProxy = 0;

    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
    ** never use proxy, NULL means use proxy for non-local files only.  */
    if( envforce!=NULL ){
      useProxy = atoi(envforce)>0;
    }else{
      if( statfs(zPath, &fsInfo) == -1 ){
        /* In theory, the close(fd) call is sub-optimal. If the file opened
        ** with fd is a database file, and there are other connections open
        ** on that file that are currently holding advisory locks on it,
        ** then the call to close() will cancel those locks. In practice,
        ** we're assuming that statfs() doesn't fail very often. At least
        ** not while other file descriptors opened by the same process on
        ** the same file are working.  */
        p->lastErrno = errno;
        robust_close(p, fd, __LINE__);
        rc = SQLITE_IOERR_ACCESS;
        goto open_finished;
      }
      useProxy = !(fsInfo.f_flags&MNT_LOCAL);
    }
    if( useProxy ){
      rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
      if( rc==SQLITE_OK ){
        rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
        if( rc!=SQLITE_OK ){







<
<
<
<
<
<
<
<
<
<
<
<
<







31243
31244
31245
31246
31247
31248
31249













31250
31251
31252
31253
31254
31255
31256
    int useProxy = 0;

    /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means 
    ** never use proxy, NULL means use proxy for non-local files only.  */
    if( envforce!=NULL ){
      useProxy = atoi(envforce)>0;
    }else{













      useProxy = !(fsInfo.f_flags&MNT_LOCAL);
    }
    if( useProxy ){
      rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
      if( rc==SQLITE_OK ){
        rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
        if( rc!=SQLITE_OK ){
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
  ** in the random seed.
  **
  ** When testing, initializing zBuf[] to zero is all we do.  That means
  ** that we always use the same random number sequence.  This makes the
  ** tests repeatable.
  */
  memset(zBuf, 0, nBuf);
  randomnessPid = getpid();  
#if !defined(SQLITE_TEST)
  {
    int fd, got;
    fd = robust_open("/dev/urandom", O_RDONLY, 0);
    if( fd<0 ){
      time_t t;
      time(&t);







|







31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
  ** in the random seed.
  **
  ** When testing, initializing zBuf[] to zero is all we do.  That means
  ** that we always use the same random number sequence.  This makes the
  ** tests repeatable.
  */
  memset(zBuf, 0, nBuf);
  randomnessPid = osGetpid(0);  
#if !defined(SQLITE_TEST)
  {
    int fd, got;
    fd = robust_open("/dev/urandom", O_RDONLY, 0);
    if( fd<0 ){
      time_t t;
      time(&t);
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460

31461
31462
31463
31464
31465
31466
31467
**
**
** Using proxy locks
** -----------------
**
** C APIs
**
**  sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE,
**                       <proxy_path> | ":auto:");
**  sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>);

**
**
** SQL pragmas
**
**  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
**  PRAGMA [database.]lock_proxy_file
**







|

|
>







31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
**
**
** Using proxy locks
** -----------------
**
** C APIs
**
**  sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
**                       <proxy_path> | ":auto:");
**  sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
**                       &<proxy_path>);
**
**
** SQL pragmas
**
**  PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
**  PRAGMA [database.]lock_proxy_file
**
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573

31574
31575
31576
31577
31578
31579
31580
**       lock proxy files, only used when LOCKPROXYDIR is not set.
**    
**    
** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
** force proxy locking to be used for every database file opened, and 0
** will force automatic proxy locking to be disabled for all database
** files (explicitly calling the SQLITE_SET_LOCKPROXYFILE pragma or
** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
*/

/*
** Proxy locking is only available on MacOSX 
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE

/*
** The proxyLockingContext has the path and file structures for the remote 
** and local proxy files in it
*/
typedef struct proxyLockingContext proxyLockingContext;
struct proxyLockingContext {
  unixFile *conchFile;         /* Open conch file */
  char *conchFilePath;         /* Name of the conch file */
  unixFile *lockProxy;         /* Open proxy lock file */
  char *lockProxyPath;         /* Name of the proxy lock file */
  char *dbPath;                /* Name of the open file */
  int conchHeld;               /* 1 if the conch is held, -1 if lockless */

  void *oldLockingContext;     /* Original lockingcontext to restore on close */
  sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
};

/* 
** The proxy lock file path for the database at dbPath is written into lPath, 
** which must point to valid, writable memory large enough for a maxLen length







|




















>







31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
**       lock proxy files, only used when LOCKPROXYDIR is not set.
**    
**    
** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
** force proxy locking to be used for every database file opened, and 0
** will force automatic proxy locking to be disabled for all database
** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
*/

/*
** Proxy locking is only available on MacOSX 
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE

/*
** The proxyLockingContext has the path and file structures for the remote 
** and local proxy files in it
*/
typedef struct proxyLockingContext proxyLockingContext;
struct proxyLockingContext {
  unixFile *conchFile;         /* Open conch file */
  char *conchFilePath;         /* Name of the conch file */
  unixFile *lockProxy;         /* Open proxy lock file */
  char *lockProxyPath;         /* Name of the proxy lock file */
  char *dbPath;                /* Name of the open file */
  int conchHeld;               /* 1 if the conch is held, -1 if lockless */
  int nFails;                  /* Number of conch taking failures */
  void *oldLockingContext;     /* Original lockingcontext to restore on close */
  sqlite3_io_methods const *pOldMethod;     /* Original I/O methods for close */
};

/* 
** The proxy lock file path for the database at dbPath is written into lPath, 
** which must point to valid, writable memory large enough for a maxLen length
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
#ifdef LOCKPROXYDIR
  len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
#else
# ifdef _CS_DARWIN_USER_TEMP_DIR
  {
    if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
      OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
               lPath, errno, getpid()));
      return SQLITE_IOERR_LOCK;
    }
    len = strlcat(lPath, "sqliteplocks", maxLen);    
  }
# else
  len = strlcpy(lPath, "/tmp/", maxLen);
# endif







|







31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
#ifdef LOCKPROXYDIR
  len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
#else
# ifdef _CS_DARWIN_USER_TEMP_DIR
  {
    if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
      OSTRACE(("GETLOCKPATH  failed %s errno=%d pid=%d\n",
               lPath, errno, osGetpid(0)));
      return SQLITE_IOERR_LOCK;
    }
    len = strlcat(lPath, "sqliteplocks", maxLen);    
  }
# else
  len = strlcpy(lPath, "/tmp/", maxLen);
# endif
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
  dbLen = (int)strlen(dbPath);
  for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
    char c = dbPath[i];
    lPath[i+len] = (c=='/')?'_':c;
  }
  lPath[i+len]='\0';
  strlcat(lPath, ":auto:", maxLen);
  OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, getpid()));
  return SQLITE_OK;
}

/* 
 ** Creates the lock file and any missing directories in lockPath
 */
static int proxyCreateLockPath(const char *lockPath){







|







31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
  dbLen = (int)strlen(dbPath);
  for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
    char c = dbPath[i];
    lPath[i+len] = (c=='/')?'_':c;
  }
  lPath[i+len]='\0';
  strlcat(lPath, ":auto:", maxLen);
  OSTRACE(("GETLOCKPATH  proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
  return SQLITE_OK;
}

/* 
 ** Creates the lock file and any missing directories in lockPath
 */
static int proxyCreateLockPath(const char *lockPath){
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
         || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
        buf[i]='\0';
        if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
          int err=errno;
          if( err!=EEXIST ) {
            OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
                     "'%s' proxy lock path=%s pid=%d\n",
                     buf, strerror(err), lockPath, getpid()));
            return err;
          }
        }
      }
      start=i+1;
    }
    buf[i] = lockPath[i];
  }
  OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, getpid()));
  return 0;
}

/*
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**







|








|







31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
         || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
        buf[i]='\0';
        if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
          int err=errno;
          if( err!=EEXIST ) {
            OSTRACE(("CREATELOCKPATH  FAILED creating %s, "
                     "'%s' proxy lock path=%s pid=%d\n",
                     buf, strerror(err), lockPath, osGetpid(0)));
            return err;
          }
        }
      }
      start=i+1;
    }
    buf[i] = lockPath[i];
  }
  OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, osGetpid(0)));
  return 0;
}

/*
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772

/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN 
** bytes of writable memory.
*/
static int proxyGetHostID(unsigned char *pHostID, int *pError){
  assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
  memset(pHostID, 0, PROXY_HOSTIDLEN);
#if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\
               && __MAC_OS_X_VERSION_MIN_REQUIRED<1050
  {
    static const struct timespec timeout = {1, 0}; /* 1 sec timeout */
    if( gethostuuid(pHostID, &timeout) ){
      int err = errno;
      if( pError ){
        *pError = err;
      }
      return SQLITE_IOERR;
    }







|
|

|







31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991

/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN 
** bytes of writable memory.
*/
static int proxyGetHostID(unsigned char *pHostID, int *pError){
  assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
  memset(pHostID, 0, PROXY_HOSTIDLEN);
# if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
                            (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
  {
    struct timespec timeout = {1, 0}; /* 1 sec timeout */
    if( gethostuuid(pHostID, &timeout) ){
      int err = errno;
      if( pError ){
        *pError = err;
      }
      return SQLITE_IOERR;
    }
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
       * 1st try: get the mod time of the conch, wait 0.5s and try again. 
       * 2nd try: fail if the mod time changed or host id is different, wait 
       *           10 sec and try again
       * 3rd try: break the lock unless the mod time has changed.
       */
      struct stat buf;
      if( osFstat(conchFile->h, &buf) ){
        pFile->lastErrno = errno;
        return SQLITE_IOERR_LOCK;
      }
      
      if( nTries==1 ){
        conchModTime = buf.st_mtimespec;
        usleep(500000); /* wait 0.5 sec and try the lock again*/
        continue;  
      }

      assert( nTries>1 );
      if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || 
         conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
        return SQLITE_BUSY;
      }
      
      if( nTries==2 ){  
        char tBuf[PROXY_MAXCONCHLEN];
        int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
        if( len<0 ){
          pFile->lastErrno = errno;
          return SQLITE_IOERR_LOCK;
        }
        if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
          /* don't break the lock if the host id doesn't match */
          if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
            return SQLITE_BUSY;
          }
        }else{
          /* don't break the lock on short read or a version mismatch */
          return SQLITE_BUSY;
        }
        usleep(10000000); /* wait 10 sec and try the lock again */
        continue; 
      }
      
      assert( nTries==3 );
      if( 0==proxyBreakConchLock(pFile, myHostID) ){
        rc = SQLITE_OK;
        if( lockType==EXCLUSIVE_LOCK ){
          rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);          
        }
        if( !rc ){
          rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
        }
      }
    }
  } while( rc==SQLITE_BUSY && nTries<3 );







|



















|



















|







32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
       * 1st try: get the mod time of the conch, wait 0.5s and try again. 
       * 2nd try: fail if the mod time changed or host id is different, wait 
       *           10 sec and try again
       * 3rd try: break the lock unless the mod time has changed.
       */
      struct stat buf;
      if( osFstat(conchFile->h, &buf) ){
        storeLastErrno(pFile, errno);
        return SQLITE_IOERR_LOCK;
      }
      
      if( nTries==1 ){
        conchModTime = buf.st_mtimespec;
        usleep(500000); /* wait 0.5 sec and try the lock again*/
        continue;  
      }

      assert( nTries>1 );
      if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || 
         conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
        return SQLITE_BUSY;
      }
      
      if( nTries==2 ){  
        char tBuf[PROXY_MAXCONCHLEN];
        int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
        if( len<0 ){
          storeLastErrno(pFile, errno);
          return SQLITE_IOERR_LOCK;
        }
        if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
          /* don't break the lock if the host id doesn't match */
          if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
            return SQLITE_BUSY;
          }
        }else{
          /* don't break the lock on short read or a version mismatch */
          return SQLITE_BUSY;
        }
        usleep(10000000); /* wait 10 sec and try the lock again */
        continue; 
      }
      
      assert( nTries==3 );
      if( 0==proxyBreakConchLock(pFile, myHostID) ){
        rc = SQLITE_OK;
        if( lockType==EXCLUSIVE_LOCK ){
          rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
        }
        if( !rc ){
          rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
        }
      }
    }
  } while( rc==SQLITE_BUSY && nTries<3 );
31951
31952
31953
31954
31955
31956
31957
31958

31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
    int createConch = 0;
    int hostIdMatch = 0;
    int readLen = 0;
    int tryOldLockPath = 0;
    int forceNewLockPath = 0;
    
    OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
             (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid()));


    rc = proxyGetHostID(myHostID, &pError);
    if( (rc&0xff)==SQLITE_IOERR ){
      pFile->lastErrno = pError;
      goto end_takeconch;
    }
    rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
    if( rc!=SQLITE_OK ){
      goto end_takeconch;
    }
    /* read the existing conch file */
    readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
    if( readLen<0 ){
      /* I/O error: lastErrno set by seekAndRead */
      pFile->lastErrno = conchFile->lastErrno;
      rc = SQLITE_IOERR_READ;
      goto end_takeconch;
    }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || 
             readBuf[0]!=(char)PROXY_CONCHVERSION ){
      /* a short read or version format mismatch means we need to create a new 
      ** conch file. 
      */







|
>



|










|







32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
    int createConch = 0;
    int hostIdMatch = 0;
    int readLen = 0;
    int tryOldLockPath = 0;
    int forceNewLockPath = 0;
    
    OSTRACE(("TAKECONCH  %d for %s pid=%d\n", conchFile->h,
             (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
             osGetpid(0)));

    rc = proxyGetHostID(myHostID, &pError);
    if( (rc&0xff)==SQLITE_IOERR ){
      storeLastErrno(pFile, pError);
      goto end_takeconch;
    }
    rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
    if( rc!=SQLITE_OK ){
      goto end_takeconch;
    }
    /* read the existing conch file */
    readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
    if( readLen<0 ){
      /* I/O error: lastErrno set by seekAndRead */
      storeLastErrno(pFile, conchFile->lastErrno);
      rc = SQLITE_IOERR_READ;
      goto end_takeconch;
    }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || 
             readBuf[0]!=(char)PROXY_CONCHVERSION ){
      /* a short read or version format mismatch means we need to create a new 
      ** conch file. 
      */
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055

32056
32057
32058
32059
32060
32061
32062
          /* We are trying for an exclusive lock but another thread in this
           ** same process is still holding a shared lock. */
          rc = SQLITE_BUSY;
        } else {          
          rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
        }
      }else{
        rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK);
      }
      if( rc==SQLITE_OK ){
        char writeBuffer[PROXY_MAXCONCHLEN];
        int writeSize = 0;
        
        writeBuffer[0] = (char)PROXY_CONCHVERSION;
        memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
        if( pCtx->lockProxyPath!=NULL ){
          strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN);

        }else{
          strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
        }
        writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
        robust_ftruncate(conchFile->h, writeSize);
        rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
        fsync(conchFile->h);







|








|
>







32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
          /* We are trying for an exclusive lock but another thread in this
           ** same process is still holding a shared lock. */
          rc = SQLITE_BUSY;
        } else {          
          rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
        }
      }else{
        rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
      }
      if( rc==SQLITE_OK ){
        char writeBuffer[PROXY_MAXCONCHLEN];
        int writeSize = 0;
        
        writeBuffer[0] = (char)PROXY_CONCHVERSION;
        memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
        if( pCtx->lockProxyPath!=NULL ){
          strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
                  MAXPATHLEN);
        }else{
          strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
        }
        writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
        robust_ftruncate(conchFile->h, writeSize);
        rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
        fsync(conchFile->h);
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
  proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
  unixFile *conchFile;        /* Name of the conch file */

  pCtx = (proxyLockingContext *)pFile->lockingContext;
  conchFile = pCtx->conchFile;
  OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
           (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), 
           getpid()));
  if( pCtx->conchHeld>0 ){
    rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
  }
  pCtx->conchHeld = 0;
  OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
           (rc==SQLITE_OK ? "ok" : "failed")));
  return rc;







|







32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
  proxyLockingContext *pCtx;  /* The locking context for the proxy lock */
  unixFile *conchFile;        /* Name of the conch file */

  pCtx = (proxyLockingContext *)pFile->lockingContext;
  conchFile = pCtx->conchFile;
  OSTRACE(("RELEASECONCH  %d for %s pid=%d\n", conchFile->h,
           (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), 
           osGetpid(0)));
  if( pCtx->conchHeld>0 ){
    rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
  }
  pCtx->conchHeld = 0;
  OSTRACE(("RELEASECONCH  %d %s\n", conchFile->h,
           (rc==SQLITE_OK ? "ok" : "failed")));
  return rc;
32260
32261
32262
32263
32264
32265
32266
32267

32268
32269
32270
32271
32272
32273
32274
*/
static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
#if defined(__APPLE__)
  if( pFile->pMethod == &afpIoMethods ){
    /* afp style keeps a reference to the db path in the filePath field 
    ** of the struct */
    assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
    strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPATHLEN);

  } else
#endif
  if( pFile->pMethod == &dotlockIoMethods ){
    /* dot lock style uses the locking context to store the dot lock
    ** file path */
    int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
    memcpy(dbPath, (char *)pFile->lockingContext, len + 1);







|
>







32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
*/
static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
#if defined(__APPLE__)
  if( pFile->pMethod == &afpIoMethods ){
    /* afp style keeps a reference to the db path in the filePath field 
    ** of the struct */
    assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
    strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
            MAXPATHLEN);
  } else
#endif
  if( pFile->pMethod == &dotlockIoMethods ){
    /* dot lock style uses the locking context to store the dot lock
    ** file path */
    int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
    memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
  if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
    lockPath=NULL;
  }else{
    lockPath=(char *)path;
  }
  
  OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
           (lockPath ? lockPath : ":auto:"), getpid()));

  pCtx = sqlite3_malloc( sizeof(*pCtx) );
  if( pCtx==0 ){
    return SQLITE_NOMEM;
  }
  memset(pCtx, 0, sizeof(*pCtx));








|







32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
  if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
    lockPath=NULL;
  }else{
    lockPath=(char *)path;
  }
  
  OSTRACE(("TRANSPROXY  %d for %s pid=%d\n", pFile->h,
           (lockPath ? lockPath : ":auto:"), osGetpid(0)));

  pCtx = sqlite3_malloc( sizeof(*pCtx) );
  if( pCtx==0 ){
    return SQLITE_NOMEM;
  }
  memset(pCtx, 0, sizeof(*pCtx));

32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401



32402
32403
32404
32405
32406
32407
32408

/*
** This routine handles sqlite3_file_control() calls that are specific
** to proxy locking.
*/
static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
  switch( op ){
    case SQLITE_GET_LOCKPROXYFILE: {
      unixFile *pFile = (unixFile*)id;
      if( pFile->pMethod == &proxyIoMethods ){
        proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
        proxyTakeConch(pFile);
        if( pCtx->lockProxyPath ){
          *(const char **)pArg = pCtx->lockProxyPath;
        }else{
          *(const char **)pArg = ":auto: (not held)";
        }
      } else {
        *(const char **)pArg = NULL;
      }
      return SQLITE_OK;
    }
    case SQLITE_SET_LOCKPROXYFILE: {
      unixFile *pFile = (unixFile*)id;
      int rc = SQLITE_OK;
      int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
      if( pArg==NULL || (const char *)pArg==0 ){
        if( isProxyStyle ){
          /* turn off proxy locking - not supported */



          rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
        }else{
          /* turn off proxy locking - already off - NOOP */
          rc = SQLITE_OK;
        }
      }else{
        const char *proxyPath = (const char *)pArg;







|














|





|
>
>
>







32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633

/*
** This routine handles sqlite3_file_control() calls that are specific
** to proxy locking.
*/
static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
  switch( op ){
    case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
      unixFile *pFile = (unixFile*)id;
      if( pFile->pMethod == &proxyIoMethods ){
        proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
        proxyTakeConch(pFile);
        if( pCtx->lockProxyPath ){
          *(const char **)pArg = pCtx->lockProxyPath;
        }else{
          *(const char **)pArg = ":auto: (not held)";
        }
      } else {
        *(const char **)pArg = NULL;
      }
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
      unixFile *pFile = (unixFile*)id;
      int rc = SQLITE_OK;
      int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
      if( pArg==NULL || (const char *)pArg==0 ){
        if( isProxyStyle ){
          /* turn off proxy locking - not supported.  If support is added for
          ** switching proxy locking mode off then it will need to fail if
          ** the journal mode is WAL mode. 
          */
          rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
        }else{
          /* turn off proxy locking - already off - NOOP */
          rc = SQLITE_OK;
        }
      }else{
        const char *proxyPath = (const char *)pArg;
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
** files.
**
** This routine is called once during SQLite initialization and by a
** single thread.  The memory allocation and mutex subsystems have not
** necessarily been initialized when this routine is called, and so they
** should not be used.
*/
SQLITE_API int sqlite3_os_init(void){ 
  /* 
  ** The following macro defines an initializer for an sqlite3_vfs object.
  ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
  ** to the "finder" function.  (pAppData is a pointer to a pointer because
  ** silly C90 rules prohibit a void* from being cast to a function pointer
  ** and so we have to go through the intermediate pointer to avoid problems
  ** when compiling with -pedantic-errors on GCC.)







|







32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
** files.
**
** This routine is called once during SQLite initialization and by a
** single thread.  The memory allocation and mutex subsystems have not
** necessarily been initialized when this routine is called, and so they
** should not be used.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_os_init(void){ 
  /* 
  ** The following macro defines an initializer for an sqlite3_vfs object.
  ** The name of the VFS is NAME.  The pAppData is a pointer to a pointer
  ** to the "finder" function.  (pAppData is a pointer to a pointer because
  ** silly C90 rules prohibit a void* from being cast to a function pointer
  ** and so we have to go through the intermediate pointer to avoid problems
  ** when compiling with -pedantic-errors on GCC.)
32639
32640
32641
32642
32643
32644
32645
32646
32647


32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658

32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
  ** All default VFSes for unix are contained in the following array.
  **
  ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
  ** by the SQLite core when the VFS is registered.  So the following
  ** array cannot be const.
  */
  static sqlite3_vfs aVfs[] = {
#if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__))
    UNIXVFS("unix",          autolockIoFinder ),


#else
    UNIXVFS("unix",          posixIoFinder ),
#endif
    UNIXVFS("unix-none",     nolockIoFinder ),
    UNIXVFS("unix-dotfile",  dotlockIoFinder ),
    UNIXVFS("unix-excl",     posixIoFinder ),
#if OS_VXWORKS
    UNIXVFS("unix-namedsem", semIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
    UNIXVFS("unix-posix",    posixIoFinder ),

#if !OS_VXWORKS
    UNIXVFS("unix-flock",    flockIoFinder ),
#endif
#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    UNIXVFS("unix-afp",      afpIoFinder ),
    UNIXVFS("unix-nfs",      nfsIoFinder ),
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };







|

>
>









|

>
|

<







32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888

32889
32890
32891
32892
32893
32894
32895
  ** All default VFSes for unix are contained in the following array.
  **
  ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
  ** by the SQLite core when the VFS is registered.  So the following
  ** array cannot be const.
  */
  static sqlite3_vfs aVfs[] = {
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    UNIXVFS("unix",          autolockIoFinder ),
#elif OS_VXWORKS
    UNIXVFS("unix",          vxworksIoFinder ),
#else
    UNIXVFS("unix",          posixIoFinder ),
#endif
    UNIXVFS("unix-none",     nolockIoFinder ),
    UNIXVFS("unix-dotfile",  dotlockIoFinder ),
    UNIXVFS("unix-excl",     posixIoFinder ),
#if OS_VXWORKS
    UNIXVFS("unix-namedsem", semIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
    UNIXVFS("unix-posix",    posixIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
    UNIXVFS("unix-flock",    flockIoFinder ),

#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
    UNIXVFS("unix-afp",      afpIoFinder ),
    UNIXVFS("unix-nfs",      nfsIoFinder ),
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
/*
** Shutdown the operating system interface.
**
** Some operating systems might need to do some cleanup in this routine,
** to release dynamically allocated objects.  But not on unix.
** This routine is a no-op for unix.
*/
SQLITE_API int sqlite3_os_end(void){ 
  return SQLITE_OK; 
}
 
#endif /* SQLITE_OS_UNIX */

/************** End of os_unix.c *********************************************/
/************** Begin file os_win.c ******************************************/







|







32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
/*
** Shutdown the operating system interface.
**
** Some operating systems might need to do some cleanup in this routine,
** to release dynamically allocated objects.  But not on unix.
** This routine is a no-op for unix.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void){ 
  return SQLITE_OK; 
}
 
#endif /* SQLITE_OS_UNIX */

/************** End of os_unix.c *********************************************/
/************** Begin file os_win.c ******************************************/
33095
33096
33097
33098
33099
33100
33101
33102
33103


33104
33105
33106
33107
33108
33109
33110
        DWORD, DWORD, DWORD, LPCWSTR);
#endif /* defined(SQLITE_WIN32_HAS_WIDE) */

WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
#endif /* SQLITE_OS_WINRT */

/*
** This file mapping API is common to both Win32 and WinRT.
*/


WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API */

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES







|

>
>







33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
        DWORD, DWORD, DWORD, LPCWSTR);
#endif /* defined(SQLITE_WIN32_HAS_WIDE) */

WINBASEAPI LPVOID WINAPI MapViewOfFile(HANDLE, DWORD, DWORD, DWORD, SIZE_T);
#endif /* SQLITE_OS_WINRT */

/*
** These file mapping APIs are common to both Win32 and WinRT.
*/

WINBASEAPI BOOL WINAPI FlushViewOfFile(LPCVOID, SIZE_T);
WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID);
#endif /* SQLITE_WIN32_FILEMAPPING_API */

/*
** Some Microsoft compilers lack this definition.
*/
#ifndef INVALID_FILE_ATTRIBUTES
33964
33965
33966
33967
33968
33969
33970


























33971
33972
33973
33974
33975
33976
33977
#else
  { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 },

#define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \
        SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent)
#endif /* defined(InterlockedCompareExchange) */



























}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "win32" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
#else
  { "InterlockedCompareExchange", (SYSCALL)InterlockedCompareExchange, 0 },

#define osInterlockedCompareExchange ((LONG(WINAPI*)(LONG \
        SQLITE_WIN32_VOLATILE*, LONG,LONG))aSyscall[76].pCurrent)
#endif /* defined(InterlockedCompareExchange) */

#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
  { "UuidCreate",               (SYSCALL)UuidCreate,             0 },
#else
  { "UuidCreate",               (SYSCALL)0,                      0 },
#endif

#define osUuidCreate ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[77].pCurrent)

#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
  { "UuidCreateSequential",     (SYSCALL)UuidCreateSequential,   0 },
#else
  { "UuidCreateSequential",     (SYSCALL)0,                      0 },
#endif

#define osUuidCreateSequential \
        ((RPC_STATUS(RPC_ENTRY*)(UUID*))aSyscall[78].pCurrent)

#if !defined(SQLITE_NO_SYNC) && SQLITE_MAX_MMAP_SIZE>0
  { "FlushViewOfFile",          (SYSCALL)FlushViewOfFile,        0 },
#else
  { "FlushViewOfFile",          (SYSCALL)0,                      0 },
#endif

#define osFlushViewOfFile \
        ((BOOL(WINAPI*)(LPCVOID,SIZE_T))aSyscall[79].pCurrent)

}; /* End of the overrideable system calls */

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "win32" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
/*
** If a Win32 native heap has been configured, this function will attempt to
** compact it.  Upon success, SQLITE_OK will be returned.  Upon failure, one
** of SQLITE_NOMEM, SQLITE_ERROR, or SQLITE_NOTFOUND will be returned.  The
** "pnLargest" argument, if non-zero, will be used to return the size of the
** largest committed free block in the heap, in bytes.
*/
SQLITE_API int sqlite3_win32_compact_heap(LPUINT pnLargest){
  int rc = SQLITE_OK;
  UINT nLargest = 0;
  HANDLE hHeap;

  winMemAssertMagic();
  hHeap = winMemGetHeap();
  assert( hHeap!=0 );







|







34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
/*
** If a Win32 native heap has been configured, this function will attempt to
** compact it.  Upon success, SQLITE_OK will be returned.  Upon failure, one
** of SQLITE_NOMEM, SQLITE_ERROR, or SQLITE_NOTFOUND will be returned.  The
** "pnLargest" argument, if non-zero, will be used to return the size of the
** largest committed free block in the heap, in bytes.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_win32_compact_heap(LPUINT pnLargest){
  int rc = SQLITE_OK;
  UINT nLargest = 0;
  HANDLE hHeap;

  winMemAssertMagic();
  hHeap = winMemGetHeap();
  assert( hHeap!=0 );
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111

/*
** If a Win32 native heap has been configured, this function will attempt to
** destroy and recreate it.  If the Win32 native heap is not isolated and/or
** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
** be returned and no changes will be made to the Win32 native heap.
*/
SQLITE_API int sqlite3_win32_reset_heap(){
  int rc;
  MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */
  MUTEX_LOGIC( sqlite3_mutex *pMem; )    /* The memsys static mutex */
  MUTEX_LOGIC( pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); )
  MUTEX_LOGIC( pMem = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); )
  sqlite3_mutex_enter(pMaster);
  sqlite3_mutex_enter(pMem);







|







34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366

/*
** If a Win32 native heap has been configured, this function will attempt to
** destroy and recreate it.  If the Win32 native heap is not isolated and/or
** the sqlite3_memory_used() function does not return zero, SQLITE_BUSY will
** be returned and no changes will be made to the Win32 native heap.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_win32_reset_heap(){
  int rc;
  MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */
  MUTEX_LOGIC( sqlite3_mutex *pMem; )    /* The memsys static mutex */
  MUTEX_LOGIC( pMaster = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MASTER); )
  MUTEX_LOGIC( pMem = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_MEM); )
  sqlite3_mutex_enter(pMaster);
  sqlite3_mutex_enter(pMem);
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
#endif /* SQLITE_WIN32_MALLOC */

/*
** This function outputs the specified (ANSI) string to the Win32 debugger
** (if available).
*/

SQLITE_API void sqlite3_win32_write_debug(const char *zBuf, int nBuf){
  char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
  int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
  if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
  assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
#if defined(SQLITE_WIN32_HAS_ANSI)
  if( nMin>0 ){
    memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);







|







34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
#endif /* SQLITE_WIN32_MALLOC */

/*
** This function outputs the specified (ANSI) string to the Win32 debugger
** (if available).
*/

SQLITE_API void SQLITE_STDCALL sqlite3_win32_write_debug(const char *zBuf, int nBuf){
  char zDbgBuf[SQLITE_WIN32_DBG_BUF_SIZE];
  int nMin = MIN(nBuf, (SQLITE_WIN32_DBG_BUF_SIZE - 1)); /* may be negative. */
  if( nMin<-1 ) nMin = -1; /* all negative values become -1. */
  assert( nMin==-1 || nMin==0 || nMin<SQLITE_WIN32_DBG_BUF_SIZE );
#if defined(SQLITE_WIN32_HAS_ANSI)
  if( nMin>0 ){
    memset(zDbgBuf, 0, SQLITE_WIN32_DBG_BUF_SIZE);
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
** The following routine suspends the current thread for at least ms
** milliseconds.  This is equivalent to the Win32 Sleep() interface.
*/
#if SQLITE_OS_WINRT
static HANDLE sleepObj = NULL;
#endif

SQLITE_API void sqlite3_win32_sleep(DWORD milliseconds){
#if SQLITE_OS_WINRT
  if ( sleepObj==NULL ){
    sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET,
                                SYNCHRONIZE);
  }
  assert( sleepObj!=NULL );
  osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);







|







34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
** The following routine suspends the current thread for at least ms
** milliseconds.  This is equivalent to the Win32 Sleep() interface.
*/
#if SQLITE_OS_WINRT
static HANDLE sleepObj = NULL;
#endif

SQLITE_API void SQLITE_STDCALL sqlite3_win32_sleep(DWORD milliseconds){
#if SQLITE_OS_WINRT
  if ( sleepObj==NULL ){
    sleepObj = osCreateEventExW(NULL, NULL, CREATE_EVENT_MANUAL_RESET,
                                SYNCHRONIZE);
  }
  assert( sleepObj!=NULL );
  osWaitForSingleObjectEx(sleepObj, milliseconds, FALSE);
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
# define osIsNT()  ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
#endif

/*
** This function determines if the machine is running a version of Windows
** based on the NT kernel.
*/
SQLITE_API int sqlite3_win32_is_nt(void){
#if SQLITE_OS_WINRT
  /*
  ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
  **       kernel.
  */
  return 1;
#elif defined(SQLITE_WIN32_GETVERSIONEX) && SQLITE_WIN32_GETVERSIONEX







|







34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
# define osIsNT()  ((sqlite3_os_type==2) || sqlite3_win32_is_nt())
#endif

/*
** This function determines if the machine is running a version of Windows
** based on the NT kernel.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_win32_is_nt(void){
#if SQLITE_OS_WINRT
  /*
  ** NOTE: The WinRT sub-platform is always assumed to be based on the NT
  **       kernel.
  */
  return 1;
#elif defined(SQLITE_WIN32_GETVERSIONEX) && SQLITE_WIN32_GETVERSIONEX
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
  return zFilename;
}

/*
** Convert multibyte character string to UTF-8.  Space to hold the
** returned string is obtained from sqlite3_malloc().
*/
SQLITE_API char *sqlite3_win32_mbcs_to_utf8(const char *zFilename){
  char *zFilenameUtf8;
  LPWSTR zTmpWide;

  zTmpWide = winMbcsToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameUtf8 = winUnicodeToUtf8(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameUtf8;
}

/*
** Convert UTF-8 to multibyte character string.  Space to hold the
** returned string is obtained from sqlite3_malloc().
*/
SQLITE_API char *sqlite3_win32_utf8_to_mbcs(const char *zFilename){
  char *zFilenameMbcs;
  LPWSTR zTmpWide;

  zTmpWide = winUtf8ToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameMbcs = winUnicodeToMbcs(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameMbcs;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
SQLITE_API int sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){
  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;







|
















|



















|







34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
  return zFilename;
}

/*
** Convert multibyte character string to UTF-8.  Space to hold the
** returned string is obtained from sqlite3_malloc().
*/
SQLITE_API char *SQLITE_STDCALL sqlite3_win32_mbcs_to_utf8(const char *zFilename){
  char *zFilenameUtf8;
  LPWSTR zTmpWide;

  zTmpWide = winMbcsToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameUtf8 = winUnicodeToUtf8(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameUtf8;
}

/*
** Convert UTF-8 to multibyte character string.  Space to hold the
** returned string is obtained from sqlite3_malloc().
*/
SQLITE_API char *SQLITE_STDCALL sqlite3_win32_utf8_to_mbcs(const char *zFilename){
  char *zFilenameMbcs;
  LPWSTR zTmpWide;

  zTmpWide = winUtf8ToUnicode(zFilename);
  if( zTmpWide==0 ){
    return 0;
  }
  zFilenameMbcs = winUnicodeToMbcs(zTmpWide);
  sqlite3_free(zTmpWide);
  return zFilenameMbcs;
}

/*
** This function sets the data directory or the temporary directory based on
** the provided arguments.  The type argument must be 1 in order to set the
** data directory or 2 in order to set the temporary directory.  The zValue
** argument is the name of the directory to use.  The return value will be
** SQLITE_OK if successful.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_win32_set_directory(DWORD type, LPCWSTR zValue){
  char **ppDirectory = 0;
#ifndef SQLITE_OMIT_AUTOINIT
  int rc = sqlite3_initialize();
  if( rc ) return rc;
#endif
  if( type==SQLITE_WIN32_DATA_DIRECTORY_TYPE ){
    ppDirectory = &sqlite3_data_directory;
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
  }
  return 0;
}

/*
** Log a I/O error retry episode.
*/
static void winLogIoerr(int nRetry){
  if( nRetry ){
    sqlite3_log(SQLITE_IOERR,
      "delayed %dms for lock/sharing conflict",
      winIoerrRetryDelay*nRetry*(nRetry+1)/2
    );
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.







|

|
|
|







35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
  }
  return 0;
}

/*
** Log a I/O error retry episode.
*/
static void winLogIoerr(int nRetry, int lineno){
  if( nRetry ){
    sqlite3_log(SQLITE_NOTICE,
      "delayed %dms for lock/sharing conflict at line %d",
      winIoerrRetryDelay*nRetry*(nRetry+1)/2, lineno
    );
  }
}

#if SQLITE_OS_WINCE
/*************************************************************************
** This section contains code for WinCE only.
35331
35332
35333
35334
35335
35336
35337
35338

35339
35340
35341
35342
35343
35344
35345
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
  OSTRACE(("CLOSE file=%p\n", pFile->h));


#if SQLITE_MAX_MMAP_SIZE>0
  winUnmapfile(pFile);
#endif

  do{
    rc = osCloseHandle(pFile->h);







|
>







35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
  winFile *pFile = (winFile*)id;

  assert( id!=0 );
#ifndef SQLITE_OMIT_WAL
  assert( pFile->pShm==0 );
#endif
  assert( pFile->h!=NULL && pFile->h!=INVALID_HANDLE_VALUE );
  OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p\n",
           osGetCurrentProcessId(), pFile, pFile->h));

#if SQLITE_MAX_MMAP_SIZE>0
  winUnmapfile(pFile);
#endif

  do{
    rc = osCloseHandle(pFile->h);
35360
35361
35362
35363
35364
35365
35366

35367
35368
35369
35370
35371
35372
35373
35374
    sqlite3_free(pFile->zDeleteOnClose);
  }
#endif
  if( rc ){
    pFile->h = NULL;
  }
  OpenCounter(-1);

  OSTRACE(("CLOSE file=%p, rc=%s\n", pFile->h, rc ? "ok" : "failed"));
  return rc ? SQLITE_OK
            : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(),
                          "winClose", pFile->zPath);
}

/*
** Read data from a file into a buffer.  Return SQLITE_OK if all







>
|







35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
    sqlite3_free(pFile->zDeleteOnClose);
  }
#endif
  if( rc ){
    pFile->h = NULL;
  }
  OpenCounter(-1);
  OSTRACE(("CLOSE pid=%lu, pFile=%p, file=%p, rc=%s\n",
           osGetCurrentProcessId(), pFile, pFile->h, rc ? "ok" : "failed"));
  return rc ? SQLITE_OK
            : winLogError(SQLITE_IOERR_CLOSE, osGetLastError(),
                          "winClose", pFile->zPath);
}

/*
** Read data from a file into a buffer.  Return SQLITE_OK if all
35388
35389
35390
35391
35392
35393
35394
35395

35396
35397
35398
35399
35400
35401
35402
35403
35404

35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418

35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432

35433
35434
35435
35436
35437
35438
35439
35440

35441
35442
35443
35444

35445
35446
35447
35448
35449
35450
35451
  DWORD nRead;                    /* Number of bytes actually read from file */
  int nRetry = 0;                 /* Number of retrys */

  assert( id!=0 );
  assert( amt>0 );
  assert( offset>=0 );
  SimulateIOError(return SQLITE_IOERR_READ);
  OSTRACE(("READ file=%p, buffer=%p, amount=%d, offset=%lld, lock=%d\n",

           pFile->h, pBuf, amt, offset, pFile->locktype));

#if SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this read request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
      OSTRACE(("READ-MMAP file=%p, rc=SQLITE_OK\n", pFile->h));

      return SQLITE_OK;
    }else{
      int nCopy = (int)(pFile->mmapSize - offset);
      memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
  if( winSeekFile(pFile, offset) ){
    OSTRACE(("READ file=%p, rc=SQLITE_FULL\n", pFile->h));

    return SQLITE_FULL;
  }
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
#else
  memset(&overlapped, 0, sizeof(OVERLAPPED));
  overlapped.Offset = (LONG)(offset & 0xffffffff);
  overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
         osGetLastError()!=ERROR_HANDLE_EOF ){
#endif
    DWORD lastErrno;
    if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
    pFile->lastErrno = lastErrno;
    OSTRACE(("READ file=%p, rc=SQLITE_IOERR_READ\n", pFile->h));

    return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
                       "winRead", pFile->zPath);
  }
  winLogIoerr(nRetry);
  if( nRead<(DWORD)amt ){
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[nRead], 0, amt-nRead);
    OSTRACE(("READ file=%p, rc=SQLITE_IOERR_SHORT_READ\n", pFile->h));

    return SQLITE_IOERR_SHORT_READ;
  }

  OSTRACE(("READ file=%p, rc=SQLITE_OK\n", pFile->h));

  return SQLITE_OK;
}

/*
** Write data from a buffer into a file.  Return SQLITE_OK on success
** or some other error code on failure.
*/







|
>








|
>













|
>













|
>



|



|
>



|
>







35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
  DWORD nRead;                    /* Number of bytes actually read from file */
  int nRetry = 0;                 /* Number of retrys */

  assert( id!=0 );
  assert( amt>0 );
  assert( offset>=0 );
  SimulateIOError(return SQLITE_IOERR_READ);
  OSTRACE(("READ pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
           "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
           pFile->h, pBuf, amt, offset, pFile->locktype));

#if SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this read request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
      OSTRACE(("READ-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
               osGetCurrentProcessId(), pFile, pFile->h));
      return SQLITE_OK;
    }else{
      int nCopy = (int)(pFile->mmapSize - offset);
      memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
    }
  }
#endif

#if SQLITE_OS_WINCE || defined(SQLITE_WIN32_NO_OVERLAPPED)
  if( winSeekFile(pFile, offset) ){
    OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
             osGetCurrentProcessId(), pFile, pFile->h));
    return SQLITE_FULL;
  }
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, 0) ){
#else
  memset(&overlapped, 0, sizeof(OVERLAPPED));
  overlapped.Offset = (LONG)(offset & 0xffffffff);
  overlapped.OffsetHigh = (LONG)((offset>>32) & 0x7fffffff);
  while( !osReadFile(pFile->h, pBuf, amt, &nRead, &overlapped) &&
         osGetLastError()!=ERROR_HANDLE_EOF ){
#endif
    DWORD lastErrno;
    if( winRetryIoerr(&nRetry, &lastErrno) ) continue;
    pFile->lastErrno = lastErrno;
    OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_READ\n",
             osGetCurrentProcessId(), pFile, pFile->h));
    return winLogError(SQLITE_IOERR_READ, pFile->lastErrno,
                       "winRead", pFile->zPath);
  }
  winLogIoerr(nRetry, __LINE__);
  if( nRead<(DWORD)amt ){
    /* Unread parts of the buffer must be zero-filled */
    memset(&((char*)pBuf)[nRead], 0, amt-nRead);
    OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_SHORT_READ\n",
             osGetCurrentProcessId(), pFile, pFile->h));
    return SQLITE_IOERR_SHORT_READ;
  }

  OSTRACE(("READ pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFile, pFile->h));
  return SQLITE_OK;
}

/*
** Write data from a buffer into a file.  Return SQLITE_OK on success
** or some other error code on failure.
*/
35460
35461
35462
35463
35464
35465
35466
35467

35468
35469
35470
35471
35472
35473
35474
35475
35476

35477
35478
35479
35480
35481
35482
35483
  int nRetry = 0;                 /* Number of retries */

  assert( amt>0 );
  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_WRITE);
  SimulateDiskfullError(return SQLITE_FULL);

  OSTRACE(("WRITE file=%p, buffer=%p, amount=%d, offset=%lld, lock=%d\n",

           pFile->h, pBuf, amt, offset, pFile->locktype));

#if SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this write request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
      OSTRACE(("WRITE-MMAP file=%p, rc=SQLITE_OK\n", pFile->h));

      return SQLITE_OK;
    }else{
      int nCopy = (int)(pFile->mmapSize - offset);
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;







|
>








|
>







35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
  int nRetry = 0;                 /* Number of retries */

  assert( amt>0 );
  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_WRITE);
  SimulateDiskfullError(return SQLITE_FULL);

  OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
           "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
           pFile->h, pBuf, amt, offset, pFile->locktype));

#if SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this write request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
      OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
               osGetCurrentProcessId(), pFile, pFile->h));
      return SQLITE_OK;
    }else{
      int nCopy = (int)(pFile->mmapSize - offset);
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
      pBuf = &((u8 *)pBuf)[nCopy];
      amt -= nCopy;
      offset += nCopy;
35532
35533
35534
35535
35536
35537
35538
35539

35540
35541
35542
35543

35544
35545
35546
35547
35548
35549

35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
      rc = 1;
    }
  }

  if( rc ){
    if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
       || ( pFile->lastErrno==ERROR_DISK_FULL )){
      OSTRACE(("WRITE file=%p, rc=SQLITE_FULL\n", pFile->h));

      return winLogError(SQLITE_FULL, pFile->lastErrno,
                         "winWrite1", pFile->zPath);
    }
    OSTRACE(("WRITE file=%p, rc=SQLITE_IOERR_WRITE\n", pFile->h));

    return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
                       "winWrite2", pFile->zPath);
  }else{
    winLogIoerr(nRetry);
  }
  OSTRACE(("WRITE file=%p, rc=SQLITE_OK\n", pFile->h));

  return SQLITE_OK;
}

/*
** Truncate an open file to a specified size
*/
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
  winFile *pFile = (winFile*)id;  /* File handle object */
  int rc = SQLITE_OK;             /* Return code for this function */
  DWORD lastErrno;

  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_TRUNCATE);
  OSTRACE(("TRUNCATE file=%p, size=%lld, lock=%d\n",
           pFile->h, nByte, pFile->locktype));

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){







|
>



|
>



|

|
>













|
|







35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
      rc = 1;
    }
  }

  if( rc ){
    if(   ( pFile->lastErrno==ERROR_HANDLE_DISK_FULL )
       || ( pFile->lastErrno==ERROR_DISK_FULL )){
      OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_FULL\n",
               osGetCurrentProcessId(), pFile, pFile->h));
      return winLogError(SQLITE_FULL, pFile->lastErrno,
                         "winWrite1", pFile->zPath);
    }
    OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_WRITE\n",
             osGetCurrentProcessId(), pFile, pFile->h));
    return winLogError(SQLITE_IOERR_WRITE, pFile->lastErrno,
                       "winWrite2", pFile->zPath);
  }else{
    winLogIoerr(nRetry, __LINE__);
  }
  OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFile, pFile->h));
  return SQLITE_OK;
}

/*
** Truncate an open file to a specified size
*/
static int winTruncate(sqlite3_file *id, sqlite3_int64 nByte){
  winFile *pFile = (winFile*)id;  /* File handle object */
  int rc = SQLITE_OK;             /* Return code for this function */
  DWORD lastErrno;

  assert( pFile );
  SimulateIOError(return SQLITE_IOERR_TRUNCATE);
  OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, size=%lld, lock=%d\n",
           osGetCurrentProcessId(), pFile, pFile->h, nByte, pFile->locktype));

  /* If the user has configured a chunk-size for this file, truncate the
  ** file so that it consists of an integer number of chunks (i.e. the
  ** actual file size after the operation may be larger than the requested
  ** size).
  */
  if( pFile->szChunk>0 ){
35589
35590
35591
35592
35593
35594
35595

35596
35597
35598
35599
35600
35601
35602
35603
  ** use read() and write() to access data beyond this point from now on.
  */
  if( pFile->pMapRegion && nByte<pFile->mmapSize ){
    pFile->mmapSize = nByte;
  }
#endif


  OSTRACE(("TRUNCATE file=%p, rc=%s\n", pFile->h, sqlite3ErrName(rc)));
  return rc;
}

#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs.  This is used to test
** that syncs and fullsyncs are occuring at the right times.







>
|







35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
  ** use read() and write() to access data beyond this point from now on.
  */
  if( pFile->pMapRegion && nByte<pFile->mmapSize ){
    pFile->mmapSize = nByte;
  }
#endif

  OSTRACE(("TRUNCATE pid=%lu, pFile=%p, file=%p, rc=%s\n",
           osGetCurrentProcessId(), pFile, pFile->h, sqlite3ErrName(rc)));
  return rc;
}

#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs.  This is used to test
** that syncs and fullsyncs are occuring at the right times.
35634
35635
35636
35637
35638
35639
35640
35641

35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657

35658
35659
















35660
35661
35662
35663

35664
35665
35666
35667

35668
35669
35670
35671
35672
35673
35674
35675
35676
  );

  /* Unix cannot, but some systems may return SQLITE_FULL from here. This
  ** line is to test that doing so does not cause any problems.
  */
  SimulateDiskfullError( return SQLITE_FULL );

  OSTRACE(("SYNC file=%p, flags=%x, lock=%d\n",

           pFile->h, flags, pFile->locktype));

#ifndef SQLITE_TEST
  UNUSED_PARAMETER(flags);
#else
  if( (flags&0x0F)==SQLITE_SYNC_FULL ){
    sqlite3_fullsync_count++;
  }
  sqlite3_sync_count++;
#endif

  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op
  */
#ifdef SQLITE_NO_SYNC
  OSTRACE(("SYNC-NOP file=%p, rc=SQLITE_OK\n", pFile->h));

  return SQLITE_OK;
#else
















  rc = osFlushFileBuffers(pFile->h);
  SimulateIOError( rc=FALSE );
  if( rc ){
    OSTRACE(("SYNC file=%p, rc=SQLITE_OK\n", pFile->h));

    return SQLITE_OK;
  }else{
    pFile->lastErrno = osGetLastError();
    OSTRACE(("SYNC file=%p, rc=SQLITE_IOERR_FSYNC\n", pFile->h));

    return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
                       "winSync", pFile->zPath);
  }
#endif
}

/*
** Determine the current size of a file in bytes
*/







|
>
|














|
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>



|
>



|
>

|







35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
  );

  /* Unix cannot, but some systems may return SQLITE_FULL from here. This
  ** line is to test that doing so does not cause any problems.
  */
  SimulateDiskfullError( return SQLITE_FULL );

  OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, flags=%x, lock=%d\n",
           osGetCurrentProcessId(), pFile, pFile->h, flags,
           pFile->locktype));

#ifndef SQLITE_TEST
  UNUSED_PARAMETER(flags);
#else
  if( (flags&0x0F)==SQLITE_SYNC_FULL ){
    sqlite3_fullsync_count++;
  }
  sqlite3_sync_count++;
#endif

  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op
  */
#ifdef SQLITE_NO_SYNC
  OSTRACE(("SYNC-NOP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
           osGetCurrentProcessId(), pFile, pFile->h));
  return SQLITE_OK;
#else
#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->pMapRegion ){
    if( osFlushViewOfFile(pFile->pMapRegion, 0) ){
      OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
               "rc=SQLITE_OK\n", osGetCurrentProcessId(),
               pFile, pFile->pMapRegion));
    }else{
      pFile->lastErrno = osGetLastError();
      OSTRACE(("SYNC-MMAP pid=%lu, pFile=%p, pMapRegion=%p, "
               "rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(),
               pFile, pFile->pMapRegion));
      return winLogError(SQLITE_IOERR_MMAP, pFile->lastErrno,
                         "winSync1", pFile->zPath);
    }
  }
#endif
  rc = osFlushFileBuffers(pFile->h);
  SimulateIOError( rc=FALSE );
  if( rc ){
    OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
             osGetCurrentProcessId(), pFile, pFile->h));
    return SQLITE_OK;
  }else{
    pFile->lastErrno = osGetLastError();
    OSTRACE(("SYNC pid=%lu, pFile=%p, file=%p, rc=SQLITE_IOERR_FSYNC\n",
             osGetCurrentProcessId(), pFile, pFile->h));
    return winLogError(SQLITE_IOERR_FSYNC, pFile->lastErrno,
                       "winSync2", pFile->zPath);
  }
#endif
}

/*
** Determine the current size of a file in bytes
*/
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
  sqlite3_file *fd,               /* Handle open on database file */
  int iRegion,                    /* Region to retrieve */
  int szRegion,                   /* Size of regions */
  int isWrite,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  winFile *pDbFd = (winFile*)fd;
  winShm *p = pDbFd->pShm;
  winShmNode *pShmNode;
  int rc = SQLITE_OK;

  if( !p ){
    rc = winOpenSharedMemory(pDbFd);
    if( rc!=SQLITE_OK ) return rc;
    p = pDbFd->pShm;
  }
  pShmNode = p->pShmNode;

  sqlite3_mutex_enter(pShmNode->mutex);
  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );

  if( pShmNode->nRegion<=iRegion ){
    struct ShmRegion *apNew;           /* New aRegion[] array */
    int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */







|



|


|

|







37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
  sqlite3_file *fd,               /* Handle open on database file */
  int iRegion,                    /* Region to retrieve */
  int szRegion,                   /* Size of regions */
  int isWrite,                    /* True to extend file if necessary */
  void volatile **pp              /* OUT: Mapped memory */
){
  winFile *pDbFd = (winFile*)fd;
  winShm *pShm = pDbFd->pShm;
  winShmNode *pShmNode;
  int rc = SQLITE_OK;

  if( !pShm ){
    rc = winOpenSharedMemory(pDbFd);
    if( rc!=SQLITE_OK ) return rc;
    pShm = pDbFd->pShm;
  }
  pShmNode = pShm->pShmNode;

  sqlite3_mutex_enter(pShmNode->mutex);
  assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );

  if( pShmNode->nRegion<=iRegion ){
    struct ShmRegion *apNew;           /* New aRegion[] array */
    int nByte = (iRegion+1)*szRegion;  /* Minimum required file size */
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
                              dwFlagsAndAttributes,
                              NULL))==INVALID_HANDLE_VALUE &&
                              winRetryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
  }
#endif
  winLogIoerr(cnt);

  OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
           dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));

  if( h==INVALID_HANDLE_VALUE ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);







|







37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
                              dwFlagsAndAttributes,
                              NULL))==INVALID_HANDLE_VALUE &&
                              winRetryIoerr(&cnt, &lastErrno) ){
               /* Noop */
    }
  }
#endif
  winLogIoerr(cnt, __LINE__);

  OSTRACE(("OPEN file=%p, name=%s, access=%lx, rc=%s\n", h, zUtf8Name,
           dwDesiredAccess, (h==INVALID_HANDLE_VALUE) ? "failed" : "ok"));

  if( h==INVALID_HANDLE_VALUE ){
    pFile->lastErrno = lastErrno;
    winLogError(SQLITE_CANTOPEN, pFile->lastErrno, "winOpen", zUtf8Name);
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
      }
    } while(1);
  }
#endif
  if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
    rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);
  }else{
    winLogIoerr(cnt);
  }
  sqlite3_free(zConverted);
  OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
  return rc;
}

/*







|







38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
      }
    } while(1);
  }
#endif
  if( rc && rc!=SQLITE_IOERR_DELETE_NOENT ){
    rc = winLogError(SQLITE_IOERR_DELETE, lastErrno, "winDelete", zFilename);
  }else{
    winLogIoerr(cnt, __LINE__);
  }
  sqlite3_free(zConverted);
  OSTRACE(("DELETE name=%s, rc=%s\n", zFilename, sqlite3ErrName(rc)));
  return rc;
}

/*
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
          && sAttrData.nFileSizeHigh==0
          && sAttrData.nFileSizeLow==0 ){
        attr = INVALID_FILE_ATTRIBUTES;
      }else{
        attr = sAttrData.dwFileAttributes;
      }
    }else{
      winLogIoerr(cnt);
      if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
        sqlite3_free(zConverted);
        return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
                           zFilename);
      }else{
        attr = INVALID_FILE_ATTRIBUTES;
      }







|







38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
          && sAttrData.nFileSizeHigh==0
          && sAttrData.nFileSizeLow==0 ){
        attr = INVALID_FILE_ATTRIBUTES;
      }else{
        attr = sAttrData.dwFileAttributes;
      }
    }else{
      winLogIoerr(cnt, __LINE__);
      if( lastErrno!=ERROR_FILE_NOT_FOUND && lastErrno!=ERROR_PATH_NOT_FOUND ){
        sqlite3_free(zConverted);
        return winLogError(SQLITE_IOERR_ACCESS, lastErrno, "winAccess",
                           zFilename);
      }else{
        attr = INVALID_FILE_ATTRIBUTES;
      }
38242
38243
38244
38245
38246
38247
38248
















38249
38250
38251
38252
38253
38254
38255
#endif
  if( sizeof(LARGE_INTEGER)<=nBuf-n ){
    LARGE_INTEGER i;
    osQueryPerformanceCounter(&i);
    memcpy(&zBuf[n], &i, sizeof(i));
    n += sizeof(i);
  }
















#endif
  return n;
}


/*
** Sleep for a little while.  Return the amount of time slept.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
#endif
  if( sizeof(LARGE_INTEGER)<=nBuf-n ){
    LARGE_INTEGER i;
    osQueryPerformanceCounter(&i);
    memcpy(&zBuf[n], &i, sizeof(i));
    n += sizeof(i);
  }
#endif
#if !SQLITE_OS_WINCE && !SQLITE_OS_WINRT && SQLITE_WIN32_USE_UUID
  if( sizeof(UUID)<=nBuf-n ){
    UUID id;
    memset(&id, 0, sizeof(UUID));
    osUuidCreate(&id);
    memcpy(zBuf, &id, sizeof(UUID));
    n += sizeof(UUID);
  }
  if( sizeof(UUID)<=nBuf-n ){
    UUID id;
    memset(&id, 0, sizeof(UUID));
    osUuidCreateSequential(&id);
    memcpy(zBuf, &id, sizeof(UUID));
    n += sizeof(UUID);
  }
#endif
  return n;
}


/*
** Sleep for a little while.  Return the amount of time slept.
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
  UNUSED_PARAMETER(pVfs);
  return winGetLastErrorMsg(osGetLastError(), nBuf, zBuf);
}

/*
** Initialize and deinitialize the operating system interface.
*/
SQLITE_API int sqlite3_os_init(void){
  static sqlite3_vfs winVfs = {
    3,                   /* iVersion */
    sizeof(winFile),     /* szOsFile */
    SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
    0,                   /* pNext */
    "win32",             /* zName */
    0,                   /* pAppData */







|







38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
  UNUSED_PARAMETER(pVfs);
  return winGetLastErrorMsg(osGetLastError(), nBuf, zBuf);
}

/*
** Initialize and deinitialize the operating system interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_os_init(void){
  static sqlite3_vfs winVfs = {
    3,                   /* iVersion */
    sizeof(winFile),     /* szOsFile */
    SQLITE_WIN32_MAX_PATH_BYTES, /* mxPathname */
    0,                   /* pNext */
    "win32",             /* zName */
    0,                   /* pAppData */
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };
#endif

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==77 );

  /* get memory map allocation granularity */
  memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
#if SQLITE_OS_WINRT
  osGetNativeSystemInfo(&winSysInfo);
#else
  osGetSystemInfo(&winSysInfo);
#endif
  assert( winSysInfo.dwAllocationGranularity>0 );
  assert( winSysInfo.dwPageSize>0 );

  sqlite3_vfs_register(&winVfs, 1);

#if defined(SQLITE_WIN32_HAS_WIDE)
  sqlite3_vfs_register(&winLongPathVfs, 0);
#endif

  return SQLITE_OK;
}

SQLITE_API int sqlite3_os_end(void){
#if SQLITE_OS_WINRT
  if( sleepObj!=NULL ){
    osCloseHandle(sleepObj);
    sleepObj = NULL;
  }
#endif
  return SQLITE_OK;







|




















|







38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
    winGetSystemCall,    /* xGetSystemCall */
    winNextSystemCall,   /* xNextSystemCall */
  };
#endif

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==80 );

  /* get memory map allocation granularity */
  memset(&winSysInfo, 0, sizeof(SYSTEM_INFO));
#if SQLITE_OS_WINRT
  osGetNativeSystemInfo(&winSysInfo);
#else
  osGetSystemInfo(&winSysInfo);
#endif
  assert( winSysInfo.dwAllocationGranularity>0 );
  assert( winSysInfo.dwPageSize>0 );

  sqlite3_vfs_register(&winVfs, 1);

#if defined(SQLITE_WIN32_HAS_WIDE)
  sqlite3_vfs_register(&winLongPathVfs, 0);
#endif

  return SQLITE_OK;
}

SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void){
#if SQLITE_OS_WINRT
  if( sleepObj!=NULL ){
    osCloseHandle(sleepObj);
    sleepObj = NULL;
  }
#endif
  return SQLITE_OK;
38979
38980
38981
38982
38983
38984
38985
38986



38987
38988
38989


38990
38991



38992
38993
38994
38995
38996
38997
38998
      p->pCache->pPage1 = 0;
    }
    sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
  }
}

/*
** Compute the number of pages of cache requested.



*/
static int numberOfCachePages(PCache *p){
  if( p->szCache>=0 ){


    return p->szCache;
  }else{



    return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
  }
}

/*************************************************** General Interfaces ******
**
** Initialize and shutdown the page cache subsystem. Neither of these 







|
>
>
>



>
>


>
>
>







39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
      p->pCache->pPage1 = 0;
    }
    sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
  }
}

/*
** Compute the number of pages of cache requested.  p->szCache is the
** cache size requested by the "PRAGMA cache_size" statement.
**
**
*/
static int numberOfCachePages(PCache *p){
  if( p->szCache>=0 ){
    /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
    ** suggested cache size is set to N. */
    return p->szCache;
  }else{
    /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then
    ** the number of cache pages is adjusted to use approximately abs(N*1024)
    ** bytes of memory. */
    return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra));
  }
}

/*************************************************** General Interfaces ******
**
** Initialize and shutdown the page cache subsystem. Neither of these 
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739

39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752

39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
**
** Multiple threads can run this routine at the same time.  Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
  void *p = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
  if( nByte<=pcache1.szSlot ){
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );

      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);

      sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static int pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return 0;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite3_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    nFreed = sqlite3MallocSize(p);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
    sqlite3_mutex_leave(pcache1.mutex);
#endif
    sqlite3_free(p);
  }
  return nFreed;
}








<








>
|












>
|

















|













|







40037
40038
40039
40040
40041
40042
40043

40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
**
** Multiple threads can run this routine at the same time.  Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
  void *p = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );

  if( nByte<=pcache1.szSlot ){
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );
      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);
      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static int pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return 0;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
    pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
    assert( pcache1.nFreeSlot<=pcache1.nSlot );
    sqlite3_mutex_leave(pcache1.mutex);
  }else{
    assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
    sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
    nFreed = sqlite3MallocSize(p);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
    sqlite3_mutex_leave(pcache1.mutex);
#endif
    sqlite3_free(p);
  }
  return nFreed;
}

40514
40515
40516
40517
40518
40519
40520








40521
40522
40523
40524
40525
40526
40527
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

/*
** Return the size of the header on each page of this PCACHE implementation.
*/
SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }









#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**







>
>
>
>
>
>
>
>







40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
  sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}

/*
** Return the size of the header on each page of this PCACHE implementation.
*/
SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }

/*
** Return the global mutex used by this PCACHE implementation.  The
** sqlite3_status() routine needs access to this mutex.
*/
SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void){
  return pcache1.mutex;
}

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
49287
49288
49289
49290
49291
49292
49293
49294
49295
49296

49297
49298
49299
49300
49301
49302
49303
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;

  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                        SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
            walLockName(lockIdx), n, rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  return rc;
}







|


>







49609
49610
49611
49612
49613
49614
49615
49616
49617
49618
49619
49620
49621
49622
49623
49624
49625
49626
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;
  if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0);
  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                        SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
            walLockName(lockIdx), n, rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  return rc;
}
49575
49576
49577
49578
49579
49580
49581
49582
49583
49584
49585
49586
49587
49588
49589
  */
  assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
  assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
  assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
  assert( pWal->writeLock );
  iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
  nLock = SQLITE_SHM_NLOCK - iLock;
  rc = walLockExclusive(pWal, iLock, nLock);
  if( rc ){
    return rc;
  }
  WALTRACE(("WAL%p: recovery begin...\n", pWal));

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));








|







49898
49899
49900
49901
49902
49903
49904
49905
49906
49907
49908
49909
49910
49911
49912
  */
  assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
  assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
  assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
  assert( pWal->writeLock );
  iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
  nLock = SQLITE_SHM_NLOCK - iLock;
  rc = walLockExclusive(pWal, iLock, nLock, 0);
  if( rc ){
    return rc;
  }
  WALTRACE(("WAL%p: recovery begin...\n", pWal));

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));

50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int lockIdx,                    /* Offset of first byte to lock */
  int n                           /* Number of bytes to lock */
){
  int rc;
  do {
    rc = walLockExclusive(pWal, lockIdx, n);
  }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
  return rc;
}

/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.







|







50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int lockIdx,                    /* Offset of first byte to lock */
  int n                           /* Number of bytes to lock */
){
  int rc;
  do {
    rc = walLockExclusive(pWal, lockIdx, n, 0);
  }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
  return rc;
}

/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278


50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311

50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
  Wal *pWal,                      /* Wal connection */
  int eMode,                      /* One of PASSIVE, FULL or RESTART */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc;                         /* Return code */
  int szPage;                     /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  u32 mxPage;                     /* Max database page to write */
  int i;                          /* Loop counter */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */

  szPage = walPagesize(pWal);
  testcase( szPage<=32768 );
  testcase( szPage>=65536 );
  pInfo = walCkptInfo(pWal);
  if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK;

  /* Allocate the iterator */
  rc = walIteratorInit(pWal, &pIter);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pIter );

  /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
  ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  /* Compute in mxSafeFrame the index of the last frame of the WAL that is
  ** safe to write into the database.  Frames beyond mxSafeFrame might
  ** overwrite database pages that are in use by active readers and thus
  ** cannot be backfilled from the WAL.
  */
  mxSafeFrame = pWal->hdr.mxFrame;
  mxPage = pWal->hdr.nPage;
  for(i=1; i<WAL_NREADER; i++){
    u32 y = pInfo->aReadMark[i];
    if( mxSafeFrame>y ){
      assert( y<=pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
      if( rc==SQLITE_OK ){
        pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
      }else if( rc==SQLITE_BUSY ){
        mxSafeFrame = y;
        xBusy = 0;
      }else{
        goto walcheckpoint_out;
      }
    }
  }

  if( pInfo->nBackfill<mxSafeFrame
   && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK
  ){
    i64 nSize;                    /* Current size of database file */
    u32 nBackfill = pInfo->nBackfill;

    /* Sync the WAL to disk */
    if( sync_flags ){
      rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
    }

    /* If the database may grow as a result of this checkpoint, hint
    ** about the eventual size of the db file to the VFS layer.
    */
    if( rc==SQLITE_OK ){
      i64 nReq = ((i64)mxPage * szPage);
      rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
      if( rc==SQLITE_OK && nSize<nReq ){
        sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
      }
    }


    /* Iterate through the contents of the WAL, copying data to the db file. */
    while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
      i64 iOffset;
      assert( walFramePgno(pWal, iFrame)==iDbpage );
      if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue;


      iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
      /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
      rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
      if( rc!=SQLITE_OK ) break;
      iOffset = (iDbpage-1)*(i64)szPage;
      testcase( IS_BIG_INT(iOffset) );
      rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
      if( rc!=SQLITE_OK ) break;
    }

    /* If work was actually accomplished... */
    if( rc==SQLITE_OK ){
      if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
        i64 szDb = pWal->hdr.nPage*(i64)szPage;
        testcase( IS_BIG_INT(szDb) );
        rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
        if( rc==SQLITE_OK && sync_flags ){
          rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
        }
      }
      if( rc==SQLITE_OK ){
        pInfo->nBackfill = mxSafeFrame;
      }
    }

    /* Release the reader lock held while backfilling */
    walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
  }

  if( rc==SQLITE_BUSY ){
    /* Reset the return code so as not to report a checkpoint failure
    ** just because there are active readers.  */
    rc = SQLITE_OK;

  }

  /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
  ** entire wal file has been copied into the database file, then block 
  ** until all readers have finished using the wal file. This ensures that 
  ** the next process to write to the database restarts the wal file.
  */
  if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    assert( pWal->writeLock );
    if( pInfo->nBackfill<pWal->hdr.mxFrame ){
      rc = SQLITE_BUSY;
    }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      assert( mxSafeFrame==pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
          /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
          ** SQLITE_CHECKPOINT_RESTART with the addition that it also
          ** truncates the log file to zero bytes just prior to a
          ** successful return.







|













|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|


|
|
|
|
|
>
>
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
>














|







50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
  Wal *pWal,                      /* Wal connection */
  int eMode,                      /* One of PASSIVE, FULL or RESTART */
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int sync_flags,                 /* Flags for OsSync() (or 0) */
  u8 *zBuf                        /* Temporary buffer to use */
){
  int rc = SQLITE_OK;             /* Return code */
  int szPage;                     /* Database page-size */
  WalIterator *pIter = 0;         /* Wal iterator context */
  u32 iDbpage = 0;                /* Next database page to write */
  u32 iFrame = 0;                 /* Wal frame containing data for iDbpage */
  u32 mxSafeFrame;                /* Max frame that can be backfilled */
  u32 mxPage;                     /* Max database page to write */
  int i;                          /* Loop counter */
  volatile WalCkptInfo *pInfo;    /* The checkpoint status information */

  szPage = walPagesize(pWal);
  testcase( szPage<=32768 );
  testcase( szPage>=65536 );
  pInfo = walCkptInfo(pWal);
  if( pInfo->nBackfill<pWal->hdr.mxFrame ){

    /* Allocate the iterator */
    rc = walIteratorInit(pWal, &pIter);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    assert( pIter );

    /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
    ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
    assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

    /* Compute in mxSafeFrame the index of the last frame of the WAL that is
    ** safe to write into the database.  Frames beyond mxSafeFrame might
    ** overwrite database pages that are in use by active readers and thus
    ** cannot be backfilled from the WAL.
    */
    mxSafeFrame = pWal->hdr.mxFrame;
    mxPage = pWal->hdr.nPage;
    for(i=1; i<WAL_NREADER; i++){
      u32 y = pInfo->aReadMark[i];
      if( mxSafeFrame>y ){
        assert( y<=pWal->hdr.mxFrame );
        rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
        }else if( rc==SQLITE_BUSY ){
          mxSafeFrame = y;
          xBusy = 0;
        }else{
          goto walcheckpoint_out;
        }
      }
    }

    if( pInfo->nBackfill<mxSafeFrame
     && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
    ){
      i64 nSize;                    /* Current size of database file */
      u32 nBackfill = pInfo->nBackfill;

      /* Sync the WAL to disk */
      if( sync_flags ){
        rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
      }

      /* If the database may grow as a result of this checkpoint, hint
      ** about the eventual size of the db file to the VFS layer.
      */
      if( rc==SQLITE_OK ){
        i64 nReq = ((i64)mxPage * szPage);
        rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
        if( rc==SQLITE_OK && nSize<nReq ){
          sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
        }
      }


      /* Iterate through the contents of the WAL, copying data to the db file */
      while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
        i64 iOffset;
        assert( walFramePgno(pWal, iFrame)==iDbpage );
        if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
          continue;
        }
        iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
        /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
        rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
        if( rc!=SQLITE_OK ) break;
        iOffset = (iDbpage-1)*(i64)szPage;
        testcase( IS_BIG_INT(iOffset) );
        rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
        if( rc!=SQLITE_OK ) break;
      }

      /* If work was actually accomplished... */
      if( rc==SQLITE_OK ){
        if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
          i64 szDb = pWal->hdr.nPage*(i64)szPage;
          testcase( IS_BIG_INT(szDb) );
          rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
          if( rc==SQLITE_OK && sync_flags ){
            rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
          }
        }
        if( rc==SQLITE_OK ){
          pInfo->nBackfill = mxSafeFrame;
        }
      }

      /* Release the reader lock held while backfilling */
      walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
    }

    if( rc==SQLITE_BUSY ){
      /* Reset the return code so as not to report a checkpoint failure
      ** just because there are active readers.  */
      rc = SQLITE_OK;
    }
  }

  /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
  ** entire wal file has been copied into the database file, then block 
  ** until all readers have finished using the wal file. This ensures that 
  ** the next process to write to the database restarts the wal file.
  */
  if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
    assert( pWal->writeLock );
    if( pInfo->nBackfill<pWal->hdr.mxFrame ){
      rc = SQLITE_BUSY;
    }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      assert( pInfo->nBackfill==pWal->hdr.mxFrame );
      rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
          /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
          ** SQLITE_CHECKPOINT_RESTART with the addition that it also
          ** truncates the log file to zero bytes just prior to a
          ** successful return.
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->readOnly & WAL_SHM_RDONLY ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.







|







50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->readOnly & WAL_SHM_RDONLY ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {
    if( (pWal->readOnly & WAL_SHM_RDONLY)==0
     && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
    ){
      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;







|







51071
51072
51073
51074
51075
51076
51077
51078
51079
51080
51081
51082
51083
51084
51085
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {
    if( (pWal->readOnly & WAL_SHM_RDONLY)==0
     && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
    ){
      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
51001
51002
51003
51004
51005
51006
51007
51008
51009
51010
51011
51012
51013
51014
51015
  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
  */
  rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
  if( rc ){
    return rc;
  }
  pWal->writeLock = 1;

  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then







|







51327
51328
51329
51330
51331
51332
51333
51334
51335
51336
51337
51338
51339
51340
51341
  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
  */
  rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0);
  if( rc ){
    return rc;
  }
  pWal->writeLock = 1;

  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then
51146
51147
51148
51149
51150
51151
51152
51153
51154
51155
51156
51157
51158
51159
51160

  if( pWal->readLock==0 ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    assert( pInfo->nBackfill==pWal->hdr.mxFrame );
    if( pInfo->nBackfill>0 ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        /* If all readers are using WAL_READ_LOCK(0) (in other words if no
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only







|







51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
51486

  if( pWal->readLock==0 ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    assert( pInfo->nBackfill==pWal->hdr.mxFrame );
    if( pInfo->nBackfill>0 ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0);
      if( rc==SQLITE_OK ){
        /* If all readers are using WAL_READ_LOCK(0) (in other words if no
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only
51471
51472
51473
51474
51475
51476
51477
51478
51479
51480
51481
51482
51483
51484
51485
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 
  ** "checkpoint" lock on the database file. */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* EVIDENCE-OF: R-10421-19736 If any other process is running a
    ** checkpoint operation at the same time, the lock cannot be obtained and
    ** SQLITE_BUSY is returned.
    ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
    ** it will not be invoked in this case.
    */







|







51797
51798
51799
51800
51801
51802
51803
51804
51805
51806
51807
51808
51809
51810
51811
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 
  ** "checkpoint" lock on the database file. */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0);
  if( rc ){
    /* EVIDENCE-OF: R-10421-19736 If any other process is running a
    ** checkpoint operation at the same time, the lock cannot be obtained and
    ** SQLITE_BUSY is returned.
    ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
    ** it will not be invoked in this case.
    */
51946
51947
51948
51949
51950
51951
51952

51953
51954
51955
51956
51957
51958
51959
  u8 intKey;           /* True if table b-trees.  False for index b-trees */
  u8 intKeyLeaf;       /* True if the leaf of an intKey table */
  u8 noPayload;        /* True if internal intKey page (thus w/o data) */
  u8 leaf;             /* True if a leaf page */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */

  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
  u16 nCell;           /* Number of cells on this page, local and ovfl */
  u16 maskPage;        /* Mask for page offset */
  u16 aiOvfl[5];       /* Insert the i-th overflow cell before the aiOvfl-th







>







52272
52273
52274
52275
52276
52277
52278
52279
52280
52281
52282
52283
52284
52285
52286
  u8 intKey;           /* True if table b-trees.  False for index b-trees */
  u8 intKeyLeaf;       /* True if the leaf of an intKey table */
  u8 noPayload;        /* True if internal intKey page (thus w/o data) */
  u8 leaf;             /* True if a leaf page */
  u8 hdrOffset;        /* 100 for page 1.  0 otherwise */
  u8 childPtrSize;     /* 0 if leaf==1.  4 if leaf==0 */
  u8 max1bytePayload;  /* min(maxLocal,127) */
  u8 bBusy;            /* Prevent endless loops on corrupt database files */
  u16 maxLocal;        /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
  u16 minLocal;        /* Copy of BtShared.minLocal or BtShared.minLeaf */
  u16 cellOffset;      /* Index in aData of first cell pointer */
  u16 nFree;           /* Number of free bytes on the page */
  u16 nCell;           /* Number of cells on this page, local and ovfl */
  u16 maskPage;        /* Mask for page offset */
  u16 aiOvfl[5];       /* Insert the i-th overflow cell before the aiOvfl-th
52084
52085
52086
52087
52088
52089
52090



52091
52092
52093
52094
52095
52096
52097
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
  u8 incrVacuum;        /* True if incr-vacuum is enabled */
  u8 bDoTruncate;       /* True to truncate db on commit */
#endif
  u8 inTransaction;     /* Transaction state */
  u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */



  u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
  u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
  u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
  u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
  u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
  u32 pageSize;         /* Total number of bytes on a page */
  u32 usableSize;       /* Number of usable bytes on each page */







>
>
>







52411
52412
52413
52414
52415
52416
52417
52418
52419
52420
52421
52422
52423
52424
52425
52426
52427
#ifndef SQLITE_OMIT_AUTOVACUUM
  u8 autoVacuum;        /* True if auto-vacuum is enabled */
  u8 incrVacuum;        /* True if incr-vacuum is enabled */
  u8 bDoTruncate;       /* True to truncate db on commit */
#endif
  u8 inTransaction;     /* Transaction state */
  u8 max1bytePayload;   /* Maximum first byte of cell for a 1-byte payload */
#ifdef SQLITE_HAS_CODEC
  u8 optimalReserve;    /* Desired amount of reserved space per page */
#endif
  u16 btsFlags;         /* Boolean parameters.  See BTS_* macros below */
  u16 maxLocal;         /* Maximum local payload in non-LEAFDATA tables */
  u16 minLocal;         /* Minimum local payload in non-LEAFDATA tables */
  u16 maxLeaf;          /* Maximum local payload in a LEAFDATA table */
  u16 minLeaf;          /* Minimum local payload in a LEAFDATA table */
  u32 pageSize;         /* Total number of bytes on a page */
  u32 usableSize;       /* Number of usable bytes on each page */
52470
52471
52472
52473
52474
52475
52476

52477
52478
52479
52480
52481
52482
52483
}


/*
** Exit the recursive mutex on a Btree.
*/
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){

  if( p->sharable ){
    assert( p->wantToLock>0 );
    p->wantToLock--;
    if( p->wantToLock==0 ){
      unlockBtreeMutex(p);
    }
  }







>







52800
52801
52802
52803
52804
52805
52806
52807
52808
52809
52810
52811
52812
52813
52814
}


/*
** Exit the recursive mutex on a Btree.
*/
SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
  assert( sqlite3_mutex_held(p->db->mutex) );
  if( p->sharable ){
    assert( p->wantToLock>0 );
    p->wantToLock--;
    if( p->wantToLock==0 ){
      unlockBtreeMutex(p);
    }
  }
52717
52718
52719
52720
52721
52722
52723
52724
52725
52726
52727
52728
52729
52730
52731
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
SQLITE_API int sqlite3_enable_shared_cache(int enable){
  sqlite3GlobalConfig.sharedCacheEnabled = enable;
  return SQLITE_OK;
}
#endif










|







53048
53049
53050
53051
53052
53053
53054
53055
53056
53057
53058
53059
53060
53061
53062
/*
** Enable or disable the shared pager and schema features.
**
** This routine has no effect on existing database connections.
** The shared cache setting effects only future calls to
** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_enable_shared_cache(int enable){
  sqlite3GlobalConfig.sharedCacheEnabled = enable;
  return SQLITE_OK;
}
#endif



52806
52807
52808
52809
52810
52811
52812






52813
52814
52815
52816
52817
52818
52819
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */
  if( isIndex ){
    HashElem *p;
    for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
      Index *pIdx = (Index *)sqliteHashData(p);
      if( pIdx->tnum==(int)iRoot ){






        iTab = pIdx->pTable->tnum;
      }
    }
  }else{
    iTab = iRoot;
  }








>
>
>
>
>
>







53137
53138
53139
53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
  ** written. For index b-trees, it is the root page of the associated
  ** table.  */
  if( isIndex ){
    HashElem *p;
    for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
      Index *pIdx = (Index *)sqliteHashData(p);
      if( pIdx->tnum==(int)iRoot ){
        if( iTab ){
          /* Two or more indexes share the same root page.  There must
          ** be imposter tables.  So just return true.  The assert is not
          ** useful in that case. */
          return 1;
        }
        iTab = pIdx->pTable->tnum;
      }
    }
  }else{
    iTab = iRoot;
  }

53225
53226
53227
53228
53229
53230
53231
53232
53233
53234
53235





53236
53237
53238
53239
53240
53241
53242
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );






  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
  assert( rc==SQLITE_OK );  /* KeySize() cannot fail */

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 







|



>
>
>
>
>







53562
53563
53564
53565
53566
53567
53568
53569
53570
53571
53572
53573
53574
53575
53576
53577
53578
53579
53580
53581
53582
53583
53584
**
** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
** prior to calling this routine.  
*/
static int saveCursorPosition(BtCursor *pCur){
  int rc;

  assert( CURSOR_VALID==pCur->eState || CURSOR_SKIPNEXT==pCur->eState );
  assert( 0==pCur->pKey );
  assert( cursorHoldsMutex(pCur) );

  if( pCur->eState==CURSOR_SKIPNEXT ){
    pCur->eState = CURSOR_VALID;
  }else{
    pCur->skipNext = 0;
  }
  rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
  assert( rc==SQLITE_OK );  /* KeySize() cannot fail */

  /* If this is an intKey table, then the above call to BtreeKeySize()
  ** stores the integer key in pCur->nKey. In this case this value is
  ** all that is required. Otherwise, if pCur is not open on an intKey
  ** table, then malloc space for and store the pCur->nKey bytes of key 
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
53311
53312
53313
static int SQLITE_NOINLINE saveCursorsOnList(
  BtCursor *p,         /* The first cursor that needs saving */
  Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
  BtCursor *pExcept    /* Do not save this cursor */
){
  do{
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
      if( p->eState==CURSOR_VALID ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
        }
      }else{
        testcase( p->iPage>0 );
        btreeReleaseAllCursorPages(p);







|







53641
53642
53643
53644
53645
53646
53647
53648
53649
53650
53651
53652
53653
53654
53655
static int SQLITE_NOINLINE saveCursorsOnList(
  BtCursor *p,         /* The first cursor that needs saving */
  Pgno iRoot,          /* Only save cursor with this iRoot. Save all if zero */
  BtCursor *pExcept    /* Do not save this cursor */
){
  do{
    if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
      if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
        int rc = saveCursorPosition(p);
        if( SQLITE_OK!=rc ){
          return rc;
        }
      }else{
        testcase( p->iPage>0 );
        btreeReleaseAllCursorPages(p);
53371
53372
53373
53374
53375
53376
53377

53378
53379
53380
53381
53382
53383
53384
53385
53386
53387
53388

53389
53390
53391
53392
53393
53394
53395
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;

  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );

    if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
      pCur->eState = CURSOR_SKIPNEXT;
    }
  }
  return rc;
}








>






|




>







53713
53714
53715
53716
53717
53718
53719
53720
53721
53722
53723
53724
53725
53726
53727
53728
53729
53730
53731
53732
53733
53734
53735
53736
53737
53738
53739
** when saveCursorPosition() was called. Note that this call deletes the 
** saved position info stored by saveCursorPosition(), so there can be
** at most one effective restoreCursorPosition() call after each 
** saveCursorPosition().
*/
static int btreeRestoreCursorPosition(BtCursor *pCur){
  int rc;
  int skipNext;
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState>=CURSOR_REQUIRESEEK );
  if( pCur->eState==CURSOR_FAULT ){
    return pCur->skipNext;
  }
  pCur->eState = CURSOR_INVALID;
  rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &skipNext);
  if( rc==SQLITE_OK ){
    sqlite3_free(pCur->pKey);
    pCur->pKey = 0;
    assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
    pCur->skipNext |= skipNext;
    if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
      pCur->eState = CURSOR_SKIPNEXT;
    }
  }
  return rc;
}

53433
53434
53435
53436
53437
53438
53439
53440
53441
53442

53443
53444
53445
53446
53447
53448
53449
  assert( pCur!=0 );
  assert( pCur->eState!=CURSOR_VALID );
  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pDifferentRow = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
    *pDifferentRow = 1;
  }else{

    *pDifferentRow = 0;
  }
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*







|


>







53777
53778
53779
53780
53781
53782
53783
53784
53785
53786
53787
53788
53789
53790
53791
53792
53793
53794
  assert( pCur!=0 );
  assert( pCur->eState!=CURSOR_VALID );
  rc = restoreCursorPosition(pCur);
  if( rc ){
    *pDifferentRow = 1;
    return rc;
  }
  if( pCur->eState!=CURSOR_VALID ){
    *pDifferentRow = 1;
  }else{
    assert( pCur->skipNext==0 );
    *pDifferentRow = 0;
  }
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_AUTOVACUUM
/*
54576
54577
54578
54579
54580
54581
54582

54583
54584
54585

54586
54587
54588
54589
54590
54591
54592
54593
54594
54595
54596
54597
54598
54599
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
    if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){

      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite3Malloc(nFullPathname);
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )

      p->sharable = 1;
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM;
      }
      if( isMemdb ){
        memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
      }else{
        rc = sqlite3OsFullPathname(pVfs, zFilename,
                                   nFullPathname, zFullPathname);
        if( rc ){
          sqlite3_free(zFullPathname);
          sqlite3_free(p);
          return rc;







>

|

>






|







54921
54922
54923
54924
54925
54926
54927
54928
54929
54930
54931
54932
54933
54934
54935
54936
54937
54938
54939
54940
54941
54942
54943
54944
54945
54946
#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
  /*
  ** If this Btree is a candidate for shared cache, try to find an
  ** existing BtShared object that we can share with
  */
  if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
    if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
      int nFilename = sqlite3Strlen30(zFilename)+1;
      int nFullPathname = pVfs->mxPathname+1;
      char *zFullPathname = sqlite3Malloc(MAX(nFullPathname,nFilename));
      MUTEX_LOGIC( sqlite3_mutex *mutexShared; )

      p->sharable = 1;
      if( !zFullPathname ){
        sqlite3_free(p);
        return SQLITE_NOMEM;
      }
      if( isMemdb ){
        memcpy(zFullPathname, zFilename, nFilename);
      }else{
        rc = sqlite3OsFullPathname(pVfs, zFilename,
                                   nFullPathname, zFullPathname);
        if( rc ){
          sqlite3_free(zFullPathname);
          sqlite3_free(p);
          return rc;
54642
54643
54644
54645
54646
54647
54648
54649
54650
54651
54652
54653
54654
54655
54656
54657
#endif
  if( pBt==0 ){
    /*
    ** The following asserts make sure that structures used by the btree are
    ** the right size.  This is to guard against size changes that result
    ** when compiling on a different architecture.
    */
    assert( sizeof(i64)==8 || sizeof(i64)==4 );
    assert( sizeof(u64)==8 || sizeof(u64)==4 );
    assert( sizeof(u32)==4 );
    assert( sizeof(u16)==2 );
    assert( sizeof(Pgno)==4 );
  
    pBt = sqlite3MallocZero( sizeof(*pBt) );
    if( pBt==0 ){
      rc = SQLITE_NOMEM;







|
|







54989
54990
54991
54992
54993
54994
54995
54996
54997
54998
54999
55000
55001
55002
55003
55004
#endif
  if( pBt==0 ){
    /*
    ** The following asserts make sure that structures used by the btree are
    ** the right size.  This is to guard against size changes that result
    ** when compiling on a different architecture.
    */
    assert( sizeof(i64)==8 );
    assert( sizeof(u64)==8 );
    assert( sizeof(u32)==4 );
    assert( sizeof(u16)==2 );
    assert( sizeof(Pgno)==4 );
  
    pBt = sqlite3MallocZero( sizeof(*pBt) );
    if( pBt==0 ){
      rc = SQLITE_NOMEM;
55030
55031
55032
55033
55034
55035
55036



55037
55038
55039
55040
55041
55042
55043
** and autovacuum mode can no longer be changed.
*/
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  assert( nReserve>=-1 && nReserve<=255 );
  sqlite3BtreeEnter(p);



  if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
    sqlite3BtreeLeave(p);
    return SQLITE_READONLY;
  }
  if( nReserve<0 ){
    nReserve = pBt->pageSize - pBt->usableSize;
  }







>
>
>







55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
** and autovacuum mode can no longer be changed.
*/
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
  int rc = SQLITE_OK;
  BtShared *pBt = p->pBt;
  assert( nReserve>=-1 && nReserve<=255 );
  sqlite3BtreeEnter(p);
#if SQLITE_HAS_CODEC
  if( nReserve>pBt->optimalReserve ) pBt->optimalReserve = (u8)nReserve;
#endif
  if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
    sqlite3BtreeLeave(p);
    return SQLITE_READONLY;
  }
  if( nReserve<0 ){
    nReserve = pBt->pageSize - pBt->usableSize;
  }
55059
55060
55061
55062
55063
55064
55065
55066
55067
55068
55069
55070
55071
55072
55073
55074
55075
55076
55077
55078

55079
55080

55081
55082
55083
55084
55085
55086
55087
55088




55089
55090
55091
55092


55093

55094
55095
55096

55097
55098
55099
55100
55101
55102
55103
/*
** Return the currently defined page size
*/
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
  return p->pBt->pageSize;
}

#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
/*
** This function is similar to sqlite3BtreeGetReserve(), except that it
** may only be called if it is guaranteed that the b-tree mutex is already
** held.
**
** This is useful in one special case in the backup API code where it is
** known that the shared b-tree mutex is held, but the mutex on the 
** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
** were to be called, it might collide with some other operation on the
** database handle that owns *p, causing undefined behavior.
*/
SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){

  assert( sqlite3_mutex_held(p->pBt->mutex) );
  return p->pBt->pageSize - p->pBt->usableSize;

}
#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
/*
** Return the number of bytes of space at the end of every page that
** are intentually left unused.  This is the "reserved" space that is
** sometimes used by extensions.




*/
SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree *p){
  int n;
  sqlite3BtreeEnter(p);


  n = p->pBt->pageSize - p->pBt->usableSize;

  sqlite3BtreeLeave(p);
  return n;
}


/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){







<












>

|
>

<

<




>
>
>
>

|


>
>
|
>



>







55409
55410
55411
55412
55413
55414
55415

55416
55417
55418
55419
55420
55421
55422
55423
55424
55425
55426
55427
55428
55429
55430
55431
55432

55433

55434
55435
55436
55437
55438
55439
55440
55441
55442
55443
55444
55445
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
/*
** Return the currently defined page size
*/
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree *p){
  return p->pBt->pageSize;
}


/*
** This function is similar to sqlite3BtreeGetReserve(), except that it
** may only be called if it is guaranteed that the b-tree mutex is already
** held.
**
** This is useful in one special case in the backup API code where it is
** known that the shared b-tree mutex is held, but the mutex on the 
** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
** were to be called, it might collide with some other operation on the
** database handle that owns *p, causing undefined behavior.
*/
SQLITE_PRIVATE int sqlite3BtreeGetReserveNoMutex(Btree *p){
  int n;
  assert( sqlite3_mutex_held(p->pBt->mutex) );
  n = p->pBt->pageSize - p->pBt->usableSize;
  return n;
}



/*
** Return the number of bytes of space at the end of every page that
** are intentually left unused.  This is the "reserved" space that is
** sometimes used by extensions.
**
** If SQLITE_HAS_MUTEX is defined then the number returned is the
** greater of the current reserved space and the maximum requested
** reserve space.
*/
SQLITE_PRIVATE int sqlite3BtreeGetOptimalReserve(Btree *p){
  int n;
  sqlite3BtreeEnter(p);
  n = sqlite3BtreeGetReserveNoMutex(p);
#ifdef SQLITE_HAS_CODEC
  if( n<p->pBt->optimalReserve ) n = p->pBt->optimalReserve;
#endif
  sqlite3BtreeLeave(p);
  return n;
}


/*
** Set the maximum page count for a database if mxPage is positive.
** No changes are made if mxPage is 0 or negative.
** Regardless of the value of mxPage, return the maximum page count.
*/
SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
55121
55122
55123
55124
55125
55126
55127
55128
55129
55130
55131
55132
55133
55134
55135
    p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
    if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
  } 
  b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
  sqlite3BtreeLeave(p);
  return b;
}
#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */

/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is 
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/







<







55478
55479
55480
55481
55482
55483
55484

55485
55486
55487
55488
55489
55490
55491
    p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
    if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
  } 
  b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
  sqlite3BtreeLeave(p);
  return b;
}


/*
** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
** is disabled. The default value for the auto-vacuum property is 
** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
*/
56241
56242
56243
56244
56245
56246
56247
56248
56249
56250
56251
56252
56253
56254
56255

  assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
  if( pBtree ){
    sqlite3BtreeEnter(pBtree);
    for(p=pBtree->pBt->pCursor; p; p=p->pNext){
      int i;
      if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
        if( p->eState==CURSOR_VALID ){
          rc = saveCursorPosition(p);
          if( rc!=SQLITE_OK ){
            (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
            break;
          }
        }
      }else{







|







56597
56598
56599
56600
56601
56602
56603
56604
56605
56606
56607
56608
56609
56610
56611

  assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
  if( pBtree ){
    sqlite3BtreeEnter(pBtree);
    for(p=pBtree->pBt->pCursor; p; p=p->pNext){
      int i;
      if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
        if( p->eState==CURSOR_VALID || p->eState==CURSOR_SKIPNEXT ){
          rc = saveCursorPosition(p);
          if( rc!=SQLITE_OK ){
            (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
            break;
          }
        }
      }else{
56647
56648
56649
56650
56651
56652
56653


56654
56655
56656
56657
56658
56659
56660
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );


  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;
}

/*







>
>







57003
57004
57005
57006
57007
57008
57009
57010
57011
57012
57013
57014
57015
57016
57017
57018
** Failure is not possible.  This function always returns SQLITE_OK.
** It might just as well be a procedure (returning void) but we continue
** to return an integer result code for historical reasons.
*/
SQLITE_PRIVATE int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>=0 );
  assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
  assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
  getCellInfo(pCur);
  *pSize = pCur->info.nPayload;
  return SQLITE_OK;
}

/*
57125
57126
57127
57128
57129
57130
57131
57132
57133
57134
57135
57136
57137
57138
57139
57140


57141
57142
57143
57144
57145
57146
57147
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

#if 0
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
** cells in pParent, that page number iChild is the right-child of
** the page.
*/
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){


  assert( iIdx<=pParent->nCell );
  if( iIdx==pParent->nCell ){
    assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
  }else{
    assert( get4byte(findCell(pParent, iIdx))==iChild );
  }
}







|








>
>







57483
57484
57485
57486
57487
57488
57489
57490
57491
57492
57493
57494
57495
57496
57497
57498
57499
57500
57501
57502
57503
57504
57505
57506
57507
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
  if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
    return SQLITE_CORRUPT_BKPT;
  }
  return SQLITE_OK;
}

#if SQLITE_DEBUG
/*
** Page pParent is an internal (non-leaf) tree page. This function 
** asserts that page number iChild is the left-child if the iIdx'th
** cell in page pParent. Or, if iIdx is equal to the total number of
** cells in pParent, that page number iChild is the right-child of
** the page.
*/
static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
  if( CORRUPT_DB ) return;  /* The conditions tested below might not be true
                            ** in a corrupt database */
  assert( iIdx<=pParent->nCell );
  if( iIdx==pParent->nCell ){
    assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
  }else{
    assert( get4byte(findCell(pParent, iIdx))==iChild );
  }
}
57158
57159
57160
57161
57162
57163
57164
57165
57166
57167
57168
57169
57170
57171
57172
57173
57174
57175
57176
57177
57178
57179
57180
57181
57182
57183
57184
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );

  /* UPDATE: It is actually possible for the condition tested by the assert
  ** below to be untrue if the database file is corrupt. This can occur if
  ** one cursor has modified page pParent while a reference to it is held 
  ** by a second cursor. Which can only happen if a single page is linked
  ** into more than one b-tree structure in a corrupt database.  */
#if 0
  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );
#endif
  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );

  releasePage(pCur->apPage[pCur->iPage]);
  pCur->iPage--;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
}







<
<
<
<
<
<
<





<







57518
57519
57520
57521
57522
57523
57524







57525
57526
57527
57528
57529

57530
57531
57532
57533
57534
57535
57536
** the largest cell index.
*/
static void moveToParent(BtCursor *pCur){
  assert( cursorHoldsMutex(pCur) );
  assert( pCur->eState==CURSOR_VALID );
  assert( pCur->iPage>0 );
  assert( pCur->apPage[pCur->iPage] );







  assertParentIndex(
    pCur->apPage[pCur->iPage-1], 
    pCur->aiIdx[pCur->iPage-1], 
    pCur->apPage[pCur->iPage]->pgno
  );

  testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );

  releasePage(pCur->apPage[pCur->iPage]);
  pCur->iPage--;
  pCur->info.nSize = 0;
  pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
}
60096
60097
60098
60099
60100
60101
60102
60103

60104
60105
60106
60107
60108
60109
60110
60111
60112
60113
60114
60115
60116
60117
60118
60119
60120
60121
60122
60123

60124
60125
60126
60127
60128
60129
60130
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);

          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite3PageFree(pFree);
          }

          /* The pSpace buffer will be freed after the next call to
          ** balance_nonroot(), or just before this function returns, whichever
          ** comes first. */
          pFree = pSpace;
        }
      }

      pPage->nOverflow = 0;

      /* The next iteration of the do-loop balances the parent page. */
      releasePage(pPage);
      pCur->iPage--;

    }
  }while( rc==SQLITE_OK );

  if( pFree ){
    sqlite3PageFree(pFree);
  }
  return rc;







|
>




















>







60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
60463
60464
60465
60466
60467
60468
60469
60470
60471
60472
60473
60474
60475
60476
60477
60478
60479
60480
60481
60482
60483
60484
          ** different page). Once this subsequent call to balance_nonroot() 
          ** has completed, it is safe to release the pSpace buffer used by
          ** the previous call, as the overflow cell data will have been 
          ** copied either into the body of a database page or into the new
          ** pSpace buffer passed to the latter call to balance_nonroot().
          */
          u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
          rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1,
                               pCur->hints&BTREE_BULKLOAD);
          if( pFree ){
            /* If pFree is not NULL, it points to the pSpace buffer used 
            ** by a previous call to balance_nonroot(). Its contents are
            ** now stored either on real database pages or within the 
            ** new pSpace buffer, so it may be safely freed here. */
            sqlite3PageFree(pFree);
          }

          /* The pSpace buffer will be freed after the next call to
          ** balance_nonroot(), or just before this function returns, whichever
          ** comes first. */
          pFree = pSpace;
        }
      }

      pPage->nOverflow = 0;

      /* The next iteration of the do-loop balances the parent page. */
      releasePage(pPage);
      pCur->iPage--;
      assert( pCur->iPage>=0 );
    }
  }while( rc==SQLITE_OK );

  if( pFree ){
    sqlite3PageFree(pFree);
  }
  return rc;
60593
60594
60595
60596
60597
60598
60599
60600
60601
60602





60603
60604
60605
60606
60607
60608
60609
  int hdr;
  u16 szCell;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = getAndInitPage(pBt, pgno, &pPage, 0);
  if( rc ) return rc;





  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }







<


>
>
>
>
>







60947
60948
60949
60950
60951
60952
60953

60954
60955
60956
60957
60958
60959
60960
60961
60962
60963
60964
60965
60966
60967
  int hdr;
  u16 szCell;

  assert( sqlite3_mutex_held(pBt->mutex) );
  if( pgno>btreePagecount(pBt) ){
    return SQLITE_CORRUPT_BKPT;
  }

  rc = getAndInitPage(pBt, pgno, &pPage, 0);
  if( rc ) return rc;
  if( pPage->bBusy ){
    rc = SQLITE_CORRUPT_BKPT;
    goto cleardatabasepage_out;
  }
  pPage->bBusy = 1;
  hdr = pPage->hdrOffset;
  for(i=0; i<pPage->nCell; i++){
    pCell = findCell(pPage, i);
    if( !pPage->leaf ){
      rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
      if( rc ) goto cleardatabasepage_out;
    }
60620
60621
60622
60623
60624
60625
60626

60627
60628
60629
60630
60631
60632
60633
  if( freePageFlag ){
    freePage(pPage, &rc);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
  }

cleardatabasepage_out:

  releasePage(pPage);
  return rc;
}

/*
** Delete all information from a single table in the database.  iTable is
** the page number of the root of the table.  After this routine returns,







>







60978
60979
60980
60981
60982
60983
60984
60985
60986
60987
60988
60989
60990
60991
60992
  if( freePageFlag ){
    freePage(pPage, &rc);
  }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
    zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
  }

cleardatabasepage_out:
  pPage->bBusy = 0;
  releasePage(pPage);
  return rc;
}

/*
** Delete all information from a single table in the database.  iTable is
** the page number of the root of the table.  After this routine returns,
61759
61760
61761
61762
61763
61764
61765
61766
61767
61768
61769
61770
61771
61772










61773
61774
61775
61776
61777
61778
61779
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*
** set the mask of hint flags for cursor pCsr. Currently the only valid
** values are 0 and BTREE_BULKLOAD.
*/
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
  assert( mask==BTREE_BULKLOAD || mask==0 );
  pCsr->hints = mask;
}











/*
** Return true if the given Btree is read-only.
*/
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}







|
<


|


>
>
>
>
>
>
>
>
>
>







62118
62119
62120
62121
62122
62123
62124
62125

62126
62127
62128
62129
62130
62131
62132
62133
62134
62135
62136
62137
62138
62139
62140
62141
62142
62143
62144
62145
62146
62147
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*
** set the mask of hint flags for cursor pCsr.

*/
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
  assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
  pCsr->hints = mask;
}

#ifdef SQLITE_DEBUG
/*
** Return true if the cursor has a hint specified.  This routine is
** only used from within assert() statements
*/
SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
  return (pCsr->hints & mask)!=0;
}
#endif

/*
** Return true if the given Btree is read-only.
*/
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}
61925
61926
61927
61928
61929
61930
61931
61932
61933
61934
61935
61936
61937
61938
61939
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
** stored in database handle pDestDb.
*/
SQLITE_API sqlite3_backup *sqlite3_backup_init(
  sqlite3* pDestDb,                     /* Database to write to */
  const char *zDestDb,                  /* Name of database within pDestDb */
  sqlite3* pSrcDb,                      /* Database connection to read from */
  const char *zSrcDb                    /* Name of database within pSrcDb */
){
  sqlite3_backup *p;                    /* Value to return */








|







62293
62294
62295
62296
62297
62298
62299
62300
62301
62302
62303
62304
62305
62306
62307
** Create an sqlite3_backup process to copy the contents of zSrcDb from
** connection handle pSrcDb to zDestDb in pDestDb. If successful, return
** a pointer to the new sqlite3_backup object.
**
** If an error occurs, NULL is returned and an error code and error message
** stored in database handle pDestDb.
*/
SQLITE_API sqlite3_backup *SQLITE_STDCALL sqlite3_backup_init(
  sqlite3* pDestDb,                     /* Database to write to */
  const char *zDestDb,                  /* Name of database within pDestDb */
  sqlite3* pSrcDb,                      /* Database connection to read from */
  const char *zSrcDb                    /* Name of database within pSrcDb */
){
  sqlite3_backup *p;                    /* Value to return */

62028
62029
62030
62031
62032
62033
62034
62035
62036
62037
62038
62039
62040
62041
62042
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is
  ** guaranteed that the shared-mutex is held by this thread, handle
  ** p->pSrc may not actually be the owner.  */
  int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc);
  int nDestReserve = sqlite3BtreeGetReserve(p->pDest);
#endif
  int rc = SQLITE_OK;
  i64 iOff;

  assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 );
  assert( p->bDestLocked );
  assert( !isFatalError(p->rc) );







|







62396
62397
62398
62399
62400
62401
62402
62403
62404
62405
62406
62407
62408
62409
62410
  const int nCopy = MIN(nSrcPgsz, nDestPgsz);
  const i64 iEnd = (i64)iSrcPg*(i64)nSrcPgsz;
#ifdef SQLITE_HAS_CODEC
  /* Use BtreeGetReserveNoMutex() for the source b-tree, as although it is
  ** guaranteed that the shared-mutex is held by this thread, handle
  ** p->pSrc may not actually be the owner.  */
  int nSrcReserve = sqlite3BtreeGetReserveNoMutex(p->pSrc);
  int nDestReserve = sqlite3BtreeGetOptimalReserve(p->pDest);
#endif
  int rc = SQLITE_OK;
  i64 iOff;

  assert( sqlite3BtreeGetReserveNoMutex(p->pSrc)>=0 );
  assert( p->bDestLocked );
  assert( !isFatalError(p->rc) );
62133
62134
62135
62136
62137
62138
62139
62140
62141
62142
62143
62144
62145
62146
62147
  *pp = p;
  p->isAttached = 1;
}

/*
** Copy nPage pages from the source b-tree to the destination.
*/
SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage){
  int rc;
  int destMode;       /* Destination journal mode */
  int pgszSrc = 0;    /* Source page size */
  int pgszDest = 0;   /* Destination page size */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ) return SQLITE_MISUSE_BKPT;







|







62501
62502
62503
62504
62505
62506
62507
62508
62509
62510
62511
62512
62513
62514
62515
  *pp = p;
  p->isAttached = 1;
}

/*
** Copy nPage pages from the source b-tree to the destination.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_backup_step(sqlite3_backup *p, int nPage){
  int rc;
  int destMode;       /* Destination journal mode */
  int pgszSrc = 0;    /* Source page size */
  int pgszDest = 0;   /* Destination page size */

#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ) return SQLITE_MISUSE_BKPT;
62378
62379
62380
62381
62382
62383
62384
62385
62386
62387
62388
62389
62390
62391
62392
  sqlite3_mutex_leave(p->pSrcDb->mutex);
  return rc;
}

/*
** Release all resources associated with an sqlite3_backup* handle.
*/
SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p){
  sqlite3_backup **pp;                 /* Ptr to head of pagers backup list */
  sqlite3 *pSrcDb;                     /* Source database connection */
  int rc;                              /* Value to return */

  /* Enter the mutexes */
  if( p==0 ) return SQLITE_OK;
  pSrcDb = p->pSrcDb;







|







62746
62747
62748
62749
62750
62751
62752
62753
62754
62755
62756
62757
62758
62759
62760
  sqlite3_mutex_leave(p->pSrcDb->mutex);
  return rc;
}

/*
** Release all resources associated with an sqlite3_backup* handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_backup_finish(sqlite3_backup *p){
  sqlite3_backup **pp;                 /* Ptr to head of pagers backup list */
  sqlite3 *pSrcDb;                     /* Source database connection */
  int rc;                              /* Value to return */

  /* Enter the mutexes */
  if( p==0 ) return SQLITE_OK;
  pSrcDb = p->pSrcDb;
62430
62431
62432
62433
62434
62435
62436
62437
62438
62439
62440
62441
62442
62443
62444
62445
62446
62447
62448
62449
62450
62451
62452
62453
62454
62455
62456
62457
62458
  return rc;
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite3_backup_step().
*/
SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return p->nRemaining;
}

/*
** Return the total number of pages in the source database as of the most 
** recent call to sqlite3_backup_step().
*/
SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return p->nPagecount;







|













|







62798
62799
62800
62801
62802
62803
62804
62805
62806
62807
62808
62809
62810
62811
62812
62813
62814
62815
62816
62817
62818
62819
62820
62821
62822
62823
62824
62825
62826
  return rc;
}

/*
** Return the number of pages still to be backed up as of the most recent
** call to sqlite3_backup_step().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_backup_remaining(sqlite3_backup *p){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return p->nRemaining;
}

/*
** Return the total number of pages in the source database as of the most 
** recent call to sqlite3_backup_step().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_backup_pagecount(sqlite3_backup *p){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( p==0 ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return p->nPagecount;
63659
63660
63661
63662
63663
63664
63665
63666
63667
63668
63669
63670
63671
63672
63673
** Allocate and return a pointer to a new sqlite3_value object. If
** the second argument to this function is NULL, the object is allocated
** by calling sqlite3ValueNew().
**
** Otherwise, if the second argument is non-zero, then this function is 
** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
** already been allocated, allocate the UnpackedRecord structure that 
** that function will return to its caller here. Then return a pointer 
** an sqlite3_value within the UnpackedRecord.a[] array.
*/
static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( p ){
    UnpackedRecord *pRec = p->ppRec[0];








|







64027
64028
64029
64030
64031
64032
64033
64034
64035
64036
64037
64038
64039
64040
64041
** Allocate and return a pointer to a new sqlite3_value object. If
** the second argument to this function is NULL, the object is allocated
** by calling sqlite3ValueNew().
**
** Otherwise, if the second argument is non-zero, then this function is 
** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
** already been allocated, allocate the UnpackedRecord structure that 
** that function will return to its caller here. Then return a pointer to
** an sqlite3_value within the UnpackedRecord.a[] array.
*/
static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( p ){
    UnpackedRecord *pRec = p->ppRec[0];

63703
63704
63705
63706
63707
63708
63709











































































































63710
63711
63712
63713
63714
63715
63716
  }
#else
  UNUSED_PARAMETER(p);
#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
  return sqlite3ValueNew(db);
}












































































































/*
** Extract a value from the supplied expression in the manner described
** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
** using valueNew().
**
** If pCtx is NULL and an error occurs after the sqlite3_value object
** has been allocated, it is freed before returning. Or, if pCtx is not







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







64071
64072
64073
64074
64075
64076
64077
64078
64079
64080
64081
64082
64083
64084
64085
64086
64087
64088
64089
64090
64091
64092
64093
64094
64095
64096
64097
64098
64099
64100
64101
64102
64103
64104
64105
64106
64107
64108
64109
64110
64111
64112
64113
64114
64115
64116
64117
64118
64119
64120
64121
64122
64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
64145
64146
64147
64148
64149
64150
64151
64152
64153
64154
64155
64156
64157
64158
64159
64160
64161
64162
64163
64164
64165
64166
64167
64168
64169
64170
64171
64172
64173
64174
64175
64176
64177
64178
64179
64180
64181
64182
64183
64184
64185
64186
64187
64188
64189
64190
64191
  }
#else
  UNUSED_PARAMETER(p);
#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */
  return sqlite3ValueNew(db);
}

/*
** The expression object indicated by the second argument is guaranteed
** to be a scalar SQL function. If
**
**   * all function arguments are SQL literals,
**   * the SQLITE_FUNC_CONSTANT function flag is set, and
**   * the SQLITE_FUNC_NEEDCOLL function flag is not set,
**
** then this routine attempts to invoke the SQL function. Assuming no
** error occurs, output parameter (*ppVal) is set to point to a value 
** object containing the result before returning SQLITE_OK.
**
** Affinity aff is applied to the result of the function before returning.
** If the result is a text value, the sqlite3_value object uses encoding 
** enc.
**
** If the conditions above are not met, this function returns SQLITE_OK
** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
** NULL and an SQLite error code returned.
*/
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
static int valueFromFunction(
  sqlite3 *db,                    /* The database connection */
  Expr *p,                        /* The expression to evaluate */
  u8 enc,                         /* Encoding to use */
  u8 aff,                         /* Affinity to use */
  sqlite3_value **ppVal,          /* Write the new value here */
  struct ValueNewStat4Ctx *pCtx   /* Second argument for valueNew() */
){
  sqlite3_context ctx;            /* Context object for function invocation */
  sqlite3_value **apVal = 0;      /* Function arguments */
  int nVal = 0;                   /* Size of apVal[] array */
  FuncDef *pFunc = 0;             /* Function definition */
  sqlite3_value *pVal = 0;        /* New value */
  int rc = SQLITE_OK;             /* Return code */
  int nName;                      /* Size of function name in bytes */
  ExprList *pList = 0;            /* Function arguments */
  int i;                          /* Iterator variable */

  assert( pCtx!=0 );
  assert( (p->flags & EP_TokenOnly)==0 );
  pList = p->x.pList;
  if( pList ) nVal = pList->nExpr;
  nName = sqlite3Strlen30(p->u.zToken);
  pFunc = sqlite3FindFunction(db, p->u.zToken, nName, nVal, enc, 0);
  assert( pFunc );
  if( (pFunc->funcFlags & SQLITE_FUNC_CONSTANT)==0 
   || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
  ){
    return SQLITE_OK;
  }

  if( pList ){
    apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
    if( apVal==0 ){
      rc = SQLITE_NOMEM;
      goto value_from_function_out;
    }
    for(i=0; i<nVal; i++){
      rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
      if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
    }
  }

  pVal = valueNew(db, pCtx);
  if( pVal==0 ){
    rc = SQLITE_NOMEM;
    goto value_from_function_out;
  }

  assert( pCtx->pParse->rc==SQLITE_OK );
  memset(&ctx, 0, sizeof(ctx));
  ctx.pOut = pVal;
  ctx.pFunc = pFunc;
  pFunc->xFunc(&ctx, nVal, apVal);
  if( ctx.isError ){
    rc = ctx.isError;
    sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
  }else{
    sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
    assert( rc==SQLITE_OK );
    rc = sqlite3VdbeChangeEncoding(pVal, enc);
    if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){
      rc = SQLITE_TOOBIG;
      pCtx->pParse->nErr++;
    }
  }
  pCtx->pParse->rc = rc;

 value_from_function_out:
  if( rc!=SQLITE_OK ){
    pVal = 0;
  }
  if( apVal ){
    for(i=0; i<nVal; i++){
      sqlite3ValueFree(apVal[i]);
    }
    sqlite3DbFree(db, apVal);
  }

  *ppVal = pVal;
  return rc;
}
#else
# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
#endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */

/*
** Extract a value from the supplied expression in the manner described
** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
** using valueNew().
**
** If pCtx is NULL and an error occurs after the sqlite3_value object
** has been allocated, it is freed before returning. Or, if pCtx is not
63734
63735
63736
63737
63738
63739
63740






63741
63742
63743
63744
63745
63746
63747

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft;
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;







  if( op==TK_CAST ){
    u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
    rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
    testcase( rc!=SQLITE_OK );
    if( *ppVal ){
      sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);







>
>
>
>
>
>







64209
64210
64211
64212
64213
64214
64215
64216
64217
64218
64219
64220
64221
64222
64223
64224
64225
64226
64227
64228

  if( !pExpr ){
    *ppVal = 0;
    return SQLITE_OK;
  }
  while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft;
  if( NEVER(op==TK_REGISTER) ) op = pExpr->op2;

  /* Compressed expressions only appear when parsing the DEFAULT clause
  ** on a table column definition, and hence only when pCtx==0.  This
  ** check ensures that an EP_TokenOnly expression is never passed down
  ** into valueFromFunction(). */
  assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );

  if( op==TK_CAST ){
    u8 aff = sqlite3AffinityType(pExpr->u.zToken,0);
    rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
    testcase( rc!=SQLITE_OK );
    if( *ppVal ){
      sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8);
63810
63811
63812
63813
63814
63815
63816






63817
63818
63819
63820
63821
63822
63823
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif







  *ppVal = pVal;
  return rc;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);







>
>
>
>
>
>







64291
64292
64293
64294
64295
64296
64297
64298
64299
64300
64301
64302
64303
64304
64305
64306
64307
64308
64309
64310
    zVal = &pExpr->u.zToken[2];
    nVal = sqlite3Strlen30(zVal)-1;
    assert( zVal[nVal]=='\'' );
    sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
                         0, SQLITE_DYNAMIC);
  }
#endif

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  else if( op==TK_FUNCTION && pCtx!=0 ){
    rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
  }
#endif

  *ppVal = pVal;
  return rc;

no_mem:
  db->mallocFailed = 1;
  sqlite3DbFree(db, zVal);
64200
64201
64202
64203
64204
64205
64206
64207
64208
64209
64210
64211
64212
64213
64214
  p->zSql = sqlite3DbStrNDup(p->db, z, n);
  p->isPrepareV2 = (u8)isPrepareV2;
}

/*
** Return the SQL associated with a prepared statement
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe *)pStmt;
  return (p && p->isPrepareV2) ? p->zSql : 0;
}

/*
** Swap all content between two VDBE structures.
*/







|







64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
64697
64698
64699
64700
64701
  p->zSql = sqlite3DbStrNDup(p->db, z, n);
  p->isPrepareV2 = (u8)isPrepareV2;
}

/*
** Return the SQL associated with a prepared statement
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_sql(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe *)pStmt;
  return (p && p->isPrepareV2) ? p->zSql : 0;
}

/*
** Swap all content between two VDBE structures.
*/
65263
65264
65265
65266
65267
65268
65269
65270
65271
65272
65273
65274
65275
65276
65277
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
      break;
    }
#endif
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }







|







65750
65751
65752
65753
65754
65755
65756
65757
65758
65759
65760
65761
65762
65763
65764
        zP4 = "(blob)";
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case P4_VTAB: {
      sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
      sqlite3_snprintf(nTemp, zTemp, "vtab:%p", pVtab);
      break;
    }
#endif
    case P4_INTARRAY: {
      sqlite3_snprintf(nTemp, zTemp, "intarray");
      break;
    }
65927
65928
65929
65930
65931
65932
65933

65934
65935
65936
65937
65938
65939
65940
65941
65942
65943
  }else if( pCx->pCursor ){
    sqlite3BtreeCloseCursor(pCx->pCursor);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  else if( pCx->pVtabCursor ){
    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;

    p->inVtabMethod = 1;
    pModule->xClose(pVtabCursor);
    p->inVtabMethod = 0;
  }
#endif
}

/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore







>
|

<







66414
66415
66416
66417
66418
66419
66420
66421
66422
66423

66424
66425
66426
66427
66428
66429
66430
  }else if( pCx->pCursor ){
    sqlite3BtreeCloseCursor(pCx->pCursor);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  else if( pCx->pVtabCursor ){
    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
    assert( pVtabCursor->pVtab->nRef>0 );
    pVtabCursor->pVtab->nRef--;
    pModule->xClose(pVtabCursor);

  }
#endif
}

/*
** Copy the values stored in the VdbeFrame structure to its Vdbe. This
** is used, for example, when a trigger sub-program is halted to restore
66288
66289
66290
66291
66292
66293
66294
66295
66296
66297
66298
66299
66300
66301
66302
      return rc;
    }

    /* Delete the master journal file. This commits the transaction. After
    ** doing this the directory is synced again before any individual
    ** transaction files are deleted.
    */
    rc = sqlite3OsDelete(pVfs, zMaster, 1);
    sqlite3DbFree(db, zMaster);
    zMaster = 0;
    if( rc ){
      return rc;
    }

    /* All files and directories have already been synced, so the following







|







66775
66776
66777
66778
66779
66780
66781
66782
66783
66784
66785
66786
66787
66788
66789
      return rc;
    }

    /* Delete the master journal file. This commits the transaction. After
    ** doing this the directory is synced again before any individual
    ** transaction files are deleted.
    */
    rc = sqlite3OsDelete(pVfs, zMaster, needSync);
    sqlite3DbFree(db, zMaster);
    zMaster = 0;
    if( rc ){
      return rc;
    }

    /* All files and directories have already been synced, so the following
67494
67495
67496
67497
67498
67499
67500




































67501
67502
67503
67504
67505
67506
67507
  if( desiredResult>0 && rc>0 ) return 1;
  if( CORRUPT_DB ) return 1;
  if( pKeyInfo->db->mallocFailed ) return 1;
  return 0;
}
#endif





































/*
** Both *pMem1 and *pMem2 contain string values. Compare the two values
** using the collation sequence pColl. As usual, return a negative , zero
** or positive value if *pMem1 is less than, equal to or greater than 
** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
*/
static int vdbeCompareMemString(







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







67981
67982
67983
67984
67985
67986
67987
67988
67989
67990
67991
67992
67993
67994
67995
67996
67997
67998
67999
68000
68001
68002
68003
68004
68005
68006
68007
68008
68009
68010
68011
68012
68013
68014
68015
68016
68017
68018
68019
68020
68021
68022
68023
68024
68025
68026
68027
68028
68029
68030
  if( desiredResult>0 && rc>0 ) return 1;
  if( CORRUPT_DB ) return 1;
  if( pKeyInfo->db->mallocFailed ) return 1;
  return 0;
}
#endif

#if SQLITE_DEBUG
/*
** Count the number of fields (a.k.a. columns) in the record given by
** pKey,nKey.  The verify that this count is less than or equal to the
** limit given by pKeyInfo->nField + pKeyInfo->nXField.
**
** If this constraint is not satisfied, it means that the high-speed
** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
** not work correctly.  If this assert() ever fires, it probably means
** that the KeyInfo.nField or KeyInfo.nXField values were computed
** incorrectly.
*/
static void vdbeAssertFieldCountWithinLimits(
  int nKey, const void *pKey,   /* The record to verify */ 
  const KeyInfo *pKeyInfo       /* Compare size with this KeyInfo */
){
  int nField = 0;
  u32 szHdr;
  u32 idx;
  u32 notUsed;
  const unsigned char *aKey = (const unsigned char*)pKey;

  if( CORRUPT_DB ) return;
  idx = getVarint32(aKey, szHdr);
  assert( nKey>=0 );
  assert( szHdr<=(u32)nKey );
  while( idx<szHdr ){
    idx += getVarint32(aKey+idx, notUsed);
    nField++;
  }
  assert( nField <= pKeyInfo->nField+pKeyInfo->nXField );
}
#else
# define vdbeAssertFieldCountWithinLimits(A,B,C)
#endif

/*
** Both *pMem1 and *pMem2 contain string values. Compare the two values
** using the collation sequence pColl. As usual, return a negative , zero
** or positive value if *pMem1 is less than, equal to or greater than 
** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
*/
static int vdbeCompareMemString(
67905
67906
67907
67908
67909
67910
67911

67912
67913
67914
67915
67916
67917
67918
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;


  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }







>







68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
  int serial_type = ((const u8*)pKey1)[1];
  int res;
  u32 y;
  u64 x;
  i64 v = pPKey2->aMem[0].u.i;
  i64 lhs;

  vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
  assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
  switch( serial_type ){
    case 1: { /* 1-byte signed integer */
      lhs = ONE_BYTE_INT(aKey);
      testcase( lhs<0 );
      break;
    }
67992
67993
67994
67995
67996
67997
67998

67999
68000
68001
68002
68003
68004
68005
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;


  getVarint32(&aKey1[1], serial_type);
  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;







>







68516
68517
68518
68519
68520
68521
68522
68523
68524
68525
68526
68527
68528
68529
68530
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;

  vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
  getVarint32(&aKey1[1], serial_type);
  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
    int nCmp;
68318
68319
68320
68321
68322
68323
68324
68325
68326
68327
68328
68329
68330
68331
68332
** Return TRUE (non-zero) of the statement supplied as an argument needs
** to be recompiled.  A statement needs to be recompiled whenever the
** execution environment changes in a way that would alter the program
** that sqlite3_prepare() generates.  For example, if new functions or
** collating sequences are registered or if an authorizer function is
** added or changed.
*/
SQLITE_API int sqlite3_expired(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p==0 || p->expired;
}
#endif

/*
** Check on a Vdbe to make sure it has not been finalized.  Log







|







68843
68844
68845
68846
68847
68848
68849
68850
68851
68852
68853
68854
68855
68856
68857
** Return TRUE (non-zero) of the statement supplied as an argument needs
** to be recompiled.  A statement needs to be recompiled whenever the
** execution environment changes in a way that would alter the program
** that sqlite3_prepare() generates.  For example, if new functions or
** collating sequences are registered or if an authorizer function is
** added or changed.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_expired(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p==0 || p->expired;
}
#endif

/*
** Check on a Vdbe to make sure it has not been finalized.  Log
68355
68356
68357
68358
68359
68360
68361
68362
68363
68364
68365
68366
68367
68368
68369
** the sqlite3_compile() routine. The integer returned is an SQLITE_
** success/failure code that describes the result of executing the virtual
** machine.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt){
  int rc;
  if( pStmt==0 ){
    /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
    ** pointer is a harmless no-op. */
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;







|







68880
68881
68882
68883
68884
68885
68886
68887
68888
68889
68890
68891
68892
68893
68894
** the sqlite3_compile() routine. The integer returned is an SQLITE_
** success/failure code that describes the result of executing the virtual
** machine.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_finalize(sqlite3_stmt *pStmt){
  int rc;
  if( pStmt==0 ){
    /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
    ** pointer is a harmless no-op. */
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
68381
68382
68383
68384
68385
68386
68387
68388
68389
68390
68391
68392
68393
68394
68395
68396
68397
68398
68399
68400
68401
68402
68403
68404
68405
68406
68407
68408
68409
68410
68411
68412
68413
68414
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from
** the prior execution is returned.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt){
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeRewind(v);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}

/*
** Set all the parameters in the compiled SQL statement to NULL.
*/
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
  int i;
  int rc = SQLITE_OK;
  Vdbe *p = (Vdbe*)pStmt;
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
#endif
  sqlite3_mutex_enter(mutex);







|


















|







68906
68907
68908
68909
68910
68911
68912
68913
68914
68915
68916
68917
68918
68919
68920
68921
68922
68923
68924
68925
68926
68927
68928
68929
68930
68931
68932
68933
68934
68935
68936
68937
68938
68939
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from
** the prior execution is returned.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_reset(sqlite3_stmt *pStmt){
  int rc;
  if( pStmt==0 ){
    rc = SQLITE_OK;
  }else{
    Vdbe *v = (Vdbe*)pStmt;
    sqlite3_mutex_enter(v->db->mutex);
    rc = sqlite3VdbeReset(v);
    sqlite3VdbeRewind(v);
    assert( (rc & (v->db->errMask))==rc );
    rc = sqlite3ApiExit(v->db, rc);
    sqlite3_mutex_leave(v->db->mutex);
  }
  return rc;
}

/*
** Set all the parameters in the compiled SQL statement to NULL.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_clear_bindings(sqlite3_stmt *pStmt){
  int i;
  int rc = SQLITE_OK;
  Vdbe *p = (Vdbe*)pStmt;
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
#endif
  sqlite3_mutex_enter(mutex);
68424
68425
68426
68427
68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
68456
68457
68458
68459
68460
68461
68462
68463
68464
68465
68466
68467
68468
68469




68470
68471
68472
68473
68474
68475
68476
68477
}


/**************************** sqlite3_value_  *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
SQLITE_API const void *sqlite3_value_blob(sqlite3_value *pVal){
  Mem *p = (Mem*)pVal;
  if( p->flags & (MEM_Blob|MEM_Str) ){
    sqlite3VdbeMemExpandBlob(p);
    p->flags |= MEM_Blob;
    return p->n ? p->z : 0;
  }else{
    return sqlite3_value_text(pVal);
  }
}
SQLITE_API int sqlite3_value_bytes(sqlite3_value *pVal){
  return sqlite3ValueBytes(pVal, SQLITE_UTF8);
}
SQLITE_API int sqlite3_value_bytes16(sqlite3_value *pVal){
  return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
}
SQLITE_API double sqlite3_value_double(sqlite3_value *pVal){
  return sqlite3VdbeRealValue((Mem*)pVal);
}
SQLITE_API int sqlite3_value_int(sqlite3_value *pVal){
  return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
}
SQLITE_API const void *sqlite3_value_text16be(sqlite3_value *pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value *pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */




SQLITE_API int sqlite3_value_type(sqlite3_value* pVal){
  static const u8 aType[] = {
     SQLITE_BLOB,     /* 0x00 */
     SQLITE_NULL,     /* 0x01 */
     SQLITE_TEXT,     /* 0x02 */
     SQLITE_NULL,     /* 0x03 */
     SQLITE_INTEGER,  /* 0x04 */
     SQLITE_NULL,     /* 0x05 */







|









|


|


|


|


|


|



|


|


|



>
>
>
>
|







68949
68950
68951
68952
68953
68954
68955
68956
68957
68958
68959
68960
68961
68962
68963
68964
68965
68966
68967
68968
68969
68970
68971
68972
68973
68974
68975
68976
68977
68978
68979
68980
68981
68982
68983
68984
68985
68986
68987
68988
68989
68990
68991
68992
68993
68994
68995
68996
68997
68998
68999
69000
69001
69002
69003
69004
69005
69006
}


/**************************** sqlite3_value_  *******************************
** The following routines extract information from a Mem or sqlite3_value
** structure.
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_blob(sqlite3_value *pVal){
  Mem *p = (Mem*)pVal;
  if( p->flags & (MEM_Blob|MEM_Str) ){
    sqlite3VdbeMemExpandBlob(p);
    p->flags |= MEM_Blob;
    return p->n ? p->z : 0;
  }else{
    return sqlite3_value_text(pVal);
  }
}
SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes(sqlite3_value *pVal){
  return sqlite3ValueBytes(pVal, SQLITE_UTF8);
}
SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes16(sqlite3_value *pVal){
  return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
}
SQLITE_API double SQLITE_STDCALL sqlite3_value_double(sqlite3_value *pVal){
  return sqlite3VdbeRealValue((Mem*)pVal);
}
SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value *pVal){
  return (int)sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API sqlite_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value *pVal){
  return sqlite3VdbeIntValue((Mem*)pVal);
}
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value *pVal){
  return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value* pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
}
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16be(sqlite3_value *pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16BE);
}
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16le(sqlite3_value *pVal){
  return sqlite3ValueText(pVal, SQLITE_UTF16LE);
}
#endif /* SQLITE_OMIT_UTF16 */
/* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
** point number string BLOB NULL
*/
SQLITE_API int SQLITE_STDCALL sqlite3_value_type(sqlite3_value* pVal){
  static const u8 aType[] = {
     SQLITE_BLOB,     /* 0x00 */
     SQLITE_NULL,     /* 0x01 */
     SQLITE_TEXT,     /* 0x02 */
     SQLITE_NULL,     /* 0x03 */
     SQLITE_INTEGER,  /* 0x04 */
     SQLITE_NULL,     /* 0x05 */
68539
68540
68541
68542
68543
68544
68545
68546
68547
68548
68549
68550
68551
68552
68553
68554
68555
68556
68557
68558
68559
68560
68561
68562
68563
68564
68565
68566
68567
68568
68569
68570
68571
68572
68573
68574
68575
68576
68577
68578
68579
68580
68581
68582
68583
68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597
68598
68599
68600
68601
68602
68603
68604
68605
68606
68607
68608
68609
68610
68611
68612
68613
68614
68615
68616
68617
68618
68619
68620
68621
68622
68623
68624
68625
68626
68627
68628
68629
68630
68631
68632
68633
68634
68635
68636
68637
68638
68639
68640
68641
68642
68643
68644
68645
68646
68647
68648
68649
68650
68651
68652
68653
68654
68655
68656
68657
68658
68659
68660
68661
68662
68663
68664



68665
68666
68667
68668
68669
68670
68671
68672
68673
68674
68675
68676
68677
68678
68679
68680
68681
68682
68683
68684
68685
68686
68687
68688
    /* noop */
  }else{
    xDel((void*)p);
  }
  if( pCtx ) sqlite3_result_error_toobig(pCtx);
  return SQLITE_TOOBIG;
}
SQLITE_API void sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( n>=0 );
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, 0, xDel);
}
SQLITE_API void sqlite3_result_blob64(
  sqlite3_context *pCtx, 
  const void *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, 0, xDel);
  }
}
SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
}
SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->isError = SQLITE_ERROR;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->isError = SQLITE_ERROR;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
}
SQLITE_API void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
SQLITE_API void sqlite3_result_null(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
}
SQLITE_API void sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
}
SQLITE_API void sqlite3_result_text64(
  sqlite3_context *pCtx, 
  const char *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *),
  unsigned char enc
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, enc, xDel);
  }
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API void sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
}
SQLITE_API void sqlite3_result_text16be(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
}
SQLITE_API void sqlite3_result_text16le(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemCopy(pCtx->pOut, pValue);
}
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
}
SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
  pCtx->isError = errCode;
  pCtx->fErrorOrAux = 1;



  if( pCtx->pOut->flags & MEM_Null ){
    sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 
                         SQLITE_UTF8, SQLITE_STATIC);
  }
}

/* Force an SQLITE_TOOBIG error. */
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->isError = SQLITE_TOOBIG;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 
                       SQLITE_UTF8, SQLITE_STATIC);
}

/* An SQLITE_NOMEM error. */
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->fErrorOrAux = 1;
  pCtx->pOut->db->mallocFailed = 1;
}








|









|













|



|






|






|



|



|



|








|
















|








|








|









|



|



|


>
>
>







|








|







69068
69069
69070
69071
69072
69073
69074
69075
69076
69077
69078
69079
69080
69081
69082
69083
69084
69085
69086
69087
69088
69089
69090
69091
69092
69093
69094
69095
69096
69097
69098
69099
69100
69101
69102
69103
69104
69105
69106
69107
69108
69109
69110
69111
69112
69113
69114
69115
69116
69117
69118
69119
69120
69121
69122
69123
69124
69125
69126
69127
69128
69129
69130
69131
69132
69133
69134
69135
69136
69137
69138
69139
69140
69141
69142
69143
69144
69145
69146
69147
69148
69149
69150
69151
69152
69153
69154
69155
69156
69157
69158
69159
69160
69161
69162
69163
69164
69165
69166
69167
69168
69169
69170
69171
69172
69173
69174
69175
69176
69177
69178
69179
69180
69181
69182
69183
69184
69185
69186
69187
69188
69189
69190
69191
69192
69193
69194
69195
69196
69197
69198
69199
69200
69201
69202
69203
69204
69205
69206
69207
69208
69209
69210
69211
69212
69213
69214
69215
69216
69217
69218
69219
69220
    /* noop */
  }else{
    xDel((void*)p);
  }
  if( pCtx ) sqlite3_result_error_toobig(pCtx);
  return SQLITE_TOOBIG;
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_blob(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( n>=0 );
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, 0, xDel);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_blob64(
  sqlite3_context *pCtx, 
  const void *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, 0, xDel);
  }
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_double(sqlite3_context *pCtx, double rVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->isError = SQLITE_ERROR;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API void SQLITE_STDCALL sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->isError = SQLITE_ERROR;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
}
#endif
SQLITE_API void SQLITE_STDCALL sqlite3_result_int(sqlite3_context *pCtx, int iVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_null(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_text(
  sqlite3_context *pCtx, 
  const char *z, 
  int n,
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_text64(
  sqlite3_context *pCtx, 
  const char *z, 
  sqlite3_uint64 n,
  void (*xDel)(void *),
  unsigned char enc
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  assert( xDel!=SQLITE_DYNAMIC );
  if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
  if( n>0x7fffffff ){
    (void)invokeValueDestructor(z, xDel, pCtx);
  }else{
    setResultStrOrError(pCtx, z, (int)n, enc, xDel);
  }
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16be(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16le(
  sqlite3_context *pCtx, 
  const void *z, 
  int n, 
  void (*xDel)(void *)
){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API void SQLITE_STDCALL sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemCopy(pCtx->pOut, pValue);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
}
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
  pCtx->isError = errCode;
  pCtx->fErrorOrAux = 1;
#ifdef SQLITE_DEBUG
  if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
#endif
  if( pCtx->pOut->flags & MEM_Null ){
    sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1, 
                         SQLITE_UTF8, SQLITE_STATIC);
  }
}

/* Force an SQLITE_TOOBIG error. */
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_toobig(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  pCtx->isError = SQLITE_TOOBIG;
  pCtx->fErrorOrAux = 1;
  sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1, 
                       SQLITE_UTF8, SQLITE_STATIC);
}

/* An SQLITE_NOMEM error. */
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_nomem(sqlite3_context *pCtx){
  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  sqlite3VdbeMemSetNull(pCtx->pOut);
  pCtx->isError = SQLITE_NOMEM;
  pCtx->fErrorOrAux = 1;
  pCtx->pOut->db->mallocFailed = 1;
}

68738
68739
68740
68741
68742
68743
68744
68745
68746
68747
68748
68749
68750
68751
68752
    ** returns, and those were broken by the automatic-reset change.  As a
    ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
    ** legacy behavior of returning SQLITE_MISUSE for cases where the 
    ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
    ** or SQLITE_BUSY error.
    */
#ifdef SQLITE_OMIT_AUTORESET
    if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){
      sqlite3_reset((sqlite3_stmt*)p);
    }else{
      return SQLITE_MISUSE_BKPT;
    }
#else
    sqlite3_reset((sqlite3_stmt*)p);
#endif







|







69270
69271
69272
69273
69274
69275
69276
69277
69278
69279
69280
69281
69282
69283
69284
    ** returns, and those were broken by the automatic-reset change.  As a
    ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
    ** legacy behavior of returning SQLITE_MISUSE for cases where the 
    ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
    ** or SQLITE_BUSY error.
    */
#ifdef SQLITE_OMIT_AUTORESET
    if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
      sqlite3_reset((sqlite3_stmt*)p);
    }else{
      return SQLITE_MISUSE_BKPT;
    }
#else
    sqlite3_reset((sqlite3_stmt*)p);
#endif
68784
68785
68786
68787
68788
68789
68790



68791
68792
68793
68794
68795
68796
68797
#endif

    db->nVdbeActive++;
    if( p->readOnly==0 ) db->nVdbeWrite++;
    if( p->bIsReader ) db->nVdbeRead++;
    p->pc = 0;
  }



#ifndef SQLITE_OMIT_EXPLAIN
  if( p->explain ){
    rc = sqlite3VdbeList(p);
  }else
#endif /* SQLITE_OMIT_EXPLAIN */
  {
    db->nVdbeExec++;







>
>
>







69316
69317
69318
69319
69320
69321
69322
69323
69324
69325
69326
69327
69328
69329
69330
69331
69332
#endif

    db->nVdbeActive++;
    if( p->readOnly==0 ) db->nVdbeWrite++;
    if( p->bIsReader ) db->nVdbeRead++;
    p->pc = 0;
  }
#ifdef SQLITE_DEBUG
  p->rcApp = SQLITE_OK;
#endif
#ifndef SQLITE_OMIT_EXPLAIN
  if( p->explain ){
    rc = sqlite3VdbeList(p);
  }else
#endif /* SQLITE_OMIT_EXPLAIN */
  {
    db->nVdbeExec++;
68828
68829
68830
68831
68832
68833
68834
68835
68836
68837
68838
68839
68840
68841
68842
68843
68844
68845
68846
68847
68848
68849
68850
68851
68852
68853
68854
68855
68856
68857
68858
  ** be one of the values in the first assert() below. Variable p->rc 
  ** contains the value that would be returned if sqlite3_finalize() 
  ** were called on statement p.
  */
  assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR 
       || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
  );
  assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
  if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
    /* If this statement was prepared using sqlite3_prepare_v2(), and an
    ** error has occurred, then return the error code in p->rc to the
    ** caller. Set the error code in the database handle to the same value.
    */ 
    rc = sqlite3VdbeTransferError(p);
  }
  return (rc&db->errMask);
}

/*
** This is the top-level implementation of sqlite3_step().  Call
** sqlite3Step() to do most of the work.  If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
SQLITE_API int sqlite3_step(sqlite3_stmt *pStmt){
  int rc = SQLITE_OK;      /* Result from sqlite3Step() */
  int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
  Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
  int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
  sqlite3 *db;             /* The database connection */

  if( vdbeSafetyNotNull(v) ){







|















|







69363
69364
69365
69366
69367
69368
69369
69370
69371
69372
69373
69374
69375
69376
69377
69378
69379
69380
69381
69382
69383
69384
69385
69386
69387
69388
69389
69390
69391
69392
69393
  ** be one of the values in the first assert() below. Variable p->rc 
  ** contains the value that would be returned if sqlite3_finalize() 
  ** were called on statement p.
  */
  assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR 
       || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
  );
  assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
  if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
    /* If this statement was prepared using sqlite3_prepare_v2(), and an
    ** error has occurred, then return the error code in p->rc to the
    ** caller. Set the error code in the database handle to the same value.
    */ 
    rc = sqlite3VdbeTransferError(p);
  }
  return (rc&db->errMask);
}

/*
** This is the top-level implementation of sqlite3_step().  Call
** sqlite3Step() to do most of the work.  If a schema error occurs,
** call sqlite3Reprepare() and try again.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_step(sqlite3_stmt *pStmt){
  int rc = SQLITE_OK;      /* Result from sqlite3Step() */
  int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */
  Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */
  int cnt = 0;             /* Counter to prevent infinite loop of reprepares */
  sqlite3 *db;             /* The database connection */

  if( vdbeSafetyNotNull(v) ){
68895
68896
68897
68898
68899
68900
68901
68902
68903
68904
68905
68906
68907
68908
68909
68910
68911
68912
68913
68914
68915
68916
68917
68918
68919
68920
68921
68922
68923




68924
68925
68926
68927







68928
68929
68930
68931
68932
68933
68934
68935
68936
68937
68938
68939
}


/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
*/
SQLITE_API void *sqlite3_user_data(sqlite3_context *p){
  assert( p && p->pFunc );
  return p->pFunc->pUserData;
}

/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
**
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
  assert( p && p->pFunc );
  return p->pOut->db;
}

/*
** Return the current time for a statement




*/
SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
  Vdbe *v = p->pVdbe;
  int rc;







  if( v->iCurrentTime==0 ){
    rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, &v->iCurrentTime);
    if( rc ) v->iCurrentTime = 0;
  }
  return v->iCurrentTime;
}

/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context.  The sqlite3_overload_function() API might construct
** SQL function that use this routine so that the functions will exist







|














|





|
>
>
>
>


<

>
>
>
>
>
>
>
|
|
|

|







69430
69431
69432
69433
69434
69435
69436
69437
69438
69439
69440
69441
69442
69443
69444
69445
69446
69447
69448
69449
69450
69451
69452
69453
69454
69455
69456
69457
69458
69459
69460
69461
69462
69463
69464

69465
69466
69467
69468
69469
69470
69471
69472
69473
69474
69475
69476
69477
69478
69479
69480
69481
69482
69483
69484
}


/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_user_data(sqlite3_context *p){
  assert( p && p->pFunc );
  return p->pFunc->pUserData;
}

/*
** Extract the user data from a sqlite3_context structure and return a
** pointer to it.
**
** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
** returns a copy of the pointer to the database connection (the 1st
** parameter) of the sqlite3_create_function() and
** sqlite3_create_function16() routines that originally registered the
** application defined function.
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_context_db_handle(sqlite3_context *p){
  assert( p && p->pFunc );
  return p->pOut->db;
}

/*
** Return the current time for a statement.  If the current time
** is requested more than once within the same run of a single prepared
** statement, the exact same time is returned for each invocation regardless
** of the amount of time that elapses between invocations.  In other words,
** the time returned is always the time of the first call.
*/
SQLITE_PRIVATE sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){

  int rc;
#ifndef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
  assert( p->pVdbe!=0 );
#else
  sqlite3_int64 iTime = 0;
  sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
#endif
  if( *piTime==0 ){
    rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
    if( rc ) *piTime = 0;
  }
  return *piTime;
}

/*
** The following is the implementation of an SQL function that always
** fails with an error message stating that the function is used in the
** wrong context.  The sqlite3_overload_function() API might construct
** SQL function that use this routine so that the functions will exist
68976
68977
68978
68979
68980
68981
68982
68983
68984
68985
68986
68987
68988
68989
68990
68991
68992
68993
68994
68995
68996
68997
68998
68999
69000
69001





69002
69003
69004
69005
69006
69007
69008
69009
69010
69011
69012
69013
69014
69015
69016
69017
69018
69019
69020
69021
69022
69023
69024





69025
69026
69027
69028
69029
69030
69031
}

/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
*/
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  assert( p && p->pFunc && p->pFunc->xStep );
  assert( sqlite3_mutex_held(p->pOut->db->mutex) );
  testcase( nByte<0 );
  if( (p->pMem->flags & MEM_Agg)==0 ){
    return createAggContext(p, nByte);
  }else{
    return (void*)p->pMem->z;
  }
}

/*
** Return the auxiliary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );





  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }

  return (pAuxData ? pAuxData->pAux : 0);
}

/*
** Set the auxiliary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
SQLITE_API void sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
  void (*xDelete)(void*)
){
  AuxData *pAuxData;
  Vdbe *pVdbe = pCtx->pVdbe;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  if( iArg<0 ) goto failed;






  for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }
  if( pAuxData==0 ){
    pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
    if( !pAuxData ) goto failed;







|














|



>
>
>
>
>












|










>
>
>
>
>







69521
69522
69523
69524
69525
69526
69527
69528
69529
69530
69531
69532
69533
69534
69535
69536
69537
69538
69539
69540
69541
69542
69543
69544
69545
69546
69547
69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
69565
69566
69567
69568
69569
69570
69571
69572
69573
69574
69575
69576
69577
69578
69579
69580
69581
69582
69583
69584
69585
69586
}

/*
** Allocate or return the aggregate context for a user function.  A new
** context is allocated on the first call.  Subsequent calls return the
** same context that was returned on prior calls.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_aggregate_context(sqlite3_context *p, int nByte){
  assert( p && p->pFunc && p->pFunc->xStep );
  assert( sqlite3_mutex_held(p->pOut->db->mutex) );
  testcase( nByte<0 );
  if( (p->pMem->flags & MEM_Agg)==0 ){
    return createAggContext(p, nByte);
  }else{
    return (void*)p->pMem->z;
  }
}

/*
** Return the auxiliary data pointer, if any, for the iArg'th argument to
** the user-function defined by pCtx.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
  AuxData *pAuxData;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
#if SQLITE_ENABLE_STAT3_OR_STAT4
  if( pCtx->pVdbe==0 ) return 0;
#else
  assert( pCtx->pVdbe!=0 );
#endif
  for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }

  return (pAuxData ? pAuxData->pAux : 0);
}

/*
** Set the auxiliary data pointer and delete function, for the iArg'th
** argument to the user-function defined by pCtx. Any previous value is
** deleted by calling the delete function specified when it was set.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_set_auxdata(
  sqlite3_context *pCtx, 
  int iArg, 
  void *pAux, 
  void (*xDelete)(void*)
){
  AuxData *pAuxData;
  Vdbe *pVdbe = pCtx->pVdbe;

  assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
  if( iArg<0 ) goto failed;
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  if( pVdbe==0 ) goto failed;
#else
  assert( pVdbe!=0 );
#endif

  for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
    if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
  }
  if( pAuxData==0 ){
    pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
    if( !pAuxData ) goto failed;
69057
69058
69059
69060
69061
69062
69063
69064
69065
69066
69067
69068
69069
69070
69071
69072
69073
69074
69075
69076
69077
69078
69079
69080
69081
69082
69083
69084
69085
69086
69087
69088
69089
** called.
**
** This function is deprecated.  Do not use it for new code.  It is
** provide only to avoid breaking legacy code.  New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
SQLITE_API int sqlite3_aggregate_count(sqlite3_context *p){
  assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
  return p->pMem->n;
}
#endif

/*
** Return the number of columns in the result set for the statement pStmt.
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  return pVm ? pVm->nResColumn : 0;
}

/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  if( pVm==0 || pVm->pResultSet==0 ) return 0;
  return pVm->nResColumn;
}

/*
** Return a pointer to static memory containing an SQL NULL value.







|








|








|







69612
69613
69614
69615
69616
69617
69618
69619
69620
69621
69622
69623
69624
69625
69626
69627
69628
69629
69630
69631
69632
69633
69634
69635
69636
69637
69638
69639
69640
69641
69642
69643
69644
** called.
**
** This function is deprecated.  Do not use it for new code.  It is
** provide only to avoid breaking legacy code.  New aggregate function
** implementations should keep their own counts within their aggregate
** context.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_aggregate_count(sqlite3_context *p){
  assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
  return p->pMem->n;
}
#endif

/*
** Return the number of columns in the result set for the statement pStmt.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_column_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  return pVm ? pVm->nResColumn : 0;
}

/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  if( pVm==0 || pVm->pResultSet==0 ) return 0;
  return pVm->nResColumn;
}

/*
** Return a pointer to static memory containing an SQL NULL value.
69177
69178
69179
69180
69181
69182
69183
69184
69185
69186
69187
69188
69189
69190
69191
69192
69193
69194
69195
69196
69197
69198
69199
69200
69201
69202
69203
69204
69205
69206
69207
69208
69209
69210
69211
69212
69213
69214
69215
69216
69217
69218
69219
69220
69221
69222
69223
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233
69234
69235
69236
69237
69238
69239
69240
69241
69242
69243
69244
69245
69246
69247
  }
}

/**************************** sqlite3_column_  *******************************
** The following routines are used to access elements of the current row
** in the result set.
*/
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
  const void *val;
  val = sqlite3_value_blob( columnMem(pStmt,i) );
  /* Even though there is no encoding conversion, value_blob() might
  ** need to call malloc() to expand the result of a zeroblob() 
  ** expression. 
  */
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
  int val = sqlite3_value_bytes( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
  int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
  double val = sqlite3_value_double( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
  int val = sqlite3_value_int( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
  sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
  const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
  Mem *pOut = columnMem(pStmt, i);
  if( pOut->flags&MEM_Static ){
    pOut->flags &= ~MEM_Static;
    pOut->flags |= MEM_Ephem;
  }
  columnMallocFailure(pStmt);
  return (sqlite3_value *)pOut;
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
  const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
  int iType = sqlite3_value_type( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return iType;
}

/*
** Convert the N-th element of pStmt->pColName[] into a string using







|









|




|




|




|




|




|




|









|





|







69732
69733
69734
69735
69736
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
69773
69774
69775
69776
69777
69778
69779
69780
69781
69782
69783
69784
69785
69786
69787
69788
69789
69790
69791
69792
69793
69794
69795
69796
69797
69798
69799
69800
69801
69802
  }
}

/**************************** sqlite3_column_  *******************************
** The following routines are used to access elements of the current row
** in the result set.
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
  const void *val;
  val = sqlite3_value_blob( columnMem(pStmt,i) );
  /* Even though there is no encoding conversion, value_blob() might
  ** need to call malloc() to expand the result of a zeroblob() 
  ** expression. 
  */
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
  int val = sqlite3_value_bytes( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
  int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API double SQLITE_STDCALL sqlite3_column_double(sqlite3_stmt *pStmt, int i){
  double val = sqlite3_value_double( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API int SQLITE_STDCALL sqlite3_column_int(sqlite3_stmt *pStmt, int i){
  int val = sqlite3_value_int( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API sqlite_int64 SQLITE_STDCALL sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
  sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_column_text(sqlite3_stmt *pStmt, int i){
  const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
SQLITE_API sqlite3_value *SQLITE_STDCALL sqlite3_column_value(sqlite3_stmt *pStmt, int i){
  Mem *pOut = columnMem(pStmt, i);
  if( pOut->flags&MEM_Static ){
    pOut->flags &= ~MEM_Static;
    pOut->flags |= MEM_Ephem;
  }
  columnMallocFailure(pStmt);
  return (sqlite3_value *)pOut;
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
  const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return val;
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int SQLITE_STDCALL sqlite3_column_type(sqlite3_stmt *pStmt, int i){
  int iType = sqlite3_value_type( columnMem(pStmt,i) );
  columnMallocFailure(pStmt);
  return iType;
}

/*
** Convert the N-th element of pStmt->pColName[] into a string using
69297
69298
69299
69300
69301
69302
69303
69304
69305
69306
69307
69308
69309
69310
69311
69312
69313
69314
69315
69316
69317
69318
69319
69320
69321
69322
69323
69324
69325
69326
69327
69328
69329
69330
69331
69332
69333
69334
69335
69336
69337
69338
69339
69340
69341
69342
69343
69344
69345
69346
69347
69348
69349
69350
69351
69352
69353
69354
69355
69356
69357
69358
69359
69360
69361
69362
69363
69364
69365
69366
69367
69368
69369
69370
69371
69372
69373
69374
69375
69376
69377
69378
69379
69380
69381
69382
69383
69384
69385
69386
69387
69388
69389
69390
69391
  return ret;
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
}
#endif

/*
** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
** not define OMIT_DECLTYPE.
*/
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
# error "Must not define both SQLITE_OMIT_DECLTYPE \
         and SQLITE_ENABLE_COLUMN_METADATA"
#endif

#ifndef SQLITE_OMIT_DECLTYPE
/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */

#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_ENABLE_COLUMN_METADATA */









|




|



















|




|












|




|










|




|










|




|







69852
69853
69854
69855
69856
69857
69858
69859
69860
69861
69862
69863
69864
69865
69866
69867
69868
69869
69870
69871
69872
69873
69874
69875
69876
69877
69878
69879
69880
69881
69882
69883
69884
69885
69886
69887
69888
69889
69890
69891
69892
69893
69894
69895
69896
69897
69898
69899
69900
69901
69902
69903
69904
69905
69906
69907
69908
69909
69910
69911
69912
69913
69914
69915
69916
69917
69918
69919
69920
69921
69922
69923
69924
69925
69926
69927
69928
69929
69930
69931
69932
69933
69934
69935
69936
69937
69938
69939
69940
69941
69942
69943
69944
69945
69946
  return ret;
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
}
#endif

/*
** Constraint:  If you have ENABLE_COLUMN_METADATA then you must
** not define OMIT_DECLTYPE.
*/
#if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
# error "Must not define both SQLITE_OMIT_DECLTYPE \
         and SQLITE_ENABLE_COLUMN_METADATA"
#endif

#ifndef SQLITE_OMIT_DECLTYPE
/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_OMIT_DECLTYPE */

#ifdef SQLITE_ENABLE_COLUMN_METADATA
/*
** Return the name of the database from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the name of the table column from which a result column derives.
** NULL is returned if the result column is an expression or constant or
** anything else which is not an unambiguous reference to a database column.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
  return columnName(
      pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
}
#endif /* SQLITE_OMIT_UTF16 */
#endif /* SQLITE_ENABLE_COLUMN_METADATA */


69478
69479
69480
69481
69482
69483
69484
69485
69486
69487
69488
69489
69490
69491
69492
69493
69494
69495
69496
69497
69498
69499
69500
69501
69502
69503
69504
69505
69506
69507
69508
69509
69510
69511
69512
69513
69514
69515
69516
69517
69518
69519
69520
69521
69522
69523
69524
69525
69526
69527
69528
69529
69530
69531
69532
69533
69534
69535
69536
69537
69538
69539
69540
69541
69542
69543
69544
69545
69546
69547
69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563
69564
69565
69566
69567
69568
69569
69570
69571
69572
69573
69574
69575
69576
69577
69578
69579
69580
69581
69582
69583
  return rc;
}


/*
** Bind a blob value to an SQL statement variable.
*/
SQLITE_API int sqlite3_bind_blob(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  void (*xDel)(void*)
){
  return bindText(pStmt, i, zData, nData, xDel, 0);
}
SQLITE_API int sqlite3_bind_blob64(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  sqlite3_uint64 nData, 
  void (*xDel)(void*)
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    return bindText(pStmt, i, zData, (int)nData, xDel, 0);
  }
}
SQLITE_API int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}
SQLITE_API int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
  return sqlite3_bind_int64(p, i, (i64)iValue);
}
SQLITE_API int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}
SQLITE_API int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
  int rc;
  Vdbe *p = (Vdbe*)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}
SQLITE_API int sqlite3_bind_text( 
  sqlite3_stmt *pStmt, 
  int i, 
  const char *zData, 
  int nData, 
  void (*xDel)(void*)
){
  return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
}
SQLITE_API int sqlite3_bind_text64( 
  sqlite3_stmt *pStmt, 
  int i, 
  const char *zData, 
  sqlite3_uint64 nData, 
  void (*xDel)(void*),
  unsigned char enc
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
    return bindText(pStmt, i, zData, (int)nData, xDel, enc);
  }
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API int sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  void (*xDel)(void*)
){
  return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
  int rc;
  switch( sqlite3_value_type((sqlite3_value*)pValue) ){
    case SQLITE_INTEGER: {
      rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
      break;
    }
    case SQLITE_FLOAT: {







|








|













|









|


|









|








|








|
















|









|







70033
70034
70035
70036
70037
70038
70039
70040
70041
70042
70043
70044
70045
70046
70047
70048
70049
70050
70051
70052
70053
70054
70055
70056
70057
70058
70059
70060
70061
70062
70063
70064
70065
70066
70067
70068
70069
70070
70071
70072
70073
70074
70075
70076
70077
70078
70079
70080
70081
70082
70083
70084
70085
70086
70087
70088
70089
70090
70091
70092
70093
70094
70095
70096
70097
70098
70099
70100
70101
70102
70103
70104
70105
70106
70107
70108
70109
70110
70111
70112
70113
70114
70115
70116
70117
70118
70119
70120
70121
70122
70123
70124
70125
70126
70127
70128
70129
70130
70131
70132
70133
70134
70135
70136
70137
70138
  return rc;
}


/*
** Bind a blob value to an SQL statement variable.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  void (*xDel)(void*)
){
  return bindText(pStmt, i, zData, nData, xDel, 0);
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob64(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  sqlite3_uint64 nData, 
  void (*xDel)(void*)
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    return bindText(pStmt, i, zData, (int)nData, xDel, 0);
  }
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
  return sqlite3_bind_int64(p, i, (i64)iValue);
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
  int rc;
  Vdbe *p = (Vdbe*)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text( 
  sqlite3_stmt *pStmt, 
  int i, 
  const char *zData, 
  int nData, 
  void (*xDel)(void*)
){
  return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text64( 
  sqlite3_stmt *pStmt, 
  int i, 
  const char *zData, 
  sqlite3_uint64 nData, 
  void (*xDel)(void*),
  unsigned char enc
){
  assert( xDel!=SQLITE_DYNAMIC );
  if( nData>0x7fffffff ){
    return invokeValueDestructor(zData, xDel, 0);
  }else{
    if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
    return bindText(pStmt, i, zData, (int)nData, xDel, enc);
  }
}
#ifndef SQLITE_OMIT_UTF16
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text16(
  sqlite3_stmt *pStmt, 
  int i, 
  const void *zData, 
  int nData, 
  void (*xDel)(void*)
){
  return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
}
#endif /* SQLITE_OMIT_UTF16 */
SQLITE_API int SQLITE_STDCALL sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
  int rc;
  switch( sqlite3_value_type((sqlite3_value*)pValue) ){
    case SQLITE_INTEGER: {
      rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
      break;
    }
    case SQLITE_FLOAT: {
69600
69601
69602
69603
69604
69605
69606
69607
69608
69609
69610
69611
69612
69613
69614
69615
69616
69617
69618
69619
69620
69621
69622
69623
69624
69625
69626
69627
69628
69629
69630
69631
69632
69633
69634
69635
69636
69637
69638
69639
69640
    default: {
      rc = sqlite3_bind_null(pStmt, i);
      break;
    }
  }
  return rc;
}
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}

/*
** Return the number of wildcards that can be potentially bound to.
** This routine is added to support DBD::SQLite.  
*/
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p ? p->nVar : 0;
}

/*
** Return the name of a wildcard parameter.  Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe*)pStmt;
  if( p==0 || i<1 || i>p->nzVar ){
    return 0;
  }
  return p->azVar[i-1];
}








|














|










|







70155
70156
70157
70158
70159
70160
70161
70162
70163
70164
70165
70166
70167
70168
70169
70170
70171
70172
70173
70174
70175
70176
70177
70178
70179
70180
70181
70182
70183
70184
70185
70186
70187
70188
70189
70190
70191
70192
70193
70194
70195
    default: {
      rc = sqlite3_bind_null(pStmt, i);
      break;
    }
  }
  return rc;
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
  int rc;
  Vdbe *p = (Vdbe *)pStmt;
  rc = vdbeUnbind(p, i);
  if( rc==SQLITE_OK ){
    sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
    sqlite3_mutex_leave(p->db->mutex);
  }
  return rc;
}

/*
** Return the number of wildcards that can be potentially bound to.
** This routine is added to support DBD::SQLite.  
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  return p ? p->nVar : 0;
}

/*
** Return the name of a wildcard parameter.  Return NULL if the index
** is out of range or if the wildcard is unnamed.
**
** The result is always UTF-8.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe*)pStmt;
  if( p==0 || i<1 || i>p->nzVar ){
    return 0;
  }
  return p->azVar[i-1];
}

69654
69655
69656
69657
69658
69659
69660
69661
69662
69663
69664
69665
69666
69667
69668
      if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;
}
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
  return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
}

/*
** Transfer all bindings from the first statement over to the second.
*/
SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){







|







70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
      if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
        return i+1;
      }
    }
  }
  return 0;
}
SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
  return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
}

/*
** Transfer all bindings from the first statement over to the second.
*/
SQLITE_PRIVATE int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
69688
69689
69690
69691
69692
69693
69694
69695
69696
69697
69698
69699
69700
69701
69702
** database connections.  But as this is a deprecated interface, we
** will not bother to check for that condition.
**
** If the two statements contain a different number of bindings, then
** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
** SQLITE_OK is returned.
*/
SQLITE_API int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
  Vdbe *pFrom = (Vdbe*)pFromStmt;
  Vdbe *pTo = (Vdbe*)pToStmt;
  if( pFrom->nVar!=pTo->nVar ){
    return SQLITE_ERROR;
  }
  if( pTo->isPrepareV2 && pTo->expmask ){
    pTo->expired = 1;







|







70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
** database connections.  But as this is a deprecated interface, we
** will not bother to check for that condition.
**
** If the two statements contain a different number of bindings, then
** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise
** SQLITE_OK is returned.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
  Vdbe *pFrom = (Vdbe*)pFromStmt;
  Vdbe *pTo = (Vdbe*)pToStmt;
  if( pFrom->nVar!=pTo->nVar ){
    return SQLITE_ERROR;
  }
  if( pTo->isPrepareV2 && pTo->expmask ){
    pTo->expired = 1;
69710
69711
69712
69713
69714
69715
69716
69717
69718
69719
69720
69721
69722
69723
69724
69725
69726
69727
69728
69729
69730
69731
69732
69733
69734
69735
69736
69737
69738
69739
69740
69741
69742
69743
69744
69745
69746
69747
69748
69749
69750
69751
69752
69753
69754
69755
69756
69757
69758
69759
69760
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
69773
69774
69775
69776
69777
69778
69779
69780
69781
69782
69783
69784
69785
69786
69787
69788
69789

/*
** Return the sqlite3* database handle to which the prepared statement given
** in the argument belongs.  This is the same database handle that was
** the first argument to the sqlite3_prepare() that was used to create
** the statement in the first place.
*/
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
  return pStmt ? ((Vdbe*)pStmt)->db : 0;
}

/*
** Return true if the prepared statement is guaranteed to not modify the
** database.
*/
SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
  return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
}

/*
** Return true if the prepared statement is in need of being reset.
*/
SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
  Vdbe *v = (Vdbe*)pStmt;
  return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
}

/*
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb.  If pStmt is NULL, return the first
** prepared statement for the database connection.  Return NULL if there
** are no more.
*/
SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
  sqlite3_stmt *pNext;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(pDb) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(pDb->mutex);
  if( pStmt==0 ){
    pNext = (sqlite3_stmt*)pDb->pVdbe;
  }else{
    pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
  }
  sqlite3_mutex_leave(pDb->mutex);
  return pNext;
}

/*
** Return the value of a status counter for a prepared statement
*/
SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  Vdbe *pVdbe = (Vdbe*)pStmt;
  u32 v;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !pStmt ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Return status data for a single loop within query pStmt.
*/
SQLITE_API int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,            /* Prepared statement being queried */
  int idx,                        /* Index of loop to report on */
  int iScanStatusOp,              /* Which metric to return */
  void *pOut                      /* OUT: Write the answer here */
){
  Vdbe *p = (Vdbe*)pStmt;
  ScanStatus *pScan;







|







|






|










|




















|

















|







70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
70303
70304
70305
70306
70307
70308
70309
70310
70311
70312
70313
70314
70315
70316
70317
70318
70319
70320
70321
70322
70323
70324
70325
70326
70327
70328
70329
70330
70331
70332
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344

/*
** Return the sqlite3* database handle to which the prepared statement given
** in the argument belongs.  This is the same database handle that was
** the first argument to the sqlite3_prepare() that was used to create
** the statement in the first place.
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_db_handle(sqlite3_stmt *pStmt){
  return pStmt ? ((Vdbe*)pStmt)->db : 0;
}

/*
** Return true if the prepared statement is guaranteed to not modify the
** database.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
  return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
}

/*
** Return true if the prepared statement is in need of being reset.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_busy(sqlite3_stmt *pStmt){
  Vdbe *v = (Vdbe*)pStmt;
  return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
}

/*
** Return a pointer to the next prepared statement after pStmt associated
** with database connection pDb.  If pStmt is NULL, return the first
** prepared statement for the database connection.  Return NULL if there
** are no more.
*/
SQLITE_API sqlite3_stmt *SQLITE_STDCALL sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
  sqlite3_stmt *pNext;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(pDb) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  sqlite3_mutex_enter(pDb->mutex);
  if( pStmt==0 ){
    pNext = (sqlite3_stmt*)pDb->pVdbe;
  }else{
    pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
  }
  sqlite3_mutex_leave(pDb->mutex);
  return pNext;
}

/*
** Return the value of a status counter for a prepared statement
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
  Vdbe *pVdbe = (Vdbe*)pStmt;
  u32 v;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !pStmt ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  v = pVdbe->aCounter[op];
  if( resetFlag ) pVdbe->aCounter[op] = 0;
  return (int)v;
}

#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
/*
** Return status data for a single loop within query pStmt.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,            /* Prepared statement being queried */
  int idx,                        /* Index of loop to report on */
  int iScanStatusOp,              /* Which metric to return */
  void *pOut                      /* OUT: Write the answer here */
){
  Vdbe *p = (Vdbe*)pStmt;
  ScanStatus *pScan;
69834
69835
69836
69837
69838
69839
69840
69841
69842
69843
69844
69845
69846
69847
69848
  }
  return 0;
}

/*
** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
*/
SQLITE_API void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  memset(p->anExec, 0, p->nOp * sizeof(i64));
}
#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */

/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbetrace.c ***************************************/







|







70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
  }
  return 0;
}

/*
** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  memset(p->anExec, 0, p->nOp * sizeof(i64));
}
#endif /* SQLITE_ENABLE_STMT_SCANSTATUS */

/************** End of vdbeapi.c *********************************************/
/************** Begin file vdbetrace.c ***************************************/
70333
70334
70335
70336
70337
70338
70339
70340
70341
70342
70343
70344
70345
70346
70347

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
*/
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value *pVal){
  int eType = sqlite3_value_type(pVal);
  if( eType==SQLITE_TEXT ){
    Mem *pMem = (Mem*)pVal;
    applyNumericAffinity(pMem, 0);
    eType = sqlite3_value_type(pVal);
  }
  return eType;







|







70888
70889
70890
70891
70892
70893
70894
70895
70896
70897
70898
70899
70900
70901
70902

/*
** Try to convert the type of a function argument or a result column
** into a numeric representation.  Use either INTEGER or REAL whichever
** is appropriate.  But only do the conversion if it is possible without
** loss of information and return the revised type of the argument.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_value_numeric_type(sqlite3_value *pVal){
  int eType = sqlite3_value_type(pVal);
  if( eType==SQLITE_TEXT ){
    Mem *pMem = (Mem*)pVal;
    applyNumericAffinity(pMem, 0);
    eType = sqlite3_value_type(pVal);
  }
  return eType;
71132
71133
71134
71135
71136
71137
71138
71139
71140
71141
71142
71143
71144
71145
71146
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into a String before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);







|







71687
71688
71689
71690
71691
71692
71693
71694
71695
71696
71697
71698
71699
71700
71701
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into a String opcode before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);
71164
71165
71166
71167
71168
71169
71170
71171
71172
71173
71174





71175
71176
71177
71178
71179
71180
71181
71182







71183
71184
71185
71186
71187
71188
71189
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 * P4 *
** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.





*/
case OP_String: {          /* out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);







  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL
**
** Write a NULL into registers P2.  If P3 greater than P2, then also write







|



>
>
>
>
>








>
>
>
>
>
>
>







71719
71720
71721
71722
71723
71724
71725
71726
71727
71728
71729
71730
71731
71732
71733
71734
71735
71736
71737
71738
71739
71740
71741
71742
71743
71744
71745
71746
71747
71748
71749
71750
71751
71752
71753
71754
71755
71756
#endif
  if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
    goto too_big;
  }
  /* Fall through to the next case, OP_String */
}
  
/* Opcode: String P1 P2 P3 P4 P5
** Synopsis: r[P2]='P4' (len=P1)
**
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P5!=0 and the content of register P3 is greater than zero, then
** the datatype of the register P2 is converted to BLOB.  The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST.
*/
case OP_String: {          /* out2-prerelease */
  assert( pOp->p4.z!=0 );
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  if( pOp->p5 ){
    assert( pOp->p3>0 );
    assert( pOp->p3<=(p->nMem-p->nCursor) );
    pIn3 = &aMem[pOp->p3];
    assert( pIn3->flags & MEM_Int );
    if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }
  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL
**
** Write a NULL into registers P2.  If P3 greater than P2, then also write
71622
71623
71624
71625
71626
71627
71628
71629
71630
71631
71632
71633
71634
71635
71636
**
** If P1 is not zero, then it is a register that a subsequent min() or
** max() aggregate will set to 1 if the current row is not the minimum or
** maximum.  The P1 register is initialized to 0 by this instruction.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly, only to user functions defined in func.c.
*/
case OP_CollSeq: {
  assert( pOp->p4type==P4_COLLSEQ );
  if( pOp->p1 ){
    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
  }
  break;







|







72189
72190
72191
72192
72193
72194
72195
72196
72197
72198
72199
72200
72201
72202
72203
**
** If P1 is not zero, then it is a register that a subsequent min() or
** max() aggregate will set to 1 if the current row is not the minimum or
** maximum.  The P1 register is initialized to 0 by this instruction.
**
** The interface used by the implementation of the aforementioned functions
** to retrieve the collation sequence set by this opcode is not available
** publicly.  Only built-in functions have access to this feature.
*/
case OP_CollSeq: {
  assert( pOp->p4type==P4_COLLSEQ );
  if( pOp->p1 ){
    sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
  }
  break;
72025
72026
72027
72028
72029
72030
72031


72032
72033
72034
72035
72036


72037
72038
72039
72040
72041
72042
72043
        applyNumericAffinity(pIn3,0);
      }
    }else if( affinity==SQLITE_AFF_TEXT ){
      if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);


      }
      if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);


      }
    }
    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }







>
>





>
>







72592
72593
72594
72595
72596
72597
72598
72599
72600
72601
72602
72603
72604
72605
72606
72607
72608
72609
72610
72611
72612
72613
72614
        applyNumericAffinity(pIn3,0);
      }
    }else if( affinity==SQLITE_AFF_TEXT ){
      if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
        testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
        flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
      }
      if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
        testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
        flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
      }
    }
    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
72066
72067
72068
72069
72070
72071
72072

72073

72074
72075
72076
72077
72078
72079
72080
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      pc = pOp->p2-1;
    }
  }
  /* Undo any changes made by applyAffinity() to the input registers. */

  pIn1->flags = flags1;

  pIn3->flags = flags3;
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array







>

>







72637
72638
72639
72640
72641
72642
72643
72644
72645
72646
72647
72648
72649
72650
72651
72652
72653
  }else{
    VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
    if( res ){
      pc = pOp->p2-1;
    }
  }
  /* Undo any changes made by applyAffinity() to the input registers. */
  assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
  pIn1->flags = flags1;
  assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
  pIn3->flags = flags3;
  break;
}

/* Opcode: Permutation * * * P4 *
**
** Set the permutation used by the OP_Compare operator to be the array
73167
73168
73169
73170
73171
73172
73173
73174





73175
73176
73177
73178
73179
73180
73181
      /* Store the current value of the database handles deferred constraint
      ** counter. If the statement transaction needs to be rolled back,
      ** the value of this counter needs to be restored too.  */
      p->nStmtDefCons = db->nDeferredCons;
      p->nStmtDefImmCons = db->nDeferredImmCons;
    }

    /* Gather the schema version number for checking */





    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }
  assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
  if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){







|
>
>
>
>
>







73740
73741
73742
73743
73744
73745
73746
73747
73748
73749
73750
73751
73752
73753
73754
73755
73756
73757
73758
73759
      /* Store the current value of the database handles deferred constraint
      ** counter. If the statement transaction needs to be rolled back,
      ** the value of this counter needs to be restored too.  */
      p->nStmtDefCons = db->nDeferredCons;
      p->nStmtDefImmCons = db->nDeferredImmCons;
    }

    /* Gather the schema version number for checking:
    ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
    ** each time a query is executed to ensure that the internal cache of the
    ** schema used when compiling the SQL query matches the schema of the
    ** database against which the compiled query is actually executed.
    */
    sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
    iGen = db->aDb[pOp->p1].pSchema->iGeneration;
  }else{
    iGen = iMeta = 0;
  }
  assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
  if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
73335
73336
73337
73338
73339
73340
73341
73342
73343
73344
73345
73346
73347
73348
73349
73350
73351
73352
73353
73354
73355
73356
73357
73358
73359
73360
73361
73362
73363
73364












73365
73366
73367
73368
73369
73370
73371
73372
73373
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_ReopenIdx: {
  VdbeCursor *pCur;

  assert( pOp->p5==0 );
  assert( pOp->p4type==P4_KEYINFO );
  pCur = p->apCsr[pOp->p1];
  if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
    assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
    break;
  }
  /* If the cursor is not currently open or is open on a different
  ** index, then fall through into OP_OpenRead to force a reopen */
}
case OP_OpenRead:
case OP_OpenWrite: {
  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;













  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT_ROLLBACK;
    break;







<
<
<
<
<
<
<
<
<
<
<
<
<
<









>
>
>
>
>
>
>
>
>
>
>
>
|
|







73913
73914
73915
73916
73917
73918
73919














73920
73921
73922
73923
73924
73925
73926
73927
73928
73929
73930
73931
73932
73933
73934
73935
73936
73937
73938
73939
73940
73941
73942
73943
73944
73945
73946
73947
73948
73949
** This instruction works just like OpenRead except that it opens the cursor
** in read/write mode.  For a given table, there can be one or more read-only
** cursors or a single read/write cursor but not both.
**
** See also OpenRead.
*/
case OP_ReopenIdx: {














  int nField;
  KeyInfo *pKeyInfo;
  int p2;
  int iDb;
  int wrFlag;
  Btree *pX;
  VdbeCursor *pCur;
  Db *pDb;

  assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
  assert( pOp->p4type==P4_KEYINFO );
  pCur = p->apCsr[pOp->p1];
  if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
    assert( pCur->iDb==pOp->p3 );      /* Guaranteed by the code generator */
    goto open_cursor_set_hints;
  }
  /* If the cursor is not currently open or is open on a different
  ** index, then fall through into OP_OpenRead to force a reopen */
case OP_OpenRead:
case OP_OpenWrite:

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT_ROLLBACK;
    break;
73422
73423
73424
73425
73426
73427
73428
73429
73430
73431
73432
73433
73434
73435
73436






73437
73438
73439
73440
73441
73442
73443
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));

  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;






  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.







<
<
<





>
>
>
>
>
>







73998
73999
74000
74001
74002
74003
74004



74005
74006
74007
74008
74009
74010
74011
74012
74013
74014
74015
74016
74017
74018
74019
74020
74021
74022
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;



  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;

open_cursor_set_hints:
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
  sqlite3BtreeCursorHints(pCur->pCursor,
                          (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
73690
73691
73692
73693
73694
73695
73696
















73697
73698
73699
73700
73701
73702
73703
  assert( pC->isOrdered );
  assert( pC->pCursor!=0 );
  oc = pOp->opcode;
  pC->nullRow = 0;
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif
















  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
      applyNumericAffinity(pIn3, 0);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







74269
74270
74271
74272
74273
74274
74275
74276
74277
74278
74279
74280
74281
74282
74283
74284
74285
74286
74287
74288
74289
74290
74291
74292
74293
74294
74295
74296
74297
74298
  assert( pC->isOrdered );
  assert( pC->pCursor!=0 );
  oc = pOp->opcode;
  pC->nullRow = 0;
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif

  /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
  ** OP_SeekLE opcodes are allowed, and these must be immediately followed
  ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
  */
#ifdef SQLITE_DEBUG
  if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
    assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    assert( pOp[1].p1==pOp[0].p1 );
    assert( pOp[1].p2==pOp[0].p2 );
    assert( pOp[1].p3==pOp[0].p3 );
    assert( pOp[1].p4.i==pOp[0].p4.i );
  }
#endif
 
  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
      applyNumericAffinity(pIn3, 0);
75029
75030
75031
75032
75033
75034
75035
75036
75037
75038
75039
75040
75041
75042
75043
75044
75045
75046
75047
75048
75049
75050
75051
75052
75053
75054
75055
75056
75057
75058
75059
75060
75061
75062
75063
75064
75065
75066
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iCnt;
  Vdbe *pVdbe;
  int iDb;

  assert( p->readOnly==0 );
#ifndef SQLITE_OMIT_VIRTUALTABLE
  iCnt = 0;
  for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
    if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->bIsReader 
     && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 
    ){
      iCnt++;
    }
  }
#else
  iCnt = db->nVdbeRead;
#endif
  pOut->flags = MEM_Null;
  if( iCnt>1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( iCnt==1 );
    assert( DbMaskTest(p->btreeMask, iDb) );
    iMoved = 0;  /* Not needed.  Only to silence a warning. */
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    pOut->flags = MEM_Int;
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){







<
<



<
<
<
<
<
<
<
<
<
<
<
<

|




<







75624
75625
75626
75627
75628
75629
75630


75631
75632
75633












75634
75635
75636
75637
75638
75639

75640
75641
75642
75643
75644
75645
75646
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;


  int iDb;

  assert( p->readOnly==0 );












  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;

    assert( DbMaskTest(p->btreeMask, iDb) );
    iMoved = 0;  /* Not needed.  Only to silence a warning. */
    rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
    pOut->flags = MEM_Int;
    pOut->u.i = iMoved;
#ifndef SQLITE_OMIT_AUTOVACUUM
    if( rc==SQLITE_OK && iMoved!=0 ){
75685
75686
75687
75688
75689
75690
75691

75692

75693
75694
75695

75696
75697
75698
75699
75700
75701
75702
  break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */

/* Opcode: IfPos P1 P2 * * *
** Synopsis: if r[P1]>0 goto P2
**

** If the value of register P1 is 1 or greater, jump to P2.

**
** It is illegal to use this instruction on a register that does
** not contain an integer.  An assertion fault will result if you try.

*/
case OP_IfPos: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken( pIn1->u.i>0, 2);
  if( pIn1->u.i>0 ){
     pc = pOp->p2 - 1;







>
|
>

|
<
>







76265
76266
76267
76268
76269
76270
76271
76272
76273
76274
76275
76276

76277
76278
76279
76280
76281
76282
76283
76284
  break;
}
#endif /* SQLITE_OMIT_AUTOINCREMENT */

/* Opcode: IfPos P1 P2 * * *
** Synopsis: if r[P1]>0 goto P2
**
** Register P1 must contain an integer.
** If the value of register P1 is 1 or greater, jump to P2 and
** add the literal value P3 to register P1.
**
** If the initial value of register P1 is less than 1, then the

** value is unchanged and control passes through to the next instruction.
*/
case OP_IfPos: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken( pIn1->u.i>0, 2);
  if( pIn1->u.i>0 ){
     pc = pOp->p2 - 1;
75717
75718
75719
75720
75721
75722
75723
75724
75725
75726
75727
75728

75729
75730
75731
75732


75733















75734
75735
75736
75737
75738
75739
75740


















75741
75742
75743
75744
75745
75746
75747
  VdbeBranchTaken(pIn1->u.i<0, 2);
  if( pIn1->u.i<0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfZero P1 P2 P3 * *
** Synopsis: r[P1]+=P3, if r[P1]==0 goto P2
**
** The register P1 must contain an integer.  Add literal P3 to the
** value in register P1.  If the result is exactly 0, jump to P2. 

*/
case OP_IfZero: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );


  pIn1->u.i += pOp->p3;















  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( pIn1->u.i==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}



















/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Use register
** P3 as the accumulator.







|
|

|
|
>

|


>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







76299
76300
76301
76302
76303
76304
76305
76306
76307
76308
76309
76310
76311
76312
76313
76314
76315
76316
76317
76318
76319
76320
76321
76322
76323
76324
76325
76326
76327
76328
76329
76330
76331
76332
76333
76334
76335
76336
76337
76338
76339
76340
76341
76342
76343
76344
76345
76346
76347
76348
76349
76350
76351
76352
76353
76354
76355
76356
76357
76358
76359
76360
76361
76362
76363
76364
76365
  VdbeBranchTaken(pIn1->u.i<0, 2);
  if( pIn1->u.i<0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: IfNotZero P1 P2 P3 * *
** Synopsis: if r[P1]!=0 then r[P1]+=P3, goto P2
**
** Register P1 must contain an integer.  If the content of register P1 is
** initially nonzero, then add P3 to P1 and jump to P2.  If register P1 is
** initially zero, leave it unchanged and fall through.
*/
case OP_IfNotZero: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken(pIn1->u.i<0, 2);
  if( pIn1->u.i ){
     pIn1->u.i += pOp->p3;
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: DecrJumpZero P1 P2 * * *
** Synopsis: if (--r[P1])==0 goto P2
**
** Register P1 must hold an integer.  Decrement the value in register P1
** then jump to P2 if the new value is exactly zero.
*/
case OP_DecrJumpZero: {      /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  pIn1->u.i--;
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( pIn1->u.i==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}


/* Opcode: JumpZeroIncr P1 P2 * * *
** Synopsis: if (r[P1]++)==0 ) goto P2
**
** The register P1 must contain an integer.  If register P1 is initially
** zero, then jump to P2.  Increment register P1 regardless of whether or
** not the jump is taken.
*/
case OP_JumpZeroIncr: {        /* jump, in1 */
  pIn1 = &aMem[pOp->p1];
  assert( pIn1->flags&MEM_Int );
  VdbeBranchTaken(pIn1->u.i==0, 2);
  if( (pIn1->u.i++)==0 ){
     pc = pOp->p2 - 1;
  }
  break;
}

/* Opcode: AggStep * P2 P3 P4 P5
** Synopsis: accum=r[P3] step(r[P2@P5])
**
** Execute the step function for an aggregate.  The
** function has P5 arguments.   P4 is a pointer to the FuncDef
** structure that specifies the function.  Use register
** P3 as the accumulator.
76071
76072
76073
76074
76075
76076
76077
76078
76079
76080
76081
76082
76083














76084


76085
76086
76087
76088
76089
76090
76091
76092
76093
76094
76095
76096
76097
76098
76099
76100
76101
76102
76103
76104
76105
76106
76107
76108
76109
76110
76111
76112
76113
76114
76115
76116
76117
76118
76119
76120



76121
76122
76123
76124
76125
76126
76127
76128
76129
76130
76131

76132
76133
76134
76135
76136
76137
76138
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 * * P4 *
**
** P4 is the name of a virtual table in database P1. Call the xCreate method
** for that table.
*/
case OP_VCreate: {














  rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);


  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {
  p->inVtabMethod = 2;
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
  p->inVtabMethod = 0;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;

  assert( p->bIsReader );
  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  pModule = (sqlite3_module *)pVtab->pModule;



  assert(pVtab && pModule);
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
      pCur->pVtabCursor = pVtabCursor;

    }else{
      db->mallocFailed = 1;
      pModule->xClose(pVtabCursor);
    }
  }
  break;
}







|

|
|


>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>











|

|















|





|
>
>
>
|










>







76689
76690
76691
76692
76693
76694
76695
76696
76697
76698
76699
76700
76701
76702
76703
76704
76705
76706
76707
76708
76709
76710
76711
76712
76713
76714
76715
76716
76717
76718
76719
76720
76721
76722
76723
76724
76725
76726
76727
76728
76729
76730
76731
76732
76733
76734
76735
76736
76737
76738
76739
76740
76741
76742
76743
76744
76745
76746
76747
76748
76749
76750
76751
76752
76753
76754
76755
76756
76757
76758
76759
76760
76761
76762
76763
76764
76765
76766
76767
76768
76769
76770
76771
76772
76773
76774
76775
76776
  rc = sqlite3VtabBegin(db, pVTab);
  if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VCreate P1 P2 * * *
**
** P2 is a register that holds the name of a virtual table in database 
** P1. Call the xCreate method for that table.
*/
case OP_VCreate: {
  Mem sMem;          /* For storing the record being decoded */
  const char *zTab;  /* Name of the virtual table */

  memset(&sMem, 0, sizeof(sMem));
  sMem.db = db;
  /* Because P2 is always a static string, it is impossible for the
  ** sqlite3VdbeMemCopy() to fail */
  assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
  assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
  rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
  assert( rc==SQLITE_OK );
  zTab = (const char*)sqlite3_value_text(&sMem);
  assert( zTab || db->mallocFailed );
  if( zTab ){
    rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
  }
  sqlite3VdbeMemRelease(&sMem);
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VDestroy P1 * * P4 *
**
** P4 is the name of a virtual table in database P1.  Call the xDestroy method
** of that table.
*/
case OP_VDestroy: {
  db->nVDestroy++;
  rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
  db->nVDestroy--;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef SQLITE_OMIT_VIRTUALTABLE
/* Opcode: VOpen P1 * * P4 *
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  assert( p->bIsReader );
  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  if( pVtab==0 || NEVER(pVtab->pModule==0) ){
    rc = SQLITE_LOCKED;
    break;
  }
  pModule = pVtab->pModule;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
      pCur->pVtabCursor = pVtabCursor;
      pVtab->nRef++;
    }else{
      db->mallocFailed = 1;
      pModule->xClose(pVtabCursor);
    }
  }
  break;
}
76190
76191
76192
76193
76194
76195
76196
76197
76198
76199
76200
76201
76202
76203
76204
76205
76206
  {
    res = 0;
    apArg = p->apArg;
    for(i = 0; i<nArg; i++){
      apArg[i] = &pArgc[i+1];
    }

    p->inVtabMethod = 1;
    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
    p->inVtabMethod = 0;
    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }
    VdbeBranchTaken(res!=0,2);
    if( res ){
      pc = pOp->p2 - 1;







<

<







76828
76829
76830
76831
76832
76833
76834

76835

76836
76837
76838
76839
76840
76841
76842
  {
    res = 0;
    apArg = p->apArg;
    for(i = 0; i<nArg; i++){
      apArg[i] = &pArgc[i+1];
    }


    rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);

    sqlite3VtabImportErrmsg(p, pVtab);
    if( rc==SQLITE_OK ){
      res = pModule->xEof(pVtabCursor);
    }
    VdbeBranchTaken(res!=0,2);
    if( res ){
      pc = pOp->p2 - 1;
76282
76283
76284
76285
76286
76287
76288
76289
76290
76291
76292
76293
76294
76295
76296
76297
76298

  /* Invoke the xNext() method of the module. There is no way for the
  ** underlying implementation to return an error if one occurs during
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  p->inVtabMethod = 1;
  rc = pModule->xNext(pCur->pVtabCursor);
  p->inVtabMethod = 0;
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }
  VdbeBranchTaken(!res,2);
  if( !res ){
    /* If there is data, jump to P2 */







<

<







76918
76919
76920
76921
76922
76923
76924

76925

76926
76927
76928
76929
76930
76931
76932

  /* Invoke the xNext() method of the module. There is no way for the
  ** underlying implementation to return an error if one occurs during
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */

  rc = pModule->xNext(pCur->pVtabCursor);

  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }
  VdbeBranchTaken(!res,2);
  if( !res ){
    /* If there is data, jump to P2 */
76359
76360
76361
76362
76363
76364
76365
76366
76367
76368
76369
76370
76371
76372
76373
76374
76375
76376
76377




76378
76379
76380
76381
76382
76383
76384
76385
** is set to the value of the rowid for the row just inserted.
**
** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
** apply in the case of a constraint failure on an insert or update.
*/
case OP_VUpdate: {
  sqlite3_vtab *pVtab;
  sqlite3_module *pModule;
  int nArg;
  int i;
  sqlite_int64 rowid;
  Mem **apArg;
  Mem *pX;

  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
  );
  assert( p->readOnly==0 );
  pVtab = pOp->p4.pVtab->pVtab;




  pModule = (sqlite3_module *)pVtab->pModule;
  nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( ALWAYS(pModule->xUpdate) ){
    u8 vtabOnConflict = db->vtabOnConflict;
    apArg = p->apArg;
    pX = &aMem[pOp->p3];
    for(i=0; i<nArg; i++){







|











>
>
>
>
|







76993
76994
76995
76996
76997
76998
76999
77000
77001
77002
77003
77004
77005
77006
77007
77008
77009
77010
77011
77012
77013
77014
77015
77016
77017
77018
77019
77020
77021
77022
77023
** is set to the value of the rowid for the row just inserted.
**
** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
** apply in the case of a constraint failure on an insert or update.
*/
case OP_VUpdate: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  int nArg;
  int i;
  sqlite_int64 rowid;
  Mem **apArg;
  Mem *pX;

  assert( pOp->p2==1        || pOp->p5==OE_Fail   || pOp->p5==OE_Rollback 
       || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
  );
  assert( p->readOnly==0 );
  pVtab = pOp->p4.pVtab->pVtab;
  if( pVtab==0 || NEVER(pVtab->pModule==0) ){
    rc = SQLITE_LOCKED;
    break;
  }
  pModule = pVtab->pModule;
  nArg = pOp->p2;
  assert( pOp->p4type==P4_VTAB );
  if( ALWAYS(pModule->xUpdate) ){
    u8 vtabOnConflict = db->vtabOnConflict;
    apArg = p->apArg;
    pX = &aMem[pOp->p3];
    for(i=0; i<nArg; i++){
76718
76719
76720
76721
76722
76723
76724
76725
76726
76727
76728
76729
76730
76731
76732
  *pzErr = zErr;
  return rc;
}

/*
** Open a blob handle.
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int flags,              /* True -> read/write access, false -> read-only */
  sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */







|







77356
77357
77358
77359
77360
77361
77362
77363
77364
77365
77366
77367
77368
77369
77370
  *pzErr = zErr;
  return rc;
}

/*
** Open a blob handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_open(
  sqlite3* db,            /* The database connection */
  const char *zDb,        /* The attached database containing the blob */
  const char *zTable,     /* The table containing the blob */
  const char *zColumn,    /* The column containing the blob */
  sqlite_int64 iRow,      /* The row containing the glob */
  int flags,              /* True -> read/write access, false -> read-only */
  sqlite3_blob **ppBlob   /* Handle for accessing the blob returned here */
76768
76769
76770
76771
76772
76773
76774
76775
76776
76777
76778
76779
76780






76781
76782
76783
76784
76785
76786
76787
  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || ppBlob==0 || zTable==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  flags = !!flags;                /* flags = (flags ? 1 : 0); */
  *ppBlob = 0;







  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
  pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
  if( !pParse ) goto blob_open_out;







|



<

>
>
>
>
>
>







77406
77407
77408
77409
77410
77411
77412
77413
77414
77415
77416

77417
77418
77419
77420
77421
77422
77423
77424
77425
77426
77427
77428
77429
77430
  int rc = SQLITE_OK;
  char *zErr = 0;
  Table *pTab;
  Parse *pParse = 0;
  Incrblob *pBlob = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( ppBlob==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif

  *ppBlob = 0;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zTable==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  flags = !!flags;                /* flags = (flags ? 1 : 0); */

  sqlite3_mutex_enter(db->mutex);

  pBlob = (Incrblob *)sqlite3DbMallocZero(db, sizeof(Incrblob));
  if( !pBlob ) goto blob_open_out;
  pParse = sqlite3StackAllocRaw(db, sizeof(*pParse));
  if( !pParse ) goto blob_open_out;
76950
76951
76952
76953
76954
76955
76956
76957
76958
76959
76960
76961
76962
76963
76964
  return rc;
}

/*
** Close a blob handle that was previously created using
** sqlite3_blob_open().
*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  int rc;
  sqlite3 *db;

  if( p ){
    db = p->db;
    sqlite3_mutex_enter(db->mutex);







|







77593
77594
77595
77596
77597
77598
77599
77600
77601
77602
77603
77604
77605
77606
77607
  return rc;
}

/*
** Close a blob handle that was previously created using
** sqlite3_blob_open().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_close(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  int rc;
  sqlite3 *db;

  if( p ){
    db = p->db;
    sqlite3_mutex_enter(db->mutex);
76987
76988
76989
76990
76991
76992
76993
76994
76995
76996
76997
76998
76999
77000
77001
  sqlite3 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || (iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;







|







77630
77631
77632
77633
77634
77635
77636
77637
77638
77639
77640
77641
77642
77643
77644
  sqlite3 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
  v = (Vdbe*)p->pStmt;

  if( n<0 || iOffset<0 || ((sqlite3_int64)iOffset+n)>p->nByte ){
    /* Request is out of range. Return a transient error. */
    rc = SQLITE_ERROR;
  }else if( v==0 ){
    /* If there is no statement handle, then the blob-handle has
    ** already been invalidated. Return SQLITE_ABORT in this case.
    */
    rc = SQLITE_ABORT;
77019
77020
77021
77022
77023
77024
77025
77026
77027
77028
77029
77030
77031
77032
77033
77034
77035
77036
77037
77038
77039
77040
77041
77042
77043
77044
77045
77046
77047
77048
77049
77050
77051
77052
77053
77054
77055
77056
77057
77058
77059
77060
77061
77062
77063
77064
77065
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
  return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
}

/*
** Write data to a blob handle.
*/
SQLITE_API int sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
  return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
}

/*
** Query a blob handle for the size of the data.
**
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
** so no mutex is required for access.
*/
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  return (p && p->pStmt) ? p->nByte : 0;
}

/*
** Move an existing blob handle to point to a different row of the same
** database table.
**
** If an error occurs, or if the specified row does not exist or does not
** contain a blob or text value, then an error code is returned and the
** database handle error code and message set. If this happens, then all 
** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) 
** immediately return SQLITE_ABORT.
*/
SQLITE_API int sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
  int rc;
  Incrblob *p = (Incrblob *)pBlob;
  sqlite3 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite3_mutex_enter(db->mutex);







|






|









|














|







77662
77663
77664
77665
77666
77667
77668
77669
77670
77671
77672
77673
77674
77675
77676
77677
77678
77679
77680
77681
77682
77683
77684
77685
77686
77687
77688
77689
77690
77691
77692
77693
77694
77695
77696
77697
77698
77699
77700
77701
77702
77703
77704
77705
77706
77707
77708
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Read data from a blob handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_read(sqlite3_blob *pBlob, void *z, int n, int iOffset){
  return blobReadWrite(pBlob, z, n, iOffset, sqlite3BtreeData);
}

/*
** Write data to a blob handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_write(sqlite3_blob *pBlob, const void *z, int n, int iOffset){
  return blobReadWrite(pBlob, (void *)z, n, iOffset, sqlite3BtreePutData);
}

/*
** Query a blob handle for the size of the data.
**
** The Incrblob.nByte field is fixed for the lifetime of the Incrblob
** so no mutex is required for access.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_bytes(sqlite3_blob *pBlob){
  Incrblob *p = (Incrblob *)pBlob;
  return (p && p->pStmt) ? p->nByte : 0;
}

/*
** Move an existing blob handle to point to a different row of the same
** database table.
**
** If an error occurs, or if the specified row does not exist or does not
** contain a blob or text value, then an error code is returned and the
** database handle error code and message set. If this happens, then all 
** subsequent calls to sqlite3_blob_xxx() functions (except blob_close()) 
** immediately return SQLITE_ABORT.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_reopen(sqlite3_blob *pBlob, sqlite3_int64 iRow){
  int rc;
  Incrblob *p = (Incrblob *)pBlob;
  sqlite3 *db;

  if( p==0 ) return SQLITE_MISUSE_BKPT;
  db = p->db;
  sqlite3_mutex_enter(db->mutex);
78236
78237
78238
78239
78240
78241
78242

78243
78244
78245
78246
78247
78248
78249
*/
static int vdbeSorterOpenTempFile(
  sqlite3 *db,                    /* Database handle doing sort */
  i64 nExtend,                    /* Attempt to extend file to this size */
  sqlite3_file **ppFd
){
  int rc;

  rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
      SQLITE_OPEN_TEMP_JOURNAL |
      SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &rc
  );
  if( rc==SQLITE_OK ){
    i64 max = SQLITE_MAX_MMAP_SIZE;







>







78879
78880
78881
78882
78883
78884
78885
78886
78887
78888
78889
78890
78891
78892
78893
*/
static int vdbeSorterOpenTempFile(
  sqlite3 *db,                    /* Database handle doing sort */
  i64 nExtend,                    /* Attempt to extend file to this size */
  sqlite3_file **ppFd
){
  int rc;
  if( sqlite3FaultSim(202) ) return SQLITE_IOERR_ACCESS;
  rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
      SQLITE_OPEN_TEMP_JOURNAL |
      SQLITE_OPEN_READWRITE    | SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE    | SQLITE_OPEN_DELETEONCLOSE, &rc
  );
  if( rc==SQLITE_OK ){
    i64 max = SQLITE_MAX_MMAP_SIZE;
80531
80532
80533
80534
80535
80536
80537
80538
80539
80540

80541
80542
80543
80544
80545
80546
80547
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
    testcase( pNC->ncFlags & NC_PartIdx );
    testcase( pNC->ncFlags & NC_IsCheck );
    if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
      /* Silently ignore database qualifiers inside CHECK constraints and partial
      ** indices.  Do not raise errors because that might break legacy and
      ** because it does not hurt anything to just ignore the database name. */

      zDb = 0;
    }else{
      for(i=0; i<db->nDb; i++){
        assert( db->aDb[i].zName );
        if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
          pSchema = db->aDb[i].pSchema;
          break;







|
|
|
>







81175
81176
81177
81178
81179
81180
81181
81182
81183
81184
81185
81186
81187
81188
81189
81190
81191
81192
  ** schema.  If not found, pSchema will remain NULL and nothing will match
  ** resulting in an appropriate error message toward the end of this routine
  */
  if( zDb ){
    testcase( pNC->ncFlags & NC_PartIdx );
    testcase( pNC->ncFlags & NC_IsCheck );
    if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){
      /* Silently ignore database qualifiers inside CHECK constraints and
      ** partial indices.  Do not raise errors because that might break
      ** legacy and because it does not hurt anything to just ignore the
      ** database name. */
      zDb = 0;
    }else{
      for(i=0; i<db->nDb; i++){
        assert( db->aDb[i].zName );
        if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){
          pSchema = db->aDb[i].pSchema;
          break;
80604
80605
80606
80607
80608
80609
80610

80611
80612
80613
80614
80615
80616
80617
80618
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;

        assert( (pMatch->jointype & JT_RIGHT)==0 ); /* RIGHT JOIN not (yet) supported */
        if( (pMatch->jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */








>
|







81249
81250
81251
81252
81253
81254
81255
81256
81257
81258
81259
81260
81261
81262
81263
81264
            break;
          }
        }
      }
      if( pMatch ){
        pExpr->iTable = pMatch->iCursor;
        pExpr->pTab = pMatch->pTab;
        /* RIGHT JOIN not (yet) supported */
        assert( (pMatch->jointype & JT_RIGHT)==0 );
        if( (pMatch->jointype & JT_LEFT)!=0 ){
          ExprSetProperty(pExpr, EP_CanBeNull);
        }
        pSchema = pExpr->pTab->pSchema;
      }
    } /* if( pSrcList ) */

80925
80926
80927
80928
80929
80930
80931
80932

80933
80934
80935
80936
80937
80938
80939
      pExpr->op = TK_COLUMN;
      pExpr->pTab = pItem->pTab;
      pExpr->iTable = pItem->iCursor;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
      break;
    }
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) */


    /* A lone identifier is the name of a column.
    */
    case TK_ID: {
      return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
    }
  







|
>







81571
81572
81573
81574
81575
81576
81577
81578
81579
81580
81581
81582
81583
81584
81585
81586
      pExpr->op = TK_COLUMN;
      pExpr->pTab = pItem->pTab;
      pExpr->iTable = pItem->iCursor;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
      break;
    }
#endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT)
          && !defined(SQLITE_OMIT_SUBQUERY) */

    /* A lone identifier is the name of a column.
    */
    case TK_ID: {
      return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr);
    }
  
80990
80991
80992
80993
80994
80995
80996

80997
80998
80999
81000
81001
81002
81003
81004
81005
81006
81007
81008
81009
81010
81011
81012
81013
81014
81015
81016
81017
81018
81019
81020
81021
81022
81023
81024
81025
81026


81027
81028
81029
81030
81031
81032
81033
      }else{
        is_agg = pDef->xFunc==0;
        if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
          ExprSetProperty(pExpr, EP_Unlikely|EP_Skip);
          if( n==2 ){
            pExpr->iTable = exprProbability(pList->a[1].pExpr);
            if( pExpr->iTable<0 ){

              sqlite3ErrorMsg(pParse, "second argument to likelihood() must be a "
                                      "constant between 0.0 and 1.0");
              pNC->nErr++;
            }
          }else{
            /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is equivalent to
            ** likelihood(X, 0.0625).
            ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand for
            ** likelihood(X,0.0625).
            ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand for
            ** likelihood(X,0.9375).
            ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent to
            ** likelihood(X,0.9375). */
            /* TUNING: unlikely() probability is 0.0625.  likely() is 0.9375 */
            pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120;
          }             
        }
#ifndef SQLITE_OMIT_AUTHORIZATION
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }
#endif
        if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Constant);


      }
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);







>
|
|



|
|
|
|
|
|
|
|
















|
>
>







81637
81638
81639
81640
81641
81642
81643
81644
81645
81646
81647
81648
81649
81650
81651
81652
81653
81654
81655
81656
81657
81658
81659
81660
81661
81662
81663
81664
81665
81666
81667
81668
81669
81670
81671
81672
81673
81674
81675
81676
81677
81678
81679
81680
81681
81682
81683
      }else{
        is_agg = pDef->xFunc==0;
        if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
          ExprSetProperty(pExpr, EP_Unlikely|EP_Skip);
          if( n==2 ){
            pExpr->iTable = exprProbability(pList->a[1].pExpr);
            if( pExpr->iTable<0 ){
              sqlite3ErrorMsg(pParse,
                "second argument to likelihood() must be a "
                "constant between 0.0 and 1.0");
              pNC->nErr++;
            }
          }else{
            /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is
            ** equivalent to likelihood(X, 0.0625).
            ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is
            ** short-hand for likelihood(X,0.0625).
            ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand
            ** for likelihood(X,0.9375).
            ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent
            ** to likelihood(X,0.9375). */
            /* TUNING: unlikely() probability is 0.0625.  likely() is 0.9375 */
            pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120;
          }             
        }
#ifndef SQLITE_OMIT_AUTHORIZATION
        auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0);
        if( auth!=SQLITE_OK ){
          if( auth==SQLITE_DENY ){
            sqlite3ErrorMsg(pParse, "not authorized to use function: %s",
                                    pDef->zName);
            pNC->nErr++;
          }
          pExpr->op = TK_NULL;
          return WRC_Prune;
        }
#endif
        if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ){
          ExprSetProperty(pExpr,EP_ConstFunc);
        }
      }
      if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){
        sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId);
        pNC->nErr++;
        is_agg = 0;
      }else if( no_such_func && pParse->db->init.busy==0 ){
        sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId);
81330
81331
81332
81333
81334
81335
81336
81337

81338
81339
81340
81341
81342
81343
81344
  assert( pEList!=0 );  /* sqlite3SelectNew() guarantees this */
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    if( pItem->u.x.iOrderByCol ){
      if( pItem->u.x.iOrderByCol>pEList->nExpr ){
        resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
        return 1;
      }
      resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr, zType,0);

    }
  }
  return 0;
}

/*
** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.







|
>







81980
81981
81982
81983
81984
81985
81986
81987
81988
81989
81990
81991
81992
81993
81994
81995
  assert( pEList!=0 );  /* sqlite3SelectNew() guarantees this */
  for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){
    if( pItem->u.x.iOrderByCol ){
      if( pItem->u.x.iOrderByCol>pEList->nExpr ){
        resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr);
        return 1;
      }
      resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr,
                   zType,0);
    }
  }
  return 0;
}

/*
** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect.
81463
81464
81465
81466
81467
81468
81469














81470
81471
81472
81473
81474
81475
81476
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }














  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */







>
>
>
>
>
>
>
>
>
>
>
>
>
>







82114
82115
82116
82117
82118
82119
82120
82121
82122
82123
82124
82125
82126
82127
82128
82129
82130
82131
82132
82133
82134
82135
82136
82137
82138
82139
82140
82141
    */
    memset(&sNC, 0, sizeof(sNC));
    sNC.pParse = pParse;
    if( sqlite3ResolveExprNames(&sNC, p->pLimit) ||
        sqlite3ResolveExprNames(&sNC, p->pOffset) ){
      return WRC_Abort;
    }

    /* If the SF_Converted flags is set, then this Select object was
    ** was created by the convertCompoundSelectToSubquery() function.
    ** In this case the ORDER BY clause (p->pOrderBy) should be resolved
    ** as if it were part of the sub-query, not the parent. This block
    ** moves the pOrderBy down to the sub-query. It will be moved back
    ** after the names have been resolved.  */
    if( p->selFlags & SF_Converted ){
      Select *pSub = p->pSrc->a[0].pSelect;
      assert( p->pSrc->nSrc==1 && isCompound==0 && p->pOrderBy );
      assert( pSub->pPrior && pSub->pOrderBy==0 );
      pSub->pOrderBy = p->pOrderBy;
      p->pOrderBy = 0;
    }
  
    /* Recursively resolve names in all subqueries
    */
    for(i=0; i<p->pSrc->nSrc; i++){
      struct SrcList_item *pItem = &p->pSrc->a[i];
      if( pItem->pSelect ){
        NameContext *pNC;         /* Used to iterate name contexts */
81544
81545
81546
81547
81548
81549
81550











81551
81552
81553
81554
81555
81556
81557
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;

    /* The ORDER BY and GROUP BY clauses may not refer to terms in
    ** outer queries 
    */
    sNC.pNext = 0;
    sNC.ncFlags |= NC_AllowAgg;












    /* Process the ORDER BY clause for singleton SELECT statements.
    ** The ORDER BY clause for compounds SELECT statements is handled
    ** below, after all of the result-sets for all of the elements of
    ** the compound have been resolved.
    */
    if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){







>
>
>
>
>
>
>
>
>
>
>







82209
82210
82211
82212
82213
82214
82215
82216
82217
82218
82219
82220
82221
82222
82223
82224
82225
82226
82227
82228
82229
82230
82231
82232
82233
    if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort;

    /* The ORDER BY and GROUP BY clauses may not refer to terms in
    ** outer queries 
    */
    sNC.pNext = 0;
    sNC.ncFlags |= NC_AllowAgg;

    /* If this is a converted compound query, move the ORDER BY clause from 
    ** the sub-query back to the parent query. At this point each term
    ** within the ORDER BY clause has been transformed to an integer value.
    ** These integers will be replaced by copies of the corresponding result
    ** set expressions by the call to resolveOrderGroupBy() below.  */
    if( p->selFlags & SF_Converted ){
      Select *pSub = p->pSrc->a[0].pSelect;
      p->pOrderBy = pSub->pOrderBy;
      pSub->pOrderBy = 0;
    }

    /* Process the ORDER BY clause for singleton SELECT statements.
    ** The ORDER BY clause for compounds SELECT statements is handled
    ** below, after all of the result-sets for all of the elements of
    ** the compound have been resolved.
    */
    if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){
81820
81821
81822
81823
81824
81825
81826
81827

81828
81829
81830
81831
81832
81833
81834
81835
81836
81837
81838
81839
81840
81841
81842
81843
81844
81845
81846
81847
81848
81849
81850
81851
**
** If a memory allocation error occurs, that fact is recorded in pParse->db
** and the pExpr parameter is returned unchanged.
*/
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(
  Parse *pParse,           /* Parsing context */
  Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
  const Token *pCollName   /* Name of collating sequence */

){
  if( pCollName->n>0 ){
    Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
    if( pNew ){
      pNew->pLeft = pExpr;
      pNew->flags |= EP_Collate|EP_Skip;
      pExpr = pNew;
    }
  }
  return pExpr;
}
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
  Token s;
  assert( zC!=0 );
  s.z = zC;
  s.n = sqlite3Strlen30(s.z);
  return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
}

/*
** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
** or likelihood() function at the root of an expression.
*/
SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){







|
>


|













|







82496
82497
82498
82499
82500
82501
82502
82503
82504
82505
82506
82507
82508
82509
82510
82511
82512
82513
82514
82515
82516
82517
82518
82519
82520
82521
82522
82523
82524
82525
82526
82527
82528
**
** If a memory allocation error occurs, that fact is recorded in pParse->db
** and the pExpr parameter is returned unchanged.
*/
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateToken(
  Parse *pParse,           /* Parsing context */
  Expr *pExpr,             /* Add the "COLLATE" clause to this expression */
  const Token *pCollName,  /* Name of collating sequence */
  int dequote              /* True to dequote pCollName */
){
  if( pCollName->n>0 ){
    Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
    if( pNew ){
      pNew->pLeft = pExpr;
      pNew->flags |= EP_Collate|EP_Skip;
      pExpr = pNew;
    }
  }
  return pExpr;
}
SQLITE_PRIVATE Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
  Token s;
  assert( zC!=0 );
  s.z = zC;
  s.n = sqlite3Strlen30(s.z);
  return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
}

/*
** Skip over any TK_COLLATE or TK_AS operators and any unlikely()
** or likelihood() function at the root of an expression.
*/
SQLITE_PRIVATE Expr *sqlite3ExprSkipCollate(Expr *pExpr){
81883
81884
81885
81886
81887
81888
81889
81890
81891
81892

81893
81894
81895
81896
81897
81898
81899
81900
81901
81902
81903
81904
81905
81906
81907















81908
81909
81910
81911
81912
81913
81914
      p = p->pLeft;
      continue;
    }
    if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
    }
    if( p->pTab!=0
     && (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)

    ){
      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      int j = p->iColumn;
      if( j>=0 ){
        const char *zColl = p->pTab->aCol[j].zColl;
        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
      }
      break;
    }
    if( p->flags & EP_Collate ){
      if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
        p = p->pLeft;
      }else{
        p = p->pRight;















      }
    }else{
      break;
    }
  }
  if( sqlite3CheckCollSeq(pParse, pColl) ){ 
    pColl = 0;







<
|

>











|


|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







82560
82561
82562
82563
82564
82565
82566

82567
82568
82569
82570
82571
82572
82573
82574
82575
82576
82577
82578
82579
82580
82581
82582
82583
82584
82585
82586
82587
82588
82589
82590
82591
82592
82593
82594
82595
82596
82597
82598
82599
82600
82601
82602
82603
82604
82605
82606
      p = p->pLeft;
      continue;
    }
    if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
      pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
      break;
    }

    if( (op==TK_AGG_COLUMN || op==TK_COLUMN
          || op==TK_REGISTER || op==TK_TRIGGER)
     && p->pTab!=0
    ){
      /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
      ** a TK_COLUMN but was previously evaluated and cached in a register */
      int j = p->iColumn;
      if( j>=0 ){
        const char *zColl = p->pTab->aCol[j].zColl;
        pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
      }
      break;
    }
    if( p->flags & EP_Collate ){
      if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
        p = p->pLeft;
      }else{
        Expr *pNext  = p->pRight;
        /* The Expr.x union is never used at the same time as Expr.pRight */
        assert( p->x.pList==0 || p->pRight==0 );
        /* p->flags holds EP_Collate and p->pLeft->flags does not.  And
        ** p->x.pSelect cannot.  So if p->x.pLeft exists, it must hold at
        ** least one EP_Collate. Thus the following two ALWAYS. */
        if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
          int i;
          for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
            if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
              pNext = p->x.pList->a[i].pExpr;
              break;
            }
          }
        }
        p = pNext;
      }
    }else{
      break;
    }
  }
  if( sqlite3CheckCollSeq(pParse, pColl) ){ 
    pColl = 0;
82106
82107
82108
82109
82110
82111
82112



82113
82114
82115
82116
82117
82118
82119
82120
82121

82122
82123
82124
82125
82126
82127
82128
82129



82130
82131

82132
82133
82134
82135
82136
82137
82138
82139
82140
82141
82142
82143
82144
82145









82146
82147
82148
82149
82150
82151
82152
82153

/*
** Set the Expr.nHeight variable in the structure passed as an 
** argument. An expression with no children, Expr.pList or 
** Expr.pSelect member has a height of 1. Any other expression
** has a height equal to the maximum height of any other 
** referenced Expr plus one.



*/
static void exprSetHeight(Expr *p){
  int nHeight = 0;
  heightOfExpr(p->pLeft, &nHeight);
  heightOfExpr(p->pRight, &nHeight);
  if( ExprHasProperty(p, EP_xIsSelect) ){
    heightOfSelect(p->x.pSelect, &nHeight);
  }else{
    heightOfExprList(p->x.pList, &nHeight);

  }
  p->nHeight = nHeight + 1;
}

/*
** Set the Expr.nHeight variable using the exprSetHeight() function. If
** the height is greater than the maximum allowed expression depth,
** leave an error in pParse.



*/
SQLITE_PRIVATE void sqlite3ExprSetHeight(Parse *pParse, Expr *p){

  exprSetHeight(p);
  sqlite3ExprCheckHeight(pParse, p->nHeight);
}

/*
** Return the maximum height of any expression tree referenced
** by the select statement passed as an argument.
*/
SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
  int nHeight = 0;
  heightOfSelect(p, &nHeight);
  return nHeight;
}
#else









  #define exprSetHeight(y)
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */

/*
** This routine is the core allocator for Expr nodes.
**
** Construct a new expression node and return a pointer to it.  Memory
** for this node and for the pToken argument is a single allocation







>
>
>







|

>








>
>
>

|
>













|
>
>
>
>
>
>
>
>
>
|







82798
82799
82800
82801
82802
82803
82804
82805
82806
82807
82808
82809
82810
82811
82812
82813
82814
82815
82816
82817
82818
82819
82820
82821
82822
82823
82824
82825
82826
82827
82828
82829
82830
82831
82832
82833
82834
82835
82836
82837
82838
82839
82840
82841
82842
82843
82844
82845
82846
82847
82848
82849
82850
82851
82852
82853
82854
82855
82856
82857
82858
82859
82860
82861
82862

/*
** Set the Expr.nHeight variable in the structure passed as an 
** argument. An expression with no children, Expr.pList or 
** Expr.pSelect member has a height of 1. Any other expression
** has a height equal to the maximum height of any other 
** referenced Expr plus one.
**
** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
** if appropriate.
*/
static void exprSetHeight(Expr *p){
  int nHeight = 0;
  heightOfExpr(p->pLeft, &nHeight);
  heightOfExpr(p->pRight, &nHeight);
  if( ExprHasProperty(p, EP_xIsSelect) ){
    heightOfSelect(p->x.pSelect, &nHeight);
  }else if( p->x.pList ){
    heightOfExprList(p->x.pList, &nHeight);
    p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
  }
  p->nHeight = nHeight + 1;
}

/*
** Set the Expr.nHeight variable using the exprSetHeight() function. If
** the height is greater than the maximum allowed expression depth,
** leave an error in pParse.
**
** Also propagate all EP_Propagate flags from the Expr.x.pList into
** Expr.flags. 
*/
SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
  if( pParse->nErr ) return;
  exprSetHeight(p);
  sqlite3ExprCheckHeight(pParse, p->nHeight);
}

/*
** Return the maximum height of any expression tree referenced
** by the select statement passed as an argument.
*/
SQLITE_PRIVATE int sqlite3SelectExprHeight(Select *p){
  int nHeight = 0;
  heightOfSelect(p, &nHeight);
  return nHeight;
}
#else /* ABOVE:  Height enforcement enabled.  BELOW: Height enforcement off */
/*
** Propagate all EP_Propagate flags from the Expr.x.pList into
** Expr.flags. 
*/
SQLITE_PRIVATE void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
  if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
    p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
  }
}
#define exprSetHeight(y)
#endif /* SQLITE_MAX_EXPR_DEPTH>0 */

/*
** This routine is the core allocator for Expr nodes.
**
** Construct a new expression node and return a pointer to it.  Memory
** for this node and for the pToken argument is a single allocation
82241
82242
82243
82244
82245
82246
82247
82248
82249
82250
82251
82252
82253
82254
82255
82256
82257
82258
82259
  if( pRoot==0 ){
    assert( db->mallocFailed );
    sqlite3ExprDelete(db, pLeft);
    sqlite3ExprDelete(db, pRight);
  }else{
    if( pRight ){
      pRoot->pRight = pRight;
      pRoot->flags |= EP_Collate & pRight->flags;
    }
    if( pLeft ){
      pRoot->pLeft = pLeft;
      pRoot->flags |= EP_Collate & pLeft->flags;
    }
    exprSetHeight(pRoot);
  }
}

/*
** Allocate an Expr node which joins as many as two subtrees.







|



|







82950
82951
82952
82953
82954
82955
82956
82957
82958
82959
82960
82961
82962
82963
82964
82965
82966
82967
82968
  if( pRoot==0 ){
    assert( db->mallocFailed );
    sqlite3ExprDelete(db, pLeft);
    sqlite3ExprDelete(db, pRight);
  }else{
    if( pRight ){
      pRoot->pRight = pRight;
      pRoot->flags |= EP_Propagate & pRight->flags;
    }
    if( pLeft ){
      pRoot->pLeft = pLeft;
      pRoot->flags |= EP_Propagate & pLeft->flags;
    }
    exprSetHeight(pRoot);
  }
}

/*
** Allocate an Expr node which joins as many as two subtrees.
82345
82346
82347
82348
82349
82350
82351
82352
82353
82354
82355
82356
82357
82358
82359
  pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
  if( pNew==0 ){
    sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
    return 0;
  }
  pNew->x.pList = pList;
  assert( !ExprHasProperty(pNew, EP_xIsSelect) );
  sqlite3ExprSetHeight(pParse, pNew);
  return pNew;
}

/*
** Assign a variable number to an expression that encodes a wildcard
** in the original SQL statement.  
**







|







83054
83055
83056
83057
83058
83059
83060
83061
83062
83063
83064
83065
83066
83067
83068
  pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
  if( pNew==0 ){
    sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
    return 0;
  }
  pNew->x.pList = pList;
  assert( !ExprHasProperty(pNew, EP_xIsSelect) );
  sqlite3ExprSetHeightAndFlags(pParse, pNew);
  return pNew;
}

/*
** Assign a variable number to an expression that encodes a wildcard
** in the original SQL statement.  
**
82959
82960
82961
82962
82963
82964
82965















82966
82967
82968
82969
82970
82971
82972
    sqlite3ExprDelete(db, pItem->pExpr);
    sqlite3DbFree(db, pItem->zName);
    sqlite3DbFree(db, pItem->zSpan);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}
















/*
** These routines are Walker callbacks used to check expressions to
** see if they are "constant" for some definition of constant.  The
** Walker.eCode value determines the type of "constant" we are looking
** for.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







83668
83669
83670
83671
83672
83673
83674
83675
83676
83677
83678
83679
83680
83681
83682
83683
83684
83685
83686
83687
83688
83689
83690
83691
83692
83693
83694
83695
83696
    sqlite3ExprDelete(db, pItem->pExpr);
    sqlite3DbFree(db, pItem->zName);
    sqlite3DbFree(db, pItem->zSpan);
  }
  sqlite3DbFree(db, pList->a);
  sqlite3DbFree(db, pList);
}

/*
** Return the bitwise-OR of all Expr.flags fields in the given
** ExprList.
*/
SQLITE_PRIVATE u32 sqlite3ExprListFlags(const ExprList *pList){
  int i;
  u32 m = 0;
  if( pList ){
    for(i=0; i<pList->nExpr; i++){
       m |= pList->a[i].pExpr->flags;
    }
  }
  return m;
}

/*
** These routines are Walker callbacks used to check expressions to
** see if they are "constant" for some definition of constant.  The
** Walker.eCode value determines the type of "constant" we are looking
** for.
**
83000
83001
83002
83003
83004
83005
83006
83007
83008
83009
83010
83011
83012
83013
83014
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and either pWalker->eCode==4 or 5 or the function has the
    ** SQLITE_FUNC_CONST flag. */
    case TK_FUNCTION:
      if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_Constant) ){
        return WRC_Continue;
      }else{
        pWalker->eCode = 0;
        return WRC_Abort;
      }
    case TK_ID:
    case TK_COLUMN:







|







83724
83725
83726
83727
83728
83729
83730
83731
83732
83733
83734
83735
83736
83737
83738
  }

  switch( pExpr->op ){
    /* Consider functions to be constant if all their arguments are constant
    ** and either pWalker->eCode==4 or 5 or the function has the
    ** SQLITE_FUNC_CONST flag. */
    case TK_FUNCTION:
      if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
        return WRC_Continue;
      }else{
        pWalker->eCode = 0;
        return WRC_Abort;
      }
    case TK_ID:
    case TK_COLUMN:
84007
84008
84009
84010
84011
84012
84013
84014

84015
84016
84017
84018
84019
84020
84021
*/
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
  int i;
  int minLru;
  int idxLru;
  struct yColCache *p;

  assert( iReg>0 );  /* Register numbers are always positive */

  assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */

  /* The SQLITE_ColumnCache flag disables the column cache.  This is used
  ** for testing only - to verify that SQLite always gets the same answer
  ** with and without the column cache.
  */
  if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;







|
>







84731
84732
84733
84734
84735
84736
84737
84738
84739
84740
84741
84742
84743
84744
84745
84746
*/
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
  int i;
  int minLru;
  int idxLru;
  struct yColCache *p;

  /* Unless an error has occurred, register numbers are always positive. */
  assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
  assert( iCol>=-1 && iCol<32768 );  /* Finite column numbers */

  /* The SQLITE_ColumnCache flag disables the column cache.  This is used
  ** for testing only - to verify that SQLite always gets the same answer
  ** with and without the column cache.
  */
  if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
86814
86815
86816
86817
86818
86819
86820

86821


86822
86823
86824
86825
86826
86827
86828
  }

  /* Ensure the default expression is something that sqlite3ValueFromExpr()
  ** can handle (i.e. not CURRENT_TIME etc.)
  */
  if( pDflt ){
    sqlite3_value *pVal = 0;

    if( sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal) ){


      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;
    }







>
|
>
>







87539
87540
87541
87542
87543
87544
87545
87546
87547
87548
87549
87550
87551
87552
87553
87554
87555
87556
  }

  /* Ensure the default expression is something that sqlite3ValueFromExpr()
  ** can handle (i.e. not CURRENT_TIME etc.)
  */
  if( pDflt ){
    sqlite3_value *pVal = 0;
    int rc;
    rc = sqlite3ValueFromExpr(db, pDflt, SQLITE_UTF8, SQLITE_AFF_NONE, &pVal);
    assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
    if( rc!=SQLITE_OK ){
      db->mallocFailed = 1;
      return;
    }
    if( !pVal ){
      sqlite3ErrorMsg(pParse, "Cannot add a column with non-constant default");
      return;
    }
89036
89037
89038
89039
89040
89041
89042
89043
89044
89045
89046
89047
89048
89049
89050
        zKey = (char *)sqlite3_value_blob(argv[2]);
        rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
        break;

      case SQLITE_NULL:
        /* No key specified.  Use the key from the main database */
        sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
        if( nKey>0 || sqlite3BtreeGetReserve(db->aDb[0].pBt)>0 ){
          rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
        }
        break;
    }
  }
#endif








|







89764
89765
89766
89767
89768
89769
89770
89771
89772
89773
89774
89775
89776
89777
89778
        zKey = (char *)sqlite3_value_blob(argv[2]);
        rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
        break;

      case SQLITE_NULL:
        /* No key specified.  Use the key from the main database */
        sqlite3CodecGetKey(db, 0, (void**)&zKey, &nKey);
        if( nKey>0 || sqlite3BtreeGetOptimalReserve(db->aDb[0].pBt)>0 ){
          rc = sqlite3CodecAttach(db, db->nDb-1, zKey, nKey);
        }
        break;
    }
  }
#endif

89499
89500
89501
89502
89503
89504
89505
89506
89507
89508
89509
89510
89511
89512
89513
** will return with an error.  SQLITE_IGNORE means that the SQL statement
** should run but attempts to read the specified column will return NULL
** and attempts to write the column will be ignored.
**
** Setting the auth function to NULL disables this hook.  The default
** setting of the auth function is NULL.
*/
SQLITE_API int sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif







|







90227
90228
90229
90230
90231
90232
90233
90234
90235
90236
90237
90238
90239
90240
90241
** will return with an error.  SQLITE_IGNORE means that the SQL statement
** should run but attempts to read the specified column will return NULL
** and attempts to write the column will be ignored.
**
** Setting the auth function to NULL disables this hook.  The default
** setting of the auth function is NULL.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_set_authorizer(
  sqlite3 *db,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
90002
90003
90004
90005
90006
90007
90008
90009
90010
90011
90012
90013
90014
90015
90016
90017
90018
90019
**
** See also sqlite3LocateTable().
*/
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return 0;
#endif

  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
#if SQLITE_USER_AUTHENTICATION
  /* Only the admin user is allowed to know that the sqlite_user table
  ** exists */
  if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
    return 0;







<
<
<
<







90730
90731
90732
90733
90734
90735
90736




90737
90738
90739
90740
90741
90742
90743
**
** See also sqlite3LocateTable().
*/
SQLITE_PRIVATE Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
  Table *p = 0;
  int i;





  /* All mutexes are required for schema access.  Make sure we hold them. */
  assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
#if SQLITE_USER_AUTHENTICATION
  /* Only the admin user is allowed to know that the sqlite_user table
  ** exists */
  if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
    return 0;
91425
91426
91427
91428
91429
91430
91431
91432


91433
91434
91435
91436

91437
91438
91439
91440
91441
91442
91443
    }
    pPk->nKeyCol = j;
  }
  pPk->isCovering = 1;
  assert( pPk!=0 );
  nPk = pPk->nKeyCol;

  /* Make sure every column of the PRIMARY KEY is NOT NULL */


  for(i=0; i<nPk; i++){
    pTab->aCol[pPk->aiColumn[i]].notNull = 1;
  }
  pPk->uniqNotNull = 1;


  /* The root page of the PRIMARY KEY is the table root page */
  pPk->tnum = pTab->tnum;

  /* Update the in-memory representation of all UNIQUE indices by converting
  ** the final rowid column into one or more columns of the PRIMARY KEY.
  */







|
>
>
|
|
|
|
>







92149
92150
92151
92152
92153
92154
92155
92156
92157
92158
92159
92160
92161
92162
92163
92164
92165
92166
92167
92168
92169
92170
    }
    pPk->nKeyCol = j;
  }
  pPk->isCovering = 1;
  assert( pPk!=0 );
  nPk = pPk->nKeyCol;

  /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
  ** do not enforce this for imposter tables.) */
  if( !db->init.imposterTable ){
    for(i=0; i<nPk; i++){
      pTab->aCol[pPk->aiColumn[i]].notNull = 1;
    }
    pPk->uniqNotNull = 1;
  }

  /* The root page of the PRIMARY KEY is the table root page */
  pPk->tnum = pTab->tnum;

  /* Update the in-memory representation of all UNIQUE indices by converting
  ** the final rowid column into one or more columns of the PRIMARY KEY.
  */
92878
92879
92880
92881
92882
92883
92884

92885
92886
92887
92888
92889
92890
92891
            sqlite3ErrorMsg(pParse, 
                "conflicting ON CONFLICT clauses specified", 0);
          }
          if( pIdx->onError==OE_Default ){
            pIdx->onError = pIndex->onError;
          }
        }

        goto exit_create_index;
      }
    }
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 







>







93605
93606
93607
93608
93609
93610
93611
93612
93613
93614
93615
93616
93617
93618
93619
            sqlite3ErrorMsg(pParse, 
                "conflicting ON CONFLICT clauses specified", 0);
          }
          if( pIdx->onError==OE_Default ){
            pIdx->onError = pIndex->onError;
          }
        }
        pRet = pIdx;
        goto exit_create_index;
      }
    }
  }

  /* Link the new Index structure to its table and to the other
  ** in-memory database structures. 
94664
94665
94666
94667
94668
94669
94670
94671
94672
94673
94674
94675
94676
94677
94678
  pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
  if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
  pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
  if( pInClause == 0 ) goto limit_where_cleanup_1;

  pInClause->x.pSelect = pSelect;
  pInClause->flags |= EP_xIsSelect;
  sqlite3ExprSetHeight(pParse, pInClause);
  return pInClause;

  /* something went wrong. clean up anything allocated. */
limit_where_cleanup_1:
  sqlite3SelectDelete(pParse->db, pSelect);
  return 0;








|







95392
95393
95394
95395
95396
95397
95398
95399
95400
95401
95402
95403
95404
95405
95406
  pWhereRowid = sqlite3PExpr(pParse, TK_ROW, 0, 0, 0);
  if( pWhereRowid == 0 ) goto limit_where_cleanup_1;
  pInClause = sqlite3PExpr(pParse, TK_IN, pWhereRowid, 0, 0);
  if( pInClause == 0 ) goto limit_where_cleanup_1;

  pInClause->x.pSelect = pSelect;
  pInClause->flags |= EP_xIsSelect;
  sqlite3ExprSetHeightAndFlags(pParse, pInClause);
  return pInClause;

  /* something went wrong. clean up anything allocated. */
limit_where_cleanup_1:
  sqlite3SelectDelete(pParse->db, pSelect);
  return 0;

95337
95338
95339
95340
95341
95342
95343


95344
95345
95346
95347
95348
95349
95350
95351
/* #include <stdlib.h> */
/* #include <assert.h> */

/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){


  VdbeOp *pOp = &context->pVdbe->aOp[context->iOp-1];
  assert( pOp->opcode==OP_CollSeq );
  assert( pOp->p4type==P4_COLLSEQ );
  return pOp->p4.pColl;
}

/*
** Indicate that the accumulator load should be skipped on this







>
>
|







96065
96066
96067
96068
96069
96070
96071
96072
96073
96074
96075
96076
96077
96078
96079
96080
96081
/* #include <stdlib.h> */
/* #include <assert.h> */

/*
** Return the collating function associated with a function.
*/
static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
  VdbeOp *pOp;
  assert( context->pVdbe!=0 );
  pOp = &context->pVdbe->aOp[context->iOp-1];
  assert( pOp->opcode==OP_CollSeq );
  assert( pOp->p4type==P4_COLLSEQ );
  return pOp->p4.pColl;
}

/*
** Indicate that the accumulator load should be skipped on this
95606
95607
95608
95609
95610
95611
95612








95613
95614
95615
95616
95617
95618
95619
    len = 0;
    if( p1<0 ){
      for(z2=z; *z2; len++){
        SQLITE_SKIP_UTF8(z2);
      }
    }
  }








  if( argc==3 ){
    p2 = sqlite3_value_int(argv[2]);
    if( p2<0 ){
      p2 = -p2;
      negP2 = 1;
    }
  }else{







>
>
>
>
>
>
>
>







96336
96337
96338
96339
96340
96341
96342
96343
96344
96345
96346
96347
96348
96349
96350
96351
96352
96353
96354
96355
96356
96357
    len = 0;
    if( p1<0 ){
      for(z2=z; *z2; len++){
        SQLITE_SKIP_UTF8(z2);
      }
    }
  }
#ifdef SQLITE_SUBSTR_COMPATIBILITY
  /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
  ** as substr(X,1,N) - it returns the first N characters of X.  This
  ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
  ** from 2009-02-02 for compatibility of applications that exploited the
  ** old buggy behavior. */
  if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
#endif
  if( argc==3 ){
    p2 = sqlite3_value_int(argv[2]);
    if( p2<0 ){
      p2 = -p2;
      negP2 = 1;
    }
  }else{
96067
96068
96069
96070
96071
96072
96073
96074
96075
96076
96077
96078
96079
96080
96081
  }
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
SQLITE_API int sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
}

/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called.  This is used for testing
** only.







|







96805
96806
96807
96808
96809
96810
96811
96812
96813
96814
96815
96816
96817
96818
96819
  }
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
}

/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called.  This is used for testing
** only.
96957
96958
96959
96960
96961
96962
96963





96964
96965
96966
96967
96968
96969
96970

/*
** pExpr points to an expression which implements a function.  If
** it is appropriate to apply the LIKE optimization to that function
** then set aWc[0] through aWc[2] to the wildcard characters and
** return TRUE.  If the function is not a LIKE-style function then
** return FALSE.





*/
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
  FuncDef *pDef;
  if( pExpr->op!=TK_FUNCTION 
   || !pExpr->x.pList 
   || pExpr->x.pList->nExpr!=2
  ){







>
>
>
>
>







97695
97696
97697
97698
97699
97700
97701
97702
97703
97704
97705
97706
97707
97708
97709
97710
97711
97712
97713

/*
** pExpr points to an expression which implements a function.  If
** it is appropriate to apply the LIKE optimization to that function
** then set aWc[0] through aWc[2] to the wildcard characters and
** return TRUE.  If the function is not a LIKE-style function then
** return FALSE.
**
** *pIsNocase is set to true if uppercase and lowercase are equivalent for
** the function (default for LIKE).  If the function makes the distinction
** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
** false.
*/
SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
  FuncDef *pDef;
  if( pExpr->op!=TK_FUNCTION 
   || !pExpr->x.pList 
   || pExpr->x.pList->nExpr!=2
  ){
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
** malloc() and make *pzErrMsg point to that message.
**
** If the SQL is a query, then for each row in the query result
** the xCallback() function is called.  pArg becomes the first
** argument to xCallback().  If xCallback=NULL then no callback
** is invoked, even for queries.
*/
SQLITE_API int sqlite3_exec(
  sqlite3 *db,                /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  sqlite3_callback xCallback, /* Invoke this callback routine */
  void *pArg,                 /* First argument to xCallback() */
  char **pzErrMsg             /* Write error messages here */
){
  int rc = SQLITE_OK;         /* Return code */







|







101300
101301
101302
101303
101304
101305
101306
101307
101308
101309
101310
101311
101312
101313
101314
** malloc() and make *pzErrMsg point to that message.
**
** If the SQL is a query, then for each row in the query result
** the xCallback() function is called.  pArg becomes the first
** argument to xCallback().  If xCallback=NULL then no callback
** is invoked, even for queries.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_exec(
  sqlite3 *db,                /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  sqlite3_callback xCallback, /* Invoke this callback routine */
  void *pArg,                 /* First argument to xCallback() */
  char **pzErrMsg             /* Write error messages here */
){
  int rc = SQLITE_OK;         /* Return code */
101752
101753
101754
101755
101756
101757
101758
101759
101760
101761
101762
101763
101764
101765
101766
  }
  sqlite3DbFree(db, db->aExtension);
  db->aExtension = aHandle;

  db->aExtension[db->nExtension++] = handle;
  return SQLITE_OK;
}
SQLITE_API int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  int rc;
  sqlite3_mutex_enter(db->mutex);







|







102495
102496
102497
102498
102499
102500
102501
102502
102503
102504
102505
102506
102507
102508
102509
  }
  sqlite3DbFree(db, db->aExtension);
  db->aExtension = aHandle;

  db->aExtension[db->nExtension++] = handle;
  return SQLITE_OK;
}
SQLITE_API int SQLITE_STDCALL sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Use "sqlite3_extension_init" if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
){
  int rc;
  sqlite3_mutex_enter(db->mutex);
101783
101784
101785
101786
101787
101788
101789
101790
101791
101792
101793
101794
101795
101796
101797
  sqlite3DbFree(db, db->aExtension);
}

/*
** Enable or disable extension loading.  Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff){
  sqlite3_mutex_enter(db->mutex);
  if( onoff ){
    db->flags |= SQLITE_LoadExtension;
  }else{
    db->flags &= ~SQLITE_LoadExtension;
  }
  sqlite3_mutex_leave(db->mutex);







|







102526
102527
102528
102529
102530
102531
102532
102533
102534
102535
102536
102537
102538
102539
102540
  sqlite3DbFree(db, db->aExtension);
}

/*
** Enable or disable extension loading.  Extension loading is disabled by
** default so as not to open security holes in older applications.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_enable_load_extension(sqlite3 *db, int onoff){
  sqlite3_mutex_enter(db->mutex);
  if( onoff ){
    db->flags |= SQLITE_LoadExtension;
  }else{
    db->flags &= ~SQLITE_LoadExtension;
  }
  sqlite3_mutex_leave(db->mutex);
101840
101841
101842
101843
101844
101845
101846
101847
101848
101849
101850
101851
101852
101853
101854
#endif


/*
** Register a statically linked extension that is automatically
** loaded by every new database connection.
*/
SQLITE_API int sqlite3_auto_extension(void (*xInit)(void)){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ){
    return rc;
  }else
#endif







|







102583
102584
102585
102586
102587
102588
102589
102590
102591
102592
102593
102594
102595
102596
102597
#endif


/*
** Register a statically linked extension that is automatically
** loaded by every new database connection.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_auto_extension(void (*xInit)(void)){
  int rc = SQLITE_OK;
#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ){
    return rc;
  }else
#endif
101885
101886
101887
101888
101889
101890
101891
101892
101893
101894
101895
101896
101897
101898
101899
** set of routines that is invoked for each new database connection, if it
** is currently on the list.  If xInit is not on the list, then this
** routine is a no-op.
**
** Return 1 if xInit was found on the list and removed.  Return 0 if xInit
** was not on the list.
*/
SQLITE_API int sqlite3_cancel_auto_extension(void (*xInit)(void)){
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
  int i;
  int n = 0;
  wsdAutoextInit;
  sqlite3_mutex_enter(mutex);







|







102628
102629
102630
102631
102632
102633
102634
102635
102636
102637
102638
102639
102640
102641
102642
** set of routines that is invoked for each new database connection, if it
** is currently on the list.  If xInit is not on the list, then this
** routine is a no-op.
**
** Return 1 if xInit was found on the list and removed.  Return 0 if xInit
** was not on the list.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_cancel_auto_extension(void (*xInit)(void)){
#if SQLITE_THREADSAFE
  sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
  int i;
  int n = 0;
  wsdAutoextInit;
  sqlite3_mutex_enter(mutex);
101908
101909
101910
101911
101912
101913
101914
101915
101916
101917
101918
101919
101920
101921
101922
  sqlite3_mutex_leave(mutex);
  return n;
}

/*
** Reset the automatic extension loading mechanism.
*/
SQLITE_API void sqlite3_reset_auto_extension(void){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize()==SQLITE_OK )
#endif
  {
#if SQLITE_THREADSAFE
    sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif







|







102651
102652
102653
102654
102655
102656
102657
102658
102659
102660
102661
102662
102663
102664
102665
  sqlite3_mutex_leave(mutex);
  return n;
}

/*
** Reset the automatic extension loading mechanism.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_reset_auto_extension(void){
#ifndef SQLITE_OMIT_AUTOINIT
  if( sqlite3_initialize()==SQLITE_OK )
#endif
  {
#if SQLITE_THREADSAFE
    sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
#endif
101990
101991
101992
101993
101994
101995
101996

101997
101998


101999




102000
102001
102002
102003
102004
102005
102006
102007
102008
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
#endif

/***************************************************************************

** The next block of code, including the PragTyp_XXXX macro definitions and
** the aPragmaName[] object is composed of generated code. DO NOT EDIT.


**




** To add new pragmas, edit the code in ../tool/mkpragmatab.tcl and rerun
** that script.  Then copy/paste the output in place of the following:
*/
#define PragTyp_HEADER_VALUE                   0
#define PragTyp_AUTO_VACUUM                    1
#define PragTyp_FLAG                           2
#define PragTyp_BUSY_TIMEOUT                   3
#define PragTyp_CACHE_SIZE                     4
#define PragTyp_CASE_SENSITIVE_LIKE            5







>
|
|
>
>
|
>
>
>
>
|
|







102733
102734
102735
102736
102737
102738
102739
102740
102741
102742
102743
102744
102745
102746
102747
102748
102749
102750
102751
102752
102753
102754
102755
102756
102757
102758
#    define SQLITE_ENABLE_LOCKING_STYLE 1
#  else
#    define SQLITE_ENABLE_LOCKING_STYLE 0
#  endif
#endif

/***************************************************************************
** The "pragma.h" include file is an automatically generated file that
** that includes the PragType_XXXX macro definitions and the aPragmaName[]
** object.  This ensures that the aPragmaName[] table is arranged in
** lexicographical order to facility a binary search of the pragma name.
** Do not edit pragma.h directly.  Edit and rerun the script in at 
** ../tool/mkpragmatab.tcl. */
/************** Include pragma.h in the middle of pragma.c *******************/
/************** Begin file pragma.h ******************************************/
/* DO NOT EDIT!
** This file is automatically generated by the script at
** ../tool/mkpragmatab.tcl.  To update the set of pragmas, edit
** that script and rerun it.
*/
#define PragTyp_HEADER_VALUE                   0
#define PragTyp_AUTO_VACUUM                    1
#define PragTyp_FLAG                           2
#define PragTyp_BUSY_TIMEOUT                   3
#define PragTyp_CACHE_SIZE                     4
#define PragTyp_CASE_SENSITIVE_LIKE            5
102229
102230
102231
102232
102233
102234
102235




102236
102237
102238
102239
102240
102241
102242
    /* ePragTyp:  */ PragTyp_INDEX_INFO,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
  { /* zName:     */ "index_list",
    /* ePragTyp:  */ PragTyp_INDEX_LIST,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },




#endif
#if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
  { /* zName:     */ "integrity_check",
    /* ePragTyp:  */ PragTyp_INTEGRITY_CHECK,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif







>
>
>
>







102979
102980
102981
102982
102983
102984
102985
102986
102987
102988
102989
102990
102991
102992
102993
102994
102995
102996
    /* ePragTyp:  */ PragTyp_INDEX_INFO,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
  { /* zName:     */ "index_list",
    /* ePragTyp:  */ PragTyp_INDEX_LIST,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
  { /* zName:     */ "index_xinfo",
    /* ePragTyp:  */ PragTyp_INDEX_INFO,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 1 },
#endif
#if !defined(SQLITE_OMIT_INTEGRITY_CHECK)
  { /* zName:     */ "integrity_check",
    /* ePragTyp:  */ PragTyp_INTEGRITY_CHECK,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
102445
102446
102447
102448
102449
102450
102451
102452
102453
102454

102455
102456
102457
102458
102459
102460
102461
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "writable_schema",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_WriteSchema|SQLITE_RecoveryMode },
#endif
};
/* Number of pragmas: 58 on by default, 71 total. */
/* End of the automatically generated pragma table.
***************************************************************************/


/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.  The FULL option is disallowed
** if the omitFull parameter it 1.
**







|
|
|
>







103199
103200
103201
103202
103203
103204
103205
103206
103207
103208
103209
103210
103211
103212
103213
103214
103215
103216
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "writable_schema",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_WriteSchema|SQLITE_RecoveryMode },
#endif
};
/* Number of pragmas: 59 on by default, 72 total. */

/************** End of pragma.h **********************************************/
/************** Continuing where we left off in pragma.c *********************/

/*
** Interpret the given string as a safety level.  Return 0 for OFF,
** 1 for ON or NORMAL and 2 for FULL.  Return 1 for an empty or 
** unrecognized string argument.  The FULL option is disallowed
** if the omitFull parameter it 1.
**
102700
102701
102702
102703
102704
102705
102706

102707
102708
102709
102710
102711
102712
102713
  char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
  int iDb;               /* Database index for <database> */
  int lwr, upr, mid = 0;       /* Binary search bounds */
  int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
  sqlite3 *db = pParse->db;    /* The database connection */
  Db *pDb;                     /* The specific database being pragmaed */
  Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */


  if( v==0 ) return;
  sqlite3VdbeRunOnlyOnce(v);
  pParse->nMem = 2;

  /* Interpret the [database.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */







>







103455
103456
103457
103458
103459
103460
103461
103462
103463
103464
103465
103466
103467
103468
103469
  char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
  int iDb;               /* Database index for <database> */
  int lwr, upr, mid = 0;       /* Binary search bounds */
  int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
  sqlite3 *db = pParse->db;    /* The database connection */
  Db *pDb;                     /* The specific database being pragmaed */
  Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
  const struct sPragmaNames *pPragma;

  if( v==0 ) return;
  sqlite3VdbeRunOnlyOnce(v);
  pParse->nMem = 2;

  /* Interpret the [database.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */
102735
102736
102737
102738
102739
102740
102741











102742
102743
102744
102745
102746
102747
102748
  if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }

  /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
  ** connection.  If it returns SQLITE_OK, then assume that the VFS
  ** handled the pragma and generate a no-op prepared statement.











  */
  aFcntl[0] = 0;
  aFcntl[1] = zLeft;
  aFcntl[2] = zRight;
  aFcntl[3] = 0;
  db->busyHandler.nBusy = 0;
  rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);







>
>
>
>
>
>
>
>
>
>
>







103491
103492
103493
103494
103495
103496
103497
103498
103499
103500
103501
103502
103503
103504
103505
103506
103507
103508
103509
103510
103511
103512
103513
103514
103515
  if( sqlite3AuthCheck(pParse, SQLITE_PRAGMA, zLeft, zRight, zDb) ){
    goto pragma_out;
  }

  /* Send an SQLITE_FCNTL_PRAGMA file-control to the underlying VFS
  ** connection.  If it returns SQLITE_OK, then assume that the VFS
  ** handled the pragma and generate a no-op prepared statement.
  **
  ** IMPLEMENTATION-OF: R-12238-55120 Whenever a PRAGMA statement is parsed,
  ** an SQLITE_FCNTL_PRAGMA file control is sent to the open sqlite3_file
  ** object corresponding to the database file to which the pragma
  ** statement refers.
  **
  ** IMPLEMENTATION-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA
  ** file control is an array of pointers to strings (char**) in which the
  ** second element of the array is the name of the pragma and the third
  ** element is the argument to the pragma or NULL if the pragma has no
  ** argument.
  */
  aFcntl[0] = 0;
  aFcntl[1] = zLeft;
  aFcntl[2] = zRight;
  aFcntl[3] = 0;
  db->busyHandler.nBusy = 0;
  rc = sqlite3_file_control(db, zDb, SQLITE_FCNTL_PRAGMA, (void*)aFcntl);
102777
102778
102779
102780
102781
102782
102783

102784
102785
102786
102787
102788
102789
102790
102791
102792
102793
102794
102795
102796
102797
102798
    if( rc<0 ){
      upr = mid - 1;
    }else{
      lwr = mid + 1;
    }
  }
  if( lwr>upr ) goto pragma_out;


  /* Make sure the database schema is loaded if the pragma requires that */
  if( (aPragmaNames[mid].mPragFlag & PragFlag_NeedSchema)!=0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
  }

  /* Jump to the appropriate pragma handler */
  switch( aPragmaNames[mid].ePragTyp ){
  
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the







>


|




|







103544
103545
103546
103547
103548
103549
103550
103551
103552
103553
103554
103555
103556
103557
103558
103559
103560
103561
103562
103563
103564
103565
103566
    if( rc<0 ){
      upr = mid - 1;
    }else{
      lwr = mid + 1;
    }
  }
  if( lwr>upr ) goto pragma_out;
  pPragma = &aPragmaNames[mid];

  /* Make sure the database schema is loaded if the pragma requires that */
  if( (pPragma->mPragFlag & PragFlag_NeedSchema)!=0 ){
    if( sqlite3ReadSchema(pParse) ) goto pragma_out;
  }

  /* Jump to the appropriate pragma handler */
  switch( pPragma->ePragTyp ){
  
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
103363
103364
103365
103366
103367
103368
103369
103370
103371
103372
103373
103374
103375
103376
103377
103378
103379
103380
    break;
  }
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  case PragTyp_FLAG: {
    if( zRight==0 ){
      returnSingleInt(pParse, aPragmaNames[mid].zName,
                     (db->flags & aPragmaNames[mid].iArg)!=0 );
    }else{
      int mask = aPragmaNames[mid].iArg;    /* Mask of bits to set or clear. */
      if( db->autoCommit==0 ){
        /* Foreign key support may not be enabled or disabled while not
        ** in auto-commit mode.  */
        mask &= ~(SQLITE_ForeignKeys);
      }
#if SQLITE_USER_AUTHENTICATION
      if( db->auth.authLevel==UAUTH_User ){







|
<

|







104131
104132
104133
104134
104135
104136
104137
104138

104139
104140
104141
104142
104143
104144
104145
104146
104147
    break;
  }
#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

#ifndef SQLITE_OMIT_FLAG_PRAGMAS
  case PragTyp_FLAG: {
    if( zRight==0 ){
      returnSingleInt(pParse, pPragma->zName, (db->flags & pPragma->iArg)!=0 );

    }else{
      int mask = pPragma->iArg;    /* Mask of bits to set or clear. */
      if( db->autoCommit==0 ){
        /* Foreign key support may not be enabled or disabled while not
        ** in auto-commit mode.  */
        mask &= ~(SQLITE_ForeignKeys);
      }
#if SQLITE_USER_AUTHENTICATION
      if( db->auth.authLevel==UAUTH_User ){
103495
103496
103497
103498
103499
103500
103501










103502
103503
103504
103505
103506
103507
103508





103509
103510
103511
103512
103513


103514






103515
103516
103517
103518
103519
103520
103521
103522
103523
103524
103525
103526
103527
103528
103529
103530
103531
103532
103533


103534

103535
103536
103537


103538
103539
103540
103541
103542
103543
103544
103545

  case PragTyp_INDEX_INFO: if( zRight ){
    Index *pIdx;
    Table *pTab;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;










      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);





      for(i=0; i<pIdx->nKeyCol; i++){
        i16 cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
        assert( pTab->nCol>cnum );


        sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);






        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
      }
    }
  }
  break;

  case PragTyp_INDEX_LIST: if( zRight ){
    Index *pIdx;
    Table *pTab;
    int i;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      sqlite3VdbeSetNumCols(v, 3);
      pParse->nMem = 3;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);


      for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){

        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
        sqlite3VdbeAddOp2(v, OP_Integer, IsUniqueIndex(pIdx), 3);


        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 3);
      }
    }
  }
  break;

  case PragTyp_DATABASE_LIST: {
    int i;







>
>
>
>
>
>
>
>
>
>

|
<




>
>
>
>
>
|



|
>
>
|
>
>
>
>
>
>
|












|
|




>
>

>



>
>
|







104262
104263
104264
104265
104266
104267
104268
104269
104270
104271
104272
104273
104274
104275
104276
104277
104278
104279
104280

104281
104282
104283
104284
104285
104286
104287
104288
104289
104290
104291
104292
104293
104294
104295
104296
104297
104298
104299
104300
104301
104302
104303
104304
104305
104306
104307
104308
104309
104310
104311
104312
104313
104314
104315
104316
104317
104318
104319
104320
104321
104322
104323
104324
104325
104326
104327
104328
104329
104330
104331
104332
104333
104334
104335
104336
104337
104338
104339

  case PragTyp_INDEX_INFO: if( zRight ){
    Index *pIdx;
    Table *pTab;
    pIdx = sqlite3FindIndex(db, zRight, zDb);
    if( pIdx ){
      int i;
      int mx;
      if( pPragma->iArg ){
        /* PRAGMA index_xinfo (newer version with more rows and columns) */
        mx = pIdx->nColumn;
        pParse->nMem = 6;
      }else{
        /* PRAGMA index_info (legacy version) */
        mx = pIdx->nKeyCol;
        pParse->nMem = 3;
      }
      pTab = pIdx->pTable;
      sqlite3VdbeSetNumCols(v, pParse->nMem);

      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seqno", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "cid", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "name", SQLITE_STATIC);
      if( pPragma->iArg ){
        sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "desc", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "coll", SQLITE_STATIC);
        sqlite3VdbeSetColName(v, 5, COLNAME_NAME, "key", SQLITE_STATIC);
      }
      for(i=0; i<mx; i++){
        i16 cnum = pIdx->aiColumn[i];
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp2(v, OP_Integer, cnum, 2);
        if( cnum<0 ){
          sqlite3VdbeAddOp2(v, OP_Null, 0, 3);
        }else{
          sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, pTab->aCol[cnum].zName, 0);
        }
        if( pPragma->iArg ){
          sqlite3VdbeAddOp2(v, OP_Integer, pIdx->aSortOrder[i], 4);
          sqlite3VdbeAddOp4(v, OP_String8, 0, 5, 0, pIdx->azColl[i], 0);
          sqlite3VdbeAddOp2(v, OP_Integer, i<pIdx->nKeyCol, 6);
        }
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, pParse->nMem);
      }
    }
  }
  break;

  case PragTyp_INDEX_LIST: if( zRight ){
    Index *pIdx;
    Table *pTab;
    int i;
    pTab = sqlite3FindTable(db, zRight, zDb);
    if( pTab ){
      v = sqlite3GetVdbe(pParse);
      sqlite3VdbeSetNumCols(v, 5);
      pParse->nMem = 5;
      sqlite3CodeVerifySchema(pParse, iDb);
      sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "seq", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 1, COLNAME_NAME, "name", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 2, COLNAME_NAME, "unique", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 3, COLNAME_NAME, "origin", SQLITE_STATIC);
      sqlite3VdbeSetColName(v, 4, COLNAME_NAME, "partial", SQLITE_STATIC);
      for(pIdx=pTab->pIndex, i=0; pIdx; pIdx=pIdx->pNext, i++){
        const char *azOrigin[] = { "c", "u", "pk" };
        sqlite3VdbeAddOp2(v, OP_Integer, i, 1);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 2, 0, pIdx->zName, 0);
        sqlite3VdbeAddOp2(v, OP_Integer, IsUniqueIndex(pIdx), 3);
        sqlite3VdbeAddOp4(v, OP_String8, 0, 4, 0, azOrigin[pIdx->idxType], 0);
        sqlite3VdbeAddOp2(v, OP_Integer, pIdx->pPartIdxWhere!=0, 5);
        sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 5);
      }
    }
  }
  break;

  case PragTyp_DATABASE_LIST: {
    int i;
104101
104102
104103
104104
104105
104106
104107
104108
104109
104110
104111
104112
104113
104114
104115
104116
104117
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  case PragTyp_HEADER_VALUE: {
    int iCookie = aPragmaNames[mid].iArg;  /* Which cookie to read or write */
    sqlite3VdbeUsesBtree(v, iDb);
    if( zRight && (aPragmaNames[mid].mPragFlag & PragFlag_ReadOnly)==0 ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);







|

|







104895
104896
104897
104898
104899
104900
104901
104902
104903
104904
104905
104906
104907
104908
104909
104910
104911
  ** the schema-version is potentially dangerous and may lead to program
  ** crashes or database corruption. Use with caution!
  **
  ** The user-version is not used internally by SQLite. It may be used by
  ** applications for any purpose.
  */
  case PragTyp_HEADER_VALUE: {
    int iCookie = pPragma->iArg;  /* Which cookie to read or write */
    sqlite3VdbeUsesBtree(v, iDb);
    if( zRight && (pPragma->mPragFlag & PragFlag_ReadOnly)==0 ){
      /* Write the specified cookie value */
      static const VdbeOpList setCookie[] = {
        { OP_Transaction,    0,  1,  0},    /* 0 */
        { OP_Integer,        0,  1,  0},    /* 1 */
        { OP_SetCookie,      0,  0,  1},    /* 2 */
      };
      int addr = sqlite3VdbeAddOpList(v, ArraySize(setCookie), setCookie, 0);
104205
104206
104207
104208
104209
104210
104211
104212
104213

104214
104215
104216
104217
104218
104219
104220
104221
104222
104223
104224
104225
104226
104227
104228
104229
104230
104231
104232
104233
104234
104235
104236
104237
104238
104239
104240
104241

104242
104243



104244
104245
104246
104247
104248
104249
104250
  }
  break;
#endif

  /*
  **  PRAGMA shrink_memory
  **
  ** This pragma attempts to free as much memory as possible from the
  ** current database connection.

  */
  case PragTyp_SHRINK_MEMORY: {
    sqlite3_db_release_memory(db);
    break;
  }

  /*
  **   PRAGMA busy_timeout
  **   PRAGMA busy_timeout = N
  **
  ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
  ** if one is set.  If no busy handler or a different busy handler is set
  ** then 0 is returned.  Setting the busy_timeout to 0 or negative
  ** disables the timeout.
  */
  /*case PragTyp_BUSY_TIMEOUT*/ default: {
    assert( aPragmaNames[mid].ePragTyp==PragTyp_BUSY_TIMEOUT );
    if( zRight ){
      sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
    }
    returnSingleInt(pParse, "timeout",  db->busyTimeout);
    break;
  }

  /*
  **   PRAGMA soft_heap_limit
  **   PRAGMA soft_heap_limit = N
  **

  ** Call sqlite3_soft_heap_limit64(N).  Return the result.  If N is omitted,
  ** use -1.



  */
  case PragTyp_SOFT_HEAP_LIMIT: {
    sqlite3_int64 N;
    if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
      sqlite3_soft_heap_limit64(N);
    }
    returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));







|
|
>
















|











>
|
|
>
>
>







104999
105000
105001
105002
105003
105004
105005
105006
105007
105008
105009
105010
105011
105012
105013
105014
105015
105016
105017
105018
105019
105020
105021
105022
105023
105024
105025
105026
105027
105028
105029
105030
105031
105032
105033
105034
105035
105036
105037
105038
105039
105040
105041
105042
105043
105044
105045
105046
105047
105048
105049
  }
  break;
#endif

  /*
  **  PRAGMA shrink_memory
  **
  ** IMPLEMENTATION-OF: R-23445-46109 This pragma causes the database
  ** connection on which it is invoked to free up as much memory as it
  ** can, by calling sqlite3_db_release_memory().
  */
  case PragTyp_SHRINK_MEMORY: {
    sqlite3_db_release_memory(db);
    break;
  }

  /*
  **   PRAGMA busy_timeout
  **   PRAGMA busy_timeout = N
  **
  ** Call sqlite3_busy_timeout(db, N).  Return the current timeout value
  ** if one is set.  If no busy handler or a different busy handler is set
  ** then 0 is returned.  Setting the busy_timeout to 0 or negative
  ** disables the timeout.
  */
  /*case PragTyp_BUSY_TIMEOUT*/ default: {
    assert( pPragma->ePragTyp==PragTyp_BUSY_TIMEOUT );
    if( zRight ){
      sqlite3_busy_timeout(db, sqlite3Atoi(zRight));
    }
    returnSingleInt(pParse, "timeout",  db->busyTimeout);
    break;
  }

  /*
  **   PRAGMA soft_heap_limit
  **   PRAGMA soft_heap_limit = N
  **
  ** IMPLEMENTATION-OF: R-26343-45930 This pragma invokes the
  ** sqlite3_soft_heap_limit64() interface with the argument N, if N is
  ** specified and is a non-negative integer.
  ** IMPLEMENTATION-OF: R-64451-07163 The soft_heap_limit pragma always
  ** returns the same integer that would be returned by the
  ** sqlite3_soft_heap_limit64(-1) C-language function.
  */
  case PragTyp_SOFT_HEAP_LIMIT: {
    sqlite3_int64 N;
    if( zRight && sqlite3DecOrHexToI64(zRight, &N)==SQLITE_OK ){
      sqlite3_soft_heap_limit64(N);
    }
    returnSingleInt(pParse, "soft_heap_limit",  sqlite3_soft_heap_limit64(-1));
105132
105133
105134
105135
105136
105137
105138
105139
105140
105141
105142
105143
105144
105145
105146
105147
105148
105149
105150
105151
105152
105153
105154
105155
105156
105157
105158
** Two versions of the official API.  Legacy and new use.  In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step().  In the new version, the original SQL text is retained
** and the statement is automatically recompiled if an schema change
** occurs.
*/
SQLITE_API int sqlite3_prepare(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;
  rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
  assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
  return rc;
}
SQLITE_API int sqlite3_prepare_v2(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;







|











|







105931
105932
105933
105934
105935
105936
105937
105938
105939
105940
105941
105942
105943
105944
105945
105946
105947
105948
105949
105950
105951
105952
105953
105954
105955
105956
105957
** Two versions of the official API.  Legacy and new use.  In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step().  In the new version, the original SQL text is retained
** and the statement is automatically recompiled if an schema change
** occurs.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_prepare(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;
  rc = sqlite3LockAndPrepare(db,zSql,nBytes,0,0,ppStmt,pzTail);
  assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
  return rc;
}
SQLITE_API int SQLITE_STDCALL sqlite3_prepare_v2(
  sqlite3 *db,              /* Database handle. */
  const char *zSql,         /* UTF-8 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const char **pzTail       /* OUT: End of parsed string */
){
  int rc;
105220
105221
105222
105223
105224
105225
105226
105227
105228
105229
105230
105231
105232
105233
105234
105235
105236
105237
105238
105239
105240
105241
105242
105243
105244
105245
105246
** Two versions of the official API.  Legacy and new use.  In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step().  In the new version, the original SQL text is retained
** and the statement is automatically recompiled if an schema change
** occurs.
*/
SQLITE_API int sqlite3_prepare16(
  sqlite3 *db,              /* Database handle. */ 
  const void *zSql,         /* UTF-16 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const void **pzTail       /* OUT: End of parsed string */
){
  int rc;
  rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
  assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
  return rc;
}
SQLITE_API int sqlite3_prepare16_v2(
  sqlite3 *db,              /* Database handle. */ 
  const void *zSql,         /* UTF-16 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const void **pzTail       /* OUT: End of parsed string */
){
  int rc;







|











|







106019
106020
106021
106022
106023
106024
106025
106026
106027
106028
106029
106030
106031
106032
106033
106034
106035
106036
106037
106038
106039
106040
106041
106042
106043
106044
106045
** Two versions of the official API.  Legacy and new use.  In the legacy
** version, the original SQL text is not saved in the prepared statement
** and so if a schema change occurs, SQLITE_SCHEMA is returned by
** sqlite3_step().  In the new version, the original SQL text is retained
** and the statement is automatically recompiled if an schema change
** occurs.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_prepare16(
  sqlite3 *db,              /* Database handle. */ 
  const void *zSql,         /* UTF-16 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const void **pzTail       /* OUT: End of parsed string */
){
  int rc;
  rc = sqlite3Prepare16(db,zSql,nBytes,0,ppStmt,pzTail);
  assert( rc==SQLITE_OK || ppStmt==0 || *ppStmt==0 );  /* VERIFY: F13021 */
  return rc;
}
SQLITE_API int SQLITE_STDCALL sqlite3_prepare16_v2(
  sqlite3 *db,              /* Database handle. */ 
  const void *zSql,         /* UTF-16 encoded SQL statement. */
  int nBytes,               /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,    /* OUT: A pointer to the prepared statement */
  const void **pzTail       /* OUT: End of parsed string */
){
  int rc;
105793
105794
105795
105796
105797
105798
105799

105800

105801
105802
105803
105804
105805
105806
105807
105808
105809
105810
105811
105812
105813
105814
105815
105816
105817
105818
105819
105820
105821
105822
105823
105824
105825
105826
105827
105828
105829
105830
105831
105832
105833
105834
105835
105836
105837
105838
    sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
    pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
    if( pParse->db->mallocFailed ) return;
    pOp->p2 = nKey + nData;
    pKI = pOp->p4.pKeyInfo;
    memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
    sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);

    pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, 1);

    addrJmp = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
    pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
    pSort->regReturn = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
  if( pSelect->iLimit ){
    int addr1, addr2;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;
    }else{
      iLimit = pSelect->iLimit;
    }
    addr1 = sqlite3VdbeAddOp1(v, OP_IfZero, iLimit); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_AddImm, iLimit, -1);
    addr2 = sqlite3VdbeAddOp0(v, OP_Goto);
    sqlite3VdbeJumpHere(v, addr1);
    sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
    sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addr2);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(







>
|
>

















|






<
<
|
<


|







106592
106593
106594
106595
106596
106597
106598
106599
106600
106601
106602
106603
106604
106605
106606
106607
106608
106609
106610
106611
106612
106613
106614
106615
106616
106617
106618
106619
106620
106621
106622
106623
106624
106625


106626

106627
106628
106629
106630
106631
106632
106633
106634
106635
106636
    sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
    pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
    if( pParse->db->mallocFailed ) return;
    pOp->p2 = nKey + nData;
    pKI = pOp->p4.pKeyInfo;
    memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */
    sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
    testcase( pKI->nXField>2 );
    pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat,
                                           pKI->nXField-1);
    addrJmp = sqlite3VdbeCurrentAddr(v);
    sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
    pSort->labelBkOut = sqlite3VdbeMakeLabel(v);
    pSort->regReturn = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
    sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addrFirst);
    sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
    sqlite3VdbeJumpHere(v, addrJmp);
  }
  if( pSort->sortFlags & SORTFLAG_UseSorter ){
    op = OP_SorterInsert;
  }else{
    op = OP_IdxInsert;
  }
  sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord);
  if( pSelect->iLimit ){
    int addr;
    int iLimit;
    if( pSelect->iOffset ){
      iLimit = pSelect->iOffset+1;
    }else{
      iLimit = pSelect->iLimit;
    }


    addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, -1); VdbeCoverage(v);

    sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor);
    sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor);
    sqlite3VdbeJumpHere(v, addr);
  }
}

/*
** Add code to implement the OFFSET
*/
static void codeOffset(
106221
106222
106223
106224
106225
106226
106227
106228
106229
106230
106231
106232
106233
106234
106235
  }

  /* Jump to the end of the loop if the LIMIT is reached.  Except, if
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pSort==0 && p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
*/







|







107019
107020
107021
107022
107023
107024
107025
107026
107027
107028
107029
107030
107031
107032
107033
  }

  /* Jump to the end of the loop if the LIMIT is reached.  Except, if
  ** there is a sorter, in which case the sorter has already limited
  ** the output for us.
  */
  if( pSort==0 && p->iLimit ){
    sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
  }
}

/*
** Allocate a KeyInfo object sufficient for an index of N key columns and
** X extra columns.
*/
106304
106305
106306
106307
106308
106309
106310
106311
106312
106313
106314
106315
106316
106317
106318
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr+nExtra-iStart, 1);
  if( pInfo ){
    assert( sqlite3KeyInfoIsWriteable(pInfo) );
    for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ) pColl = db->pDfltColl;
      pInfo->aColl[i-iStart] = pColl;







|







107102
107103
107104
107105
107106
107107
107108
107109
107110
107111
107112
107113
107114
107115
107116
  int nExpr;
  KeyInfo *pInfo;
  struct ExprList_item *pItem;
  sqlite3 *db = pParse->db;
  int i;

  nExpr = pList->nExpr;
  pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
  if( pInfo ){
    assert( sqlite3KeyInfoIsWriteable(pInfo) );
    for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
      CollSeq *pColl;
      pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
      if( !pColl ) pColl = db->pDfltColl;
      pInfo->aColl[i-iStart] = pColl;
107074
107075
107076
107077
107078
107079
107080
107081
107082
107083
107084
107085
107086
107087
107088
      }else if( n>=0 && p->nSelectRow>(u64)n ){
        p->nSelectRow = n;
      }
    }else{
      sqlite3ExprCode(pParse, p->pLimit, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); VdbeCoverage(v);
    }
    if( p->pOffset ){
      p->iOffset = iOffset = ++pParse->nMem;
      pParse->nMem++;   /* Allocate an extra register for limit+offset */
      sqlite3ExprCode(pParse, p->pOffset, iOffset);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
      VdbeComment((v, "OFFSET counter"));







|







107872
107873
107874
107875
107876
107877
107878
107879
107880
107881
107882
107883
107884
107885
107886
      }else if( n>=0 && p->nSelectRow>(u64)n ){
        p->nSelectRow = n;
      }
    }else{
      sqlite3ExprCode(pParse, p->pLimit, iLimit);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
      VdbeComment((v, "LIMIT counter"));
      sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
    }
    if( p->pOffset ){
      p->iOffset = iOffset = ++pParse->nMem;
      pParse->nMem++;   /* Allocate an extra register for limit+offset */
      sqlite3ExprCode(pParse, p->pOffset, iOffset);
      sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
      VdbeComment((v, "OFFSET counter"));
107293
107294
107295
107296
107297
107298
107299
107300
107301
107302
107303
107304
107305
107306
107307

  /* Output the single row in Current */
  addrCont = sqlite3VdbeMakeLabel(v);
  codeOffset(v, regOffset, addrCont);
  selectInnerLoop(pParse, p, p->pEList, iCurrent,
      0, 0, pDest, addrCont, addrBreak);
  if( regLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, regLimit, addrBreak, -1);
    VdbeCoverage(v);
  }
  sqlite3VdbeResolveLabel(v, addrCont);

  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */







|







108091
108092
108093
108094
108095
108096
108097
108098
108099
108100
108101
108102
108103
108104
108105

  /* Output the single row in Current */
  addrCont = sqlite3VdbeMakeLabel(v);
  codeOffset(v, regOffset, addrCont);
  selectInnerLoop(pParse, p, p->pEList, iCurrent,
      0, 0, pDest, addrCont, addrBreak);
  if( regLimit ){
    sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
    VdbeCoverage(v);
  }
  sqlite3VdbeResolveLabel(v, addrCont);

  /* Execute the recursive SELECT taking the single row in Current as
  ** the value for the recursive-table. Store the results in the Queue.
  */
107518
107519
107520
107521
107522
107523
107524
107525
107526
107527
107528
107529
107530
107531
107532
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfZero, p->iLimit); VdbeCoverage(v);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
      }
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;







|







108316
108317
108318
108319
108320
108321
108322
108323
108324
108325
108326
108327
108328
108329
108330
      if( rc ){
        goto multi_select_end;
      }
      p->pPrior = 0;
      p->iLimit = pPrior->iLimit;
      p->iOffset = pPrior->iOffset;
      if( p->iLimit ){
        addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
        VdbeComment((v, "Jump ahead if LIMIT reached"));
      }
      explainSetInteger(iSub2, pParse->iNextSelectId);
      rc = sqlite3Select(pParse, p, &dest);
      testcase( rc!=SQLITE_OK );
      pDelete = p->pPrior;
      p->pPrior = pPrior;
107919
107920
107921
107922
107923
107924
107925
107926
107927
107928
107929
107930
107931
107932
107933
      break;
    }
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){
    sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); VdbeCoverage(v);
  }

  /* Generate the subroutine return
  */
  sqlite3VdbeResolveLabel(v, iContinue);
  sqlite3VdbeAddOp1(v, OP_Return, regReturn);








|







108717
108718
108719
108720
108721
108722
108723
108724
108725
108726
108727
108728
108729
108730
108731
      break;
    }
  }

  /* Jump to the end of the loop if the LIMIT is reached.
  */
  if( p->iLimit ){
    sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
  }

  /* Generate the subroutine return
  */
  sqlite3VdbeResolveLabel(v, iContinue);
  sqlite3VdbeAddOp1(v, OP_Return, regReturn);

108442
108443
108444
108445
108446
108447
108448
108449



108450
108451
108452
108453
108454
108455
108456
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or the outer query is not a join.



**
**   (3)  The subquery is not the right operand of a left outer join
**        (Originally ticket #306.  Strengthened by ticket #3300)
**
**   (4)  The subquery is not DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT







|
>
>
>







109240
109241
109242
109243
109244
109245
109246
109247
109248
109249
109250
109251
109252
109253
109254
109255
109256
109257
** exist on the table t1, a complete scan of the data might be
** avoided.
**
** Flattening is only attempted if all of the following are true:
**
**   (1)  The subquery and the outer query do not both use aggregates.
**
**   (2)  The subquery is not an aggregate or (2a) the outer query is not a join
**        and (2b) the outer query does not use subqueries other than the one
**        FROM-clause subquery that is a candidate for flattening.  (2b is
**        due to ticket [2f7170d73bf9abf80] from 2015-02-09.)
**
**   (3)  The subquery is not the right operand of a left outer join
**        (Originally ticket #306.  Strengthened by ticket #3300)
**
**   (4)  The subquery is not DISTINCT.
**
**  (**)  At one point restrictions (4) and (5) defined a subset of DISTINCT
108579
108580
108581
108582
108583
108584
108585

108586
108587








108588
108589
108590
108591
108592
108593
108594
  if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
  pSrc = p->pSrc;
  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  pSubitem = &pSrc->a[iFrom];
  iParent = pSubitem->iCursor;
  pSub = pSubitem->pSelect;
  assert( pSub!=0 );

  if( isAgg && subqueryIsAgg ) return 0;                 /* Restriction (1)  */
  if( subqueryIsAgg && pSrc->nSrc>1 ) return 0;          /* Restriction (2)  */








  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */







>
|
|
>
>
>
>
>
>
>
>







109380
109381
109382
109383
109384
109385
109386
109387
109388
109389
109390
109391
109392
109393
109394
109395
109396
109397
109398
109399
109400
109401
109402
109403
109404
  if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
  pSrc = p->pSrc;
  assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
  pSubitem = &pSrc->a[iFrom];
  iParent = pSubitem->iCursor;
  pSub = pSubitem->pSelect;
  assert( pSub!=0 );
  if( subqueryIsAgg ){
    if( isAgg ) return 0;                                /* Restriction (1)   */
    if( pSrc->nSrc>1 ) return 0;                         /* Restriction (2a)  */
    if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery))
     || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0
     || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0
    ){
      return 0;                                          /* Restriction (2b)  */
    }
  }
    
  pSubSrc = pSub->pSrc;
  assert( pSubSrc );
  /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
  ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
  ** because they could be computed at compile-time.  But when LIMIT and OFFSET
  ** became arbitrary expressions, we were forced to add restrictions (13)
  ** and (14). */
109123
109124
109125
109126
109127
109128
109129


109130
109131
109132
109133
109134
109135
109136
  p->pWhere = 0;
  pNew->pGroupBy = 0;
  pNew->pHaving = 0;
  pNew->pOrderBy = 0;
  p->pPrior = 0;
  p->pNext = 0;
  p->selFlags &= ~SF_Compound;


  assert( pNew->pPrior!=0 );
  pNew->pPrior->pNext = pNew;
  pNew->pLimit = 0;
  pNew->pOffset = 0;
  return WRC_Continue;
}








>
>







109933
109934
109935
109936
109937
109938
109939
109940
109941
109942
109943
109944
109945
109946
109947
109948
  p->pWhere = 0;
  pNew->pGroupBy = 0;
  pNew->pHaving = 0;
  pNew->pOrderBy = 0;
  p->pPrior = 0;
  p->pNext = 0;
  p->selFlags &= ~SF_Compound;
  assert( (p->selFlags & SF_Converted)==0 );
  p->selFlags |= SF_Converted;
  assert( pNew->pPrior!=0 );
  pNew->pPrior->pNext = pNew;
  pNew->pLimit = 0;
  pNew->pOffset = 0;
  return WRC_Continue;
}

109274
109275
109276
109277
109278
109279
109280
109281
109282
109283
109284
109285
109286
109287
109288
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;
    sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);

    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
            pCte->zName, pEList->nExpr, pCte->pCols->nExpr
        );
        pParse->pWith = pSavedWith;
        return SQLITE_ERROR;
      }
      pEList = pCte->pCols;







|







110086
110087
110088
110089
110090
110091
110092
110093
110094
110095
110096
110097
110098
110099
110100
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;
    sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);

    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
            pCte->zName, pEList->nExpr, pCte->pCols->nExpr
        );
        pParse->pWith = pSavedWith;
        return SQLITE_ERROR;
      }
      pEList = pCte->pCols;
109401
109402
109403
109404
109405
109406
109407
109408
109409
109410
109411
109412
109413
109414
109415
#endif
    if( pFrom->zName==0 ){
#ifndef SQLITE_OMIT_SUBQUERY
      Select *pSel = pFrom->pSelect;
      /* A sub-query in the FROM clause of a SELECT */
      assert( pSel!=0 );
      assert( pFrom->pTab==0 );
      sqlite3WalkSelect(pWalker, pSel);
      pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
      if( pTab==0 ) return WRC_Abort;
      pTab->nRef = 1;
      pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
      while( pSel->pPrior ){ pSel = pSel->pPrior; }
      selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
      pTab->iPKey = -1;







|







110213
110214
110215
110216
110217
110218
110219
110220
110221
110222
110223
110224
110225
110226
110227
#endif
    if( pFrom->zName==0 ){
#ifndef SQLITE_OMIT_SUBQUERY
      Select *pSel = pFrom->pSelect;
      /* A sub-query in the FROM clause of a SELECT */
      assert( pSel!=0 );
      assert( pFrom->pTab==0 );
      if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
      pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
      if( pTab==0 ) return WRC_Abort;
      pTab->nRef = 1;
      pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab);
      while( pSel->pPrior ){ pSel = pSel->pPrior; }
      selectColumnsFromExprList(pParse, pSel->pEList, &pTab->nCol, &pTab->aCol);
      pTab->iPKey = -1;
110000
110001
110002
110003
110004
110005
110006







110007
110008
110009
110010
110011
110012
110013
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pParse->nErr || db->mallocFailed ){
    goto select_end;
  }
  isAgg = (p->selFlags & SF_Aggregate)!=0;
  assert( pEList!=0 );








  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;

  /* If writing to memory or generating a set







>
>
>
>
>
>
>







110812
110813
110814
110815
110816
110817
110818
110819
110820
110821
110822
110823
110824
110825
110826
110827
110828
110829
110830
110831
110832
  pTabList = p->pSrc;
  pEList = p->pEList;
  if( pParse->nErr || db->mallocFailed ){
    goto select_end;
  }
  isAgg = (p->selFlags & SF_Aggregate)!=0;
  assert( pEList!=0 );
#if SELECTTRACE_ENABLED
  if( sqlite3SelectTrace & 0x100 ){
    SELECTTRACE(0x100,pParse,p, ("after name resolution:\n"));
    sqlite3TreeViewSelect(0, p, 0);
  }
#endif


  /* Begin generating code.
  */
  v = sqlite3GetVdbe(pParse);
  if( v==0 ) goto select_end;

  /* If writing to memory or generating a set
110174
110175
110176
110177
110178
110179
110180
110181
110182
110183
110184
110185
110186
110187
110188
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.
  */
  if( sSort.pOrderBy ){
    KeyInfo *pKeyInfo;
    pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, 0);
    sSort.iECursor = pParse->nTab++;
    sSort.addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
          sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
          (char*)pKeyInfo, P4_KEYINFO
      );
  }else{







|







110993
110994
110995
110996
110997
110998
110999
111000
111001
111002
111003
111004
111005
111006
111007
  ** extracted in pre-sorted order.  If that is the case, then the
  ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
  ** we figure out that the sorting index is not needed.  The addrSortIndex
  ** variable is used to facilitate that change.
  */
  if( sSort.pOrderBy ){
    KeyInfo *pKeyInfo;
    pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr);
    sSort.iECursor = pParse->nTab++;
    sSort.addrSortIndex =
      sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
          sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
          (char*)pKeyInfo, P4_KEYINFO
      );
  }else{
110348
110349
110350
110351
110352
110353
110354
110355
110356
110357
110358
110359
110360
110361
110362

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OP_SorterOpen instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, 0);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;







|







111167
111168
111169
111170
111171
111172
111173
111174
111175
111176
111177
111178
111179
111180
111181

      /* If there is a GROUP BY clause we might need a sorting index to
      ** implement it.  Allocate that sorting index now.  If it turns out
      ** that we do not need it after all, the OP_SorterOpen instruction
      ** will be converted into a Noop.  
      */
      sAggInfo.sortingIdx = pParse->nTab++;
      pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn);
      addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, 
          sAggInfo.sortingIdx, sAggInfo.nSortingColumn, 
          0, (char*)pKeyInfo, P4_KEYINFO);

      /* Initialize memory locations used by GROUP BY aggregate processing
      */
      iUseFlag = ++pParse->nMem;
110745
110746
110747
110748
110749
110750
110751
110752
110753
110754
110755
110756
110757
110758
110759
110760
110761
#ifdef SQLITE_DEBUG
/*
** Generate a human-readable description of a the Select object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  sqlite3TreeViewLine(pView, "SELECT%s%s",
    ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
    ((p->selFlags & SF_Aggregate) ? " agg_flag" : "")
  );
  if( p->pSrc && p->pSrc->nSrc ) n++;
  if( p->pWhere ) n++;
  if( p->pGroupBy ) n++;
  if( p->pHaving ) n++;
  if( p->pOrderBy ) n++;
  if( p->pLimit ) n++;







|

|







111564
111565
111566
111567
111568
111569
111570
111571
111572
111573
111574
111575
111576
111577
111578
111579
111580
#ifdef SQLITE_DEBUG
/*
** Generate a human-readable description of a the Select object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p)",
    ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
    ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p
  );
  if( p->pSrc && p->pSrc->nSrc ) n++;
  if( p->pWhere ) n++;
  if( p->pGroupBy ) n++;
  if( p->pHaving ) n++;
  if( p->pOrderBy ) n++;
  if( p->pLimit ) n++;
110950
110951
110952
110953
110954
110955
110956
110957
110958
110959
110960
110961
110962
110963
110964
** at the conclusion of the call.
**
** The result that is written to ***pazResult is held in memory obtained
** from malloc().  But the caller cannot free this memory directly.  
** Instead, the entire table should be passed to sqlite3_free_table() when
** the calling procedure is finished using it.
*/
SQLITE_API int sqlite3_get_table(
  sqlite3 *db,                /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  char ***pazResult,          /* Write the result table here */
  int *pnRow,                 /* Write the number of rows in the result here */
  int *pnColumn,              /* Write the number of columns of result here */
  char **pzErrMsg             /* Write error messages here */
){







|







111769
111770
111771
111772
111773
111774
111775
111776
111777
111778
111779
111780
111781
111782
111783
** at the conclusion of the call.
**
** The result that is written to ***pazResult is held in memory obtained
** from malloc().  But the caller cannot free this memory directly.  
** Instead, the entire table should be passed to sqlite3_free_table() when
** the calling procedure is finished using it.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_get_table(
  sqlite3 *db,                /* The database on which the SQL executes */
  const char *zSql,           /* The SQL to be executed */
  char ***pazResult,          /* Write the result table here */
  int *pnRow,                 /* Write the number of rows in the result here */
  int *pnColumn,              /* Write the number of columns of result here */
  char **pzErrMsg             /* Write error messages here */
){
111019
111020
111021
111022
111023
111024
111025
111026
111027
111028
111029
111030
111031
111032
111033
  if( pnRow ) *pnRow = res.nRow;
  return rc;
}

/*
** This routine frees the space the sqlite3_get_table() malloced.
*/
SQLITE_API void sqlite3_free_table(
  char **azResult            /* Result returned from sqlite3_get_table() */
){
  if( azResult ){
    int i, n;
    azResult--;
    assert( azResult!=0 );
    n = SQLITE_PTR_TO_INT(azResult[0]);







|







111838
111839
111840
111841
111842
111843
111844
111845
111846
111847
111848
111849
111850
111851
111852
  if( pnRow ) *pnRow = res.nRow;
  return rc;
}

/*
** This routine frees the space the sqlite3_get_table() malloced.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_free_table(
  char **azResult            /* Result returned from sqlite3_get_table() */
){
  if( azResult ){
    int i, n;
    azResult--;
    assert( azResult!=0 );
    n = SQLITE_PTR_TO_INT(azResult[0]);
113117
113118
113119
113120
113121
113122
113123
113124
113125
113126
113127
113128
113129
113130
113131

  /* The call to execSql() to attach the temp database has left the file
  ** locked (as there was more than one active statement when the transaction
  ** to read the schema was concluded. Unlock it here so that this doesn't
  ** cause problems for the call to BtreeSetPageSize() below.  */
  sqlite3BtreeCommit(pTemp);

  nRes = sqlite3BtreeGetReserve(pMain);

  /* A VACUUM cannot change the pagesize of an encrypted database. */
#ifdef SQLITE_HAS_CODEC
  if( db->nextPagesize ){
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int nKey;
    char *zKey;







|







113936
113937
113938
113939
113940
113941
113942
113943
113944
113945
113946
113947
113948
113949
113950

  /* The call to execSql() to attach the temp database has left the file
  ** locked (as there was more than one active statement when the transaction
  ** to read the schema was concluded. Unlock it here so that this doesn't
  ** cause problems for the call to BtreeSetPageSize() below.  */
  sqlite3BtreeCommit(pTemp);

  nRes = sqlite3BtreeGetOptimalReserve(pMain);

  /* A VACUUM cannot change the pagesize of an encrypted database. */
#ifdef SQLITE_HAS_CODEC
  if( db->nextPagesize ){
    extern void sqlite3CodecGetKey(sqlite3*, int, void**, int*);
    int nKey;
    char *zKey;
113379
113380
113381
113382
113383
113384
113385
113386
113387
113388
113389
113390
113391
113392
113393
113394
113395
113396
113397
113398
113399
113400
113401
113402
113403
113404
113405
113406
113407
113408
  return rc;
}


/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int sqlite3_create_module(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux                      /* Context pointer for xCreate/xConnect */
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  return createModule(db, zName, pModule, pAux, 0);
}

/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int sqlite3_create_module_v2(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux,                     /* Context pointer for xCreate/xConnect */
  void (*xDestroy)(void *)        /* Module destructor function */
){
#ifdef SQLITE_ENABLE_API_ARMOR







|














|







114198
114199
114200
114201
114202
114203
114204
114205
114206
114207
114208
114209
114210
114211
114212
114213
114214
114215
114216
114217
114218
114219
114220
114221
114222
114223
114224
114225
114226
114227
  return rc;
}


/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_module(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux                      /* Context pointer for xCreate/xConnect */
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
#endif
  return createModule(db, zName, pModule, pAux, 0);
}

/*
** External API function used to create a new virtual-table module.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_module_v2(
  sqlite3 *db,                    /* Database in which module is registered */
  const char *zName,              /* Name assigned to this module */
  const sqlite3_module *pModule,  /* The definition of the module */
  void *pAux,                     /* Context pointer for xCreate/xConnect */
  void (*xDestroy)(void *)        /* Module destructor function */
){
#ifdef SQLITE_ENABLE_API_ARMOR
113693
113694
113695
113696
113697
113698
113699

113700
113701
113702
113703
113704
113705
113706
  ** do additional initialization work and store the statement text
  ** in the sqlite_master table.
  */
  if( !db->init.busy ){
    char *zStmt;
    char *zWhere;
    int iDb;

    Vdbe *v;

    /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
    if( pEnd ){
      pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
    }
    zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);







>







114512
114513
114514
114515
114516
114517
114518
114519
114520
114521
114522
114523
114524
114525
114526
  ** do additional initialization work and store the statement text
  ** in the sqlite_master table.
  */
  if( !db->init.busy ){
    char *zStmt;
    char *zWhere;
    int iDb;
    int iReg;
    Vdbe *v;

    /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
    if( pEnd ){
      pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
    }
    zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
113727
113728
113729
113730
113731
113732
113733


113734
113735
113736
113737
113738
113739
113740
113741
113742
    sqlite3DbFree(db, zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
    sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);


    sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, 
                         pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. The xConnect() method is not called until
  ** the first time the virtual table is used in an SQL statement. This
  ** allows a schema that contains virtual tables to be loaded before
  ** the required virtual table implementations are registered.  */







>
>
|
|







114547
114548
114549
114550
114551
114552
114553
114554
114555
114556
114557
114558
114559
114560
114561
114562
114563
114564
    sqlite3DbFree(db, zStmt);
    v = sqlite3GetVdbe(pParse);
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
    zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
    sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);

    iReg = ++pParse->nMem;
    sqlite3VdbeAddOp4(v, OP_String8, 0, iReg, 0, pTab->zName, 0);
    sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
  }

  /* If we are rereading the sqlite_master table create the in-memory
  ** record of the table. The xConnect() method is not called until
  ** the first time the virtual table is used in an SQL statement. This
  ** allows a schema that contains virtual tables to be loaded before
  ** the required virtual table implementations are registered.  */
114006
114007
114008
114009
114010
114011
114012
114013
114014
114015
114016
114017
114018
114019
114020
114021


114022
114023
114024
114025
114026
114027
114028
}

/*
** This function is used to set the schema of a virtual table.  It is only
** valid to call this function from within the xCreate() or xConnect() of a
** virtual table module.
*/
SQLITE_API int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
  Parse *pParse;

  int rc = SQLITE_OK;
  Table *pTab;
  char *zErr = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;


#endif
  sqlite3_mutex_enter(db->mutex);
  if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
    sqlite3Error(db, SQLITE_MISUSE);
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_MISUSE_BKPT;
  }







|







|
>
>







114828
114829
114830
114831
114832
114833
114834
114835
114836
114837
114838
114839
114840
114841
114842
114843
114844
114845
114846
114847
114848
114849
114850
114851
114852
}

/*
** This function is used to set the schema of a virtual table.  It is only
** valid to call this function from within the xCreate() or xConnect() of a
** virtual table module.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
  Parse *pParse;

  int rc = SQLITE_OK;
  Table *pTab;
  char *zErr = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
    sqlite3Error(db, SQLITE_MISUSE);
    sqlite3_mutex_leave(db->mutex);
    return SQLITE_MISUSE_BKPT;
  }
114079
114080
114081
114082
114083
114084
114085
114086




114087
114088
114089
114090


114091
114092
114093
114094
114095
114096
114097
*/
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
  int rc = SQLITE_OK;
  Table *pTab;

  pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
  if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
    VTable *p = vtabDisconnectAll(db, pTab);





    assert( rc==SQLITE_OK );
    rc = p->pMod->pModule->xDestroy(p->pVtab);



    /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
    if( rc==SQLITE_OK ){
      assert( pTab->pVTable==p && p->pNext==0 );
      p->pVtab = 0;
      pTab->pVTable = 0;
      sqlite3VtabUnlock(p);
    }







|
>
>
>
>
|
<
<
|
>
>







114903
114904
114905
114906
114907
114908
114909
114910
114911
114912
114913
114914
114915


114916
114917
114918
114919
114920
114921
114922
114923
114924
114925
*/
SQLITE_PRIVATE int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
  int rc = SQLITE_OK;
  Table *pTab;

  pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
  if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
    VTable *p;
    for(p=pTab->pVTable; p; p=p->pNext){
      assert( p->pVtab );
      if( p->pVtab->nRef>0 ){
        return SQLITE_LOCKED;
      }


    }
    p = vtabDisconnectAll(db, pTab);
    rc = p->pMod->pModule->xDestroy(p->pVtab);
    /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
    if( rc==SQLITE_OK ){
      assert( pTab->pVTable==p && p->pNext==0 );
      p->pVtab = 0;
      pTab->pVTable = 0;
      sqlite3VtabUnlock(p);
    }
114368
114369
114370
114371
114372
114373
114374
114375
114376
114377
114378
114379
114380
114381
114382
114383
114384
114385
114386
114387
114388
114389
114390
114391
114392
114393
114394
114395
114396
114397
114398
114399
114400
/*
** Return the ON CONFLICT resolution mode in effect for the virtual
** table update operation currently in progress.
**
** The results of this routine are undefined unless it is called from
** within an xUpdate method.
*/
SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *db){
  static const unsigned char aMap[] = { 
    SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 
  };
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
  assert( OE_Ignore==4 && OE_Replace==5 );
  assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
  return (int)aMap[db->vtabOnConflict-1];
}

/*
** Call from within the xCreate() or xConnect() methods to provide 
** the SQLite core with additional information about the behavior
** of the virtual table being implemented.
*/
SQLITE_API int sqlite3_vtab_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);







|

















|







115196
115197
115198
115199
115200
115201
115202
115203
115204
115205
115206
115207
115208
115209
115210
115211
115212
115213
115214
115215
115216
115217
115218
115219
115220
115221
115222
115223
115224
115225
115226
115227
115228
/*
** Return the ON CONFLICT resolution mode in effect for the virtual
** table update operation currently in progress.
**
** The results of this routine are undefined unless it is called from
** within an xUpdate method.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_vtab_on_conflict(sqlite3 *db){
  static const unsigned char aMap[] = { 
    SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE 
  };
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
  assert( OE_Ignore==4 && OE_Replace==5 );
  assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
  return (int)aMap[db->vtabOnConflict-1];
}

/*
** Call from within the xCreate() or xConnect() methods to provide 
** the SQLite core with additional information about the behavior
** of the virtual table being implemented.
*/
SQLITE_API int SQLITE_CDECL sqlite3_vtab_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc = SQLITE_OK;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
114512
114513
114514
114515
114516
114517
114518


114519
114520
114521
114522
114523
114524
114525
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrSkip;         /* Jump here for next iteration of skip-scan */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */


  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {







>
>







115340
115341
115342
115343
115344
115345
115346
115347
115348
115349
115350
115351
115352
115353
115354
115355
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrSkip;         /* Jump here for next iteration of skip-scan */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */
  int iLikeRepCntr;     /* LIKE range processing counter register */
  int addrLikeRep;      /* LIKE range processing address */
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
114696
114697
114698
114699
114700
114701
114702
114703
114704
114705
114706
114707
114708
114709
114710
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  LogEst truthProb;       /* Probability of truth for this expression */
  u16 eOperator;          /* A WO_xx value describing <op> */
  u8 wtFlags;             /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
};

/*







|







115526
115527
115528
115529
115530
115531
115532
115533
115534
115535
115536
115537
115538
115539
115540
  union {
    int leftColumn;         /* Column number of X in "X <op> <expr>" */
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  LogEst truthProb;       /* Probability of truth for this expression */
  u16 eOperator;          /* A WO_xx value describing <op> */
  u16 wtFlags;            /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
};

/*
114718
114719
114720
114721
114722
114723
114724



114725
114726
114727
114728
114729
114730
114731
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif




/*
** An instance of the WhereScan object is used as an iterator for locating
** terms in the WHERE clause that are useful to the query planner.
*/
struct WhereScan {
  WhereClause *pOrigWC;      /* Original, innermost WhereClause */







>
>
>







115548
115549
115550
115551
115552
115553
115554
115555
115556
115557
115558
115559
115560
115561
115562
115563
115564
#define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
#define TERM_OR_OK      0x40   /* Used during OR-clause processing */
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
#  define TERM_VNULL    0x80   /* Manufactured x>NULL or x<=NULL term */
#else
#  define TERM_VNULL    0x00   /* Disabled if not using stat3 */
#endif
#define TERM_LIKEOPT    0x100  /* Virtual terms from the LIKE optimization */
#define TERM_LIKECOND   0x200  /* Conditionally this LIKE operator term */
#define TERM_LIKE       0x400  /* The original LIKE operator */

/*
** An instance of the WhereScan object is used as an iterator for locating
** terms in the WHERE clause that are useful to the query planner.
*/
struct WhereScan {
  WhereClause *pOrigWC;      /* Original, innermost WhereClause */
115093
115094
115095
115096
115097
115098
115099
115100
115101
115102
115103
115104
115105
115106
115107
** This is true even if this routine fails to allocate a new WhereTerm.
**
** WARNING:  This routine might reallocate the space used to store
** WhereTerms.  All pointers to WhereTerms should be invalidated after
** calling this routine.  Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );







|







115926
115927
115928
115929
115930
115931
115932
115933
115934
115935
115936
115937
115938
115939
115940
** This is true even if this routine fails to allocate a new WhereTerm.
**
** WARNING:  This routine might reallocate the space used to store
** WhereTerms.  All pointers to WhereTerms should be invalidated after
** calling this routine.  Such pointers may be reinitialized by referencing
** the pWC->a[] array.
*/
static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){
  WhereTerm *pTerm;
  int idx;
  testcase( wtFlags & TERM_VIRTUAL );
  if( pWC->nTerm>=pWC->nSlot ){
    WhereTerm *pOld = pWC->a;
    sqlite3 *db = pWC->pWInfo->pParse->db;
    pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
115518
115519
115520
115521
115522
115523
115524
115525




115526
115527
115528
115529
115530
115531
115532
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
** Check to see if the given expression is a LIKE or GLOB operator that
** can be optimized using inequality constraints.  Return TRUE if it is
** so and false if not.
**
** In order for the operator to be optimizible, the RHS must be a string
** literal that does not begin with a wildcard.  




*/
static int isLikeOrGlob(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* Test this expression */
  Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
  int *pisComplete, /* True if the only wildcard is % in the last character */
  int *pnoCase      /* True if uppercase is equivalent to lowercase */







|
>
>
>
>







116351
116352
116353
116354
116355
116356
116357
116358
116359
116360
116361
116362
116363
116364
116365
116366
116367
116368
116369
#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
/*
** Check to see if the given expression is a LIKE or GLOB operator that
** can be optimized using inequality constraints.  Return TRUE if it is
** so and false if not.
**
** In order for the operator to be optimizible, the RHS must be a string
** literal that does not begin with a wildcard.  The LHS must be a column
** that may only be NULL, a string, or a BLOB, never a number. (This means
** that virtual tables cannot participate in the LIKE optimization.)  If the
** collating sequence for the column on the LHS must be appropriate for
** the operator.
*/
static int isLikeOrGlob(
  Parse *pParse,    /* Parsing and code generating context */
  Expr *pExpr,      /* Test this expression */
  Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
  int *pisComplete, /* True if the only wildcard is % in the last character */
  int *pnoCase      /* True if uppercase is equivalent to lowercase */
115547
115548
115549
115550
115551
115552
115553
115554
115555
115556
115557
115558
115559
115560
115561
#ifdef SQLITE_EBCDIC
  if( *pnoCase ) return 0;
#endif
  pList = pExpr->x.pList;
  pLeft = pList->a[1].pExpr;
  if( pLeft->op!=TK_COLUMN 
   || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 
   || IsVirtual(pLeft->pTab)
  ){
    /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
    ** be the name of an indexed column with TEXT affinity. */
    return 0;
  }
  assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */








|







116384
116385
116386
116387
116388
116389
116390
116391
116392
116393
116394
116395
116396
116397
116398
#ifdef SQLITE_EBCDIC
  if( *pnoCase ) return 0;
#endif
  pList = pExpr->x.pList;
  pLeft = pList->a[1].pExpr;
  if( pLeft->op!=TK_COLUMN 
   || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 
   || IsVirtual(pLeft->pTab)  /* Value might be numeric */
  ){
    /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
    ** be the name of an indexed column with TEXT affinity. */
    return 0;
  }
  assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */

115656
115657
115658
115659
115660
115661
115662









































































115663
115664
115665
115666
115667
115668
115669
** Mark term iChild as being a child of term iParent
*/
static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
  pWC->a[iChild].iParent = iParent;
  pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
  pWC->a[iParent].nChild++;
}










































































#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**
**     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







116493
116494
116495
116496
116497
116498
116499
116500
116501
116502
116503
116504
116505
116506
116507
116508
116509
116510
116511
116512
116513
116514
116515
116516
116517
116518
116519
116520
116521
116522
116523
116524
116525
116526
116527
116528
116529
116530
116531
116532
116533
116534
116535
116536
116537
116538
116539
116540
116541
116542
116543
116544
116545
116546
116547
116548
116549
116550
116551
116552
116553
116554
116555
116556
116557
116558
116559
116560
116561
116562
116563
116564
116565
116566
116567
116568
116569
116570
116571
116572
116573
116574
116575
116576
116577
116578
116579
** Mark term iChild as being a child of term iParent
*/
static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){
  pWC->a[iChild].iParent = iParent;
  pWC->a[iChild].truthProb = pWC->a[iParent].truthProb;
  pWC->a[iParent].nChild++;
}

/*
** Return the N-th AND-connected subterm of pTerm.  Or if pTerm is not
** a conjunction, then return just pTerm when N==0.  If N is exceeds
** the number of available subterms, return NULL.
*/
static WhereTerm *whereNthSubterm(WhereTerm *pTerm, int N){
  if( pTerm->eOperator!=WO_AND ){
    return N==0 ? pTerm : 0;
  }
  if( N<pTerm->u.pAndInfo->wc.nTerm ){
    return &pTerm->u.pAndInfo->wc.a[N];
  }
  return 0;
}

/*
** Subterms pOne and pTwo are contained within WHERE clause pWC.  The
** two subterms are in disjunction - they are OR-ed together.
**
** If these two terms are both of the form:  "A op B" with the same
** A and B values but different operators and if the operators are
** compatible (if one is = and the other is <, for example) then
** add a new virtual AND term to pWC that is the combination of the
** two.
**
** Some examples:
**
**    x<y OR x=y    -->     x<=y
**    x=y OR x=y    -->     x=y
**    x<=y OR x<y   -->     x<=y
**
** The following is NOT generated:
**
**    x<y OR x>y    -->     x!=y     
*/
static void whereCombineDisjuncts(
  SrcList *pSrc,         /* the FROM clause */
  WhereClause *pWC,      /* The complete WHERE clause */
  WhereTerm *pOne,       /* First disjunct */
  WhereTerm *pTwo        /* Second disjunct */
){
  u16 eOp = pOne->eOperator | pTwo->eOperator;
  sqlite3 *db;           /* Database connection (for malloc) */
  Expr *pNew;            /* New virtual expression */
  int op;                /* Operator for the combined expression */
  int idxNew;            /* Index in pWC of the next virtual term */

  if( (pOne->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
  if( (pTwo->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE))==0 ) return;
  if( (eOp & (WO_EQ|WO_LT|WO_LE))!=eOp
   && (eOp & (WO_EQ|WO_GT|WO_GE))!=eOp ) return;
  assert( pOne->pExpr->pLeft!=0 && pOne->pExpr->pRight!=0 );
  assert( pTwo->pExpr->pLeft!=0 && pTwo->pExpr->pRight!=0 );
  if( sqlite3ExprCompare(pOne->pExpr->pLeft, pTwo->pExpr->pLeft, -1) ) return;
  if( sqlite3ExprCompare(pOne->pExpr->pRight, pTwo->pExpr->pRight, -1) )return;
  /* If we reach this point, it means the two subterms can be combined */
  if( (eOp & (eOp-1))!=0 ){
    if( eOp & (WO_LT|WO_LE) ){
      eOp = WO_LE;
    }else{
      assert( eOp & (WO_GT|WO_GE) );
      eOp = WO_GE;
    }
  }
  db = pWC->pWInfo->pParse->db;
  pNew = sqlite3ExprDup(db, pOne->pExpr, 0);
  if( pNew==0 ) return;
  for(op=TK_EQ; eOp!=(WO_EQ<<(op-TK_EQ)); op++){ assert( op<TK_GE ); }
  pNew->op = op;
  idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
  exprAnalyze(pSrc, pWC, idxNew);
}

#if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
/*
** Analyze a term that consists of two or more OR-connected
** subterms.  So in:
**
**     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
115681
115682
115683
115684
115685
115686
115687

115688
115689
115690
115691
115692
115693
115694
115695
115696
115697
115698
115699
115700
115701
115702










115703
115704
115705
115706
115707
115708
115709
** Examples of terms under analysis:
**
**     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)

**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C and
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:
**
**      x IN (expr1,expr2,expr3)
**
** CASE 2:










**
** If all subterms are indexable by a single table T, then set
**
**     WhereTerm.eOperator              =  WO_OR
**     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
**
** A subterm is "indexable" if it is of the form







>















>
>
>
>
>
>
>
>
>
>







116591
116592
116593
116594
116595
116596
116597
116598
116599
116600
116601
116602
116603
116604
116605
116606
116607
116608
116609
116610
116611
116612
116613
116614
116615
116616
116617
116618
116619
116620
116621
116622
116623
116624
116625
116626
116627
116628
116629
116630
** Examples of terms under analysis:
**
**     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
**     (B)     x=expr1 OR expr2=x OR x=expr3
**     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
**     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
**     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
**     (F)     x>A OR (x=A AND y>=B)
**
** CASE 1:
**
** If all subterms are of the form T.C=expr for some single column of C and
** a single table T (as shown in example B above) then create a new virtual
** term that is an equivalent IN expression.  In other words, if the term
** being analyzed is:
**
**      x = expr1  OR  expr2 = x  OR  x = expr3
**
** then create a new virtual term like this:
**
**      x IN (expr1,expr2,expr3)
**
** CASE 2:
**
** If there are exactly two disjuncts one side has x>A and the other side
** has x=A (for the same x and A) then add a new virtual conjunct term to the
** WHERE clause of the form "x>=A".  Example:
**
**      x>A OR (x=A AND y>B)    adds:    x>=A
**
** The added conjunct can sometimes be helpful in query planning.
**
** CASE 3:
**
** If all subterms are indexable by a single table T, then set
**
**     WhereTerm.eOperator              =  WO_OR
**     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
**
** A subterm is "indexable" if it is of the form
115823
115824
115825
115826
115827
115828
115829
115830
115831
115832
115833
115834














115835
115836
115837
115838
115839
115840
115841
      }else{
        chngToIN &= b;
      }
    }
  }

  /*
  ** Record the set of tables that satisfy case 2.  The set might be
  ** empty.
  */
  pOrInfo->indexable = indexable;
  pTerm->eOperator = indexable==0 ? 0 : WO_OR;















  /*
  ** chngToIN holds a set of tables that *might* satisfy case 1.  But
  ** we have to do some additional checking to see if case 1 really
  ** is satisfied.
  **
  ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means







|




>
>
>
>
>
>
>
>
>
>
>
>
>
>







116744
116745
116746
116747
116748
116749
116750
116751
116752
116753
116754
116755
116756
116757
116758
116759
116760
116761
116762
116763
116764
116765
116766
116767
116768
116769
116770
116771
116772
116773
116774
116775
116776
      }else{
        chngToIN &= b;
      }
    }
  }

  /*
  ** Record the set of tables that satisfy case 3.  The set might be
  ** empty.
  */
  pOrInfo->indexable = indexable;
  pTerm->eOperator = indexable==0 ? 0 : WO_OR;

  /* For a two-way OR, attempt to implementation case 2.
  */
  if( indexable && pOrWc->nTerm==2 ){
    int iOne = 0;
    WhereTerm *pOne;
    while( (pOne = whereNthSubterm(&pOrWc->a[0],iOne++))!=0 ){
      int iTwo = 0;
      WhereTerm *pTwo;
      while( (pTwo = whereNthSubterm(&pOrWc->a[1],iTwo++))!=0 ){
        whereCombineDisjuncts(pSrc, pWC, pOne, pTwo);
      }
    }
  }

  /*
  ** chngToIN holds a set of tables that *might* satisfy case 1.  But
  ** we have to do some additional checking to see if case 1 really
  ** is satisfied.
  **
  ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
115958
115959
115960
115961
115962
115963
115964
115965
115966
115967
115968
115969
115970
115971
115972
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        markTermAsChild(pWC, idxNew, idxTerm);
      }else{
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */

/*
** The input to this routine is an WhereTerm structure with only the







|







116893
116894
116895
116896
116897
116898
116899
116900
116901
116902
116903
116904
116905
116906
116907
        testcase( idxNew==0 );
        exprAnalyze(pSrc, pWC, idxNew);
        pTerm = &pWC->a[idxTerm];
        markTermAsChild(pWC, idxNew, idxTerm);
      }else{
        sqlite3ExprListDelete(db, pList);
      }
      pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 3 */
    }
  }
}
#endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */

/*
** The input to this routine is an WhereTerm structure with only the
115996
115997
115998
115999
116000
116001
116002
116003
116004
116005
116006
116007
116008
116009
116010
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* LIKE/GLOB distinguishes case */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }







|







116931
116932
116933
116934
116935
116936
116937
116938
116939
116940
116941
116942
116943
116944
116945
  WhereMaskSet *pMaskSet;          /* Set of table index masks */
  Expr *pExpr;                     /* The expression to be analyzed */
  Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
  Bitmask prereqAll;               /* Prerequesites of pExpr */
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */

  if( db->mallocFailed ){
    return;
  }
116134
116135
116136
116137
116138
116139
116140
116141
116142
116143
116144
116145
116146



116147
116148
116149
116150
116151
116152
116153
116154
116155
116156
116157

116158
116159
116160















116161
116162
116163
116164
116165
116166
116167
116168
116169
116170
116171
116172
116173
116174
116175
116176
116177
116178
116179
116180
116181
116182
116183
116184
116185
116186
116187
116188
116189
116190
116191
116192
116193
116194
116195
116196
116197
116198
116199
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
  /* Add constraints to reduce the search space on a LIKE or GLOB
  ** operator.
  **
  ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
  **
  **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
  **
  ** The last character of the prefix "abc" is incremented to form the
  ** termination condition "abd".



  */
  if( pWC->op==TK_AND 
   && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
  ){
    Expr *pLeft;       /* LHS of LIKE/GLOB operator */
    Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
    Expr *pNewExpr1;
    Expr *pNewExpr2;
    int idxNew1;
    int idxNew2;
    Token sCollSeqName;  /* Name of collating sequence */


    pLeft = pExpr->x.pList->a[1].pExpr;
    pStr2 = sqlite3ExprDup(db, pStr1, 0);















    if( !db->mallocFailed ){
      u8 c, *pC;       /* Last character before the first wildcard */
      pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
      c = *pC;
      if( noCase ){
        /* The point is to increment the last character before the first
        ** wildcard.  But if we increment '@', that will push it into the
        ** alphabetic range where case conversions will mess up the 
        ** inequality.  To avoid this, make sure to also run the full
        ** LIKE on all candidate expressions by clearing the isComplete flag
        */
        if( c=='A'-1 ) isComplete = 0;
        c = sqlite3UpperToLower[c];
      }
      *pC = c + 1;
    }
    sCollSeqName.z = noCase ? "NOCASE" : "BINARY";
    sCollSeqName.n = 6;
    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 
           sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName),
           pStr1, 0);
    transferJoinMarkings(pNewExpr1, pExpr);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew1==0 );
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
           sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName),
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      markTermAsChild(pWC, idxNew1, idxTerm);
      markTermAsChild(pWC, idxNew2, idxTerm);
    }







|

|


|
>
>
>










|
>



>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
















|
<

|
|


|




|


|







117069
117070
117071
117072
117073
117074
117075
117076
117077
117078
117079
117080
117081
117082
117083
117084
117085
117086
117087
117088
117089
117090
117091
117092
117093
117094
117095
117096
117097
117098
117099
117100
117101
117102
117103
117104
117105
117106
117107
117108
117109
117110
117111
117112
117113
117114
117115
117116
117117
117118
117119
117120
117121
117122
117123
117124
117125
117126
117127
117128
117129
117130
117131

117132
117133
117134
117135
117136
117137
117138
117139
117140
117141
117142
117143
117144
117145
117146
117147
117148
117149
117150
117151
117152
  }
#endif /* SQLITE_OMIT_OR_OPTIMIZATION */

#ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
  /* Add constraints to reduce the search space on a LIKE or GLOB
  ** operator.
  **
  ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
  **
  **          x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
  **
  ** The last character of the prefix "abc" is incremented to form the
  ** termination condition "abd".  If case is not significant (the default
  ** for LIKE) then the lower-bound is made all uppercase and the upper-
  ** bound is made all lowercase so that the bounds also work when comparing
  ** BLOBs.
  */
  if( pWC->op==TK_AND 
   && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
  ){
    Expr *pLeft;       /* LHS of LIKE/GLOB operator */
    Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
    Expr *pNewExpr1;
    Expr *pNewExpr2;
    int idxNew1;
    int idxNew2;
    const char *zCollSeqName;     /* Name of collating sequence */
    const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC;

    pLeft = pExpr->x.pList->a[1].pExpr;
    pStr2 = sqlite3ExprDup(db, pStr1, 0);

    /* Convert the lower bound to upper-case and the upper bound to
    ** lower-case (upper-case is less than lower-case in ASCII) so that
    ** the range constraints also work for BLOBs
    */
    if( noCase && !pParse->db->mallocFailed ){
      int i;
      char c;
      pTerm->wtFlags |= TERM_LIKE;
      for(i=0; (c = pStr1->u.zToken[i])!=0; i++){
        pStr1->u.zToken[i] = sqlite3Toupper(c);
        pStr2->u.zToken[i] = sqlite3Tolower(c);
      }
    }

    if( !db->mallocFailed ){
      u8 c, *pC;       /* Last character before the first wildcard */
      pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
      c = *pC;
      if( noCase ){
        /* The point is to increment the last character before the first
        ** wildcard.  But if we increment '@', that will push it into the
        ** alphabetic range where case conversions will mess up the 
        ** inequality.  To avoid this, make sure to also run the full
        ** LIKE on all candidate expressions by clearing the isComplete flag
        */
        if( c=='A'-1 ) isComplete = 0;
        c = sqlite3UpperToLower[c];
      }
      *pC = c + 1;
    }
    zCollSeqName = noCase ? "NOCASE" : "BINARY";

    pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
           sqlite3ExprAddCollateString(pParse,pNewExpr1,zCollSeqName),
           pStr1, 0);
    transferJoinMarkings(pNewExpr1, pExpr);
    idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags);
    testcase( idxNew1==0 );
    exprAnalyze(pSrc, pWC, idxNew1);
    pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
    pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
           sqlite3ExprAddCollateString(pParse,pNewExpr2,zCollSeqName),
           pStr2, 0);
    transferJoinMarkings(pNewExpr2, pExpr);
    idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags);
    testcase( idxNew2==0 );
    exprAnalyze(pSrc, pWC, idxNew2);
    pTerm = &pWC->a[idxTerm];
    if( isComplete ){
      markTermAsChild(pWC, idxNew1, idxTerm);
      markTermAsChild(pWC, idxNew2, idxTerm);
    }
116503
116504
116505
116506
116507
116508
116509




116510
116511

116512
116513
116514
116515
116516
116517
116518
116519
116520
116521
  ** and used to match WHERE clause constraints */
  nKeyCol = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];
  pLoop = pLevel->pWLoop;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){




    if( pLoop->prereq==0
     && (pTerm->wtFlags & TERM_VIRTUAL)==0

     && sqlite3ExprIsTableConstant(pTerm->pExpr, pSrc->iCursor) ){
      pPartial = sqlite3ExprAnd(pParse->db, pPartial,
                                sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
    }
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( !sentWarning ){







>
>
>
>


>
|

|







117456
117457
117458
117459
117460
117461
117462
117463
117464
117465
117466
117467
117468
117469
117470
117471
117472
117473
117474
117475
117476
117477
117478
117479
  ** and used to match WHERE clause constraints */
  nKeyCol = 0;
  pTable = pSrc->pTab;
  pWCEnd = &pWC->a[pWC->nTerm];
  pLoop = pLevel->pWLoop;
  idxCols = 0;
  for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
    Expr *pExpr = pTerm->pExpr;
    assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
         || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
         || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
    if( pLoop->prereq==0
     && (pTerm->wtFlags & TERM_VIRTUAL)==0
     && !ExprHasProperty(pExpr, EP_FromJoin)
     && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
      pPartial = sqlite3ExprAnd(pParse->db, pPartial,
                                sqlite3ExprDup(pParse->db, pExpr, 0));
    }
    if( termCanDriveIndex(pTerm, pSrc, notReady) ){
      int iCol = pTerm->u.leftColumn;
      Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
      testcase( iCol==BMS );
      testcase( iCol==BMS-1 );
      if( !sentWarning ){
116794
116795
116796
116797
116798
116799
116800
116801
116802
116803
116804
116805



116806
116807
116808
116809
116810
116811
116812
116813
116814
116815


116816
116817
116818
116819


116820
116821
116822
116823
116824
116825
116826
116827
















































116828



116829













116830
116831

116832




116833
116834

116835
116836

116837
116838
116839
116840
116841

116842
116843
116844


116845
116846

116847

116848
116849


116850
116851
116852
116853











116854
116855
116856


116857
116858
116859
116860
116861
116862
116863


116864
116865
116866



116867
116868
116869
116870
116871
116872
116873
116874
116875
116876
116877
116878
116879
116880
116881
116882
116883
116884
116885
116886
116887

116888



116889
116890
116891
116892
116893
116894
116895
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pVal
**    aStat[1]      Est. number of rows equal to pVal
**
** Return the index of the sample that is the smallest sample that
** is greater than or equal to pRec.



*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  IndexSample *aSample = pIdx->aSample;
  int iCol;                   /* Index of required stats in anEq[] etc. */


  int iMin = 0;               /* Smallest sample not yet tested */
  int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
  int iTest;                  /* Next sample to test */
  int res;                    /* Result of comparison operation */



#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER( pParse );
#endif
  assert( pRec!=0 );
  iCol = pRec->nField - 1;
  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
















































  do{



    iTest = (iMin+i)/2;













    res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec);
    if( res<0 ){

      iMin = iTest+1;




    }else{
      i = iTest;

    }
  }while( res && iMin<i );


#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */

  if( res==0 ){
    /* If (res==0) is true, then sample $i must be equal to pRec */
    assert( i<pIdx->nSample );


    assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
         || pParse->db->mallocFailed );

  }else{

    /* Otherwise, pRec must be smaller than sample $i and larger than
    ** sample ($i-1).  */


    assert( i==pIdx->nSample 
         || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
         || pParse->db->mallocFailed );
    assert( i==0











         || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
         || pParse->db->mallocFailed );
  }


#endif /* ifdef SQLITE_DEBUG */

  /* At this point, aSample[i] is the first sample that is greater than
  ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
  ** than pVal.  If aSample[i]==pVal, then res==0.
  */
  if( res==0 ){


    aStat[0] = aSample[i].anLt[iCol];
    aStat[1] = aSample[i].anEq[iCol];
  }else{



    tRowcnt iLower, iUpper, iGap;
    if( i==0 ){
      iLower = 0;
      iUpper = aSample[0].anLt[iCol];
    }else{
      i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
      iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
      iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
    }
    aStat[1] = pIdx->aAvgEq[iCol];
    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;

  }



  return i;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated 







|
|


|
>
>
>










>
>

<


>
>





<

|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|

>

>
>
>
>

|
>

|
>





>
|
|
|
>
>
|
|
>
|
>
|
|
>
>
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
|
|
|
>
>


<
<
<
<

>
>



>
>
>
|
|
<
|

<
|
<

|











>

>
>
>







117752
117753
117754
117755
117756
117757
117758
117759
117760
117761
117762
117763
117764
117765
117766
117767
117768
117769
117770
117771
117772
117773
117774
117775
117776
117777
117778
117779

117780
117781
117782
117783
117784
117785
117786
117787
117788

117789
117790
117791
117792
117793
117794
117795
117796
117797
117798
117799
117800
117801
117802
117803
117804
117805
117806
117807
117808
117809
117810
117811
117812
117813
117814
117815
117816
117817
117818
117819
117820
117821
117822
117823
117824
117825
117826
117827
117828
117829
117830
117831
117832
117833
117834
117835
117836
117837
117838
117839
117840
117841
117842
117843
117844
117845
117846
117847
117848
117849
117850
117851
117852
117853
117854
117855
117856
117857
117858
117859
117860
117861
117862
117863
117864
117865
117866
117867
117868
117869
117870
117871
117872
117873
117874
117875
117876
117877
117878
117879
117880
117881
117882
117883
117884
117885
117886
117887
117888
117889
117890
117891
117892
117893
117894
117895
117896
117897
117898
117899
117900
117901
117902
117903
117904
117905
117906
117907
117908
117909
117910
117911
117912




117913
117914
117915
117916
117917
117918
117919
117920
117921
117922
117923

117924
117925

117926

117927
117928
117929
117930
117931
117932
117933
117934
117935
117936
117937
117938
117939
117940
117941
117942
117943
117944
117945
117946
117947
117948
117949
117950
117951
#endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */

#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
/*
** Estimate the location of a particular key among all keys in an
** index.  Store the results in aStat as follows:
**
**    aStat[0]      Est. number of rows less than pRec
**    aStat[1]      Est. number of rows equal to pRec
**
** Return the index of the sample that is the smallest sample that
** is greater than or equal to pRec. Note that this index is not an index
** into the aSample[] array - it is an index into a virtual set of samples
** based on the contents of aSample[] and the number of fields in record 
** pRec. 
*/
static int whereKeyStats(
  Parse *pParse,              /* Database connection */
  Index *pIdx,                /* Index to consider domain of */
  UnpackedRecord *pRec,       /* Vector of values to consider */
  int roundUp,                /* Round up if true.  Round down if false */
  tRowcnt *aStat              /* OUT: stats written here */
){
  IndexSample *aSample = pIdx->aSample;
  int iCol;                   /* Index of required stats in anEq[] etc. */
  int i;                      /* Index of first sample >= pRec */
  int iSample;                /* Smallest sample larger than or equal to pRec */
  int iMin = 0;               /* Smallest sample not yet tested */

  int iTest;                  /* Next sample to test */
  int res;                    /* Result of comparison operation */
  int nField;                 /* Number of fields in pRec */
  tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */

#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER( pParse );
#endif
  assert( pRec!=0 );

  assert( pIdx->nSample>0 );
  assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );

  /* Do a binary search to find the first sample greater than or equal
  ** to pRec. If pRec contains a single field, the set of samples to search
  ** is simply the aSample[] array. If the samples in aSample[] contain more
  ** than one fields, all fields following the first are ignored.
  **
  ** If pRec contains N fields, where N is more than one, then as well as the
  ** samples in aSample[] (truncated to N fields), the search also has to
  ** consider prefixes of those samples. For example, if the set of samples
  ** in aSample is:
  **
  **     aSample[0] = (a, 5) 
  **     aSample[1] = (a, 10) 
  **     aSample[2] = (b, 5) 
  **     aSample[3] = (c, 100) 
  **     aSample[4] = (c, 105)
  **
  ** Then the search space should ideally be the samples above and the 
  ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 
  ** the code actually searches this set:
  **
  **     0: (a) 
  **     1: (a, 5) 
  **     2: (a, 10) 
  **     3: (a, 10) 
  **     4: (b) 
  **     5: (b, 5) 
  **     6: (c) 
  **     7: (c, 100) 
  **     8: (c, 105)
  **     9: (c, 105)
  **
  ** For each sample in the aSample[] array, N samples are present in the
  ** effective sample array. In the above, samples 0 and 1 are based on 
  ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
  **
  ** Often, sample i of each block of N effective samples has (i+1) fields.
  ** Except, each sample may be extended to ensure that it is greater than or
  ** equal to the previous sample in the array. For example, in the above, 
  ** sample 2 is the first sample of a block of N samples, so at first it 
  ** appears that it should be 1 field in size. However, that would make it 
  ** smaller than sample 1, so the binary search would not work. As a result, 
  ** it is extended to two fields. The duplicates that this creates do not 
  ** cause any problems.
  */
  nField = pRec->nField;
  iCol = 0;
  iSample = pIdx->nSample * nField;
  do{
    int iSamp;                    /* Index in aSample[] of test sample */
    int n;                        /* Number of fields in test sample */

    iTest = (iMin+iSample)/2;
    iSamp = iTest / nField;
    if( iSamp>0 ){
      /* The proposed effective sample is a prefix of sample aSample[iSamp].
      ** Specifically, the shortest prefix of at least (1 + iTest%nField) 
      ** fields that is greater than the previous effective sample.  */
      for(n=(iTest % nField) + 1; n<nField; n++){
        if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
      }
    }else{
      n = iTest + 1;
    }

    pRec->nField = n;
    res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
    if( res<0 ){
      iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
      iMin = iTest+1;
    }else if( res==0 && n<nField ){
      iLower = aSample[iSamp].anLt[n-1];
      iMin = iTest+1;
      res = -1;
    }else{
      iSample = iTest;
      iCol = n-1;
    }
  }while( res && iMin<iSample );
  i = iSample / nField;

#ifdef SQLITE_DEBUG
  /* The following assert statements check that the binary search code
  ** above found the right answer. This block serves no purpose other
  ** than to invoke the asserts.  */
  if( pParse->db->mallocFailed==0 ){
    if( res==0 ){
      /* If (res==0) is true, then pRec must be equal to sample i. */
      assert( i<pIdx->nSample );
      assert( iCol==nField-1 );
      pRec->nField = nField;
      assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 
           || pParse->db->mallocFailed 
      );
    }else{
      /* Unless i==pIdx->nSample, indicating that pRec is larger than
      ** all samples in the aSample[] array, pRec must be smaller than the
      ** (iCol+1) field prefix of sample i.  */
      assert( i<=pIdx->nSample && i>=0 );
      pRec->nField = iCol+1;
      assert( i==pIdx->nSample 
           || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
           || pParse->db->mallocFailed );

      /* if i==0 and iCol==0, then record pRec is smaller than all samples
      ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
      ** be greater than or equal to the (iCol) field prefix of sample i.
      ** If (i>0), then pRec must also be greater than sample (i-1).  */
      if( iCol>0 ){
        pRec->nField = iCol;
        assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
             || pParse->db->mallocFailed );
      }
      if( i>0 ){
        pRec->nField = nField;
        assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
             || pParse->db->mallocFailed );
      }
    }
  }
#endif /* ifdef SQLITE_DEBUG */





  if( res==0 ){
    /* Record pRec is equal to sample i */
    assert( iCol==nField-1 );
    aStat[0] = aSample[i].anLt[iCol];
    aStat[1] = aSample[i].anEq[iCol];
  }else{
    /* At this point, the (iCol+1) field prefix of aSample[i] is the first 
    ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
    ** is larger than all samples in the array. */
    tRowcnt iUpper, iGap;
    if( i>=pIdx->nSample ){

      iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
    }else{

      iUpper = aSample[i].anLt[iCol];

    }

    if( iLower>=iUpper ){
      iGap = 0;
    }else{
      iGap = iUpper - iLower;
    }
    if( roundUp ){
      iGap = (iGap*2)/3;
    }else{
      iGap = iGap/3;
    }
    aStat[0] = iLower + iGap;
    aStat[1] = pIdx->aAvgEq[iCol];
  }

  /* Restore the pRec->nField value before returning.  */
  pRec->nField = nField;
  return i;
}
#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */

/*
** If it is not NULL, pTerm is a term that provides an upper or lower
** bound on a range scan. Without considering pTerm, it is estimated 
117355
117356
117357
117358
117359
117360
117361



















117362
117363

117364
117365
117366
117367
117368



117369

117370
117371
117372
117373
117374
117375

117376
117377
117378
117379
117380
117381
117382
** Disabling a term causes that term to not be tested in the inner loop
** of the join.  Disabling is an optimization.  When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop.  We would get the correct results if nothing were ever disabled,
** but joins might run a little slower.  The trick is to disable as much
** as we can without disabling too much.  If we disabled in (1), we'd get
** the wrong answer.  See ticket #813.



















*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){

  if( pTerm
      && (pTerm->wtFlags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
      && (pLevel->notReady & pTerm->prereqAll)==0
  ){



    pTerm->wtFlags |= TERM_CODED;

    if( pTerm->iParent>=0 ){
      WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
      if( (--pOther->nChild)==0 ){
        disableTerm(pLevel, pOther);
      }
    }

  }
}

/*
** Code an OP_Affinity opcode to apply the column affinity string zAff
** to the n registers starting at base. 
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>


>
|




>
>
>
|
>
|
|
|
|
<
<
>







118411
118412
118413
118414
118415
118416
118417
118418
118419
118420
118421
118422
118423
118424
118425
118426
118427
118428
118429
118430
118431
118432
118433
118434
118435
118436
118437
118438
118439
118440
118441
118442
118443
118444
118445
118446
118447
118448
118449
118450
118451
118452
118453


118454
118455
118456
118457
118458
118459
118460
118461
** Disabling a term causes that term to not be tested in the inner loop
** of the join.  Disabling is an optimization.  When terms are satisfied
** by indices, we disable them to prevent redundant tests in the inner
** loop.  We would get the correct results if nothing were ever disabled,
** but joins might run a little slower.  The trick is to disable as much
** as we can without disabling too much.  If we disabled in (1), we'd get
** the wrong answer.  See ticket #813.
**
** If all the children of a term are disabled, then that term is also
** automatically disabled.  In this way, terms get disabled if derived
** virtual terms are tested first.  For example:
**
**      x GLOB 'abc*' AND x>='abc' AND x<'acd'
**      \___________/     \______/     \_____/
**         parent          child1       child2
**
** Only the parent term was in the original WHERE clause.  The child1
** and child2 terms were added by the LIKE optimization.  If both of
** the virtual child terms are valid, then testing of the parent can be 
** skipped.
**
** Usually the parent term is marked as TERM_CODED.  But if the parent
** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
** The TERM_LIKECOND marking indicates that the term should be coded inside
** a conditional such that is only evaluated on the second pass of a
** LIKE-optimization loop, when scanning BLOBs instead of strings.
*/
static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
  int nLoop = 0;
  while( pTerm
      && (pTerm->wtFlags & TERM_CODED)==0
      && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
      && (pLevel->notReady & pTerm->prereqAll)==0
  ){
    if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
      pTerm->wtFlags |= TERM_LIKECOND;
    }else{
      pTerm->wtFlags |= TERM_CODED;
    }
    if( pTerm->iParent<0 ) break;
    pTerm = &pTerm->pWC->a[pTerm->iParent];
    pTerm->nChild--;
    if( pTerm->nChild!=0 ) break;


    nLoop++;
  }
}

/*
** Code an OP_Affinity opcode to apply the column affinity string zAff
** to the n registers starting at base. 
**
117852
117853
117854
117855
117856
117857
117858


























117859

117860
117861
117862
117863
117864
117865
117866
      v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
  );
}
#else
# define addScanStatus(a, b, c, d) ((void)d)
#endif






























/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







118931
118932
118933
118934
118935
118936
118937
118938
118939
118940
118941
118942
118943
118944
118945
118946
118947
118948
118949
118950
118951
118952
118953
118954
118955
118956
118957
118958
118959
118960
118961
118962
118963
118964
118965
118966
118967
118968
118969
118970
118971
118972
      v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
  );
}
#else
# define addScanStatus(a, b, c, d) ((void)d)
#endif

/*
** If the most recently coded instruction is a constant range contraint
** that originated from the LIKE optimization, then change the P3 to be
** pLoop->iLikeRepCntr and set P5.
**
** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
** scan loop run twice, once for strings and a second time for BLOBs.
** The OP_String opcodes on the second pass convert the upper and lower
** bound string contants to blobs.  This routine makes the necessary changes
** to the OP_String opcodes for that to happen.
*/
static void whereLikeOptimizationStringFixup(
  Vdbe *v,                /* prepared statement under construction */
  WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
  WhereTerm *pTerm        /* The upper or lower bound just coded */
){
  if( pTerm->wtFlags & TERM_LIKEOPT ){
    VdbeOp *pOp;
    assert( pLevel->iLikeRepCntr>0 );
    pOp = sqlite3VdbeGetOp(v, -1);
    assert( pOp!=0 );
    assert( pOp->opcode==OP_String8 
            || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
    pOp->p3 = pLevel->iLikeRepCntr;
    pOp->p5 = 1;
  }
}

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
static Bitmask codeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
118182
118183
118184
118185
118186
118187
118188



118189
118190
118191
118192












118193
118194
118195
118196
118197
118198
118199
    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    j = nEq;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = pLoop->aLTerm[j++];
      nExtraReg = 1;



    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;












      if( pRangeStart==0
       && (j = pIdx->aiColumn[nEq])>=0 
       && pIdx->pTable->aCol[j].notNull==0
      ){
        bSeekPastNull = 1;
      }
    }







>
>
>




>
>
>
>
>
>
>
>
>
>
>
>







119288
119289
119290
119291
119292
119293
119294
119295
119296
119297
119298
119299
119300
119301
119302
119303
119304
119305
119306
119307
119308
119309
119310
119311
119312
119313
119314
119315
119316
119317
119318
119319
119320
    /* Find any inequality constraint terms for the start and end 
    ** of the range. 
    */
    j = nEq;
    if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
      pRangeStart = pLoop->aLTerm[j++];
      nExtraReg = 1;
      /* Like optimization range constraints always occur in pairs */
      assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 
              (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = ++pParse->nMem;
        testcase( bRev );
        testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
        sqlite3VdbeAddOp2(v, OP_Integer,
                          bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
                          pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));
        pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
      }
      if( pRangeStart==0
       && (j = pIdx->aiColumn[nEq])>=0 
       && pIdx->pTable->aCol[j].notNull==0
      ){
        bSeekPastNull = 1;
      }
    }
118228
118229
118230
118231
118232
118233
118234

118235
118236
118237
118238
118239
118240
118241
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
      Expr *pRight = pRangeStart->pExpr->pRight;
      sqlite3ExprCode(pParse, pRight, regBase+nEq);

      if( (pRangeStart->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( zStartAff ){







>







119349
119350
119351
119352
119353
119354
119355
119356
119357
119358
119359
119360
119361
119362
119363
    start_constraints = pRangeStart || nEq>0;

    /* Seek the index cursor to the start of the range. */
    nConstraint = nEq;
    if( pRangeStart ){
      Expr *pRight = pRangeStart->pExpr->pRight;
      sqlite3ExprCode(pParse, pRight, regBase+nEq);
      whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
      if( (pRangeStart->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( zStartAff ){
118273
118274
118275
118276
118277
118278
118279

118280
118281
118282
118283
118284
118285
118286
    ** range (if any).
    */
    nConstraint = nEq;
    if( pRangeEnd ){
      Expr *pRight = pRangeEnd->pExpr->pRight;
      sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
      sqlite3ExprCode(pParse, pRight, regBase+nEq);

      if( (pRangeEnd->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE







>







119395
119396
119397
119398
119399
119400
119401
119402
119403
119404
119405
119406
119407
119408
119409
    ** range (if any).
    */
    nConstraint = nEq;
    if( pRangeEnd ){
      Expr *pRight = pRangeEnd->pExpr->pRight;
      sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
      sqlite3ExprCode(pParse, pRight, regBase+nEq);
      whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
      if( (pRangeEnd->wtFlags & TERM_VNULL)==0
       && sqlite3ExprCanBeNull(pRight)
      ){
        sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
        VdbeCoverage(v);
      }
      if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE
118500
118501
118502
118503
118504
118505
118506
118507

118508
118509
118510
118511
118512
118513
118514

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OMIT_OPEN_CLOSE
                | WHERE_FORCE_TABLE
                | WHERE_ONETABLE_ONLY;

    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int j1 = 0;                     /* Address of jump operation */
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){







|
>







119623
119624
119625
119626
119627
119628
119629
119630
119631
119632
119633
119634
119635
119636
119637
119638

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
    wctrlFlags =  WHERE_OMIT_OPEN_CLOSE
                | WHERE_FORCE_TABLE
                | WHERE_ONETABLE_ONLY
                | WHERE_NO_AUTOINDEX;
    for(ii=0; ii<pOrWc->nTerm; ii++){
      WhereTerm *pOrTerm = &pOrWc->a[ii];
      if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
        WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
        Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
        int j1 = 0;                     /* Address of jump operation */
        if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
118662
118663
118664
118665
118666
118667
118668

118669
118670
118671
118672
118673
118674
118675
118676
118677
118678
118679
118680
118681
118682





118683

118684
118685
118686
118687
118688
118689
118690
#endif

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;

    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
      testcase( pWInfo->untestedTerms==0
               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
      pWInfo->untestedTerms = 1;
      continue;
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }





    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);

    pTerm->wtFlags |= TERM_CODED;
  }

  /* Insert code to test for implied constraints based on transitivity
  ** of the "==" operator.
  **
  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"







>














>
>
>
>
>

>







119786
119787
119788
119789
119790
119791
119792
119793
119794
119795
119796
119797
119798
119799
119800
119801
119802
119803
119804
119805
119806
119807
119808
119809
119810
119811
119812
119813
119814
119815
119816
119817
119818
119819
119820
119821
#endif

  /* Insert code to test every subexpression that can be completely
  ** computed using the current set of tables.
  */
  for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
    Expr *pE;
    int skipLikeAddr = 0;
    testcase( pTerm->wtFlags & TERM_VIRTUAL );
    testcase( pTerm->wtFlags & TERM_CODED );
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
      testcase( pWInfo->untestedTerms==0
               && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
      pWInfo->untestedTerms = 1;
      continue;
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    if( pTerm->wtFlags & TERM_LIKECOND ){
      assert( pLevel->iLikeRepCntr>0 );
      skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
      VdbeCoverage(v);
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
    pTerm->wtFlags |= TERM_CODED;
  }

  /* Insert code to test for implied constraints based on transitivity
  ** of the "==" operator.
  **
  ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
119341
119342
119343
119344
119345
119346
119347




119348
119349
119350
119351
119352
119353
119354
    if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
    ){
      continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;





    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;








>
>
>
>







120472
120473
120474
120475
120476
120477
120478
120479
120480
120481
120482
120483
120484
120485
120486
120487
120488
120489
    if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
     && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
    ){
      continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
    }
    if( pTerm->prereqRight & pNew->maskSelf ) continue;

    /* Do not allow the upper bound of a LIKE optimization range constraint
    ** to mix with a lower range bound from some other source */
    if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;

    pNew->wsFlags = saved_wsFlags;
    pNew->u.btree.nEq = saved_nEq;
    pNew->nLTerm = saved_nLTerm;
    if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
    pNew->aLTerm[pNew->nLTerm++] = pTerm;
    pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;

119384
119385
119386
119387
119388
119389
119390











119391
119392
119393
119394
119395
119396
119397
      pNew->wsFlags |= WHERE_COLUMN_NULL;
    }else if( eOp & (WO_GT|WO_GE) ){
      testcase( eOp & WO_GT );
      testcase( eOp & WO_GE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
      pBtm = pTerm;
      pTop = 0;











    }else{
      assert( eOp & (WO_LT|WO_LE) );
      testcase( eOp & WO_LT );
      testcase( eOp & WO_LE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?







>
>
>
>
>
>
>
>
>
>
>







120519
120520
120521
120522
120523
120524
120525
120526
120527
120528
120529
120530
120531
120532
120533
120534
120535
120536
120537
120538
120539
120540
120541
120542
120543
      pNew->wsFlags |= WHERE_COLUMN_NULL;
    }else if( eOp & (WO_GT|WO_GE) ){
      testcase( eOp & WO_GT );
      testcase( eOp & WO_GE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
      pBtm = pTerm;
      pTop = 0;
      if( pTerm->wtFlags & TERM_LIKEOPT ){
        /* Range contraints that come from the LIKE optimization are
        ** always used in pairs. */
        pTop = &pTerm[1];
        assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
        assert( pTop->wtFlags & TERM_LIKEOPT );
        assert( pTop->eOperator==WO_LT );
        if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
        pNew->aLTerm[pNew->nLTerm++] = pTop;
        pNew->wsFlags |= WHERE_TOP_LIMIT;
      }
    }else{
      assert( eOp & (WO_LT|WO_LE) );
      testcase( eOp & WO_LT );
      testcase( eOp & WO_LE );
      pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
      pTop = pTerm;
      pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
119585
119586
119587
119588
119589
119590
119591

119592




119593
119594
119595
119596
119597
119598
119599
/* Check to see if a partial index with pPartIndexWhere can be used
** in the current query.  Return true if it can be and false if not.
*/
static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
  int i;
  WhereTerm *pTerm;
  for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){

    if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1;




  }
  return 0;
}

/*
** Add all WhereLoop objects for a single table of the join where the table
** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be







>
|
>
>
>
>







120731
120732
120733
120734
120735
120736
120737
120738
120739
120740
120741
120742
120743
120744
120745
120746
120747
120748
120749
120750
/* Check to see if a partial index with pPartIndexWhere can be used
** in the current query.  Return true if it can be and false if not.
*/
static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
  int i;
  WhereTerm *pTerm;
  for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
    Expr *pExpr = pTerm->pExpr;
    if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 
     && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
    ){
      return 1;
    }
  }
  return 0;
}

/*
** Add all WhereLoop objects for a single table of the join where the table
** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
119689
119690
119691
119692
119693
119694
119695

119696
119697
119698
119699
119700
119701
119702
  }
  rSize = pTab->nRowLogEst;
  rLogSize = estLog(rSize);

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
  /* Automatic indexes */
  if( !pBuilder->pOrSet

   && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
   && pSrc->pIndex==0
   && !pSrc->viaCoroutine
   && !pSrc->notIndexed
   && HasRowid(pTab)
   && !pSrc->isCorrelated
   && !pSrc->isRecursive







>







120840
120841
120842
120843
120844
120845
120846
120847
120848
120849
120850
120851
120852
120853
120854
  }
  rSize = pTab->nRowLogEst;
  rLogSize = estLog(rSize);

#ifndef SQLITE_OMIT_AUTOMATIC_INDEX
  /* Automatic indexes */
  if( !pBuilder->pOrSet
   && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0
   && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
   && pSrc->pIndex==0
   && !pSrc->viaCoroutine
   && !pSrc->notIndexed
   && HasRowid(pTab)
   && !pSrc->isCorrelated
   && !pSrc->isRecursive
120572
120573
120574
120575
120576
120577
120578
120579
120580
120581
120582
120583
120584
120585
120586
120587
120588
120589
    memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
  }
  assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
  assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );

  /* Seed the search with a single WherePath containing zero WhereLoops.
  **
  ** TUNING: Do not let the number of iterations go above 25.  If the cost
  ** of computing an automatic index is not paid back within the first 25
  ** rows, then do not use the automatic index. */
  aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==sqlite3LogEst(25) );
  nFrom = 1;
  assert( aFrom[0].isOrdered==0 );
  if( nOrderBy ){
    /* If nLoop is zero, then there are no FROM terms in the query. Since
    ** in this case the query may return a maximum of one row, the results
    ** are already in the requested order. Set isOrdered to nOrderBy to
    ** indicate this. Or, if nLoop is greater than zero, set isOrdered to







|
|

|







121724
121725
121726
121727
121728
121729
121730
121731
121732
121733
121734
121735
121736
121737
121738
121739
121740
121741
    memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
  }
  assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
  assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );

  /* Seed the search with a single WherePath containing zero WhereLoops.
  **
  ** TUNING: Do not let the number of iterations go above 28.  If the cost
  ** of computing an automatic index is not paid back within the first 28
  ** rows, then do not use the automatic index. */
  aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
  nFrom = 1;
  assert( aFrom[0].isOrdered==0 );
  if( nOrderBy ){
    /* If nLoop is zero, then there are no FROM terms in the query. Since
    ** in this case the query may return a maximum of one row, the results
    ** are already in the requested order. Set isOrdered to nOrderBy to
    ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
121373
121374
121375
121376
121377
121378
121379






121380
121381
121382
121383
121384
121385
121386
      }
      pLevel->iIdxCur = iIndexCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);






        VdbeComment((v, "%s", pIx->zName));
      }
    }
    if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);







>
>
>
>
>
>







122525
122526
122527
122528
122529
122530
122531
122532
122533
122534
122535
122536
122537
122538
122539
122540
122541
122542
122543
122544
      }
      pLevel->iIdxCur = iIndexCur;
      assert( pIx->pSchema==pTab->pSchema );
      assert( iIndexCur>=0 );
      if( op ){
        sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
        sqlite3VdbeSetP4KeyInfo(pParse, pIx);
        if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
         && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
         && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
        ){
          sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
        }
        VdbeComment((v, "%s", pIx->zName));
      }
    }
    if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
    notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
  }
  pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
121473
121474
121475
121476
121477
121478
121479










121480
121481
121482
121483
121484
121485
121486
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->addrSkip ){
      sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
      sqlite3VdbeJumpHere(v, pLevel->addrSkip);
      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);










    }
    if( pLevel->iLeftJoin ){
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);







>
>
>
>
>
>
>
>
>
>







122631
122632
122633
122634
122635
122636
122637
122638
122639
122640
122641
122642
122643
122644
122645
122646
122647
122648
122649
122650
122651
122652
122653
122654
    }
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->addrSkip ){
      sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
      sqlite3VdbeJumpHere(v, pLevel->addrSkip);
      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
    }
    if( pLevel->addrLikeRep ){
      int op;
      if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
        op = OP_DecrJumpZero;
      }else{
        op = OP_JumpZeroIncr;
      }
      sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
      VdbeCoverage(v);
    }
    if( pLevel->iLeftJoin ){
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
124364
124365
124366
124367
124368
124369
124370
124371
124372
124373
124374
124375
124376
124377
124378
    sqlite3ExprAssignVarNumber(pParse, yygotominor.yy346.pExpr);
  }
  spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
        break;
      case 193: /* expr ::= expr COLLATE ID|STRING */
{
  yygotominor.yy346.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy346.pExpr, &yymsp[0].minor.yy0);
  yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 194: /* expr ::= CAST LP expr AS typetoken RP */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy346.pExpr, 0, &yymsp[-1].minor.yy0);







|







125532
125533
125534
125535
125536
125537
125538
125539
125540
125541
125542
125543
125544
125545
125546
    sqlite3ExprAssignVarNumber(pParse, yygotominor.yy346.pExpr);
  }
  spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
        break;
      case 193: /* expr ::= expr COLLATE ID|STRING */
{
  yygotominor.yy346.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy346.pExpr, &yymsp[0].minor.yy0, 1);
  yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 194: /* expr ::= CAST LP expr AS typetoken RP */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy346.pExpr, 0, &yymsp[-1].minor.yy0);
124527
124528
124529
124530
124531
124532
124533
124534
124535
124536
124537
124538
124539
124540
124541
124542
124543
124544
124545
124546
124547
124548
124549
124550
124551
124552
124553
124554
124555
124556
124557
124558
124559
124560
124561
124562
124563
124564
124565
124566
124567
124568
124569
124570
124571
124572
124573
124574
124575
124576
124577
124578
124579
124580
124581
124582
124583
124584
124585
124586
124587
124588
124589
124590
124591
124592
124593
124594
124595
124596
124597
124598
124599
124600
124601
124602
124603
124604
124605
124606
124607
124608
124609
124610
124611
124612
124613
124614
124615
        pRHS->flags |= EP_Generic;
      }
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, yymsp[-3].minor.yy328 ? TK_NE : TK_EQ, yymsp[-4].minor.yy346.pExpr, pRHS, 0);
    }else{
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
      if( yygotominor.yy346.pExpr ){
        yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy14;
        sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
      }
      if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    }
    yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 224: /* expr ::= LP select RP */
{
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
      sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    yygotominor.yy346.zStart = yymsp[-2].minor.yy0.z;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 225: /* expr ::= expr in_op LP select RP */
{
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
      sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 226: /* expr ::= expr in_op nm dbnm */
{
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy346.pExpr, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect);
      sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    if( yymsp[-2].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    yygotominor.yy346.zStart = yymsp[-3].minor.yy346.zStart;
    yygotominor.yy346.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
  }
        break;
      case 227: /* expr ::= EXISTS LP select RP */
{
    Expr *p = yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(p, EP_xIsSelect);
      sqlite3ExprSetHeight(pParse, p);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 228: /* expr ::= CASE case_operand case_exprlist case_else END */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy132, 0, 0);
  if( yygotominor.yy346.pExpr ){
    yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy132 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[-1].minor.yy132) : yymsp[-2].minor.yy14;
    sqlite3ExprSetHeight(pParse, yygotominor.yy346.pExpr);
  }else{
    sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy14);
    sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy132);
  }
  yygotominor.yy346.zStart = yymsp[-4].minor.yy0.z;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}







|














|
|












|
|














|
|













|
|












|







125695
125696
125697
125698
125699
125700
125701
125702
125703
125704
125705
125706
125707
125708
125709
125710
125711
125712
125713
125714
125715
125716
125717
125718
125719
125720
125721
125722
125723
125724
125725
125726
125727
125728
125729
125730
125731
125732
125733
125734
125735
125736
125737
125738
125739
125740
125741
125742
125743
125744
125745
125746
125747
125748
125749
125750
125751
125752
125753
125754
125755
125756
125757
125758
125759
125760
125761
125762
125763
125764
125765
125766
125767
125768
125769
125770
125771
125772
125773
125774
125775
125776
125777
125778
125779
125780
125781
125782
125783
        pRHS->flags |= EP_Generic;
      }
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, yymsp[-3].minor.yy328 ? TK_NE : TK_EQ, yymsp[-4].minor.yy346.pExpr, pRHS, 0);
    }else{
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
      if( yygotominor.yy346.pExpr ){
        yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy14;
        sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
      }
      if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    }
    yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 224: /* expr ::= LP select RP */
{
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    yygotominor.yy346.zStart = yymsp[-2].minor.yy0.z;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 225: /* expr ::= expr in_op LP select RP */
{
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 226: /* expr ::= expr in_op nm dbnm */
{
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy346.pExpr, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    if( yymsp[-2].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    yygotominor.yy346.zStart = yymsp[-3].minor.yy346.zStart;
    yygotominor.yy346.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
  }
        break;
      case 227: /* expr ::= EXISTS LP select RP */
{
    Expr *p = yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(p, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, p);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 228: /* expr ::= CASE case_operand case_exprlist case_else END */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy132, 0, 0);
  if( yygotominor.yy346.pExpr ){
    yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy132 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[-1].minor.yy132) : yymsp[-2].minor.yy14;
    sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
  }else{
    sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy14);
    sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy132);
  }
  yygotominor.yy346.zStart = yymsp[-4].minor.yy0.z;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
124644
124645
124646
124647
124648
124649
124650
124651
124652
124653
124654
124655
124656
124657
124658
124659
124660
124661
124662
124663
124664
124665
124666
124667
{yygotominor.yy328 = OE_Abort;}
        break;
      case 241: /* uniqueflag ::= */
{yygotominor.yy328 = OE_None;}
        break;
      case 244: /* idxlist ::= idxlist COMMA nm collate sortorder */
{
  Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, p);
  sqlite3ExprListSetName(pParse,yygotominor.yy14,&yymsp[-2].minor.yy0,1);
  sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
  if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
        break;
      case 245: /* idxlist ::= nm collate sortorder */
{
  Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, p);
  sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
  sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
  if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
        break;
      case 246: /* collate ::= */







|








|







125812
125813
125814
125815
125816
125817
125818
125819
125820
125821
125822
125823
125824
125825
125826
125827
125828
125829
125830
125831
125832
125833
125834
125835
{yygotominor.yy328 = OE_Abort;}
        break;
      case 241: /* uniqueflag ::= */
{yygotominor.yy328 = OE_None;}
        break;
      case 244: /* idxlist ::= idxlist COMMA nm collate sortorder */
{
  Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0, 1);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, p);
  sqlite3ExprListSetName(pParse,yygotominor.yy14,&yymsp[-2].minor.yy0,1);
  sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
  if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
        break;
      case 245: /* idxlist ::= nm collate sortorder */
{
  Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &yymsp[-1].minor.yy0, 1);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, p);
  sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
  sqlite3ExprListCheckLength(pParse, yygotominor.yy14, "index");
  if( yygotominor.yy14 ) yygotominor.yy14->a[yygotominor.yy14->nExpr-1].sortOrder = (u8)yymsp[0].minor.yy328;
}
        break;
      case 246: /* collate ::= */
125843
125844
125845
125846
125847
125848
125849
125850
125851
125852
125853
125854
125855
125856
125857
125858
125859
125860
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */


#ifdef SQLITE_ENABLE_API_ARMOR
  if( zSql==0 || pzErrMsg==0 ) return SQLITE_MISUSE_BKPT;
#endif
  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;







|
<
<
<







127011
127012
127013
127014
127015
127016
127017
127018



127019
127020
127021
127022
127023
127024
127025
  void *pEngine;                  /* The LEMON-generated LALR(1) parser */
  int tokenType;                  /* type of the next token */
  int lastTokenParsed = -1;       /* type of the previous token */
  u8 enableLookaside;             /* Saved value of db->lookaside.bEnabled */
  sqlite3 *db = pParse->db;       /* The database connection */
  int mxSqlLen;                   /* Max length of an SQL string */

  assert( zSql!=0 );



  mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH];
  if( db->nVdbeActive==0 ){
    db->u1.isInterrupted = 0;
  }
  pParse->rc = SQLITE_OK;
  pParse->zTail = zSql;
  i = 0;
125915
125916
125917
125918
125919
125920
125921

125922
125923
125924

125925
125926
125927
125928
125929
125930
125931
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
#ifdef YYTRACKMAXSTACKDEPTH

  sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );

#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){







>



>







127080
127081
127082
127083
127084
127085
127086
127087
127088
127089
127090
127091
127092
127093
127094
127095
127096
127097
127098
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
  }
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
    pParse->rc = SQLITE_NOMEM;
  }
  if( pParse->rc!=SQLITE_OK && pParse->rc!=SQLITE_DONE && pParse->zErrMsg==0 ){
126081
126082
126083
126084
126085
126086
126087
126088
126089
126090
126091
126092
126093
126094
126095
** Whitespace never causes a state transition and is always ignored.
** This means that a SQL string of all whitespace is invalid.
**
** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
** to recognize the end of a trigger can be omitted.  All we have to do
** is look for a semicolon that is not part of an string or comment.
*/
SQLITE_API int sqlite3_complete(const char *zSql){
  u8 state = 0;   /* Current state, using numbers defined in header comment */
  u8 token;       /* Value of the next token */

#ifndef SQLITE_OMIT_TRIGGER
  /* A complex statement machine used to detect the end of a CREATE TRIGGER
  ** statement.  This is the normal case.
  */







|







127248
127249
127250
127251
127252
127253
127254
127255
127256
127257
127258
127259
127260
127261
127262
** Whitespace never causes a state transition and is always ignored.
** This means that a SQL string of all whitespace is invalid.
**
** If we compile with SQLITE_OMIT_TRIGGER, all of the computation needed
** to recognize the end of a trigger can be omitted.  All we have to do
** is look for a semicolon that is not part of an string or comment.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_complete(const char *zSql){
  u8 state = 0;   /* Current state, using numbers defined in header comment */
  u8 token;       /* Value of the next token */

#ifndef SQLITE_OMIT_TRIGGER
  /* A complex statement machine used to detect the end of a CREATE TRIGGER
  ** statement.  This is the normal case.
  */
126246
126247
126248
126249
126250
126251
126252
126253
126254
126255
126256
126257
126258
126259
126260

#ifndef SQLITE_OMIT_UTF16
/*
** This routine is the same as the sqlite3_complete() routine described
** above, except that the parameter is required to be UTF-16 encoded, not
** UTF-8.
*/
SQLITE_API int sqlite3_complete16(const void *zSql){
  sqlite3_value *pVal;
  char const *zSql8;
  int rc = SQLITE_NOMEM;

#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;







|







127413
127414
127415
127416
127417
127418
127419
127420
127421
127422
127423
127424
127425
127426
127427

#ifndef SQLITE_OMIT_UTF16
/*
** This routine is the same as the sqlite3_complete() routine described
** above, except that the parameter is required to be UTF-16 encoded, not
** UTF-8.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_complete16(const void *zSql){
  sqlite3_value *pVal;
  char const *zSql8;
  int rc = SQLITE_NOMEM;

#ifndef SQLITE_OMIT_AUTOINIT
  rc = sqlite3_initialize();
  if( rc ) return rc;
126396
126397
126398
126399
126400
126401
126402
126403
126404
126405
126406
126407
126408
126409
126410
126411
126412
126413
126414
126415
126416
126417
126418
126419
126420
126421
126422
126423
126424
126425
126426
126427
126428
126429
126430
126431
126432
126433
126434
126435
126436
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
#endif

/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
** a pointer to the to the sqlite3_version[] string constant. 
*/
SQLITE_API const char *sqlite3_libversion(void){ return sqlite3_version; }

/* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
** pointer to a string constant whose value is the same as the
** SQLITE_SOURCE_ID C preprocessor macro. 
*/
SQLITE_API const char *sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }

/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
** returns an integer equal to SQLITE_VERSION_NUMBER.
*/
SQLITE_API int sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }

/* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
** zero if and only if SQLite was compiled with mutexing code omitted due to
** the SQLITE_THREADSAFE compile-time option being set to 0.
*/
SQLITE_API int sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }

#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function.  These messages
** are intended for debugging activity only.
*/
/* not-private */ void (*sqlite3IoTrace)(const char*, ...) = 0;
#endif

/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**







|





|




|





|








|







127563
127564
127565
127566
127567
127568
127569
127570
127571
127572
127573
127574
127575
127576
127577
127578
127579
127580
127581
127582
127583
127584
127585
127586
127587
127588
127589
127590
127591
127592
127593
127594
127595
127596
127597
127598
127599
127600
127601
127602
127603
*/
SQLITE_API const char sqlite3_version[] = SQLITE_VERSION;
#endif

/* IMPLEMENTATION-OF: R-53536-42575 The sqlite3_libversion() function returns
** a pointer to the to the sqlite3_version[] string constant. 
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_libversion(void){ return sqlite3_version; }

/* IMPLEMENTATION-OF: R-63124-39300 The sqlite3_sourceid() function returns a
** pointer to a string constant whose value is the same as the
** SQLITE_SOURCE_ID C preprocessor macro. 
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_sourceid(void){ return SQLITE_SOURCE_ID; }

/* IMPLEMENTATION-OF: R-35210-63508 The sqlite3_libversion_number() function
** returns an integer equal to SQLITE_VERSION_NUMBER.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_libversion_number(void){ return SQLITE_VERSION_NUMBER; }

/* IMPLEMENTATION-OF: R-20790-14025 The sqlite3_threadsafe() function returns
** zero if and only if SQLite was compiled with mutexing code omitted due to
** the SQLITE_THREADSAFE compile-time option being set to 0.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_threadsafe(void){ return SQLITE_THREADSAFE; }

#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
/*
** If the following function pointer is not NULL and if
** SQLITE_ENABLE_IOTRACE is enabled, then messages describing
** I/O active are written using this function.  These messages
** are intended for debugging activity only.
*/
SQLITE_API void (SQLITE_CDECL *sqlite3IoTrace)(const char*, ...) = 0;
#endif

/*
** If the following global variable points to a string which is the
** name of a directory, then that directory will be used to store
** temporary files.
**
126474
126475
126476
126477
126478
126479
126480
126481
126482
126483
126484
126485
126486
126487
126488
126489
126490
126491
126492
126493





126494
126495
126496
126497
126498
126499
126500
**
**    *  Calls to this routine from Y must block until the outer-most
**       call by X completes.
**
**    *  Recursive calls to this routine from thread X return immediately
**       without blocking.
*/
SQLITE_API int sqlite3_initialize(void){
  MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
  int rc;                                      /* Result code */
#ifdef SQLITE_EXTRA_INIT
  int bRunExtraInit = 0;                       /* Extra initialization needed */
#endif

#ifdef SQLITE_OMIT_WSD
  rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif






  /* If SQLite is already completely initialized, then this call
  ** to sqlite3_initialize() should be a no-op.  But the initialization
  ** must be complete.  So isInit must not be set until the very end
  ** of this routine.
  */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;







|












>
>
>
>
>







127641
127642
127643
127644
127645
127646
127647
127648
127649
127650
127651
127652
127653
127654
127655
127656
127657
127658
127659
127660
127661
127662
127663
127664
127665
127666
127667
127668
127669
127670
127671
127672
**
**    *  Calls to this routine from Y must block until the outer-most
**       call by X completes.
**
**    *  Recursive calls to this routine from thread X return immediately
**       without blocking.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_initialize(void){
  MUTEX_LOGIC( sqlite3_mutex *pMaster; )       /* The main static mutex */
  int rc;                                      /* Result code */
#ifdef SQLITE_EXTRA_INIT
  int bRunExtraInit = 0;                       /* Extra initialization needed */
#endif

#ifdef SQLITE_OMIT_WSD
  rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif

  /* If the following assert() fails on some obscure processor/compiler
  ** combination, the work-around is to set the correct pointer
  ** size at compile-time using -DSQLITE_PTRSIZE=n compile-time option */
  assert( SQLITE_PTRSIZE==sizeof(char*) );

  /* If SQLite is already completely initialized, then this call
  ** to sqlite3_initialize() should be a no-op.  But the initialization
  ** must be complete.  So isInit must not be set until the very end
  ** of this routine.
  */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_OK;
126630
126631
126632
126633
126634
126635
126636
126637
126638
126639
126640
126641
126642
126643
126644
** Undo the effects of sqlite3_initialize().  Must not be called while
** there are outstanding database connections or memory allocations or
** while any part of SQLite is otherwise in use in any thread.  This
** routine is not threadsafe.  But it is safe to invoke this routine
** on when SQLite is already shut down.  If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
SQLITE_API int sqlite3_shutdown(void){
#ifdef SQLITE_OMIT_WSD
  int rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif








|







127802
127803
127804
127805
127806
127807
127808
127809
127810
127811
127812
127813
127814
127815
127816
** Undo the effects of sqlite3_initialize().  Must not be called while
** there are outstanding database connections or memory allocations or
** while any part of SQLite is otherwise in use in any thread.  This
** routine is not threadsafe.  But it is safe to invoke this routine
** on when SQLite is already shut down.  If SQLite is already shut down
** when this routine is invoked, then this routine is a harmless no-op.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_shutdown(void){
#ifdef SQLITE_OMIT_WSD
  int rc = sqlite3_wsd_init(4096, 24);
  if( rc!=SQLITE_OK ){
    return rc;
  }
#endif

126684
126685
126686
126687
126688
126689
126690
126691
126692
126693
126694
126695
126696
126697
126698
126699
126700
126701
126702
126703
126704
126705
126706

126707
126708
126709
126710
126711
126712
126713
126714
126715
126716
126717
126718
126719
126720
126721
126722
126723

126724
126725
126726
126727
126728
126729
126730
126731
126732
126733
** the SQLite library at run-time.
**
** This routine should only be called when there are no outstanding
** database connections or memory allocations.  This routine is not
** threadsafe.  Failure to heed these warnings can lead to unpredictable
** behavior.
*/
SQLITE_API int sqlite3_config(int op, ...){
  va_list ap;
  int rc = SQLITE_OK;

  /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
  ** the SQLite library is in use. */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile.
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0  /* IMP: R-54466-46756 */
    case SQLITE_CONFIG_SINGLETHREAD: {

      /* Disable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 0;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
    case SQLITE_CONFIG_MULTITHREAD: {
      /* Disable mutexing of database connections */
      /* Enable mutexing of core data structures */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 0;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
    case SQLITE_CONFIG_SERIALIZED: {

      /* Enable all mutexing */
      sqlite3GlobalConfig.bCoreMutex = 1;
      sqlite3GlobalConfig.bFullMutex = 1;
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
    case SQLITE_CONFIG_MUTEX: {
      /* Specify an alternative mutex implementation */
      sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);







|















>
|
|
|





|
|
|
|





>
|
|
|







127856
127857
127858
127859
127860
127861
127862
127863
127864
127865
127866
127867
127868
127869
127870
127871
127872
127873
127874
127875
127876
127877
127878
127879
127880
127881
127882
127883
127884
127885
127886
127887
127888
127889
127890
127891
127892
127893
127894
127895
127896
127897
127898
127899
127900
127901
127902
127903
127904
127905
127906
127907
** the SQLite library at run-time.
**
** This routine should only be called when there are no outstanding
** database connections or memory allocations.  This routine is not
** threadsafe.  Failure to heed these warnings can lead to unpredictable
** behavior.
*/
SQLITE_API int SQLITE_CDECL sqlite3_config(int op, ...){
  va_list ap;
  int rc = SQLITE_OK;

  /* sqlite3_config() shall return SQLITE_MISUSE if it is invoked while
  ** the SQLite library is in use. */
  if( sqlite3GlobalConfig.isInit ) return SQLITE_MISUSE_BKPT;

  va_start(ap, op);
  switch( op ){

    /* Mutex configuration options are only available in a threadsafe
    ** compile.
    */
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0  /* IMP: R-54466-46756 */
    case SQLITE_CONFIG_SINGLETHREAD: {
      /* EVIDENCE-OF: R-02748-19096 This option sets the threading mode to
      ** Single-thread. */
      sqlite3GlobalConfig.bCoreMutex = 0;  /* Disable mutex on core */
      sqlite3GlobalConfig.bFullMutex = 0;  /* Disable mutex on connections */
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-20520-54086 */
    case SQLITE_CONFIG_MULTITHREAD: {
      /* EVIDENCE-OF: R-14374-42468 This option sets the threading mode to
      ** Multi-thread. */
      sqlite3GlobalConfig.bCoreMutex = 1;  /* Enable mutex on core */
      sqlite3GlobalConfig.bFullMutex = 0;  /* Disable mutex on connections */
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-59593-21810 */
    case SQLITE_CONFIG_SERIALIZED: {
      /* EVIDENCE-OF: R-41220-51800 This option sets the threading mode to
      ** Serialized. */
      sqlite3GlobalConfig.bCoreMutex = 1;  /* Enable mutex on core */
      sqlite3GlobalConfig.bFullMutex = 1;  /* Enable mutex on connections */
      break;
    }
#endif
#if defined(SQLITE_THREADSAFE) && SQLITE_THREADSAFE>0 /* IMP: R-63666-48755 */
    case SQLITE_CONFIG_MUTEX: {
      /* Specify an alternative mutex implementation */
      sqlite3GlobalConfig.mutex = *va_arg(ap, sqlite3_mutex_methods*);
126831
126832
126833
126834
126835
126836
126837
126838

126839
126840
126841
126842
126843
126844
126845
/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {
      /* EVIDENCE-OF: R-19854-42126 There are three arguments to
      ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
      ** number of bytes in the memory buffer, and the minimum allocation size. */

      sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      sqlite3GlobalConfig.mnReq = va_arg(ap, int);

      if( sqlite3GlobalConfig.mnReq<1 ){
        sqlite3GlobalConfig.mnReq = 1;
      }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){







|
>







128005
128006
128007
128008
128009
128010
128011
128012
128013
128014
128015
128016
128017
128018
128019
128020
/* EVIDENCE-OF: R-06626-12911 The SQLITE_CONFIG_HEAP option is only
** available if SQLite is compiled with either SQLITE_ENABLE_MEMSYS3 or
** SQLITE_ENABLE_MEMSYS5 and returns SQLITE_ERROR if invoked otherwise. */
#if defined(SQLITE_ENABLE_MEMSYS3) || defined(SQLITE_ENABLE_MEMSYS5)
    case SQLITE_CONFIG_HEAP: {
      /* EVIDENCE-OF: R-19854-42126 There are three arguments to
      ** SQLITE_CONFIG_HEAP: An 8-byte aligned pointer to the memory, the
      ** number of bytes in the memory buffer, and the minimum allocation size.
      */
      sqlite3GlobalConfig.pHeap = va_arg(ap, void*);
      sqlite3GlobalConfig.nHeap = va_arg(ap, int);
      sqlite3GlobalConfig.mnReq = va_arg(ap, int);

      if( sqlite3GlobalConfig.mnReq<1 ){
        sqlite3GlobalConfig.mnReq = 1;
      }else if( sqlite3GlobalConfig.mnReq>(1<<12) ){
126936
126937
126938
126939
126940
126941
126942
126943


126944
126945
126946
126947
126948
126949
126950
      ** negative, then that argument is changed to its compile-time default.
      **
      ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
      ** silently truncated if necessary so that it does not exceed the
      ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
      ** compile-time option.
      */
      if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ) mxMmap = SQLITE_MAX_MMAP_SIZE;


      if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
      if( szMmap>mxMmap) szMmap = mxMmap;
      sqlite3GlobalConfig.mxMmap = mxMmap;
      sqlite3GlobalConfig.szMmap = szMmap;
      break;
    }








|
>
>







128111
128112
128113
128114
128115
128116
128117
128118
128119
128120
128121
128122
128123
128124
128125
128126
128127
      ** negative, then that argument is changed to its compile-time default.
      **
      ** EVIDENCE-OF: R-34993-45031 The maximum allowed mmap size will be
      ** silently truncated if necessary so that it does not exceed the
      ** compile-time maximum mmap size set by the SQLITE_MAX_MMAP_SIZE
      ** compile-time option.
      */
      if( mxMmap<0 || mxMmap>SQLITE_MAX_MMAP_SIZE ){
        mxMmap = SQLITE_MAX_MMAP_SIZE;
      }
      if( szMmap<0 ) szMmap = SQLITE_DEFAULT_MMAP_SIZE;
      if( szMmap>mxMmap) szMmap = mxMmap;
      sqlite3GlobalConfig.mxMmap = mxMmap;
      sqlite3GlobalConfig.szMmap = szMmap;
      break;
    }

127036
127037
127038
127039
127040
127041
127042
127043
127044
127045
127046
127047
127048
127049
127050
127051
127052
127053
127054
127055
127056
127057
127058
127059
127060
127061
127062
127063
127064
  }
  return SQLITE_OK;
}

/*
** Return the mutex associated with a database connection.
*/
SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->mutex;
}

/*
** Free up as much memory as we can from the given database
** connection.
*/
SQLITE_API int sqlite3_db_release_memory(sqlite3 *db){
  int i;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);







|













|







128213
128214
128215
128216
128217
128218
128219
128220
128221
128222
128223
128224
128225
128226
128227
128228
128229
128230
128231
128232
128233
128234
128235
128236
128237
128238
128239
128240
128241
  }
  return SQLITE_OK;
}

/*
** Return the mutex associated with a database connection.
*/
SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_db_mutex(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->mutex;
}

/*
** Free up as much memory as we can from the given database
** connection.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_release_memory(sqlite3 *db){
  int i;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
127073
127074
127075
127076
127077
127078
127079
127080
127081
127082
127083
127084
127085
127086
127087
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Configuration settings for an individual database connection
*/
SQLITE_API int sqlite3_db_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc;
  va_start(ap, op);
  switch( op ){
    case SQLITE_DBCONFIG_LOOKASIDE: {
      void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
      int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */







|







128250
128251
128252
128253
128254
128255
128256
128257
128258
128259
128260
128261
128262
128263
128264
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Configuration settings for an individual database connection
*/
SQLITE_API int SQLITE_CDECL sqlite3_db_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc;
  va_start(ap, op);
  switch( op ){
    case SQLITE_DBCONFIG_LOOKASIDE: {
      void *pBuf = va_arg(ap, void*); /* IMP: R-26835-10964 */
      int sz = va_arg(ap, int);       /* IMP: R-47871-25994 */
127192
127193
127194
127195
127196
127197
127198
127199
127200
127201
127202
127203
127204
127205
127206
127207
127208
127209
127210
127211
127212
127213
127214
127215
127216
127217
127218
127219
127220
127221
127222
127223
127224
127225
127226
127227
127228
127229
127230
127231
127232
  }
  return r;
}

/*
** Return the ROWID of the most recent insert
*/
SQLITE_API sqlite_int64 sqlite3_last_insert_rowid(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->lastRowid;
}

/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
SQLITE_API int sqlite3_changes(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->nChange;
}

/*
** Return the number of changes since the database handle was opened.
*/
SQLITE_API int sqlite3_total_changes(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->nTotalChange;







|












|












|







128369
128370
128371
128372
128373
128374
128375
128376
128377
128378
128379
128380
128381
128382
128383
128384
128385
128386
128387
128388
128389
128390
128391
128392
128393
128394
128395
128396
128397
128398
128399
128400
128401
128402
128403
128404
128405
128406
128407
128408
128409
  }
  return r;
}

/*
** Return the ROWID of the most recent insert
*/
SQLITE_API sqlite_int64 SQLITE_STDCALL sqlite3_last_insert_rowid(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->lastRowid;
}

/*
** Return the number of changes in the most recent call to sqlite3_exec().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_changes(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->nChange;
}

/*
** Return the number of changes since the database handle was opened.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_total_changes(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->nTotalChange;
127360
127361
127362
127363
127364
127365
127366
127367
127368
127369
127370
127371
127372
127373
127374
127375
** connection. The sqlite3_close() version returns SQLITE_BUSY and
** leaves the connection option if there are unfinalized prepared
** statements or unfinished sqlite3_backups.  The sqlite3_close_v2()
** version forces the connection to become a zombie if there are
** unclosed resources, and arranges for deallocation when the last
** prepare statement or sqlite3_backup closes.
*/
SQLITE_API int sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
SQLITE_API int sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }


/*
** Close the mutex on database connection db.
**
** Furthermore, if database connection db is a zombie (meaning that there
** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and







|
|







128537
128538
128539
128540
128541
128542
128543
128544
128545
128546
128547
128548
128549
128550
128551
128552
** connection. The sqlite3_close() version returns SQLITE_BUSY and
** leaves the connection option if there are unfinalized prepared
** statements or unfinished sqlite3_backups.  The sqlite3_close_v2()
** version forces the connection to become a zombie if there are
** unclosed resources, and arranges for deallocation when the last
** prepare statement or sqlite3_backup closes.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_close(sqlite3 *db){ return sqlite3Close(db,0); }
SQLITE_API int SQLITE_STDCALL sqlite3_close_v2(sqlite3 *db){ return sqlite3Close(db,1); }


/*
** Close the mutex on database connection db.
**
** Furthermore, if database connection db is a zombie (meaning that there
** has been a prior call to sqlite3_close(db) or sqlite3_close_v2(db)) and
127768
127769
127770
127771
127772
127773
127774
127775
127776
127777
127778
127779
127780
127781
127782
127783
127784
127785
127786
127787
127788
127789
127790
127791
127792
127793
127794
127795
127796
127797
127798
127799
127800
127801
127802
127803
127804
127805
  return rc; 
}

/*
** This routine sets the busy callback for an Sqlite database to the
** given callback function with the given argument.
*/
SQLITE_API int sqlite3_busy_handler(
  sqlite3 *db,
  int (*xBusy)(void*,int),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->busyHandler.xFunc = xBusy;
  db->busyHandler.pArg = pArg;
  db->busyHandler.nBusy = 0;
  db->busyTimeout = 0;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This routine sets the progress callback for an Sqlite database to the
** given callback function with the given argument. The progress callback will
** be invoked every nOps opcodes.
*/
SQLITE_API void sqlite3_progress_handler(
  sqlite3 *db, 
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){







|





|
















|







128945
128946
128947
128948
128949
128950
128951
128952
128953
128954
128955
128956
128957
128958
128959
128960
128961
128962
128963
128964
128965
128966
128967
128968
128969
128970
128971
128972
128973
128974
128975
128976
128977
128978
128979
128980
128981
128982
  return rc; 
}

/*
** This routine sets the busy callback for an Sqlite database to the
** given callback function with the given argument.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_busy_handler(
  sqlite3 *db,
  int (*xBusy)(void*,int),
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->busyHandler.xFunc = xBusy;
  db->busyHandler.pArg = pArg;
  db->busyHandler.nBusy = 0;
  db->busyTimeout = 0;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
/*
** This routine sets the progress callback for an Sqlite database to the
** given callback function with the given argument. The progress callback will
** be invoked every nOps opcodes.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_progress_handler(
  sqlite3 *db, 
  int nOps,
  int (*xProgress)(void*), 
  void *pArg
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
127822
127823
127824
127825
127826
127827
127828
127829
127830
127831
127832
127833
127834
127835
127836
127837
127838
127839
127840
127841
127842
127843
127844
127845
127846
127847
127848
127849
127850
127851
127852
#endif


/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3 *db, int ms){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  if( ms>0 ){
    sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
    db->busyTimeout = ms;
  }else{
    sqlite3_busy_handler(db, 0, 0);
  }
  return SQLITE_OK;
}

/*
** Cause any pending operation to stop at its earliest opportunity.
*/
SQLITE_API void sqlite3_interrupt(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return;
  }
#endif
  db->u1.isInterrupted = 1;







|















|







128999
129000
129001
129002
129003
129004
129005
129006
129007
129008
129009
129010
129011
129012
129013
129014
129015
129016
129017
129018
129019
129020
129021
129022
129023
129024
129025
129026
129027
129028
129029
#endif


/*
** This routine installs a default busy handler that waits for the
** specified number of milliseconds before returning 0.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_busy_timeout(sqlite3 *db, int ms){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  if( ms>0 ){
    sqlite3_busy_handler(db, sqliteDefaultBusyCallback, (void*)db);
    db->busyTimeout = ms;
  }else{
    sqlite3_busy_handler(db, 0, 0);
  }
  return SQLITE_OK;
}

/*
** Cause any pending operation to stop at its earliest opportunity.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_interrupt(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return;
  }
#endif
  db->u1.isInterrupted = 1;
127955
127956
127957
127958
127959
127960
127961
127962
127963
127964
127965
127966
127967
127968
127969
127970
127971
127972
127973
127974
127975
127976
127977
127978
127979
127980
127981
127982
127983
  p->nArg = (u16)nArg;
  return SQLITE_OK;
}

/*
** Create new user functions.
*/
SQLITE_API int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*)
){
  return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
                                    xFinal, 0);
}

SQLITE_API int sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),







|













|







129132
129133
129134
129135
129136
129137
129138
129139
129140
129141
129142
129143
129144
129145
129146
129147
129148
129149
129150
129151
129152
129153
129154
129155
129156
129157
129158
129159
129160
  p->nArg = (u16)nArg;
  return SQLITE_OK;
}

/*
** Create new user functions.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_function(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
  void (*xFinal)(sqlite3_context*)
){
  return sqlite3_create_function_v2(db, zFunc, nArg, enc, p, xFunc, xStep,
                                    xFinal, 0);
}

SQLITE_API int SQLITE_STDCALL sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunc,
  int nArg,
  int enc,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value **),
  void (*xStep)(sqlite3_context*,int,sqlite3_value **),
128012
128013
128014
128015
128016
128017
128018
128019
128020
128021
128022
128023
128024
128025
128026
 out:
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
SQLITE_API int sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),







|







129189
129190
129191
129192
129193
129194
129195
129196
129197
129198
129199
129200
129201
129202
129203
 out:
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
SQLITE_API int SQLITE_STDCALL sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *p,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
128052
128053
128054
128055
128056
128057
128058
128059
128060
128061
128062
128063
128064
128065
128066
** a new one that always throws a run-time error.  
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
SQLITE_API int sqlite3_overload_function(
  sqlite3 *db,
  const char *zName,
  int nArg
){
  int nName = sqlite3Strlen30(zName);
  int rc = SQLITE_OK;








|







129229
129230
129231
129232
129233
129234
129235
129236
129237
129238
129239
129240
129241
129242
129243
** a new one that always throws a run-time error.  
**
** When virtual tables intend to provide an overloaded function, they
** should call this routine to make sure the global function exists.
** A global function must exist in order for name resolution to work
** properly.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_overload_function(
  sqlite3 *db,
  const char *zName,
  int nArg
){
  int nName = sqlite3Strlen30(zName);
  int rc = SQLITE_OK;

128084
128085
128086
128087
128088
128089
128090
128091
128092
128093
128094
128095
128096
128097
128098
** Register a trace function.  The pArg from the previously registered trace
** is returned.  
**
** A NULL trace function means that no tracing is executes.  A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
SQLITE_API void *sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }







|







129261
129262
129263
129264
129265
129266
129267
129268
129269
129270
129271
129272
129273
129274
129275
** Register a trace function.  The pArg from the previously registered trace
** is returned.  
**
** A NULL trace function means that no tracing is executes.  A non-NULL
** trace is a pointer to a function that is invoked at the start of each
** SQL statement.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_trace(sqlite3 *db, void (*xTrace)(void*,const char*), void *pArg){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
128108
128109
128110
128111
128112
128113
128114
128115
128116
128117
128118
128119
128120
128121
128122
** Register a profile function.  The pArg from the previously registered 
** profile function is returned.  
**
** A NULL profile function means that no profiling is executes.  A non-NULL
** profile is a pointer to a function that is invoked at the conclusion of
** each SQL statement that is run.
*/
SQLITE_API void *sqlite3_profile(
  sqlite3 *db,
  void (*xProfile)(void*,const char*,sqlite_uint64),
  void *pArg
){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR







|







129285
129286
129287
129288
129289
129290
129291
129292
129293
129294
129295
129296
129297
129298
129299
** Register a profile function.  The pArg from the previously registered 
** profile function is returned.  
**
** A NULL profile function means that no profiling is executes.  A non-NULL
** profile is a pointer to a function that is invoked at the conclusion of
** each SQL statement that is run.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_profile(
  sqlite3 *db,
  void (*xProfile)(void*,const char*,sqlite_uint64),
  void *pArg
){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
128135
128136
128137
128138
128139
128140
128141
128142
128143
128144
128145
128146
128147
128148
128149
#endif /* SQLITE_OMIT_TRACE */

/*
** Register a function to be invoked when a transaction commits.
** If the invoked function returns non-zero, then the commit becomes a
** rollback.
*/
SQLITE_API void *sqlite3_commit_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  int (*xCallback)(void*),  /* Function to invoke on each commit */
  void *pArg                /* Argument to the function */
){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR







|







129312
129313
129314
129315
129316
129317
129318
129319
129320
129321
129322
129323
129324
129325
129326
#endif /* SQLITE_OMIT_TRACE */

/*
** Register a function to be invoked when a transaction commits.
** If the invoked function returns non-zero, then the commit becomes a
** rollback.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_commit_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  int (*xCallback)(void*),  /* Function to invoke on each commit */
  void *pArg                /* Argument to the function */
){
  void *pOld;

#ifdef SQLITE_ENABLE_API_ARMOR
128160
128161
128162
128163
128164
128165
128166
128167
128168
128169
128170
128171
128172
128173
128174
  return pOld;
}

/*
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
SQLITE_API void *sqlite3_update_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
  void *pArg                /* Argument to the function */
){
  void *pRet;

#ifdef SQLITE_ENABLE_API_ARMOR







|







129337
129338
129339
129340
129341
129342
129343
129344
129345
129346
129347
129348
129349
129350
129351
  return pOld;
}

/*
** Register a callback to be invoked each time a row is updated,
** inserted or deleted using this database connection.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_update_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*,int,char const *,char const *,sqlite_int64),
  void *pArg                /* Argument to the function */
){
  void *pRet;

#ifdef SQLITE_ENABLE_API_ARMOR
128185
128186
128187
128188
128189
128190
128191
128192
128193
128194
128195
128196
128197
128198
128199
  return pRet;
}

/*
** Register a callback to be invoked each time a transaction is rolled
** back by this database connection.
*/
SQLITE_API void *sqlite3_rollback_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*), /* Callback function */
  void *pArg                /* Argument to the function */
){
  void *pRet;

#ifdef SQLITE_ENABLE_API_ARMOR







|







129362
129363
129364
129365
129366
129367
129368
129369
129370
129371
129372
129373
129374
129375
129376
  return pRet;
}

/*
** Register a callback to be invoked each time a transaction is rolled
** back by this database connection.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_rollback_hook(
  sqlite3 *db,              /* Attach the hook to this database */
  void (*xCallback)(void*), /* Callback function */
  void *pArg                /* Argument to the function */
){
  void *pRet;

#ifdef SQLITE_ENABLE_API_ARMOR
128239
128240
128241
128242
128243
128244
128245
128246
128247
128248
128249
128250
128251
128252
128253
128254
128255
128256
128257
128258
128259
128260
128261
128262
128263
128264
128265
128266
128267
128268
128269
128270
128271
128272
128273
128274
** nFrame parameter disables automatic checkpoints entirely.
**
** The callback registered by this function replaces any existing callback
** registered using sqlite3_wal_hook(). Likewise, registering a callback
** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
** configured by this function.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
#ifdef SQLITE_OMIT_WAL
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(nFrame);
#else
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  if( nFrame>0 ){
    sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
  }else{
    sqlite3_wal_hook(db, 0, 0);
  }
#endif
  return SQLITE_OK;
}

/*
** Register a callback to be invoked each time a transaction is written
** into the write-ahead-log by this database connection.
*/
SQLITE_API void *sqlite3_wal_hook(
  sqlite3 *db,                    /* Attach the hook to this db handle */
  int(*xCallback)(void *, sqlite3*, const char*, int),
  void *pArg                      /* First argument passed to xCallback() */
){
#ifndef SQLITE_OMIT_WAL
  void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR







|




















|







129416
129417
129418
129419
129420
129421
129422
129423
129424
129425
129426
129427
129428
129429
129430
129431
129432
129433
129434
129435
129436
129437
129438
129439
129440
129441
129442
129443
129444
129445
129446
129447
129448
129449
129450
129451
** nFrame parameter disables automatic checkpoints entirely.
**
** The callback registered by this function replaces any existing callback
** registered using sqlite3_wal_hook(). Likewise, registering a callback
** using sqlite3_wal_hook() disables the automatic checkpoint mechanism
** configured by this function.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_autocheckpoint(sqlite3 *db, int nFrame){
#ifdef SQLITE_OMIT_WAL
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(nFrame);
#else
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  if( nFrame>0 ){
    sqlite3_wal_hook(db, sqlite3WalDefaultHook, SQLITE_INT_TO_PTR(nFrame));
  }else{
    sqlite3_wal_hook(db, 0, 0);
  }
#endif
  return SQLITE_OK;
}

/*
** Register a callback to be invoked each time a transaction is written
** into the write-ahead-log by this database connection.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_wal_hook(
  sqlite3 *db,                    /* Attach the hook to this db handle */
  int(*xCallback)(void *, sqlite3*, const char*, int),
  void *pArg                      /* First argument passed to xCallback() */
){
#ifndef SQLITE_OMIT_WAL
  void *pRet;
#ifdef SQLITE_ENABLE_API_ARMOR
128287
128288
128289
128290
128291
128292
128293
128294
128295
128296
128297
128298
128299
128300
128301
  return 0;
#endif
}

/*
** Checkpoint database zDb.
*/
SQLITE_API int sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
){
#ifdef SQLITE_OMIT_WAL







|







129464
129465
129466
129467
129468
129469
129470
129471
129472
129473
129474
129475
129476
129477
129478
  return 0;
#endif
}

/*
** Checkpoint database zDb.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
){
#ifdef SQLITE_OMIT_WAL
128326
128327
128328
128329
128330
128331
128332

128333
128334
128335
128336
128337
128338
128339
128340
128341
128342
128343
128344
128345
128346
128347
128348
128349
128350
128351
128352
128353
128354
128355
  if( zDb && zDb[0] ){
    iDb = sqlite3FindDbName(db, zDb);
  }
  if( iDb<0 ){
    rc = SQLITE_ERROR;
    sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb);
  }else{

    rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
    sqlite3Error(db, rc);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
#endif
}


/*
** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
** to contains a zero-length string, all attached databases are 
** checkpointed.
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
  /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to
  ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */
  return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0);
}

#ifndef SQLITE_OMIT_WAL
/*







>















|







129503
129504
129505
129506
129507
129508
129509
129510
129511
129512
129513
129514
129515
129516
129517
129518
129519
129520
129521
129522
129523
129524
129525
129526
129527
129528
129529
129530
129531
129532
129533
  if( zDb && zDb[0] ){
    iDb = sqlite3FindDbName(db, zDb);
  }
  if( iDb<0 ){
    rc = SQLITE_ERROR;
    sqlite3ErrorWithMsg(db, SQLITE_ERROR, "unknown database: %s", zDb);
  }else{
    db->busyHandler.nBusy = 0;
    rc = sqlite3Checkpoint(db, iDb, eMode, pnLog, pnCkpt);
    sqlite3Error(db, rc);
  }
  rc = sqlite3ApiExit(db, rc);
  sqlite3_mutex_leave(db->mutex);
  return rc;
#endif
}


/*
** Checkpoint database zDb. If zDb is NULL, or if the buffer zDb points
** to contains a zero-length string, all attached databases are 
** checkpointed.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb){
  /* EVIDENCE-OF: R-41613-20553 The sqlite3_wal_checkpoint(D,X) is equivalent to
  ** sqlite3_wal_checkpoint_v2(D,X,SQLITE_CHECKPOINT_PASSIVE,0,0). */
  return sqlite3_wal_checkpoint_v2(db,zDb,SQLITE_CHECKPOINT_PASSIVE,0,0);
}

#ifndef SQLITE_OMIT_WAL
/*
128430
128431
128432
128433
128434
128435
128436
128437
128438
128439
128440
128441
128442
128443
128444
#endif
}

/*
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
SQLITE_API const char *sqlite3_errmsg(sqlite3 *db){
  const char *z;
  if( !db ){
    return sqlite3ErrStr(SQLITE_NOMEM);
  }
  if( !sqlite3SafetyCheckSickOrOk(db) ){
    return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
  }







|







129608
129609
129610
129611
129612
129613
129614
129615
129616
129617
129618
129619
129620
129621
129622
#endif
}

/*
** Return UTF-8 encoded English language explanation of the most recent
** error.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_errmsg(sqlite3 *db){
  const char *z;
  if( !db ){
    return sqlite3ErrStr(SQLITE_NOMEM);
  }
  if( !sqlite3SafetyCheckSickOrOk(db) ){
    return sqlite3ErrStr(SQLITE_MISUSE_BKPT);
  }
128458
128459
128460
128461
128462
128463
128464
128465
128466
128467
128468
128469
128470
128471
128472
}

#ifndef SQLITE_OMIT_UTF16
/*
** Return UTF-16 encoded English language explanation of the most recent
** error.
*/
SQLITE_API const void *sqlite3_errmsg16(sqlite3 *db){
  static const u16 outOfMem[] = {
    'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
  };
  static const u16 misuse[] = {
    'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 
    'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 
    'c', 'a', 'l', 'l', 'e', 'd', ' ', 







|







129636
129637
129638
129639
129640
129641
129642
129643
129644
129645
129646
129647
129648
129649
129650
}

#ifndef SQLITE_OMIT_UTF16
/*
** Return UTF-16 encoded English language explanation of the most recent
** error.
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_errmsg16(sqlite3 *db){
  static const u16 outOfMem[] = {
    'o', 'u', 't', ' ', 'o', 'f', ' ', 'm', 'e', 'm', 'o', 'r', 'y', 0
  };
  static const u16 misuse[] = {
    'l', 'i', 'b', 'r', 'a', 'r', 'y', ' ', 
    'r', 'o', 'u', 't', 'i', 'n', 'e', ' ', 
    'c', 'a', 'l', 'l', 'e', 'd', ' ', 
128503
128504
128505
128506
128507
128508
128509
128510
128511
128512
128513
128514
128515
128516
128517
128518
128519
128520
128521
128522
128523
128524
128525
128526
128527
128528
128529
128530
128531
128532
128533
128534
128535
128536
128537
128538
128539
128540
128541
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the most recent error code generated by an SQLite routine. If NULL is
** passed to this function, we assume a malloc() failed during sqlite3_open().
*/
SQLITE_API int sqlite3_errcode(sqlite3 *db){
  if( db && !sqlite3SafetyCheckSickOrOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  if( !db || db->mallocFailed ){
    return SQLITE_NOMEM;
  }
  return db->errCode & db->errMask;
}
SQLITE_API int sqlite3_extended_errcode(sqlite3 *db){
  if( db && !sqlite3SafetyCheckSickOrOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  if( !db || db->mallocFailed ){
    return SQLITE_NOMEM;
  }
  return db->errCode;
}

/*
** Return a string that describes the kind of error specified in the
** argument.  For now, this simply calls the internal sqlite3ErrStr()
** function.
*/
SQLITE_API const char *sqlite3_errstr(int rc){
  return sqlite3ErrStr(rc);
}

/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/







|








|














|







129681
129682
129683
129684
129685
129686
129687
129688
129689
129690
129691
129692
129693
129694
129695
129696
129697
129698
129699
129700
129701
129702
129703
129704
129705
129706
129707
129708
129709
129710
129711
129712
129713
129714
129715
129716
129717
129718
129719
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Return the most recent error code generated by an SQLite routine. If NULL is
** passed to this function, we assume a malloc() failed during sqlite3_open().
*/
SQLITE_API int SQLITE_STDCALL sqlite3_errcode(sqlite3 *db){
  if( db && !sqlite3SafetyCheckSickOrOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  if( !db || db->mallocFailed ){
    return SQLITE_NOMEM;
  }
  return db->errCode & db->errMask;
}
SQLITE_API int SQLITE_STDCALL sqlite3_extended_errcode(sqlite3 *db){
  if( db && !sqlite3SafetyCheckSickOrOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
  if( !db || db->mallocFailed ){
    return SQLITE_NOMEM;
  }
  return db->errCode;
}

/*
** Return a string that describes the kind of error specified in the
** argument.  For now, this simply calls the internal sqlite3ErrStr()
** function.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_errstr(int rc){
  return sqlite3ErrStr(rc);
}

/*
** Create a new collating function for database "db".  The name is zName
** and the encoding is enc.
*/
128675
128676
128677
128678
128679
128680
128681
128682
128683
128684
128685
128686
128687
128688
128689
** Make no changes but still report the old value if the
** new limit is negative.
**
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
SQLITE_API int sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
  int oldLimit;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return -1;
  }







|







129853
129854
129855
129856
129857
129858
129859
129860
129861
129862
129863
129864
129865
129866
129867
** Make no changes but still report the old value if the
** new limit is negative.
**
** A new lower limit does not shrink existing constructs.
** It merely prevents new constructs that exceed the limit
** from forming.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_limit(sqlite3 *db, int limitId, int newLimit){
  int oldLimit;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return -1;
  }
128779
128780
128781
128782
128783
128784
128785
128786












128787
128788
128789
128790
128791
128792
128793
    flags |= SQLITE_OPEN_URI;

    for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
    zFile = sqlite3_malloc(nByte);
    if( !zFile ) return SQLITE_NOMEM;

    iIn = 5;
#ifndef SQLITE_ALLOW_URI_AUTHORITY












    /* Discard the scheme and authority segments of the URI. */
    if( zUri[5]=='/' && zUri[6]=='/' ){
      iIn = 7;
      while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
      if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
        *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 
            iIn-7, &zUri[7]);







|
>
>
>
>
>
>
>
>
>
>
>
>







129957
129958
129959
129960
129961
129962
129963
129964
129965
129966
129967
129968
129969
129970
129971
129972
129973
129974
129975
129976
129977
129978
129979
129980
129981
129982
129983
    flags |= SQLITE_OPEN_URI;

    for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&');
    zFile = sqlite3_malloc(nByte);
    if( !zFile ) return SQLITE_NOMEM;

    iIn = 5;
#ifdef SQLITE_ALLOW_URI_AUTHORITY
    if( strncmp(zUri+5, "///", 3)==0 ){
      iIn = 7;
      /* The following condition causes URIs with five leading / characters
      ** like file://///host/path to be converted into UNCs like //host/path.
      ** The correct URI for that UNC has only two or four leading / characters
      ** file://host/path or file:////host/path.  But 5 leading slashes is a 
      ** common error, we are told, so we handle it as a special case. */
      if( strncmp(zUri+7, "///", 3)==0 ){ iIn++; }
    }else if( strncmp(zUri+5, "//localhost/", 12)==0 ){
      iIn = 16;
    }
#else
    /* Discard the scheme and authority segments of the URI. */
    if( zUri[5]=='/' && zUri[6]=='/' ){
      iIn = 7;
      while( zUri[iIn] && zUri[iIn]!='/' ) iIn++;
      if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){
        *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", 
            iIn-7, &zUri[7]);
129066
129067
129068
129069
129070
129071
129072



129073
129074
129075
129076
129077
129078
129079
  db->szMmap = sqlite3GlobalConfig.szMmap;
  db->nextPagesize = 0;
  db->nMaxSorterMmap = 0x7FFFFFFF;
  db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill
#if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
                 | SQLITE_AutoIndex
#endif



#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS







>
>
>







130256
130257
130258
130259
130260
130261
130262
130263
130264
130265
130266
130267
130268
130269
130270
130271
130272
  db->szMmap = sqlite3GlobalConfig.szMmap;
  db->nextPagesize = 0;
  db->nMaxSorterMmap = 0x7FFFFFFF;
  db->flags |= SQLITE_ShortColNames | SQLITE_EnableTrigger | SQLITE_CacheSpill
#if !defined(SQLITE_DEFAULT_AUTOMATIC_INDEX) || SQLITE_DEFAULT_AUTOMATIC_INDEX
                 | SQLITE_AutoIndex
#endif
#if SQLITE_DEFAULT_CKPTFULLFSYNC
                 | SQLITE_CkptFullFSync
#endif
#if SQLITE_DEFAULT_FILE_FORMAT<4
                 | SQLITE_LegacyFileFmt
#endif
#ifdef SQLITE_ENABLE_LOAD_EXTENSION
                 | SQLITE_LoadExtension
#endif
#if SQLITE_DEFAULT_RECURSIVE_TRIGGERS
129219
129220
129221
129222
129223
129224
129225
129226

129227
129228
129229
129230
129231
129232
129233
                        sqlite3GlobalConfig.nLookaside);

  sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);

opendb_out:
  sqlite3_free(zOpen);
  if( db ){
    assert( db->mutex!=0 || isThreadsafe==0 || sqlite3GlobalConfig.bFullMutex==0 );

    sqlite3_mutex_leave(db->mutex);
  }
  rc = sqlite3_errcode(db);
  assert( db!=0 || rc==SQLITE_NOMEM );
  if( rc==SQLITE_NOMEM ){
    sqlite3_close(db);
    db = 0;







|
>







130412
130413
130414
130415
130416
130417
130418
130419
130420
130421
130422
130423
130424
130425
130426
130427
                        sqlite3GlobalConfig.nLookaside);

  sqlite3_wal_autocheckpoint(db, SQLITE_DEFAULT_WAL_AUTOCHECKPOINT);

opendb_out:
  sqlite3_free(zOpen);
  if( db ){
    assert( db->mutex!=0 || isThreadsafe==0
           || sqlite3GlobalConfig.bFullMutex==0 );
    sqlite3_mutex_leave(db->mutex);
  }
  rc = sqlite3_errcode(db);
  assert( db!=0 || rc==SQLITE_NOMEM );
  if( rc==SQLITE_NOMEM ){
    sqlite3_close(db);
    db = 0;
129244
129245
129246
129247
129248
129249
129250
129251
129252
129253
129254
129255
129256
129257
129258
129259
129260
129261
129262
129263
129264
129265
129266
129267
129268
129269
129270
129271
129272
129273
129274
129275
129276
129277
129278
#endif
  return sqlite3ApiExit(0, rc);
}

/*
** Open a new database handle.
*/
SQLITE_API int sqlite3_open(
  const char *zFilename, 
  sqlite3 **ppDb 
){
  return openDatabase(zFilename, ppDb,
                      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
}
SQLITE_API int sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
){
  return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
}

#ifndef SQLITE_OMIT_UTF16
/*
** Open a new database handle.
*/
SQLITE_API int sqlite3_open16(
  const void *zFilename, 
  sqlite3 **ppDb
){
  char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
  sqlite3_value *pVal;
  int rc;








|






|












|







130438
130439
130440
130441
130442
130443
130444
130445
130446
130447
130448
130449
130450
130451
130452
130453
130454
130455
130456
130457
130458
130459
130460
130461
130462
130463
130464
130465
130466
130467
130468
130469
130470
130471
130472
#endif
  return sqlite3ApiExit(0, rc);
}

/*
** Open a new database handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_open(
  const char *zFilename, 
  sqlite3 **ppDb 
){
  return openDatabase(zFilename, ppDb,
                      SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, 0);
}
SQLITE_API int SQLITE_STDCALL sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
){
  return openDatabase(filename, ppDb, (unsigned int)flags, zVfs);
}

#ifndef SQLITE_OMIT_UTF16
/*
** Open a new database handle.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_open16(
  const void *zFilename, 
  sqlite3 **ppDb
){
  char const *zFilename8;   /* zFilename encoded in UTF-8 instead of UTF-16 */
  sqlite3_value *pVal;
  int rc;

129303
129304
129305
129306
129307
129308
129309
129310
129311
129312
129313
129314
129315
129316
129317
129318
129319
129320
129321
129322
129323
129324
129325
129326
129327
129328
129329
129330
  return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0);
}

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){







|












|







130497
130498
130499
130500
130501
130502
130503
130504
130505
130506
130507
130508
130509
130510
130511
130512
130513
130514
130515
130516
130517
130518
130519
130520
130521
130522
130523
130524
  return sqlite3ApiExit(0, rc);
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  return sqlite3_create_collation_v2(db, zName, enc, pCtx, xCompare, 0);
}

/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation_v2(
  sqlite3* db, 
  const char *zName, 
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDel)(void*)
){
129341
129342
129343
129344
129345
129346
129347
129348
129349
129350
129351
129352
129353
129354
129355
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int sqlite3_create_collation16(
  sqlite3* db, 
  const void *zName,
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc = SQLITE_OK;







|







130535
130536
130537
130538
130539
130540
130541
130542
130543
130544
130545
130546
130547
130548
130549
  return rc;
}

#ifndef SQLITE_OMIT_UTF16
/*
** Register a new collation sequence with the database handle db.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation16(
  sqlite3* db, 
  const void *zName,
  int enc, 
  void* pCtx,
  int(*xCompare)(void*,int,const void*,int,const void*)
){
  int rc = SQLITE_OK;
129371
129372
129373
129374
129375
129376
129377
129378
129379
129380
129381
129382
129383
129384
129385
129386
129387
129388
129389
129390
129391
129392
129393
129394
129395
129396
129397
129398
129399
129400
129401
129402
129403
129404
129405
129406
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int sqlite3_collation_needed(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->xCollNeeded = xCollNeeded;
  db->xCollNeeded16 = 0;
  db->pCollNeededArg = pCollNeededArg;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_UTF16
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int sqlite3_collation_needed16(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif







|




















|







130565
130566
130567
130568
130569
130570
130571
130572
130573
130574
130575
130576
130577
130578
130579
130580
130581
130582
130583
130584
130585
130586
130587
130588
130589
130590
130591
130592
130593
130594
130595
130596
130597
130598
130599
130600
}
#endif /* SQLITE_OMIT_UTF16 */

/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded)(void*,sqlite3*,int eTextRep,const char*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->xCollNeeded = xCollNeeded;
  db->xCollNeeded16 = 0;
  db->pCollNeededArg = pCollNeededArg;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

#ifndef SQLITE_OMIT_UTF16
/*
** Register a collation sequence factory callback with the database handle
** db. Replace any previously installed collation sequence factory.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed16(
  sqlite3 *db, 
  void *pCollNeededArg, 
  void(*xCollNeeded16)(void*,sqlite3*,int eTextRep,const void*)
){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
129414
129415
129416
129417
129418
129419
129420
129421
129422
129423
129424
129425
129426
129427
129428
129429
129430
129431
129432
129433
129434
129435
129436
129437
129438
129439
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_DEPRECATED
/*
** This function is now an anachronism. It used to be used to recover from a
** malloc() failure, but SQLite now does this automatically.
*/
SQLITE_API int sqlite3_global_recover(void){
  return SQLITE_OK;
}
#endif

/*
** Test to see whether or not the database connection is in autocommit
** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
** by default.  Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->autoCommit;







|










|







130608
130609
130610
130611
130612
130613
130614
130615
130616
130617
130618
130619
130620
130621
130622
130623
130624
130625
130626
130627
130628
130629
130630
130631
130632
130633
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_DEPRECATED
/*
** This function is now an anachronism. It used to be used to recover from a
** malloc() failure, but SQLite now does this automatically.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_global_recover(void){
  return SQLITE_OK;
}
#endif

/*
** Test to see whether or not the database connection is in autocommit
** mode.  Return TRUE if it is and FALSE if not.  Autocommit mode is on
** by default.  Autocommit is disabled by a BEGIN statement and reenabled
** by the next COMMIT or ROLLBACK.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_get_autocommit(sqlite3 *db){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  return db->autoCommit;
129477
129478
129479
129480
129481
129482
129483
129484
129485
129486
129487
129488
129489
129490
129491
129492
129493
129494
129495
129496
129497
129498
129499
129500
129501
129502
129503
129504
129505
129506
129507
129508
129509
129510
129511
129512
129513
129514







129515
129516
129517
129518
129519
129520
129521
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
**
** SQLite no longer uses thread-specific data so this routine is now a
** no-op.  It is retained for historical compatibility.
*/
SQLITE_API void sqlite3_thread_cleanup(void){
}
#endif

/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
){
  int rc;
  char *zErrMsg = 0;
  Table *pTab = 0;
  Column *pCol = 0;
  int iCol = 0;

  char const *zDataType = 0;
  char const *zCollSeq = 0;
  int notnull = 0;
  int primarykey = 0;
  int autoinc = 0;








  /* Ensure the database schema has been loaded */
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  rc = sqlite3Init(db, &zErrMsg);
  if( SQLITE_OK!=rc ){
    goto error_out;
  }







|







|















<






>
>
>
>
>
>
>







130671
130672
130673
130674
130675
130676
130677
130678
130679
130680
130681
130682
130683
130684
130685
130686
130687
130688
130689
130690
130691
130692
130693
130694
130695
130696
130697
130698
130699
130700
130701

130702
130703
130704
130705
130706
130707
130708
130709
130710
130711
130712
130713
130714
130715
130716
130717
130718
130719
130720
130721
/*
** This is a convenience routine that makes sure that all thread-specific
** data for this thread has been deallocated.
**
** SQLite no longer uses thread-specific data so this routine is now a
** no-op.  It is retained for historical compatibility.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_thread_cleanup(void){
}
#endif

/*
** Return meta information about a specific column of a database table.
** See comment in sqlite3.h (sqlite.h.in) for details.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
  int *pPrimaryKey,           /* OUTPUT: True if column part of PK */
  int *pAutoinc               /* OUTPUT: True if column is auto-increment */
){
  int rc;
  char *zErrMsg = 0;
  Table *pTab = 0;
  Column *pCol = 0;
  int iCol = 0;

  char const *zDataType = 0;
  char const *zCollSeq = 0;
  int notnull = 0;
  int primarykey = 0;
  int autoinc = 0;


#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) || zTableName==0 ){
    return SQLITE_MISUSE_BKPT;
  }
#endif

  /* Ensure the database schema has been loaded */
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  rc = sqlite3Init(db, &zErrMsg);
  if( SQLITE_OK!=rc ){
    goto error_out;
  }
129597
129598
129599
129600
129601
129602
129603
129604
129605
129606
129607
129608
129609
129610
129611
129612
129613
129614
129615
129616
129617
129618
129619
129620
129621
129622
129623
129624
129625
129626
129627
129628
129629
129630
129631
129632
129633
129634
129635
129636
129637
129638
129639
129640
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Sleep for a little while.  Return the amount of time slept.
*/
SQLITE_API int sqlite3_sleep(int ms){
  sqlite3_vfs *pVfs;
  int rc;
  pVfs = sqlite3_vfs_find(0);
  if( pVfs==0 ) return 0;

  /* This function works in milliseconds, but the underlying OsSleep() 
  ** API uses microseconds. Hence the 1000's.
  */
  rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
  return rc;
}

/*
** Enable or disable the extended result codes.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3 *db, int onoff){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->errMask = onoff ? 0xffffffff : 0xff;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Invoke the xFileControl method on a particular database.
*/
SQLITE_API int sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;
  Btree *pBtree;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);







|















|












|







130797
130798
130799
130800
130801
130802
130803
130804
130805
130806
130807
130808
130809
130810
130811
130812
130813
130814
130815
130816
130817
130818
130819
130820
130821
130822
130823
130824
130825
130826
130827
130828
130829
130830
130831
130832
130833
130834
130835
130836
130837
130838
130839
130840
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Sleep for a little while.  Return the amount of time slept.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_sleep(int ms){
  sqlite3_vfs *pVfs;
  int rc;
  pVfs = sqlite3_vfs_find(0);
  if( pVfs==0 ) return 0;

  /* This function works in milliseconds, but the underlying OsSleep() 
  ** API uses microseconds. Hence the 1000's.
  */
  rc = (sqlite3OsSleep(pVfs, 1000*ms)/1000);
  return rc;
}

/*
** Enable or disable the extended result codes.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_extended_result_codes(sqlite3 *db, int onoff){
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  db->errMask = onoff ? 0xffffffff : 0xff;
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Invoke the xFileControl method on a particular database.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_file_control(sqlite3 *db, const char *zDbName, int op, void *pArg){
  int rc = SQLITE_ERROR;
  Btree *pBtree;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
129654
129655
129656
129657
129658
129659
129660
129661
129662
129663
129664
129665
129666
129667
129668
129669
129670
129671
129672
129673
129674
      rc = sqlite3OsFileControl(fd, op, pArg);
    }else{
      rc = SQLITE_NOTFOUND;
    }
    sqlite3BtreeLeave(pBtree);
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;   
}

/*
** Interface to the testing logic.
*/
SQLITE_API int sqlite3_test_control(int op, ...){
  int rc = 0;
#ifndef SQLITE_OMIT_BUILTIN_TEST
  va_list ap;
  va_start(ap, op);
  switch( op ){

    /*







|





|







130854
130855
130856
130857
130858
130859
130860
130861
130862
130863
130864
130865
130866
130867
130868
130869
130870
130871
130872
130873
130874
      rc = sqlite3OsFileControl(fd, op, pArg);
    }else{
      rc = SQLITE_NOTFOUND;
    }
    sqlite3BtreeLeave(pBtree);
  }
  sqlite3_mutex_leave(db->mutex);
  return rc;
}

/*
** Interface to the testing logic.
*/
SQLITE_API int SQLITE_CDECL sqlite3_test_control(int op, ...){
  int rc = 0;
#ifndef SQLITE_OMIT_BUILTIN_TEST
  va_list ap;
  va_start(ap, op);
  switch( op ){

    /*
129957
129958
129959
129960
129961
129962
129963





























129964
129965
129966
129967
129968
129969
129970
129971
129972
129973
129974
129975
129976
129977
129978
129979
129980
129981
129982
129983
129984
129985
129986
129987
129988
129989
129990
129991
129992
129993
129994
129995
129996
129997
129998
129999
130000
130001
130002
130003
130004
130005
130006
130007
130008
130009
130010
130011
130012
    ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
    ** not.
    */
    case SQLITE_TESTCTRL_ISINIT: {
      if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
      break;
    }





























  }
  va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
  return rc;
}

/*
** This is a utility routine, useful to VFS implementations, that checks
** to see if a database file was a URI that contained a specific query 
** parameter, and if so obtains the value of the query parameter.
**
** The zFilename argument is the filename pointer passed into the xOpen()
** method of a VFS implementation.  The zParam argument is the name of the
** query parameter we seek.  This routine returns the value of the zParam
** parameter if it exists.  If the parameter does not exist, this routine
** returns a NULL pointer.
*/
SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam){
  if( zFilename==0 || zParam==0 ) return 0;
  zFilename += sqlite3Strlen30(zFilename) + 1;
  while( zFilename[0] ){
    int x = strcmp(zFilename, zParam);
    zFilename += sqlite3Strlen30(zFilename) + 1;
    if( x==0 ) return zFilename;
    zFilename += sqlite3Strlen30(zFilename) + 1;
  }
  return 0;
}

/*
** Return a boolean value for a query parameter.
*/
SQLITE_API int sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  bDflt = bDflt!=0;
  return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
}

/*
** Return a 64-bit integer value for a query parameter.
*/
SQLITE_API sqlite3_int64 sqlite3_uri_int64(
  const char *zFilename,    /* Filename as passed to xOpen */
  const char *zParam,       /* URI parameter sought */
  sqlite3_int64 bDflt       /* return if parameter is missing */
){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

















|














|








|







131157
131158
131159
131160
131161
131162
131163
131164
131165
131166
131167
131168
131169
131170
131171
131172
131173
131174
131175
131176
131177
131178
131179
131180
131181
131182
131183
131184
131185
131186
131187
131188
131189
131190
131191
131192
131193
131194
131195
131196
131197
131198
131199
131200
131201
131202
131203
131204
131205
131206
131207
131208
131209
131210
131211
131212
131213
131214
131215
131216
131217
131218
131219
131220
131221
131222
131223
131224
131225
131226
131227
131228
131229
131230
131231
131232
131233
131234
131235
131236
131237
131238
131239
131240
131241
    ** Return SQLITE_OK if SQLite has been initialized and SQLITE_ERROR if
    ** not.
    */
    case SQLITE_TESTCTRL_ISINIT: {
      if( sqlite3GlobalConfig.isInit==0 ) rc = SQLITE_ERROR;
      break;
    }

    /*  sqlite3_test_control(SQLITE_TESTCTRL_IMPOSTER, db, dbName, onOff, tnum);
    **
    ** This test control is used to create imposter tables.  "db" is a pointer
    ** to the database connection.  dbName is the database name (ex: "main" or
    ** "temp") which will receive the imposter.  "onOff" turns imposter mode on
    ** or off.  "tnum" is the root page of the b-tree to which the imposter
    ** table should connect.
    **
    ** Enable imposter mode only when the schema has already been parsed.  Then
    ** run a single CREATE TABLE statement to construct the imposter table in
    ** the parsed schema.  Then turn imposter mode back off again.
    **
    ** If onOff==0 and tnum>0 then reset the schema for all databases, causing
    ** the schema to be reparsed the next time it is needed.  This has the
    ** effect of erasing all imposter tables.
    */
    case SQLITE_TESTCTRL_IMPOSTER: {
      sqlite3 *db = va_arg(ap, sqlite3*);
      sqlite3_mutex_enter(db->mutex);
      db->init.iDb = sqlite3FindDbName(db, va_arg(ap,const char*));
      db->init.busy = db->init.imposterTable = va_arg(ap,int);
      db->init.newTnum = va_arg(ap,int);
      if( db->init.busy==0 && db->init.newTnum>0 ){
        sqlite3ResetAllSchemasOfConnection(db);
      }
      sqlite3_mutex_leave(db->mutex);
      break;
    }
  }
  va_end(ap);
#endif /* SQLITE_OMIT_BUILTIN_TEST */
  return rc;
}

/*
** This is a utility routine, useful to VFS implementations, that checks
** to see if a database file was a URI that contained a specific query 
** parameter, and if so obtains the value of the query parameter.
**
** The zFilename argument is the filename pointer passed into the xOpen()
** method of a VFS implementation.  The zParam argument is the name of the
** query parameter we seek.  This routine returns the value of the zParam
** parameter if it exists.  If the parameter does not exist, this routine
** returns a NULL pointer.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_uri_parameter(const char *zFilename, const char *zParam){
  if( zFilename==0 || zParam==0 ) return 0;
  zFilename += sqlite3Strlen30(zFilename) + 1;
  while( zFilename[0] ){
    int x = strcmp(zFilename, zParam);
    zFilename += sqlite3Strlen30(zFilename) + 1;
    if( x==0 ) return zFilename;
    zFilename += sqlite3Strlen30(zFilename) + 1;
  }
  return 0;
}

/*
** Return a boolean value for a query parameter.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_uri_boolean(const char *zFilename, const char *zParam, int bDflt){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  bDflt = bDflt!=0;
  return z ? sqlite3GetBoolean(z, bDflt) : bDflt;
}

/*
** Return a 64-bit integer value for a query parameter.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_uri_int64(
  const char *zFilename,    /* Filename as passed to xOpen */
  const char *zParam,       /* URI parameter sought */
  sqlite3_int64 bDflt       /* return if parameter is missing */
){
  const char *z = sqlite3_uri_parameter(zFilename, zParam);
  sqlite3_int64 v;
  if( z && sqlite3DecOrHexToI64(z, &v)==SQLITE_OK ){
130030
130031
130032
130033
130034
130035
130036
130037
130038
130039
130040
130041
130042
130043
130044
130045
130046
130047
130048
130049
130050
130051
130052
130053
130054
130055
130056
130057
130058
130059
130060
  return 0;
}

/*
** Return the filename of the database associated with a database
** connection.
*/
SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName){
  Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
}

/*
** Return 1 if database is read-only or 0 if read/write.  Return -1 if
** no such database exists.
*/
SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
  Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return -1;
  }
#endif







|















|







131259
131260
131261
131262
131263
131264
131265
131266
131267
131268
131269
131270
131271
131272
131273
131274
131275
131276
131277
131278
131279
131280
131281
131282
131283
131284
131285
131286
131287
131288
131289
  return 0;
}

/*
** Return the filename of the database associated with a database
** connection.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_db_filename(sqlite3 *db, const char *zDbName){
  Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return 0;
  }
#endif
  pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeGetFilename(pBt) : 0;
}

/*
** Return 1 if database is read-only or 0 if read/write.  Return -1 if
** no such database exists.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_readonly(sqlite3 *db, const char *zDbName){
  Btree *pBt;
#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    (void)SQLITE_MISUSE_BKPT;
    return -1;
  }
#endif
130205
130206
130207
130208
130209
130210
130211
130212
130213
130214
130215
130216
130217
130218
130219
** Otherwise, make arrangements to invoke xNotify when pOther drops
** its locks.
**
** Each call to this routine overrides any prior callbacks registered
** on the same "db".  If xNotify==0 then any prior callbacks are immediately
** cancelled.
*/
SQLITE_API int sqlite3_unlock_notify(
  sqlite3 *db,
  void (*xNotify)(void **, int),
  void *pArg
){
  int rc = SQLITE_OK;

  sqlite3_mutex_enter(db->mutex);







|







131434
131435
131436
131437
131438
131439
131440
131441
131442
131443
131444
131445
131446
131447
131448
** Otherwise, make arrangements to invoke xNotify when pOther drops
** its locks.
**
** Each call to this routine overrides any prior callbacks registered
** on the same "db".  If xNotify==0 then any prior callbacks are immediately
** cancelled.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_unlock_notify(
  sqlite3 *db,
  void (*xNotify)(void **, int),
  void *pArg
){
  int rc = SQLITE_OK;

  sqlite3_mutex_enter(db->mutex);
131339
131340
131341
131342
131343
131344
131345





131346
131347
131348
131349
131350
131351
131352
};

struct Fts3Phrase {
  /* Cache of doclist for this phrase. */
  Fts3Doclist doclist;
  int bIncr;                 /* True if doclist is loaded incrementally */
  int iDoclistToken;






  /* Variables below this point are populated by fts3_expr.c when parsing 
  ** a MATCH expression. Everything above is part of the evaluation phase. 
  */
  int nToken;                /* Number of tokens in the phrase */
  int iColumn;               /* Index of column this phrase must match */
  Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */







>
>
>
>
>







132568
132569
132570
132571
132572
132573
132574
132575
132576
132577
132578
132579
132580
132581
132582
132583
132584
132585
132586
};

struct Fts3Phrase {
  /* Cache of doclist for this phrase. */
  Fts3Doclist doclist;
  int bIncr;                 /* True if doclist is loaded incrementally */
  int iDoclistToken;

  /* Used by sqlite3Fts3EvalPhrasePoslist() if this is a descendent of an
  ** OR condition.  */
  char *pOrPoslist;
  i64 iOrDocid;

  /* Variables below this point are populated by fts3_expr.c when parsing 
  ** a MATCH expression. Everything above is part of the evaluation phase. 
  */
  int nToken;                /* Number of tokens in the phrase */
  int iColumn;               /* Index of column this phrase must match */
  Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */
132180
132181
132182
132183
132184
132185
132186

132187
132188
132189
132190
132191




132192
132193
132194
132195
132196
132197
132198
**
** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
** the output value undefined. Otherwise SQLITE_OK is returned.
**
** This function is used when parsing the "prefix=" FTS4 parameter.
*/
static int fts3GobbleInt(const char **pp, int *pnOut){

  const char *p;                  /* Iterator pointer */
  int nInt = 0;                   /* Output value */

  for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
    nInt = nInt * 10 + (p[0] - '0');




  }
  if( p==*pp ) return SQLITE_ERROR;
  *pnOut = nInt;
  *pp = p;
  return SQLITE_OK;
}








>





>
>
>
>







133414
133415
133416
133417
133418
133419
133420
133421
133422
133423
133424
133425
133426
133427
133428
133429
133430
133431
133432
133433
133434
133435
133436
133437
**
** If *pp does not being with a decimal digit SQLITE_ERROR is returned and
** the output value undefined. Otherwise SQLITE_OK is returned.
**
** This function is used when parsing the "prefix=" FTS4 parameter.
*/
static int fts3GobbleInt(const char **pp, int *pnOut){
  const int MAX_NPREFIX = 10000000;
  const char *p;                  /* Iterator pointer */
  int nInt = 0;                   /* Output value */

  for(p=*pp; p[0]>='0' && p[0]<='9'; p++){
    nInt = nInt * 10 + (p[0] - '0');
    if( nInt>MAX_NPREFIX ){
      nInt = 0;
      break;
    }
  }
  if( p==*pp ) return SQLITE_ERROR;
  *pnOut = nInt;
  *pp = p;
  return SQLITE_OK;
}

132227
132228
132229
132230
132231
132232
132233
132234
132235
132236
132237
132238
132239
132240
132241
132242
132243
132244
132245





132246

132247
132248
132249
132250

132251
132252
132253
132254
132255
132256
132257
    for(p=zParam; *p; p++){
      if( *p==',' ) nIndex++;
    }
  }

  aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
  *apIndex = aIndex;
  *pnIndex = nIndex;
  if( !aIndex ){
    return SQLITE_NOMEM;
  }

  memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
  if( zParam ){
    const char *p = zParam;
    int i;
    for(i=1; i<nIndex; i++){
      int nPrefix;
      if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;





      aIndex[i].nPrefix = nPrefix;

      p++;
    }
  }


  return SQLITE_OK;
}

/*
** This function is called when initializing an FTS4 table that uses the
** content=xxx option. It determines the number of and names of the columns
** of the new FTS4 table.







<









|

>
>
>
>
>
|
>




>







133466
133467
133468
133469
133470
133471
133472

133473
133474
133475
133476
133477
133478
133479
133480
133481
133482
133483
133484
133485
133486
133487
133488
133489
133490
133491
133492
133493
133494
133495
133496
133497
133498
133499
133500
133501
133502
    for(p=zParam; *p; p++){
      if( *p==',' ) nIndex++;
    }
  }

  aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex);
  *apIndex = aIndex;

  if( !aIndex ){
    return SQLITE_NOMEM;
  }

  memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex);
  if( zParam ){
    const char *p = zParam;
    int i;
    for(i=1; i<nIndex; i++){
      int nPrefix = 0;
      if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR;
      assert( nPrefix>=0 );
      if( nPrefix==0 ){
        nIndex--;
        i--;
      }else{
        aIndex[i].nPrefix = nPrefix;
      }
      p++;
    }
  }

  *pnIndex = nIndex;
  return SQLITE_OK;
}

/*
** This function is called when initializing an FTS4 table that uses the
** content=xxx option. It determines the number of and names of the columns
** of the new FTS4 table.
132367
132368
132369
132370
132371
132372
132373
132374
132375
132376
132377
132378
132379
132380
132381
  char *zCsr;                     /* Space for holding column names */
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
  const char **aCol;              /* Array of column names */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  int nIndex;                     /* Size of aIndex[] array */
  struct Fts3Index *aIndex = 0;   /* Array of indexes for this table */

  /* The results of parsing supported FTS4 key=value options: */
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */







|







133612
133613
133614
133615
133616
133617
133618
133619
133620
133621
133622
133623
133624
133625
133626
  char *zCsr;                     /* Space for holding column names */
  int nDb;                        /* Bytes required to hold database name */
  int nName;                      /* Bytes required to hold table name */
  int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
  const char **aCol;              /* Array of column names */
  sqlite3_tokenizer *pTokenizer = 0;        /* Tokenizer for this table */

  int nIndex = 0;                 /* Size of aIndex[] array */
  struct Fts3Index *aIndex = 0;   /* Array of indexes for this table */

  /* The results of parsing supported FTS4 key=value options: */
  int bNoDocsize = 0;             /* True to omit %_docsize table */
  int bDescIdx = 0;               /* True to store descending indexes */
  char *zPrefix = 0;              /* Prefix parameter value (or NULL) */
  char *zCompress = 0;            /* compress=? parameter (or NULL) */
133761
133762
133763
133764
133765
133766
133767
133768
133769
133770
133771
133772
133773
133774
133775
133776

133777
133778
133779
133780
133781
133782
133783
133784
133785





133786
133787

133788
133789
133790
133791
133792
133793
133794
**
** If the docids in the input doclists are sorted in ascending order,
** parameter bDescDoclist should be false. If they are sorted in ascending 
** order, it should be passed a non-zero value.
**
** The right-hand input doclist is overwritten by this function.
*/
static void fts3DoclistPhraseMerge(
  int bDescDoclist,               /* True if arguments are desc */
  int nDist,                      /* Distance from left to right (1=adjacent) */
  char *aLeft, int nLeft,         /* Left doclist */
  char *aRight, int *pnRight      /* IN/OUT: Right/output doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;

  char *pEnd1 = &aLeft[nLeft];
  char *pEnd2 = &aRight[*pnRight];
  char *p1 = aLeft;
  char *p2 = aRight;
  char *p;
  int bFirstOut = 0;
  char *aOut = aRight;

  assert( nDist>0 );






  p = aOut;

  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);

  while( p1 && p2 ){
    sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
    if( iDiff==0 ){
      char *pSave = p;







|



|




>






|


>
>
>
>
>
|

>







135006
135007
135008
135009
135010
135011
135012
135013
135014
135015
135016
135017
135018
135019
135020
135021
135022
135023
135024
135025
135026
135027
135028
135029
135030
135031
135032
135033
135034
135035
135036
135037
135038
135039
135040
135041
135042
135043
135044
135045
135046
**
** If the docids in the input doclists are sorted in ascending order,
** parameter bDescDoclist should be false. If they are sorted in ascending 
** order, it should be passed a non-zero value.
**
** The right-hand input doclist is overwritten by this function.
*/
static int fts3DoclistPhraseMerge(
  int bDescDoclist,               /* True if arguments are desc */
  int nDist,                      /* Distance from left to right (1=adjacent) */
  char *aLeft, int nLeft,         /* Left doclist */
  char **paRight, int *pnRight    /* IN/OUT: Right/output doclist */
){
  sqlite3_int64 i1 = 0;
  sqlite3_int64 i2 = 0;
  sqlite3_int64 iPrev = 0;
  char *aRight = *paRight;
  char *pEnd1 = &aLeft[nLeft];
  char *pEnd2 = &aRight[*pnRight];
  char *p1 = aLeft;
  char *p2 = aRight;
  char *p;
  int bFirstOut = 0;
  char *aOut;

  assert( nDist>0 );
  if( bDescDoclist ){
    aOut = sqlite3_malloc(*pnRight + FTS3_VARINT_MAX);
    if( aOut==0 ) return SQLITE_NOMEM;
  }else{
    aOut = aRight;
  }
  p = aOut;

  fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1);
  fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2);

  while( p1 && p2 ){
    sqlite3_int64 iDiff = DOCID_CMP(i1, i2);
    if( iDiff==0 ){
      char *pSave = p;
133809
133810
133811
133812
133813
133814
133815






133816
133817
133818
133819
133820
133821
133822
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *pnRight = (int)(p - aOut);






}

/*
** Argument pList points to a position list nList bytes in size. This
** function checks to see if the position list contains any entries for
** a token in position 0 (of any column). If so, it writes argument iDelta
** to the output buffer pOut, followed by a position list consisting only







>
>
>
>
>
>







135061
135062
135063
135064
135065
135066
135067
135068
135069
135070
135071
135072
135073
135074
135075
135076
135077
135078
135079
135080
    }else{
      fts3PoslistCopy(0, &p2);
      fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2);
    }
  }

  *pnRight = (int)(p - aOut);
  if( bDescDoclist ){
    sqlite3_free(aRight);
    *paRight = aOut;
  }

  return SQLITE_OK;
}

/*
** Argument pList points to a position list nList bytes in size. This
** function checks to see if the position list contains any entries for
** a token in position 0 (of any column). If so, it writes argument iDelta
** to the output buffer pOut, followed by a position list consisting only
133933
133934
133935
133936
133937
133938
133939
133940














133941
133942
133943
133944
133945
133946
133947
133948
  Fts3Table *p,                   /* FTS table handle */
  TermSelect *pTS,                /* TermSelect object to merge into */
  char *aDoclist,                 /* Pointer to doclist */
  int nDoclist                    /* Size of aDoclist in bytes */
){
  if( pTS->aaOutput[0]==0 ){
    /* If this is the first term selected, copy the doclist to the output
    ** buffer using memcpy(). */














    pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
    }else{
      return SQLITE_NOMEM;
    }
  }else{







|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|







135191
135192
135193
135194
135195
135196
135197
135198
135199
135200
135201
135202
135203
135204
135205
135206
135207
135208
135209
135210
135211
135212
135213
135214
135215
135216
135217
135218
135219
135220
  Fts3Table *p,                   /* FTS table handle */
  TermSelect *pTS,                /* TermSelect object to merge into */
  char *aDoclist,                 /* Pointer to doclist */
  int nDoclist                    /* Size of aDoclist in bytes */
){
  if( pTS->aaOutput[0]==0 ){
    /* If this is the first term selected, copy the doclist to the output
    ** buffer using memcpy(). 
    **
    ** Add FTS3_VARINT_MAX bytes of unused space to the end of the 
    ** allocation. This is so as to ensure that the buffer is big enough
    ** to hold the current doclist AND'd with any other doclist. If the
    ** doclists are stored in order=ASC order, this padding would not be
    ** required (since the size of [doclistA AND doclistB] is always less
    ** than or equal to the size of [doclistA] in that case). But this is
    ** not true for order=DESC. For example, a doclist containing (1, -1) 
    ** may be smaller than (-1), as in the first example the -1 may be stored
    ** as a single-byte delta, whereas in the second it must be stored as a
    ** FTS3_VARINT_MAX byte varint.
    **
    ** Similar padding is added in the fts3DoclistOrMerge() function.
    */
    pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1);
    pTS->anOutput[0] = nDoclist;
    if( pTS->aaOutput[0] ){
      memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
    }else{
      return SQLITE_NOMEM;
    }
  }else{
134434
134435
134436
134437
134438
134439
134440

134441





134442
134443
134444

134445
134446
134447
134448
134449
134450
134451

  /* Compile a SELECT statement for this cursor. For a full-table-scan, the
  ** statement loops through all rows of the %_content table. For a
  ** full-text query or docid lookup, the statement retrieves a single
  ** row by docid.
  */
  if( eSearch==FTS3_FULLSCAN_SEARCH ){

    zSql = sqlite3_mprintf(





        "SELECT %s ORDER BY rowid %s",
        p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
    );

    if( zSql ){
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }else if( eSearch==FTS3_DOCID_SEARCH ){







>
|
>
>
>
>
>
|
|
|
>







135706
135707
135708
135709
135710
135711
135712
135713
135714
135715
135716
135717
135718
135719
135720
135721
135722
135723
135724
135725
135726
135727
135728
135729
135730

  /* Compile a SELECT statement for this cursor. For a full-table-scan, the
  ** statement loops through all rows of the %_content table. For a
  ** full-text query or docid lookup, the statement retrieves a single
  ** row by docid.
  */
  if( eSearch==FTS3_FULLSCAN_SEARCH ){
    if( pDocidGe || pDocidLe ){
      zSql = sqlite3_mprintf(
          "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s",
          p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid,
          (pCsr->bDesc ? "DESC" : "ASC")
      );
    }else{
      zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s", 
          p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC")
      );
    }
    if( zSql ){
      rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
      sqlite3_free(zSql);
    }else{
      rc = SQLITE_NOMEM;
    }
  }else if( eSearch==FTS3_DOCID_SEARCH ){
135183
135184
135185
135186
135187
135188
135189


135190
135191
135192
135193
135194
135195
135196
135197

135198
135199
135200
135201
135202
135203
135204
/*
** Arguments pList/nList contain the doclist for token iToken of phrase p.
** It is merged into the main doclist stored in p->doclist.aAll/nAll.
**
** This function assumes that pList points to a buffer allocated using
** sqlite3_malloc(). This function takes responsibility for eventually
** freeing the buffer.


*/
static void fts3EvalPhraseMergeToken(
  Fts3Table *pTab,                /* FTS Table pointer */
  Fts3Phrase *p,                  /* Phrase to merge pList/nList into */
  int iToken,                     /* Token pList/nList corresponds to */
  char *pList,                    /* Pointer to doclist */
  int nList                       /* Number of bytes in pList */
){

  assert( iToken!=p->iDoclistToken );

  if( pList==0 ){
    sqlite3_free(p->doclist.aAll);
    p->doclist.aAll = 0;
    p->doclist.nAll = 0;
  }







>
>

|






>







136462
136463
136464
136465
136466
136467
136468
136469
136470
136471
136472
136473
136474
136475
136476
136477
136478
136479
136480
136481
136482
136483
136484
136485
136486
/*
** Arguments pList/nList contain the doclist for token iToken of phrase p.
** It is merged into the main doclist stored in p->doclist.aAll/nAll.
**
** This function assumes that pList points to a buffer allocated using
** sqlite3_malloc(). This function takes responsibility for eventually
** freeing the buffer.
**
** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs.
*/
static int fts3EvalPhraseMergeToken(
  Fts3Table *pTab,                /* FTS Table pointer */
  Fts3Phrase *p,                  /* Phrase to merge pList/nList into */
  int iToken,                     /* Token pList/nList corresponds to */
  char *pList,                    /* Pointer to doclist */
  int nList                       /* Number of bytes in pList */
){
  int rc = SQLITE_OK;
  assert( iToken!=p->iDoclistToken );

  if( pList==0 ){
    sqlite3_free(p->doclist.aAll);
    p->doclist.aAll = 0;
    p->doclist.nAll = 0;
  }
135229
135230
135231
135232
135233
135234
135235

135236

135237
135238
135239
135240
135241
135242

135243
135244
135245
135246
135247
135248
135249
      pRight = p->doclist.aAll;
      nRight = p->doclist.nAll;
      pLeft = pList;
      nLeft = nList;
      nDiff = p->iDoclistToken - iToken;
    }


    fts3DoclistPhraseMerge(pTab->bDescIdx, nDiff, pLeft, nLeft, pRight,&nRight);

    sqlite3_free(pLeft);
    p->doclist.aAll = pRight;
    p->doclist.nAll = nRight;
  }

  if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;

}

/*
** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
** does not take deferred tokens into account.
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.







>
|
>






>







136511
136512
136513
136514
136515
136516
136517
136518
136519
136520
136521
136522
136523
136524
136525
136526
136527
136528
136529
136530
136531
136532
136533
136534
      pRight = p->doclist.aAll;
      nRight = p->doclist.nAll;
      pLeft = pList;
      nLeft = nList;
      nDiff = p->iDoclistToken - iToken;
    }

    rc = fts3DoclistPhraseMerge(
        pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight
    );
    sqlite3_free(pLeft);
    p->doclist.aAll = pRight;
    p->doclist.nAll = nRight;
  }

  if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken;
  return rc;
}

/*
** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist
** does not take deferred tokens into account.
**
** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code.
135261
135262
135263
135264
135265
135266
135267
135268
135269
135270
135271
135272
135273
135274
135275
    assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );

    if( pToken->pSegcsr ){
      int nThis = 0;
      char *pThis = 0;
      rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
      if( rc==SQLITE_OK ){
        fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
      }
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}







|







136546
136547
136548
136549
136550
136551
136552
136553
136554
136555
136556
136557
136558
136559
136560
    assert( pToken->pDeferred==0 || pToken->pSegcsr==0 );

    if( pToken->pSegcsr ){
      int nThis = 0;
      char *pThis = 0;
      rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis);
      if( rc==SQLITE_OK ){
        rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis);
      }
    }
    assert( pToken->pSegcsr==0 );
  }

  return rc;
}
136063
136064
136065
136066
136067
136068
136069
136070





136071
136072
136073
136074
136075
136076
136077
136078
136079
        ** part of a multi-token phrase. Either way, the entire doclist will
        ** (eventually) be loaded into memory. It may as well be now. */
        Fts3PhraseToken *pToken = pTC->pToken;
        int nList = 0;
        char *pList = 0;
        rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
        assert( rc==SQLITE_OK || pList==0 );
        if( rc==SQLITE_OK ){





          int nCount;
          fts3EvalPhraseMergeToken(pTab, pTC->pPhrase, pTC->iToken,pList,nList);
          nCount = fts3DoclistCountDocids(
              pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
          );
          if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
        }
      }
    }








>
>
>
>
>

<







137348
137349
137350
137351
137352
137353
137354
137355
137356
137357
137358
137359
137360
137361

137362
137363
137364
137365
137366
137367
137368
        ** part of a multi-token phrase. Either way, the entire doclist will
        ** (eventually) be loaded into memory. It may as well be now. */
        Fts3PhraseToken *pToken = pTC->pToken;
        int nList = 0;
        char *pList = 0;
        rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList);
        assert( rc==SQLITE_OK || pList==0 );
        if( rc==SQLITE_OK ){
          rc = fts3EvalPhraseMergeToken(
              pTab, pTC->pPhrase, pTC->iToken,pList,nList
          );
        }
        if( rc==SQLITE_OK ){
          int nCount;

          nCount = fts3DoclistCountDocids(
              pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll
          );
          if( ii==0 || nCount<nMinEst ) nMinEst = nCount;
        }
      }
    }
136290
136291
136292
136293
136294
136295
136296
















136297
136298
136299
136300
136301
136302
136303
              fts3EvalNextRow(pCsr, pLeft, pRc);
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
















        }
        break;
      }
  
      case FTSQUERY_OR: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







137579
137580
137581
137582
137583
137584
137585
137586
137587
137588
137589
137590
137591
137592
137593
137594
137595
137596
137597
137598
137599
137600
137601
137602
137603
137604
137605
137606
137607
137608
              fts3EvalNextRow(pCsr, pLeft, pRc);
            }else{
              fts3EvalNextRow(pCsr, pRight, pRc);
            }
          }
          pExpr->iDocid = pLeft->iDocid;
          pExpr->bEof = (pLeft->bEof || pRight->bEof);
          if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){
            if( pRight->pPhrase && pRight->pPhrase->doclist.aAll ){
              Fts3Doclist *pDl = &pRight->pPhrase->doclist;
              while( *pRc==SQLITE_OK && pRight->bEof==0 ){
                memset(pDl->pList, 0, pDl->nList);
                fts3EvalNextRow(pCsr, pRight, pRc);
              }
            }
            if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){
              Fts3Doclist *pDl = &pLeft->pPhrase->doclist;
              while( *pRc==SQLITE_OK && pLeft->bEof==0 ){
                memset(pDl->pList, 0, pDl->nList);
                fts3EvalNextRow(pCsr, pLeft, pRc);
              }
            }
          }
        }
        break;
      }
  
      case FTSQUERY_OR: {
        Fts3Expr *pLeft = pExpr->pLeft;
        Fts3Expr *pRight = pExpr->pRight;
136662
136663
136664
136665
136666
136667
136668

136669
136670
136671
136672
136673
136674
136675
            sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
          }
        }
        *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
      }
      pPhrase->doclist.pNextDocid = 0;
      pPhrase->doclist.iDocid = 0;

    }

    pExpr->iDocid = 0;
    pExpr->bEof = 0;
    pExpr->bStart = 0;

    fts3EvalRestart(pCsr, pExpr->pLeft, pRc);







>







137967
137968
137969
137970
137971
137972
137973
137974
137975
137976
137977
137978
137979
137980
137981
            sqlite3Fts3MsrIncrRestart(pToken->pSegcsr);
          }
        }
        *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase);
      }
      pPhrase->doclist.pNextDocid = 0;
      pPhrase->doclist.iDocid = 0;
      pPhrase->pOrPoslist = 0;
    }

    pExpr->iDocid = 0;
    pExpr->bEof = 0;
    pExpr->bStart = 0;

    fts3EvalRestart(pCsr, pExpr->pLeft, pRc);
136907
136908
136909
136910
136911
136912
136913

136914
136915
136916
136917
136918
136919
136920
136921
136922
  if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
    return SQLITE_OK;
  }

  iDocid = pExpr->iDocid;
  pIter = pPhrase->doclist.pList;
  if( iDocid!=pCsr->iPrevId || pExpr->bEof ){

    int bDescDoclist = pTab->bDescIdx;      /* For DOCID_CMP macro */
    int iMul;                     /* +1 if csr dir matches index dir, else -1 */
    int bOr = 0;
    u8 bEof = 0;
    u8 bTreeEof = 0;
    Fts3Expr *p;                  /* Used to iterate from pExpr to root */
    Fts3Expr *pNear;              /* Most senior NEAR ancestor (or pExpr) */

    /* Check if this phrase descends from an OR expression node. If not, 







>

<







138213
138214
138215
138216
138217
138218
138219
138220
138221

138222
138223
138224
138225
138226
138227
138228
  if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){
    return SQLITE_OK;
  }

  iDocid = pExpr->iDocid;
  pIter = pPhrase->doclist.pList;
  if( iDocid!=pCsr->iPrevId || pExpr->bEof ){
    int rc = SQLITE_OK;
    int bDescDoclist = pTab->bDescIdx;      /* For DOCID_CMP macro */

    int bOr = 0;
    u8 bEof = 0;
    u8 bTreeEof = 0;
    Fts3Expr *p;                  /* Used to iterate from pExpr to root */
    Fts3Expr *pNear;              /* Most senior NEAR ancestor (or pExpr) */

    /* Check if this phrase descends from an OR expression node. If not, 
136932
136933
136934
136935
136936
136937
136938
136939
136940
136941
136942
136943
136944
136945
136946
136947
136948
136949
136950
136951
136952
136953
136954
136955
136956
136957


136958
136959
136960
136961
136962

136963

136964
136965


136966


136967
136968
136969
136970
136971
136972
136973
136974
136975
136976
136977
136978
136979
136980
136981
136982
136983
136984
136985
136986
136987
136988
136989
136990
136991
136992
136993
136994
136995
136996
136997
136998
136999
137000
137001
137002
137003
137004
137005
137006
137007
137008
137009
137010
137011
137012
137013
137014
137015
137016
137017
137018
137019
137020



137021
137022
137023
137024
137025
137026
137027
    }
    if( bOr==0 ) return SQLITE_OK;

    /* This is the descendent of an OR node. In this case we cannot use
    ** an incremental phrase. Load the entire doclist for the phrase
    ** into memory in this case.  */
    if( pPhrase->bIncr ){
      int rc = SQLITE_OK;
      int bEofSave = pExpr->bEof;
      fts3EvalRestart(pCsr, pExpr, &rc);
      while( rc==SQLITE_OK && !pExpr->bEof ){
        fts3EvalNextRow(pCsr, pExpr, &rc);
        if( bEofSave==0 && pExpr->iDocid==iDocid ) break;
      }
      pIter = pPhrase->doclist.pList;
      assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );
      if( rc!=SQLITE_OK ) return rc;
    }
    
    iMul = ((pCsr->bDesc==bDescDoclist) ? 1 : -1);
    while( bTreeEof==1 
        && pNear->bEof==0
        && (DOCID_CMP(pNear->iDocid, pCsr->iPrevId) * iMul)<0
    ){
      int rc = SQLITE_OK;
      fts3EvalNextRow(pCsr, pExpr, &rc);


      if( rc!=SQLITE_OK ) return rc;
      iDocid = pExpr->iDocid;
      pIter = pPhrase->doclist.pList;
    }


    bEof = (pPhrase->doclist.nAll==0);

    assert( bDescDoclist==0 || bDescDoclist==1 );
    assert( pCsr->bDesc==0 || pCsr->bDesc==1 );





    if( bEof==0 ){
      if( pCsr->bDesc==bDescDoclist ){
        int dummy;
        if( pNear->bEof ){
          /* This expression is already at EOF. So position it to point to the
          ** last entry in the doclist at pPhrase->doclist.aAll[]. Variable
          ** iDocid is already set for this entry, so all that is required is
          ** to set pIter to point to the first byte of the last position-list
          ** in the doclist. 
          **
          ** It would also be correct to set pIter and iDocid to zero. In
          ** this case, the first call to sqltie3Fts4DoclistPrev() below
          ** would also move the iterator to point to the last entry in the 
          ** doclist. However, this is expensive, as to do so it has to 
          ** iterate through the entire doclist from start to finish (since
          ** it does not know the docid for the last entry).  */
          pIter = &pPhrase->doclist.aAll[pPhrase->doclist.nAll-1];
          fts3ReversePoslist(pPhrase->doclist.aAll, &pIter);
        }
        while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){
          sqlite3Fts3DoclistPrev(
              bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, 
              &pIter, &iDocid, &dummy, &bEof
          );
        }
      }else{
        if( pNear->bEof ){
          pIter = 0;
          iDocid = 0;
        }
        while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
          sqlite3Fts3DoclistNext(
              bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, 
              &pIter, &iDocid, &bEof
          );
        }
      }
    }

    if( bEof || iDocid!=pCsr->iPrevId ) pIter = 0;
  }
  if( pIter==0 ) return SQLITE_OK;

  if( *pIter==0x01 ){
    pIter++;
    pIter += fts3GetVarint32(pIter, &iThis);
  }else{
    iThis = 0;
  }
  while( iThis<iCol ){
    fts3ColumnlistCopy(0, &pIter);
    if( *pIter==0x00 ) return 0;
    pIter++;
    pIter += fts3GetVarint32(pIter, &iThis);



  }

  *ppOut = ((iCol==iThis)?pIter:0);
  return SQLITE_OK;
}

/*







<
|
|
|
|
|

<

<

<
<
|
|
<
<
<
|
>
>
|
|
|
<
|
>
|
>
|
|
>
>
|
>
>
|
<

<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
|
|
|
|
|
<
<
<
<
|
<
<
|
|
<
<
<
<













|


>
>
>







138238
138239
138240
138241
138242
138243
138244

138245
138246
138247
138248
138249
138250

138251

138252


138253
138254



138255
138256
138257
138258
138259
138260

138261
138262
138263
138264
138265
138266
138267
138268
138269
138270
138271
138272

138273

















138274
138275
138276
138277
138278




138279


138280
138281




138282
138283
138284
138285
138286
138287
138288
138289
138290
138291
138292
138293
138294
138295
138296
138297
138298
138299
138300
138301
138302
138303
138304
138305
138306
138307
    }
    if( bOr==0 ) return SQLITE_OK;

    /* This is the descendent of an OR node. In this case we cannot use
    ** an incremental phrase. Load the entire doclist for the phrase
    ** into memory in this case.  */
    if( pPhrase->bIncr ){

      int bEofSave = pNear->bEof;
      fts3EvalRestart(pCsr, pNear, &rc);
      while( rc==SQLITE_OK && !pNear->bEof ){
        fts3EvalNextRow(pCsr, pNear, &rc);
        if( bEofSave==0 && pNear->iDocid==iDocid ) break;
      }

      assert( rc!=SQLITE_OK || pPhrase->bIncr==0 );

    }


    if( bTreeEof ){
      while( rc==SQLITE_OK && !pNear->bEof ){



        fts3EvalNextRow(pCsr, pNear, &rc);
      }
    }
    if( rc!=SQLITE_OK ) return rc;

    pIter = pPhrase->pOrPoslist;

    iDocid = pPhrase->iOrDocid;
    if( pCsr->bDesc==bDescDoclist ){
      bEof = (pIter >= (pPhrase->doclist.aAll + pPhrase->doclist.nAll));
      while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){
        sqlite3Fts3DoclistNext(
            bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, 
            &pIter, &iDocid, &bEof
        );
      }
    }else{
      bEof = !pPhrase->doclist.nAll || (pIter && pIter<=pPhrase->doclist.aAll);
      while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){

        int dummy;

















        sqlite3Fts3DoclistPrev(
            bDescDoclist, pPhrase->doclist.aAll, pPhrase->doclist.nAll, 
            &pIter, &iDocid, &dummy, &bEof
        );
      }




    }


    pPhrase->pOrPoslist = pIter;
    pPhrase->iOrDocid = iDocid;





    if( bEof || iDocid!=pCsr->iPrevId ) pIter = 0;
  }
  if( pIter==0 ) return SQLITE_OK;

  if( *pIter==0x01 ){
    pIter++;
    pIter += fts3GetVarint32(pIter, &iThis);
  }else{
    iThis = 0;
  }
  while( iThis<iCol ){
    fts3ColumnlistCopy(0, &pIter);
    if( *pIter==0x00 ) return SQLITE_OK;
    pIter++;
    pIter += fts3GetVarint32(pIter, &iThis);
  }
  if( *pIter==0x00 ){
    pIter = 0;
  }

  *ppOut = ((iCol==iThis)?pIter:0);
  return SQLITE_OK;
}

/*
137057
137058
137059
137060
137061
137062
137063
137064
137065
137066
137067
137068
137069
137070
137071
#if !SQLITE_CORE
/*
** Initialize API pointer table, if required.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int sqlite3_fts3_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}







|







138337
138338
138339
138340
138341
138342
138343
138344
138345
138346
138347
138348
138349
138350
138351
#if !SQLITE_CORE
/*
** Initialize API pointer table, if required.
*/
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int SQLITE_STDCALL sqlite3_fts3_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3Fts3Init(db);
}
140025
140026
140027
140028
140029
140030
140031
140032
140033
140034
140035
140036
140037
140038
140039
140040
140041
140042

140043

140044
140045
140046
140047
140048
140049
140050

  zName = sqlite3_value_text(argv[0]);
  nName = sqlite3_value_bytes(argv[0])+1;

  if( argc==2 ){
    void *pOld;
    int n = sqlite3_value_bytes(argv[1]);
    if( n!=sizeof(pPtr) ){
      sqlite3_result_error(context, "argument type mismatch", -1);
      return;
    }
    pPtr = *(void **)sqlite3_value_blob(argv[1]);
    pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
    if( pOld==pPtr ){
      sqlite3_result_error(context, "out of memory", -1);
      return;
    }
  }else{

    pPtr = sqlite3Fts3HashFind(pHash, zName, nName);

    if( !pPtr ){
      char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
      sqlite3_result_error(context, zErr, -1);
      sqlite3_free(zErr);
      return;
    }
  }







|










>
|
>







141305
141306
141307
141308
141309
141310
141311
141312
141313
141314
141315
141316
141317
141318
141319
141320
141321
141322
141323
141324
141325
141326
141327
141328
141329
141330
141331
141332

  zName = sqlite3_value_text(argv[0]);
  nName = sqlite3_value_bytes(argv[0])+1;

  if( argc==2 ){
    void *pOld;
    int n = sqlite3_value_bytes(argv[1]);
    if( zName==0 || n!=sizeof(pPtr) ){
      sqlite3_result_error(context, "argument type mismatch", -1);
      return;
    }
    pPtr = *(void **)sqlite3_value_blob(argv[1]);
    pOld = sqlite3Fts3HashInsert(pHash, (void *)zName, nName, pPtr);
    if( pOld==pPtr ){
      sqlite3_result_error(context, "out of memory", -1);
      return;
    }
  }else{
    if( zName ){
      pPtr = sqlite3Fts3HashFind(pHash, zName, nName);
    }
    if( !pPtr ){
      char *zErr = sqlite3_mprintf("unknown tokenizer: %s", zName);
      sqlite3_result_error(context, zErr, -1);
      sqlite3_free(zErr);
      return;
    }
  }
140117
140118
140119
140120
140121
140122
140123




140124
140125
140126
140127
140128
140129
140130
  sqlite3_tokenizer_module *m;

  zCopy = sqlite3_mprintf("%s", zArg);
  if( !zCopy ) return SQLITE_NOMEM;
  zEnd = &zCopy[strlen(zCopy)];

  z = (char *)sqlite3Fts3NextToken(zCopy, &n);




  z[n] = '\0';
  sqlite3Fts3Dequote(z);

  m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
  if( !m ){
    *pzErr = sqlite3_mprintf("unknown tokenizer: %s", z);
    rc = SQLITE_ERROR;







>
>
>
>







141399
141400
141401
141402
141403
141404
141405
141406
141407
141408
141409
141410
141411
141412
141413
141414
141415
141416
  sqlite3_tokenizer_module *m;

  zCopy = sqlite3_mprintf("%s", zArg);
  if( !zCopy ) return SQLITE_NOMEM;
  zEnd = &zCopy[strlen(zCopy)];

  z = (char *)sqlite3Fts3NextToken(zCopy, &n);
  if( z==0 ){
    assert( n==0 );
    z = zCopy;
  }
  z[n] = '\0';
  sqlite3Fts3Dequote(z);

  m = (sqlite3_tokenizer_module *)sqlite3Fts3HashFind(pHash,z,(int)strlen(z)+1);
  if( !m ){
    *pzErr = sqlite3_mprintf("unknown tokenizer: %s", z);
    rc = SQLITE_ERROR;
142762
142763
142764
142765
142766
142767
142768
142769



142770
142771
142772
142773
142774
142775
142776
}

/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int fts3CompareElemByTerm(const void *lhs, const void *rhs){



  char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
  char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
  int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
  int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);

  int n = (n1<n2 ? n1 : n2);
  int c = memcmp(z1, z2, n);







|
>
>
>







144048
144049
144050
144051
144052
144053
144054
144055
144056
144057
144058
144059
144060
144061
144062
144063
144064
144065
}

/*
** This is a comparison function used as a qsort() callback when sorting
** an array of pending terms by term. This occurs as part of flushing
** the contents of the pending-terms hash table to the database.
*/
static int SQLITE_CDECL fts3CompareElemByTerm(
  const void *lhs,
  const void *rhs
){
  char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
  char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
  int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
  int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);

  int n = (n1<n2 ? n1 : n2);
  int c = memcmp(z1, z2, n);
147241
147242
147243
147244
147245
147246
147247
147248

147249
147250
147251
147252
147253
147254
147255
147256
147257
147258
147259
147260
147261
147262
147263
147264
147265
147266
147267
147268
147269
147270
147271
147272
147273
147274
147275
147276
147277


147278
147279
147280
147281
147282
147283
147284
147285
  ** the set of phrases in the expression to populate the aPhrase[] array.
  */
  sIter.pCsr = pCsr;
  sIter.iCol = iCol;
  sIter.nSnippet = nSnippet;
  sIter.nPhrase = nList;
  sIter.iCurrent = -1;
  (void)fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sIter);


  /* Set the *pmSeen output variable. */
  for(i=0; i<nList; i++){
    if( sIter.aPhrase[i].pHead ){
      *pmSeen |= (u64)1 << i;
    }
  }

  /* Loop through all candidate snippets. Store the best snippet in 
  ** *pFragment. Store its associated 'score' in iBestScore.
  */
  pFragment->iCol = iCol;
  while( !fts3SnippetNextCandidate(&sIter) ){
    int iPos;
    int iScore;
    u64 mCover;
    u64 mHighlight;
    fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover, &mHighlight);
    assert( iScore>=0 );
    if( iScore>iBestScore ){
      pFragment->iPos = iPos;
      pFragment->hlmask = mHighlight;
      pFragment->covered = mCover;
      iBestScore = iScore;
    }
  }

  sqlite3_free(sIter.aPhrase);
  *piScore = iBestScore;


  return SQLITE_OK;
}


/*
** Append a string to the string-buffer passed as the first argument.
**
** If nAppend is negative, then the length of the string zAppend is







|
>

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<
|
>
>
|







148530
148531
148532
148533
148534
148535
148536
148537
148538
148539
148540
148541
148542
148543
148544
148545
148546
148547
148548
148549
148550
148551
148552
148553
148554
148555
148556
148557
148558
148559
148560
148561
148562
148563
148564
148565

148566
148567
148568
148569
148570
148571
148572
148573
148574
148575
148576
  ** the set of phrases in the expression to populate the aPhrase[] array.
  */
  sIter.pCsr = pCsr;
  sIter.iCol = iCol;
  sIter.nSnippet = nSnippet;
  sIter.nPhrase = nList;
  sIter.iCurrent = -1;
  rc = fts3ExprIterate(pCsr->pExpr, fts3SnippetFindPositions, (void *)&sIter);
  if( rc==SQLITE_OK ){

    /* Set the *pmSeen output variable. */
    for(i=0; i<nList; i++){
      if( sIter.aPhrase[i].pHead ){
        *pmSeen |= (u64)1 << i;
      }
    }

    /* Loop through all candidate snippets. Store the best snippet in 
     ** *pFragment. Store its associated 'score' in iBestScore.
     */
    pFragment->iCol = iCol;
    while( !fts3SnippetNextCandidate(&sIter) ){
      int iPos;
      int iScore;
      u64 mCover;
      u64 mHighlite;
      fts3SnippetDetails(&sIter, mCovered, &iPos, &iScore, &mCover,&mHighlite);
      assert( iScore>=0 );
      if( iScore>iBestScore ){
        pFragment->iPos = iPos;
        pFragment->hlmask = mHighlite;
        pFragment->covered = mCover;
        iBestScore = iScore;
      }
    }


    *piScore = iBestScore;
  }
  sqlite3_free(sIter.aPhrase);
  return rc;
}


/*
** Append a string to the string-buffer passed as the first argument.
**
** If nAppend is negative, then the length of the string zAppend is
147479
147480
147481
147482
147483
147484
147485
147486

147487



147488
147489
147490
147491
147492
147493
147494
      );
      isShiftDone = 1;

      /* Now that the shift has been done, check if the initial "..." are
      ** required. They are required if (a) this is not the first fragment,
      ** or (b) this fragment does not begin at position 0 of its column. 
      */
      if( rc==SQLITE_OK && (iPos>0 || iFragment>0) ){

        rc = fts3StringAppend(pOut, zEllipsis, -1);



      }
      if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
    }

    if( iCurrent>=(iPos+nSnippet) ){
      if( isLast ){
        rc = fts3StringAppend(pOut, zEllipsis, -1);







|
>
|
>
>
>







148770
148771
148772
148773
148774
148775
148776
148777
148778
148779
148780
148781
148782
148783
148784
148785
148786
148787
148788
148789
      );
      isShiftDone = 1;

      /* Now that the shift has been done, check if the initial "..." are
      ** required. They are required if (a) this is not the first fragment,
      ** or (b) this fragment does not begin at position 0 of its column. 
      */
      if( rc==SQLITE_OK ){
        if( iPos>0 || iFragment>0 ){
          rc = fts3StringAppend(pOut, zEllipsis, -1);
        }else if( iBegin ){
          rc = fts3StringAppend(pOut, zDoc, iBegin);
        }
      }
      if( rc!=SQLITE_OK || iCurrent<iPos ) continue;
    }

    if( iCurrent>=(iPos+nSnippet) ){
      if( isLast ){
        rc = fts3StringAppend(pOut, zEllipsis, -1);
148046
148047
148048
148049
148050
148051
148052
148053
148054
148055
148056
148057
148058
148059
148060

      /* Loop through all columns of the table being considered for snippets.
      ** If the iCol argument to this function was negative, this means all
      ** columns of the FTS3 table. Otherwise, only column iCol is considered.
      */
      for(iRead=0; iRead<pTab->nColumn; iRead++){
        SnippetFragment sF = {0, 0, 0, 0};
        int iS;
        if( iCol>=0 && iRead!=iCol ) continue;

        /* Find the best snippet of nFToken tokens in column iRead. */
        rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
        if( rc!=SQLITE_OK ){
          goto snippet_out;
        }







|







149341
149342
149343
149344
149345
149346
149347
149348
149349
149350
149351
149352
149353
149354
149355

      /* Loop through all columns of the table being considered for snippets.
      ** If the iCol argument to this function was negative, this means all
      ** columns of the FTS3 table. Otherwise, only column iCol is considered.
      */
      for(iRead=0; iRead<pTab->nColumn; iRead++){
        SnippetFragment sF = {0, 0, 0, 0};
        int iS = 0;
        if( iCol>=0 && iRead!=iCol ) continue;

        /* Find the best snippet of nFToken tokens in column iRead. */
        rc = fts3BestSnippet(nFToken, pCsr, iRead, mCovered, &mSeen, &sF, &iS);
        if( rc!=SQLITE_OK ){
          goto snippet_out;
        }
152489
152490
152491
152492
152493
152494
152495
152496
152497
152498
152499
152500
152501
152502
152503
    sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,                  /* Register SQL function on this connection */
  const char *zGeom,            /* Name of the new SQL function */
  int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
  void *pContext                /* Extra data associated with the callback */
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */








|







153784
153785
153786
153787
153788
153789
153790
153791
153792
153793
153794
153795
153796
153797
153798
    sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free);
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_geometry_callback(
  sqlite3 *db,                  /* Register SQL function on this connection */
  const char *zGeom,            /* Name of the new SQL function */
  int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*), /* Callback */
  void *pContext                /* Extra data associated with the callback */
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */

152513
152514
152515
152516
152517
152518
152519
152520
152521
152522
152523
152524
152525
152526
152527
  );
}

/*
** Register a new 2nd-generation geometry function for use with the
** r-tree MATCH operator.
*/
SQLITE_API int sqlite3_rtree_query_callback(
  sqlite3 *db,                 /* Register SQL function on this connection */
  const char *zQueryFunc,      /* Name of new SQL function */
  int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
  void *pContext,              /* Extra data passed into the callback */
  void (*xDestructor)(void*)   /* Destructor for the extra data */
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */







|







153808
153809
153810
153811
153812
153813
153814
153815
153816
153817
153818
153819
153820
153821
153822
  );
}

/*
** Register a new 2nd-generation geometry function for use with the
** r-tree MATCH operator.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_query_callback(
  sqlite3 *db,                 /* Register SQL function on this connection */
  const char *zQueryFunc,      /* Name of new SQL function */
  int (*xQueryFunc)(sqlite3_rtree_query_info*), /* Callback */
  void *pContext,              /* Extra data passed into the callback */
  void (*xDestructor)(void*)   /* Destructor for the extra data */
){
  RtreeGeomCallback *pGeomCtx;      /* Context object for new user-function */
152538
152539
152540
152541
152542
152543
152544
152545
152546
152547
152548
152549
152550
152551
152552
  );
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int sqlite3_rtree_init(
  sqlite3 *db,
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3RtreeInit(db);
}







|







153833
153834
153835
153836
153837
153838
153839
153840
153841
153842
153843
153844
153845
153846
153847
  );
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_init(
  sqlite3 *db,
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3RtreeInit(db);
}
153043
153044
153045
153046
153047
153048
153049
153050
153051
153052
153053
153054
153055
153056
153057
  return rc;
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int sqlite3_icu_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3IcuInit(db);
}







|







154338
154339
154340
154341
154342
154343
154344
154345
154346
154347
154348
154349
154350
154351
154352
  return rc;
}

#if !SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int SQLITE_STDCALL sqlite3_icu_init(
  sqlite3 *db, 
  char **pzErrMsg,
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi)
  return sqlite3IcuInit(db);
}
Changes to src/sqlite3.h.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55





56
57
58
59
60
61
62
*/
#ifdef __cplusplus
extern "C" {
#endif


/*
** Add the ability to override 'extern'
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

#ifndef SQLITE_API
# define SQLITE_API
#endif







/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are supported for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.







|




<



|
>
>
>
>
>







39
40
41
42
43
44
45
46
47
48
49
50

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
*/
#ifdef __cplusplus
extern "C" {
#endif


/*
** Provide the ability to override linkage features of the interface.
*/
#ifndef SQLITE_EXTERN
# define SQLITE_EXTERN extern
#endif

#ifndef SQLITE_API
# define SQLITE_API
#endif
#ifndef SQLITE_CDECL
# define SQLITE_CDECL
#endif
#ifndef SQLITE_STDCALL
# define SQLITE_STDCALL
#endif

/*
** These no-op macros are used in front of interfaces to mark those
** interfaces as either deprecated or experimental.  New applications
** should not use deprecated interfaces - they are supported for backwards
** compatibility only.  Application writers should be aware that
** experimental interfaces are subject to change in point releases.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.8"
#define SQLITE_VERSION_NUMBER 3008008
#define SQLITE_SOURCE_ID      "2015-01-15 17:38:35 8f45217cbafef2297cdcec3fd69f4371dfb83922"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.8.9"
#define SQLITE_VERSION_NUMBER 3008009
#define SQLITE_SOURCE_ID      "2015-04-06 11:04:51 3ad829e50faca538db3abb2afb898b5521550c5c"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
** [SQLITE_VERSION_NUMBER].  ^The sqlite3_sourceid() function returns 
** a pointer to a string constant whose value is the same as the 
** [SQLITE_SOURCE_ID] C preprocessor macro.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
*/
SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
SQLITE_API const char *sqlite3_libversion(void);
SQLITE_API const char *sqlite3_sourceid(void);
SQLITE_API int sqlite3_libversion_number(void);

/*
** CAPI3REF: Run-Time Library Compilation Options Diagnostics
**
** ^The sqlite3_compileoption_used() function returns 0 or 1 
** indicating whether the specified option was defined at 
** compile time.  ^The SQLITE_ prefix may be omitted from the 







|
|
|







142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
** [SQLITE_VERSION_NUMBER].  ^The sqlite3_sourceid() function returns 
** a pointer to a string constant whose value is the same as the 
** [SQLITE_SOURCE_ID] C preprocessor macro.
**
** See also: [sqlite_version()] and [sqlite_source_id()].
*/
SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
SQLITE_API const char *SQLITE_STDCALL sqlite3_libversion(void);
SQLITE_API const char *SQLITE_STDCALL sqlite3_sourceid(void);
SQLITE_API int SQLITE_STDCALL sqlite3_libversion_number(void);

/*
** CAPI3REF: Run-Time Library Compilation Options Diagnostics
**
** ^The sqlite3_compileoption_used() function returns 0 or 1 
** indicating whether the specified option was defined at 
** compile time.  ^The SQLITE_ prefix may be omitted from the 
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
** and sqlite3_compileoption_get() may be omitted by specifying the 
** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
**
** See also: SQL functions [sqlite_compileoption_used()] and
** [sqlite_compileoption_get()] and the [compile_options pragma].
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
SQLITE_API int sqlite3_compileoption_used(const char *zOptName);
SQLITE_API const char *sqlite3_compileoption_get(int N);
#endif

/*
** CAPI3REF: Test To See If The Library Is Threadsafe
**
** ^The sqlite3_threadsafe() function returns zero if and only if
** SQLite was compiled with mutexing code omitted due to the







|
|







169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
** and sqlite3_compileoption_get() may be omitted by specifying the 
** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
**
** See also: SQL functions [sqlite_compileoption_used()] and
** [sqlite_compileoption_get()] and the [compile_options pragma].
*/
#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
SQLITE_API int SQLITE_STDCALL sqlite3_compileoption_used(const char *zOptName);
SQLITE_API const char *SQLITE_STDCALL sqlite3_compileoption_get(int N);
#endif

/*
** CAPI3REF: Test To See If The Library Is Threadsafe
**
** ^The sqlite3_threadsafe() function returns zero if and only if
** SQLite was compiled with mutexing code omitted due to the
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
SQLITE_API int sqlite3_threadsafe(void);

/*
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3







|







209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
** sqlite3_threadsafe() function shows only the compile-time setting of
** thread safety, not any run-time changes to that setting made by
** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
** is unchanged by calls to sqlite3_config().)^
**
** See the [threading mode] documentation for additional information.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_threadsafe(void);

/*
** CAPI3REF: Database Connection Handle
** KEYWORDS: {database connection} {database connections}
**
** Each open SQLite database is represented by a pointer to an instance of
** the opaque structure named "sqlite3".  It is useful to think of an sqlite3
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
** must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
** argument is a harmless no-op.
*/
SQLITE_API int sqlite3_close(sqlite3*);
SQLITE_API int sqlite3_close_v2(sqlite3*);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);







|
|







305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
** must be either a NULL
** pointer or an [sqlite3] object pointer obtained
** from [sqlite3_open()], [sqlite3_open16()], or
** [sqlite3_open_v2()], and not previously closed.
** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
** argument is a harmless no-op.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_close(sqlite3*);
SQLITE_API int SQLITE_STDCALL sqlite3_close_v2(sqlite3*);

/*
** The type for a callback function.
** This is legacy and deprecated.  It is included for historical
** compatibility and is not documented.
*/
typedef int (*sqlite3_callback)(void*,int,char**, char**);
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/
SQLITE_API int sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);








|







376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
**      is a valid and open [database connection].
** <li> The application must not close the [database connection] specified by
**      the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
** <li> The application must not modify the SQL statement text passed into
**      the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
** </ul>
*/
SQLITE_API int SQLITE_STDCALL sqlite3_exec(
  sqlite3*,                                  /* An open database */
  const char *sql,                           /* SQL to be evaluated */
  int (*callback)(void*,int,char**,char**),  /* Callback function */
  void *,                                    /* 1st argument to callback */
  char **errmsg                              /* Error msg written here */
);

752
753
754
755
756
757
758


759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
** CAPI3REF: Standard File Control Opcodes
** KEYWORDS: {file control opcodes} {file control opcode}
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**


** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
** opcode causes the xFileControl method to write the current state of
** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
** into an integer that the pArg argument points to. This capability
** is used during testing and only needs to be supported when SQLITE_TEST
** is defined.
** <ul>
** <li>[[SQLITE_FCNTL_SIZE_HINT]]
** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
** layer a hint of how large the database file will grow to be during the
** current transaction.  This hint is not guaranteed to be accurate but it
** is often close.  The underlying VFS might choose to preallocate database
** file space based on this hint in order to help writes to the database
** file run faster.







>
>





|
|
|







756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
** CAPI3REF: Standard File Control Opcodes
** KEYWORDS: {file control opcodes} {file control opcode}
**
** These integer constants are opcodes for the xFileControl method
** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
** interface.
**
** <ul>
** <li>[[SQLITE_FCNTL_LOCKSTATE]]
** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging.  This
** opcode causes the xFileControl method to write the current state of
** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
** into an integer that the pArg argument points to. This capability
** is used during testing and is only available when the SQLITE_TEST
** compile-time option is used.
**
** <li>[[SQLITE_FCNTL_SIZE_HINT]]
** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
** layer a hint of how large the database file will grow to be during the
** current transaction.  This hint is not guaranteed to be accurate but it
** is often close.  The underlying VFS might choose to preallocate database
** file space based on this hint in order to help writes to the database
** file run faster.
884
885
886
887
888
889
890


891
892
893
894
895
896
897
898
** of the char** argument point to a string obtained from [sqlite3_mprintf()]
** or the equivalent and that string will become the result of the pragma or
** the error message if the pragma fails. ^If the
** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal 
** [PRAGMA] processing continues.  ^If the [SQLITE_FCNTL_PRAGMA]
** file control returns [SQLITE_OK], then the parser assumes that the
** VFS has handled the PRAGMA itself and the parser generates a no-op


** prepared statement.  ^If the [SQLITE_FCNTL_PRAGMA] file control returns
** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
** that the VFS encountered an error while handling the [PRAGMA] and the
** compilation of the PRAGMA fails with an error.  ^The [SQLITE_FCNTL_PRAGMA]
** file control occurs at the beginning of pragma statement analysis and so
** it is able to override built-in [PRAGMA] statements.
**
** <li>[[SQLITE_FCNTL_BUSYHANDLER]]







>
>
|







890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
** of the char** argument point to a string obtained from [sqlite3_mprintf()]
** or the equivalent and that string will become the result of the pragma or
** the error message if the pragma fails. ^If the
** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal 
** [PRAGMA] processing continues.  ^If the [SQLITE_FCNTL_PRAGMA]
** file control returns [SQLITE_OK], then the parser assumes that the
** VFS has handled the PRAGMA itself and the parser generates a no-op
** prepared statement if result string is NULL, or that returns a copy
** of the result string if the string is non-NULL.
** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
** that the VFS encountered an error while handling the [PRAGMA] and the
** compilation of the PRAGMA fails with an error.  ^The [SQLITE_FCNTL_PRAGMA]
** file control occurs at the beginning of pragma statement analysis and so
** it is able to override built-in [PRAGMA] statements.
**
** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
942
943
944
945
946
947
948







949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972







973
974
975
976
977
978
979
**
** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging.  This
** opcode causes the xFileControl method to swap the file handle with the one
** pointed to by the pArg argument.  This capability is used during testing
** and only needs to be supported when SQLITE_TEST is defined.
**







** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_GET_LOCKPROXYFILE             2
#define SQLITE_SET_LOCKPROXYFILE             3
#define SQLITE_LAST_ERRNO                    4
#define SQLITE_FCNTL_SIZE_HINT               5
#define SQLITE_FCNTL_CHUNK_SIZE              6
#define SQLITE_FCNTL_FILE_POINTER            7
#define SQLITE_FCNTL_SYNC_OMITTED            8
#define SQLITE_FCNTL_WIN32_AV_RETRY          9
#define SQLITE_FCNTL_PERSIST_WAL            10
#define SQLITE_FCNTL_OVERWRITE              11
#define SQLITE_FCNTL_VFSNAME                12
#define SQLITE_FCNTL_POWERSAFE_OVERWRITE    13
#define SQLITE_FCNTL_PRAGMA                 14
#define SQLITE_FCNTL_BUSYHANDLER            15
#define SQLITE_FCNTL_TEMPFILENAME           16
#define SQLITE_FCNTL_MMAP_SIZE              18
#define SQLITE_FCNTL_TRACE                  19
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23








/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only







>
>
>
>
>
>
>



|
|
|


















>
>
>
>
>
>
>







950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
**
** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging.  This
** opcode causes the xFileControl method to swap the file handle with the one
** pointed to by the pArg argument.  This capability is used during testing
** and only needs to be supported when SQLITE_TEST is defined.
**
** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
** be advantageous to block on the next WAL lock if the lock is not immediately
** available.  The WAL subsystem issues this signal during rare
** circumstances in order to fix a problem with priority inversion.
** Applications should <em>not</em> use this file-control.
**
** </ul>
*/
#define SQLITE_FCNTL_LOCKSTATE               1
#define SQLITE_FCNTL_GET_LOCKPROXYFILE       2
#define SQLITE_FCNTL_SET_LOCKPROXYFILE       3
#define SQLITE_FCNTL_LAST_ERRNO              4
#define SQLITE_FCNTL_SIZE_HINT               5
#define SQLITE_FCNTL_CHUNK_SIZE              6
#define SQLITE_FCNTL_FILE_POINTER            7
#define SQLITE_FCNTL_SYNC_OMITTED            8
#define SQLITE_FCNTL_WIN32_AV_RETRY          9
#define SQLITE_FCNTL_PERSIST_WAL            10
#define SQLITE_FCNTL_OVERWRITE              11
#define SQLITE_FCNTL_VFSNAME                12
#define SQLITE_FCNTL_POWERSAFE_OVERWRITE    13
#define SQLITE_FCNTL_PRAGMA                 14
#define SQLITE_FCNTL_BUSYHANDLER            15
#define SQLITE_FCNTL_TEMPFILENAME           16
#define SQLITE_FCNTL_MMAP_SIZE              18
#define SQLITE_FCNTL_TRACE                  19
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
#define SQLITE_FCNTL_WAL_BLOCK              24

/* deprecated names */
#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO


/*
** CAPI3REF: Mutex Handle
**
** The mutex module within SQLite defines [sqlite3_mutex] to be an
** abstract type for a mutex object.  The SQLite core never looks
** at the internal representation of an [sqlite3_mutex].  It only
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
** (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int sqlite3_initialize(void);
SQLITE_API int sqlite3_shutdown(void);
SQLITE_API int sqlite3_os_init(void);
SQLITE_API int sqlite3_os_end(void);

/*
** CAPI3REF: Configuring The SQLite Library
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most







|
|
|
|







1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
** (using the [SQLITE_OS_OTHER=1] compile-time
** option) the application must supply a suitable implementation for
** sqlite3_os_init() and sqlite3_os_end().  An application-supplied
** implementation of sqlite3_os_init() or sqlite3_os_end()
** must return [SQLITE_OK] on success and some other [error code] upon
** failure.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_initialize(void);
SQLITE_API int SQLITE_STDCALL sqlite3_shutdown(void);
SQLITE_API int SQLITE_STDCALL sqlite3_os_init(void);
SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void);

/*
** CAPI3REF: Configuring The SQLite Library
**
** The sqlite3_config() interface is used to make global configuration
** changes to SQLite in order to tune SQLite to the specific needs of
** the application.  The default configuration is recommended for most
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
** vary depending on the [configuration option]
** in the first argument.
**
** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
** ^If the option is unknown or SQLite is unable to set the option
** then this routine returns a non-zero [error code].
*/
SQLITE_API int sqlite3_config(int, ...);

/*
** CAPI3REF: Configure database connections
**
** The sqlite3_db_config() interface is used to make configuration
** changes to a [database connection].  The interface is similar to
** [sqlite3_config()] except that the changes apply to a single
** [database connection] (specified in the first argument).
**
** The second argument to sqlite3_db_config(D,V,...)  is the
** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code 
** that indicates what aspect of the [database connection] is being configured.
** Subsequent arguments vary depending on the configuration verb.
**
** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
** the call is considered successful.
*/
SQLITE_API int sqlite3_db_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Memory Allocation Routines
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**







|

















|







1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
** vary depending on the [configuration option]
** in the first argument.
**
** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
** ^If the option is unknown or SQLite is unable to set the option
** then this routine returns a non-zero [error code].
*/
SQLITE_API int SQLITE_CDECL sqlite3_config(int, ...);

/*
** CAPI3REF: Configure database connections
**
** The sqlite3_db_config() interface is used to make configuration
** changes to a [database connection].  The interface is similar to
** [sqlite3_config()] except that the changes apply to a single
** [database connection] (specified in the first argument).
**
** The second argument to sqlite3_db_config(D,V,...)  is the
** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code 
** that indicates what aspect of the [database connection] is being configured.
** Subsequent arguments vary depending on the configuration verb.
**
** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
** the call is considered successful.
*/
SQLITE_API int SQLITE_CDECL sqlite3_db_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Memory Allocation Routines
**
** An instance of this object defines the interface between SQLite
** and low-level memory allocation routines.
**
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>







|







1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
** interpreted as a boolean, which enables or disables the collection of
** memory allocation statistics. ^(When memory allocation statistics are
** disabled, the following SQLite interfaces become non-operational:
**   <ul>
**   <li> [sqlite3_memory_used()]
**   <li> [sqlite3_memory_highwater()]
**   <li> [sqlite3_soft_heap_limit64()]
**   <li> [sqlite3_status64()]
**   </ul>)^
** ^Memory allocation statistics are enabled by default unless SQLite is
** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
** allocation statistics are disabled by default.
** </dd>
**
** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.
** </dl>
**
** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
** is a pointer to an integer and writes into that integer the number of extra
** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
** The amount of extra space required can change depending on the compiler,







<







1759
1760
1761
1762
1763
1764
1765

1766
1767
1768
1769
1770
1771
1772
**
** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
** that specifies the maximum size of the created heap.

**
** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
** is a pointer to an integer and writes into that integer the number of extra
** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
** The amount of extra space required can change depending on the compiler,
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
/*
** CAPI3REF: Enable Or Disable Extended Result Codes
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
** codes are disabled by default for historical compatibility.
*/
SQLITE_API int sqlite3_extended_result_codes(sqlite3*, int onoff);

/*
** CAPI3REF: Last Insert Rowid
**
** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
** has a unique 64-bit signed
** integer key called the [ROWID | "rowid"]. ^The rowid is always available







|







1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
/*
** CAPI3REF: Enable Or Disable Extended Result Codes
**
** ^The sqlite3_extended_result_codes() routine enables or disables the
** [extended result codes] feature of SQLite. ^The extended result
** codes are disabled by default for historical compatibility.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_extended_result_codes(sqlite3*, int onoff);

/*
** CAPI3REF: Last Insert Rowid
**
** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
** has a unique 64-bit signed
** integer key called the [ROWID | "rowid"]. ^The rowid is always available
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
** If a separate thread performs a new [INSERT] on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert [rowid],
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of rows modified, inserted or
** deleted by the most recently completed INSERT, UPDATE or DELETE
** statement on the database connection specified by the only parameter.







|







1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
** If a separate thread performs a new [INSERT] on the same
** database connection while the [sqlite3_last_insert_rowid()]
** function is running and thus changes the last insert [rowid],
** then the value returned by [sqlite3_last_insert_rowid()] is
** unpredictable and might not equal either the old or the new
** last insert [rowid].
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_last_insert_rowid(sqlite3*);

/*
** CAPI3REF: Count The Number Of Rows Modified
**
** ^This function returns the number of rows modified, inserted or
** deleted by the most recently completed INSERT, UPDATE or DELETE
** statement on the database connection specified by the only parameter.
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the total number of rows inserted, modified or
** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
** since the database connection was opened, including those executed as







|







1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
** See also the [sqlite3_total_changes()] interface, the
** [count_changes pragma], and the [changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_changes()] is running then the value returned
** is unpredictable and not meaningful.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_changes(sqlite3*);

/*
** CAPI3REF: Total Number Of Rows Modified
**
** ^This function returns the total number of rows inserted, modified or
** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
** since the database connection was opened, including those executed as
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
SQLITE_API int sqlite3_total_changes(sqlite3*);

/*
** CAPI3REF: Interrupt A Long-Running Query
**
** ^This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"







|







2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
** See also the [sqlite3_changes()] interface, the
** [count_changes pragma], and the [total_changes() SQL function].
**
** If a separate thread makes changes on the same database connection
** while [sqlite3_total_changes()] is running then the value
** returned is unpredictable and not meaningful.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_total_changes(sqlite3*);

/*
** CAPI3REF: Interrupt A Long-Running Query
**
** ^This function causes any pending database operation to abort and
** return at its earliest opportunity. This routine is typically
** called in response to a user action such as pressing "Cancel"
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into







|







2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
** ^A call to sqlite3_interrupt(D) that occurs when there are no running
** SQL statements is a no-op and has no effect on SQL statements
** that are started after the sqlite3_interrupt() call returns.
**
** If the database connection closes while [sqlite3_interrupt()]
** is running then bad things will likely happen.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_interrupt(sqlite3*);

/*
** CAPI3REF: Determine If An SQL Statement Is Complete
**
** These routines are useful during command-line input to determine if the
** currently entered text seems to form a complete SQL statement or
** if additional input is needed before sending the text into
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
SQLITE_API int sqlite3_complete(const char *sql);
SQLITE_API int sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
** KEYWORDS: {busy-handler callback} {busy handler}
**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever







|
|







2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
**
** The input to [sqlite3_complete()] must be a zero-terminated
** UTF-8 string.
**
** The input to [sqlite3_complete16()] must be a zero-terminated
** UTF-16 string in native byte order.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_complete(const char *sql);
SQLITE_API int SQLITE_STDCALL sqlite3_complete16(const void *sql);

/*
** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
** KEYWORDS: {busy-handler callback} {busy handler}
**
** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
** that might be invoked with argument P whenever
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
** database connection that invoked the busy handler.  In other words,
** the busy handler is not reentrant.  Any such actions
** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
SQLITE_API int sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout
**
** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  ^The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping







|







2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
** database connection that invoked the busy handler.  In other words,
** the busy handler is not reentrant.  Any such actions
** result in undefined behavior.
** 
** A busy handler must not close the database connection
** or [prepared statement] that invoked the busy handler.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);

/*
** CAPI3REF: Set A Busy Timeout
**
** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
** for a specified amount of time when a table is locked.  ^The handler
** will sleep multiple times until at least "ms" milliseconds of sleeping
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
** ^(There can only be a single busy handler for a particular
** [database connection] at any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
SQLITE_API int sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.
** Use of this interface is not recommended.
**







|







2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
** ^(There can only be a single busy handler for a particular
** [database connection] at any given moment.  If another busy handler
** was defined  (using [sqlite3_busy_handler()]) prior to calling
** this routine, that other busy handler is cleared.)^
**
** See also:  [PRAGMA busy_timeout]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_busy_timeout(sqlite3*, int ms);

/*
** CAPI3REF: Convenience Routines For Running Queries
**
** This is a legacy interface that is preserved for backwards compatibility.
** Use of this interface is not recommended.
**
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233




2234
2235
2236
2237
2238
2239
2240
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].
*/
SQLITE_API int sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.




**
** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  ^Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.







|







|






>
>
>
>







2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
** [sqlite3_exec()].  The sqlite3_get_table() routine does not have access
** to any internal data structures of SQLite.  It uses only the public
** interface defined here.  As a consequence, errors that occur in the
** wrapper layer outside of the internal [sqlite3_exec()] call are not
** reflected in subsequent calls to [sqlite3_errcode()] or
** [sqlite3_errmsg()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_get_table(
  sqlite3 *db,          /* An open database */
  const char *zSql,     /* SQL to be evaluated */
  char ***pazResult,    /* Results of the query */
  int *pnRow,           /* Number of result rows written here */
  int *pnColumn,        /* Number of result columns written here */
  char **pzErrmsg       /* Error msg written here */
);
SQLITE_API void SQLITE_STDCALL sqlite3_free_table(char **result);

/*
** CAPI3REF: Formatted String Printing Functions
**
** These routines are work-alikes of the "printf()" family of functions
** from the standard C library.
** These routines understand most of the common K&R formatting options,
** plus some additional non-standard formats, detailed below.
** Note that some of the more obscure formatting options from recent
** C-library standards are omitted from this implementation.
**
** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
** results into memory obtained from [sqlite3_malloc()].
** The strings returned by these two routines should be
** released by [sqlite3_free()].  ^Both routines return a
** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
** memory to hold the resulting string.
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
** written will be n-1 characters.
**
** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", and "%z" options.
**
** ^(The %q option works like %s in that it substitutes a nul-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.)^  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**







|







2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
** written will be n-1 characters.
**
** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
**
** These routines all implement some additional formatting
** options that are useful for constructing SQL statements.
** All of the usual printf() formatting options apply.  In addition, there
** is are "%q", "%Q", "%w" and "%z" options.
**
** ^(The %q option works like %s in that it substitutes a nul-terminated
** string from the argument list.  But %q also doubles every '\'' character.
** %q is designed for use inside a string literal.)^  By doubling each '\''
** character it escapes that character and allows it to be inserted into
** the string.
**
2311
2312
2313
2314
2315
2316
2317






2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.






**
** ^(The "%z" formatting option works like "%s" but with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string.)^
*/
SQLITE_API char *sqlite3_mprintf(const char*,...);
SQLITE_API char *sqlite3_vmprintf(const char*, va_list);
SQLITE_API char *sqlite3_snprintf(int,char*,const char*, ...);
SQLITE_API char *sqlite3_vsnprintf(int,char*,const char*, va_list);

/*
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The







>
>
>
>
>
>





|
|
|
|







2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
**  char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
**  sqlite3_exec(db, zSQL, 0, 0, 0);
**  sqlite3_free(zSQL);
** </pre></blockquote>
**
** The code above will render a correct SQL statement in the zSQL
** variable even if the zText variable is a NULL pointer.
**
** ^(The "%w" formatting option is like "%q" except that it expects to
** be contained within double-quotes instead of single quotes, and it
** escapes the double-quote character instead of the single-quote
** character.)^  The "%w" formatting option is intended for safely inserting
** table and column names into a constructed SQL statement.
**
** ^(The "%z" formatting option works like "%s" but with the
** addition that after the string has been read and copied into
** the result, [sqlite3_free()] is called on the input string.)^
*/
SQLITE_API char *SQLITE_CDECL sqlite3_mprintf(const char*,...);
SQLITE_API char *SQLITE_STDCALL sqlite3_vmprintf(const char*, va_list);
SQLITE_API char *SQLITE_CDECL sqlite3_snprintf(int,char*,const char*, ...);
SQLITE_API char *SQLITE_STDCALL sqlite3_vsnprintf(int,char*,const char*, va_list);

/*
** CAPI3REF: Memory Allocation Subsystem
**
** The SQLite core uses these three routines for all of its own
** internal memory allocation needs. "Core" in the previous sentence
** does not include operating-system specific VFS implementation.  The
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
SQLITE_API void *sqlite3_malloc(int);
SQLITE_API void *sqlite3_malloc64(sqlite3_uint64);
SQLITE_API void *sqlite3_realloc(void*, int);
SQLITE_API void *sqlite3_realloc64(void*, sqlite3_uint64);
SQLITE_API void sqlite3_free(void*);
SQLITE_API sqlite3_uint64 sqlite3_msize(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.







|
|
|
|
|
|







2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
** not yet been released.
**
** The application must not read or write any part of
** a block of memory after it has been released using
** [sqlite3_free()] or [sqlite3_realloc()].
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_malloc(int);
SQLITE_API void *SQLITE_STDCALL sqlite3_malloc64(sqlite3_uint64);
SQLITE_API void *SQLITE_STDCALL sqlite3_realloc(void*, int);
SQLITE_API void *SQLITE_STDCALL sqlite3_realloc64(void*, sqlite3_uint64);
SQLITE_API void SQLITE_STDCALL sqlite3_free(void*);
SQLITE_API sqlite3_uint64 SQLITE_STDCALL sqlite3_msize(void*);

/*
** CAPI3REF: Memory Allocator Statistics
**
** SQLite provides these two interfaces for reporting on the status
** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
** routines, which form the built-in memory allocation subsystem.
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
**
** ^The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true.  ^The value returned
** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for







|
|







2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
**
** ^The memory high-water mark is reset to the current value of
** [sqlite3_memory_used()] if and only if the parameter to
** [sqlite3_memory_highwater()] is true.  ^The value returned
** by [sqlite3_memory_highwater(1)] is the high-water mark
** prior to the reset.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_used(void);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_highwater(int resetFlag);

/*
** CAPI3REF: Pseudo-Random Number Generator
**
** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
** select random [ROWID | ROWIDs] when inserting new records into a table that
** already uses the largest possible [ROWID].  The PRNG is also used for
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
** seeded using randomness obtained from the xRandomness method of
** the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more and a
** non-NULL P then the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled







|







2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
** seeded using randomness obtained from the xRandomness method of
** the default [sqlite3_vfs] object.
** ^If the previous call to this routine had an N of 1 or more and a
** non-NULL P then the pseudo-randomness is generated
** internally and without recourse to the [sqlite3_vfs] xRandomness
** method.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_randomness(int N, void *P);

/*
** CAPI3REF: Compile-Time Authorization Callbacks
**
** ^This routine registers an authorizer callback with a particular
** [database connection], supplied in the first argument.
** ^The authorizer callback is invoked as SQL statements are being compiled
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
**
** ^Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
*/
SQLITE_API int sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes







|







2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
**
** ^Note that the authorizer callback is invoked only during
** [sqlite3_prepare()] or its variants.  Authorization is not
** performed during statement evaluation in [sqlite3_step()], unless
** as stated in the previous paragraph, sqlite3_step() invokes
** sqlite3_prepare_v2() to reprepare a statement after a schema change.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_set_authorizer(
  sqlite3*,
  int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
  void *pUserData
);

/*
** CAPI3REF: Authorizer Return Codes
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
** time is in units of nanoseconds, however the current implementation
** is only capable of millisecond resolution so the six least significant
** digits in the time are meaningless.  Future versions of SQLite
** might provide greater resolution on the profiler callback.  The
** sqlite3_profile() function is considered experimental and is
** subject to change in future versions of SQLite.
*/
SQLITE_API void *sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks
**
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to







|
|







2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
** time is in units of nanoseconds, however the current implementation
** is only capable of millisecond resolution so the six least significant
** digits in the time are meaningless.  Future versions of SQLite
** might provide greater resolution on the profiler callback.  The
** sqlite3_profile() function is considered experimental and is
** subject to change in future versions of SQLite.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
SQLITE_API SQLITE_EXPERIMENTAL void *SQLITE_STDCALL sqlite3_profile(sqlite3*,
   void(*xProfile)(void*,const char*,sqlite3_uint64), void*);

/*
** CAPI3REF: Query Progress Callbacks
**
** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
** function X to be invoked periodically during long running calls to
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
**
** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
*/
SQLITE_API void sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection
**
** ^These routines open an SQLite database file as specified by the 
** filename argument. ^The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte







|







2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
**
** The progress handler callback must not do anything that will modify
** the database connection that invoked the progress handler.
** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
** database connections for the meaning of "modify" in this paragraph.
**
*/
SQLITE_API void SQLITE_STDCALL sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);

/*
** CAPI3REF: Opening A New Database Connection
**
** ^These routines open an SQLite database file as specified by the 
** filename argument. ^The filename argument is interpreted as UTF-8 for
** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*







|



|



|







2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
**
** <b>Note to Windows Runtime users:</b>  The temporary directory must be set
** prior to calling sqlite3_open() or sqlite3_open_v2().  Otherwise, various
** features that require the use of temporary files may fail.
**
** See also: [sqlite3_temp_directory]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_open(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int SQLITE_STDCALL sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb          /* OUT: SQLite db handle */
);
SQLITE_API int SQLITE_STDCALL sqlite3_open_v2(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  int flags,              /* Flags */
  const char *zVfs        /* Name of VFS module to use */
);

/*
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980

2981
2982
2983
2984

2985
2986
2987
2988
2989
2990
2991
2992
** 
** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
** is not a database file pathname pointer that SQLite passed into the xOpen
** VFS method, then the behavior of this routine is undefined and probably
** undesirable.
*/
SQLITE_API const char *sqlite3_uri_parameter(const char *zFilename, const char *zParam);
SQLITE_API int sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
SQLITE_API sqlite3_int64 sqlite3_uri_int64(const char*, const char*, sqlite3_int64);


/*
** CAPI3REF: Error Codes And Messages
**

** ^The sqlite3_errcode() interface returns the numeric [result code] or
** [extended result code] for the most recent failed sqlite3_* API call
** associated with a [database connection]. If a prior API call failed
** but the most recent API call succeeded, the return value from

** sqlite3_errcode() is undefined.  ^The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** ^(Memory to hold the error message string is managed internally.







|
|
|





>
|
|
|
|
>
|







2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
** 
** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
** sqlite3_uri_boolean(F,P,B) returns B.  If F is not a NULL pointer and
** is not a database file pathname pointer that SQLite passed into the xOpen
** VFS method, then the behavior of this routine is undefined and probably
** undesirable.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_uri_parameter(const char *zFilename, const char *zParam);
SQLITE_API int SQLITE_STDCALL sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_uri_int64(const char*, const char*, sqlite3_int64);


/*
** CAPI3REF: Error Codes And Messages
**
** ^If the most recent sqlite3_* API call associated with 
** [database connection] D failed, then the sqlite3_errcode(D) interface
** returns the numeric [result code] or [extended result code] for that
** API call.
** If the most recent API call was successful,
** then the return value from sqlite3_errcode() is undefined.
** ^The sqlite3_extended_errcode()
** interface is the same except that it always returns the 
** [extended result code] even when extended result codes are
** disabled.
**
** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
** text that describes the error, as either UTF-8 or UTF-16 respectively.
** ^(Memory to hold the error message string is managed internally.
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.
*/
SQLITE_API int sqlite3_errcode(sqlite3 *db);
SQLITE_API int sqlite3_extended_errcode(sqlite3 *db);
SQLITE_API const char *sqlite3_errmsg(sqlite3*);
SQLITE_API const void *sqlite3_errmsg16(sqlite3*);
SQLITE_API const char *sqlite3_errstr(int);

/*
** CAPI3REF: SQL Statement Object
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a







|
|
|
|
|







3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
** all calls to the interfaces listed here are completed.
**
** If an interface fails with SQLITE_MISUSE, that means the interface
** was invoked incorrectly by the application.  In that case, the
** error code and message may or may not be set.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_errcode(sqlite3 *db);
SQLITE_API int SQLITE_STDCALL sqlite3_extended_errcode(sqlite3 *db);
SQLITE_API const char *SQLITE_STDCALL sqlite3_errmsg(sqlite3*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_errmsg16(sqlite3*);
SQLITE_API const char *SQLITE_STDCALL sqlite3_errstr(int);

/*
** CAPI3REF: SQL Statement Object
** KEYWORDS: {prepared statement} {prepared statements}
**
** An instance of this object represents a single SQL statement.
** This object is variously known as a "prepared statement" or a
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.
*/
SQLITE_API int sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].







|







3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
** attack.  Developers might also want to use the [sqlite3_set_authorizer()]
** interface to further control untrusted SQL.  The size of the database
** created by an untrusted script can be contained using the
** [max_page_count] [PRAGMA].
**
** New run-time limit categories may be added in future releases.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_limit(sqlite3*, int id, int newVal);

/*
** CAPI3REF: Run-Time Limit Categories
** KEYWORDS: {limit category} {*limit categories}
**
** These constants define various performance limits
** that can be lowered at run-time using [sqlite3_limit()].
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
** [sqlite3_open16()].  The database connection must not have been closed.
**
** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16.
**
** ^If the nByte argument is less than zero, then zSql is read up to the
** first zero terminator. ^If nByte is non-negative, then it is the maximum
** number of  bytes read from zSql.  ^When nByte is non-negative, the
** zSql string ends at either the first '\000' or '\u0000' character or
** the nByte-th byte, whichever comes first. If the caller knows
** that the supplied string is nul-terminated, then there is a small
** performance advantage to be gained by passing an nByte parameter that
** is equal to the number of bytes in the input string <i>including</i>
** the nul-terminator bytes as this saves SQLite from having to
** make a copy of the input string.
**
** ^If pzTail is not NULL then *pzTail is made to point to the first byte
** past the end of the first SQL statement in zSql.  These routines only
** compile the first statement in zSql, so *pzTail is left pointing to
** what remains uncompiled.
**
** ^*ppStmt is left pointing to a compiled [prepared statement] that can be







|
|
|
|
<
|
|
|
|
<







3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210

3211
3212
3213
3214

3215
3216
3217
3218
3219
3220
3221
** [sqlite3_open16()].  The database connection must not have been closed.
**
** The second argument, "zSql", is the statement to be compiled, encoded
** as either UTF-8 or UTF-16.  The sqlite3_prepare() and sqlite3_prepare_v2()
** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
** use UTF-16.
**
** ^If the nByte argument is negative, then zSql is read up to the
** first zero terminator. ^If nByte is positive, then it is the
** number of bytes read from zSql.  ^If nByte is zero, then no prepared
** statement is generated.

** If the caller knows that the supplied string is nul-terminated, then
** there is a small performance advantage to passing an nByte parameter that
** is the number of bytes in the input string <i>including</i>
** the nul-terminator.

**
** ^If pzTail is not NULL then *pzTail is made to point to the first byte
** past the end of the first SQL statement in zSql.  These routines only
** compile the first statement in zSql, so *pzTail is left pointing to
** what remains uncompiled.
**
** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
** ^The specific value of WHERE-clause [parameter] might influence the 
** choice of query plan if the parameter is the left-hand side of a [LIKE]
** or [GLOB] operator or if the parameter is compared to an indexed column
** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
** </li>
** </ol>
*/
SQLITE_API int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare_v2(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare16(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int sqlite3_prepare16_v2(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** CAPI3REF: Retrieving Statement SQL
**
** ^This interface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement] if that statement was
** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
*/
SQLITE_API const char *sqlite3_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to
** the content of the database file.







|






|






|






|














|







3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
** ^The specific value of WHERE-clause [parameter] might influence the 
** choice of query plan if the parameter is the left-hand side of a [LIKE]
** or [GLOB] operator or if the parameter is compared to an indexed column
** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
** </li>
** </ol>
*/
SQLITE_API int SQLITE_STDCALL sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int SQLITE_STDCALL sqlite3_prepare_v2(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int SQLITE_STDCALL sqlite3_prepare16(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);
SQLITE_API int SQLITE_STDCALL sqlite3_prepare16_v2(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nByte,              /* Maximum length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** CAPI3REF: Retrieving Statement SQL
**
** ^This interface can be used to retrieve a saved copy of the original
** SQL text used to create a [prepared statement] if that statement was
** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_sql(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If An SQL Statement Writes The Database
**
** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
** and only if the [prepared statement] X makes no direct changes to
** the content of the database file.
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
** since the statements themselves do not actually modify the database but
** rather they control the timing of when other statements modify the 
** database.  ^The [ATTACH] and [DETACH] statements also cause
** sqlite3_stmt_readonly() to return true since, while those statements
** change the configuration of a database connection, they do not make 
** changes to the content of the database files on disk.
*/
SQLITE_API int sqlite3_stmt_readonly(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If A Prepared Statement Has Been Reset
**
** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
** [prepared statement] S has been stepped at least once using 
** [sqlite3_step(S)] but has not run to completion and/or has not 
** been reset using [sqlite3_reset(S)].  ^The sqlite3_stmt_busy(S)
** interface returns false if S is a NULL pointer.  If S is not a 
** NULL pointer and is not a pointer to a valid [prepared statement]
** object, then the behavior is undefined and probably undesirable.
**
** This interface can be used in combination [sqlite3_next_stmt()]
** to locate all prepared statements associated with a database 
** connection that are in need of being reset.  This can be used,
** for example, in diagnostic routines to search for prepared 
** statements that are holding a transaction open.
*/
SQLITE_API int sqlite3_stmt_busy(sqlite3_stmt*);

/*
** CAPI3REF: Dynamically Typed Value Object
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table. SQLite uses dynamic typing







|


















|







3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
** since the statements themselves do not actually modify the database but
** rather they control the timing of when other statements modify the 
** database.  ^The [ATTACH] and [DETACH] statements also cause
** sqlite3_stmt_readonly() to return true since, while those statements
** change the configuration of a database connection, they do not make 
** changes to the content of the database files on disk.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_readonly(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Determine If A Prepared Statement Has Been Reset
**
** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
** [prepared statement] S has been stepped at least once using 
** [sqlite3_step(S)] but has not run to completion and/or has not 
** been reset using [sqlite3_reset(S)].  ^The sqlite3_stmt_busy(S)
** interface returns false if S is a NULL pointer.  If S is not a 
** NULL pointer and is not a pointer to a valid [prepared statement]
** object, then the behavior is undefined and probably undesirable.
**
** This interface can be used in combination [sqlite3_next_stmt()]
** to locate all prepared statements associated with a database 
** connection that are in need of being reset.  This can be used,
** for example, in diagnostic routines to search for prepared 
** statements that are holding a transaction open.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_busy(sqlite3_stmt*);

/*
** CAPI3REF: Dynamically Typed Value Object
** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
**
** SQLite uses the sqlite3_value object to represent all values
** that can be stored in a database table. SQLite uses dynamic typing
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
** [SQLITE_MAX_LENGTH].
** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
*/
SQLITE_API int sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
SQLITE_API int sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
                        void(*)(void*));
SQLITE_API int sqlite3_bind_double(sqlite3_stmt*, int, double);
SQLITE_API int sqlite3_bind_int(sqlite3_stmt*, int, int);
SQLITE_API int sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
SQLITE_API int sqlite3_bind_null(sqlite3_stmt*, int);
SQLITE_API int sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
SQLITE_API int sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
SQLITE_API int sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
                         void(*)(void*), unsigned char encoding);
SQLITE_API int sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
SQLITE_API int sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]
** in a [prepared statement].  SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** ^(This routine actually returns the index of the largest (rightmost)
** parameter. For all forms except ?NNN, this will correspond to the
** number of unique parameters.  If parameters of the ?NNN form are used,
** there may be gaps in the list.)^
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int sqlite3_bind_parameter_count(sqlite3_stmt*);

/*
** CAPI3REF: Name Of A Host Parameter
**
** ^The sqlite3_bind_parameter_name(P,N) interface returns
** the name of the N-th [SQL parameter] in the [prepared statement] P.
** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"







|
|

|
|
|
|
|
|
|

|
|



















|







3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
** [SQLITE_MAX_LENGTH].
** ^[SQLITE_RANGE] is returned if the parameter
** index is out of range.  ^[SQLITE_NOMEM] is returned if malloc() fails.
**
** See also: [sqlite3_bind_parameter_count()],
** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
                        void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_double(sqlite3_stmt*, int, double);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_int(sqlite3_stmt*, int, int);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_null(sqlite3_stmt*, int);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
SQLITE_API int SQLITE_STDCALL sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
                         void(*)(void*), unsigned char encoding);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);

/*
** CAPI3REF: Number Of SQL Parameters
**
** ^This routine can be used to find the number of [SQL parameters]
** in a [prepared statement].  SQL parameters are tokens of the
** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
** placeholders for values that are [sqlite3_bind_blob | bound]
** to the parameters at a later time.
**
** ^(This routine actually returns the index of the largest (rightmost)
** parameter. For all forms except ?NNN, this will correspond to the
** number of unique parameters.  If parameters of the ?NNN form are used,
** there may be gaps in the list.)^
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_name()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_count(sqlite3_stmt*);

/*
** CAPI3REF: Name Of A Host Parameter
**
** ^The sqlite3_bind_parameter_name(P,N) interface returns
** the name of the N-th [SQL parameter] in the [prepared statement] P.
** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API const char *sqlite3_bind_parameter_name(sqlite3_stmt*, int);

/*
** CAPI3REF: Index Of A Parameter With A Given Name
**
** ^Return the index of an SQL parameter given its name.  ^The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
** is returned if no matching parameter is found.  ^The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);

/*
** CAPI3REF: Reset All Bindings On A Prepared Statement
**
** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
** the [sqlite3_bind_blob | bindings] on a [prepared statement].
** ^Use this routine to reset all host parameters to NULL.
*/
SQLITE_API int sqlite3_clear_bindings(sqlite3_stmt*);

/*
** CAPI3REF: Number Of Columns In A Result Set
**
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
**
** See also: [sqlite3_data_count()]
*/
SQLITE_API int sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Column Names In A Result Set
**
** ^These routines return the name assigned to a particular column
** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF-8 string







|















|








|










|







3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
** originally specified as UTF-16 in [sqlite3_prepare16()] or
** [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_bind_parameter_name(sqlite3_stmt*, int);

/*
** CAPI3REF: Index Of A Parameter With A Given Name
**
** ^Return the index of an SQL parameter given its name.  ^The
** index value returned is suitable for use as the second
** parameter to [sqlite3_bind_blob|sqlite3_bind()].  ^A zero
** is returned if no matching parameter is found.  ^The parameter
** name must be given in UTF-8 even if the original statement
** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
**
** See also: [sqlite3_bind_blob|sqlite3_bind()],
** [sqlite3_bind_parameter_count()], and
** [sqlite3_bind_parameter_index()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);

/*
** CAPI3REF: Reset All Bindings On A Prepared Statement
**
** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
** the [sqlite3_bind_blob | bindings] on a [prepared statement].
** ^Use this routine to reset all host parameters to NULL.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_clear_bindings(sqlite3_stmt*);

/*
** CAPI3REF: Number Of Columns In A Result Set
**
** ^Return the number of columns in the result set returned by the
** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
** statement that does not return data (for example an [UPDATE]).
**
** See also: [sqlite3_data_count()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Column Names In A Result Set
**
** ^These routines return the name assigned to a particular column
** in the result set of a [SELECT] statement.  ^The sqlite3_column_name()
** interface returns a pointer to a zero-terminated UTF-8 string
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
** NULL pointer is returned.
**
** ^The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause.  If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.
*/
SQLITE_API const char *sqlite3_column_name(sqlite3_stmt*, int N);
SQLITE_API const void *sqlite3_column_name16(sqlite3_stmt*, int N);

/*
** CAPI3REF: Source Of Data In A Query Result
**
** ^These routines provide a means to determine the database, table, and
** table column that is the origin of a particular result column in
** [SELECT] statement.







|
|







3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
** NULL pointer is returned.
**
** ^The name of a result column is the value of the "AS" clause for
** that column, if there is an AS clause.  If there is no AS clause
** then the name of the column is unspecified and may change from
** one release of SQLite to the next.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_name(sqlite3_stmt*, int N);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_name16(sqlite3_stmt*, int N);

/*
** CAPI3REF: Source Of Data In A Query Result
**
** ^These routines provide a means to determine the database, table, and
** table column that is the origin of a particular result column in
** [SELECT] statement.
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
** undefined.
**
** If two or more threads call one or more
** [sqlite3_column_database_name | column metadata interfaces]
** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
SQLITE_API const char *sqlite3_column_database_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_database_name16(sqlite3_stmt*,int);
SQLITE_API const char *sqlite3_column_table_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_table_name16(sqlite3_stmt*,int);
SQLITE_API const char *sqlite3_column_origin_name(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_origin_name16(sqlite3_stmt*,int);

/*
** CAPI3REF: Declared Datatype Of A Query Result
**
** ^(The first parameter is a [prepared statement].
** If this statement is a [SELECT] statement and the Nth column of the
** returned result set of that [SELECT] is a table column (not an







|
|
|
|
|
|







3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
** undefined.
**
** If two or more threads call one or more
** [sqlite3_column_database_name | column metadata interfaces]
** for the same [prepared statement] and result column
** at the same time then the results are undefined.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_database_name(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_database_name16(sqlite3_stmt*,int);
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_table_name(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_table_name16(sqlite3_stmt*,int);
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_origin_name(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_origin_name16(sqlite3_stmt*,int);

/*
** CAPI3REF: Declared Datatype Of A Query Result
**
** ^(The first parameter is a [prepared statement].
** If this statement is a [SELECT] statement and the Nth column of the
** returned result set of that [SELECT] is a table column (not an
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
** ^SQLite uses dynamic run-time typing.  ^So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type.  SQLite is
** strongly typed, but the typing is dynamic not static.  ^Type
** is associated with individual values, not with the containers
** used to hold those values.
*/
SQLITE_API const char *sqlite3_column_decltype(sqlite3_stmt*,int);
SQLITE_API const void *sqlite3_column_decltype16(sqlite3_stmt*,int);

/*
** CAPI3REF: Evaluate An SQL Statement
**
** After a [prepared statement] has been prepared using either
** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function







|
|







3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
** ^SQLite uses dynamic run-time typing.  ^So just because a column
** is declared to contain a particular type does not mean that the
** data stored in that column is of the declared type.  SQLite is
** strongly typed, but the typing is dynamic not static.  ^Type
** is associated with individual values, not with the containers
** used to hold those values.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_column_decltype(sqlite3_stmt*,int);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_decltype16(sqlite3_stmt*,int);

/*
** CAPI3REF: Evaluate An SQL Statement
**
** After a [prepared statement] has been prepared using either
** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
** We admit that this is a goofy design.  The problem has been fixed
** with the "v2" interface.  If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
** then the more specific [error codes] are returned directly
** by sqlite3_step().  The use of the "v2" interface is recommended.
*/
SQLITE_API int sqlite3_step(sqlite3_stmt*);

/*
** CAPI3REF: Number of columns in a result set
**
** ^The sqlite3_data_count(P) interface returns the number of columns in the
** current row of the result set of [prepared statement] P.
** ^If prepared statement P does not have results ready to return
** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
** interfaces) then sqlite3_data_count(P) returns 0.
** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
** [sqlite3_step](P) returned [SQLITE_DONE].  ^The sqlite3_data_count(P)
** will return non-zero if previous call to [sqlite3_step](P) returned
** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
** where it always returns zero since each step of that multi-step
** pragma returns 0 columns of data.
**
** See also: [sqlite3_column_count()]
*/
SQLITE_API int sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Fundamental Datatypes
** KEYWORDS: SQLITE_TEXT
**
** ^(Every value in SQLite has one of five fundamental datatypes:
**







|



















|







3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
** We admit that this is a goofy design.  The problem has been fixed
** with the "v2" interface.  If you prepare all of your SQL statements
** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
** then the more specific [error codes] are returned directly
** by sqlite3_step().  The use of the "v2" interface is recommended.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_step(sqlite3_stmt*);

/*
** CAPI3REF: Number of columns in a result set
**
** ^The sqlite3_data_count(P) interface returns the number of columns in the
** current row of the result set of [prepared statement] P.
** ^If prepared statement P does not have results ready to return
** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
** interfaces) then sqlite3_data_count(P) returns 0.
** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
** [sqlite3_step](P) returned [SQLITE_DONE].  ^The sqlite3_data_count(P)
** will return non-zero if previous call to [sqlite3_step](P) returned
** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
** where it always returns zero since each step of that multi-step
** pragma returns 0 columns of data.
**
** See also: [sqlite3_column_count()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Fundamental Datatypes
** KEYWORDS: SQLITE_TEXT
**
** ^(Every value in SQLite has one of five fundamental datatypes:
**
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^
*/
SQLITE_API const void *sqlite3_column_blob(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_bytes(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
SQLITE_API double sqlite3_column_double(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_int(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_int64 sqlite3_column_int64(sqlite3_stmt*, int iCol);
SQLITE_API const unsigned char *sqlite3_column_text(sqlite3_stmt*, int iCol);
SQLITE_API const void *sqlite3_column_text16(sqlite3_stmt*, int iCol);
SQLITE_API int sqlite3_column_type(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_value *sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the most recent evaluation of the statement encountered no errors
** or if the statement is never been evaluated, then sqlite3_finalize() returns







|
|
|
|
|
|
|
|
|
|







4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
**
** ^(If a memory allocation error occurs during the evaluation of any
** of these routines, a default value is returned.  The default value
** is either the integer 0, the floating point number 0.0, or a NULL
** pointer.  Subsequent calls to [sqlite3_errcode()] will return
** [SQLITE_NOMEM].)^
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_blob(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
SQLITE_API double SQLITE_STDCALL sqlite3_column_double(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_int(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_column_int64(sqlite3_stmt*, int iCol);
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_column_text(sqlite3_stmt*, int iCol);
SQLITE_API const void *SQLITE_STDCALL sqlite3_column_text16(sqlite3_stmt*, int iCol);
SQLITE_API int SQLITE_STDCALL sqlite3_column_type(sqlite3_stmt*, int iCol);
SQLITE_API sqlite3_value *SQLITE_STDCALL sqlite3_column_value(sqlite3_stmt*, int iCol);

/*
** CAPI3REF: Destroy A Prepared Statement Object
**
** ^The sqlite3_finalize() function is called to delete a [prepared statement].
** ^If the most recent evaluation of the statement encountered no errors
** or if the statement is never been evaluated, then sqlite3_finalize() returns
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
**
** The application must finalize every [prepared statement] in order to avoid
** resource leaks.  It is a grievous error for the application to try to use
** a prepared statement after it has been finalized.  Any use of a prepared
** statement after it has been finalized can result in undefined and
** undesirable behavior such as segfaults and heap corruption.
*/
SQLITE_API int sqlite3_finalize(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Reset A Prepared Statement Object
**
** The sqlite3_reset() function is called to reset a [prepared statement]
** object back to its initial state, ready to be re-executed.
** ^Any SQL statement variables that had values bound to them using







|







4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
**
** The application must finalize every [prepared statement] in order to avoid
** resource leaks.  It is a grievous error for the application to try to use
** a prepared statement after it has been finalized.  Any use of a prepared
** statement after it has been finalized can result in undefined and
** undesirable behavior such as segfaults and heap corruption.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_finalize(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Reset A Prepared Statement Object
**
** The sqlite3_reset() function is called to reset a [prepared statement]
** object back to its initial state, ready to be re-executed.
** ^Any SQL statement variables that had values bound to them using
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
** ^If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
** ^The [sqlite3_reset(S)] interface does not change the values
** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
SQLITE_API int sqlite3_reset(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Create Or Redefine SQL Functions
** KEYWORDS: {function creation routines}
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**







|







4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
** ^If the most recent call to [sqlite3_step(S)] for the
** [prepared statement] S indicated an error, then
** [sqlite3_reset(S)] returns an appropriate [error code].
**
** ^The [sqlite3_reset(S)] interface does not change the values
** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_reset(sqlite3_stmt *pStmt);

/*
** CAPI3REF: Create Or Redefine SQL Functions
** KEYWORDS: {function creation routines}
** KEYWORDS: {application-defined SQL function}
** KEYWORDS: {application-defined SQL functions}
**
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
** ^Built-in functions may be overloaded by new application-defined functions.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
*/
SQLITE_API int sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),







|









|









|







4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
** ^Built-in functions may be overloaded by new application-defined functions.
**
** ^An application-defined function is permitted to call other
** SQLite interfaces.  However, such calls must not
** close the database connection nor finalize or reset the prepared
** statement in which the function is running.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_function(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_function16(
  sqlite3 *db,
  const void *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
  void (*xFinal)(sqlite3_context*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_function_v2(
  sqlite3 *db,
  const char *zFunctionName,
  int nArg,
  int eTextRep,
  void *pApp,
  void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
  void (*xStep)(sqlite3_context*,int,sqlite3_value**),
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 
** to be supported.  However, new applications should avoid
** the use of these functions.  To help encourage people to avoid
** using these functions, we are not going to tell you what they do.
*/
#ifndef SQLITE_OMIT_DEPRECATED
SQLITE_API SQLITE_DEPRECATED int sqlite3_aggregate_count(sqlite3_context*);
SQLITE_API SQLITE_DEPRECATED int sqlite3_expired(sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int sqlite3_global_recover(void);
SQLITE_API SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
SQLITE_API SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses







|
|


|
|
|
|
|
|







4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
/*
** CAPI3REF: Deprecated Functions
** DEPRECATED
**
** These functions are [deprecated].  In order to maintain
** backwards compatibility with older code, these functions continue 
** to be supported.  However, new applications should avoid
** the use of these functions.  To encourage programmers to avoid
** these functions, we will not explain what they do.
*/
#ifndef SQLITE_OMIT_DEPRECATED
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_aggregate_count(sqlite3_context*);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_expired(sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_global_recover(void);
SQLITE_API SQLITE_DEPRECATED void SQLITE_STDCALL sqlite3_thread_cleanup(void);
SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
**
** The C-language implementation of SQL functions and aggregates uses
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
*/
SQLITE_API const void *sqlite3_value_blob(sqlite3_value*);
SQLITE_API int sqlite3_value_bytes(sqlite3_value*);
SQLITE_API int sqlite3_value_bytes16(sqlite3_value*);
SQLITE_API double sqlite3_value_double(sqlite3_value*);
SQLITE_API int sqlite3_value_int(sqlite3_value*);
SQLITE_API sqlite3_int64 sqlite3_value_int64(sqlite3_value*);
SQLITE_API const unsigned char *sqlite3_value_text(sqlite3_value*);
SQLITE_API const void *sqlite3_value_text16(sqlite3_value*);
SQLITE_API const void *sqlite3_value_text16le(sqlite3_value*);
SQLITE_API const void *sqlite3_value_text16be(sqlite3_value*);
SQLITE_API int sqlite3_value_type(sqlite3_value*);
SQLITE_API int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**







|
|
|
|
|
|
|
|
|
|
|
|







4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
** [sqlite3_value_text16()] can be invalidated by a subsequent call to
** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
** or [sqlite3_value_text16()].
**
** These routines must be called from the same thread as
** the SQL function that supplied the [sqlite3_value*] parameters.
*/
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_blob(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes16(sqlite3_value*);
SQLITE_API double SQLITE_STDCALL sqlite3_value_double(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value*);
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value*);
SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16le(sqlite3_value*);
SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16be(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_type(sqlite3_value*);
SQLITE_API int SQLITE_STDCALL sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
** [sqlite3_context | SQL function context] that is the first parameter
** to the xStep or xFinal callback routine that implements the aggregate
** function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
*/
SQLITE_API void *sqlite3_aggregate_context(sqlite3_context*, int nBytes);

/*
** CAPI3REF: User Data For Functions
**
** ^The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** This routine must be called from the same thread in which
** the application-defined function is running.
*/
SQLITE_API void *sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Database Connection For Functions
**
** ^The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
*/
SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** These functions may be used by (non-aggregate) SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under







|













|










|







4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
** [sqlite3_context | SQL function context] that is the first parameter
** to the xStep or xFinal callback routine that implements the aggregate
** function.
**
** This routine must be called from the same thread in which
** the aggregate SQL function is running.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_aggregate_context(sqlite3_context*, int nBytes);

/*
** CAPI3REF: User Data For Functions
**
** ^The sqlite3_user_data() interface returns a copy of
** the pointer that was the pUserData parameter (the 5th parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
**
** This routine must be called from the same thread in which
** the application-defined function is running.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_user_data(sqlite3_context*);

/*
** CAPI3REF: Database Connection For Functions
**
** ^The sqlite3_context_db_handle() interface returns a copy of
** the pointer to the [database connection] (the 1st parameter)
** of the [sqlite3_create_function()]
** and [sqlite3_create_function16()] routines that originally
** registered the application defined function.
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_context_db_handle(sqlite3_context*);

/*
** CAPI3REF: Function Auxiliary Data
**
** These functions may be used by (non-aggregate) SQL functions to
** associate metadata with argument values. If the same value is passed to
** multiple invocations of the same SQL function during query execution, under
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior
**
** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()].  ^If the destructor







|
|







4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
** ^(In practice, metadata is preserved between function calls for
** function parameters that are compile-time constants, including literal
** values and [parameters] and expressions composed from the same.)^
**
** These routines must be called from the same thread in which
** the SQL function is running.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_get_auxdata(sqlite3_context*, int N);
SQLITE_API void SQLITE_STDCALL sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));


/*
** CAPI3REF: Constants Defining Special Destructor Behavior
**
** These are special values for the destructor that is passed in as the
** final argument to routines like [sqlite3_result_blob()].  ^If the destructor
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void sqlite3_result_blob64(sqlite3_context*,const void*,
                           sqlite3_uint64,void(*)(void*));
SQLITE_API void sqlite3_result_double(sqlite3_context*, double);
SQLITE_API void sqlite3_result_error(sqlite3_context*, const char*, int);
SQLITE_API void sqlite3_result_error16(sqlite3_context*, const void*, int);
SQLITE_API void sqlite3_result_error_toobig(sqlite3_context*);
SQLITE_API void sqlite3_result_error_nomem(sqlite3_context*);
SQLITE_API void sqlite3_result_error_code(sqlite3_context*, int);
SQLITE_API void sqlite3_result_int(sqlite3_context*, int);
SQLITE_API void sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
SQLITE_API void sqlite3_result_null(sqlite3_context*);
SQLITE_API void sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
SQLITE_API void sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
                           void(*)(void*), unsigned char encoding);
SQLITE_API void sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void sqlite3_result_value(sqlite3_context*, sqlite3_value*);
SQLITE_API void sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
** CAPI3REF: Define New Collating Sequences
**
** ^These functions add, remove, or modify a [collation] associated
** with the [database connection] specified as the first argument.
**







|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|







4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
** [unprotected sqlite3_value] object is required, so either
** kind of [sqlite3_value] object can be used with this interface.
**
** If these routines are called from within the different thread
** than the one containing the application-defined function that received
** the [sqlite3_context] pointer, the results are undefined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_blob64(sqlite3_context*,const void*,
                           sqlite3_uint64,void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_double(sqlite3_context*, double);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error(sqlite3_context*, const char*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error16(sqlite3_context*, const void*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_toobig(sqlite3_context*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_nomem(sqlite3_context*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_error_code(sqlite3_context*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_int(sqlite3_context*, int);
SQLITE_API void SQLITE_STDCALL sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
SQLITE_API void SQLITE_STDCALL sqlite3_result_null(sqlite3_context*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
                           void(*)(void*), unsigned char encoding);
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
SQLITE_API void SQLITE_STDCALL sqlite3_result_value(sqlite3_context*, sqlite3_value*);
SQLITE_API void SQLITE_STDCALL sqlite3_result_zeroblob(sqlite3_context*, int n);

/*
** CAPI3REF: Define New Collating Sequences
**
** ^These functions add, remove, or modify a [collation] associated
** with the [database connection] specified as the first argument.
**
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
** themselves rather than expecting SQLite to deal with it for them.
** This is different from every other SQLite interface.  The inconsistency 
** is unfortunate but cannot be changed without breaking backwards 
** compatibility.
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
*/
SQLITE_API int sqlite3_create_collation(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);
SQLITE_API int sqlite3_create_collation_v2(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDestroy)(void*)
);
SQLITE_API int sqlite3_create_collation16(
  sqlite3*, 
  const void *zName,
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);








|






|







|







4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
** themselves rather than expecting SQLite to deal with it for them.
** This is different from every other SQLite interface.  The inconsistency 
** is unfortunate but cannot be changed without breaking backwards 
** compatibility.
**
** See also:  [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation_v2(
  sqlite3*, 
  const char *zName, 
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*),
  void(*xDestroy)(void*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_collation16(
  sqlite3*, 
  const void *zName,
  int eTextRep, 
  void *pArg,
  int(*xCompare)(void*,int,const void*,int,const void*)
);

4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
** sequence function required.  The fourth parameter is the name of the
** required collation sequence.)^
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].
*/
SQLITE_API int sqlite3_collation_needed(
  sqlite3*, 
  void*, 
  void(*)(void*,sqlite3*,int eTextRep,const char*)
);
SQLITE_API int sqlite3_collation_needed16(
  sqlite3*, 
  void*,
  void(*)(void*,sqlite3*,int eTextRep,const void*)
);

#ifdef SQLITE_HAS_CODEC
/*
** Specify the key for an encrypted database.  This routine should be
** called right after sqlite3_open().
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int sqlite3_key(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The key */
);
SQLITE_API int sqlite3_key_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The key */
);

/*
** Change the key on an open database.  If the current database is not
** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
** database is decrypted.
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int sqlite3_rekey(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The new key */
);
SQLITE_API int sqlite3_rekey_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The new key */
);

/*
** Specify the activation key for a SEE database.  Unless 
** activated, none of the SEE routines will work.
*/
SQLITE_API void sqlite3_activate_see(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

#ifdef SQLITE_ENABLE_CEROD
/*
** Specify the activation key for a CEROD database.  Unless 
** activated, none of the CEROD routines will work.
*/
SQLITE_API void sqlite3_activate_cerod(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

/*
** CAPI3REF: Suspend Execution For A Short Time
**







|




|













|



|













|



|









|









|







4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
** sequence function required.  The fourth parameter is the name of the
** required collation sequence.)^
**
** The callback function should register the desired collation using
** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
** [sqlite3_create_collation_v2()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed(
  sqlite3*, 
  void*, 
  void(*)(void*,sqlite3*,int eTextRep,const char*)
);
SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed16(
  sqlite3*, 
  void*,
  void(*)(void*,sqlite3*,int eTextRep,const void*)
);

#ifdef SQLITE_HAS_CODEC
/*
** Specify the key for an encrypted database.  This routine should be
** called right after sqlite3_open().
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_key(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The key */
);
SQLITE_API int SQLITE_STDCALL sqlite3_key_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The key */
);

/*
** Change the key on an open database.  If the current database is not
** encrypted, this routine will encrypt it.  If pNew==0 or nNew==0, the
** database is decrypted.
**
** The code to implement this API is not available in the public release
** of SQLite.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rekey(
  sqlite3 *db,                   /* Database to be rekeyed */
  const void *pKey, int nKey     /* The new key */
);
SQLITE_API int SQLITE_STDCALL sqlite3_rekey_v2(
  sqlite3 *db,                   /* Database to be rekeyed */
  const char *zDbName,           /* Name of the database */
  const void *pKey, int nKey     /* The new key */
);

/*
** Specify the activation key for a SEE database.  Unless 
** activated, none of the SEE routines will work.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_activate_see(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

#ifdef SQLITE_ENABLE_CEROD
/*
** Specify the activation key for a CEROD database.  Unless 
** activated, none of the CEROD routines will work.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_activate_cerod(
  const char *zPassPhrase        /* Activation phrase */
);
#endif

/*
** CAPI3REF: Suspend Execution For A Short Time
**
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
**
** ^SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.  If the xSleep() method
** of the default VFS is not implemented correctly, or not implemented at
** all, then the behavior of sqlite3_sleep() may deviate from the description
** in the previous paragraphs.
*/
SQLITE_API int sqlite3_sleep(int);

/*
** CAPI3REF: Name Of The Folder Holding Temporary Files
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]







|







4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
**
** ^SQLite implements this interface by calling the xSleep()
** method of the default [sqlite3_vfs] object.  If the xSleep() method
** of the default VFS is not implemented correctly, or not implemented at
** all, then the behavior of sqlite3_sleep() may deviate from the description
** in the previous paragraphs.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_sleep(int);

/*
** CAPI3REF: Name Of The Folder Holding Temporary Files
**
** ^(If this global variable is made to point to a string which is
** the name of a folder (a.k.a. directory), then all temporary files
** created by SQLite when using a built-in [sqlite3_vfs | VFS]
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
SQLITE_API int sqlite3_get_autocommit(sqlite3*);

/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement
**
** ^The sqlite3_db_handle interface returns the [database connection] handle
** to which a [prepared statement] belongs.  ^The [database connection]
** returned by sqlite3_db_handle is the same [database connection]
** that was the first argument
** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
** create the statement in the first place.
*/
SQLITE_API sqlite3 *sqlite3_db_handle(sqlite3_stmt*);

/*
** CAPI3REF: Return The Filename For A Database Connection
**
** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename
** associated with database N of connection D.  ^The main database file
** has the name "main".  If there is no attached database N on the database
** connection D, or if database N is a temporary or in-memory database, then
** a NULL pointer is returned.
**
** ^The filename returned by this function is the output of the
** xFullPathname method of the [VFS].  ^In other words, the filename
** will be an absolute pathname, even if the filename used
** to open the database originally was a URI or relative pathname.
*/
SQLITE_API const char *sqlite3_db_filename(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Determine if a database is read-only
**
** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
** of connection D is read-only, 0 if it is read/write, or -1 if N is not
** the name of a database on connection D.
*/
SQLITE_API int sqlite3_db_readonly(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement
** satisfies the conditions of this routine, it returns NULL.
**
** The [database connection] pointer D in a call to
** [sqlite3_next_stmt(D,S)] must refer to an open database
** connection and in particular must not be a NULL pointer.
*/
SQLITE_API sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks
**
** ^The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** ^Any callback set by a previous call to sqlite3_commit_hook()







|











|















|








|














|







4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
** find out whether SQLite automatically rolled back the transaction after
** an error is to use this function.
**
** If another thread changes the autocommit status of the database
** connection while this routine is running, then the return value
** is undefined.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_get_autocommit(sqlite3*);

/*
** CAPI3REF: Find The Database Handle Of A Prepared Statement
**
** ^The sqlite3_db_handle interface returns the [database connection] handle
** to which a [prepared statement] belongs.  ^The [database connection]
** returned by sqlite3_db_handle is the same [database connection]
** that was the first argument
** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
** create the statement in the first place.
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_db_handle(sqlite3_stmt*);

/*
** CAPI3REF: Return The Filename For A Database Connection
**
** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename
** associated with database N of connection D.  ^The main database file
** has the name "main".  If there is no attached database N on the database
** connection D, or if database N is a temporary or in-memory database, then
** a NULL pointer is returned.
**
** ^The filename returned by this function is the output of the
** xFullPathname method of the [VFS].  ^In other words, the filename
** will be an absolute pathname, even if the filename used
** to open the database originally was a URI or relative pathname.
*/
SQLITE_API const char *SQLITE_STDCALL sqlite3_db_filename(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Determine if a database is read-only
**
** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
** of connection D is read-only, 0 if it is read/write, or -1 if N is not
** the name of a database on connection D.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_readonly(sqlite3 *db, const char *zDbName);

/*
** CAPI3REF: Find the next prepared statement
**
** ^This interface returns a pointer to the next [prepared statement] after
** pStmt associated with the [database connection] pDb.  ^If pStmt is NULL
** then this interface returns a pointer to the first prepared statement
** associated with the database connection pDb.  ^If no prepared statement
** satisfies the conditions of this routine, it returns NULL.
**
** The [database connection] pointer D in a call to
** [sqlite3_next_stmt(D,S)] must refer to an open database
** connection and in particular must not be a NULL pointer.
*/
SQLITE_API sqlite3_stmt *SQLITE_STDCALL sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);

/*
** CAPI3REF: Commit And Rollback Notification Callbacks
**
** ^The sqlite3_commit_hook() interface registers a callback
** function to be invoked whenever a transaction is [COMMIT | committed].
** ^Any callback set by a previous call to sqlite3_commit_hook()
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** ^The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
**
** See also the [sqlite3_update_hook()] interface.
*/
SQLITE_API void *sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
SQLITE_API void *sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);

/*
** CAPI3REF: Data Change Notification Callbacks
**
** ^The sqlite3_update_hook() interface registers a callback function
** with the [database connection] identified by the first argument
** to be invoked whenever a row is updated, inserted or deleted in







|
|







5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
** rolled back if an explicit "ROLLBACK" statement is executed, or
** an error or constraint causes an implicit rollback to occur.
** ^The rollback callback is not invoked if a transaction is
** automatically rolled back because the database connection is closed.
**
** See also the [sqlite3_update_hook()] interface.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
SQLITE_API void *SQLITE_STDCALL sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);

/*
** CAPI3REF: Data Change Notification Callbacks
**
** ^The sqlite3_update_hook() interface registers a callback function
** with the [database connection] identified by the first argument
** to be invoked whenever a row is updated, inserted or deleted in
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
** returns the P argument from the previous call
** on the same [database connection] D, or NULL for
** the first call on D.
**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.
*/
SQLITE_API void *sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache







|







5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
** returns the P argument from the previous call
** on the same [database connection] D, or NULL for
** the first call on D.
**
** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
** interfaces.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_update_hook(
  sqlite3*, 
  void(*)(void *,int ,char const *,char const *,sqlite3_int64),
  void*
);

/*
** CAPI3REF: Enable Or Disable Shared Pager Cache
5061
5062
5063
5064
5065
5066
5067





5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
**
** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.)^
**
** ^Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.





**
** This interface is threadsafe on processors where writing a
** 32-bit integer is atomic.
**
** See Also:  [SQLite Shared-Cache Mode]
*/
SQLITE_API int sqlite3_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite3_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
** ^The sqlite3_release_memory() routine is a no-op returning zero
** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** See also: [sqlite3_db_release_memory()]
*/
SQLITE_API int sqlite3_release_memory(int);

/*
** CAPI3REF: Free Memory Used By A Database Connection
**
** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
** memory as possible from database connection D. Unlike the
** [sqlite3_release_memory()] interface, this interface is in effect even
** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
** omitted.
**
** See also: [sqlite3_release_memory()]
*/
SQLITE_API int sqlite3_db_release_memory(sqlite3*);

/*
** CAPI3REF: Impose A Limit On Heap Size
**
** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
** soft limit on the amount of heap memory that may be allocated by SQLite.
** ^SQLite strives to keep heap memory utilization below the soft heap







>
>
>
>
>






|















|












|







5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
**
** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
** successfully.  An [error code] is returned otherwise.)^
**
** ^Shared cache is disabled by default. But this might change in
** future releases of SQLite.  Applications that care about shared
** cache setting should set it explicitly.
**
** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
** and will always return SQLITE_MISUSE. On those systems, 
** shared cache mode should be enabled per-database connection via 
** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
**
** This interface is threadsafe on processors where writing a
** 32-bit integer is atomic.
**
** See Also:  [SQLite Shared-Cache Mode]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_enable_shared_cache(int);

/*
** CAPI3REF: Attempt To Free Heap Memory
**
** ^The sqlite3_release_memory() interface attempts to free N bytes
** of heap memory by deallocating non-essential memory allocations
** held by the database library.   Memory used to cache database
** pages to improve performance is an example of non-essential memory.
** ^sqlite3_release_memory() returns the number of bytes actually freed,
** which might be more or less than the amount requested.
** ^The sqlite3_release_memory() routine is a no-op returning zero
** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** See also: [sqlite3_db_release_memory()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_release_memory(int);

/*
** CAPI3REF: Free Memory Used By A Database Connection
**
** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
** memory as possible from database connection D. Unlike the
** [sqlite3_release_memory()] interface, this interface is in effect even
** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
** omitted.
**
** See also: [sqlite3_release_memory()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_release_memory(sqlite3*);

/*
** CAPI3REF: Impose A Limit On Heap Size
**
** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
** soft limit on the amount of heap memory that may be allocated by SQLite.
** ^SQLite strives to keep heap memory utilization below the soft heap
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
** the page cache is the predominate memory user in SQLite, most
** applications will achieve adequate soft heap limit enforcement without
** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** The circumstances under which SQLite will enforce the soft heap limit may
** changes in future releases of SQLite.
*/
SQLITE_API sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 N);

/*
** CAPI3REF: Deprecated Soft Heap Limit Interface
** DEPRECATED
**
** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
** interface.  This routine is provided for historical compatibility
** only.  All new applications should use the
** [sqlite3_soft_heap_limit64()] interface rather than this one.
*/
SQLITE_API SQLITE_DEPRECATED void sqlite3_soft_heap_limit(int N);


/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
** information about column C of table T in database D







|










|







5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
** the page cache is the predominate memory user in SQLite, most
** applications will achieve adequate soft heap limit enforcement without
** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
**
** The circumstances under which SQLite will enforce the soft heap limit may
** changes in future releases of SQLite.
*/
SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_soft_heap_limit64(sqlite3_int64 N);

/*
** CAPI3REF: Deprecated Soft Heap Limit Interface
** DEPRECATED
**
** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
** interface.  This routine is provided for historical compatibility
** only.  All new applications should use the
** [sqlite3_soft_heap_limit64()] interface rather than this one.
*/
SQLITE_API SQLITE_DEPRECATED void SQLITE_STDCALL sqlite3_soft_heap_limit(int N);


/*
** CAPI3REF: Extract Metadata About A Column Of A Table
**
** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
** information about column C of table T in database D
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
**     auto increment: 0
** </pre>)^
**
** ^This function causes all database schemas to be read from disk and
** parsed, if that has not already been done, and returns an error if
** any errors are encountered while loading the schema.
*/
SQLITE_API int sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */







|







5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
**     auto increment: 0
** </pre>)^
**
** ^This function causes all database schemas to be read from disk and
** parsed, if that has not already been done, and returns an error if
** any errors are encountered while loading the schema.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_table_column_metadata(
  sqlite3 *db,                /* Connection handle */
  const char *zDbName,        /* Database name or NULL */
  const char *zTableName,     /* Table name */
  const char *zColumnName,    /* Column name */
  char const **pzDataType,    /* OUTPUT: Declared data type */
  char const **pzCollSeq,     /* OUTPUT: Collation sequence name */
  int *pNotNull,              /* OUTPUT: True if NOT NULL constraint exists */
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
**
** ^Extension loading must be enabled using
** [sqlite3_enable_load_extension()] prior to calling this API,
** otherwise an error will be returned.
**
** See also the [load_extension() SQL function].
*/
SQLITE_API int sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
);

/*
** CAPI3REF: Enable Or Disable Extension Loading
**
** ^So as not to open security holes in older applications that are
** unprepared to deal with [extension loading], and as a means of disabling
** [extension loading] while evaluating user-entered SQL, the following API
** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
** ^Extension loading is off by default.
** ^Call the sqlite3_enable_load_extension() routine with onoff==1
** to turn extension loading on and call it with onoff==0 to turn
** it back off again.
*/
SQLITE_API int sqlite3_enable_load_extension(sqlite3 *db, int onoff);

/*
** CAPI3REF: Automatically Load Statically Linked Extensions
**
** ^This interface causes the xEntryPoint() function to be invoked for
** each new [database connection] that is created.  The idea here is that
** xEntryPoint() is the entry point for a statically linked [SQLite extension]







|



















|







5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
**
** ^Extension loading must be enabled using
** [sqlite3_enable_load_extension()] prior to calling this API,
** otherwise an error will be returned.
**
** See also the [load_extension() SQL function].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_load_extension(
  sqlite3 *db,          /* Load the extension into this database connection */
  const char *zFile,    /* Name of the shared library containing extension */
  const char *zProc,    /* Entry point.  Derived from zFile if 0 */
  char **pzErrMsg       /* Put error message here if not 0 */
);

/*
** CAPI3REF: Enable Or Disable Extension Loading
**
** ^So as not to open security holes in older applications that are
** unprepared to deal with [extension loading], and as a means of disabling
** [extension loading] while evaluating user-entered SQL, the following API
** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
**
** ^Extension loading is off by default.
** ^Call the sqlite3_enable_load_extension() routine with onoff==1
** to turn extension loading on and call it with onoff==0 to turn
** it back off again.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_enable_load_extension(sqlite3 *db, int onoff);

/*
** CAPI3REF: Automatically Load Statically Linked Extensions
**
** ^This interface causes the xEntryPoint() function to be invoked for
** each new [database connection] that is created.  The idea here is that
** xEntryPoint() is the entry point for a statically linked [SQLite extension]
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
** on the list of automatic extensions is a harmless no-op. ^No entry point
** will be called more than once for each database connection that is opened.
**
** See also: [sqlite3_reset_auto_extension()]
** and [sqlite3_cancel_auto_extension()]
*/
SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Cancel Automatic Extension Loading
**
** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
** initialization routine X that was registered using a prior call to
** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
** routine returns 1 if initialization routine X was successfully 
** unregistered and it returns 0 if X was not on the list of initialization
** routines.
*/
SQLITE_API int sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^This interface disables all automatic extensions previously
** registered using [sqlite3_auto_extension()].
*/
SQLITE_API void sqlite3_reset_auto_extension(void);

/*
** The interface to the virtual-table mechanism is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the







|











|







|







5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
** on the list of automatic extensions is a harmless no-op. ^No entry point
** will be called more than once for each database connection that is opened.
**
** See also: [sqlite3_reset_auto_extension()]
** and [sqlite3_cancel_auto_extension()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Cancel Automatic Extension Loading
**
** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
** initialization routine X that was registered using a prior call to
** [sqlite3_auto_extension(X)].  ^The [sqlite3_cancel_auto_extension(X)]
** routine returns 1 if initialization routine X was successfully 
** unregistered and it returns 0 if X was not on the list of initialization
** routines.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));

/*
** CAPI3REF: Reset Automatic Extension Loading
**
** ^This interface disables all automatic extensions previously
** registered using [sqlite3_auto_extension()].
*/
SQLITE_API void SQLITE_STDCALL sqlite3_reset_auto_extension(void);

/*
** The interface to the virtual-table mechanism is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
** When the virtual-table mechanism stabilizes, we will declare the
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  ^The destructor will also
** be invoked if the call to sqlite3_create_module_v2() fails.
** ^The sqlite3_create_module()
** interface is equivalent to sqlite3_create_module_v2() with a NULL
** destructor.
*/
SQLITE_API int sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);
SQLITE_API int sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);








|





|







5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
** invoke the destructor function (if it is not NULL) when SQLite
** no longer needs the pClientData pointer.  ^The destructor will also
** be invoked if the call to sqlite3_create_module_v2() fails.
** ^The sqlite3_create_module()
** interface is equivalent to sqlite3_create_module_v2() with a NULL
** destructor.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_create_module(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData          /* Client data for xCreate/xConnect */
);
SQLITE_API int SQLITE_STDCALL sqlite3_create_module_v2(
  sqlite3 *db,               /* SQLite connection to register module with */
  const char *zName,         /* Name of the module */
  const sqlite3_module *p,   /* Methods for the module */
  void *pClientData,         /* Client data for xCreate/xConnect */
  void(*xDestroy)(void*)     /* Module destructor function */
);

5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  ^After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* NO LONGER USED */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}







|







5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
** take care that any prior string is freed by a call to [sqlite3_free()]
** prior to assigning a new string to zErrMsg.  ^After the error message
** is delivered up to the client application, the string will be automatically
** freed by sqlite3_free() and the zErrMsg field will be zeroed.
*/
struct sqlite3_vtab {
  const sqlite3_module *pModule;  /* The module for this virtual table */
  int nRef;                       /* Number of open cursors */
  char *zErrMsg;                  /* Error message from sqlite3_mprintf() */
  /* Virtual table implementations will typically add additional fields */
};

/*
** CAPI3REF: Virtual Table Cursor Object
** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
** CAPI3REF: Declare The Schema Of A Virtual Table
**
** ^The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_API int sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table
**
** ^(Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.)^
**
** ^(This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.)^  ^The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].
*/
SQLITE_API int sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**







|

















|







5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
** CAPI3REF: Declare The Schema Of A Virtual Table
**
** ^The [xCreate] and [xConnect] methods of a
** [virtual table module] call this interface
** to declare the format (the names and datatypes of the columns) of
** the virtual tables they implement.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_declare_vtab(sqlite3*, const char *zSQL);

/*
** CAPI3REF: Overload A Function For A Virtual Table
**
** ^(Virtual tables can provide alternative implementations of functions
** using the [xFindFunction] method of the [virtual table module].  
** But global versions of those functions
** must exist in order to be overloaded.)^
**
** ^(This API makes sure a global version of a function with a particular
** name and number of parameters exists.  If no such function exists
** before this API is called, a new function is created.)^  ^The implementation
** of the new function always causes an exception to be thrown.  So
** the new function is not good for anything by itself.  Its only
** purpose is to be a placeholder function that can be overloaded
** by a [virtual table].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);

/*
** The interface to the virtual-table mechanism defined above (back up
** to a comment remarkably similar to this one) is currently considered
** to be experimental.  The interface might change in incompatible ways.
** If this is a problem for you, do not use the interface at this time.
**
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
SQLITE_API int sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob







|







5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
** and the built-in [zeroblob] SQL function may be used to create a 
** zero-filled blob to read or write using the incremental-blob interface.
**
** To avoid a resource leak, every open [BLOB handle] should eventually
** be released by a call to [sqlite3_blob_close()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_open(
  sqlite3*,
  const char *zDb,
  const char *zTable,
  const char *zColumn,
  sqlite3_int64 iRow,
  int flags,
  sqlite3_blob **ppBlob
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
** handle is still closed.)^







|







5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
** handle is still closed.)^
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
** Calling this function with an argument that is not a NULL pointer or an
** open blob handle results in undefined behaviour. ^Calling this routine 
** with a null pointer (such as would be returned by a failed call to 
** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
** is passed a valid open blob handle, the values returned by the 
** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
*/
SQLITE_API int sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  ^The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
*/
SQLITE_API int sqlite3_blob_bytes(sqlite3_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally
**
** ^(This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.)^







|














|







5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
** Calling this function with an argument that is not a NULL pointer or an
** open blob handle results in undefined behaviour. ^Calling this routine 
** with a null pointer (such as would be returned by a failed call to 
** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
** is passed a valid open blob handle, the values returned by the 
** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_close(sqlite3_blob *);

/*
** CAPI3REF: Return The Size Of An Open BLOB
**
** ^Returns the size in bytes of the BLOB accessible via the 
** successfully opened [BLOB handle] in its only argument.  ^The
** incremental blob I/O routines can only read or overwriting existing
** blob content; they cannot change the size of a blob.
**
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_bytes(sqlite3_blob *);

/*
** CAPI3REF: Read Data From A BLOB Incrementally
**
** ^(This function is used to read data from an open [BLOB handle] into a
** caller-supplied buffer. N bytes of data are copied into buffer Z
** from the open BLOB, starting at offset iOffset.)^
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].
*/
SQLITE_API int sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^(This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.)^







|







5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_write()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);

/*
** CAPI3REF: Write Data Into A BLOB Incrementally
**
** ^(This function is used to write data into an open [BLOB handle] from a
** caller-supplied buffer. N bytes of data are copied from the buffer Z
** into the open BLOB, starting at offset iOffset.)^
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
SQLITE_API int sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a







|







5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
** This routine only works on a [BLOB handle] which has been created
** by a prior successful call to [sqlite3_blob_open()] and which has not
** been closed by [sqlite3_blob_close()].  Passing any other pointer in
** to this routine results in undefined and probably undesirable behavior.
**
** See also: [sqlite3_blob_read()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);

/*
** CAPI3REF: Virtual File System Objects
**
** A virtual filesystem (VFS) is an [sqlite3_vfs] object
** that SQLite uses to interact
** with the underlying operating system.  Most SQLite builds come with a
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
** ^(If the default VFS is unregistered, another VFS is chosen as
** the default.  The choice for the new VFS is arbitrary.)^
*/
SQLITE_API sqlite3_vfs *sqlite3_vfs_find(const char *zVfsName);
SQLITE_API int sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
SQLITE_API int sqlite3_vfs_unregister(sqlite3_vfs*);

/*
** CAPI3REF: Mutexes
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is







|
|
|







5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
** VFS is registered with a name that is NULL or an empty string,
** then the behavior is undefined.
**
** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
** ^(If the default VFS is unregistered, another VFS is chosen as
** the default.  The choice for the new VFS is arbitrary.)^
*/
SQLITE_API sqlite3_vfs *SQLITE_STDCALL sqlite3_vfs_find(const char *zVfsName);
SQLITE_API int SQLITE_STDCALL sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
SQLITE_API int SQLITE_STDCALL sqlite3_vfs_unregister(sqlite3_vfs*);

/*
** CAPI3REF: Mutexes
**
** The SQLite core uses these routines for thread
** synchronization. Though they are intended for internal
** use by SQLite, code that links against SQLite is
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
SQLITE_API sqlite3_mutex *sqlite3_mutex_alloc(int);
SQLITE_API void sqlite3_mutex_free(sqlite3_mutex*);
SQLITE_API void sqlite3_mutex_enter(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_try(sqlite3_mutex*);
SQLITE_API void sqlite3_mutex_leave(sqlite3_mutex*);

/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**







|
|
|
|
|







6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
**
** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
** sqlite3_mutex_leave() is a NULL pointer, then all three routines
** behave as no-ops.
**
** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
*/
SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_mutex_alloc(int);
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_free(sqlite3_mutex*);
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_enter(sqlite3_mutex*);
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_try(sqlite3_mutex*);
SQLITE_API void SQLITE_STDCALL sqlite3_mutex_leave(sqlite3_mutex*);

/*
** CAPI3REF: Mutex Methods Object
**
** An instance of this structure defines the low-level routines
** used to allocate and use mutexes.
**
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
SQLITE_API int sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

/*
** CAPI3REF: Mutex Types
**
** The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants.







|
|







6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
** the reason the mutex does not exist is because the build is not
** using mutexes.  And we do not want the assert() containing the
** call to sqlite3_mutex_held() to fail, so a non-zero return is
** the appropriate thing to do.  The sqlite3_mutex_notheld()
** interface should also return 1 when given a NULL pointer.
*/
#ifndef NDEBUG
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_held(sqlite3_mutex*);
SQLITE_API int SQLITE_STDCALL sqlite3_mutex_notheld(sqlite3_mutex*);
#endif

/*
** CAPI3REF: Mutex Types
**
** The [sqlite3_mutex_alloc()] interface takes a single argument
** which is one of these integer constants.
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
** ^If the [threading mode] is Single-thread or Multi-thread then this
** routine returns a NULL pointer.
*/
SQLITE_API sqlite3_mutex *sqlite3_db_mutex(sqlite3*);

/*
** CAPI3REF: Low-Level Control Of Database Files
**
** ^The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. ^The







|







6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
**
** ^This interface returns a pointer the [sqlite3_mutex] object that 
** serializes access to the [database connection] given in the argument
** when the [threading mode] is Serialized.
** ^If the [threading mode] is Single-thread or Multi-thread then this
** routine returns a NULL pointer.
*/
SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_db_mutex(sqlite3*);

/*
** CAPI3REF: Low-Level Control Of Database Files
**
** ^The [sqlite3_file_control()] interface makes a direct call to the
** xFileControl method for the [sqlite3_io_methods] object associated
** with a particular database identified by the second argument. ^The
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
** or [sqlite3_errmsg()].  The underlying xFileControl method might
** also return SQLITE_ERROR.  There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method.
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
SQLITE_API int sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);

/*
** CAPI3REF: Testing Interface
**
** ^The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes.  ^The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications.  It exists solely
** for verifying the correct operation of the SQLite library.  Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
SQLITE_API int sqlite3_test_control(int op, ...);

/*
** CAPI3REF: Testing Interface Operation Codes
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**







|


















|







6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
** or [sqlite3_errmsg()].  The underlying xFileControl method might
** also return SQLITE_ERROR.  There is no way to distinguish between
** an incorrect zDbName and an SQLITE_ERROR return from the underlying
** xFileControl method.
**
** See also: [SQLITE_FCNTL_LOCKSTATE]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);

/*
** CAPI3REF: Testing Interface
**
** ^The sqlite3_test_control() interface is used to read out internal
** state of SQLite and to inject faults into SQLite for testing
** purposes.  ^The first parameter is an operation code that determines
** the number, meaning, and operation of all subsequent parameters.
**
** This interface is not for use by applications.  It exists solely
** for verifying the correct operation of the SQLite library.  Depending
** on how the SQLite library is compiled, this interface might not exist.
**
** The details of the operation codes, their meanings, the parameters
** they take, and what they do are all subject to change without notice.
** Unlike most of the SQLite API, this function is not guaranteed to
** operate consistently from one release to the next.
*/
SQLITE_API int SQLITE_CDECL sqlite3_test_control(int op, ...);

/*
** CAPI3REF: Testing Interface Operation Codes
**
** These constants are the valid operation code parameters used
** as the first argument to [sqlite3_test_control()].
**
6261
6262
6263
6264
6265
6266
6267

6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295

6296
6297
6298
6299






6300
6301
6302
6303
6304
6305
6306
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24

#define SQLITE_TESTCTRL_LAST                    24

/*
** CAPI3REF: SQLite Runtime Status
**
** ^This interface is used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [status parameters | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** This routine is threadsafe but is not atomic.  This routine can be
** called while other threads are running the same or different SQLite
** interfaces.  However the values returned in *pCurrent and
** *pHighwater reflect the status of SQLite at different points in time
** and it is possible that another thread might change the parameter
** in between the times when *pCurrent and *pHighwater are written.

**
** See also: [sqlite3_db_status()]
*/
SQLITE_API int sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);








/*
** CAPI3REF: Status Parameters
** KEYWORDS: {status parameters}
**
** These integer constants designate various run-time status parameters







>
|




|













|
|

<
|
|
<
<
<
>



|
>
>
>
>
>
>







6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326

6327
6328



6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
#define SQLITE_TESTCTRL_LOCALTIME_FAULT         18
#define SQLITE_TESTCTRL_EXPLAIN_STMT            19  /* NOT USED */
#define SQLITE_TESTCTRL_NEVER_CORRUPT           20
#define SQLITE_TESTCTRL_VDBE_COVERAGE           21
#define SQLITE_TESTCTRL_BYTEORDER               22
#define SQLITE_TESTCTRL_ISINIT                  23
#define SQLITE_TESTCTRL_SORTER_MMAP             24
#define SQLITE_TESTCTRL_IMPOSTER                25
#define SQLITE_TESTCTRL_LAST                    25

/*
** CAPI3REF: SQLite Runtime Status
**
** ^These interfaces are used to retrieve runtime status information
** about the performance of SQLite, and optionally to reset various
** highwater marks.  ^The first argument is an integer code for
** the specific parameter to measure.  ^(Recognized integer codes
** are of the form [status parameters | SQLITE_STATUS_...].)^
** ^The current value of the parameter is returned into *pCurrent.
** ^The highest recorded value is returned in *pHighwater.  ^If the
** resetFlag is true, then the highest record value is reset after
** *pHighwater is written.  ^(Some parameters do not record the highest
** value.  For those parameters
** nothing is written into *pHighwater and the resetFlag is ignored.)^
** ^(Other parameters record only the highwater mark and not the current
** value.  For these latter parameters nothing is written into *pCurrent.)^
**
** ^The sqlite3_status() and sqlite3_status64() routines return
** SQLITE_OK on success and a non-zero [error code] on failure.
**

** If either the current value or the highwater mark is too large to
** be represented by a 32-bit integer, then the values returned by



** sqlite3_status() are undefined.
**
** See also: [sqlite3_db_status()]
*/
SQLITE_API int SQLITE_STDCALL sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
SQLITE_API int SQLITE_STDCALL sqlite3_status64(
  int op,
  sqlite3_int64 *pCurrent,
  sqlite3_int64 *pHighwater,
  int resetFlag
);


/*
** CAPI3REF: Status Parameters
** KEYWORDS: {status parameters}
**
** These integer constants designate various run-time status parameters
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
** reset back down to the current value.
**
** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_API int sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections
** KEYWORDS: {SQLITE_DBSTATUS options}
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.







|







6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
** reset back down to the current value.
**
** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
** non-zero [error code] on failure.
**
** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);

/*
** CAPI3REF: Status Parameters for database connections
** KEYWORDS: {SQLITE_DBSTATUS options}
**
** These constants are the available integer "verbs" that can be passed as
** the second argument to the [sqlite3_db_status()] interface.
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
** to be interrogated.)^
** ^The current value of the requested counter is returned.
** ^If the resetFlg is true, then the counter is reset to zero after this
** interface call returns.
**
** See also: [sqlite3_status()] and [sqlite3_db_status()].
*/
SQLITE_API int sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);

/*
** CAPI3REF: Status Parameters for prepared statements
** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
**
** These preprocessor macros define integer codes that name counter
** values associated with the [sqlite3_stmt_status()] interface.







|







6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
** to be interrogated.)^
** ^The current value of the requested counter is returned.
** ^If the resetFlg is true, then the counter is reset to zero after this
** interface call returns.
**
** See also: [sqlite3_status()] and [sqlite3_db_status()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);

/*
** CAPI3REF: Status Parameters for prepared statements
** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
**
** These preprocessor macros define integer codes that name counter
** values associated with the [sqlite3_stmt_status()] interface.
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971

6972
6973
6974
6975
6976
6977
6978
6979
6980
6981


6982
6983
6984
6985
6986
6987
6988
6989
** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
** sqlite3_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** [[sqlite3_backup__remaining()]] [[sqlite3_backup_pagecount()]]
** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
**

** ^Each call to sqlite3_backup_step() sets two values inside
** the [sqlite3_backup] object: the number of pages still to be backed
** up and the total number of pages in the source database file.
** The sqlite3_backup_remaining() and sqlite3_backup_pagecount() interfaces
** retrieve these two values, respectively.
**
** ^The values returned by these functions are only updated by
** sqlite3_backup_step(). ^If the source database is modified during a backup
** operation, then the values are not updated to account for any extra
** pages that need to be updated or the size of the source database file


** changing.
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently







|


>
|
|
|
|
<
<
|
|
<
|
>
>
|







7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016


7017
7018

7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
** sqlite3_backup_finish() returns the corresponding [error code].
**
** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
** is not a permanent error and does not affect the return value of
** sqlite3_backup_finish().
**
** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
**
** ^The sqlite3_backup_remaining() routine returns the number of pages still
** to be backed up at the conclusion of the most recent sqlite3_backup_step().
** ^The sqlite3_backup_pagecount() routine returns the total number of pages
** in the source database at the conclusion of the most recent
** sqlite3_backup_step().


** ^(The values returned by these functions are only updated by
** sqlite3_backup_step(). If the source database is modified in a way that

** changes the size of the source database or the number of pages remaining,
** those changes are not reflected in the output of sqlite3_backup_pagecount()
** and sqlite3_backup_remaining() until after the next
** sqlite3_backup_step().)^
**
** <b>Concurrent Usage of Database Handles</b>
**
** ^The source [database connection] may be used by the application for other
** purposes while a backup operation is underway or being initialized.
** ^If SQLite is compiled and configured to support threadsafe database
** connections, then the source database connection may be used concurrently
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
** same time as another thread is invoking sqlite3_backup_step() it is
** possible that they return invalid values.
*/
SQLITE_API sqlite3_backup *sqlite3_backup_init(
  sqlite3 *pDest,                        /* Destination database handle */
  const char *zDestName,                 /* Destination database name */
  sqlite3 *pSource,                      /* Source database handle */
  const char *zSourceName                /* Source database name */
);
SQLITE_API int sqlite3_backup_step(sqlite3_backup *p, int nPage);
SQLITE_API int sqlite3_backup_finish(sqlite3_backup *p);
SQLITE_API int sqlite3_backup_remaining(sqlite3_backup *p);
SQLITE_API int sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See







|





|
|
|
|







7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
** The [sqlite3_backup] object itself is partially threadsafe. Multiple 
** threads may safely make multiple concurrent calls to sqlite3_backup_step().
** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
** APIs are not strictly speaking threadsafe. If they are invoked at the
** same time as another thread is invoking sqlite3_backup_step() it is
** possible that they return invalid values.
*/
SQLITE_API sqlite3_backup *SQLITE_STDCALL sqlite3_backup_init(
  sqlite3 *pDest,                        /* Destination database handle */
  const char *zDestName,                 /* Destination database name */
  sqlite3 *pSource,                      /* Source database handle */
  const char *zSourceName                /* Source database name */
);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_step(sqlite3_backup *p, int nPage);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_finish(sqlite3_backup *p);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_remaining(sqlite3_backup *p);
SQLITE_API int SQLITE_STDCALL sqlite3_backup_pagecount(sqlite3_backup *p);

/*
** CAPI3REF: Unlock Notification
**
** ^When running in shared-cache mode, a database operation may fail with
** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
** individual tables within the shared-cache cannot be obtained. See
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. ^(If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.)^
*/
SQLITE_API int sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
**
** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
** and extensions to compare the contents of two buffers containing UTF-8
** strings in a case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int sqlite3_stricmp(const char *, const char *);
SQLITE_API int sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
*/
SQLITE_API int sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are







|














|
|














|







7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
**
** One way around this problem is to check the extended error code returned
** by an sqlite3_step() call. ^(If there is a blocking connection, then the
** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
** the special "DROP TABLE/INDEX" case, the extended error code is just 
** SQLITE_LOCKED.)^
*/
SQLITE_API int SQLITE_STDCALL sqlite3_unlock_notify(
  sqlite3 *pBlocked,                          /* Waiting connection */
  void (*xNotify)(void **apArg, int nArg),    /* Callback function to invoke */
  void *pNotifyArg                            /* Argument to pass to xNotify */
);


/*
** CAPI3REF: String Comparison
**
** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
** and extensions to compare the contents of two buffers containing UTF-8
** strings in a case-independent fashion, using the same definition of "case
** independence" that SQLite uses internally when comparing identifiers.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
**
** To avoid deadlocks and other threading problems, the sqlite3_log() routine
** will not use dynamically allocated memory.  The log message is stored in
** a fixed-length buffer on the stack.  If the log message is longer than
** a few hundred characters, it will be truncated to the length of the
** buffer.
*/
SQLITE_API void sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** is invoked each time data is committed to a database in wal mode.
**







|







7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
**
** To avoid deadlocks and other threading problems, the sqlite3_log() routine
** will not use dynamically allocated memory.  The log message is stored in
** a fixed-length buffer on the stack.  If the log message is longer than
** a few hundred characters, it will be truncated to the length of the
** buffer.
*/
SQLITE_API void SQLITE_CDECL sqlite3_log(int iErrCode, const char *zFormat, ...);

/*
** CAPI3REF: Write-Ahead Log Commit Hook
**
** ^The [sqlite3_wal_hook()] function is used to register a callback that
** is invoked each time data is committed to a database in wal mode.
**
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
** A single database handle may have at most a single write-ahead log callback 
** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
** previously registered write-ahead log callback. ^Note that the
** [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
** those overwrite any prior [sqlite3_wal_hook()] settings.
*/
SQLITE_API void *sqlite3_wal_hook(
  sqlite3*, 
  int(*)(void *,sqlite3*,const char*,int),
  void*
);

/*
** CAPI3REF: Configure an auto-checkpoint







|







7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
** A single database handle may have at most a single write-ahead log callback 
** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
** previously registered write-ahead log callback. ^Note that the
** [sqlite3_wal_autocheckpoint()] interface and the
** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
** those overwrite any prior [sqlite3_wal_hook()] settings.
*/
SQLITE_API void *SQLITE_STDCALL sqlite3_wal_hook(
  sqlite3*, 
  int(*)(void *,sqlite3*,const char*,int),
  void*
);

/*
** CAPI3REF: Configure an auto-checkpoint
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
SQLITE_API int sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
**
** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the 
** [write-ahead log] for database X on [database connection] D to be
** transferred into the database file and for the write-ahead log to
** be reset.  See the [checkpointing] documentation for addition
** information.
**
** This interface used to be the only way to cause a checkpoint to
** occur.  But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
** interface was added.  This interface is retained for backwards
** compatibility and as a convenience for applications that need to manually
** start a callback but which do not need the full power (and corresponding
** complication) of [sqlite3_wal_checkpoint_v2()].
*/
SQLITE_API int sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
** operation on database X of [database connection] D in mode M.  Status
** information is written back into integers pointed to by L and C.)^







|




















|







7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
**
** ^Every new [database connection] defaults to having the auto-checkpoint
** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
** pages.  The use of this interface
** is only necessary if the default setting is found to be suboptimal
** for a particular application.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_autocheckpoint(sqlite3 *db, int N);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
**
** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the 
** [write-ahead log] for database X on [database connection] D to be
** transferred into the database file and for the write-ahead log to
** be reset.  See the [checkpointing] documentation for addition
** information.
**
** This interface used to be the only way to cause a checkpoint to
** occur.  But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
** interface was added.  This interface is retained for backwards
** compatibility and as a convenience for applications that need to manually
** start a callback but which do not need the full power (and corresponding
** complication) of [sqlite3_wal_checkpoint_v2()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);

/*
** CAPI3REF: Checkpoint a database
**
** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
** operation on database X of [database connection] D in mode M.  Status
** information is written back into integers pointed to by L and C.)^
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
** the sqlite3_wal_checkpoint_v2() interface
** sets the error information that is queried by
** [sqlite3_errcode()] and [sqlite3_errmsg()].
**
** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
** from SQL.
*/
SQLITE_API int sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);








|







7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
** the sqlite3_wal_checkpoint_v2() interface
** sets the error information that is queried by
** [sqlite3_errcode()] and [sqlite3_errmsg()].
**
** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
** from SQL.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint_v2(
  sqlite3 *db,                    /* Database handle */
  const char *zDb,                /* Name of attached database (or NULL) */
  int eMode,                      /* SQLITE_CHECKPOINT_* value */
  int *pnLog,                     /* OUT: Size of WAL log in frames */
  int *pnCkpt                     /* OUT: Total number of frames checkpointed */
);

7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
** If this interface is invoked outside the context of an xConnect or
** xCreate virtual table method then the behavior is undefined.
**
** At present, there is only one option that may be configured using
** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].)  Further options
** may be added in the future.
*/
SQLITE_API int sqlite3_vtab_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.







|







7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
** If this interface is invoked outside the context of an xConnect or
** xCreate virtual table method then the behavior is undefined.
**
** At present, there is only one option that may be configured using
** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].)  Further options
** may be added in the future.
*/
SQLITE_API int SQLITE_CDECL sqlite3_vtab_config(sqlite3*, int op, ...);

/*
** CAPI3REF: Virtual Table Configuration Options
**
** These macros define the various options to the
** [sqlite3_vtab_config()] interface that [virtual table] implementations
** can use to customize and optimize their behavior.
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
** This function may only be called from within a call to the [xUpdate] method
** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
** of the SQL statement that triggered the call to the [xUpdate] method of the
** [virtual table].
*/
SQLITE_API int sqlite3_vtab_on_conflict(sqlite3 *);

/*
** CAPI3REF: Conflict resolution modes
** KEYWORDS: {conflict resolution mode}
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode







|







7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
** This function may only be called from within a call to the [xUpdate] method
** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
** of the SQL statement that triggered the call to the [xUpdate] method of the
** [virtual table].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_vtab_on_conflict(sqlite3 *);

/*
** CAPI3REF: Conflict resolution modes
** KEYWORDS: {conflict resolution mode}
**
** These constants are returned by [sqlite3_vtab_on_conflict()] to
** inform a [virtual table] implementation what the [ON CONFLICT] mode
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_API SQLITE_EXPERIMENTAL int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT







|














|







7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647

/*
** Register a geometry callback named zGeom that can be used as part of an
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
  void *pContext
);









|







7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687

/*
** Register a geometry callback named zGeom that can be used as part of an
** R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_geometry_callback(
  sqlite3 *db,
  const char *zGeom,
  int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
  void *pContext
);


7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673

/*
** Register a 2nd-generation geometry callback named zScore that can be 
** used as part of an R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
*/
SQLITE_API int sqlite3_rtree_query_callback(
  sqlite3 *db,
  const char *zQueryFunc,
  int (*xQueryFunc)(sqlite3_rtree_query_info*),
  void *pContext,
  void (*xDestructor)(void*)
);








|







7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713

/*
** Register a 2nd-generation geometry callback named zScore that can be 
** used as part of an R-Tree geometry query as follows:
**
**   SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
*/
SQLITE_API int SQLITE_STDCALL sqlite3_rtree_query_callback(
  sqlite3 *db,
  const char *zQueryFunc,
  int (*xQueryFunc)(sqlite3_rtree_query_info*),
  void *pContext,
  void (*xDestructor)(void*)
);