sqllogictest

Check-in [08c712f2f6]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Bring in the latest SQLite 3.10.0 beta.
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 08c712f2f6ccb3d5cca22348f78df3a0c263dcfb
User & Date: drh 2016-01-04 21:04:35.062
Context
2016-02-09
22:14
Update the built-in SQLite to the latest 3.11.0 beta. check-in: 5acb229d1c user: drh tags: trunk
2016-01-04
21:04
Bring in the latest SQLite 3.10.0 beta. check-in: 08c712f2f6 user: drh tags: trunk
2015-10-10
22:39
Add Makefile for MSVC, making #ifdef adjustments as necessary. check-in: 7a6b266590 user: mistachkin tags: trunk
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/sqlite3.c.
1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.9.0.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other


|







1
2
3
4
5
6
7
8
9
10
/******************************************************************************
** This file is an amalgamation of many separate C source files from SQLite
** version 3.10.0.  By combining all the individual C code files into this 
** single large file, the entire code can be compiled as a single translation
** unit.  This allows many compilers to do optimizations that would not be
** possible if the files were compiled separately.  Performance improvements
** of 5% or more are commonly seen when SQLite is compiled as a single
** translation unit.
**
** This file is all you need to compile SQLite.  To use SQLite in other
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.9.0"
#define SQLITE_VERSION_NUMBER 3009000
#define SQLITE_SOURCE_ID      "2015-10-10 16:41:28 fab6f09044d033dd09ed8a22e06bc6a7851bbabf"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.10.0"
#define SQLITE_VERSION_NUMBER 3010000
#define SQLITE_SOURCE_ID      "2016-01-04 13:06:53 b779ca8a7580e2a0bb1176316c4540867b635229"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
688
689
690
691
692
693
694

695
696
697
698
699
700
701
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
#define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))

#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))







>







688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
#define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))
#define SQLITE_IOERR_AUTH              (SQLITE_IOERR | (28<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
1090
1091
1092
1093
1094
1095
1096









1097
1098
1099
1100
1101
1102
1103
** [sqlite3_malloc()] and the result is stored in the char* variable
** that the fourth parameter of [sqlite3_file_control()] points to.
** The caller is responsible for freeing the memory when done.  As with
** all file-control actions, there is no guarantee that this will actually
** do anything.  Callers should initialize the char* variable to a NULL
** pointer in case this file-control is not implemented.  This file-control
** is intended for diagnostic use only.









**
** <li>[[SQLITE_FCNTL_PRAGMA]]
** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] 
** file control is sent to the open [sqlite3_file] object corresponding
** to the database file to which the pragma statement refers. ^The argument
** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
** pointers to strings (char**) in which the second element of the array







>
>
>
>
>
>
>
>
>







1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
** [sqlite3_malloc()] and the result is stored in the char* variable
** that the fourth parameter of [sqlite3_file_control()] points to.
** The caller is responsible for freeing the memory when done.  As with
** all file-control actions, there is no guarantee that this will actually
** do anything.  Callers should initialize the char* variable to a NULL
** pointer in case this file-control is not implemented.  This file-control
** is intended for diagnostic use only.
**
** <li>[[SQLITE_FCNTL_VFS_POINTER]]
** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
** [VFSes] currently in use.  ^(The argument X in
** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
** of type "[sqlite3_vfs] **".  This opcodes will set *X
** to a pointer to the top-level VFS.)^
** ^When there are multiple VFS shims in the stack, this opcode finds the
** upper-most shim only.
**
** <li>[[SQLITE_FCNTL_PRAGMA]]
** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] 
** file control is sent to the open [sqlite3_file] object corresponding
** to the database file to which the pragma statement refers. ^The argument
** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
** pointers to strings (char**) in which the second element of the array
1209
1210
1211
1212
1213
1214
1215

1216
1217
1218
1219
1220
1221
1222
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
#define SQLITE_FCNTL_WAL_BLOCK              24
#define SQLITE_FCNTL_ZIPVFS                 25
#define SQLITE_FCNTL_RBU                    26


/* deprecated names */
#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO









>







1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
#define SQLITE_FCNTL_WAL_BLOCK              24
#define SQLITE_FCNTL_ZIPVFS                 25
#define SQLITE_FCNTL_RBU                    26
#define SQLITE_FCNTL_VFS_POINTER            27

/* deprecated names */
#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO


1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

1831
1832



1833

1834

1835
1836
1837

1838
1839
1840
1841
1842
1843
1844
** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
** [sqlite3_malloc|heap allocations].
** This can help [Robson proof|prevent memory allocation failures] due to heap
** fragmentation in low-memory embedded systems.
** </dd>
**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a static memory buffer
** that SQLite can use for the database page cache with the default page
** cache implementation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]
** configuration option.
** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
** 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 65536) plus some extra bytes for each
** page header.  ^The number of extra bytes needed by the page header
** can be determined using the [SQLITE_CONFIG_PCACHE_HDRSZ] option 
** to [sqlite3_config()].
** ^It is harmless, apart from the wasted memory,
** for the sz parameter to be larger than necessary.  The first

** argument should pointer to an 8-byte aligned block of memory that
** is at least sz*N bytes of memory, otherwise subsequent behavior is



** undefined.

** ^SQLite will use the memory provided by the first argument to satisfy its

** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.</dd>

**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
** that SQLite will use for all of its dynamic memory allocation needs
** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and
** [SQLITE_CONFIG_PAGECACHE].
** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled







|


|
|
<

|
|



|
<

|
>
|
|
>
>
>
|
>
|
>
|
|
|
>







1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

1831
1832
1833
1834
1835
1836
1837

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
** [sqlite3_malloc|heap allocations].
** This can help [Robson proof|prevent memory allocation failures] due to heap
** fragmentation in low-memory embedded systems.
** </dd>
**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
** that SQLite can use for the database page cache with the default page
** cache implementation.  
** This configuration option is a no-op if an application-define page
** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].

** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
** 8-byte aligned memory (pMem), the size of each page cache line (sz),
** and the number of cache lines (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 65536) plus some extra bytes for each
** page header.  ^The number of extra bytes needed by the page header
** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].

** ^It is harmless, apart from the wasted memory,
** for the sz parameter to be larger than necessary.  The pMem
** argument must be either a NULL pointer or a pointer to an 8-byte
** aligned block of memory of at least sz*N bytes, otherwise
** subsequent behavior is undefined.
** ^When pMem is not NULL, SQLite will strive to use the memory provided
** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
** a page cache line is larger than sz bytes or if all of the pMem buffer
** is exhausted.
** ^If pMem is NULL and N is non-zero, then each database connection
** does an initial bulk allocation for page cache memory
** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
** of -1024*N bytes if N is negative, . ^If additional
** page cache memory is needed beyond what is provided by the initial
** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
** additional cache line. </dd>
**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
** that SQLite will use for all of its dynamic memory allocation needs
** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and
** [SQLITE_CONFIG_PAGECACHE].
** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
** memory allocation fails.
**
** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
** previously obtained from [sqlite3_value_dup()].  ^If V is a NULL pointer
** then sqlite3_value_free(V) is a harmless no-op.
*/
SQLITE_API SQLITE_EXPERIMENTAL sqlite3_value *SQLITE_STDCALL sqlite3_value_dup(const sqlite3_value*);
SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_value_free(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
** METHOD: sqlite3_context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.







|
|







4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
** memory allocation fails.
**
** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
** previously obtained from [sqlite3_value_dup()].  ^If V is a NULL pointer
** then sqlite3_value_free(V) is a harmless no-op.
*/
SQLITE_API sqlite3_value *SQLITE_STDCALL sqlite3_value_dup(const sqlite3_value*);
SQLITE_API void SQLITE_STDCALL sqlite3_value_free(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
** METHOD: sqlite3_context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
5818
5819
5820
5821
5822
5823
5824











5825
5826
5827
5828
5829
5830
5831
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** ^The aConstraint[] array only reports WHERE clause terms that are
** relevant to the particular virtual table being queried.
**
** ^Information about the ORDER BY clause is stored in aOrderBy[].
** ^Each term of aOrderBy records a column of the ORDER BY clause.











**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  ^If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.)^







>
>
>
>
>
>
>
>
>
>
>







5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** ^The aConstraint[] array only reports WHERE clause terms that are
** relevant to the particular virtual table being queried.
**
** ^Information about the ORDER BY clause is stored in aOrderBy[].
** ^Each term of aOrderBy records a column of the ORDER BY clause.
**
** The colUsed field indicates which columns of the virtual table may be
** required by the current scan. Virtual table columns are numbered from
** zero in the order in which they appear within the CREATE TABLE statement
** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
** the corresponding bit is set within the colUsed mask if the column may be
** required by SQLite. If the table has at least 64 columns and any column
** to the right of the first 63 is required, then bit 63 of colUsed is also
** set. In other words, column iCol may be required if the expression
** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to 
** non-zero.
**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  ^If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.)^
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
** structure for SQLite version 3.8.2. If a virtual table extension is
** used with an SQLite version earlier than 3.8.2, the results of attempting 
** to read or write the estimatedRows field are undefined (but are likely 
** to included crashing the application). The estimatedRows field should
** therefore only be used if [sqlite3_libversion_number()] returns a
** value greater than or equal to 3008002. Similarly, the idxFlags field
** was added for version 3.8.12. It may therefore only be used if
** sqlite3_libversion_number() returns a value greater than or equal to
** 3008012.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */







|

|







5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
** structure for SQLite version 3.8.2. If a virtual table extension is
** used with an SQLite version earlier than 3.8.2, the results of attempting 
** to read or write the estimatedRows field are undefined (but are likely 
** to included crashing the application). The estimatedRows field should
** therefore only be used if [sqlite3_libversion_number()] returns a
** value greater than or equal to 3008002. Similarly, the idxFlags field
** was added for version 3.9.0. It may therefore only be used if
** sqlite3_libversion_number() returns a value greater than or equal to
** 3009000.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */
5896
5897
5898
5899
5900
5901
5902
5903
5904


5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925



5926
5927
5928
5929
5930
5931
5932
  int idxNum;                /* Number used to identify the index */
  char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
  int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
  int orderByConsumed;       /* True if output is already ordered */
  double estimatedCost;           /* Estimated cost of using this index */
  /* Fields below are only available in SQLite 3.8.2 and later */
  sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
  /* Fields below are only available in SQLite 3.8.12 and later */
  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */


};

/*
** CAPI3REF: Virtual Table Scan Flags
*/
#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */

/*
** CAPI3REF: Virtual Table Constraint Operator Codes
**
** These macros defined the allowed values for the
** [sqlite3_index_info].aConstraint[].op field.  Each value represents
** an operator that is part of a constraint term in the wHERE clause of
** a query that uses a [virtual table].
*/
#define SQLITE_INDEX_CONSTRAINT_EQ    2
#define SQLITE_INDEX_CONSTRAINT_GT    4
#define SQLITE_INDEX_CONSTRAINT_LE    8
#define SQLITE_INDEX_CONSTRAINT_LT    16
#define SQLITE_INDEX_CONSTRAINT_GE    32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64




/*
** CAPI3REF: Register A Virtual Table Implementation
** METHOD: sqlite3
**
** ^These routines are used to register a new [virtual table module] name.
** ^Module names must be registered before







|

>
>















|
|
|
|
|
|
>
>
>







5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
  int idxNum;                /* Number used to identify the index */
  char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
  int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
  int orderByConsumed;       /* True if output is already ordered */
  double estimatedCost;           /* Estimated cost of using this index */
  /* Fields below are only available in SQLite 3.8.2 and later */
  sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
  /* Fields below are only available in SQLite 3.9.0 and later */
  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
  /* Fields below are only available in SQLite 3.10.0 and later */
  sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
};

/*
** CAPI3REF: Virtual Table Scan Flags
*/
#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */

/*
** CAPI3REF: Virtual Table Constraint Operator Codes
**
** These macros defined the allowed values for the
** [sqlite3_index_info].aConstraint[].op field.  Each value represents
** an operator that is part of a constraint term in the wHERE clause of
** a query that uses a [virtual table].
*/
#define SQLITE_INDEX_CONSTRAINT_EQ      2
#define SQLITE_INDEX_CONSTRAINT_GT      4
#define SQLITE_INDEX_CONSTRAINT_LE      8
#define SQLITE_INDEX_CONSTRAINT_LT     16
#define SQLITE_INDEX_CONSTRAINT_GE     32
#define SQLITE_INDEX_CONSTRAINT_MATCH  64
#define SQLITE_INDEX_CONSTRAINT_LIKE   65
#define SQLITE_INDEX_CONSTRAINT_GLOB   66
#define SQLITE_INDEX_CONSTRAINT_REGEXP 67

/*
** CAPI3REF: Register A Virtual Table Implementation
** METHOD: sqlite3
**
** ^These routines are used to register a new [virtual table module] name.
** ^Module names must be registered before
6782
6783
6784
6785
6786
6787
6788
6789

6790
6791
6792
6793
6794
6795
6796
** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [scratch memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
** <dd>This parameter records the deepest parser stack.  It is only

** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
** </dl>
**
** New status parameters may be added from time to time.
*/
#define SQLITE_STATUS_MEMORY_USED          0
#define SQLITE_STATUS_PAGECACHE_USED       1







|
>







6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [scratch memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
** <dd>The *pHighwater parameter records the deepest parser stack. 
** The *pCurrent value is undefined.  The *pHighwater value is only
** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
** </dl>
**
** New status parameters may be added from time to time.
*/
#define SQLITE_STATUS_MEMORY_USED          0
#define SQLITE_STATUS_PAGECACHE_USED       1
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583


7584
7585























7586
7587
7588
7589
7590
7591
7592
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].


*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);
























/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are







|
|
|

|
|



>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
** string X matches the [GLOB] pattern P.
** ^The definition of [GLOB] pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect understood by SQLite.  ^The [sqlite3_strglob(P,X)] function
** is case sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
**
** See also: [sqlite3_strlike()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: String LIKE Matching
*
** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
** string X matches the [LIKE] pattern P with escape character E.
** ^The definition of [LIKE] pattern matching used in
** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
** operator in the SQL dialect understood by SQLite.  ^For "X LIKE P" without
** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
** insensitive - equivalent upper and lower case ASCII characters match
** one another.
**
** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
** only ASCII characters are case folded.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
**
** See also: [sqlite3_strglob()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);

/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are
8000
8001
8002
8003
8004
8005
8006



























































































































8007
8008
8009
8010
8011
8012
8013
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);





























































































































/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);

/*
** CAPI3REF: Flush caches to disk mid-transaction
**
** ^If a write-transaction is open on [database connection] D when the
** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
** pages in the pager-cache that are not currently in use are written out 
** to disk. A dirty page may be in use if a database cursor created by an
** active SQL statement is reading from it, or if it is page 1 of a database
** file (page 1 is always "in use").  ^The [sqlite3_db_cacheflush(D)]
** interface flushes caches for all schemas - "main", "temp", and
** any [attached] databases.
**
** ^If this function needs to obtain extra database locks before dirty pages 
** can be flushed to disk, it does so. ^If those locks cannot be obtained 
** immediately and there is a busy-handler callback configured, it is invoked
** in the usual manner. ^If the required lock still cannot be obtained, then
** the database is skipped and an attempt made to flush any dirty pages
** belonging to the next (if any) database. ^If any databases are skipped
** because locks cannot be obtained, but no other error occurs, this
** function returns SQLITE_BUSY.
**
** ^If any other error occurs while flushing dirty pages to disk (for
** example an IO error or out-of-memory condition), then processing is
** abandoned and an SQLite [error code] is returned to the caller immediately.
**
** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
**
** ^This function does not set the database handle error code or message
** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_cacheflush(sqlite3*);

/*
** CAPI3REF: Database Snapshot
** KEYWORDS: {snapshot}
** EXPERIMENTAL
**
** An instance of the snapshot object records the state of a [WAL mode]
** database for some specific point in history.
**
** In [WAL mode], multiple [database connections] that are open on the
** same database file can each be reading a different historical version
** of the database file.  When a [database connection] begins a read
** transaction, that connection sees an unchanging copy of the database
** as it existed for the point in time when the transaction first started.
** Subsequent changes to the database from other connections are not seen
** by the reader until a new read transaction is started.
**
** The sqlite3_snapshot object records state information about an historical
** version of the database file so that it is possible to later open a new read
** transaction that sees that historical version of the database rather than
** the most recent version.
**
** The constructor for this object is [sqlite3_snapshot_get()].  The
** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer
** to an historical snapshot (if possible).  The destructor for 
** sqlite3_snapshot objects is [sqlite3_snapshot_free()].
*/
typedef struct sqlite3_snapshot sqlite3_snapshot;

/*
** CAPI3REF: Record A Database Snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
** new [sqlite3_snapshot] object that records the current state of
** schema S in database connection D.  ^On success, the
** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
** ^If schema S of [database connection] D is not a [WAL mode] database
** that is in a read transaction, then [sqlite3_snapshot_get(D,S,P)]
** leaves the *P value unchanged and returns an appropriate [error code].
**
** The [sqlite3_snapshot] object returned from a successful call to
** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
** to avoid a memory leak.
**
** The [sqlite3_snapshot_get()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_snapshot_get(
  sqlite3 *db,
  const char *zSchema,
  sqlite3_snapshot **ppSnapshot
);

/*
** CAPI3REF: Start a read transaction on an historical snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_open(D,S,P)] interface attempts to move the
** read transaction that is currently open on schema S of
** [database connection] D so that it refers to historical [snapshot] P.
** ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK on success
** or an appropriate [error code] if it fails.
**
** ^In order to succeed, a call to [sqlite3_snapshot_open(D,S,P)] must be
** the first operation, apart from other sqlite3_snapshot_open() calls,
** following the [BEGIN] that starts a new read transaction.
** ^A [snapshot] will fail to open if it has been overwritten by a 
** [checkpoint].  
**
** The [sqlite3_snapshot_open()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_snapshot_open(
  sqlite3 *db,
  const char *zSchema,
  sqlite3_snapshot *pSnapshot
);

/*
** CAPI3REF: Destroy a snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
** The application must eventually free every [sqlite3_snapshot] object
** using this routine to avoid a memory leak.
**
** The [sqlite3_snapshot_free()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_snapshot_free(sqlite3_snapshot*);

/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
8154
8155
8156
8157
8158
8159
8160
8161



8162
8163
8164
8165
8166
8167
8168
**     * custom auxiliary functions.
*/


#ifndef _FTS5_H
#define _FTS5_H

/* #include "sqlite3.h" */




/*************************************************************************
** CUSTOM AUXILIARY FUNCTIONS
**
** Virtual table implementations may overload SQL functions by implementing
** the sqlite3_module.xFindFunction() method.
*/







|
>
>
>







8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
**     * custom auxiliary functions.
*/


#ifndef _FTS5_H
#define _FTS5_H


#if 0
extern "C" {
#endif

/*************************************************************************
** CUSTOM AUXILIARY FUNCTIONS
**
** Virtual table implementations may overload SQL functions by implementing
** the sqlite3_module.xFindFunction() method.
*/
8641
8642
8643
8644
8645
8646
8647




8648
8649
8650
8651
8652
8653
8654
  );
};

/*
** END OF REGISTRATION API
*************************************************************************/





#endif /* _FTS5_H */



/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/








>
>
>
>







8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
  );
};

/*
** END OF REGISTRATION API
*************************************************************************/

#if 0
}  /* end of the 'extern "C"' block */
#endif

#endif /* _FTS5_H */



/************** End of sqlite3.h *********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/

8921
8922
8923
8924
8925
8926
8927















8928
8929
8930
8931
8932
8933
8934
# define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
# define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
#else                          /* Generates a warning - but it always works */
# define SQLITE_INT_TO_PTR(X)  ((void*)(X))
# define SQLITE_PTR_TO_INT(X)  ((int)(X))
#endif
















/*
** A macro to hint to the compiler that a function should not be
** inlined.
*/
#if defined(__GNUC__)
#  define SQLITE_NOINLINE  __attribute__((noinline))
#elif defined(_MSC_VER) && _MSC_VER>=1310







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
# define SQLITE_INT_TO_PTR(X)  ((void*)(intptr_t)(X))
# define SQLITE_PTR_TO_INT(X)  ((int)(intptr_t)(X))
#else                          /* Generates a warning - but it always works */
# define SQLITE_INT_TO_PTR(X)  ((void*)(X))
# define SQLITE_PTR_TO_INT(X)  ((int)(X))
#endif

/*
** The SQLITE_WITHIN(P,S,E) macro checks to see if pointer P points to
** something between S (inclusive) and E (exclusive).
**
** In other words, S is a buffer and E is a pointer to the first byte after
** the end of buffer S.  This macro returns true if P points to something
** contained within the buffer S.
*/
#if defined(HAVE_STDINT_H)
# define SQLITE_WITHIN(P,S,E) \
    ((uintptr_t)(P)>=(uintptr_t)(S) && (uintptr_t)(P)<(uintptr_t)(E))
#else
# define SQLITE_WITHIN(P,S,E) ((P)>=(S) && (P)<(E))
#endif

/*
** A macro to hint to the compiler that a function should not be
** inlined.
*/
#if defined(__GNUC__)
#  define SQLITE_NOINLINE  __attribute__((noinline))
#elif defined(_MSC_VER) && _MSC_VER>=1310
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446










9447
9448
9449
9450
9451
9452
9453
#define TK_TO_TEXT                        143
#define TK_TO_BLOB                        144
#define TK_TO_NUMERIC                     145
#define TK_TO_INT                         146
#define TK_TO_REAL                        147
#define TK_ISNOT                          148
#define TK_END_OF_FILE                    149
#define TK_ILLEGAL                        150
#define TK_SPACE                          151
#define TK_UNCLOSED_STRING                152
#define TK_FUNCTION                       153
#define TK_COLUMN                         154
#define TK_AGG_FUNCTION                   155
#define TK_AGG_COLUMN                     156
#define TK_UMINUS                         157
#define TK_UPLUS                          158
#define TK_REGISTER                       159











/************** End of parse.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>







<
<
|
|
|
|
|
|
|
|
>
>
>
>
>
>
>
>
>
>







9633
9634
9635
9636
9637
9638
9639


9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
#define TK_TO_TEXT                        143
#define TK_TO_BLOB                        144
#define TK_TO_NUMERIC                     145
#define TK_TO_INT                         146
#define TK_TO_REAL                        147
#define TK_ISNOT                          148
#define TK_END_OF_FILE                    149


#define TK_UNCLOSED_STRING                150
#define TK_FUNCTION                       151
#define TK_COLUMN                         152
#define TK_AGG_FUNCTION                   153
#define TK_AGG_COLUMN                     154
#define TK_UMINUS                         155
#define TK_UPLUS                          156
#define TK_REGISTER                       157
#define TK_ASTERISK                       158
#define TK_SPACE                          159
#define TK_ILLEGAL                        160

/* The token codes above must all fit in 8 bits */
#define TKFLG_MASK           0xff  

/* Flags that can be added to a token code when it is not
** being stored in a u8: */
#define TKFLG_DONTFOLD       0x100  /* Omit constant folding optimizations */

/************** End of parse.h ***********************************************/
/************** Continuing where we left off in sqliteInt.h ******************/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
** pagecaches for each database connection.  A positive number is the
** number of pages.  A negative number N translations means that a buffer
** of -1024*N bytes is allocated and used for as many pages as it will hold.
*/
#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
# define SQLITE_DEFAULT_PCACHE_INITSZ 100
#endif


/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))







<







9748
9749
9750
9751
9752
9753
9754

9755
9756
9757
9758
9759
9760
9761
** pagecaches for each database connection.  A positive number is the
** number of pages.  A negative number N translations means that a buffer
** of -1024*N bytes is allocated and used for as many pages as it will hold.
*/
#ifndef SQLITE_DEFAULT_PCACHE_INITSZ
# define SQLITE_DEFAULT_PCACHE_INITSZ 100
#endif


/*
** GCC does not define the offsetof() macro so we'll have to do it
** ourselves.
*/
#ifndef offsetof
#define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD))
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717





9718
9719
9720
9721
9722
9723
9724
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
** at run-time.
*/
#ifdef SQLITE_AMALGAMATION
SQLITE_PRIVATE const int sqlite3one = 1;
#else
SQLITE_PRIVATE const int sqlite3one;
#endif
#if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
     defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
     defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    1234
# define SQLITE_BIGENDIAN    0
# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
#endif
#if (defined(sparc)    || defined(__ppc__))  \
    && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    4321
# define SQLITE_BIGENDIAN    1
# define SQLITE_LITTLEENDIAN 0
# define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
#endif
#if !defined(SQLITE_BYTEORDER)





# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
# define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
# define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
#endif

/*







<
<
<
<
<

















>
>
>
>
>







9899
9900
9901
9902
9903
9904
9905





9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros.  If that is unsuccessful, or if
** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined
** at run-time.
*/





#if (defined(i386)     || defined(__i386__)   || defined(_M_IX86) ||    \
     defined(__x86_64) || defined(__x86_64__) || defined(_M_X64)  ||    \
     defined(_M_AMD64) || defined(_M_ARM)     || defined(__x86)   ||    \
     defined(__arm__)) && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    1234
# define SQLITE_BIGENDIAN    0
# define SQLITE_LITTLEENDIAN 1
# define SQLITE_UTF16NATIVE  SQLITE_UTF16LE
#endif
#if (defined(sparc)    || defined(__ppc__))  \
    && !defined(SQLITE_RUNTIME_BYTEORDER)
# define SQLITE_BYTEORDER    4321
# define SQLITE_BIGENDIAN    1
# define SQLITE_LITTLEENDIAN 0
# define SQLITE_UTF16NATIVE  SQLITE_UTF16BE
#endif
#if !defined(SQLITE_BYTEORDER)
# ifdef SQLITE_AMALGAMATION
  const int sqlite3one = 1;
# else
  extern const int sqlite3one;
# endif
# define SQLITE_BYTEORDER    0     /* 0 means "unknown at compile-time" */
# define SQLITE_BIGENDIAN    (*(char *)(&sqlite3one)==0)
# define SQLITE_LITTLEENDIAN (*(char *)(&sqlite3one)==1)
# define SQLITE_UTF16NATIVE  (SQLITE_BIGENDIAN?SQLITE_UTF16BE:SQLITE_UTF16LE)
#endif

/*
10043
10044
10045
10046
10047
10048
10049

10050
10051
10052
10053
10054
10055
10056
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);

#if SQLITE_MAX_MMAP_SIZE>0
SQLITE_PRIVATE   int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
#endif
SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);







>







10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
#define BTREE_OMIT_JOURNAL  1  /* Do not create or use a rollback journal */
#define BTREE_MEMORY        2  /* This is an in-memory DB */
#define BTREE_SINGLE        4  /* The file contains at most 1 b-tree */
#define BTREE_UNORDERED     8  /* Use of a hash implementation is OK */

SQLITE_PRIVATE int sqlite3BtreeClose(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int);
SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree*,int);
#if SQLITE_MAX_MMAP_SIZE>0
SQLITE_PRIVATE   int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64);
#endif
SQLITE_PRIVATE int sqlite3BtreeSetPagerFlags(Btree*,unsigned);
SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*);
SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix);
SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*);
10130
10131
10132
10133
10134
10135
10136





























10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
















10152
10153
10154
10155
10156
10157
10158
10159
10160




10161
10162
10163
10164
10165
10166
10167
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7
#define BTREE_APPLICATION_ID      8
#define BTREE_DATA_VERSION        15  /* A virtual meta-value */

/*





























** Values that may be OR'd together to form the second argument of an
** sqlite3BtreeCursorHints() call.
**
** The BTREE_BULKLOAD flag is set on index cursors when the index is going
** to be filled with content that is already in sorted order.
**
** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or
** OP_SeekLE opcodes for a range search, but where the range of entries
** selected will all have the same key.  In other words, the cursor will
** be used only for equality key searches.
**
*/
#define BTREE_BULKLOAD 0x00000001  /* Used to full index in sorted order */
#define BTREE_SEEK_EQ  0x00000002  /* EQ seeks only - no range seeks */

















SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);
SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);





SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
  BtCursor*,
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|













>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>









>
>
>
>







10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
#define BTREE_TEXT_ENCODING       5
#define BTREE_USER_VERSION        6
#define BTREE_INCR_VACUUM         7
#define BTREE_APPLICATION_ID      8
#define BTREE_DATA_VERSION        15  /* A virtual meta-value */

/*
** Kinds of hints that can be passed into the sqlite3BtreeCursorHint()
** interface.
**
** BTREE_HINT_RANGE  (arguments: Expr*, Mem*)
**
**     The first argument is an Expr* (which is guaranteed to be constant for
**     the lifetime of the cursor) that defines constraints on which rows
**     might be fetched with this cursor.  The Expr* tree may contain
**     TK_REGISTER nodes that refer to values stored in the array of registers
**     passed as the second parameter.  In other words, if Expr.op==TK_REGISTER
**     then the value of the node is the value in Mem[pExpr.iTable].  Any
**     TK_COLUMN node in the expression tree refers to the Expr.iColumn-th
**     column of the b-tree of the cursor.  The Expr tree will not contain
**     any function calls nor subqueries nor references to b-trees other than
**     the cursor being hinted.
**
**     The design of the _RANGE hint is aid b-tree implementations that try
**     to prefetch content from remote machines - to provide those
**     implementations with limits on what needs to be prefetched and thereby
**     reduce network bandwidth.
**
** Note that BTREE_HINT_FLAGS with BTREE_BULKLOAD is the only hint used by
** standard SQLite.  The other hints are provided for extentions that use
** the SQLite parser and code generator but substitute their own storage
** engine.
*/
#define BTREE_HINT_RANGE 0       /* Range constraints on queries */

/*
** Values that may be OR'd together to form the argument to the
** BTREE_HINT_FLAGS hint for sqlite3BtreeCursorHint():
**
** The BTREE_BULKLOAD flag is set on index cursors when the index is going
** to be filled with content that is already in sorted order.
**
** The BTREE_SEEK_EQ flag is set on cursors that will get OP_SeekGE or
** OP_SeekLE opcodes for a range search, but where the range of entries
** selected will all have the same key.  In other words, the cursor will
** be used only for equality key searches.
**
*/
#define BTREE_BULKLOAD 0x00000001  /* Used to full index in sorted order */
#define BTREE_SEEK_EQ  0x00000002  /* EQ seeks only - no range seeks */

/* 
** Flags passed as the third argument to sqlite3BtreeCursor().
**
** For read-only cursors the wrFlag argument is always zero. For read-write
** cursors it may be set to either (BTREE_WRCSR|BTREE_FORDELETE) or
** (BTREE_WRCSR). If the BTREE_FORDELETE flag is set, then the cursor will
** only be used by SQLite for the following:
**
**   * to seek to and delete specific entries, and/or
**
**   * to read values that will be used to create keys that other
**     BTREE_FORDELETE cursors will seek to and delete.
*/
#define BTREE_WRCSR     0x00000004     /* read-write cursor */
#define BTREE_FORDELETE 0x00000008     /* Cursor is for seek/delete only */

SQLITE_PRIVATE int sqlite3BtreeCursor(
  Btree*,                              /* BTree containing table to open */
  int iTable,                          /* Index of root page */
  int wrFlag,                          /* 1 for writing.  0 for read-only */
  struct KeyInfo*,                     /* First argument to compare function */
  BtCursor *pCursor                    /* Space to write cursor structure */
);
SQLITE_PRIVATE int sqlite3BtreeCursorSize(void);
SQLITE_PRIVATE void sqlite3BtreeCursorZero(BtCursor*);
SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor*, unsigned);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor*, int, ...);
#endif

SQLITE_PRIVATE int sqlite3BtreeCloseCursor(BtCursor*);
SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
  BtCursor*,
  UnpackedRecord *pUnKey,
  i64 intKey,
  int bias,
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *, unsigned int mask);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);
#endif
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);

#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif








<
<

<







10448
10449
10450
10451
10452
10453
10454


10455

10456
10457
10458
10459
10460
10461
10462
SQLITE_PRIVATE char *sqlite3BtreeIntegrityCheck(Btree*, int *aRoot, int nRoot, int, int*);
SQLITE_PRIVATE struct Pager *sqlite3BtreePager(Btree*);

SQLITE_PRIVATE int sqlite3BtreePutData(BtCursor*, u32 offset, u32 amt, void*);
SQLITE_PRIVATE void sqlite3BtreeIncrblobCursor(BtCursor *);
SQLITE_PRIVATE void sqlite3BtreeClearCursor(BtCursor *);
SQLITE_PRIVATE int sqlite3BtreeSetVersion(Btree *pBt, int iVersion);


SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor*, unsigned int mask);

SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *pBt);
SQLITE_PRIVATE int sqlite3HeaderSizeBtree(void);

#ifndef NDEBUG
SQLITE_PRIVATE int sqlite3BtreeCursorIsValid(BtCursor*);
#endif

10319
10320
10321
10322
10323
10324
10325



10326
10327
10328
10329
10330
10331
10332
    sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */



    int (*xAdvance)(BtCursor *, int *);
  } p4;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  u32 cnt;                 /* Number of times this instruction was executed */







>
>
>







10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
    sqlite3_context *pCtx; /* Used when p4type is P4_FUNCCTX */
    CollSeq *pColl;        /* Used when p4type is P4_COLLSEQ */
    Mem *pMem;             /* Used when p4type is P4_MEM */
    VTable *pVtab;         /* Used when p4type is P4_VTAB */
    KeyInfo *pKeyInfo;     /* Used when p4type is P4_KEYINFO */
    int *ai;               /* Used when p4type is P4_INTARRAY */
    SubProgram *pProgram;  /* Used when p4type is P4_SUBPROGRAM */
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    Expr *pExpr;           /* Used when p4type is P4_EXPR */
#endif
    int (*xAdvance)(BtCursor *, int *);
  } p4;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
  char *zComment;          /* Comment to improve readability */
#endif
#ifdef VDBE_PROFILE
  u32 cnt;                 /* Number of times this instruction was executed */
10369
10370
10371
10372
10373
10374
10375

10376
10377
10378
10379
10380
10381
10382
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */

#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT  0   /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */







>







10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
*/
#define P4_NOTUSED    0   /* The P4 parameter is not used */
#define P4_DYNAMIC  (-1)  /* Pointer to a string obtained from sqliteMalloc() */
#define P4_STATIC   (-2)  /* Pointer to a static string */
#define P4_COLLSEQ  (-4)  /* P4 is a pointer to a CollSeq structure */
#define P4_FUNCDEF  (-5)  /* P4 is a pointer to a FuncDef structure */
#define P4_KEYINFO  (-6)  /* P4 is a pointer to a KeyInfo structure */
#define P4_EXPR     (-7)  /* P4 is a pointer to an Expr tree */
#define P4_MEM      (-8)  /* P4 is a pointer to a Mem*    structure */
#define P4_TRANSIENT  0   /* P4 is a pointer to a transient string */
#define P4_VTAB     (-10) /* P4 is a pointer to an sqlite3_vtab structure */
#define P4_MPRINTF  (-11) /* P4 is a string obtained from sqlite3_mprintf() */
#define P4_REAL     (-12) /* P4 is a 64-bit floating point value */
#define P4_INT64    (-13) /* P4 is a 64-bit signed integer */
#define P4_INT32    (-14) /* P4 is a 32-bit signed integer */
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
/*
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated.  Do not edit */
/* See the mkopcodeh.awk script for details */
#define OP_Savepoint       1
#define OP_AutoCommit      2
#define OP_Transaction     3
#define OP_SorterNext      4
#define OP_PrevIfOpen      5
#define OP_NextIfOpen      6
#define OP_Prev            7







|







10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
/*
** The makefile scans the vdbe.c source file and creates the "opcodes.h"
** header file that defines a number for each opcode used by the VDBE.
*/
/************** Include opcodes.h in the middle of vdbe.h ********************/
/************** Begin file opcodes.h *****************************************/
/* Automatically generated.  Do not edit */
/* See the tool/mkopcodeh.tcl script for details */
#define OP_Savepoint       1
#define OP_AutoCommit      2
#define OP_Transaction     3
#define OP_SorterNext      4
#define OP_PrevIfOpen      5
#define OP_NextIfOpen      6
#define OP_Prev            7
10454
10455
10456
10457
10458
10459
10460

10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500

10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525

10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561

10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586

10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
#define OP_Null           26 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       27 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           28 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       29 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           30 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           31 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          32 /* synopsis: r[P2]=r[P1]                      */

#define OP_ResultRow      33 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        34
#define OP_Function0      35 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Function       36 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         37 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_MustBeInt      38
#define OP_RealAffinity   39
#define OP_Cast           40 /* synopsis: affinity(r[P1])                  */
#define OP_Permutation    41
#define OP_Compare        42 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Jump           43
#define OP_Once           44
#define OP_If             45
#define OP_IfNot          46
#define OP_Column         47 /* synopsis: r[P3]=PX                         */
#define OP_Affinity       48 /* synopsis: affinity(r[P1@P2])               */
#define OP_MakeRecord     49 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
#define OP_Count          50 /* synopsis: r[P2]=count()                    */
#define OP_ReadCookie     51
#define OP_SetCookie      52
#define OP_ReopenIdx      53 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenRead       54 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenWrite      55 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenAutoindex  56 /* synopsis: nColumn=P2                       */
#define OP_OpenEphemeral  57 /* synopsis: nColumn=P2                       */
#define OP_SorterOpen     58
#define OP_SequenceTest   59 /* synopsis: if( cursor[P1].ctr++ ) pc = P2   */
#define OP_OpenPseudo     60 /* synopsis: P3 columns in r[P2]              */
#define OP_Close          61
#define OP_ColumnsUsed    62
#define OP_SeekLT         63 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekLE         64 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGE         65 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGT         66 /* synopsis: key=r[P3@P4]                     */
#define OP_Seek           67 /* synopsis: intkey=r[P2]                     */
#define OP_NoConflict     68 /* synopsis: key=r[P3@P4]                     */
#define OP_NotFound       69 /* synopsis: key=r[P3@P4]                     */
#define OP_Found          70 /* synopsis: key=r[P3@P4]                     */
#define OP_Or             71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And            72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */

#define OP_NotExists      73 /* synopsis: intkey=r[P3]                     */
#define OP_Sequence       74 /* synopsis: r[P2]=cursor[P1].ctr++           */
#define OP_NewRowid       75 /* synopsis: r[P2]=rowid                      */
#define OP_IsNull         76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull        77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne             78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */
#define OP_Eq             79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */
#define OP_Gt             80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */
#define OP_Le             81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */
#define OP_Lt             82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */
#define OP_Ge             83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */
#define OP_Insert         84 /* synopsis: intkey=r[P3] data=r[P2]          */
#define OP_BitAnd         85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr          86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft      87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight     88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add            89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract       90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply       91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide         92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder      93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat         94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_InsertInt      95 /* synopsis: intkey=P3 data=r[P2]             */
#define OP_BitNot         96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */

#define OP_Delete         98
#define OP_ResetCount     99
#define OP_SorterCompare 100 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
#define OP_SorterData    101 /* synopsis: r[P2]=data                       */
#define OP_RowKey        102 /* synopsis: r[P2]=key                        */
#define OP_RowData       103 /* synopsis: r[P2]=data                       */
#define OP_Rowid         104 /* synopsis: r[P2]=rowid                      */
#define OP_NullRow       105
#define OP_Last          106
#define OP_SorterSort    107
#define OP_Sort          108
#define OP_Rewind        109
#define OP_SorterInsert  110
#define OP_IdxInsert     111 /* synopsis: key=r[P2]                        */
#define OP_IdxDelete     112 /* synopsis: key=r[P2@P3]                     */
#define OP_IdxRowid      113 /* synopsis: r[P2]=rowid                      */
#define OP_IdxLE         114 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGT         115 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxLT         116 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGE         117 /* synopsis: key=r[P3@P4]                     */
#define OP_Destroy       118
#define OP_Clear         119
#define OP_ResetSorter   120
#define OP_CreateIndex   121 /* synopsis: r[P2]=root iDb=P1                */
#define OP_CreateTable   122 /* synopsis: r[P2]=root iDb=P1                */
#define OP_ParseSchema   123
#define OP_LoadAnalysis  124
#define OP_DropTable     125
#define OP_DropIndex     126
#define OP_DropTrigger   127
#define OP_IntegrityCk   128
#define OP_RowSetAdd     129 /* synopsis: rowset(P1)=r[P2]                 */
#define OP_RowSetRead    130 /* synopsis: r[P3]=rowset(P1)                 */
#define OP_RowSetTest    131 /* synopsis: if r[P3] in rowset(P1) goto P2   */
#define OP_Program       132
#define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */

#define OP_Param         134
#define OP_FkCounter     135 /* synopsis: fkctr[P1]+=P2                    */
#define OP_FkIfZero      136 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        137 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         138 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
#define OP_SetIfNotPos   139 /* synopsis: if r[P1]<=0 then r[P2]=P3        */
#define OP_IfNotZero     140 /* synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 */
#define OP_DecrJumpZero  141 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  142 /* synopsis: if (r[P1]++)==0 ) goto P2        */
#define OP_AggStep0      143 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       144 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      145 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    146
#define OP_Expire        147
#define OP_TableLock     148 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        149
#define OP_VCreate       150
#define OP_VDestroy      151
#define OP_VOpen         152
#define OP_VColumn       153 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         154
#define OP_VRename       155
#define OP_Pagecount     156
#define OP_MaxPgcnt      157
#define OP_Init          158 /* synopsis: Start at P2                      */

#define OP_Noop          159
#define OP_Explain       160


/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
#define OPFLG_IN1             0x0002  /* in1:   P1 is an input */
#define OPFLG_IN2             0x0004  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0008  /* in3:   P3 is an input */
#define OPFLG_OUT2            0x0010  /* out2:  P2 is an output */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x01, 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01,\
/*  16 */ 0x02, 0x01, 0x02, 0x12, 0x03, 0x08, 0x00, 0x10,\
/*  24 */ 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00,\
/*  32 */ 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03, 0x02,\
/*  40 */ 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03, 0x00,\
/*  48 */ 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00, 0x00,\
/*  56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x09,\
/*  64 */ 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x09, 0x26,\
/*  72 */ 0x26, 0x09, 0x10, 0x10, 0x03, 0x03, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x00, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\
/*  96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 104 */ 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04, 0x04,\
/* 112 */ 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10, 0x00,\
/* 120 */ 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x00, 0x06, 0x23, 0x0b, 0x01, 0x10, 0x10, 0x00,\
/* 136 */ 0x01, 0x04, 0x03, 0x06, 0x03, 0x03, 0x03, 0x00,\
/* 144 */ 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01, 0x00,\
/* 160 */ 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.







>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|


>
|
|
<








|










|


>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<

>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
<
















|
|
|
|
|
|
|


|
|
|
|
|
|
|
|







10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757

10758
10759
10760
10761
10762
10763
10764

10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821

10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851

10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
#define OP_Null           26 /* synopsis: r[P2..P3]=NULL                   */
#define OP_SoftNull       27 /* synopsis: r[P1]=NULL                       */
#define OP_Blob           28 /* synopsis: r[P2]=P4 (len=P1)                */
#define OP_Variable       29 /* synopsis: r[P2]=parameter(P1,P4)           */
#define OP_Move           30 /* synopsis: r[P2@P3]=r[P1@P3]                */
#define OP_Copy           31 /* synopsis: r[P2@P3+1]=r[P1@P3+1]            */
#define OP_SCopy          32 /* synopsis: r[P2]=r[P1]                      */
#define OP_IntCopy        33 /* synopsis: r[P2]=r[P1]                      */
#define OP_ResultRow      34 /* synopsis: output=r[P1@P2]                  */
#define OP_CollSeq        35
#define OP_Function0      36 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_Function       37 /* synopsis: r[P3]=func(r[P2@P5])             */
#define OP_AddImm         38 /* synopsis: r[P1]=r[P1]+P2                   */
#define OP_MustBeInt      39
#define OP_RealAffinity   40
#define OP_Cast           41 /* synopsis: affinity(r[P1])                  */
#define OP_Permutation    42
#define OP_Compare        43 /* synopsis: r[P1@P3] <-> r[P2@P3]            */
#define OP_Jump           44
#define OP_Once           45
#define OP_If             46
#define OP_IfNot          47
#define OP_Column         48 /* synopsis: r[P3]=PX                         */
#define OP_Affinity       49 /* synopsis: affinity(r[P1@P2])               */
#define OP_MakeRecord     50 /* synopsis: r[P3]=mkrec(r[P1@P2])            */
#define OP_Count          51 /* synopsis: r[P2]=count()                    */
#define OP_ReadCookie     52
#define OP_SetCookie      53
#define OP_ReopenIdx      54 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenRead       55 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenWrite      56 /* synopsis: root=P2 iDb=P3                   */
#define OP_OpenAutoindex  57 /* synopsis: nColumn=P2                       */
#define OP_OpenEphemeral  58 /* synopsis: nColumn=P2                       */
#define OP_SorterOpen     59
#define OP_SequenceTest   60 /* synopsis: if( cursor[P1].ctr++ ) pc = P2   */
#define OP_OpenPseudo     61 /* synopsis: P3 columns in r[P2]              */
#define OP_Close          62
#define OP_ColumnsUsed    63
#define OP_SeekLT         64 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekLE         65 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGE         66 /* synopsis: key=r[P3@P4]                     */
#define OP_SeekGT         67 /* synopsis: key=r[P3@P4]                     */
#define OP_Seek           68 /* synopsis: intkey=r[P2]                     */

#define OP_NoConflict     69 /* synopsis: key=r[P3@P4]                     */
#define OP_NotFound       70 /* synopsis: key=r[P3@P4]                     */
#define OP_Or             71 /* same as TK_OR, synopsis: r[P3]=(r[P1] || r[P2]) */
#define OP_And            72 /* same as TK_AND, synopsis: r[P3]=(r[P1] && r[P2]) */
#define OP_Found          73 /* synopsis: key=r[P3@P4]                     */
#define OP_NotExists      74 /* synopsis: intkey=r[P3]                     */
#define OP_Sequence       75 /* synopsis: r[P2]=cursor[P1].ctr++           */

#define OP_IsNull         76 /* same as TK_ISNULL, synopsis: if r[P1]==NULL goto P2 */
#define OP_NotNull        77 /* same as TK_NOTNULL, synopsis: if r[P1]!=NULL goto P2 */
#define OP_Ne             78 /* same as TK_NE, synopsis: if r[P1]!=r[P3] goto P2 */
#define OP_Eq             79 /* same as TK_EQ, synopsis: if r[P1]==r[P3] goto P2 */
#define OP_Gt             80 /* same as TK_GT, synopsis: if r[P1]>r[P3] goto P2 */
#define OP_Le             81 /* same as TK_LE, synopsis: if r[P1]<=r[P3] goto P2 */
#define OP_Lt             82 /* same as TK_LT, synopsis: if r[P1]<r[P3] goto P2 */
#define OP_Ge             83 /* same as TK_GE, synopsis: if r[P1]>=r[P3] goto P2 */
#define OP_NewRowid       84 /* synopsis: r[P2]=rowid                      */
#define OP_BitAnd         85 /* same as TK_BITAND, synopsis: r[P3]=r[P1]&r[P2] */
#define OP_BitOr          86 /* same as TK_BITOR, synopsis: r[P3]=r[P1]|r[P2] */
#define OP_ShiftLeft      87 /* same as TK_LSHIFT, synopsis: r[P3]=r[P2]<<r[P1] */
#define OP_ShiftRight     88 /* same as TK_RSHIFT, synopsis: r[P3]=r[P2]>>r[P1] */
#define OP_Add            89 /* same as TK_PLUS, synopsis: r[P3]=r[P1]+r[P2] */
#define OP_Subtract       90 /* same as TK_MINUS, synopsis: r[P3]=r[P2]-r[P1] */
#define OP_Multiply       91 /* same as TK_STAR, synopsis: r[P3]=r[P1]*r[P2] */
#define OP_Divide         92 /* same as TK_SLASH, synopsis: r[P3]=r[P2]/r[P1] */
#define OP_Remainder      93 /* same as TK_REM, synopsis: r[P3]=r[P2]%r[P1] */
#define OP_Concat         94 /* same as TK_CONCAT, synopsis: r[P3]=r[P2]+r[P1] */
#define OP_Insert         95 /* synopsis: intkey=r[P3] data=r[P2]          */
#define OP_BitNot         96 /* same as TK_BITNOT, synopsis: r[P1]= ~r[P1] */
#define OP_String8        97 /* same as TK_STRING, synopsis: r[P2]='P4'    */
#define OP_InsertInt      98 /* synopsis: intkey=P3 data=r[P2]             */
#define OP_Delete         99
#define OP_ResetCount    100
#define OP_SorterCompare 101 /* synopsis: if key(P1)!=trim(r[P3],P4) goto P2 */
#define OP_SorterData    102 /* synopsis: r[P2]=data                       */
#define OP_RowKey        103 /* synopsis: r[P2]=key                        */
#define OP_RowData       104 /* synopsis: r[P2]=data                       */
#define OP_Rowid         105 /* synopsis: r[P2]=rowid                      */
#define OP_NullRow       106
#define OP_Last          107
#define OP_SorterSort    108
#define OP_Sort          109
#define OP_Rewind        110
#define OP_SorterInsert  111
#define OP_IdxInsert     112 /* synopsis: key=r[P2]                        */
#define OP_IdxDelete     113 /* synopsis: key=r[P2@P3]                     */
#define OP_IdxRowid      114 /* synopsis: r[P2]=rowid                      */
#define OP_IdxLE         115 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGT         116 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxLT         117 /* synopsis: key=r[P3@P4]                     */
#define OP_IdxGE         118 /* synopsis: key=r[P3@P4]                     */
#define OP_Destroy       119
#define OP_Clear         120
#define OP_ResetSorter   121
#define OP_CreateIndex   122 /* synopsis: r[P2]=root iDb=P1                */
#define OP_CreateTable   123 /* synopsis: r[P2]=root iDb=P1                */
#define OP_ParseSchema   124
#define OP_LoadAnalysis  125
#define OP_DropTable     126
#define OP_DropIndex     127
#define OP_DropTrigger   128
#define OP_IntegrityCk   129
#define OP_RowSetAdd     130 /* synopsis: rowset(P1)=r[P2]                 */
#define OP_RowSetRead    131 /* synopsis: r[P3]=rowset(P1)                 */
#define OP_RowSetTest    132 /* synopsis: if r[P3] in rowset(P1) goto P2   */

#define OP_Real          133 /* same as TK_FLOAT, synopsis: r[P2]=P4       */
#define OP_Program       134
#define OP_Param         135
#define OP_FkCounter     136 /* synopsis: fkctr[P1]+=P2                    */
#define OP_FkIfZero      137 /* synopsis: if fkctr[P1]==0 goto P2          */
#define OP_MemMax        138 /* synopsis: r[P1]=max(r[P1],r[P2])           */
#define OP_IfPos         139 /* synopsis: if r[P1]>0 then r[P1]-=P3, goto P2 */
#define OP_SetIfNotPos   140 /* synopsis: if r[P1]<=0 then r[P2]=P3        */
#define OP_IfNotZero     141 /* synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2 */
#define OP_DecrJumpZero  142 /* synopsis: if (--r[P1])==0 goto P2          */
#define OP_JumpZeroIncr  143 /* synopsis: if (r[P1]++)==0 ) goto P2        */
#define OP_AggStep0      144 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggStep       145 /* synopsis: accum=r[P3] step(r[P2@P5])       */
#define OP_AggFinal      146 /* synopsis: accum=r[P1] N=P2                 */
#define OP_IncrVacuum    147
#define OP_Expire        148
#define OP_TableLock     149 /* synopsis: iDb=P1 root=P2 write=P3          */
#define OP_VBegin        150
#define OP_VCreate       151
#define OP_VDestroy      152
#define OP_VOpen         153
#define OP_VColumn       154 /* synopsis: r[P3]=vcolumn(P2)                */
#define OP_VNext         155
#define OP_VRename       156
#define OP_Pagecount     157
#define OP_MaxPgcnt      158
#define OP_Init          159 /* synopsis: Start at P2                      */
#define OP_CursorHint    160
#define OP_Noop          161
#define OP_Explain       162


/* Properties such as "out2" or "jump" that are specified in
** comments following the "case" for each opcode in the vdbe.c
** are encoded into bitvectors as follows:
*/
#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */
#define OPFLG_IN1             0x0002  /* in1:   P1 is an input */
#define OPFLG_IN2             0x0004  /* in2:   P2 is an input */
#define OPFLG_IN3             0x0008  /* in3:   P3 is an input */
#define OPFLG_OUT2            0x0010  /* out2:  P2 is an output */
#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */
#define OPFLG_INITIALIZER {\
/*   0 */ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01,\
/*   8 */ 0x01, 0x00, 0x10, 0x00, 0x01, 0x00, 0x01, 0x01,\
/*  16 */ 0x02, 0x01, 0x02, 0x12, 0x03, 0x08, 0x00, 0x10,\
/*  24 */ 0x10, 0x10, 0x10, 0x00, 0x10, 0x10, 0x00, 0x00,\
/*  32 */ 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x02, 0x03,\
/*  40 */ 0x02, 0x02, 0x00, 0x00, 0x01, 0x01, 0x03, 0x03,\
/*  48 */ 0x00, 0x00, 0x00, 0x10, 0x10, 0x08, 0x00, 0x00,\
/*  56 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/*  64 */ 0x09, 0x09, 0x09, 0x09, 0x04, 0x09, 0x09, 0x26,\
/*  72 */ 0x26, 0x09, 0x09, 0x10, 0x03, 0x03, 0x0b, 0x0b,\
/*  80 */ 0x0b, 0x0b, 0x0b, 0x0b, 0x10, 0x26, 0x26, 0x26,\
/*  88 */ 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x26, 0x00,\
/*  96 */ 0x12, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\
/* 104 */ 0x00, 0x10, 0x00, 0x01, 0x01, 0x01, 0x01, 0x04,\
/* 112 */ 0x04, 0x00, 0x10, 0x01, 0x01, 0x01, 0x01, 0x10,\
/* 120 */ 0x00, 0x00, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00,\
/* 128 */ 0x00, 0x00, 0x06, 0x23, 0x0b, 0x10, 0x01, 0x10,\
/* 136 */ 0x00, 0x01, 0x04, 0x03, 0x06, 0x03, 0x03, 0x03,\
/* 144 */ 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,\
/* 152 */ 0x00, 0x00, 0x00, 0x01, 0x00, 0x10, 0x10, 0x01,\
/* 160 */ 0x00, 0x00, 0x00,}

/************** End of opcodes.h *********************************************/
/************** Continuing where we left off in vdbe.h ***********************/

/*
** Prototypes for the VDBE interface.  See comments on the implementation
** for a description of what each of these routines does.
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
#define PAGER_JOURNALMODE_PERSIST     1   /* Commit by zeroing journal header */
#define PAGER_JOURNALMODE_OFF         2   /* Journal omitted.  */
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** Flags that make up the mask passed to sqlite3PagerAcquire().
*/
#define PAGER_GET_NOCONTENT     0x01  /* Do not load data from disk */
#define PAGER_GET_READONLY      0x02  /* Read-only page is acceptable */

/*
** Flags for sqlite3PagerSetFlags()
*/







|







11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
#define PAGER_JOURNALMODE_PERSIST     1   /* Commit by zeroing journal header */
#define PAGER_JOURNALMODE_OFF         2   /* Journal omitted.  */
#define PAGER_JOURNALMODE_TRUNCATE    3   /* Commit by truncating journal */
#define PAGER_JOURNALMODE_MEMORY      4   /* In-memory journal file */
#define PAGER_JOURNALMODE_WAL         5   /* Use write-ahead logging */

/*
** Flags that make up the mask passed to sqlite3PagerGet().
*/
#define PAGER_GET_NOCONTENT     0x01  /* Do not load data from disk */
#define PAGER_GET_READONLY      0x02  /* Read-only page is acceptable */

/*
** Flags for sqlite3PagerSetFlags()
*/
10886
10887
10888
10889
10890
10891
10892

10893
10894
10895
10896
10897
10898
10899
10900
10901

10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
#ifdef SQLITE_HAS_CODEC
SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager*,Pager*);
#endif
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);

SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
SQLITE_PRIVATE void sqlite3PagerShrink(Pager*);
SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned);
SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*);
SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*);
SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);


/* Functions used to obtain and release page references. */ 
SQLITE_PRIVATE int sqlite3PagerAcquire(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);
#define sqlite3PagerGet(A,B,C) sqlite3PagerAcquire(A,B,C,0)
SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*);

/* Operations on page references. */
SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);







>









>


|
<







11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168

11169
11170
11171
11172
11173
11174
11175
SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *);
SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int);
#ifdef SQLITE_HAS_CODEC
SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager*,Pager*);
#endif
SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int);
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int);
SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager*, int);
SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64);
SQLITE_PRIVATE void sqlite3PagerShrink(Pager*);
SQLITE_PRIVATE void sqlite3PagerSetFlags(Pager*,unsigned);
SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int);
SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*);
SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*);
SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64);
SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*);
SQLITE_PRIVATE int sqlite3PagerFlush(Pager*);

/* Functions used to obtain and release page references. */ 
SQLITE_PRIVATE int sqlite3PagerGet(Pager *pPager, Pgno pgno, DbPage **ppPage, int clrFlag);

SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno);
SQLITE_PRIVATE void sqlite3PagerRef(DbPage*);
SQLITE_PRIVATE void sqlite3PagerUnref(DbPage*);
SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage*);

/* Operations on page references. */
SQLITE_PRIVATE int sqlite3PagerWrite(DbPage*);
10930
10931
10932
10933
10934
10935
10936




10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958

#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*);
SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager);




#endif

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE   int sqlite3PagerRefcount(Pager*);
#endif
SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int);
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager*);
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *);







>
>
>
>














|







11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225

#ifndef SQLITE_OMIT_WAL
SQLITE_PRIVATE   int sqlite3PagerCheckpoint(Pager *pPager, int, int*, int*);
SQLITE_PRIVATE   int sqlite3PagerWalSupported(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerWalCallback(Pager *pPager);
SQLITE_PRIVATE   int sqlite3PagerOpenWal(Pager *pPager, int *pisOpen);
SQLITE_PRIVATE   int sqlite3PagerCloseWal(Pager *pPager);
# ifdef SQLITE_ENABLE_SNAPSHOT
SQLITE_PRIVATE   int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot);
SQLITE_PRIVATE   int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot);
# endif
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
SQLITE_PRIVATE   int sqlite3PagerWalFramesize(Pager *pPager);
#endif

/* Functions used to query pager state and configuration. */
SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager*);
SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager*);
#ifdef SQLITE_DEBUG
SQLITE_PRIVATE   int sqlite3PagerRefcount(Pager*);
#endif
SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager*, int);
SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager*);
SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager*);
SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager*);
SQLITE_PRIVATE int sqlite3PagerNosync(Pager*);
SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager*);
SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager*);
SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *, int, int, int *);
SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *);
11131
11132
11133
11134
11135
11136
11137







11138
11139
11140
11141
11142
11143
11144
** the total number of pages cached by purgeable pager-caches to the sum
** of the suggested cache-sizes.
*/
SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
#ifdef SQLITE_TEST
SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
#endif








/* Free up as much memory as possible from the page cache */
SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*);

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/* Try to return memory used by the pcache module to the main memory heap */
SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);







>
>
>
>
>
>
>







11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
** the total number of pages cached by purgeable pager-caches to the sum
** of the suggested cache-sizes.
*/
SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *, int);
#ifdef SQLITE_TEST
SQLITE_PRIVATE int sqlite3PcacheGetCachesize(PCache *);
#endif

/* Set or get the suggested spill-size for the specified pager-cache.
**
** The spill-size is the minimum number of pages in cache before the cache
** will attempt to spill dirty pages by calling xStress.
*/
SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *, int);

/* Free up as much memory as possible from the page cache */
SQLITE_PRIVATE void sqlite3PcacheShrink(PCache*);

#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/* Try to return memory used by the pcache module to the main memory heap */
SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int);
11843
11844
11845
11846
11847
11848
11849

11850
11851
11852
11853
11854
11855
11856
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */

#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)







>







12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
#define SQLITE_DistinctOpt    0x0020   /* DISTINCT using indexes */
#define SQLITE_CoverIdxScan   0x0040   /* Covering index scans */
#define SQLITE_OrderByIdxJoin 0x0080   /* ORDER BY of joins via index */
#define SQLITE_SubqCoroutine  0x0100   /* Evaluate subqueries as coroutines */
#define SQLITE_Transitive     0x0200   /* Transitive constraints */
#define SQLITE_OmitNoopJoin   0x0400   /* Omit unused tables in joins */
#define SQLITE_Stat34         0x0800   /* Use STAT3 or STAT4 data */
#define SQLITE_CursorHints    0x2000   /* Add OP_CursorHint opcodes */
#define SQLITE_AllOpts        0xffff   /* All optimizations */

/*
** Macros for testing whether or not optimizations are enabled or disabled.
*/
#ifndef SQLITE_OMIT_BUILTIN_TEST
#define OptimizationDisabled(db, mask)  (((db)->dbOptFlags&(mask))!=0)
11915
11916
11917
11918
11919
11920
11921
11922

11923
11924
11925
11926
11927
11928
11929
  int nRef;
  void (*xDestroy)(void *);
  void *pUserData;
};

/*
** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  There

** are assert() statements in the code to verify this.
*/
#define SQLITE_FUNC_ENCMASK  0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
#define SQLITE_FUNC_LIKE     0x0004 /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE     0x0008 /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM    0x0010 /* Ephemeral.  Delete with VDBE */
#define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/







|
>







12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
  int nRef;
  void (*xDestroy)(void *);
  void *pUserData;
};

/*
** Possible values for FuncDef.flags.  Note that the _LENGTH and _TYPEOF
** values must correspond to OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG.  And
** SQLITE_FUNC_CONSTANT must be the same as SQLITE_DETERMINISTIC.  There
** are assert() statements in the code to verify this.
*/
#define SQLITE_FUNC_ENCMASK  0x0003 /* SQLITE_UTF8, SQLITE_UTF16BE or UTF16LE */
#define SQLITE_FUNC_LIKE     0x0004 /* Candidate for the LIKE optimization */
#define SQLITE_FUNC_CASE     0x0008 /* Case-sensitive LIKE-type function */
#define SQLITE_FUNC_EPHEM    0x0010 /* Ephemeral.  Delete with VDBE */
#define SQLITE_FUNC_NEEDCOLL 0x0020 /* sqlite3GetFuncCollSeq() might be called*/
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
  char *zName;     /* Name of this column */
  Expr *pDflt;     /* Default value of this column */
  char *zDflt;     /* Original text of the default value */
  char *zType;     /* Data type for this column */
  char *zColl;     /* Collating sequence.  If NULL, use the default */
  u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
  char affinity;   /* One of the SQLITE_AFF_... values */
  u8 szEst;        /* Estimated size of this column.  INT==1 */
  u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
};

/* Allowed values for Column.colFlags:
*/
#define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
#define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */







|







12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
  char *zName;     /* Name of this column */
  Expr *pDflt;     /* Default value of this column */
  char *zDflt;     /* Original text of the default value */
  char *zType;     /* Data type for this column */
  char *zColl;     /* Collating sequence.  If NULL, use the default */
  u8 notNull;      /* An OE_ code for handling a NOT NULL constraint */
  char affinity;   /* One of the SQLITE_AFF_... values */
  u8 szEst;        /* Estimated size of value in this column. sizeof(INT)==1 */
  u8 colFlags;     /* Boolean properties.  See COLFLAG_ defines below */
};

/* Allowed values for Column.colFlags:
*/
#define COLFLAG_PRIMKEY  0x0001    /* Column is part of the primary key */
#define COLFLAG_HIDDEN   0x0002    /* A hidden column in a virtual table */
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
  Schema *pSchema;     /* Schema that contains this table */
  Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
};

/*
** Allowed values for Table.tabFlags.
**
** TF_OOOHidden applies to virtual tables that have hidden columns that are
** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
** the TF_OOOHidden attribute would apply in this case.  Such tables require
** special handling during INSERT processing.
*/
#define TF_Readonly        0x01    /* Read-only system table */
#define TF_Ephemeral       0x02    /* An ephemeral table */







|







12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
  Schema *pSchema;     /* Schema that contains this table */
  Table *pNextZombie;  /* Next on the Parse.pZombieTab list */
};

/*
** Allowed values for Table.tabFlags.
**
** TF_OOOHidden applies to tables or view that have hidden columns that are
** followed by non-hidden columns.  Example:  "CREATE VIRTUAL TABLE x USING
** vtab1(a HIDDEN, b);".  Since "b" is a non-hidden column but "a" is hidden,
** the TF_OOOHidden attribute would apply in this case.  Such tables require
** special handling during INSERT processing.
*/
#define TF_Readonly        0x01    /* Read-only system table */
#define TF_Ephemeral       0x02    /* An ephemeral table */
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238















12239

12240

12241
12242
12243
12244
12245
12246
12247
/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)
#  define IsHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
#else
#  define IsVirtual(X)      0















#  define IsHiddenColumn(X) 0

#endif


/* Does the table have a rowid */
#define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
#define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)

/*
** Each foreign key constraint is an instance of the following structure.







<


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>

>







12505
12506
12507
12508
12509
12510
12511

12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
/*
** Test to see whether or not a table is a virtual table.  This is
** done as a macro so that it will be optimized out when virtual
** table support is omitted from the build.
*/
#ifndef SQLITE_OMIT_VIRTUALTABLE
#  define IsVirtual(X)      (((X)->tabFlags & TF_Virtual)!=0)

#else
#  define IsVirtual(X)      0
#endif

/*
** Macros to determine if a column is hidden.  IsOrdinaryHiddenColumn()
** only works for non-virtual tables (ordinary tables and views) and is
** always false unless SQLITE_ENABLE_HIDDEN_COLUMNS is defined.  The
** IsHiddenColumn() macro is general purpose.
*/
#if defined(SQLITE_ENABLE_HIDDEN_COLUMNS)
#  define IsHiddenColumn(X)         (((X)->colFlags & COLFLAG_HIDDEN)!=0)
#  define IsOrdinaryHiddenColumn(X) (((X)->colFlags & COLFLAG_HIDDEN)!=0)
#elif !defined(SQLITE_OMIT_VIRTUALTABLE)
#  define IsHiddenColumn(X)         (((X)->colFlags & COLFLAG_HIDDEN)!=0)
#  define IsOrdinaryHiddenColumn(X) 0
#else
#  define IsHiddenColumn(X)         0
#  define IsOrdinaryHiddenColumn(X) 0
#endif


/* Does the table have a rowid */
#define HasRowid(X)     (((X)->tabFlags & TF_WithoutRowid)==0)
#define VisibleRowid(X) (((X)->tabFlags & TF_NoVisibleRowid)==0)

/*
** Each foreign key constraint is an instance of the following structure.
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361



12362
12363
12364











12365





12366
12367
12368

12369
12370
12371
12372
12373
12374

12375
12376
12377
12378
12379
12380
12381
  u16 nXField;        /* Number of columns beyond the key columns */
  sqlite3 *db;        /* The database connection */
  u8 *aSortOrder;     /* Sort order for each column. */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*
** An instance of the following structure holds information about a
** single index record that has already been parsed out into individual
** values.
**
** A record is an object that contains one or more fields of data.
** Records are used to store the content of a table row and to store
** the key of an index.  A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
** OP_Column opcode.
**
** This structure holds a record that has already been disassembled



** into its constituent fields.
**
** The r1 and r2 member variables are only used by the optimized comparison











** functions vdbeRecordCompareInt() and vdbeRecordCompareString().





*/
struct UnpackedRecord {
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */

  u16 nField;         /* Number of entries in apMem[] */
  i8 default_rc;      /* Comparison result if keys are equal */
  u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */
  Mem *aMem;          /* Values */
  int r1;             /* Value to return if (lhs > rhs) */
  int r2;             /* Value to return if (rhs < lhs) */

};


/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**







<
|
|







|
>
>
>
|

|
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>



>



<
|
|
>







12636
12637
12638
12639
12640
12641
12642

12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682

12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
  u16 nXField;        /* Number of columns beyond the key columns */
  sqlite3 *db;        /* The database connection */
  u8 *aSortOrder;     /* Sort order for each column. */
  CollSeq *aColl[1];  /* Collating sequence for each term of the key */
};

/*

** This object holds a record which has been parsed out into individual
** fields, for the purposes of doing a comparison.
**
** A record is an object that contains one or more fields of data.
** Records are used to store the content of a table row and to store
** the key of an index.  A blob encoding of a record is created by
** the OP_MakeRecord opcode of the VDBE and is disassembled by the
** OP_Column opcode.
**
** An instance of this object serves as a "key" for doing a search on
** an index b+tree. The goal of the search is to find the entry that
** is closed to the key described by this object.  This object might hold
** just a prefix of the key.  The number of fields is given by
** pKeyInfo->nField.
**
** The r1 and r2 fields are the values to return if this key is less than
** or greater than a key in the btree, respectively.  These are normally
** -1 and +1 respectively, but might be inverted to +1 and -1 if the b-tree
** is in DESC order.
**
** The key comparison functions actually return default_rc when they find
** an equals comparison.  default_rc can be -1, 0, or +1.  If there are
** multiple entries in the b-tree with the same key (when only looking
** at the first pKeyInfo->nFields,) then default_rc can be set to -1 to 
** cause the search to find the last match, or +1 to cause the search to
** find the first match.
**
** The key comparison functions will set eqSeen to true if they ever
** get and equal results when comparing this structure to a b-tree record.
** When default_rc!=0, the search might end up on the record immediately
** before the first match or immediately after the last match.  The
** eqSeen field will indicate whether or not an exact match exists in the
** b-tree.
*/
struct UnpackedRecord {
  KeyInfo *pKeyInfo;  /* Collation and sort-order information */
  Mem *aMem;          /* Values */
  u16 nField;         /* Number of entries in apMem[] */
  i8 default_rc;      /* Comparison result if keys are equal */
  u8 errCode;         /* Error detected by xRecordCompare (CORRUPT or NOMEM) */

  i8 r1;              /* Value to return if (lhs > rhs) */
  i8 r2;              /* Value to return if (rhs < lhs) */
  u8 eqSeen;          /* True if an equality comparison has been seen */
};


/*
** Each SQL index is represented in memory by an
** instance of the following structure.
**
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
  i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
  LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  char **azColl;           /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  ExprList *aColExpr;      /* Column expressions */
  int tnum;                /* DB Page containing root of this index */
  LogEst szIdxRow;         /* Estimated average row size in bytes */
  u16 nKeyCol;             /* Number of columns forming the key */
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */







|







12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
  i16 *aiColumn;           /* Which columns are used by this index.  1st is 0 */
  LogEst *aiRowLogEst;     /* From ANALYZE: Est. rows selected by each column */
  Table *pTable;           /* The SQL table being indexed */
  char *zColAff;           /* String defining the affinity of each column */
  Index *pNext;            /* The next index associated with the same table */
  Schema *pSchema;         /* Schema containing this index */
  u8 *aSortOrder;          /* for each column: True==DESC, False==ASC */
  const char **azColl;     /* Array of collation sequence names for index */
  Expr *pPartIdxWhere;     /* WHERE clause for partial indices */
  ExprList *aColExpr;      /* Column expressions */
  int tnum;                /* DB Page containing root of this index */
  LogEst szIdxRow;         /* Estimated average row size in bytes */
  u16 nKeyCol;             /* Number of columns forming the key */
  u16 nColumn;             /* Number of columns stored in the index */
  u8 onError;              /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
13009
13010
13011
13012
13013
13014
13015

13016
13017
13018
13019
13020
13021
13022
#define SF_Values          0x0100  /* Synthesized from VALUES clause */
#define SF_MultiValue      0x0200  /* Single VALUES term with multiple rows */
#define SF_NestedFrom      0x0400  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0800  /* Need convertCompoundSelectToSubquery() */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
#define SF_Recursive       0x2000  /* The recursive part of a recursive CTE */
#define SF_Converted       0x4000  /* By convertCompoundSelectToSubquery() */



/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**







>







13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
#define SF_Values          0x0100  /* Synthesized from VALUES clause */
#define SF_MultiValue      0x0200  /* Single VALUES term with multiple rows */
#define SF_NestedFrom      0x0400  /* Part of a parenthesized FROM clause */
#define SF_MaybeConvert    0x0800  /* Need convertCompoundSelectToSubquery() */
#define SF_MinMaxAgg       0x1000  /* Aggregate containing min() or max() */
#define SF_Recursive       0x2000  /* The recursive part of a recursive CTE */
#define SF_Converted       0x4000  /* By convertCompoundSelectToSubquery() */
#define SF_IncludeHidden   0x8000  /* Include hidden columns in output */


/*
** The results of a SELECT can be distributed in several ways, as defined
** by one of the following macros.  The "SRT" prefix means "SELECT Result
** Type".
**
13213
13214
13215
13216
13217
13218
13219

13220
13221
13222
13223
13224
13225
13226
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  int nOnce;           /* Number of OP_Once instructions so far */
  int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */

  int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
  int ckBase;          /* Base register of data during check constraints */
  int iSelfTab;        /* Table of an index whose exprs are being coded */
  int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
  int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
  int nLabel;          /* Number of labels used */
  int *aLabel;         /* Space to hold the labels */







>







13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
  int iRangeReg;       /* First register in temporary register block */
  int nErr;            /* Number of errors seen */
  int nTab;            /* Number of previously allocated VDBE cursors */
  int nMem;            /* Number of memory cells used so far */
  int nSet;            /* Number of sets used so far */
  int nOnce;           /* Number of OP_Once instructions so far */
  int nOpAlloc;        /* Number of slots allocated for Vdbe.aOp[] */
  int szOpAlloc;       /* Bytes of memory space allocated for Vdbe.aOp[] */
  int iFixedOp;        /* Never back out opcodes iFixedOp-1 or earlier */
  int ckBase;          /* Base register of data during check constraints */
  int iSelfTab;        /* Table of an index whose exprs are being coded */
  int iCacheLevel;     /* ColCache valid when aColCache[].iLevel<=iCacheLevel */
  int iCacheCnt;       /* Counter used to generate aColCache[].lru values */
  int nLabel;          /* Number of labels used */
  int *aLabel;         /* Space to hold the labels */
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
  ** using offsetof(Parse,nVar) so the nVar field must be the first field
  ** in the recursive region.
  ************************************************************************/

  int nVar;                 /* Number of '?' variables seen in the SQL so far */
  int nzVar;                /* Number of available slots in azVar[] */
  u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */
  u8 bFreeWith;             /* True if pWith should be freed with parser */
  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
  int nAlias;               /* Number of aliased result set columns */
  int nHeight;              /* Expression tree height of current sub-select */







<







13580
13581
13582
13583
13584
13585
13586

13587
13588
13589
13590
13591
13592
13593
  ** using offsetof(Parse,nVar) so the nVar field must be the first field
  ** in the recursive region.
  ************************************************************************/

  int nVar;                 /* Number of '?' variables seen in the SQL so far */
  int nzVar;                /* Number of available slots in azVar[] */
  u8 iPkSortOrder;          /* ASC or DESC for INTEGER PRIMARY KEY */

  u8 explain;               /* True if the EXPLAIN flag is found on the query */
#ifndef SQLITE_OMIT_VIRTUALTABLE
  u8 declareVtab;           /* True if inside sqlite3_declare_vtab() */
  int nVtabLock;            /* Number of virtual tables to lock */
#endif
  int nAlias;               /* Number of aliased result set columns */
  int nHeight;              /* Expression tree height of current sub-select */
13294
13295
13296
13297
13298
13299
13300

13301
13302
13303
13304
13305
13306
13307
#ifndef SQLITE_OMIT_VIRTUALTABLE
  Token sArg;               /* Complete text of a module argument */
  Table **apVtabLock;       /* Pointer to virtual tables needing locking */
#endif
  Table *pZombieTab;        /* List of Table objects to delete after code gen */
  TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
  With *pWith;              /* Current WITH clause, or NULL */

};

/*
** Return true if currently inside an sqlite3_declare_vtab() call.
*/
#ifdef SQLITE_OMIT_VIRTUALTABLE
  #define IN_DECLARE_VTAB 0







>







13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
#ifndef SQLITE_OMIT_VIRTUALTABLE
  Token sArg;               /* Complete text of a module argument */
  Table **apVtabLock;       /* Pointer to virtual tables needing locking */
#endif
  Table *pZombieTab;        /* List of Table objects to delete after code gen */
  TriggerPrg *pTriggerPrg;  /* Linked list of coded triggers */
  With *pWith;              /* Current WITH clause, or NULL */
  With *pWithToFree;        /* Free this WITH object at the end of the parse */
};

/*
** Return true if currently inside an sqlite3_declare_vtab() call.
*/
#ifdef SQLITE_OMIT_VIRTUALTABLE
  #define IN_DECLARE_VTAB 0
13327
13328
13329
13330
13331
13332
13333

13334
13335
13336
13337
13338
13339
13340
13341
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */

#define OPFLAG_P2ISREG       0x04    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.







>
|







13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
#define OPFLAG_ISUPDATE      0x04    /* This OP_Insert is an sql UPDATE */
#define OPFLAG_APPEND        0x08    /* This is likely to be an append */
#define OPFLAG_USESEEKRESULT 0x10    /* Try to avoid a seek in BtreeInsert() */
#define OPFLAG_LENGTHARG     0x40    /* OP_Column only used for length() */
#define OPFLAG_TYPEOFARG     0x80    /* OP_Column only used for typeof() */
#define OPFLAG_BULKCSR       0x01    /* OP_Open** used to open bulk cursor */
#define OPFLAG_SEEKEQ        0x02    /* OP_Open** cursor uses EQ seek only */
#define OPFLAG_FORDELETE     0x08    /* OP_Open is opening for-delete csr */
#define OPFLAG_P2ISREG       0x10    /* P2 to OP_Open** is a register number */
#define OPFLAG_PERMUTE       0x01    /* OP_Compare: use the permutation */

/*
 * Each trigger present in the database schema is stored as an instance of
 * struct Trigger. 
 *
 * Pointers to instances of struct Trigger are stored in two ways.
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453

13454
13455
13456
13457
13458
13459
13460
** An objected used to accumulate the text of a string where we
** do not necessarily know how big the string will be in the end.
*/
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  int  nChar;          /* Length of the string so far */
  int  nAlloc;         /* Amount of space allocated in zText */
  int  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */

};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2

/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.







|
|
|

>







13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
** An objected used to accumulate the text of a string where we
** do not necessarily know how big the string will be in the end.
*/
struct StrAccum {
  sqlite3 *db;         /* Optional database for lookaside.  Can be NULL */
  char *zBase;         /* A base allocation.  Not from malloc. */
  char *zText;         /* The string collected so far */
  u32  nChar;          /* Length of the string so far */
  u32  nAlloc;         /* Amount of space allocated in zText */
  u32  mxAlloc;        /* Maximum allowed allocation.  0 for no malloc usage */
  u8   accError;       /* STRACCUM_NOMEM or STRACCUM_TOOBIG */
  u8   bMalloced;      /* zText points to allocated space */
};
#define STRACCUM_NOMEM   1
#define STRACCUM_TOOBIG  2

/*
** A pointer to this structure is used to communicate information
** from sqlite3Init and OP_ParseSchema into the sqlite3InitCallback.
13556
13557
13558
13559
13560
13561
13562

13563
13564
13565
13566
13567
13568
13569
13570
13571

13572
13573
13574
13575
13576
13577
13578
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */

  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);


/*
** Return code from the parse-tree walking primitives and their
** callbacks.
*/
#define WRC_Continue    0   /* Continue down into children */
#define WRC_Prune       1   /* Omit children but continue walking siblings */







>









>







13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
  u8 eCode;                                 /* A small processing code */
  union {                                   /* Extra data for callback */
    NameContext *pNC;                          /* Naming context */
    int n;                                     /* A counter */
    int iCur;                                  /* A cursor number */
    SrcList *pSrcList;                         /* FROM clause */
    struct SrcCount *pSrcCount;                /* Counting column references */
    struct CCurHint *pCCurHint;                /* Used by codeCursorHint() */
  } u;
};

/* Forward declarations */
SQLITE_PRIVATE int sqlite3WalkExpr(Walker*, Expr*);
SQLITE_PRIVATE int sqlite3WalkExprList(Walker*, ExprList*);
SQLITE_PRIVATE int sqlite3WalkSelect(Walker*, Select*);
SQLITE_PRIVATE int sqlite3WalkSelectExpr(Walker*, Select*);
SQLITE_PRIVATE int sqlite3WalkSelectFrom(Walker*, Select*);
SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker*, Expr*);

/*
** Return code from the parse-tree walking primitives and their
** callbacks.
*/
#define WRC_Continue    0   /* Continue down into children */
#define WRC_Prune       1   /* Omit children but continue walking siblings */
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
#else
# define sqlite3MemoryBarrier()
#endif

SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int);
SQLITE_PRIVATE void sqlite3StatusUp(int, int);
SQLITE_PRIVATE void sqlite3StatusDown(int, int);
SQLITE_PRIVATE void sqlite3StatusSet(int, int);

/* Access to mutexes used by sqlite3_status() */
SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void);
SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void);

#ifndef SQLITE_OMIT_FLOATING_POINT
SQLITE_PRIVATE   int sqlite3IsNaN(double);







|







14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
#else
# define sqlite3MemoryBarrier()
#endif

SQLITE_PRIVATE sqlite3_int64 sqlite3StatusValue(int);
SQLITE_PRIVATE void sqlite3StatusUp(int, int);
SQLITE_PRIVATE void sqlite3StatusDown(int, int);
SQLITE_PRIVATE void sqlite3StatusHighwater(int, int);

/* Access to mutexes used by sqlite3_status() */
SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void);
SQLITE_PRIVATE sqlite3_mutex *sqlite3MallocMutex(void);

#ifndef SQLITE_OMIT_FLOATING_POINT
SQLITE_PRIVATE   int sqlite3IsNaN(double);
13781
13782
13783
13784
13785
13786
13787

13788
13789
13790
13791
13792
13793
13794
SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
SQLITE_PRIVATE   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);

#endif


SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*);
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
SQLITE_PRIVATE int sqlite3Dequote(char*);
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);







>







14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
SQLITE_PRIVATE   void *sqlite3TestTextToPtr(const char*);
#endif

#if defined(SQLITE_DEBUG)
SQLITE_PRIVATE   void sqlite3TreeViewExpr(TreeView*, const Expr*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewExprList(TreeView*, const ExprList*, u8, const char*);
SQLITE_PRIVATE   void sqlite3TreeViewSelect(TreeView*, const Select*, u8);
SQLITE_PRIVATE   void sqlite3TreeViewWith(TreeView*, const With*, u8);
#endif


SQLITE_PRIVATE void sqlite3SetString(char **, sqlite3*, const char*);
SQLITE_PRIVATE void sqlite3ErrorMsg(Parse*, const char*, ...);
SQLITE_PRIVATE int sqlite3Dequote(char*);
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char*, int);
13824
13825
13826
13827
13828
13829
13830





13831
13832
13833
13834
13835
13836
13837
SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*);
SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
SQLITE_PRIVATE i16 sqlite3ColumnOfIndex(Index*, i16);
SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);





SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*);
SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);







>
>
>
>
>







14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
SQLITE_PRIVATE void sqlite3DeleteColumnNames(sqlite3*,Table*);
SQLITE_PRIVATE int sqlite3ColumnsFromExprList(Parse*,ExprList*,i16*,Column**);
SQLITE_PRIVATE Table *sqlite3ResultSetOfSelect(Parse*,Select*);
SQLITE_PRIVATE void sqlite3OpenMasterTable(Parse *, int);
SQLITE_PRIVATE Index *sqlite3PrimaryKeyIndex(Table*);
SQLITE_PRIVATE i16 sqlite3ColumnOfIndex(Index*, i16);
SQLITE_PRIVATE void sqlite3StartTable(Parse*,Token*,Token*,int,int,int,int);
#if SQLITE_ENABLE_HIDDEN_COLUMNS
SQLITE_PRIVATE   void sqlite3ColumnPropertiesFromName(Table*, Column*);
#else
# define sqlite3ColumnPropertiesFromName(T,C) /* no-op */
#endif
SQLITE_PRIVATE void sqlite3AddColumn(Parse*,Token*);
SQLITE_PRIVATE void sqlite3AddNotNull(Parse*, int);
SQLITE_PRIVATE void sqlite3AddPrimaryKey(Parse*, ExprList*, int, int, int);
SQLITE_PRIVATE void sqlite3AddCheckConstraint(Parse*, Expr*);
SQLITE_PRIVATE void sqlite3AddColumnType(Parse*,Token*);
SQLITE_PRIVATE void sqlite3AddDefaultValue(Parse*,ExprSpan*);
SQLITE_PRIVATE void sqlite3AddCollateType(Parse*, Token*);
13926
13927
13928
13929
13930
13931
13932

13933
13934
13935
13936
13937
13938
13939
13940
13941

13942
13943
13944
13945
13946
13947
13948
SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*);
SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*);
#define ONEPASS_OFF      0        /* Use of ONEPASS not allowed */
#define ONEPASS_SINGLE   1        /* ONEPASS valid for a single row update */
#define ONEPASS_MULTI    2        /* ONEPASS is valid for multiple rows */
SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);

SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);

SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
#define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */







>









>







14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
SQLITE_PRIVATE int sqlite3WhereBreakLabel(WhereInfo*);
SQLITE_PRIVATE int sqlite3WhereOkOnePass(WhereInfo*, int*);
#define ONEPASS_OFF      0        /* Use of ONEPASS not allowed */
#define ONEPASS_SINGLE   1        /* ONEPASS valid for a single row update */
#define ONEPASS_MULTI    2        /* ONEPASS is valid for multiple rows */
SQLITE_PRIVATE void sqlite3ExprCodeLoadIndexColumn(Parse*, Index*, int, int, int);
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8);
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnToReg(Parse*, Table*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int);
SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*);
SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse*);
SQLITE_PRIVATE void sqlite3ExprCacheAffinityChange(Parse*, int, int);
SQLITE_PRIVATE void sqlite3ExprCode(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeFactorable(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAtInit(Parse*, Expr*, int, u8);
SQLITE_PRIVATE int sqlite3ExprCodeTemp(Parse*, Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCodeTarget(Parse*, Expr*, int);
SQLITE_PRIVATE void sqlite3ExprCodeAndCache(Parse*, Expr*, int);
SQLITE_PRIVATE int sqlite3ExprCodeExprList(Parse*, ExprList*, int, int, u8);
#define SQLITE_ECEL_DUP      0x01  /* Deep, not shallow copies */
13980
13981
13982
13983
13984
13985
13986



13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);



SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);







>
>
>












|







14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
SQLITE_PRIVATE void sqlite3Savepoint(Parse*, int, Token*);
SQLITE_PRIVATE void sqlite3CloseSavepoints(sqlite3 *);
SQLITE_PRIVATE void sqlite3LeaveMutexAndCloseZombie(sqlite3*);
SQLITE_PRIVATE int sqlite3ExprIsConstant(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantNotJoin(Expr*);
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr*, u8);
SQLITE_PRIVATE int sqlite3ExprIsTableConstant(Expr*,int);
#ifdef SQLITE_ENABLE_CURSOR_HINTS
SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr*);
#endif
SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*);
SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*);
SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char);
SQLITE_PRIVATE int sqlite3IsRowid(const char*);
SQLITE_PRIVATE void sqlite3GenerateRowDelete(
    Parse*,Table*,Trigger*,int,int,int,i16,u8,u8,u8,int);
SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int, int*, int);
SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int, int*,Index*,int);
SQLITE_PRIVATE void sqlite3ResolvePartIdxLabel(Parse*,int);
SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int*,int,int,int,int,
                                     u8,u8,int,int*);
SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*,Table*,int,int,int,int*,int,int,int);
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, u8, int, u8*, int*, int*);
SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int);
SQLITE_PRIVATE void sqlite3MultiWrite(Parse*);
SQLITE_PRIVATE void sqlite3MayAbort(Parse*);
SQLITE_PRIVATE void sqlite3HaltConstraint(Parse*, int, int, char*, i8, u8);
SQLITE_PRIVATE void sqlite3UniqueConstraint(Parse*, int, Index*);
SQLITE_PRIVATE void sqlite3RowidConstraint(Parse*, int, Table*);
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3*,Expr*,int);
14169
14170
14171
14172
14173
14174
14175

14176
14177
14178
14179
14180
14181
14182
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[];

SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
SQLITE_PRIVATE const Token sqlite3IntTokens[];
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
#ifndef SQLITE_OMIT_WSD
SQLITE_PRIVATE int sqlite3PendingByte;







>







14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
SQLITE_PRIVATE void sqlite3ValueFree(sqlite3_value*);
SQLITE_PRIVATE sqlite3_value *sqlite3ValueNew(sqlite3 *);
SQLITE_PRIVATE char *sqlite3Utf16to8(sqlite3 *, const void*, int, u8);
SQLITE_PRIVATE int sqlite3ValueFromExpr(sqlite3 *, Expr *, u8, u8, sqlite3_value **);
SQLITE_PRIVATE void sqlite3ValueApplyAffinity(sqlite3_value *, u8, u8);
#ifndef SQLITE_AMALGAMATION
SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[];
SQLITE_PRIVATE const char sqlite3StrBINARY[];
SQLITE_PRIVATE const unsigned char sqlite3UpperToLower[];
SQLITE_PRIVATE const unsigned char sqlite3CtypeMap[];
SQLITE_PRIVATE const Token sqlite3IntTokens[];
SQLITE_PRIVATE SQLITE_WSD struct Sqlite3Config sqlite3Config;
SQLITE_PRIVATE SQLITE_WSD FuncDefHash sqlite3GlobalFunctions;
#ifndef SQLITE_OMIT_WSD
SQLITE_PRIVATE int sqlite3PendingByte;
14774
14775
14776
14777
14778
14779
14780





14781
14782
14783
14784
14785
14786
14787
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
** created by mkopcodeh.awk during compilation.  Data is obtained
** from the comments following the "case OP_xxxx:" statements in
** the vdbe.c file.  
*/
SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;






/************** End of global.c **********************************************/
/************** Begin file ctime.c *******************************************/
/*
** 2010 February 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:







>
>
>
>
>







15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
** Properties of opcodes.  The OPFLG_INITIALIZER macro is
** created by mkopcodeh.awk during compilation.  Data is obtained
** from the comments following the "case OP_xxxx:" statements in
** the vdbe.c file.  
*/
SQLITE_PRIVATE const unsigned char sqlite3OpcodeProperty[] = OPFLG_INITIALIZER;

/*
** Name of the default collating sequence
*/
SQLITE_PRIVATE const char sqlite3StrBINARY[] = "BINARY";

/************** End of global.c **********************************************/
/************** Begin file ctime.c *******************************************/
/*
** 2010 February 23
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
14840
14841
14842
14843
14844
14845
14846



14847
14848
14849
14850
14851
14852
14853
  "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
#endif
#if SQLITE_DISABLE_DIRSYNC
  "DISABLE_DIRSYNC",
#endif
#if SQLITE_DISABLE_LFS
  "DISABLE_LFS",



#endif
#if SQLITE_ENABLE_API_ARMOR
  "ENABLE_API_ARMOR",
#endif
#if SQLITE_ENABLE_ATOMIC_WRITE
  "ENABLE_ATOMIC_WRITE",
#endif







>
>
>







15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
  "DEFAULT_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_DEFAULT_MMAP_SIZE),
#endif
#if SQLITE_DISABLE_DIRSYNC
  "DISABLE_DIRSYNC",
#endif
#if SQLITE_DISABLE_LFS
  "DISABLE_LFS",
#endif
#if SQLITE_ENABLE_8_3_NAMES
  "ENABLE_8_3_NAMES",
#endif
#if SQLITE_ENABLE_API_ARMOR
  "ENABLE_API_ARMOR",
#endif
#if SQLITE_ENABLE_ATOMIC_WRITE
  "ENABLE_ATOMIC_WRITE",
#endif
14935
14936
14937
14938
14939
14940
14941



14942
14943
14944
14945
14946
14947
14948
  "IGNORE_AFP_LOCK_ERRORS",
#endif
#if SQLITE_IGNORE_FLOCK_LOCK_ERRORS
  "IGNORE_FLOCK_LOCK_ERRORS",
#endif
#ifdef SQLITE_INT64_TYPE
  "INT64_TYPE",



#endif
#if SQLITE_LOCK_TRACE
  "LOCK_TRACE",
#endif
#if defined(SQLITE_MAX_MMAP_SIZE) && !defined(SQLITE_MAX_MMAP_SIZE_xc)
  "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE),
#endif







>
>
>







15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
  "IGNORE_AFP_LOCK_ERRORS",
#endif
#if SQLITE_IGNORE_FLOCK_LOCK_ERRORS
  "IGNORE_FLOCK_LOCK_ERRORS",
#endif
#ifdef SQLITE_INT64_TYPE
  "INT64_TYPE",
#endif
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  "LIKE_DOESNT_MATCH_BLOBS",
#endif
#if SQLITE_LOCK_TRACE
  "LOCK_TRACE",
#endif
#if defined(SQLITE_MAX_MMAP_SIZE) && !defined(SQLITE_MAX_MMAP_SIZE_xc)
  "MAX_MMAP_SIZE=" CTIMEOPT_VAL(SQLITE_MAX_MMAP_SIZE),
#endif
15261
15262
15263
15264
15265
15266
15267











15268
15269
15270
15271
15272
15273
15274
** The maximum number of times that a statement will try to reparse
** itself before giving up and returning SQLITE_SCHEMA.
*/
#ifndef SQLITE_MAX_SCHEMA_RETRY
# define SQLITE_MAX_SCHEMA_RETRY 50
#endif












/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine.  Each instruction is an instance
** of the following structure.
*/
typedef struct VdbeOp Op;








>
>
>
>
>
>
>
>
>
>
>







15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
** The maximum number of times that a statement will try to reparse
** itself before giving up and returning SQLITE_SCHEMA.
*/
#ifndef SQLITE_MAX_SCHEMA_RETRY
# define SQLITE_MAX_SCHEMA_RETRY 50
#endif

/*
** VDBE_DISPLAY_P4 is true or false depending on whether or not the
** "explain" P4 display logic is enabled.
*/
#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
# define VDBE_DISPLAY_P4 1
#else
# define VDBE_DISPLAY_P4 0
#endif

/*
** SQL is translated into a sequence of instructions to be
** executed by a virtual machine.  Each instruction is an instance
** of the following structure.
*/
typedef struct VdbeOp Op;

15282
15283
15284
15285
15286
15287
15288






15289
15290
15291
15292
15293
15294
15295
15296
15297


15298
15299
15300

15301
15302
15303

15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320




15321






15322
15323
15324
15325
15326
15327
15328
15329
15330
15331

/* Opaque type used by the explainer */
typedef struct Explain Explain;

/* Elements of the linked list at Vdbe.pAuxData */
typedef struct AuxData AuxData;







/*
** A cursor is a pointer into a single BTree within a database file.
** The cursor can seek to a BTree entry with a particular key, or
** loop over all entries of the Btree.  You can also insert new BTree
** entries or retrieve the key or data from the entry that the cursor
** is currently pointing to.
**
** Cursors can also point to virtual tables, sorters, or "pseudo-tables".
** A pseudo-table is a single-row table implemented by registers.


** 
** Every cursor that the virtual machine has open is represented by an
** instance of the following structure.

*/
struct VdbeCursor {
  BtCursor *pCursor;    /* The cursor structure of the backend */

  Btree *pBt;           /* Separate file holding temporary table */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int seekResult;       /* Result of previous sqlite3BtreeMoveto() */
  int pseudoTableReg;   /* Register holding pseudotable content. */
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
#ifdef SQLITE_DEBUG
  u8 seekOp;            /* Most recent seek operation on this cursor */
#endif
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */
  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */
  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */
  Bool isTable:1;       /* True if a table requiring integer keys */
  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */




  sqlite3_vtab_cursor *pVtabCursor;  /* The cursor for a virtual table */






  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */
  VdbeSorter *pSorter;  /* Sorter object for OP_SorterOpen cursors */
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
  u64 maskUsed;         /* Mask of columns used by this cursor */
#endif

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of







>
>
>
>
>
>

|
<
<
<
<

|
<
>
>
|
|
<
>


|
>
|
<
|
<
|
<



<
<
<


<


>
>
>
>
|
>
>
>
>
>
>


<







15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647




15648
15649

15650
15651
15652
15653

15654
15655
15656
15657
15658
15659

15660

15661

15662
15663
15664



15665
15666

15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681

15682
15683
15684
15685
15686
15687
15688

/* Opaque type used by the explainer */
typedef struct Explain Explain;

/* Elements of the linked list at Vdbe.pAuxData */
typedef struct AuxData AuxData;

/* Types of VDBE cursors */
#define CURTYPE_BTREE       0
#define CURTYPE_SORTER      1
#define CURTYPE_VTAB        2
#define CURTYPE_PSEUDO      3

/*
** A VdbeCursor is an superclass (a wrapper) for various cursor objects:




**
**      * A b-tree cursor

**          -  In the main database or in an ephemeral database
**          -  On either an index or a table
**      * A sorter
**      * A virtual table

**      * A one-row "pseudotable" stored in a single register
*/
struct VdbeCursor {
  u8 eCurType;          /* One of the CURTYPE_* values above */
  i8 iDb;               /* Index of cursor database in db->aDb[] (or -1) */
  u8 nullRow;           /* True if pointing to a row with no data */

  u8 deferredMoveto;    /* A call to sqlite3BtreeMoveto() is needed */

  u8 isTable;           /* True for rowid tables.  False for indexes */

#ifdef SQLITE_DEBUG
  u8 seekOp;            /* Most recent seek operation on this cursor */
#endif



  Bool isEphemeral:1;   /* True for an ephemeral table */
  Bool useRandomRowid:1;/* Generate new record numbers semi-randomly */

  Bool isOrdered:1;     /* True if the underlying table is BTREE_UNORDERED */
  Pgno pgnoRoot;        /* Root page of the open btree cursor */
  i16 nField;           /* Number of fields in the header */
  u16 nHdrParsed;       /* Number of header fields parsed so far */
  union {
    BtCursor *pCursor;          /* CURTYPE_BTREE.  Btree cursor */
    sqlite3_vtab_cursor *pVCur; /* CURTYPE_VTAB.   Vtab cursor */
    int pseudoTableReg;         /* CURTYPE_PSEUDO. Reg holding content. */
    VdbeSorter *pSorter;        /* CURTYPE_SORTER. Sorter object */
  } uc;
  Btree *pBt;           /* Separate file holding temporary table */
  KeyInfo *pKeyInfo;    /* Info about index keys needed by index cursors */
  int seekResult;       /* Result of previous sqlite3BtreeMoveto() */
  i64 seqCount;         /* Sequence counter */
  i64 movetoTarget;     /* Argument to the deferred sqlite3BtreeMoveto() */

#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
  u64 maskUsed;         /* Mask of columns used by this cursor */
#endif

  /* Cached information about the header for the data record that the
  ** cursor is currently pointing to.  Only valid if cacheStatus matches
  ** Vdbe.cacheCtr.  Vdbe.cacheCtr will never take on the value of
15647
15648
15649
15650
15651
15652
15653

15654
15655
15656
15657
15658
15659
15660
15661
void sqliteVdbePopStack(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);

SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int);
SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);







>
|







16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
void sqliteVdbePopStack(Vdbe*,int);
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor*);
SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor*);
#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*);
#endif
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32);
SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8);
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int, u32*);
SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, Mem*, u32);
SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*);
SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(Vdbe*, int, int);

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(sqlite3*,VdbeCursor*,UnpackedRecord*,int*);
SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor*, i64*);
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763




15764
15765
15766
15767
15768
15769
15770

/************** End of vdbeInt.h *********************************************/
/************** Continuing where we left off in status.c *********************/

/*
** Variables in which to record status information.
*/
typedef struct sqlite3StatType sqlite3StatType;
static SQLITE_WSD struct sqlite3StatType {
#if SQLITE_PTRSIZE>4
  sqlite3_int64 nowValue[10];         /* Current value */
  sqlite3_int64 mxValue[10];          /* Maximum value */
#else
  u32 nowValue[10];                   /* Current value */
  u32 mxValue[10];                    /* Maximum value */
#endif




} sqlite3Stat = { {0,}, {0,} };

/*
** Elements of sqlite3Stat[] are protected by either the memory allocator
** mutex, or by the pcache1 mutex.  The following array determines which.
*/
static const char statMutex[] = {







<
<

|
<

|
<

>
>
>
>







16106
16107
16108
16109
16110
16111
16112


16113
16114

16115
16116

16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128

/************** End of vdbeInt.h *********************************************/
/************** Continuing where we left off in status.c *********************/

/*
** Variables in which to record status information.
*/


#if SQLITE_PTRSIZE>4
typedef sqlite3_int64 sqlite3StatValueType;

#else
typedef u32 sqlite3StatValueType;

#endif
typedef struct sqlite3StatType sqlite3StatType;
static SQLITE_WSD struct sqlite3StatType {
  sqlite3StatValueType nowValue[10];  /* Current value */
  sqlite3StatValueType mxValue[10];   /* Maximum value */
} sqlite3Stat = { {0,}, {0,} };

/*
** Elements of sqlite3Stat[] are protected by either the memory allocator
** mutex, or by the pcache1 mutex.  The following array determines which.
*/
static const char statMutex[] = {
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847

15848


15849
15850
15851
15852
15853



15854
15855
15856
15857
15858
15859
15860
15861
15862
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  wsdStat.nowValue[op] -= N;
}

/*
** Set the value of a status to X.  The highwater mark is adjusted if
** necessary.  The caller must hold the appropriate mutex.
*/
SQLITE_PRIVATE void sqlite3StatusSet(int op, int X){

  wsdStatInit;


  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  wsdStat.nowValue[op] = X;



  if( wsdStat.nowValue[op]>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = wsdStat.nowValue[op];
  }
}

/*
** Query status information.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_status64(







|
|

|
>

>
>




|
>
>
>
|
|







16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  wsdStat.nowValue[op] -= N;
}

/*
** Adjust the highwater mark if necessary.
** The caller must hold the appropriate mutex.
*/
SQLITE_PRIVATE void sqlite3StatusHighwater(int op, int X){
  sqlite3StatValueType newValue;
  wsdStatInit;
  assert( X>=0 );
  newValue = (sqlite3StatValueType)X;
  assert( op>=0 && op<ArraySize(wsdStat.nowValue) );
  assert( op>=0 && op<ArraySize(statMutex) );
  assert( sqlite3_mutex_held(statMutex[op] ? sqlite3Pcache1Mutex()
                                           : sqlite3MallocMutex()) );
  assert( op==SQLITE_STATUS_MALLOC_SIZE
          || op==SQLITE_STATUS_PAGECACHE_SIZE
          || op==SQLITE_STATUS_SCRATCH_SIZE
          || op==SQLITE_STATUS_PARSER_STACK );
  if( newValue>wsdStat.mxValue[op] ){
    wsdStat.mxValue[op] = newValue;
  }
}

/*
** Query status information.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_status64(
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998

          nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
              pSchema->tblHash.count 
            + pSchema->trigHash.count
            + pSchema->idxHash.count
            + pSchema->fkeyHash.count
          );
          nByte += sqlite3MallocSize(pSchema->tblHash.ht);
          nByte += sqlite3MallocSize(pSchema->trigHash.ht);
          nByte += sqlite3MallocSize(pSchema->idxHash.ht);
          nByte += sqlite3MallocSize(pSchema->fkeyHash.ht);

          for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
            sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
          }
          for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
            sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
          }







|
|
|
|







16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362

          nByte += sqlite3GlobalConfig.m.xRoundup(sizeof(HashElem)) * (
              pSchema->tblHash.count 
            + pSchema->trigHash.count
            + pSchema->idxHash.count
            + pSchema->fkeyHash.count
          );
          nByte += sqlite3_msize(pSchema->tblHash.ht);
          nByte += sqlite3_msize(pSchema->trigHash.ht);
          nByte += sqlite3_msize(pSchema->idxHash.ht);
          nByte += sqlite3_msize(pSchema->fkeyHash.ht);

          for(p=sqliteHashFirst(&pSchema->trigHash); p; p=sqliteHashNext(p)){
            sqlite3DeleteTrigger(db, (Trigger*)sqliteHashData(p));
          }
          for(p=sqliteHashFirst(&pSchema->tblHash); p; p=sqliteHashNext(p)){
            sqlite3DeleteTable(db, (Table *)sqliteHashData(p));
          }
16137
16138
16139
16140
16141
16142
16143

16144
16145
16146
16147
16148
16149
16150
  int h, m;          /* Hour and minutes */
  int tz;            /* Timezone offset in minutes */
  double s;          /* Seconds */
  char validYMD;     /* True (1) if Y,M,D are valid */
  char validHMS;     /* True (1) if h,m,s are valid */
  char validJD;      /* True (1) if iJD is valid */
  char validTZ;      /* True (1) if tz is valid */

};


/*
** Convert zDate into one or more integers.  Additional arguments
** come in groups of 5 as follows:
**







>







16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
  int h, m;          /* Hour and minutes */
  int tz;            /* Timezone offset in minutes */
  double s;          /* Seconds */
  char validYMD;     /* True (1) if Y,M,D are valid */
  char validHMS;     /* True (1) if h,m,s are valid */
  char validJD;      /* True (1) if iJD is valid */
  char validTZ;      /* True (1) if tz is valid */
  char tzSet;        /* Timezone was set explicitly */
};


/*
** Convert zDate into one or more integers.  Additional arguments
** come in groups of 5 as follows:
**
16230
16231
16232
16233
16234
16235
16236

16237
16238
16239
16240
16241
16242
16243
  if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
    return 1;
  }
  zDate += 5;
  p->tz = sgn*(nMn + nHr*60);
zulu_time:
  while( sqlite3Isspace(*zDate) ){ zDate++; }

  return *zDate!=0;
}

/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits.  The
** fractional seconds FFFF can be one or more digits.







>







16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
  if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
    return 1;
  }
  zDate += 5;
  p->tz = sgn*(nMn + nHr*60);
zulu_time:
  while( sqlite3Isspace(*zDate) ){ zDate++; }
  p->tzSet = 1;
  return *zDate!=0;
}

/*
** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
** The HH, MM, and SS must each be exactly 2 digits.  The
** fractional seconds FFFF can be one or more digits.
16662
16663
16664
16665
16666
16667
16668

16669
16670
16671
16672
16673
16674
16675




16676
16677
16678
16679
16680
16681
16682
      if( strcmp(z, "unixepoch")==0 && p->validJD ){
        p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
        clearYMD_HMS_TZ(p);
        rc = 0;
      }
#ifndef SQLITE_OMIT_LOCALTIME
      else if( strcmp(z, "utc")==0 ){

        sqlite3_int64 c1;
        computeJD(p);
        c1 = localtimeOffset(p, pCtx, &rc);
        if( rc==SQLITE_OK ){
          p->iJD -= c1;
          clearYMD_HMS_TZ(p);
          p->iJD += c1 - localtimeOffset(p, pCtx, &rc);




        }
      }
#endif
      break;
    }
    case 'w': {
      /*







>
|
|
|
|
|
|
|
>
>
>
>







17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
      if( strcmp(z, "unixepoch")==0 && p->validJD ){
        p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
        clearYMD_HMS_TZ(p);
        rc = 0;
      }
#ifndef SQLITE_OMIT_LOCALTIME
      else if( strcmp(z, "utc")==0 ){
        if( p->tzSet==0 ){
          sqlite3_int64 c1;
          computeJD(p);
          c1 = localtimeOffset(p, pCtx, &rc);
          if( rc==SQLITE_OK ){
            p->iJD -= c1;
            clearYMD_HMS_TZ(p);
            p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
          }
          p->tzSet = 1;
        }else{
          rc = SQLITE_OK;
        }
      }
#endif
      break;
    }
    case 'w': {
      /*
17935
17936
17937
17938
17939
17940
17941

17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952

/*
** Report the allocated size of a prior return from xMalloc()
** or xRealloc().
*/
static int sqlite3MemSize(void *pPrior){
#ifdef SQLITE_MALLOCSIZE

  return pPrior ? (int)SQLITE_MALLOCSIZE(pPrior) : 0;
#else
  sqlite3_int64 *p;
  if( pPrior==0 ) return 0;
  p = (sqlite3_int64*)pPrior;
  p--;
  return (int)p[0];
#endif
}

/*







>
|


|







18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324

/*
** Report the allocated size of a prior return from xMalloc()
** or xRealloc().
*/
static int sqlite3MemSize(void *pPrior){
#ifdef SQLITE_MALLOCSIZE
  assert( pPrior!=0 );
  return (int)SQLITE_MALLOCSIZE(pPrior);
#else
  sqlite3_int64 *p;
  assert( pPrior!=0 );
  p = (sqlite3_int64*)pPrior;
  p--;
  return (int)p[0];
#endif
}

/*
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
static int memsys3Size(void *p){
  Mem3Block *pBlock;
  if( p==0 ) return 0;
  pBlock = (Mem3Block*)p;
  assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
  return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
}

/*
** Round up a request size to the next valid allocation size.







|







19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
static int memsys3Size(void *p){
  Mem3Block *pBlock;
  assert( p!=0 );
  pBlock = (Mem3Block*)p;
  assert( (pBlock[-1].u.hdr.size4x&1)!=0 );
  return (pBlock[-1].u.hdr.size4x&~3)*2 - 4;
}

/*
** Round up a request size to the next valid allocation size.
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
** be changed.
**
** This version of the memory allocation subsystem is included
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** This memory allocator uses the following algorithm:
**
**   1.  All memory allocations sizes are rounded up to a power of 2.
**
**   2.  If two adjacent free blocks are the halves of a larger block,
**       then the two blocks are coalesced into the single larger block.
**
**   3.  New memory is allocated from the first available free block.
**
** This algorithm is described in: J. M. Robson. "Bounds for Some Functions







|







19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
** be changed.
**
** This version of the memory allocation subsystem is included
** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
**
** This memory allocator uses the following algorithm:
**
**   1.  All memory allocation sizes are rounded up to a power of 2.
**
**   2.  If two adjacent free blocks are the halves of a larger block,
**       then the two blocks are coalesced into the single larger block.
**
**   3.  New memory is allocated from the first available free block.
**
** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** and so forth.
  */
  int aiFreelist[LOGMAX+1];

  /*
  ** Space for tracking which blocks are checked out and the size
  ** of each block.  One byte per block.
  */







|







19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
  u32 maxOut;         /* Maximum instantaneous currentOut */
  u32 maxCount;       /* Maximum instantaneous currentCount */
  u32 maxRequest;     /* Largest allocation (exclusive of internal frag) */
  
  /*
  ** Lists of free blocks.  aiFreelist[0] is a list of free blocks of
  ** size mem5.szAtom.  aiFreelist[1] holds blocks of size szAtom*2.
  ** aiFreelist[2] holds free blocks of size szAtom*4.  And so forth.
  */
  int aiFreelist[LOGMAX+1];

  /*
  ** Space for tracking which blocks are checked out and the size
  ** of each block.  One byte per block.
  */
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
    assert( x<mem5.nBlock );
    MEM5LINK(x)->prev = i;
  }
  mem5.aiFreelist[iLogsize] = i;
}

/*
** If the STATIC_MEM mutex is not already held, obtain it now. The mutex
** will already be held (obtained by code in malloc.c) if
** sqlite3GlobalConfig.bMemStat is true.
*/
static void memsys5Enter(void){
  sqlite3_mutex_enter(mem5.mutex);
}
static void memsys5Leave(void){
  sqlite3_mutex_leave(mem5.mutex);
}

/*
** Return the size of an outstanding allocation, in bytes.  The
** size returned omits the 8-byte header overhead.  This only
** works for chunks that are currently checked out.
*/
static int memsys5Size(void *p){
  int iSize = 0;
  if( p ){
    int i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
    assert( i>=0 && i<mem5.nBlock );
    iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));
  }
  return iSize;
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.  Return NULL if nBytes==0.
**







|
<
<









|
<
|


|
|
|
|
|
<







19837
19838
19839
19840
19841
19842
19843
19844


19845
19846
19847
19848
19849
19850
19851
19852
19853
19854

19855
19856
19857
19858
19859
19860
19861
19862

19863
19864
19865
19866
19867
19868
19869
    assert( x<mem5.nBlock );
    MEM5LINK(x)->prev = i;
  }
  mem5.aiFreelist[iLogsize] = i;
}

/*
** Obtain or release the mutex needed to access global data structures.


*/
static void memsys5Enter(void){
  sqlite3_mutex_enter(mem5.mutex);
}
static void memsys5Leave(void){
  sqlite3_mutex_leave(mem5.mutex);
}

/*
** Return the size of an outstanding allocation, in bytes.

** This only works for chunks that are currently checked out.
*/
static int memsys5Size(void *p){
  int iSize, i;
  assert( p!=0 );
  i = (int)(((u8 *)p-mem5.zPool)/mem5.szAtom);
  assert( i>=0 && i<mem5.nBlock );
  iSize = mem5.szAtom * (1 << (mem5.aCtrl[i]&CTRL_LOGSIZE));

  return iSize;
}

/*
** Return a block of memory of at least nBytes in size.
** Return NULL if unable.  Return NULL if nBytes==0.
**
19513
19514
19515
19516
19517
19518
19519



19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538

  /* nByte must be a positive */
  assert( nByte>0 );

  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){



    mem5.maxRequest = nByte;
  }

  /* Abort if the requested allocation size is larger than the largest
  ** power of two that we can represent using 32-bit signed integers.
  */
  if( nByte > 0x40000000 ){
    return 0;
  }

  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom, iLogsize=0; iFullSz<nByte; iFullSz *= 2, iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
  */
  for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
  if( iBin>LOGMAX ){







>
>
>



<
<
<
<
<
<
<

|







19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893







19894
19895
19896
19897
19898
19899
19900
19901
19902

  /* nByte must be a positive */
  assert( nByte>0 );

  /* Keep track of the maximum allocation request.  Even unfulfilled
  ** requests are counted */
  if( (u32)nByte>mem5.maxRequest ){
    /* Abort if the requested allocation size is larger than the largest
    ** power of two that we can represent using 32-bit signed integers. */
    if( nByte > 0x40000000 ) return 0;
    mem5.maxRequest = nByte;
  }








  /* Round nByte up to the next valid power of two */
  for(iFullSz=mem5.szAtom,iLogsize=0; iFullSz<nByte; iFullSz*=2,iLogsize++){}

  /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
  ** block.  If not, then split a block of the next larger power of
  ** two in order to create a new free block of size iLogsize.
  */
  for(iBin=iLogsize; iBin<=LOGMAX && mem5.aiFreelist[iBin]<0; iBin++){}
  if( iBin>LOGMAX ){
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
  if( nBytes==0 ){
    return 0;
  }
  nOld = memsys5Size(pPrior);
  if( nBytes<=nOld ){
    return pPrior;
  }
  memsys5Enter();
  p = memsys5MallocUnsafe(nBytes);
  if( p ){
    memcpy(p, pPrior, nOld);
    memsys5FreeUnsafe(pPrior);
  }
  memsys5Leave();
  return p;
}

/*
** Round up a request size to the next valid allocation size.  If
** the allocation is too large to be handled by this allocation system,
** return 0.







<
|


|

<







20045
20046
20047
20048
20049
20050
20051

20052
20053
20054
20055
20056

20057
20058
20059
20060
20061
20062
20063
  if( nBytes==0 ){
    return 0;
  }
  nOld = memsys5Size(pPrior);
  if( nBytes<=nOld ){
    return pPrior;
  }

  p = memsys5Malloc(nBytes);
  if( p ){
    memcpy(p, pPrior, nOld);
    memsys5Free(pPrior);
  }

  return p;
}

/*
** Round up a request size to the next valid allocation size.  If
** the allocation is too large to be handled by this allocation system,
** return 0.
20301
20302
20303
20304
20305
20306
20307


20308
20309
20310
20311
20312
20313
20314
20315
#if SQLITE_MUTEX_NREF
  volatile int nRef;         /* Number of entrances */
  volatile pthread_t owner;  /* Thread that is within this mutex */
  int trace;                 /* True to trace changes */
#endif
};
#if SQLITE_MUTEX_NREF


#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0, 0, (pthread_t)0, 0 }
#else
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
#endif

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.  On some platforms,







>
>
|







20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
#if SQLITE_MUTEX_NREF
  volatile int nRef;         /* Number of entrances */
  volatile pthread_t owner;  /* Thread that is within this mutex */
  int trace;                 /* True to trace changes */
#endif
};
#if SQLITE_MUTEX_NREF
#define SQLITE3_MUTEX_INITIALIZER {PTHREAD_MUTEX_INITIALIZER,0,0,(pthread_t)0,0}
#elif defined(SQLITE_ENABLE_API_ARMOR)
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, 0 }
#else
#define SQLITE3_MUTEX_INITIALIZER { PTHREAD_MUTEX_INITIALIZER }
#endif

/*
** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routine are
** intended for use only inside assert() statements.  On some platforms,
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
*/
SQLITE_PRIVATE int sqlite3MallocInit(void){
  int rc;
  if( sqlite3GlobalConfig.m.xMalloc==0 ){
    sqlite3MemSetDefault();
  }
  memset(&mem0, 0, sizeof(mem0));
  if( sqlite3GlobalConfig.bCoreMutex ){
    mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
  }
  if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
      && sqlite3GlobalConfig.nScratch>0 ){
    int i, n, sz;
    ScratchFreeslot *pSlot;
    sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
    sqlite3GlobalConfig.szScratch = sz;
    pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;







<
|
<







21827
21828
21829
21830
21831
21832
21833

21834

21835
21836
21837
21838
21839
21840
21841
*/
SQLITE_PRIVATE int sqlite3MallocInit(void){
  int rc;
  if( sqlite3GlobalConfig.m.xMalloc==0 ){
    sqlite3MemSetDefault();
  }
  memset(&mem0, 0, sizeof(mem0));

  mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);

  if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
      && sqlite3GlobalConfig.nScratch>0 ){
    int i, n, sz;
    ScratchFreeslot *pSlot;
    sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
    sqlite3GlobalConfig.szScratch = sz;
    pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;







|







21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
** lock is already held.
*/
static int mallocWithAlarm(int n, void **pp){
  int nFull;
  void *p;
  assert( sqlite3_mutex_held(mem0.mutex) );
  nFull = sqlite3GlobalConfig.m.xRoundup(n);
  sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
  if( mem0.alarmThreshold>0 ){
    sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
    if( nUsed >= mem0.alarmThreshold - nFull ){
      mem0.nearlyFull = 1;
      sqlite3MallocAlarm(nFull);
    }else{
      mem0.nearlyFull = 0;
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
** embedded processor.
*/
SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){
  void *p;
  assert( n>0 );

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{







|







22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
** embedded processor.
*/
SQLITE_PRIVATE void *sqlite3ScratchMalloc(int n){
  void *p;
  assert( n>0 );

  sqlite3_mutex_enter(mem0.mutex);
  sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n);
  if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
    p = mem0.pScratchFree;
    mem0.pScratchFree = mem0.pScratchFree->pNext;
    mem0.nScratchFree--;
    sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1);
    sqlite3_mutex_leave(mem0.mutex);
  }else{
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
    ** is outstanding at one time.  (This is only checked in the
    ** single-threaded case since checking in the multi-threaded case
    ** would be much more complicated.) */
    assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
    scratchAllocOut--;
#endif

    if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
      /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;







|







22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
    ** is outstanding at one time.  (This is only checked in the
    ** single-threaded case since checking in the multi-threaded case
    ** would be much more complicated.) */
    assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
    scratchAllocOut--;
#endif

    if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){
      /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
      ScratchFreeslot *pSlot;
      pSlot = (ScratchFreeslot*)p;
      sqlite3_mutex_enter(mem0.mutex);
      pSlot->pNext = mem0.pScratchFree;
      mem0.pScratchFree = pSlot;
      mem0.nScratchFree++;
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749

21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
}

/*
** TRUE if p is a lookaside memory allocation from db
*/
#ifndef SQLITE_OMIT_LOOKASIDE
static int isLookaside(sqlite3 *db, void *p){
  return p>=db->lookaside.pStart && p<db->lookaside.pEnd;
}
#else
#define isLookaside(A,B) 0
#endif

/*
** Return the size of a memory allocation previously obtained from
** sqlite3Malloc() or sqlite3_malloc().
*/
SQLITE_PRIVATE int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return sqlite3GlobalConfig.m.xSize(p);
}
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){

  if( db==0 || !isLookaside(db,p) ){
#if SQLITE_DEBUG
    if( db==0 ){
      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
    }
#endif
    return sqlite3GlobalConfig.m.xSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    return db->lookaside.sz;
  }
}
SQLITE_API sqlite3_uint64 SQLITE_STDCALL sqlite3_msize(void *p){
  assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p);
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
SQLITE_API void SQLITE_STDCALL sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */







|














>



















|







22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
}

/*
** TRUE if p is a lookaside memory allocation from db
*/
#ifndef SQLITE_OMIT_LOOKASIDE
static int isLookaside(sqlite3 *db, void *p){
  return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd);
}
#else
#define isLookaside(A,B) 0
#endif

/*
** Return the size of a memory allocation previously obtained from
** sqlite3Malloc() or sqlite3_malloc().
*/
SQLITE_PRIVATE int sqlite3MallocSize(void *p){
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return sqlite3GlobalConfig.m.xSize(p);
}
SQLITE_PRIVATE int sqlite3DbMallocSize(sqlite3 *db, void *p){
  assert( p!=0 );
  if( db==0 || !isLookaside(db,p) ){
#if SQLITE_DEBUG
    if( db==0 ){
      assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
      assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
    }else{
      assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
      assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
    }
#endif
    return sqlite3GlobalConfig.m.xSize(p);
  }else{
    assert( sqlite3_mutex_held(db->mutex) );
    return db->lookaside.sz;
  }
}
SQLITE_API sqlite3_uint64 SQLITE_STDCALL sqlite3_msize(void *p){
  assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
  assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
  return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
}

/*
** Free memory previously obtained from sqlite3Malloc().
*/
SQLITE_API void SQLITE_STDCALL sqlite3_free(void *p){
  if( p==0 ) return;  /* IMP: R-49053-54554 */
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
  ** argument to xRealloc is always a value returned by a prior call to
  ** xRoundup. */
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmThreshold>0 ){







|







22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
  ** argument to xRealloc is always a value returned by a prior call to
  ** xRoundup. */
  nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
  if( nOld==nNew ){
    pNew = pOld;
  }else if( sqlite3GlobalConfig.bMemstat ){
    sqlite3_mutex_enter(mem0.mutex);
    sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
    nDiff = nNew - nOld;
    if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= 
          mem0.alarmThreshold-nDiff ){
      sqlite3MallocAlarm(nDiff);
    }
    pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
    if( pNew==0 && mem0.alarmThreshold>0 ){
22373
22374
22375
22376
22377
22378
22379






22380
22381
22382
22383
22384
22385
22386
      while( c>='0' && c<='9' ){
        wx = wx*10 + c - '0';
        c = *++fmt;
      }
      testcase( wx>0x7fffffff );
      width = wx & 0x7fffffff;
    }







    /* Get the precision */
    if( c=='.' ){
      c = *++fmt;
      if( c=='*' ){
        if( bArgList ){
          precision = (int)getIntArg(pArgList);







>
>
>
>
>
>







22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
      while( c>='0' && c<='9' ){
        wx = wx*10 + c - '0';
        c = *++fmt;
      }
      testcase( wx>0x7fffffff );
      width = wx & 0x7fffffff;
    }
    assert( width>=0 );
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
    if( width>SQLITE_PRINTF_PRECISION_LIMIT ){
      width = SQLITE_PRINTF_PRECISION_LIMIT;
    }
#endif

    /* Get the precision */
    if( c=='.' ){
      c = *++fmt;
      if( c=='*' ){
        if( bArgList ){
          precision = (int)getIntArg(pArgList);
22399
22400
22401
22402
22403
22404
22405








22406
22407
22408
22409
22410
22411
22412
        }
        testcase( px>0x7fffffff );
        precision = px & 0x7fffffff;
      }
    }else{
      precision = -1;
    }








    /* Get the conversion type modifier */
    if( c=='l' ){
      flag_long = 1;
      c = *++fmt;
      if( c=='l' ){
        flag_longlong = 1;
        c = *++fmt;







>
>
>
>
>
>
>
>







22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
        }
        testcase( px>0x7fffffff );
        precision = px & 0x7fffffff;
      }
    }else{
      precision = -1;
    }
    assert( precision>=(-1) );
#ifdef SQLITE_PRINTF_PRECISION_LIMIT
    if( precision>SQLITE_PRINTF_PRECISION_LIMIT ){
      precision = SQLITE_PRINTF_PRECISION_LIMIT;
    }
#endif


    /* Get the conversion type modifier */
    if( c=='l' ){
      flag_long = 1;
      c = *++fmt;
      if( c=='l' ){
        flag_longlong = 1;
        c = *++fmt;
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
    */
    width -= length;
    if( width>0 && !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
    sqlite3StrAccumAppend(pAccum, bufpt, length);
    if( width>0 && flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');

    if( zExtra ){
      sqlite3_free(zExtra);
      zExtra = 0;
    }
  }/* End for loop over the format string */
} /* End of function */

/*
** Enlarge the memory allocation on a StrAccum object so that it is







|







23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
    */
    width -= length;
    if( width>0 && !flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');
    sqlite3StrAccumAppend(pAccum, bufpt, length);
    if( width>0 && flag_leftjustify ) sqlite3AppendChar(pAccum, width, ' ');

    if( zExtra ){
      sqlite3DbFree(pAccum->db, zExtra);
      zExtra = 0;
    }
  }/* End for loop over the format string */
} /* End of function */

/*
** Enlarge the memory allocation on a StrAccum object so that it is
22855
22856
22857
22858
22859
22860
22861
22862
22863

22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886

22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903

22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920

22921
22922
22923
22924
22925
22926
22927
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = (p->zText==p->zBase ? 0 : p->zText);
    i64 szNew = p->nChar;

    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->db ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc64(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( zOld==0 && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);

    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N copies of character c to the given string buffer.
*/
SQLITE_PRIVATE void sqlite3AppendChar(StrAccum *p, int N, char c){
  testcase( p->nChar + (i64)N > 0x7fffffff );
  if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
    return;
  }

  while( (N--)>0 ) p->zText[p->nChar++] = c;
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }

}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){







|

>




















|


>

















>

















>







23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
    return 0;
  }
  if( p->mxAlloc==0 ){
    N = p->nAlloc - p->nChar - 1;
    setStrAccumError(p, STRACCUM_TOOBIG);
    return N;
  }else{
    char *zOld = p->bMalloced ? p->zText : 0;
    i64 szNew = p->nChar;
    assert( (p->zText==0 || p->zText==p->zBase)==(p->bMalloced==0) );
    szNew += N + 1;
    if( szNew+p->nChar<=p->mxAlloc ){
      /* Force exponential buffer size growth as long as it does not overflow,
      ** to avoid having to call this routine too often */
      szNew += p->nChar;
    }
    if( szNew > p->mxAlloc ){
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_TOOBIG);
      return 0;
    }else{
      p->nAlloc = (int)szNew;
    }
    if( p->db ){
      zNew = sqlite3DbRealloc(p->db, zOld, p->nAlloc);
    }else{
      zNew = sqlite3_realloc64(zOld, p->nAlloc);
    }
    if( zNew ){
      assert( p->zText!=0 || p->nChar==0 );
      if( !p->bMalloced && p->nChar>0 ) memcpy(zNew, p->zText, p->nChar);
      p->zText = zNew;
      p->nAlloc = sqlite3DbMallocSize(p->db, zNew);
      p->bMalloced = 1;
    }else{
      sqlite3StrAccumReset(p);
      setStrAccumError(p, STRACCUM_NOMEM);
      return 0;
    }
  }
  return N;
}

/*
** Append N copies of character c to the given string buffer.
*/
SQLITE_PRIVATE void sqlite3AppendChar(StrAccum *p, int N, char c){
  testcase( p->nChar + (i64)N > 0x7fffffff );
  if( p->nChar+(i64)N >= p->nAlloc && (N = sqlite3StrAccumEnlarge(p, N))<=0 ){
    return;
  }
  assert( (p->zText==p->zBase)==(p->bMalloced==0) );
  while( (N--)>0 ) p->zText[p->nChar++] = c;
}

/*
** The StrAccum "p" is not large enough to accept N new bytes of z[].
** So enlarge if first, then do the append.
**
** This is a helper routine to sqlite3StrAccumAppend() that does special-case
** work (enlarging the buffer) using tail recursion, so that the
** sqlite3StrAccumAppend() routine can use fast calling semantics.
*/
static void SQLITE_NOINLINE enlargeAndAppend(StrAccum *p, const char *z, int N){
  N = sqlite3StrAccumEnlarge(p, N);
  if( N>0 ){
    memcpy(&p->zText[p->nChar], z, N);
    p->nChar += N;
  }
  assert( (p->zText==0 || p->zText==p->zBase)==(p->bMalloced==0) );
}

/*
** Append N bytes of text from z to the StrAccum object.  Increase the
** size of the memory allocation for StrAccum if necessary.
*/
SQLITE_PRIVATE void sqlite3StrAccumAppend(StrAccum *p, const char *z, int N){
22949
22950
22951
22952
22953
22954
22955

22956
22957
22958
22959
22960

22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972

22973
22974

22975
22976
22977
22978
22979
22980
22981
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
*/
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
  if( p->zText ){

    p->zText[p->nChar] = 0;
    if( p->mxAlloc>0 && p->zText==p->zBase ){
      p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);

      }else{
        setStrAccumError(p, STRACCUM_NOMEM);
      }
    }
  }
  return p->zText;
}

/*
** Reset an StrAccum string.  Reclaim all malloced memory.
*/
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){

  if( p->zText!=p->zBase ){
    sqlite3DbFree(p->db, p->zText);

  }
  p->zText = 0;
}

/*
** Initialize a string accumulator.
**







>

|



>












>
|

>







23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
/*
** Finish off a string by making sure it is zero-terminated.
** Return a pointer to the resulting string.  Return a NULL
** pointer if any kind of error was encountered.
*/
SQLITE_PRIVATE char *sqlite3StrAccumFinish(StrAccum *p){
  if( p->zText ){
    assert( (p->zText==p->zBase)==(p->bMalloced==0) );
    p->zText[p->nChar] = 0;
    if( p->mxAlloc>0 && p->bMalloced==0 ){
      p->zText = sqlite3DbMallocRaw(p->db, p->nChar+1 );
      if( p->zText ){
        memcpy(p->zText, p->zBase, p->nChar+1);
        p->bMalloced = 1;
      }else{
        setStrAccumError(p, STRACCUM_NOMEM);
      }
    }
  }
  return p->zText;
}

/*
** Reset an StrAccum string.  Reclaim all malloced memory.
*/
SQLITE_PRIVATE void sqlite3StrAccumReset(StrAccum *p){
  assert( (p->zText==0 || p->zText==p->zBase)==(p->bMalloced==0) );
  if( p->bMalloced ){
    sqlite3DbFree(p->db, p->zText);
    p->bMalloced = 0;
  }
  p->zText = 0;
}

/*
** Initialize a string accumulator.
**
22993
22994
22995
22996
22997
22998
22999

23000
23001
23002
23003
23004
23005
23006
SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = db;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->accError = 0;

}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){







>







23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
SQLITE_PRIVATE void sqlite3StrAccumInit(StrAccum *p, sqlite3 *db, char *zBase, int n, int mx){
  p->zText = p->zBase = zBase;
  p->db = db;
  p->nChar = 0;
  p->nAlloc = n;
  p->mxAlloc = mx;
  p->accError = 0;
  p->bMalloced = 0;
}

/*
** Print into memory obtained from sqliteMalloc().  Use the internal
** %-conversion extensions.
*/
SQLITE_PRIVATE char *sqlite3VMPrintf(sqlite3 *db, const char *zFormat, va_list ap){
23254
23255
23256
23257
23258
23259
23260







































23261
23262
23263
23264
23265
23266
23267
23268





23269
23270
23271
23272
23273
23274
23275
** Shorthand for starting a new tree item that consists of a single label
*/
static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){
  p = sqlite3TreeViewPush(p, moreFollows);
  sqlite3TreeViewLine(p, "%s", zLabel);
}









































/*
** Generate a human-readable description of a the Select object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  int cnt = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);





  do{
    sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x",
      ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
      ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags
    );
    if( cnt++ ) sqlite3TreeViewPop(pView);
    if( p->pPrior ){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








>
>
>
>
>







23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
** Shorthand for starting a new tree item that consists of a single label
*/
static void sqlite3TreeViewItem(TreeView *p, const char *zLabel,u8 moreFollows){
  p = sqlite3TreeViewPush(p, moreFollows);
  sqlite3TreeViewLine(p, "%s", zLabel);
}

/*
** Generate a human-readable description of a WITH clause.
*/
SQLITE_PRIVATE void sqlite3TreeViewWith(TreeView *pView, const With *pWith, u8 moreToFollow){
  int i;
  if( pWith==0 ) return;
  if( pWith->nCte==0 ) return;
  if( pWith->pOuter ){
    sqlite3TreeViewLine(pView, "WITH (0x%p, pOuter=0x%p)",pWith,pWith->pOuter);
  }else{
    sqlite3TreeViewLine(pView, "WITH (0x%p)", pWith);
  }
  if( pWith->nCte>0 ){
    pView = sqlite3TreeViewPush(pView, 1);
    for(i=0; i<pWith->nCte; i++){
      StrAccum x;
      char zLine[1000];
      const struct Cte *pCte = &pWith->a[i];
      sqlite3StrAccumInit(&x, 0, zLine, sizeof(zLine), 0);
      sqlite3XPrintf(&x, 0, "%s", pCte->zName);
      if( pCte->pCols && pCte->pCols->nExpr>0 ){
        char cSep = '(';
        int j;
        for(j=0; j<pCte->pCols->nExpr; j++){
          sqlite3XPrintf(&x, 0, "%c%s", cSep, pCte->pCols->a[j].zName);
          cSep = ',';
        }
        sqlite3XPrintf(&x, 0, ")");
      }
      sqlite3XPrintf(&x, 0, " AS");
      sqlite3StrAccumFinish(&x);
      sqlite3TreeViewItem(pView, zLine, i<pWith->nCte-1);
      sqlite3TreeViewSelect(pView, pCte->pSelect, 0);
      sqlite3TreeViewPop(pView);
    }
    sqlite3TreeViewPop(pView);
  }
}


/*
** Generate a human-readable description of a the Select object.
*/
SQLITE_PRIVATE void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  int cnt = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  if( p->pWith ){
    sqlite3TreeViewWith(pView, p->pWith, 1);
    cnt = 1;
    sqlite3TreeViewPush(pView, 1);
  }
  do{
    sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x",
      ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
      ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags
    );
    if( cnt++ ) sqlite3TreeViewPop(pView);
    if( p->pPrior ){
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
**     0xfe 0xff   big-endian utf-16 follows
**
*/
/* #include "sqliteInt.h" */
/* #include <assert.h> */
/* #include "vdbeInt.h" */

#ifndef SQLITE_AMALGAMATION
/*
** The following constant value is used by the SQLITE_BIGENDIAN and
** SQLITE_LITTLEENDIAN macros.
*/
SQLITE_PRIVATE const int sqlite3one = 1;
#endif /* SQLITE_AMALGAMATION */

/*
** This lookup table is used to help decode the first byte of
** a multi-byte UTF8 character.
*/
static const unsigned char sqlite3Utf8Trans1[] = {
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,







|





|







24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
**     0xfe 0xff   big-endian utf-16 follows
**
*/
/* #include "sqliteInt.h" */
/* #include <assert.h> */
/* #include "vdbeInt.h" */

#if !defined(SQLITE_AMALGAMATION) && SQLITE_BYTEORDER==0
/*
** The following constant value is used by the SQLITE_BIGENDIAN and
** SQLITE_LITTLEENDIAN macros.
*/
SQLITE_PRIVATE const int sqlite3one = 1;
#endif /* SQLITE_AMALGAMATION && SQLITE_BYTEORDER==0 */

/*
** This lookup table is used to help decode the first byte of
** a multi-byte UTF8 character.
*/
static const unsigned char sqlite3Utf8Trans1[] = {
  0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
25122
25123
25124
25125
25126
25127
25128
25129

25130
25131
25132
25133
25134
25135
25136
    *pNum = -(i64)u;
  }else{
    *pNum = (i64)u;
  }
  testcase( i==18 );
  testcase( i==19 );
  testcase( i==20 );
  if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){

    /* zNum is empty or contains non-numeric text or is longer
    ** than 19 digits (thus guaranteeing that it is too large) */
    return 1;
  }else if( i<19*incr ){
    /* Less than 19 digits, so we know that it fits in 64 bits */
    assert( u<=LARGEST_INT64 );
    return 0;







|
>







25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
    *pNum = -(i64)u;
  }else{
    *pNum = (i64)u;
  }
  testcase( i==18 );
  testcase( i==19 );
  testcase( i==20 );
  if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum)
       || i>19*incr || nonNum ){
    /* zNum is empty or contains non-numeric text or is longer
    ** than 19 digits (thus guaranteeing that it is too large) */
    return 1;
  }else if( i<19*incr ){
    /* Less than 19 digits, so we know that it fits in 64 bits */
    assert( u<=LARGEST_INT64 );
    return 0;
25411
25412
25413
25414
25415
25416
25417
25418

25419
25420
25421
25422
25423
25424
25425

  p++;
  a = a<<14;
  a |= *p;
  /* a: p0<<28 | p2<<14 | p4 (unmasked) */
  if (!(a&0x80))
  {
    /* we can skip these cause they were (effectively) done above in calc'ing s */

    /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
    /* b &= (0x7f<<14)|(0x7f); */
    b = b<<7;
    a |= b;
    s = s>>18;
    *v = ((u64)s)<<32 | a;
    return 5;







|
>







25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857

  p++;
  a = a<<14;
  a |= *p;
  /* a: p0<<28 | p2<<14 | p4 (unmasked) */
  if (!(a&0x80))
  {
    /* we can skip these cause they were (effectively) done above
    ** while calculating s */
    /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
    /* b &= (0x7f<<14)|(0x7f); */
    b = b<<7;
    a |= b;
    s = s>>18;
    *v = ((u64)s)<<32 | a;
    return 5;
26235
26236
26237
26238
26239
26240
26241
26242
26243


26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282

26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322

26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347

26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383

26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408

26409
26410
26411
26412
26413
26414
26415
26416
26417
  insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem);
  return 0;
}

/************** End of hash.c ************************************************/
/************** Begin file opcodes.c *****************************************/
/* Automatically generated.  Do not edit */
/* See the mkopcodec.awk script for details. */
#if !defined(SQLITE_OMIT_EXPLAIN) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)


#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
# define OpHelp(X) "\0" X
#else
# define OpHelp(X)
#endif
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 static const char *const azName[] = { "?",
     /*   1 */ "Savepoint"        OpHelp(""),
     /*   2 */ "AutoCommit"       OpHelp(""),
     /*   3 */ "Transaction"      OpHelp(""),
     /*   4 */ "SorterNext"       OpHelp(""),
     /*   5 */ "PrevIfOpen"       OpHelp(""),
     /*   6 */ "NextIfOpen"       OpHelp(""),
     /*   7 */ "Prev"             OpHelp(""),
     /*   8 */ "Next"             OpHelp(""),
     /*   9 */ "Checkpoint"       OpHelp(""),
     /*  10 */ "JournalMode"      OpHelp(""),
     /*  11 */ "Vacuum"           OpHelp(""),
     /*  12 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
     /*  13 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
     /*  14 */ "Goto"             OpHelp(""),
     /*  15 */ "Gosub"            OpHelp(""),
     /*  16 */ "Return"           OpHelp(""),
     /*  17 */ "InitCoroutine"    OpHelp(""),
     /*  18 */ "EndCoroutine"     OpHelp(""),
     /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
     /*  20 */ "Yield"            OpHelp(""),
     /*  21 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
     /*  22 */ "Halt"             OpHelp(""),
     /*  23 */ "Integer"          OpHelp("r[P2]=P1"),
     /*  24 */ "Int64"            OpHelp("r[P2]=P4"),
     /*  25 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
     /*  26 */ "Null"             OpHelp("r[P2..P3]=NULL"),
     /*  27 */ "SoftNull"         OpHelp("r[P1]=NULL"),
     /*  28 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
     /*  29 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
     /*  30 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
     /*  31 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
     /*  32 */ "SCopy"            OpHelp("r[P2]=r[P1]"),

     /*  33 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
     /*  34 */ "CollSeq"          OpHelp(""),
     /*  35 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),
     /*  36 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
     /*  37 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
     /*  38 */ "MustBeInt"        OpHelp(""),
     /*  39 */ "RealAffinity"     OpHelp(""),
     /*  40 */ "Cast"             OpHelp("affinity(r[P1])"),
     /*  41 */ "Permutation"      OpHelp(""),
     /*  42 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
     /*  43 */ "Jump"             OpHelp(""),
     /*  44 */ "Once"             OpHelp(""),
     /*  45 */ "If"               OpHelp(""),
     /*  46 */ "IfNot"            OpHelp(""),
     /*  47 */ "Column"           OpHelp("r[P3]=PX"),
     /*  48 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
     /*  49 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
     /*  50 */ "Count"            OpHelp("r[P2]=count()"),
     /*  51 */ "ReadCookie"       OpHelp(""),
     /*  52 */ "SetCookie"        OpHelp(""),
     /*  53 */ "ReopenIdx"        OpHelp("root=P2 iDb=P3"),
     /*  54 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
     /*  55 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),
     /*  56 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
     /*  57 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
     /*  58 */ "SorterOpen"       OpHelp(""),
     /*  59 */ "SequenceTest"     OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
     /*  60 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
     /*  61 */ "Close"            OpHelp(""),
     /*  62 */ "ColumnsUsed"      OpHelp(""),
     /*  63 */ "SeekLT"           OpHelp("key=r[P3@P4]"),
     /*  64 */ "SeekLE"           OpHelp("key=r[P3@P4]"),
     /*  65 */ "SeekGE"           OpHelp("key=r[P3@P4]"),
     /*  66 */ "SeekGT"           OpHelp("key=r[P3@P4]"),
     /*  67 */ "Seek"             OpHelp("intkey=r[P2]"),
     /*  68 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
     /*  69 */ "NotFound"         OpHelp("key=r[P3@P4]"),
     /*  70 */ "Found"            OpHelp("key=r[P3@P4]"),
     /*  71 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
     /*  72 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),

     /*  73 */ "NotExists"        OpHelp("intkey=r[P3]"),
     /*  74 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),
     /*  75 */ "NewRowid"         OpHelp("r[P2]=rowid"),
     /*  76 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
     /*  77 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
     /*  78 */ "Ne"               OpHelp("if r[P1]!=r[P3] goto P2"),
     /*  79 */ "Eq"               OpHelp("if r[P1]==r[P3] goto P2"),
     /*  80 */ "Gt"               OpHelp("if r[P1]>r[P3] goto P2"),
     /*  81 */ "Le"               OpHelp("if r[P1]<=r[P3] goto P2"),
     /*  82 */ "Lt"               OpHelp("if r[P1]<r[P3] goto P2"),
     /*  83 */ "Ge"               OpHelp("if r[P1]>=r[P3] goto P2"),
     /*  84 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
     /*  85 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
     /*  86 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
     /*  87 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
     /*  88 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
     /*  89 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
     /*  90 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
     /*  91 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
     /*  92 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
     /*  93 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
     /*  94 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
     /*  95 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
     /*  96 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
     /*  97 */ "String8"          OpHelp("r[P2]='P4'"),

     /*  98 */ "Delete"           OpHelp(""),
     /*  99 */ "ResetCount"       OpHelp(""),
     /* 100 */ "SorterCompare"    OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
     /* 101 */ "SorterData"       OpHelp("r[P2]=data"),
     /* 102 */ "RowKey"           OpHelp("r[P2]=key"),
     /* 103 */ "RowData"          OpHelp("r[P2]=data"),
     /* 104 */ "Rowid"            OpHelp("r[P2]=rowid"),
     /* 105 */ "NullRow"          OpHelp(""),
     /* 106 */ "Last"             OpHelp(""),
     /* 107 */ "SorterSort"       OpHelp(""),
     /* 108 */ "Sort"             OpHelp(""),
     /* 109 */ "Rewind"           OpHelp(""),
     /* 110 */ "SorterInsert"     OpHelp(""),
     /* 111 */ "IdxInsert"        OpHelp("key=r[P2]"),
     /* 112 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),
     /* 113 */ "IdxRowid"         OpHelp("r[P2]=rowid"),
     /* 114 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
     /* 115 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
     /* 116 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
     /* 117 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
     /* 118 */ "Destroy"          OpHelp(""),
     /* 119 */ "Clear"            OpHelp(""),
     /* 120 */ "ResetSorter"      OpHelp(""),
     /* 121 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
     /* 122 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
     /* 123 */ "ParseSchema"      OpHelp(""),
     /* 124 */ "LoadAnalysis"     OpHelp(""),
     /* 125 */ "DropTable"        OpHelp(""),
     /* 126 */ "DropIndex"        OpHelp(""),
     /* 127 */ "DropTrigger"      OpHelp(""),
     /* 128 */ "IntegrityCk"      OpHelp(""),
     /* 129 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
     /* 130 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
     /* 131 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),
     /* 132 */ "Program"          OpHelp(""),
     /* 133 */ "Real"             OpHelp("r[P2]=P4"),

     /* 134 */ "Param"            OpHelp(""),
     /* 135 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
     /* 136 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
     /* 137 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
     /* 138 */ "IfPos"            OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
     /* 139 */ "SetIfNotPos"      OpHelp("if r[P1]<=0 then r[P2]=P3"),
     /* 140 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]-=P3, goto P2"),
     /* 141 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
     /* 142 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),
     /* 143 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
     /* 144 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
     /* 145 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
     /* 146 */ "IncrVacuum"       OpHelp(""),
     /* 147 */ "Expire"           OpHelp(""),
     /* 148 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
     /* 149 */ "VBegin"           OpHelp(""),
     /* 150 */ "VCreate"          OpHelp(""),
     /* 151 */ "VDestroy"         OpHelp(""),
     /* 152 */ "VOpen"            OpHelp(""),
     /* 153 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
     /* 154 */ "VNext"            OpHelp(""),
     /* 155 */ "VRename"          OpHelp(""),
     /* 156 */ "Pagecount"        OpHelp(""),
     /* 157 */ "MaxPgcnt"         OpHelp(""),
     /* 158 */ "Init"             OpHelp("Start at P2"),

     /* 159 */ "Noop"             OpHelp(""),
     /* 160 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/







|
|
>
>







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
|
>
|
|
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|







26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754

26755
26756
26757
26758
26759

26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816

26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
  insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem);
  return 0;
}

/************** End of hash.c ************************************************/
/************** Begin file opcodes.c *****************************************/
/* Automatically generated.  Do not edit */
/* See the tool/mkopcodec.tcl script for details. */
#if !defined(SQLITE_OMIT_EXPLAIN) \
 || defined(VDBE_PROFILE) \
 || defined(SQLITE_DEBUG)
#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS) || defined(SQLITE_DEBUG)
# define OpHelp(X) "\0" X
#else
# define OpHelp(X)
#endif
SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){
 static const char *const azName[] = { "?",
    /*   1 */ "Savepoint"        OpHelp(""),
    /*   2 */ "AutoCommit"       OpHelp(""),
    /*   3 */ "Transaction"      OpHelp(""),
    /*   4 */ "SorterNext"       OpHelp(""),
    /*   5 */ "PrevIfOpen"       OpHelp(""),
    /*   6 */ "NextIfOpen"       OpHelp(""),
    /*   7 */ "Prev"             OpHelp(""),
    /*   8 */ "Next"             OpHelp(""),
    /*   9 */ "Checkpoint"       OpHelp(""),
    /*  10 */ "JournalMode"      OpHelp(""),
    /*  11 */ "Vacuum"           OpHelp(""),
    /*  12 */ "VFilter"          OpHelp("iplan=r[P3] zplan='P4'"),
    /*  13 */ "VUpdate"          OpHelp("data=r[P3@P2]"),
    /*  14 */ "Goto"             OpHelp(""),
    /*  15 */ "Gosub"            OpHelp(""),
    /*  16 */ "Return"           OpHelp(""),
    /*  17 */ "InitCoroutine"    OpHelp(""),
    /*  18 */ "EndCoroutine"     OpHelp(""),
    /*  19 */ "Not"              OpHelp("r[P2]= !r[P1]"),
    /*  20 */ "Yield"            OpHelp(""),
    /*  21 */ "HaltIfNull"       OpHelp("if r[P3]=null halt"),
    /*  22 */ "Halt"             OpHelp(""),
    /*  23 */ "Integer"          OpHelp("r[P2]=P1"),
    /*  24 */ "Int64"            OpHelp("r[P2]=P4"),
    /*  25 */ "String"           OpHelp("r[P2]='P4' (len=P1)"),
    /*  26 */ "Null"             OpHelp("r[P2..P3]=NULL"),
    /*  27 */ "SoftNull"         OpHelp("r[P1]=NULL"),
    /*  28 */ "Blob"             OpHelp("r[P2]=P4 (len=P1)"),
    /*  29 */ "Variable"         OpHelp("r[P2]=parameter(P1,P4)"),
    /*  30 */ "Move"             OpHelp("r[P2@P3]=r[P1@P3]"),
    /*  31 */ "Copy"             OpHelp("r[P2@P3+1]=r[P1@P3+1]"),
    /*  32 */ "SCopy"            OpHelp("r[P2]=r[P1]"),
    /*  33 */ "IntCopy"          OpHelp("r[P2]=r[P1]"),
    /*  34 */ "ResultRow"        OpHelp("output=r[P1@P2]"),
    /*  35 */ "CollSeq"          OpHelp(""),
    /*  36 */ "Function0"        OpHelp("r[P3]=func(r[P2@P5])"),
    /*  37 */ "Function"         OpHelp("r[P3]=func(r[P2@P5])"),
    /*  38 */ "AddImm"           OpHelp("r[P1]=r[P1]+P2"),
    /*  39 */ "MustBeInt"        OpHelp(""),
    /*  40 */ "RealAffinity"     OpHelp(""),
    /*  41 */ "Cast"             OpHelp("affinity(r[P1])"),
    /*  42 */ "Permutation"      OpHelp(""),
    /*  43 */ "Compare"          OpHelp("r[P1@P3] <-> r[P2@P3]"),
    /*  44 */ "Jump"             OpHelp(""),
    /*  45 */ "Once"             OpHelp(""),
    /*  46 */ "If"               OpHelp(""),
    /*  47 */ "IfNot"            OpHelp(""),
    /*  48 */ "Column"           OpHelp("r[P3]=PX"),
    /*  49 */ "Affinity"         OpHelp("affinity(r[P1@P2])"),
    /*  50 */ "MakeRecord"       OpHelp("r[P3]=mkrec(r[P1@P2])"),
    /*  51 */ "Count"            OpHelp("r[P2]=count()"),
    /*  52 */ "ReadCookie"       OpHelp(""),
    /*  53 */ "SetCookie"        OpHelp(""),
    /*  54 */ "ReopenIdx"        OpHelp("root=P2 iDb=P3"),
    /*  55 */ "OpenRead"         OpHelp("root=P2 iDb=P3"),
    /*  56 */ "OpenWrite"        OpHelp("root=P2 iDb=P3"),
    /*  57 */ "OpenAutoindex"    OpHelp("nColumn=P2"),
    /*  58 */ "OpenEphemeral"    OpHelp("nColumn=P2"),
    /*  59 */ "SorterOpen"       OpHelp(""),
    /*  60 */ "SequenceTest"     OpHelp("if( cursor[P1].ctr++ ) pc = P2"),
    /*  61 */ "OpenPseudo"       OpHelp("P3 columns in r[P2]"),
    /*  62 */ "Close"            OpHelp(""),
    /*  63 */ "ColumnsUsed"      OpHelp(""),
    /*  64 */ "SeekLT"           OpHelp("key=r[P3@P4]"),
    /*  65 */ "SeekLE"           OpHelp("key=r[P3@P4]"),
    /*  66 */ "SeekGE"           OpHelp("key=r[P3@P4]"),
    /*  67 */ "SeekGT"           OpHelp("key=r[P3@P4]"),
    /*  68 */ "Seek"             OpHelp("intkey=r[P2]"),
    /*  69 */ "NoConflict"       OpHelp("key=r[P3@P4]"),
    /*  70 */ "NotFound"         OpHelp("key=r[P3@P4]"),

    /*  71 */ "Or"               OpHelp("r[P3]=(r[P1] || r[P2])"),
    /*  72 */ "And"              OpHelp("r[P3]=(r[P1] && r[P2])"),
    /*  73 */ "Found"            OpHelp("key=r[P3@P4]"),
    /*  74 */ "NotExists"        OpHelp("intkey=r[P3]"),
    /*  75 */ "Sequence"         OpHelp("r[P2]=cursor[P1].ctr++"),

    /*  76 */ "IsNull"           OpHelp("if r[P1]==NULL goto P2"),
    /*  77 */ "NotNull"          OpHelp("if r[P1]!=NULL goto P2"),
    /*  78 */ "Ne"               OpHelp("if r[P1]!=r[P3] goto P2"),
    /*  79 */ "Eq"               OpHelp("if r[P1]==r[P3] goto P2"),
    /*  80 */ "Gt"               OpHelp("if r[P1]>r[P3] goto P2"),
    /*  81 */ "Le"               OpHelp("if r[P1]<=r[P3] goto P2"),
    /*  82 */ "Lt"               OpHelp("if r[P1]<r[P3] goto P2"),
    /*  83 */ "Ge"               OpHelp("if r[P1]>=r[P3] goto P2"),
    /*  84 */ "NewRowid"         OpHelp("r[P2]=rowid"),
    /*  85 */ "BitAnd"           OpHelp("r[P3]=r[P1]&r[P2]"),
    /*  86 */ "BitOr"            OpHelp("r[P3]=r[P1]|r[P2]"),
    /*  87 */ "ShiftLeft"        OpHelp("r[P3]=r[P2]<<r[P1]"),
    /*  88 */ "ShiftRight"       OpHelp("r[P3]=r[P2]>>r[P1]"),
    /*  89 */ "Add"              OpHelp("r[P3]=r[P1]+r[P2]"),
    /*  90 */ "Subtract"         OpHelp("r[P3]=r[P2]-r[P1]"),
    /*  91 */ "Multiply"         OpHelp("r[P3]=r[P1]*r[P2]"),
    /*  92 */ "Divide"           OpHelp("r[P3]=r[P2]/r[P1]"),
    /*  93 */ "Remainder"        OpHelp("r[P3]=r[P2]%r[P1]"),
    /*  94 */ "Concat"           OpHelp("r[P3]=r[P2]+r[P1]"),
    /*  95 */ "Insert"           OpHelp("intkey=r[P3] data=r[P2]"),
    /*  96 */ "BitNot"           OpHelp("r[P1]= ~r[P1]"),
    /*  97 */ "String8"          OpHelp("r[P2]='P4'"),
    /*  98 */ "InsertInt"        OpHelp("intkey=P3 data=r[P2]"),
    /*  99 */ "Delete"           OpHelp(""),
    /* 100 */ "ResetCount"       OpHelp(""),
    /* 101 */ "SorterCompare"    OpHelp("if key(P1)!=trim(r[P3],P4) goto P2"),
    /* 102 */ "SorterData"       OpHelp("r[P2]=data"),
    /* 103 */ "RowKey"           OpHelp("r[P2]=key"),
    /* 104 */ "RowData"          OpHelp("r[P2]=data"),
    /* 105 */ "Rowid"            OpHelp("r[P2]=rowid"),
    /* 106 */ "NullRow"          OpHelp(""),
    /* 107 */ "Last"             OpHelp(""),
    /* 108 */ "SorterSort"       OpHelp(""),
    /* 109 */ "Sort"             OpHelp(""),
    /* 110 */ "Rewind"           OpHelp(""),
    /* 111 */ "SorterInsert"     OpHelp(""),
    /* 112 */ "IdxInsert"        OpHelp("key=r[P2]"),
    /* 113 */ "IdxDelete"        OpHelp("key=r[P2@P3]"),
    /* 114 */ "IdxRowid"         OpHelp("r[P2]=rowid"),
    /* 115 */ "IdxLE"            OpHelp("key=r[P3@P4]"),
    /* 116 */ "IdxGT"            OpHelp("key=r[P3@P4]"),
    /* 117 */ "IdxLT"            OpHelp("key=r[P3@P4]"),
    /* 118 */ "IdxGE"            OpHelp("key=r[P3@P4]"),
    /* 119 */ "Destroy"          OpHelp(""),
    /* 120 */ "Clear"            OpHelp(""),
    /* 121 */ "ResetSorter"      OpHelp(""),
    /* 122 */ "CreateIndex"      OpHelp("r[P2]=root iDb=P1"),
    /* 123 */ "CreateTable"      OpHelp("r[P2]=root iDb=P1"),
    /* 124 */ "ParseSchema"      OpHelp(""),
    /* 125 */ "LoadAnalysis"     OpHelp(""),
    /* 126 */ "DropTable"        OpHelp(""),
    /* 127 */ "DropIndex"        OpHelp(""),
    /* 128 */ "DropTrigger"      OpHelp(""),
    /* 129 */ "IntegrityCk"      OpHelp(""),
    /* 130 */ "RowSetAdd"        OpHelp("rowset(P1)=r[P2]"),
    /* 131 */ "RowSetRead"       OpHelp("r[P3]=rowset(P1)"),
    /* 132 */ "RowSetTest"       OpHelp("if r[P3] in rowset(P1) goto P2"),

    /* 133 */ "Real"             OpHelp("r[P2]=P4"),
    /* 134 */ "Program"          OpHelp(""),
    /* 135 */ "Param"            OpHelp(""),
    /* 136 */ "FkCounter"        OpHelp("fkctr[P1]+=P2"),
    /* 137 */ "FkIfZero"         OpHelp("if fkctr[P1]==0 goto P2"),
    /* 138 */ "MemMax"           OpHelp("r[P1]=max(r[P1],r[P2])"),
    /* 139 */ "IfPos"            OpHelp("if r[P1]>0 then r[P1]-=P3, goto P2"),
    /* 140 */ "SetIfNotPos"      OpHelp("if r[P1]<=0 then r[P2]=P3"),
    /* 141 */ "IfNotZero"        OpHelp("if r[P1]!=0 then r[P1]-=P3, goto P2"),
    /* 142 */ "DecrJumpZero"     OpHelp("if (--r[P1])==0 goto P2"),
    /* 143 */ "JumpZeroIncr"     OpHelp("if (r[P1]++)==0 ) goto P2"),
    /* 144 */ "AggStep0"         OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 145 */ "AggStep"          OpHelp("accum=r[P3] step(r[P2@P5])"),
    /* 146 */ "AggFinal"         OpHelp("accum=r[P1] N=P2"),
    /* 147 */ "IncrVacuum"       OpHelp(""),
    /* 148 */ "Expire"           OpHelp(""),
    /* 149 */ "TableLock"        OpHelp("iDb=P1 root=P2 write=P3"),
    /* 150 */ "VBegin"           OpHelp(""),
    /* 151 */ "VCreate"          OpHelp(""),
    /* 152 */ "VDestroy"         OpHelp(""),
    /* 153 */ "VOpen"            OpHelp(""),
    /* 154 */ "VColumn"          OpHelp("r[P3]=vcolumn(P2)"),
    /* 155 */ "VNext"            OpHelp(""),
    /* 156 */ "VRename"          OpHelp(""),
    /* 157 */ "Pagecount"        OpHelp(""),
    /* 158 */ "MaxPgcnt"         OpHelp(""),
    /* 159 */ "Init"             OpHelp("Start at P2"),
    /* 160 */ "CursorHint"       OpHelp(""),
    /* 161 */ "Noop"             OpHelp(""),
    /* 162 */ "Explain"          OpHelp(""),
  };
  return azName[i];
}
#endif

/************** End of opcodes.c *********************************************/
/************** Begin file os_unix.c *****************************************/
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
#else
# define UNIXFILE_DIRSYNC    0x00
#endif
#define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
#define UNIXFILE_DELETE      0x20     /* Delete on close */
#define UNIXFILE_URI         0x40     /* Filename might have query parameters */
#define UNIXFILE_NOLOCK      0x80     /* Do no file locking */
#define UNIXFILE_WARNED    0x0100     /* verifyDbFile() warnings issued */
#define UNIXFILE_BLOCK     0x0200     /* Next SHM lock might block */

/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*







<
<







27107
27108
27109
27110
27111
27112
27113


27114
27115
27116
27117
27118
27119
27120
#else
# define UNIXFILE_DIRSYNC    0x00
#endif
#define UNIXFILE_PSOW        0x10     /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
#define UNIXFILE_DELETE      0x20     /* Delete on close */
#define UNIXFILE_URI         0x40     /* Filename might have query parameters */
#define UNIXFILE_NOLOCK      0x80     /* Do no file locking */



/*
** Include code that is common to all os_*.c files
*/
/************** Include os_common.h in the middle of os_unix.c ***************/
/************** Begin file os_common.h ***************************************/
/*
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
** The safest way to deal with the problem is to always use this wrapper
** which always has the same well-defined interface.
*/
static int posixOpen(const char *zFile, int flags, int mode){
  return open(zFile, flags, mode);
}

/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes.  So avoid calling fchown() if
** we are not running as root.
*/
static int posixFchown(int fd, uid_t uid, gid_t gid){
#if OS_VXWORKS
  return 0;
#else
  return geteuid() ? 0 : fchown(fd,uid,gid);
#endif
}

/* Forward reference */
static int openDirectory(const char*, int*);
static int unixGetpagesize(void);

/*
** Many system calls are accessed through pointer-to-functions so that
** they may be overridden at runtime to facilitate fault injection during







<
<
<
<
<
<
<
<
<
<
<
<
<







27369
27370
27371
27372
27373
27374
27375













27376
27377
27378
27379
27380
27381
27382
** The safest way to deal with the problem is to always use this wrapper
** which always has the same well-defined interface.
*/
static int posixOpen(const char *zFile, int flags, int mode){
  return open(zFile, flags, mode);
}














/* Forward reference */
static int openDirectory(const char*, int*);
static int unixGetpagesize(void);

/*
** Many system calls are accessed through pointer-to-functions so that
** they may be overridden at runtime to facilitate fault injection during
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
#else
  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[13].pCurrent)

  { "fchmod",       (sqlite3_syscall_ptr)fchmod,     0  },
#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
#else
  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
#endif







|







27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
  { "pwrite64",     (sqlite3_syscall_ptr)pwrite64,   0  },
#else
  { "pwrite64",     (sqlite3_syscall_ptr)0,          0  },
#endif
#define osPwrite64  ((ssize_t(*)(int,const void*,size_t,off_t))\
                    aSyscall[13].pCurrent)

  { "fchmod",       (sqlite3_syscall_ptr)fchmod,          0  },
#define osFchmod    ((int(*)(int,mode_t))aSyscall[14].pCurrent)

#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
  { "fallocate",    (sqlite3_syscall_ptr)posix_fallocate,  0 },
#else
  { "fallocate",    (sqlite3_syscall_ptr)0,                0 },
#endif
27056
27057
27058
27059
27060
27061
27062
27063
27064



27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078

27079
27080



27081
27082
27083
27084
27085














27086
27087
27088
27089
27090
27091
27092

  { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
#define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)posixFchown,     0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)




#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent)

  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
#define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent)

#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent)

  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
#define osGetpagesize ((int(*)(void))aSyscall[24].pCurrent)




#endif

}; /* End of the overrideable system calls */















/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.
*/
static int unixSetSystemCall(







|

>
>
>



|


|






|
>

|
>
>
>





>
>
>
>
>
>
>
>
>
>
>
>
>
>







27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534

  { "mkdir",        (sqlite3_syscall_ptr)mkdir,           0 },
#define osMkdir     ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)

  { "rmdir",        (sqlite3_syscall_ptr)rmdir,           0 },
#define osRmdir     ((int(*)(const char*))aSyscall[19].pCurrent)

  { "fchown",       (sqlite3_syscall_ptr)fchown,          0 },
#define osFchown    ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)

  { "geteuid",      (sqlite3_syscall_ptr)geteuid,         0 },
#define osGeteuid   ((uid_t(*)(void))aSyscall[21].pCurrent)

#if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
  { "mmap",       (sqlite3_syscall_ptr)mmap,     0 },
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)

  { "munmap",       (sqlite3_syscall_ptr)munmap,          0 },
#define osMunmap ((void*(*)(void*,size_t))aSyscall[23].pCurrent)

#if HAVE_MREMAP
  { "mremap",       (sqlite3_syscall_ptr)mremap,          0 },
#else
  { "mremap",       (sqlite3_syscall_ptr)0,               0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)

  { "getpagesize",  (sqlite3_syscall_ptr)unixGetpagesize, 0 },
#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)

  { "readlink",     (sqlite3_syscall_ptr)readlink,        0 },
#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)

#endif

}; /* End of the overrideable system calls */


/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes.  So avoid calling fchown() if
** we are not running as root.
*/
static int robustFchown(int fd, uid_t uid, gid_t gid){
#if OS_VXWORKS
  return 0;
#else
  return osGeteuid() ? 0 : osFchown(fd,uid,gid);
#endif
}

/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes.  Return SQLITE_OK opon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.
*/
static int unixSetSystemCall(
27363
27364
27365
27366
27367
27368
27369




27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
** and a variety of "please close the file descriptor NOW" errors into 
** SQLITE_IOERR
** 
** Errors during initialization of locks, or file system support for locks,
** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
*/
static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {




  switch (posixError) {
#if 0
  /* At one point this code was not commented out. In theory, this branch
  ** should never be hit, as this function should only be called after
  ** a locking-related function (i.e. fcntl()) has returned non-zero with
  ** the value of errno as the first argument. Since a system call has failed,
  ** errno should be non-zero.
  **
  ** Despite this, if errno really is zero, we still don't want to return
  ** SQLITE_OK. The system call failed, and *some* SQLite error should be
  ** propagated back to the caller. Commenting this branch out means errno==0
  ** will be handled by the "default:" case below.
  */
  case 0: 
    return SQLITE_OK;
#endif

  case EAGAIN:
  case ETIMEDOUT:
  case EBUSY:
  case EINTR:
  case ENOLCK:  
    /* random NFS retry error, unless during file system support 
     * introspection, in which it actually means what it says */
    return SQLITE_BUSY;
    
  case EACCES: 
    /* EACCES is like EAGAIN during locking operations, but not any other time*/
    if( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
        (sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
        (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
        (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){
      return SQLITE_BUSY;
    }
    /* else fall through */
  case EPERM: 
    return SQLITE_PERM;
    
#if EOPNOTSUPP!=ENOTSUP
  case EOPNOTSUPP: 
    /* something went terribly awry, unless during file system support 
     * introspection, in which it actually means what it says */
#endif
#ifdef ENOTSUP
  case ENOTSUP: 
    /* invalid fd, unless during file system support introspection, in which 
     * it actually means what it says */
#endif
  case EIO:
  case EBADF:
  case EINVAL:
  case ENOTCONN:
  case ENODEV:
  case ENXIO:
  case ENOENT:
#ifdef ESTALE                     /* ESTALE is not defined on Interix systems */
  case ESTALE:
#endif
  case ENOSYS:
    /* these should force the client to close the file and reconnect */
    
  default: 
    return sqliteIOErr;
  }
}


/******************************************************************************







>
>
>
>

<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<









<
<
<
<
<
<
<
<
<



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816












27817



27818
27819
27820
27821
27822
27823
27824
27825
27826









27827
27828
27829























27830
27831
27832
27833
27834
27835
27836
** and a variety of "please close the file descriptor NOW" errors into 
** SQLITE_IOERR
** 
** Errors during initialization of locks, or file system support for locks,
** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
*/
static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
  assert( (sqliteIOErr == SQLITE_IOERR_LOCK) || 
          (sqliteIOErr == SQLITE_IOERR_UNLOCK) || 
          (sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
          (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
  switch (posixError) {












  case EACCES: 



  case EAGAIN:
  case ETIMEDOUT:
  case EBUSY:
  case EINTR:
  case ENOLCK:  
    /* random NFS retry error, unless during file system support 
     * introspection, in which it actually means what it says */
    return SQLITE_BUSY;
    









  case EPERM: 
    return SQLITE_PERM;
    























  default: 
    return sqliteIOErr;
  }
}


/******************************************************************************
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
/*
** A lists of all unixInodeInfo objects.
*/
static unixInodeInfo *inodeList = 0;

/*
**
** This function - unixLogError_x(), is only ever called via the macro
** unixLogError().
**
** It is invoked after an error occurs in an OS function and errno has been
** set. It logs a message using sqlite3_log() containing the current value of
** errno and, if possible, the human-readable equivalent from strerror() or
** strerror_r().
**







|







28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
/*
** A lists of all unixInodeInfo objects.
*/
static unixInodeInfo *inodeList = 0;

/*
**
** This function - unixLogErrorAtLine(), is only ever called via the macro
** unixLogError().
**
** It is invoked after an error occurs in an OS function and errno has been
** set. It logs a message using sqlite3_log() containing the current value of
** errno and, if possible, the human-readable equivalent from strerror() or
** strerror_r().
**
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
  /* Get low-level information about the file that we can used to
  ** create a unique name for the file.
  */
  fd = pFile->h;
  rc = osFstat(fd, &statbuf);
  if( rc!=0 ){
    storeLastErrno(pFile, errno);
#ifdef EOVERFLOW
    if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
#endif
    return SQLITE_IOERR;
  }

#ifdef __APPLE__
  /* On OS X on an msdos filesystem, the inode number is reported







|







28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
  /* Get low-level information about the file that we can used to
  ** create a unique name for the file.
  */
  fd = pFile->h;
  rc = osFstat(fd, &statbuf);
  if( rc!=0 ){
    storeLastErrno(pFile, errno);
#if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
    if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
#endif
    return SQLITE_IOERR;
  }

#ifdef __APPLE__
  /* On OS X on an msdos filesystem, the inode number is reported
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012

28013
28014
28015
28016
28017
28018
28019
** (3) The file has not been renamed or unlinked
**
** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
*/
static void verifyDbFile(unixFile *pFile){
  struct stat buf;
  int rc;
  if( pFile->ctrlFlags & UNIXFILE_WARNED ){
    /* One or more of the following warnings have already been issued.  Do not
    ** repeat them so as not to clutter the error log */
    return;
  }
  rc = osFstat(pFile->h, &buf);
  if( rc!=0 ){
    sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
    pFile->ctrlFlags |= UNIXFILE_WARNED;
    return;
  }
  if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){
    sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
    pFile->ctrlFlags |= UNIXFILE_WARNED;
    return;
  }
  if( buf.st_nlink>1 ){
    sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
    pFile->ctrlFlags |= UNIXFILE_WARNED;
    return;
  }
  if( fileHasMoved(pFile) ){
    sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
    pFile->ctrlFlags |= UNIXFILE_WARNED;
    return;
  }
}


/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero.  The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );

  assert( pFile );

  unixEnterMutex(); /* Because pFile->pInode is shared across threads */

  /* Check if a thread in this process holds such a lock */
  if( pFile->pInode->eFileLock>SHARED_LOCK ){
    reserved = 1;
  }








<
<
<
<
<



<




<




<




<



















>







28362
28363
28364
28365
28366
28367
28368





28369
28370
28371

28372
28373
28374
28375

28376
28377
28378
28379

28380
28381
28382
28383

28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
** (3) The file has not been renamed or unlinked
**
** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
*/
static void verifyDbFile(unixFile *pFile){
  struct stat buf;
  int rc;





  rc = osFstat(pFile->h, &buf);
  if( rc!=0 ){
    sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);

    return;
  }
  if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){
    sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);

    return;
  }
  if( buf.st_nlink>1 ){
    sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);

    return;
  }
  if( fileHasMoved(pFile) ){
    sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);

    return;
  }
}


/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero.  The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );

  assert( pFile );
  assert( pFile->eFileLock<=SHARED_LOCK );
  unixEnterMutex(); /* Because pFile->pInode is shared across threads */

  /* Check if a thread in this process holds such a lock */
  if( pFile->pInode->eFileLock>SHARED_LOCK ){
    reserved = 1;
  }

28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
*/
static int unixFileLock(unixFile *pFile, struct flock *pLock){
  int rc;
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  assert( pInode!=0 );
  if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock)
   && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0)
  ){
    if( pInode->bProcessLock==0 ){
      struct flock lock;
      assert( pInode->nLock==0 );
      lock.l_whence = SEEK_SET;
      lock.l_start = SHARED_FIRST;
      lock.l_len = SHARED_SIZE;
      lock.l_type = F_WRLCK;







<
|
<







28453
28454
28455
28456
28457
28458
28459

28460

28461
28462
28463
28464
28465
28466
28467
** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
*/
static int unixFileLock(unixFile *pFile, struct flock *pLock){
  int rc;
  unixInodeInfo *pInode = pFile->pInode;
  assert( unixMutexHeld() );
  assert( pInode!=0 );

  if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){

    if( pInode->bProcessLock==0 ){
      struct flock lock;
      assert( pInode->nLock==0 );
      lock.l_whence = SEEK_SET;
      lock.l_start = SHARED_FIRST;
      lock.l_len = SHARED_SIZE;
      lock.l_type = F_WRLCK;
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            storeLastErrno(pFile, tErrno);
          }
          goto end_unlock;
        }
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){







<
|
<







28805
28806
28807
28808
28809
28810
28811

28812

28813
28814
28815
28816
28817
28818
28819
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;

          storeLastErrno(pFile, tErrno);

          goto end_unlock;
        }
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST;
        lock.l_len = divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST+divSize;
        lock.l_len = SHARED_SIZE-divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;
          if( IS_LOCK_ERROR(rc) ){
            storeLastErrno(pFile, tErrno);
          }
          goto end_unlock;
        }
      }else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
      {
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;







<
|
<







28827
28828
28829
28830
28831
28832
28833

28834

28835
28836
28837
28838
28839
28840
28841
        lock.l_type = F_UNLCK;
        lock.l_whence = SEEK_SET;
        lock.l_start = SHARED_FIRST+divSize;
        lock.l_len = SHARED_SIZE-divSize;
        if( unixFileLock(pFile, &lock)==(-1) ){
          tErrno = errno;
          rc = SQLITE_IOERR_UNLOCK;

          storeLastErrno(pFile, tErrno);

          goto end_unlock;
        }
      }else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
      {
        lock.l_type = F_RDLCK;
        lock.l_whence = SEEK_SET;
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  
  assert( pFile );

  /* Check if a thread in this process holds such a lock */
  if( pFile->eFileLock>SHARED_LOCK ){
    /* Either this connection or some other connection in the same process
    ** holds a lock on the file.  No need to check further. */
    reserved = 1;
  }else{
    /* The lock is held if and only if the lockfile exists */
    const char *zLockFile = (const char*)pFile->lockingContext;
    reserved = osAccess(zLockFile, 0)==0;
  }
  OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
  *pResOut = reserved;
  return rc;
}

/*
** Lock the file with the lock specified by parameter eFileLock - one







<
<
<
<
<
<
<
<
<
|
<







29078
29079
29080
29081
29082
29083
29084









29085

29086
29087
29088
29089
29090
29091
29092
  int rc = SQLITE_OK;
  int reserved = 0;
  unixFile *pFile = (unixFile*)id;

  SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
  
  assert( pFile );









  reserved = osAccess((const char*)pFile->lockingContext, 0)==0;

  OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
  *pResOut = reserved;
  return rc;
}

/*
** Lock the file with the lock specified by parameter eFileLock - one
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
  if( rc<0 ){
    /* failed to open/create the lock directory */
    int tErrno = errno;
    if( EEXIST == tErrno ){
      rc = SQLITE_BUSY;
    } else {
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( IS_LOCK_ERROR(rc) ){
        storeLastErrno(pFile, tErrno);
      }
    }
    return rc;
  } 
  
  /* got it, set the type and return ok */







|







29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
  if( rc<0 ){
    /* failed to open/create the lock directory */
    int tErrno = errno;
    if( EEXIST == tErrno ){
      rc = SQLITE_BUSY;
    } else {
      rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
      if( rc!=SQLITE_BUSY ){
        storeLastErrno(pFile, tErrno);
      }
    }
    return rc;
  } 
  
  /* got it, set the type and return ok */
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841

28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
    pFile->eFileLock = SHARED_LOCK;
    return SQLITE_OK;
  }
  
  /* To fully unlock the database, delete the lock file */
  assert( eFileLock==NO_LOCK );
  rc = osRmdir(zLockFile);
  if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile);
  if( rc<0 ){
    int tErrno = errno;
    rc = 0;
    if( ENOENT != tErrno ){
      rc = SQLITE_IOERR_UNLOCK;
    }
    if( IS_LOCK_ERROR(rc) ){
      storeLastErrno(pFile, tErrno);
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
  return SQLITE_OK;
}

/*
** Close a file.  Make sure the lock has been released before closing.
*/
static int dotlockClose(sqlite3_file *id) {
  int rc = SQLITE_OK;
  if( id ){
    unixFile *pFile = (unixFile*)id;

    dotlockUnlock(id, NO_LOCK);
    sqlite3_free(pFile->lockingContext);
    rc = closeUnixFile(id);
  }
  return rc;
}
/****************** End of the dot-file lock implementation *******************
******************************************************************************/

/******************************************************************************
************************** Begin flock Locking ********************************
**







<


<
|
|
|
|












<
<
|
>
|
|
|
<
<







29187
29188
29189
29190
29191
29192
29193

29194
29195

29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211


29212
29213
29214
29215
29216


29217
29218
29219
29220
29221
29222
29223
    pFile->eFileLock = SHARED_LOCK;
    return SQLITE_OK;
  }
  
  /* To fully unlock the database, delete the lock file */
  assert( eFileLock==NO_LOCK );
  rc = osRmdir(zLockFile);

  if( rc<0 ){
    int tErrno = errno;

    if( tErrno==ENOENT ){
      rc = SQLITE_OK;
    }else{
      rc = SQLITE_IOERR_UNLOCK;
      storeLastErrno(pFile, tErrno);
    }
    return rc; 
  }
  pFile->eFileLock = NO_LOCK;
  return SQLITE_OK;
}

/*
** Close a file.  Make sure the lock has been released before closing.
*/
static int dotlockClose(sqlite3_file *id) {


  unixFile *pFile = (unixFile*)id;
  assert( id!=0 );
  dotlockUnlock(id, NO_LOCK);
  sqlite3_free(pFile->lockingContext);
  return closeUnixFile(id);


}
/****************** End of the dot-file lock implementation *******************
******************************************************************************/

/******************************************************************************
************************** Begin flock Locking ********************************
**
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
    if( !lrc ){
      /* got the lock, unlock it */
      lrc = robust_flock(pFile->h, LOCK_UN);
      if ( lrc ) {
        int tErrno = errno;
        /* unlock failed with an error */
        lrc = SQLITE_IOERR_UNLOCK; 
        if( IS_LOCK_ERROR(lrc) ){
          storeLastErrno(pFile, tErrno);
          rc = lrc;
        }
      }
    } else {
      int tErrno = errno;
      reserved = 1;
      /* someone else might have it reserved */
      lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
      if( IS_LOCK_ERROR(lrc) ){







<
|
|
<







29275
29276
29277
29278
29279
29280
29281

29282
29283

29284
29285
29286
29287
29288
29289
29290
    if( !lrc ){
      /* got the lock, unlock it */
      lrc = robust_flock(pFile->h, LOCK_UN);
      if ( lrc ) {
        int tErrno = errno;
        /* unlock failed with an error */
        lrc = SQLITE_IOERR_UNLOCK; 

        storeLastErrno(pFile, tErrno);
        rc = lrc;

      }
    } else {
      int tErrno = errno;
      reserved = 1;
      /* someone else might have it reserved */
      lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); 
      if( IS_LOCK_ERROR(lrc) ){
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
  }
}

/*
** Close a file.
*/
static int flockClose(sqlite3_file *id) {
  int rc = SQLITE_OK;
  if( id ){
    flockUnlock(id, NO_LOCK);
    rc = closeUnixFile(id);
  }
  return rc;
}

#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */

/******************* End of the flock lock implementation *********************
******************************************************************************/








<
|
|
|
<
<







29409
29410
29411
29412
29413
29414
29415

29416
29417
29418


29419
29420
29421
29422
29423
29424
29425
  }
}

/*
** Close a file.
*/
static int flockClose(sqlite3_file *id) {

  assert( id!=0 );
  flockUnlock(id, NO_LOCK);
  return closeUnixFile(id);


}

#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */

/******************* End of the flock lock implementation *********************
******************************************************************************/

29671
29672
29673
29674
29675
29676
29677
29678
29679

29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
}

/*
** Close a file & cleanup AFP specific locking context 
*/
static int afpClose(sqlite3_file *id) {
  int rc = SQLITE_OK;
  if( id ){
    unixFile *pFile = (unixFile*)id;

    afpUnlock(id, NO_LOCK);
    unixEnterMutex();
    if( pFile->pInode && pFile->pInode->nLock ){
      /* If there are outstanding locks, do not actually close the file just
      ** yet because that would clear those locks.  Instead, add the file
      ** descriptor to pInode->aPending.  It will be automatically closed when
      ** the last lock is cleared.
      */
      setPendingFd(pFile);
    }
    releaseInodeInfo(pFile);
    sqlite3_free(pFile->lockingContext);
    rc = closeUnixFile(id);
    unixLeaveMutex();
  }
  return rc;
}

#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
/*
** The code above is the AFP lock implementation.  The code is specific
** to MacOSX and does not work on other unix platforms.  No alternative







<
|
>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<







30036
30037
30038
30039
30040
30041
30042

30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058

30059
30060
30061
30062
30063
30064
30065
}

/*
** Close a file & cleanup AFP specific locking context 
*/
static int afpClose(sqlite3_file *id) {
  int rc = SQLITE_OK;

  unixFile *pFile = (unixFile*)id;
  assert( id!=0 );
  afpUnlock(id, NO_LOCK);
  unixEnterMutex();
  if( pFile->pInode && pFile->pInode->nLock ){
    /* If there are outstanding locks, do not actually close the file just
    ** yet because that would clear those locks.  Instead, add the file
    ** descriptor to pInode->aPending.  It will be automatically closed when
    ** the last lock is cleared.
    */
    setPendingFd(pFile);
  }
  releaseInodeInfo(pFile);
  sqlite3_free(pFile->lockingContext);
  rc = closeUnixFile(id);
  unixLeaveMutex();

  return rc;
}

#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
/*
** The code above is the AFP lock implementation.  The code is specific
** to MacOSX and does not work on other unix platforms.  No alternative
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
    got = osPread(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#elif defined(USE_PREAD64)
    got = osPread64(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#else
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset-- );
    if( newOffset!=offset ){
      if( newOffset == -1 ){
        storeLastErrno((unixFile*)id, errno);
      }else{
        storeLastErrno((unixFile*)id, 0);
      }
      return -1;
    }
    got = osRead(id->h, pBuf, cnt);
#endif
    if( got==cnt ) break;
    if( got<0 ){
      if( errno==EINTR ){ got = 1; continue; }







|
|
<
|
<
<
<







30130
30131
30132
30133
30134
30135
30136
30137
30138

30139



30140
30141
30142
30143
30144
30145
30146
    got = osPread(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#elif defined(USE_PREAD64)
    got = osPread64(id->h, pBuf, cnt, offset);
    SimulateIOError( got = -1 );
#else
    newOffset = lseek(id->h, offset, SEEK_SET);
    SimulateIOError( newOffset = -1 );
    if( newOffset<0 ){

      storeLastErrno((unixFile*)id, errno);



      return -1;
    }
    got = osRead(id->h, pBuf, cnt);
#endif
    if( got==cnt ) break;
    if( got<0 ){
      if( errno==EINTR ){ got = 1; continue; }
29871
29872
29873
29874
29875
29876
29877

29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892

29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
  int nBuf,                       /* Size of buffer pBuf in bytes */
  int *piErrno                    /* OUT: Error number if error occurs */
){
  int rc = 0;                     /* Value returned by system call */

  assert( nBuf==(nBuf&0x1ffff) );
  assert( fd>2 );

  nBuf &= 0x1ffff;
  TIMER_START;

#if defined(USE_PREAD)
  do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
#else
  do{
    i64 iSeek = lseek(fd, iOff, SEEK_SET);
    SimulateIOError( iSeek-- );

    if( iSeek!=iOff ){
      if( piErrno ) *piErrno = (iSeek==-1 ? errno : 0);
      return -1;

    }
    rc = osWrite(fd, pBuf, nBuf);
  }while( rc<0 && errno==EINTR );
#endif

  TIMER_END;
  OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));

  if( rc<0 && piErrno ) *piErrno = errno;
  return rc;
}


/*
** Seek to the offset in id->offset then read cnt bytes into pBuf.
** Return the number of bytes actually read.  Update the offset.







>










|
<
|
<
|
>








|







30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249

30250

30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
  int nBuf,                       /* Size of buffer pBuf in bytes */
  int *piErrno                    /* OUT: Error number if error occurs */
){
  int rc = 0;                     /* Value returned by system call */

  assert( nBuf==(nBuf&0x1ffff) );
  assert( fd>2 );
  assert( piErrno!=0 );
  nBuf &= 0x1ffff;
  TIMER_START;

#if defined(USE_PREAD)
  do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
  do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
#else
  do{
    i64 iSeek = lseek(fd, iOff, SEEK_SET);
    SimulateIOError( iSeek = -1 );

    if( iSeek<0 ){

      rc = -1;
      break;
    }
    rc = osWrite(fd, pBuf, nBuf);
  }while( rc<0 && errno==EINTR );
#endif

  TIMER_END;
  OSTRACE(("WRITE   %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));

  if( rc<0 ) *piErrno = errno;
  return rc;
}


/*
** Seek to the offset in id->offset then read cnt bytes into pBuf.
** Return the number of bytes actually read.  Update the offset.
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
      if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
        pFile->transCntrChng = 1;  /* The transaction counter has changed */
      }
    }
  }
#endif

#if SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this write request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
      return SQLITE_OK;
    }else{







|







30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
      if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
        pFile->transCntrChng = 1;  /* The transaction counter has changed */
      }
    }
  }
#endif

#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this write request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
      return SQLITE_OK;
    }else{
30078
30079
30080
30081
30082
30083
30084
30085


30086
30087


30088

30089
30090
30091
30092
30093
30094
30095
  */
#ifdef SQLITE_TEST
  if( fullSync ) sqlite3_fullsync_count++;
  sqlite3_sync_count++;
#endif

  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op


  */
#ifdef SQLITE_NO_SYNC


  rc = SQLITE_OK;

#elif HAVE_FULLFSYNC
  if( fullSync ){
    rc = osFcntl(fd, F_FULLFSYNC, 0);
  }else{
    rc = 1;
  }
  /* If the FULLFSYNC failed, fall back to attempting an fsync().







|
>
>


>
>
|
>







30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
  */
#ifdef SQLITE_TEST
  if( fullSync ) sqlite3_fullsync_count++;
  sqlite3_sync_count++;
#endif

  /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
  ** no-op.  But go ahead and call fstat() to validate the file
  ** descriptor as we need a method to provoke a failure during
  ** coverate testing.
  */
#ifdef SQLITE_NO_SYNC
  {
    struct stat buf;
    rc = osFstat(fd, &buf);
  }
#elif HAVE_FULLFSYNC
  if( fullSync ){
    rc = osFcntl(fd, F_FULLFSYNC, 0);
  }else{
    rc = 1;
  }
  /* If the FULLFSYNC failed, fall back to attempting an fsync().
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156




30157
30158
30159
30160
30161
30162

30163
30164
30165
30166
30167
30168
30169
30170
*/
static int openDirectory(const char *zFilename, int *pFd){
  int ii;
  int fd = -1;
  char zDirname[MAX_PATHNAME+1];

  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--);
  if( ii>0 ){
    zDirname[ii] = '\0';




    fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
    if( fd>=0 ){
      OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
    }
  }
  *pFd = fd;

  return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname));
}

/*
** Make sure all writes to a particular file are committed to disk.
**
** If dataOnly==0 then both the file itself and its metadata (file
** size, access time, etc) are synced.  If dataOnly!=0 then only the







|


>
>
>
>
|
|
|
|
<

>
|







30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529

30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
*/
static int openDirectory(const char *zFilename, int *pFd){
  int ii;
  int fd = -1;
  char zDirname[MAX_PATHNAME+1];

  sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
  for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
  if( ii>0 ){
    zDirname[ii] = '\0';
  }else{
    if( zDirname[0]!='/' ) zDirname[0] = '.';
    zDirname[1] = 0;
  }
  fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
  if( fd>=0 ){
    OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
  }

  *pFd = fd;
  if( fd>=0 ) return SQLITE_OK;
  return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
}

/*
** Make sure all writes to a particular file are committed to disk.
**
** If dataOnly==0 then both the file itself and its metadata (file
** size, access time, etc) are synced.  If dataOnly!=0 then only the
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218

30219
30220
30221
30222
30223
30224
30225
30226
  ** are unable to fsync a directory, so ignore errors on the fsync.
  */
  if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
    int dirfd;
    OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
            HAVE_FULLFSYNC, isFullsync));
    rc = osOpenDirectory(pFile->zPath, &dirfd);
    if( rc==SQLITE_OK && dirfd>=0 ){
      full_fsync(dirfd, 0, 0);
      robust_close(pFile, dirfd, __LINE__);

    }else if( rc==SQLITE_CANTOPEN ){
      rc = SQLITE_OK;
    }
    pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
  }
  return rc;
}








|


>
|







30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
  ** are unable to fsync a directory, so ignore errors on the fsync.
  */
  if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
    int dirfd;
    OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
            HAVE_FULLFSYNC, isFullsync));
    rc = osOpenDirectory(pFile->zPath, &dirfd);
    if( rc==SQLITE_OK ){
      full_fsync(dirfd, 0, 0);
      robust_close(pFile, dirfd, __LINE__);
    }else{
      assert( rc==SQLITE_CANTOPEN );
      rc = SQLITE_OK;
    }
    pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
  }
  return rc;
}

30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355

30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
      ** This is a similar technique to that used by glibc on systems
      ** that do not have a real fallocate() call.
      */
      int nBlk = buf.st_blksize;  /* File-system block size */
      int nWrite = 0;             /* Number of bytes written by seekAndWrite */
      i64 iWrite;                 /* Next offset to write to */

      iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1;
      assert( iWrite>=buf.st_size );
      assert( (iWrite/nBlk)==((buf.st_size+nBlk-1)/nBlk) );
      assert( ((iWrite+1)%nBlk)==0 );
      for(/*no-op*/; iWrite<nSize; iWrite+=nBlk ){

        nWrite = seekAndWrite(pFile, iWrite, "", 1);
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
      }
      if( nWrite==0 || (nSize%nBlk) ){
        nWrite = seekAndWrite(pFile, nSize-1, "", 1);
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
      }
#endif
    }
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
    int rc;







|

<

|
>



<
<
<
<







30714
30715
30716
30717
30718
30719
30720
30721
30722

30723
30724
30725
30726
30727
30728




30729
30730
30731
30732
30733
30734
30735
      ** This is a similar technique to that used by glibc on systems
      ** that do not have a real fallocate() call.
      */
      int nBlk = buf.st_blksize;  /* File-system block size */
      int nWrite = 0;             /* Number of bytes written by seekAndWrite */
      i64 iWrite;                 /* Next offset to write to */

      iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
      assert( iWrite>=buf.st_size );

      assert( ((iWrite+1)%nBlk)==0 );
      for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
        if( iWrite>=nSize ) iWrite = nSize - 1;
        nWrite = seekAndWrite(pFile, iWrite, "", 1);
        if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
      }




#endif
    }
  }

#if SQLITE_MAX_MMAP_SIZE>0
  if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
    int rc;
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420

/*
** Information and control of an open file handle.
*/
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
  unixFile *pFile = (unixFile*)id;
  switch( op ){
    case SQLITE_FCNTL_WAL_BLOCK: {
      /* pFile->ctrlFlags |= UNIXFILE_BLOCK; // Deferred feature */
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_LOCKSTATE: {
      *(int*)pArg = pFile->eFileLock;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_LAST_ERRNO: {
      *(int*)pArg = pFile->lastErrno;
      return SQLITE_OK;







<
<
<
<







30769
30770
30771
30772
30773
30774
30775




30776
30777
30778
30779
30780
30781
30782

/*
** Information and control of an open file handle.
*/
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
  unixFile *pFile = (unixFile*)id;
  switch( op ){




    case SQLITE_FCNTL_LOCKSTATE: {
      *(int*)pArg = pFile->eFileLock;
      return SQLITE_OK;
    }
    case SQLITE_FCNTL_LAST_ERRNO: {
      *(int*)pArg = pFile->lastErrno;
      return SQLITE_OK;
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
  pShmNode = pFile->pInode->pShmNode;
  assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );

  /* Shared locks never span more than one byte */
  assert( n==1 || lockType!=F_RDLCK );

  /* Locks are within range */
  assert( n>=1 && n<SQLITE_SHM_NLOCK );

  if( pShmNode->h>=0 ){
    int lkType;
    /* Initialize the locking parameters */
    memset(&f, 0, sizeof(f));
    f.l_type = lockType;
    f.l_whence = SEEK_SET;
    f.l_start = ofst;
    f.l_len = n;

    lkType = (pFile->ctrlFlags & UNIXFILE_BLOCK)!=0 ? F_SETLKW : F_SETLK;
    rc = osFcntl(pShmNode->h, lkType, &f);
    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;
    pFile->ctrlFlags &= ~UNIXFILE_BLOCK;
  }

  /* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
  { u16 mask;
  OSTRACE(("SHM-LOCK "));
  mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);







|


<







<
|

<







31095
31096
31097
31098
31099
31100
31101
31102
31103
31104

31105
31106
31107
31108
31109
31110
31111

31112
31113

31114
31115
31116
31117
31118
31119
31120
  pShmNode = pFile->pInode->pShmNode;
  assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 );

  /* Shared locks never span more than one byte */
  assert( n==1 || lockType!=F_RDLCK );

  /* Locks are within range */
  assert( n>=1 && n<=SQLITE_SHM_NLOCK );

  if( pShmNode->h>=0 ){

    /* Initialize the locking parameters */
    memset(&f, 0, sizeof(f));
    f.l_type = lockType;
    f.l_whence = SEEK_SET;
    f.l_start = ofst;
    f.l_len = n;


    rc = osFcntl(pShmNode->h, F_SETLK, &f);
    rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY;

  }

  /* Update the global lock state and do debug tracing */
#ifdef SQLITE_DEBUG
  { u16 mask;
  OSTRACE(("SHM-LOCK "));
  mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst);
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && p->nRef==0 ){
    int nShmPerMap = unixShmRegionPerMap();
    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i+=nShmPerMap){
      if( p->h>=0 ){
        osMunmap(p->apRegion[i], p->szRegion);







|







31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void unixShmPurge(unixFile *pFd){
  unixShmNode *p = pFd->pInode->pShmNode;
  assert( unixMutexHeld() );
  if( p && ALWAYS(p->nRef==0) ){
    int nShmPerMap = unixShmRegionPerMap();
    int i;
    assert( p->pInode==pFd->pInode );
    sqlite3_mutex_free(p->mutex);
    for(i=0; i<p->nRegion; i+=nShmPerMap){
      if( p->h>=0 ){
        osMunmap(p->apRegion[i], p->szRegion);
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
    const char *zBasePath = pDbFd->zPath;
#endif

    /* Call fstat() to figure out the permissions on the database file. If
    ** a new *-shm file is created, an attempt will be made to create it
    ** with the same permissions.
    */
    if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){
      rc = SQLITE_IOERR_FSTAT;
      goto shm_open_err;
    }

#ifdef SQLITE_SHM_DIRECTORY
    nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
#else







|







31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
    const char *zBasePath = pDbFd->zPath;
#endif

    /* Call fstat() to figure out the permissions on the database file. If
    ** a new *-shm file is created, an attempt will be made to create it
    ** with the same permissions.
    */
    if( osFstat(pDbFd->h, &sStat) ){
      rc = SQLITE_IOERR_FSTAT;
      goto shm_open_err;
    }

#ifdef SQLITE_SHM_DIRECTORY
    nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
#else
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
        goto shm_open_err;
      }

      /* If this process is running as root, make sure that the SHM file
      ** is owned by the same user that owns the original database.  Otherwise,
      ** the original owner will not be able to connect.
      */
      osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
        if( robust_ftruncate(pShmNode->h, 0) ){







|







31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
        goto shm_open_err;
      }

      /* If this process is running as root, make sure that the SHM file
      ** is owned by the same user that owns the original database.  Otherwise,
      ** the original owner will not be able to connect.
      */
      robustFchown(pShmNode->h, sStat.st_uid, sStat.st_gid);
  
      /* Check to see if another process is holding the dead-man switch.
      ** If not, truncate the file to zero length. 
      */
      rc = SQLITE_OK;
      if( unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){
        if( robust_ftruncate(pShmNode->h, 0) ){
31088
31089
31090
31091
31092
31093
31094

31095
31096
31097
31098
31099
31100
31101
31102
        else{
          static const int pgsz = 4096;
          int iPg;

          /* Write to the last byte of each newly allocated or extended page */
          assert( (nByte % pgsz)==0 );
          for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){

            if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, 0)!=1 ){
              const char *zFile = pShmNode->zFilename;
              rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
              goto shmpage_out;
            }
          }
        }
      }







>
|







31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
        else{
          static const int pgsz = 4096;
          int iPg;

          /* Write to the last byte of each newly allocated or extended page */
          assert( (nByte % pgsz)==0 );
          for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
            int x = 0;
            if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, &x)!=1 ){
              const char *zFile = pShmNode->zFilename;
              rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
              goto shmpage_out;
            }
          }
        }
      }
31382
31383
31384
31385
31386
31387
31388

31389

31390
31391
31392
31393
31394
31395
31396
  assert( pFd->nFetchOut==0 );
  assert( nNew>pFd->mmapSize );
  assert( nNew<=pFd->mmapSizeMax );
  assert( nNew>0 );
  assert( pFd->mmapSizeActual>=pFd->mmapSize );
  assert( MAP_FAILED!=0 );


  if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;


  if( pOrig ){
#if HAVE_MREMAP
    i64 nReuse = pFd->mmapSize;
#else
    const int szSyspage = osGetpagesize();
    i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));







>

>







31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
  assert( pFd->nFetchOut==0 );
  assert( nNew>pFd->mmapSize );
  assert( nNew<=pFd->mmapSizeMax );
  assert( nNew>0 );
  assert( pFd->mmapSizeActual>=pFd->mmapSize );
  assert( MAP_FAILED!=0 );

#ifdef SQLITE_MMAP_READWRITE
  if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
#endif

  if( pOrig ){
#if HAVE_MREMAP
    i64 nReuse = pFd->mmapSize;
#else
    const int szSyspage = osGetpagesize();
    i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465

31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479

31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
** created mapping is either the requested size or the value configured 
** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
**
** SQLITE_OK is returned if no error occurs (even if the mapping is not
** recreated as a result of outstanding references) or an SQLite error
** code otherwise.
*/
static int unixMapfile(unixFile *pFd, i64 nByte){
  i64 nMap = nByte;
  int rc;

  assert( nMap>=0 || pFd->nFetchOut==0 );

  if( pFd->nFetchOut>0 ) return SQLITE_OK;

  if( nMap<0 ){
    struct stat statbuf;          /* Low-level file information */
    rc = osFstat(pFd->h, &statbuf);
    if( rc!=SQLITE_OK ){
      return SQLITE_IOERR_FSTAT;
    }
    nMap = statbuf.st_size;
  }
  if( nMap>pFd->mmapSizeMax ){
    nMap = pFd->mmapSizeMax;
  }


  if( nMap!=pFd->mmapSize ){
    if( nMap>0 ){
      unixRemapfile(pFd, nMap);
    }else{
      unixUnmapfile(pFd);
    }
  }

  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

/*







|
<
<
<

>




|
<








>

<
|
<
<
<







31816
31817
31818
31819
31820
31821
31822
31823



31824
31825
31826
31827
31828
31829
31830

31831
31832
31833
31834
31835
31836
31837
31838
31839
31840

31841



31842
31843
31844
31845
31846
31847
31848
** created mapping is either the requested size or the value configured 
** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
**
** SQLITE_OK is returned if no error occurs (even if the mapping is not
** recreated as a result of outstanding references) or an SQLite error
** code otherwise.
*/
static int unixMapfile(unixFile *pFd, i64 nMap){



  assert( nMap>=0 || pFd->nFetchOut==0 );
  assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
  if( pFd->nFetchOut>0 ) return SQLITE_OK;

  if( nMap<0 ){
    struct stat statbuf;          /* Low-level file information */
    if( osFstat(pFd->h, &statbuf) ){

      return SQLITE_IOERR_FSTAT;
    }
    nMap = statbuf.st_size;
  }
  if( nMap>pFd->mmapSizeMax ){
    nMap = pFd->mmapSizeMax;
  }

  assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
  if( nMap!=pFd->mmapSize ){

    unixRemapfile(pFd, nMap);



  }

  return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */

/*
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060

32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090

32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110

32111
32112
32113
32114
32115
32116



32117
32118
32119
32120
32121
32122
32123
** Return the name of a directory in which to put temporary files.
** If no suitable temporary file directory can be found, return NULL.
*/
static const char *unixTempFileDir(void){
  static const char *azDirs[] = {
     0,
     0,
     0,
     "/var/tmp",
     "/usr/tmp",
     "/tmp",
     0        /* List terminator */

  };
  unsigned int i;
  struct stat buf;
  const char *zDir = 0;

  azDirs[0] = sqlite3_temp_directory;
  if( !azDirs[1] ) azDirs[1] = getenv("SQLITE_TMPDIR");
  if( !azDirs[2] ) azDirs[2] = getenv("TMPDIR");
  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
    if( zDir==0 ) continue;
    if( osStat(zDir, &buf) ) continue;
    if( !S_ISDIR(buf.st_mode) ) continue;
    if( osAccess(zDir, 07) ) continue;
    break;
  }
  return zDir;
}

/*
** Create a temporary file name in zBuf.  zBuf must be allocated
** by the calling process and must be big enough to hold at least
** pVfs->mxPathname bytes.
*/
static int unixGetTempname(int nBuf, char *zBuf){
  static const unsigned char zChars[] =
    "abcdefghijklmnopqrstuvwxyz"
    "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
    "0123456789";
  unsigned int i, j;
  const char *zDir;


  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. 
  */
  SimulateIOError( return SQLITE_IOERR );

  zDir = unixTempFileDir();
  if( zDir==0 ) zDir = ".";

  /* Check that the output buffer is large enough for the temporary file 
  ** name. If it is not, return SQLITE_ERROR.
  */
  if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){
    return SQLITE_ERROR;
  }

  do{
    sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir);
    j = (int)strlen(zBuf);

    sqlite3_randomness(15, &zBuf[j]);
    for(i=0; i<15; i++, j++){
      zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ];
    }
    zBuf[j] = 0;
    zBuf[j+1] = 0;



  }while( osAccess(zBuf,0)==0 );
  return SQLITE_OK;
}

#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
** Routine to transform a unixFile into a proxy-locking unixFile.







<



<
>



|

|
|
<
















<
<
<
<
<

>








<
<
<
<
<
<
<
<
<

<
<
>
|
<
<
<
|
|
>
>
>







32405
32406
32407
32408
32409
32410
32411

32412
32413
32414

32415
32416
32417
32418
32419
32420
32421
32422

32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438





32439
32440
32441
32442
32443
32444
32445
32446
32447
32448









32449


32450
32451



32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
** Return the name of a directory in which to put temporary files.
** If no suitable temporary file directory can be found, return NULL.
*/
static const char *unixTempFileDir(void){
  static const char *azDirs[] = {
     0,
     0,

     "/var/tmp",
     "/usr/tmp",
     "/tmp",

     "."
  };
  unsigned int i;
  struct stat buf;
  const char *zDir = sqlite3_temp_directory;

  if( !azDirs[0] ) azDirs[0] = getenv("SQLITE_TMPDIR");
  if( !azDirs[1] ) azDirs[1] = getenv("TMPDIR");

  for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){
    if( zDir==0 ) continue;
    if( osStat(zDir, &buf) ) continue;
    if( !S_ISDIR(buf.st_mode) ) continue;
    if( osAccess(zDir, 07) ) continue;
    break;
  }
  return zDir;
}

/*
** Create a temporary file name in zBuf.  zBuf must be allocated
** by the calling process and must be big enough to hold at least
** pVfs->mxPathname bytes.
*/
static int unixGetTempname(int nBuf, char *zBuf){





  const char *zDir;
  int iLimit = 0;

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. 
  */
  SimulateIOError( return SQLITE_IOERR );

  zDir = unixTempFileDir();









  do{


    u64 r;
    sqlite3_randomness(sizeof(r), &r);



    assert( nBuf>2 );
    zBuf[nBuf-2] = 0;
    sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
                     zDir, r, 0);
    if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ) return SQLITE_ERROR;
  }while( osAccess(zBuf,0)==0 );
  return SQLITE_OK;
}

#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
** Routine to transform a unixFile into a proxy-locking unixFile.
32231
32232
32233
32234
32235
32236
32237

32238



32239
32240
32241


32242
32243
32244

32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
    **   "<path to db>-journalNN"
    **   "<path to db>-walNN"
    **
    ** where NN is a decimal number. The NN naming schemes are 
    ** used by the test_multiplex.c module.
    */
    nDb = sqlite3Strlen30(zPath) - 1; 

#ifdef SQLITE_ENABLE_8_3_NAMES



    while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--;
    if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK;
#else


    while( zPath[nDb]!='-' ){
      assert( nDb>0 );
      assert( zPath[nDb]!='\n' );

      nDb--;
    }
#endif
    memcpy(zDb, zPath, nDb);
    zDb[nDb] = '\0';

    if( 0==osStat(zDb, &sStat) ){
      *pMode = sStat.st_mode & 0777;
      *pUid = sStat.st_uid;
      *pGid = sStat.st_gid;







>
|
>
>
>
|
<

>
>
|
<
<
>


<







32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583

32584
32585
32586
32587


32588
32589
32590

32591
32592
32593
32594
32595
32596
32597
    **   "<path to db>-journalNN"
    **   "<path to db>-walNN"
    **
    ** where NN is a decimal number. The NN naming schemes are 
    ** used by the test_multiplex.c module.
    */
    nDb = sqlite3Strlen30(zPath) - 1; 
    while( zPath[nDb]!='-' ){
#ifndef SQLITE_ENABLE_8_3_NAMES
      /* In the normal case (8+3 filenames disabled) the journal filename
      ** is guaranteed to contain a '-' character. */
      assert( nDb>0 );
      assert( sqlite3Isalnum(zPath[nDb]) );

#else
      /* If 8+3 names are possible, then the journal file might not contain
      ** a '-' character.  So check for that case and return early. */
      if( nDb==0 || zPath[nDb]=='.' ) return SQLITE_OK;


#endif
      nDb--;
    }

    memcpy(zDb, zPath, nDb);
    zDb[nDb] = '\0';

    if( 0==osStat(zDb, &sStat) ){
      *pMode = sStat.st_mode & 0777;
      *pUid = sStat.st_uid;
      *pGid = sStat.st_gid;
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
    ** URIs with parameters.  Hence, they can always be passed into
    ** sqlite3_uri_parameter(). */
    assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );

  }else if( !zName ){
    /* If zName is NULL, the upper layer is requesting a temp file. */
    assert(isDelete && !syncDir);
    rc = unixGetTempname(MAX_PATHNAME+2, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zName = zTmpname;

    /* Generated temporary filenames are always double-zero terminated
    ** for use by sqlite3_uri_parameter(). */







|







32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
    ** URIs with parameters.  Hence, they can always be passed into
    ** sqlite3_uri_parameter(). */
    assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );

  }else if( !zName ){
    /* If zName is NULL, the upper layer is requesting a temp file. */
    assert(isDelete && !syncDir);
    rc = unixGetTempname(pVfs->mxPathname, zTmpname);
    if( rc!=SQLITE_OK ){
      return rc;
    }
    zName = zTmpname;

    /* Generated temporary filenames are always double-zero terminated
    ** for use by sqlite3_uri_parameter(). */
32414
32415
32416
32417
32418
32419
32420

32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
    if( rc!=SQLITE_OK ){
      assert( !p->pUnused );
      assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
      return rc;
    }
    fd = robust_open(zName, openFlags, openMode);
    OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));

    if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){
      /* Failed to open the file for read/write access. Try read-only. */
      flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
      openFlags &= ~(O_RDWR|O_CREAT);
      flags |= SQLITE_OPEN_READONLY;
      openFlags |= O_RDONLY;
      isReadonly = 1;
      fd = robust_open(zName, openFlags, openMode);
    }
    if( fd<0 ){
      rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
      goto open_finished;
    }

    /* If this process is running as root and if creating a new rollback
    ** journal or WAL file, set the ownership of the journal or WAL to be
    ** the same as the original database.
    */
    if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
      osFchown(fd, uid, gid);
    }
  }
  assert( fd>=0 );
  if( pOutFlags ){
    *pOutFlags = flags;
  }








>
|


















|







32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
    if( rc!=SQLITE_OK ){
      assert( !p->pUnused );
      assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
      return rc;
    }
    fd = robust_open(zName, openFlags, openMode);
    OSTRACE(("OPENX   %-3d %s 0%o\n", fd, zName, openFlags));
    assert( !isExclusive || (openFlags & O_CREAT)!=0 );
    if( fd<0 && errno!=EISDIR && isReadWrite ){
      /* Failed to open the file for read/write access. Try read-only. */
      flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
      openFlags &= ~(O_RDWR|O_CREAT);
      flags |= SQLITE_OPEN_READONLY;
      openFlags |= O_RDONLY;
      isReadonly = 1;
      fd = robust_open(zName, openFlags, openMode);
    }
    if( fd<0 ){
      rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
      goto open_finished;
    }

    /* If this process is running as root and if creating a new rollback
    ** journal or WAL file, set the ownership of the journal or WAL to be
    ** the same as the original database.
    */
    if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
      robustFchown(fd, uid, gid);
    }
  }
  assert( fd>=0 );
  if( pOutFlags ){
    *pOutFlags = flags;
  }

32570
32571
32572
32573
32574
32575
32576

32577
32578
32579
32580
32581
32582
32583
32584
#else
      if( fsync(fd) )
#endif
      {
        rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
      }
      robust_close(0, fd, __LINE__);

    }else if( rc==SQLITE_CANTOPEN ){
      rc = SQLITE_OK;
    }
  }
#endif
  return rc;
}








>
|







32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
#else
      if( fsync(fd) )
#endif
      {
        rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
      }
      robust_close(0, fd, __LINE__);
    }else{
      assert( rc==SQLITE_CANTOPEN );
      rc = SQLITE_OK;
    }
  }
#endif
  return rc;
}

32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615


32616
32617
32618
32619
32620
32621

32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643

32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654




32655

32656



32657

32658






















32659



32660
32661
32662
32663

32664

32665

32666
32667
32668
32669
32670
32671
32672
*/
static int unixAccess(
  sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
  const char *zPath,      /* Path of the file to examine */
  int flags,              /* What do we want to learn about the zPath file? */
  int *pResOut            /* Write result boolean here */
){
  int amode = 0;
  UNUSED_PARAMETER(NotUsed);
  SimulateIOError( return SQLITE_IOERR_ACCESS; );
  switch( flags ){
    case SQLITE_ACCESS_EXISTS:
      amode = F_OK;
      break;
    case SQLITE_ACCESS_READWRITE:
      amode = W_OK|R_OK;
      break;
    case SQLITE_ACCESS_READ:
      amode = R_OK;
      break;

    default:


      assert(!"Invalid flags argument");
  }
  *pResOut = (osAccess(zPath, amode)==0);
  if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){
    struct stat buf;
    if( 0==osStat(zPath, &buf) && buf.st_size==0 ){

      *pResOut = 0;
    }
  }
  return SQLITE_OK;
}


/*
** Turn a relative pathname into a full pathname. The relative path
** is stored as a nul-terminated string in the buffer pointed to by
** zPath. 
**
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
** (in this case, MAX_PATHNAME bytes). The full-path is written to
** this buffer before returning.
*/
static int unixFullPathname(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zPath,            /* Possibly relative input path */
  int nOut,                     /* Size of output buffer in bytes */
  char *zOut                    /* Output buffer */
){


  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. This function could fail if, for example, the
  ** current working directory has been unlinked.
  */
  SimulateIOError( return SQLITE_ERROR );

  assert( pVfs->mxPathname==MAX_PATHNAME );
  UNUSED_PARAMETER(pVfs);





  zOut[nOut-1] = '\0';

  if( zPath[0]=='/' ){



    sqlite3_snprintf(nOut, zOut, "%s", zPath);

  }else{






















    int nCwd;



    if( osGetcwd(zOut, nOut-1)==0 ){
      return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
    }
    nCwd = (int)strlen(zOut);

    sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath);

  }

  return SQLITE_OK;
}


#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points







<


|
<
<
<
<
<
<
<
<
<

<
>
>
|
|
<
|

|
>
|
<




















>











>
>
>
>
|
>
|
>
>
>

>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
|


|
>
|
>

>







32939
32940
32941
32942
32943
32944
32945

32946
32947
32948









32949

32950
32951
32952
32953

32954
32955
32956
32957
32958

32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
*/
static int unixAccess(
  sqlite3_vfs *NotUsed,   /* The VFS containing this xAccess method */
  const char *zPath,      /* Path of the file to examine */
  int flags,              /* What do we want to learn about the zPath file? */
  int *pResOut            /* Write result boolean here */
){

  UNUSED_PARAMETER(NotUsed);
  SimulateIOError( return SQLITE_IOERR_ACCESS; );
  assert( pResOut!=0 );











  /* The spec says there are three possible values for flags.  But only
  ** two of them are actually used */
  assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );


  if( flags==SQLITE_ACCESS_EXISTS ){
    struct stat buf;
    *pResOut = (0==osStat(zPath, &buf) && buf.st_size>0);
  }else{
    *pResOut = osAccess(zPath, W_OK|R_OK)==0;

  }
  return SQLITE_OK;
}


/*
** Turn a relative pathname into a full pathname. The relative path
** is stored as a nul-terminated string in the buffer pointed to by
** zPath. 
**
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes 
** (in this case, MAX_PATHNAME bytes). The full-path is written to
** this buffer before returning.
*/
static int unixFullPathname(
  sqlite3_vfs *pVfs,            /* Pointer to vfs object */
  const char *zPath,            /* Possibly relative input path */
  int nOut,                     /* Size of output buffer in bytes */
  char *zOut                    /* Output buffer */
){
  int nByte;

  /* It's odd to simulate an io-error here, but really this is just
  ** using the io-error infrastructure to test that SQLite handles this
  ** function failing. This function could fail if, for example, the
  ** current working directory has been unlinked.
  */
  SimulateIOError( return SQLITE_ERROR );

  assert( pVfs->mxPathname==MAX_PATHNAME );
  UNUSED_PARAMETER(pVfs);

  /* Attempt to resolve the path as if it were a symbolic link. If it is
  ** a symbolic link, the resolved path is stored in buffer zOut[]. Or, if
  ** the identified file is not a symbolic link or does not exist, then
  ** zPath is copied directly into zOut. Either way, nByte is left set to
  ** the size of the string copied into zOut[] in bytes.  */
  nByte = osReadlink(zPath, zOut, nOut-1);
  if( nByte<0 ){
    if( errno!=EINVAL && errno!=ENOENT ){
      return unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zPath);
    }
    sqlite3_snprintf(nOut, zOut, "%s", zPath);
    nByte = sqlite3Strlen30(zOut);
  }else{
    zOut[nByte] = '\0';
  }

  /* If buffer zOut[] now contains an absolute path there is nothing more
  ** to do. If it contains a relative path, do the following:
  **
  **   * move the relative path string so that it is at the end of th
  **     zOut[] buffer.
  **   * Call getcwd() to read the path of the current working directory 
  **     into the start of the zOut[] buffer.
  **   * Append a '/' character to the cwd string and move the 
  **     relative path back within the buffer so that it immediately 
  **     follows the '/'.
  **
  ** This code is written so that if the combination of the CWD and relative
  ** path are larger than the allocated size of zOut[] the CWD is silently
  ** truncated to make it fit. This is Ok, as SQLite refuses to open any
  ** file for which this function returns a full path larger than (nOut-8)
  ** bytes in size.  */
  testcase( nByte==nOut-5 );
  testcase( nByte==nOut-4 );
  if( zOut[0]!='/' && nByte<nOut-4 ){
    int nCwd;
    int nRem = nOut-nByte-1;
    memmove(&zOut[nRem], zOut, nByte+1);
    zOut[nRem-1] = '\0';
    if( osGetcwd(zOut, nRem-1)==0 ){
      return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
    }
    nCwd = sqlite3Strlen30(zOut);
    assert( nCwd<=nRem-1 );
    zOut[nCwd] = '/';
    memmove(&zOut[nCwd+1], &zOut[nRem], nByte+1);
  }

  return SQLITE_OK;
}


#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850

32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863



32864

32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877



32878
32879
32880
32881
32882
32883
32884
  *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
#elif OS_VXWORKS
  struct timespec sNow;
  clock_gettime(CLOCK_REALTIME, &sNow);
  *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
#else
  struct timeval sNow;
  if( gettimeofday(&sNow, 0)==0 ){
    *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
  }else{
    rc = SQLITE_ERROR;
  }
#endif

#ifdef SQLITE_TEST
  if( sqlite3_current_time ){
    *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
  }
#endif
  UNUSED_PARAMETER(NotUsed);
  return rc;
}


/*
** Find the current time (in Universal Coordinated Time).  Write the
** current time and date as a Julian Day number into *prNow and
** return 0.  Return 1 if the time and date cannot be found.
*/
static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
  sqlite3_int64 i = 0;
  int rc;
  UNUSED_PARAMETER(NotUsed);
  rc = unixCurrentTimeInt64(0, &i);
  *prNow = i/86400000.0;
  return rc;
}





/*
** We added the xGetLastError() method with the intention of providing
** better low-level error messages when operating-system problems come up
** during SQLite operation.  But so far, none of that has been implemented
** in the core.  So this routine is never called.  For now, it is merely
** a place-holder.
*/
static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
  UNUSED_PARAMETER(NotUsed);
  UNUSED_PARAMETER(NotUsed2);
  UNUSED_PARAMETER(NotUsed3);
  return 0;
}





/*
************************ End of sqlite3_vfs methods ***************************
******************************************************************************/

/******************************************************************************







|
|
<
<
<











>













>
>
>

>













>
>
>







33201
33202
33203
33204
33205
33206
33207
33208
33209



33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
  *piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
#elif OS_VXWORKS
  struct timespec sNow;
  clock_gettime(CLOCK_REALTIME, &sNow);
  *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
#else
  struct timeval sNow;
  (void)gettimeofday(&sNow, 0);  /* Cannot fail given valid arguments */
  *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;



#endif

#ifdef SQLITE_TEST
  if( sqlite3_current_time ){
    *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
  }
#endif
  UNUSED_PARAMETER(NotUsed);
  return rc;
}

#if 0 /* Not used */
/*
** Find the current time (in Universal Coordinated Time).  Write the
** current time and date as a Julian Day number into *prNow and
** return 0.  Return 1 if the time and date cannot be found.
*/
static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
  sqlite3_int64 i = 0;
  int rc;
  UNUSED_PARAMETER(NotUsed);
  rc = unixCurrentTimeInt64(0, &i);
  *prNow = i/86400000.0;
  return rc;
}
#else
# define unixCurrentTime 0
#endif

#if 0  /* Not used */
/*
** We added the xGetLastError() method with the intention of providing
** better low-level error messages when operating-system problems come up
** during SQLite operation.  But so far, none of that has been implemented
** in the core.  So this routine is never called.  For now, it is merely
** a place-holder.
*/
static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
  UNUSED_PARAMETER(NotUsed);
  UNUSED_PARAMETER(NotUsed2);
  UNUSED_PARAMETER(NotUsed3);
  return 0;
}
#else
# define unixGetLastError 0
#endif


/*
************************ End of sqlite3_vfs methods ***************************
******************************************************************************/

/******************************************************************************
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
          }
        }
      }
      start=i+1;
    }
    buf[i] = lockPath[i];
  }
  OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n", lockPath, osGetpid(0)));
  return 0;
}

/*
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**







|







33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
          }
        }
      }
      start=i+1;
    }
    buf[i] = lockPath[i];
  }
  OSTRACE(("CREATELOCKPATH  proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
  return 0;
}

/*
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
  return rc;
}

/*
** Close a file that uses proxy locks.
*/
static int proxyClose(sqlite3_file *id) {
  if( id ){
    unixFile *pFile = (unixFile*)id;
    proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
    unixFile *lockProxy = pCtx->lockProxy;
    unixFile *conchFile = pCtx->conchFile;
    int rc = SQLITE_OK;
    
    if( lockProxy ){







|







34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
  return rc;
}

/*
** Close a file that uses proxy locks.
*/
static int proxyClose(sqlite3_file *id) {
  if( ALWAYS(id) ){
    unixFile *pFile = (unixFile*)id;
    proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
    unixFile *lockProxy = pCtx->lockProxy;
    unixFile *conchFile = pCtx->conchFile;
    int rc = SQLITE_OK;
    
    if( lockProxy ){
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==25 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}







|







34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
    UNIXVFS("unix-proxy",    proxyIoFinder ),
#endif
  };
  unsigned int i;          /* Loop counter */

  /* Double-check that the aSyscall[] array has been constructed
  ** correctly.  See ticket [bb3a86e890c8e96ab] */
  assert( ArraySize(aSyscall)==27 );

  /* Register all VFSes defined in the aVfs[] array */
  for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
    sqlite3_vfs_register(&aVfs[i], i==0);
  }
  return SQLITE_OK; 
}
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
  SimulateIOError(return SQLITE_IOERR_WRITE);
  SimulateDiskfullError(return SQLITE_FULL);

  OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
           "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
           pFile->h, pBuf, amt, offset, pFile->locktype));

#if SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this write request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
      OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
               osGetCurrentProcessId(), pFile, pFile->h));







|







37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
  SimulateIOError(return SQLITE_IOERR_WRITE);
  SimulateDiskfullError(return SQLITE_FULL);

  OSTRACE(("WRITE pid=%lu, pFile=%p, file=%p, buffer=%p, amount=%d, "
           "offset=%lld, lock=%d\n", osGetCurrentProcessId(), pFile,
           pFile->h, pBuf, amt, offset, pFile->locktype));

#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
  /* Deal with as much of this write request as possible by transfering
  ** data from the memory mapping using memcpy().  */
  if( offset<pFile->mmapSize ){
    if( offset+amt <= pFile->mmapSize ){
      memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
      OSTRACE(("WRITE-MMAP pid=%lu, pFile=%p, file=%p, rc=SQLITE_OK\n",
               osGetCurrentProcessId(), pFile, pFile->h));
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
  OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut));

  assert( id!=0 );
  if( pFile->locktype>=RESERVED_LOCK ){
    res = 1;
    OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res));
  }else{
    res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE, 0, 1, 0);
    if( res ){
      winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
    }
    res = !res;
    OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res));
  }
  *pResOut = res;







|







37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
  OSTRACE(("TEST-WR-LOCK file=%p, pResOut=%p\n", pFile->h, pResOut));

  assert( id!=0 );
  if( pFile->locktype>=RESERVED_LOCK ){
    res = 1;
    OSTRACE(("TEST-WR-LOCK file=%p, result=%d (local)\n", pFile->h, res));
  }else{
    res = winLockFile(&pFile->h, SQLITE_LOCKFILEEX_FLAGS,RESERVED_BYTE,0,1,0);
    if( res ){
      winUnlockFile(&pFile->h, RESERVED_BYTE, 0, 1, 0);
    }
    res = !res;
    OSTRACE(("TEST-WR-LOCK file=%p, result=%d (remote)\n", pFile->h, res));
  }
  *pResOut = res;
38473
38474
38475
38476
38477
38478
38479

38480
38481
38482
38483

38484
38485
38486
38487
38488
38489
38490
  }
  if( nMap!=pFd->mmapSize ){
    void *pNew = 0;
    DWORD protect = PAGE_READONLY;
    DWORD flags = FILE_MAP_READ;

    winUnmapfile(pFd);

    if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){
      protect = PAGE_READWRITE;
      flags |= FILE_MAP_WRITE;
    }

#if SQLITE_OS_WINRT
    pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
#elif defined(SQLITE_WIN32_HAS_WIDE)
    pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#elif defined(SQLITE_WIN32_HAS_ANSI)







>




>







38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
  }
  if( nMap!=pFd->mmapSize ){
    void *pNew = 0;
    DWORD protect = PAGE_READONLY;
    DWORD flags = FILE_MAP_READ;

    winUnmapfile(pFd);
#ifdef SQLITE_MMAP_READWRITE
    if( (pFd->ctrlFlags & WINFILE_RDONLY)==0 ){
      protect = PAGE_READWRITE;
      flags |= FILE_MAP_WRITE;
    }
#endif
#if SQLITE_OS_WINRT
    pFd->hMap = osCreateFileMappingFromApp(pFd->h, NULL, protect, nMap, NULL);
#elif defined(SQLITE_WIN32_HAS_WIDE)
    pFd->hMap = osCreateFileMappingW(pFd->h, NULL, protect,
                                (DWORD)((nMap>>32) & 0xffffffff),
                                (DWORD)(nMap & 0xffffffff), NULL);
#elif defined(SQLITE_WIN32_HAS_ANSI)
40061
40062
40063
40064
40065
40066
40067

40068
40069
40070
40071
40072
40073
40074
40075
/* #include "sqliteInt.h" */

/* Size of the Bitvec structure in bytes. */
#define BITVEC_SZ        512

/* Round the union size down to the nearest pointer boundary, since that's how 
** it will be aligned within the Bitvec struct. */

#define BITVEC_USIZE     (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))

/* Type of the array "element" for the bitmap representation. 
** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 
** Setting this to the "natural word" size of your CPU may improve
** performance. */
#define BITVEC_TELEM     u8
/* Size, in bits, of the bitmap element. */







>
|







40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
/* #include "sqliteInt.h" */

/* Size of the Bitvec structure in bytes. */
#define BITVEC_SZ        512

/* Round the union size down to the nearest pointer boundary, since that's how 
** it will be aligned within the Bitvec struct. */
#define BITVEC_USIZE \
    (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))

/* Type of the array "element" for the bitmap representation. 
** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. 
** Setting this to the "natural word" size of your CPU may improve
** performance. */
#define BITVEC_TELEM     u8
/* Size, in bits, of the bitmap element. */
40454
40455
40456
40457
40458
40459
40460

40461
40462
40463
40464
40465
40466
40467
** A complete page cache is an instance of this structure.
*/
struct PCache {
  PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
  PgHdr *pSynced;                     /* Last synced page in dirty page list */
  int nRefSum;                        /* Sum of ref counts over all pages */
  int szCache;                        /* Configured cache size */

  int szPage;                         /* Size of every page in this cache */
  int szExtra;                        /* Size of extra space for each page */
  u8 bPurgeable;                      /* True if pages are on backing store */
  u8 eCreate;                         /* eCreate value for for xFetch() */
  int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
  void *pStress;                      /* Argument to xStress */
  sqlite3_pcache *pCache;             /* Pluggable cache module */







>







40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
** A complete page cache is an instance of this structure.
*/
struct PCache {
  PgHdr *pDirty, *pDirtyTail;         /* List of dirty pages in LRU order */
  PgHdr *pSynced;                     /* Last synced page in dirty page list */
  int nRefSum;                        /* Sum of ref counts over all pages */
  int szCache;                        /* Configured cache size */
  int szSpill;                        /* Size before spilling occurs */
  int szPage;                         /* Size of every page in this cache */
  int szExtra;                        /* Size of extra space for each page */
  u8 bPurgeable;                      /* True if pages are on backing store */
  u8 eCreate;                         /* eCreate value for for xFetch() */
  int (*xStress)(void*,PgHdr*);       /* Call to try make a page clean */
  void *pStress;                      /* Argument to xStress */
  sqlite3_pcache *pCache;             /* Pluggable cache module */
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
static void pcacheUnpin(PgHdr *p){
  if( p->pCache->bPurgeable ){
    sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
  }
}

/*
** Compute the number of pages of cache requested.  p->szCache is the
** cache size requested by the "PRAGMA cache_size" statement.
**
**
*/
static int numberOfCachePages(PCache *p){
  if( p->szCache>=0 ){
    /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
    ** suggested cache size is set to N. */
    return p->szCache;
  }else{







|

<
<







40925
40926
40927
40928
40929
40930
40931
40932
40933


40934
40935
40936
40937
40938
40939
40940
static void pcacheUnpin(PgHdr *p){
  if( p->pCache->bPurgeable ){
    sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0);
  }
}

/*
** Compute the number of pages of cache requested.   p->szCache is the
** cache size requested by the "PRAGMA cache_size" statement.


*/
static int numberOfCachePages(PCache *p){
  if( p->szCache>=0 ){
    /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
    ** suggested cache size is set to N. */
    return p->szCache;
  }else{
40609
40610
40611
40612
40613
40614
40615

40616
40617
40618
40619
40620
40621
40622
  p->szPage = 1;
  p->szExtra = szExtra;
  p->bPurgeable = bPurgeable;
  p->eCreate = 2;
  p->xStress = xStress;
  p->pStress = pStress;
  p->szCache = 100;

  return sqlite3PcacheSetPageSize(p, szPage);
}

/*
** Change the page size for PCache object. The caller must ensure that there
** are no outstanding page references when this function is called.
*/







>







40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
  p->szPage = 1;
  p->szExtra = szExtra;
  p->bPurgeable = bPurgeable;
  p->eCreate = 2;
  p->xStress = xStress;
  p->pStress = pStress;
  p->szCache = 100;
  p->szSpill = 1;
  return sqlite3PcacheSetPageSize(p, szPage);
}

/*
** Change the page size for PCache object. The caller must ensure that there
** are no outstanding page references when this function is called.
*/
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736

40737
40738
40739
40740
40741
40742
40743
  PCache *pCache,                 /* Obtain the page from this cache */
  Pgno pgno,                      /* Page number to obtain */
  sqlite3_pcache_page **ppPage    /* Write result here */
){
  PgHdr *pPg;
  if( pCache->eCreate==2 ) return 0;


  /* Find a dirty page to write-out and recycle. First try to find a 
  ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
  ** cleared), but if that is not possible settle for any other 
  ** unreferenced dirty page.
  */
  for(pPg=pCache->pSynced; 
      pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 
      pPg=pPg->pDirtyPrev
  );
  pCache->pSynced = pPg;
  if( !pPg ){
    for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
  }
  if( pPg ){
    int rc;
#ifdef SQLITE_LOG_CACHE_SPILL
    sqlite3_log(SQLITE_FULL, 
                "spill page %d making room for %d - cache used: %d/%d",
                pPg->pgno, pgno,
                sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
                numberOfCachePages(pCache));
#endif
    rc = pCache->xStress(pCache->pStress, pPg);
    if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
      return rc;

    }
  }
  *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
  return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK;
}

/*







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|


|
|
|
>







41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
  PCache *pCache,                 /* Obtain the page from this cache */
  Pgno pgno,                      /* Page number to obtain */
  sqlite3_pcache_page **ppPage    /* Write result here */
){
  PgHdr *pPg;
  if( pCache->eCreate==2 ) return 0;

  if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){
    /* Find a dirty page to write-out and recycle. First try to find a 
    ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
    ** cleared), but if that is not possible settle for any other 
    ** unreferenced dirty page.
    */
    for(pPg=pCache->pSynced; 
        pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); 
        pPg=pPg->pDirtyPrev
    );
    pCache->pSynced = pPg;
    if( !pPg ){
      for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev);
    }
    if( pPg ){
      int rc;
#ifdef SQLITE_LOG_CACHE_SPILL
      sqlite3_log(SQLITE_FULL, 
                  "spill page %d making room for %d - cache used: %d/%d",
                  pPg->pgno, pgno,
                  sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache),
                numberOfCachePages(pCache));
#endif
      rc = pCache->xStress(pCache->pStress, pPg);
      if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){
        return rc;
      }
    }
  }
  *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2);
  return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK;
}

/*
41073
41074
41075
41076
41077
41078
41079



















41080
41081
41082
41083
41084
41085
41086
*/
SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
  assert( pCache->pCache!=0 );
  pCache->szCache = mxPage;
  sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
                                         numberOfCachePages(pCache));
}




















/*
** Free up as much memory as possible from the page cache.
*/
SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
  assert( pCache->pCache!=0 );
  sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
*/
SQLITE_PRIVATE void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){
  assert( pCache->pCache!=0 );
  pCache->szCache = mxPage;
  sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache,
                                         numberOfCachePages(pCache));
}

/*
** Set the suggested cache-spill value.  Make no changes if if the
** argument is zero.  Return the effective cache-spill size, which will
** be the larger of the szSpill and szCache.
*/
SQLITE_PRIVATE int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){
  int res;
  assert( p->pCache!=0 );
  if( mxPage ){
    if( mxPage<0 ){
      mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra));
    }
    p->szSpill = mxPage;
  }
  res = numberOfCachePages(p);
  if( res<p->szSpill ) res = p->szSpill; 
  return res;
}

/*
** Free up as much memory as possible from the page cache.
*/
SQLITE_PRIVATE void sqlite3PcacheShrink(PCache *pCache){
  assert( pCache->pCache!=0 );
  sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache);
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
**         SQLITE_CONFIG_PAGECACHE.
**    (3)  PCache-local bulk allocation.
**
** The third case is a chunk of heap memory (defaulting to 100 pages worth)
** that is allocated when the page cache is created.  The size of the local
** bulk allocation can be adjusted using 
**
**     sqlite3_config(SQLITE_CONFIG_PAGECACHE, 0, 0, N).
**
** If N is positive, then N pages worth of memory are allocated using a single
** sqlite3Malloc() call and that memory is used for the first N pages allocated.
** Or if N is negative, then -1024*N bytes of memory are allocated and used
** for as many pages as can be accomodated.
**
** Only one of (2) or (3) can be used.  Once the memory available to (2) or







|







41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
**         SQLITE_CONFIG_PAGECACHE.
**    (3)  PCache-local bulk allocation.
**
** The third case is a chunk of heap memory (defaulting to 100 pages worth)
** that is allocated when the page cache is created.  The size of the local
** bulk allocation can be adjusted using 
**
**     sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
**
** If N is positive, then N pages worth of memory are allocated using a single
** sqlite3Malloc() call and that memory is used for the first N pages allocated.
** Or if N is negative, then -1024*N bytes of memory are allocated and used
** for as many pages as can be accomodated.
**
** Only one of (2) or (3) can be used.  Once the memory available to (2) or
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );
      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);
      sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return;
  if( p>=pcache1.pStart && p<pcache1.pEnd ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;







|













|















|







41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
    sqlite3_mutex_enter(pcache1.mutex);
    p = (PgHdr1 *)pcache1.pFree;
    if( p ){
      pcache1.pFree = pcache1.pFree->pNext;
      pcache1.nFreeSlot--;
      pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
      assert( pcache1.nFreeSlot>=0 );
      sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
    }
    sqlite3_mutex_leave(pcache1.mutex);
  }
  if( p==0 ){
    /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool.  Get
    ** it from sqlite3Malloc instead.
    */
    p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
    if( p ){
      int sz = sqlite3MallocSize(p);
      sqlite3_mutex_enter(pcache1.mutex);
      sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
      sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
      sqlite3_mutex_leave(pcache1.mutex);
    }
#endif
    sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
  }
  return p;
}

/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
  int nFreed = 0;
  if( p==0 ) return;
  if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
    PgFreeslot *pSlot;
    sqlite3_mutex_enter(pcache1.mutex);
    sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
    pSlot = (PgFreeslot*)p;
    pSlot->pNext = pcache1.pFree;
    pcache1.pFree = pSlot;
    pcache1.nFreeSlot++;
43005
43006
43007
43008
43009
43010
43011





43012
43013
43014
43015
43016
43017
43018
SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);

/* Return true if the argument is non-NULL and the WAL module is using
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false. 
*/
SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);






#ifdef SQLITE_ENABLE_ZIPVFS
/* If the WAL file is not empty, return the number of bytes of content
** stored in each frame (i.e. the db page-size when the WAL was created).
*/
SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal);
#endif







>
>
>
>
>







43406
43407
43408
43409
43410
43411
43412
43413
43414
43415
43416
43417
43418
43419
43420
43421
43422
43423
43424
SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);

/* Return true if the argument is non-NULL and the WAL module is using
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false. 
*/
SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);

#ifdef SQLITE_ENABLE_SNAPSHOT
SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot);
SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot);
#endif

#ifdef SQLITE_ENABLE_ZIPVFS
/* If the WAL file is not empty, return the number of bytes of content
** stored in each frame (i.e. the db page-size when the WAL was created).
*/
SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal);
#endif
45330
45331
45332
45333
45334
45335
45336
45337
45338
45339
45340
45341
45342
45343
45344
    ** the data just read from the sub-journal. Mark the page as dirty 
    ** and if the pager requires a journal-sync, then mark the page as 
    ** requiring a journal-sync before it is written.
    */
    assert( isSavepnt );
    assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
    pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
    rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1);
    assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
    pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
    if( rc!=SQLITE_OK ) return rc;
    pPg->flags &= ~PGHDR_NEED_READ;
    sqlite3PcacheMakeDirty(pPg);
  }
  if( pPg ){







|







45736
45737
45738
45739
45740
45741
45742
45743
45744
45745
45746
45747
45748
45749
45750
    ** the data just read from the sub-journal. Mark the page as dirty 
    ** and if the pager requires a journal-sync, then mark the page as 
    ** requiring a journal-sync before it is written.
    */
    assert( isSavepnt );
    assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
    pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
    rc = sqlite3PagerGet(pPager, pgno, &pPg, 1);
    assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
    pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
    if( rc!=SQLITE_OK ) return rc;
    pPg->flags &= ~PGHDR_NEED_READ;
    sqlite3PcacheMakeDirty(pPg);
  }
  if( pPg ){
46389
46390
46391
46392
46393
46394
46395
46396

46397
46398
46399
46400








46401
46402
46403
46404
46405
46406
46407
    pPager->journalOff = szJ;
  }

  return rc;
}

/*
** Change the maximum number of in-memory pages that are allowed.

*/
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
  sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
}









/*
** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
*/
static void pagerFixMaplimit(Pager *pPager){
#if SQLITE_MAX_MMAP_SIZE>0
  sqlite3_file *fd = pPager->fd;







|
>




>
>
>
>
>
>
>
>







46795
46796
46797
46798
46799
46800
46801
46802
46803
46804
46805
46806
46807
46808
46809
46810
46811
46812
46813
46814
46815
46816
46817
46818
46819
46820
46821
46822
    pPager->journalOff = szJ;
  }

  return rc;
}

/*
** Change the maximum number of in-memory pages that are allowed
** before attempting to recycle clean and unused pages.
*/
SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
  sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
}

/*
** Change the maximum number of in-memory pages that are allowed
** before attempting to spill pages to journal.
*/
SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){
  return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage);
}

/*
** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
*/
static void pagerFixMaplimit(Pager *pPager){
#if SQLITE_MAX_MMAP_SIZE>0
  sqlite3_file *fd = pPager->fd;
47470
47471
47472
47473
47474
47475
47476



















47477
47478
47479
47480
47481
47482
47483
    PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
    sqlite3PcacheMakeClean(pPg);
  }

  return pager_error(pPager, rc); 
}





















/*
** Allocate and initialize a new Pager object and put a pointer to it
** in *ppPager. The pager should eventually be freed by passing it
** to sqlite3PagerClose().
**
** The zFilename argument is the path to the database file to open.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







47885
47886
47887
47888
47889
47890
47891
47892
47893
47894
47895
47896
47897
47898
47899
47900
47901
47902
47903
47904
47905
47906
47907
47908
47909
47910
47911
47912
47913
47914
47915
47916
47917
    PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
    sqlite3PcacheMakeClean(pPg);
  }

  return pager_error(pPager, rc); 
}

/*
** Flush all unreferenced dirty pages to disk.
*/
SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){
  int rc = pPager->errCode;
  if( !MEMDB ){
    PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
    assert( assert_pager_state(pPager) );
    while( rc==SQLITE_OK && pList ){
      PgHdr *pNext = pList->pDirty;
      if( pList->nRef==0 ){
        rc = pagerStress((void*)pPager, pList);
      }
      pList = pNext;
    }
  }

  return rc;
}

/*
** Allocate and initialize a new Pager object and put a pointer to it
** in *ppPager. The pager should eventually be freed by passing it
** to sqlite3PagerClose().
**
** The zFilename argument is the path to the database file to open.
47947
47948
47949
47950
47951
47952
47953
47954
47955
47956
47957
47958
47959
47960
47961
  }

  return rc;
}

/*
** This function is called to obtain a shared lock on the database file.
** It is illegal to call sqlite3PagerAcquire() until after this function
** has been successfully called. If a shared-lock is already held when
** this function is called, it is a no-op.
**
** The following operations are also performed by this function.
**
**   1) If the pager is currently in PAGER_OPEN state (no lock held
**      on the database file), then an attempt is made to obtain a







|







48381
48382
48383
48384
48385
48386
48387
48388
48389
48390
48391
48392
48393
48394
48395
  }

  return rc;
}

/*
** This function is called to obtain a shared lock on the database file.
** It is illegal to call sqlite3PagerGet() until after this function
** has been successfully called. If a shared-lock is already held when
** this function is called, it is a no-op.
**
** The following operations are also performed by this function.
**
**   1) If the pager is currently in PAGER_OPEN state (no lock held
**      on the database file), then an attempt is made to obtain a
48250
48251
48252
48253
48254
48255
48256
48257
48258
48259
48260
48261
48262
48263
48264
** to find a page in the in-memory cache first.  If the page is not already
** in memory, this routine goes to disk to read it in whereas Lookup()
** just returns 0.  This routine acquires a read-lock the first time it
** has to go to disk, and could also playback an old journal if necessary.
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
SQLITE_PRIVATE int sqlite3PagerAcquire(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int flags           /* PAGER_GET_XXX flags */
){
  int rc = SQLITE_OK;
  PgHdr *pPg = 0;







|







48684
48685
48686
48687
48688
48689
48690
48691
48692
48693
48694
48695
48696
48697
48698
** to find a page in the in-memory cache first.  If the page is not already
** in memory, this routine goes to disk to read it in whereas Lookup()
** just returns 0.  This routine acquires a read-lock the first time it
** has to go to disk, and could also playback an old journal if necessary.
** Since Lookup() never goes to disk, it never has to deal with locks
** or journal files.
*/
SQLITE_PRIVATE int sqlite3PagerGet(
  Pager *pPager,      /* The pager open on the database file */
  Pgno pgno,          /* Page number to fetch */
  DbPage **ppPage,    /* Write a pointer to the page here */
  int flags           /* PAGER_GET_XXX flags */
){
  int rc = SQLITE_OK;
  PgHdr *pPg = 0;
48836
48837
48838
48839
48840
48841
48842
48843
48844
48845
48846
48847
48848
48849
48850
  assert((pg1+nPage)>pPg->pgno);

  for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
    Pgno pg = pg1+ii;
    PgHdr *pPage;
    if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
      if( pg!=PAGER_MJ_PGNO(pPager) ){
        rc = sqlite3PagerGet(pPager, pg, &pPage);
        if( rc==SQLITE_OK ){
          rc = pager_write(pPage);
          if( pPage->flags&PGHDR_NEED_SYNC ){
            needSync = 1;
          }
          sqlite3PagerUnrefNotNull(pPage);
        }







|







49270
49271
49272
49273
49274
49275
49276
49277
49278
49279
49280
49281
49282
49283
49284
  assert((pg1+nPage)>pPg->pgno);

  for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
    Pgno pg = pg1+ii;
    PgHdr *pPage;
    if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
      if( pg!=PAGER_MJ_PGNO(pPager) ){
        rc = sqlite3PagerGet(pPager, pg, &pPage, 0);
        if( rc==SQLITE_OK ){
          rc = pager_write(pPage);
          if( pPage->flags&PGHDR_NEED_SYNC ){
            needSync = 1;
          }
          sqlite3PagerUnrefNotNull(pPage);
        }
48893
48894
48895
48896
48897
48898
48899
48900
48901


48902
48903
48904
48905
48906
48907
48908
48909
** If an error occurs, SQLITE_NOMEM or an IO error code is returned
** as appropriate. Otherwise, SQLITE_OK.
*/
SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  assert( (pPg->flags & PGHDR_MMAP)==0 );
  assert( pPager->eState>=PAGER_WRITER_LOCKED );
  assert( pPager->eState!=PAGER_ERROR );
  assert( assert_pager_state(pPager) );


  if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){
    if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg);
    return SQLITE_OK;
  }else if( pPager->sectorSize > (u32)pPager->pageSize ){
    return pagerWriteLargeSector(pPg);
  }else{
    return pager_write(pPg);
  }







<

>
>
|







49327
49328
49329
49330
49331
49332
49333

49334
49335
49336
49337
49338
49339
49340
49341
49342
49343
49344
** If an error occurs, SQLITE_NOMEM or an IO error code is returned
** as appropriate. Otherwise, SQLITE_OK.
*/
SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){
  Pager *pPager = pPg->pPager;
  assert( (pPg->flags & PGHDR_MMAP)==0 );
  assert( pPager->eState>=PAGER_WRITER_LOCKED );

  assert( assert_pager_state(pPager) );
  if( pPager->errCode ){
    return pPager->errCode;
  }else if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){
    if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg);
    return SQLITE_OK;
  }else if( pPager->sectorSize > (u32)pPager->pageSize ){
    return pagerWriteLargeSector(pPg);
  }else{
    return pager_write(pPg);
  }
48995
48996
48997
48998
48999
49000
49001
49002
49003
49004
49005
49006
49007
49008
49009

  if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){
    PgHdr *pPgHdr;                /* Reference to page 1 */

    assert( !pPager->tempFile && isOpen(pPager->fd) );

    /* Open page 1 of the file for writing. */
    rc = sqlite3PagerGet(pPager, 1, &pPgHdr);
    assert( pPgHdr==0 || rc==SQLITE_OK );

    /* If page one was fetched successfully, and this function is not
    ** operating in direct-mode, make page 1 writable.  When not in 
    ** direct mode, page 1 is always held in cache and hence the PagerGet()
    ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
    */







|







49430
49431
49432
49433
49434
49435
49436
49437
49438
49439
49440
49441
49442
49443
49444

  if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){
    PgHdr *pPgHdr;                /* Reference to page 1 */

    assert( !pPager->tempFile && isOpen(pPager->fd) );

    /* Open page 1 of the file for writing. */
    rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0);
    assert( pPgHdr==0 || rc==SQLITE_OK );

    /* If page one was fetched successfully, and this function is not
    ** operating in direct-mode, make page 1 writable.  When not in 
    ** direct mode, page 1 is always held in cache and hence the PagerGet()
    ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
    */
49073
49074
49075
49076
49077
49078
49079


49080
49081
49082
49083
49084
49085
49086
49087

49088
49089
49090
49091
49092
49093
49094
**
** If the EXCLUSIVE lock is already held or the attempt to obtain it is
** successful, or the connection is in WAL mode, SQLITE_OK is returned.
** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 
** returned.
*/
SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){


  int rc = SQLITE_OK;
  assert( pPager->eState==PAGER_WRITER_CACHEMOD 
       || pPager->eState==PAGER_WRITER_DBMOD 
       || pPager->eState==PAGER_WRITER_LOCKED 
  );
  assert( assert_pager_state(pPager) );
  if( 0==pagerUseWal(pPager) ){
    rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);

  }
  return rc;
}

/*
** Sync the database file for the pager pPager. zMaster points to the name
** of a master journal file that should be written into the individual







>
>
|
|
|
|
|
|
|
|
>







49508
49509
49510
49511
49512
49513
49514
49515
49516
49517
49518
49519
49520
49521
49522
49523
49524
49525
49526
49527
49528
49529
49530
49531
49532
**
** If the EXCLUSIVE lock is already held or the attempt to obtain it is
** successful, or the connection is in WAL mode, SQLITE_OK is returned.
** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is 
** returned.
*/
SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
  int rc = pPager->errCode;
  assert( assert_pager_state(pPager) );
  if( rc==SQLITE_OK ){
    assert( pPager->eState==PAGER_WRITER_CACHEMOD 
         || pPager->eState==PAGER_WRITER_DBMOD 
         || pPager->eState==PAGER_WRITER_LOCKED 
    );
    assert( assert_pager_state(pPager) );
    if( 0==pagerUseWal(pPager) ){
      rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
    }
  }
  return rc;
}

/*
** Sync the database file for the pager pPager. zMaster points to the name
** of a master journal file that should be written into the individual
49147
49148
49149
49150
49151
49152
49153
49154
49155
49156
49157
49158
49159
49160
49161
  }else{
    if( pagerUseWal(pPager) ){
      PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
      PgHdr *pPageOne = 0;
      if( pList==0 ){
        /* Must have at least one page for the WAL commit flag.
        ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
        rc = sqlite3PagerGet(pPager, 1, &pPageOne);
        pList = pPageOne;
        pList->pDirty = 0;
      }
      assert( rc==SQLITE_OK );
      if( ALWAYS(pList) ){
        rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
      }







|







49585
49586
49587
49588
49589
49590
49591
49592
49593
49594
49595
49596
49597
49598
49599
  }else{
    if( pagerUseWal(pPager) ){
      PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
      PgHdr *pPageOne = 0;
      if( pList==0 ){
        /* Must have at least one page for the WAL commit flag.
        ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
        rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0);
        pList = pPageOne;
        pList->pDirty = 0;
      }
      assert( rc==SQLITE_OK );
      if( ALWAYS(pList) ){
        rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
      }
49644
49645
49646
49647
49648
49649
49650
49651
49652
49653
49654
49655
49656
49657
49658
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){
  return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename;
}

/*
** Return the VFS structure for the pager.
*/
SQLITE_PRIVATE const sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
  return pPager->pVfs;
}

/*
** Return the file handle for the database file associated
** with the pager.  This might return NULL if the file has
** not yet been opened.







|







50082
50083
50084
50085
50086
50087
50088
50089
50090
50091
50092
50093
50094
50095
50096
SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){
  return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename;
}

/*
** Return the VFS structure for the pager.
*/
SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
  return pPager->pVfs;
}

/*
** Return the file handle for the database file associated
** with the pager.  This might return NULL if the file has
** not yet been opened.
49852
49853
49854
49855
49856
49857
49858
49859
49860
49861
49862
49863
49864
49865
49866
    ** to a malloc() or IO failure), clear the bit in the pInJournal[]
    ** array. Otherwise, if the page is loaded and written again in
    ** this transaction, it may be written to the database file before
    ** it is synced into the journal file. This way, it may end up in
    ** the journal file twice, but that is not a problem.
    */
    PgHdr *pPgHdr;
    rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr);
    if( rc!=SQLITE_OK ){
      if( needSyncPgno<=pPager->dbOrigSize ){
        assert( pPager->pTmpSpace!=0 );
        sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
      }
      return rc;
    }







|







50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
    ** to a malloc() or IO failure), clear the bit in the pInJournal[]
    ** array. Otherwise, if the page is loaded and written again in
    ** this transaction, it may be written to the database file before
    ** it is synced into the journal file. This way, it may end up in
    ** the journal file twice, but that is not a problem.
    */
    PgHdr *pPgHdr;
    rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0);
    if( rc!=SQLITE_OK ){
      if( needSyncPgno<=pPager->dbOrigSize ){
        assert( pPager->pTmpSpace!=0 );
        sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
      }
      return rc;
    }
50266
50267
50268
50269
50270
50271
50272




























50273
50274
50275
50276
50277
50278
50279
      pPager->pWal = 0;
      pagerFixMaplimit(pPager);
    }
  }
  return rc;
}





























#endif /* !SQLITE_OMIT_WAL */

#ifdef SQLITE_ENABLE_ZIPVFS
/*
** A read-lock must be held on the pager when this function is called. If
** the pager is in WAL mode and the WAL file currently contains one or more
** frames, return the size in bytes of the page images stored within the







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
      pPager->pWal = 0;
      pagerFixMaplimit(pPager);
    }
  }
  return rc;
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/*
** If this is a WAL database, obtain a snapshot handle for the snapshot
** currently open. Otherwise, return an error.
*/
SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){
  int rc = SQLITE_ERROR;
  if( pPager->pWal ){
    rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot);
  }
  return rc;
}

/*
** If this is a WAL database, store a pointer to pSnapshot. Next time a
** read transaction is opened, attempt to read from the snapshot it 
** identifies. If this is not a WAL database, return an error.
*/
SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot){
  int rc = SQLITE_OK;
  if( pPager->pWal ){
    sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot);
  }else{
    rc = SQLITE_ERROR;
  }
  return rc;
}
#endif /* SQLITE_ENABLE_SNAPSHOT */
#endif /* !SQLITE_OMIT_WAL */

#ifdef SQLITE_ENABLE_ZIPVFS
/*
** A read-lock must be held on the pager when this function is called. If
** the pager is in WAL mode and the WAL file currently contains one or more
** frames, return the size in bytes of the page images stored within the
50561
50562
50563
50564
50565
50566
50567
50568

50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588



50589
50590
50591
50592
50593
50594
50595
** returns SQLITE_CANTOPEN.
*/
#define WAL_MAX_VERSION      3007000
#define WALINDEX_MAX_VERSION 3007000

/*
** Indices of various locking bytes.   WAL_NREADER is the number
** of available reader locks and should be at least 3.

*/
#define WAL_WRITE_LOCK         0
#define WAL_ALL_BUT_WRITE      1
#define WAL_CKPT_LOCK          1
#define WAL_RECOVER_LOCK       2
#define WAL_READ_LOCK(I)       (3+(I))
#define WAL_NREADER            (SQLITE_SHM_NLOCK-3)


/* Object declarations */
typedef struct WalIndexHdr WalIndexHdr;
typedef struct WalIterator WalIterator;
typedef struct WalCkptInfo WalCkptInfo;


/*
** The following object holds a copy of the wal-index header content.
**
** The actual header in the wal-index consists of two copies of this
** object.



**
** The szPage value can be any power of 2 between 512 and 32768, inclusive.
** Or it can be 1 to represent a 65536-byte page.  The latter case was
** added in 3.7.1 when support for 64K pages was added.  
*/
struct WalIndexHdr {
  u32 iVersion;                   /* Wal-index version */







|
>



















|
>
>
>







51027
51028
51029
51030
51031
51032
51033
51034
51035
51036
51037
51038
51039
51040
51041
51042
51043
51044
51045
51046
51047
51048
51049
51050
51051
51052
51053
51054
51055
51056
51057
51058
51059
51060
51061
51062
51063
51064
51065
** returns SQLITE_CANTOPEN.
*/
#define WAL_MAX_VERSION      3007000
#define WALINDEX_MAX_VERSION 3007000

/*
** Indices of various locking bytes.   WAL_NREADER is the number
** of available reader locks and should be at least 3.  The default
** is SQLITE_SHM_NLOCK==8 and  WAL_NREADER==5.
*/
#define WAL_WRITE_LOCK         0
#define WAL_ALL_BUT_WRITE      1
#define WAL_CKPT_LOCK          1
#define WAL_RECOVER_LOCK       2
#define WAL_READ_LOCK(I)       (3+(I))
#define WAL_NREADER            (SQLITE_SHM_NLOCK-3)


/* Object declarations */
typedef struct WalIndexHdr WalIndexHdr;
typedef struct WalIterator WalIterator;
typedef struct WalCkptInfo WalCkptInfo;


/*
** The following object holds a copy of the wal-index header content.
**
** The actual header in the wal-index consists of two copies of this
** object followed by one instance of the WalCkptInfo object.
** For all versions of SQLite through 3.10.0 and probably beyond,
** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
** the total header size is 136 bytes.
**
** The szPage value can be any power of 2 between 512 and 32768, inclusive.
** Or it can be 1 to represent a 65536-byte page.  The latter case was
** added in 3.7.1 when support for 64K pages was added.  
*/
struct WalIndexHdr {
  u32 iVersion;                   /* Wal-index version */
50613
50614
50615
50616
50617
50618
50619










50620
50621
50622
50623
50624
50625
50626
** nBackfill is the number of frames in the WAL that have been written
** back into the database. (We call the act of moving content from WAL to
** database "backfilling".)  The nBackfill number is never greater than
** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
** mxFrame back to zero when the WAL is reset.










**
** There is one entry in aReadMark[] for each reader lock.  If a reader
** holds read-lock K, then the value in aReadMark[K] is no greater than
** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
** for any aReadMark[] means that entry is unused.  aReadMark[0] is 
** a special case; its value is never used and it exists as a place-holder
** to avoid having to offset aReadMark[] indexs by one.  Readers holding







>
>
>
>
>
>
>
>
>
>







51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
51096
51097
51098
51099
51100
51101
51102
51103
51104
51105
51106
** nBackfill is the number of frames in the WAL that have been written
** back into the database. (We call the act of moving content from WAL to
** database "backfilling".)  The nBackfill number is never greater than
** WalIndexHdr.mxFrame.  nBackfill can only be increased by threads
** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
** mxFrame back to zero when the WAL is reset.
**
** nBackfillAttempted is the largest value of nBackfill that a checkpoint
** has attempted to achieve.  Normally nBackfill==nBackfillAtempted, however
** the nBackfillAttempted is set before any backfilling is done and the
** nBackfill is only set after all backfilling completes.  So if a checkpoint
** crashes, nBackfillAttempted might be larger than nBackfill.  The
** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
**
** The aLock[] field is a set of bytes used for locking.  These bytes should
** never be read or written.
**
** There is one entry in aReadMark[] for each reader lock.  If a reader
** holds read-lock K, then the value in aReadMark[K] is no greater than
** the mxFrame for that reader.  The value READMARK_NOT_USED (0xffffffff)
** for any aReadMark[] means that entry is unused.  aReadMark[0] is 
** a special case; its value is never used and it exists as a place-holder
** to avoid having to offset aReadMark[] indexs by one.  Readers holding
50653
50654
50655
50656
50657
50658
50659



50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
**
** We assume that 32-bit loads are atomic and so no locks are needed in
** order to read from any aReadMark[] entries.
*/
struct WalCkptInfo {
  u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
  u32 aReadMark[WAL_NREADER];     /* Reader marks */



};
#define READMARK_NOT_USED  0xffffffff


/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
** only support mandatory file-locks, we do not read or write data
** from the region of the file on which locks are applied.
*/
#define WALINDEX_LOCK_OFFSET   (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo))
#define WALINDEX_LOCK_RESERVED 16
#define WALINDEX_HDR_SIZE      (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)

/* Size of header before each frame in wal */
#define WAL_FRAME_HDRSIZE 24

/* Size of write ahead log header, including checksum. */
/* #define WAL_HDRSIZE 24 */
#define WAL_HDRSIZE 32







>
>
>









<
|
|







51133
51134
51135
51136
51137
51138
51139
51140
51141
51142
51143
51144
51145
51146
51147
51148
51149
51150
51151

51152
51153
51154
51155
51156
51157
51158
51159
51160
**
** We assume that 32-bit loads are atomic and so no locks are needed in
** order to read from any aReadMark[] entries.
*/
struct WalCkptInfo {
  u32 nBackfill;                  /* Number of WAL frames backfilled into DB */
  u32 aReadMark[WAL_NREADER];     /* Reader marks */
  u8 aLock[SQLITE_SHM_NLOCK];     /* Reserved space for locks */
  u32 nBackfillAttempted;         /* WAL frames perhaps written, or maybe not */
  u32 notUsed0;                   /* Available for future enhancements */
};
#define READMARK_NOT_USED  0xffffffff


/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
** only support mandatory file-locks, we do not read or write data
** from the region of the file on which locks are applied.
*/

#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
#define WALINDEX_HDR_SIZE    (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))

/* Size of header before each frame in wal */
#define WAL_FRAME_HDRSIZE 24

/* Size of write ahead log header, including checksum. */
/* #define WAL_HDRSIZE 24 */
#define WAL_HDRSIZE 32
50723
50724
50725
50726
50727
50728
50729



50730
50731
50732
50733
50734
50735
50736
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif



};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     







>
>
>







51205
51206
51207
51208
51209
51210
51211
51212
51213
51214
51215
51216
51217
51218
51219
51220
51221
  WalIndexHdr hdr;           /* Wal-index header for current transaction */
  u32 minFrame;              /* Ignore wal frames before this one */
  const char *zWalName;      /* Name of WAL file */
  u32 nCkpt;                 /* Checkpoint sequence counter in the wal-header */
#ifdef SQLITE_DEBUG
  u8 lockError;              /* True if a locking error has occurred */
#endif
#ifdef SQLITE_ENABLE_SNAPSHOT
  WalIndexHdr *pSnapshot;    /* Start transaction here if not NULL */
#endif
};

/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE     0
#define WAL_EXCLUSIVE_MODE  1     
51078
51079
51080
51081
51082
51083
51084
51085
51086
51087
51088
51089
51090
51091
51092
51093
51094
51095
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n, int fBlock){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;
  if( fBlock ) sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_WAL_BLOCK, 0);
  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                        SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
            walLockName(lockIdx), n, rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  return rc;
}







|


<







51563
51564
51565
51566
51567
51568
51569
51570
51571
51572

51573
51574
51575
51576
51577
51578
51579
}
static void walUnlockShared(Wal *pWal, int lockIdx){
  if( pWal->exclusiveMode ) return;
  (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
                         SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
  WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n){
  int rc;
  if( pWal->exclusiveMode ) return SQLITE_OK;

  rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
                        SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
  WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
            walLockName(lockIdx), n, rc ? "failed" : "ok"));
  VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
  return rc;
}
51367
51368
51369
51370
51371
51372
51373
51374
51375
51376
51377
51378
51379
51380
51381
  */
  assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
  assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
  assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
  assert( pWal->writeLock );
  iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
  nLock = SQLITE_SHM_NLOCK - iLock;
  rc = walLockExclusive(pWal, iLock, nLock, 0);
  if( rc ){
    return rc;
  }
  WALTRACE(("WAL%p: recovery begin...\n", pWal));

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));








|







51851
51852
51853
51854
51855
51856
51857
51858
51859
51860
51861
51862
51863
51864
51865
  */
  assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
  assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
  assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
  assert( pWal->writeLock );
  iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
  nLock = SQLITE_SHM_NLOCK - iLock;
  rc = walLockExclusive(pWal, iLock, nLock);
  if( rc ){
    return rc;
  }
  WALTRACE(("WAL%p: recovery begin...\n", pWal));

  memset(&pWal->hdr, 0, sizeof(WalIndexHdr));

51488
51489
51490
51491
51492
51493
51494

51495
51496
51497
51498
51499
51500
51501

    /* Reset the checkpoint-header. This is safe because this thread is 
    ** currently holding locks that exclude all other readers, writers and
    ** checkpointers.
    */
    pInfo = walCkptInfo(pWal);
    pInfo->nBackfill = 0;

    pInfo->aReadMark[0] = 0;
    for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
    if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;

    /* If more than one frame was recovered from the log file, report an
    ** event via sqlite3_log(). This is to help with identifying performance
    ** problems caused by applications routinely shutting down without







>







51972
51973
51974
51975
51976
51977
51978
51979
51980
51981
51982
51983
51984
51985
51986

    /* Reset the checkpoint-header. This is safe because this thread is 
    ** currently holding locks that exclude all other readers, writers and
    ** checkpointers.
    */
    pInfo = walCkptInfo(pWal);
    pInfo->nBackfill = 0;
    pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
    pInfo->aReadMark[0] = 0;
    for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
    if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;

    /* If more than one frame was recovered from the log file, report an
    ** event via sqlite3_log(). This is to help with identifying performance
    ** problems caused by applications routinely shutting down without
51559
51560
51561
51562
51563
51564
51565


51566


51567
51568
51569
51570
51571
51572
51573

  assert( zWalName && zWalName[0] );
  assert( pDbFd );

  /* In the amalgamation, the os_unix.c and os_win.c source files come before
  ** this source file.  Verify that the #defines of the locking byte offsets
  ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.


  */


#ifdef WIN_SHM_BASE
  assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
#ifdef UNIX_SHM_BASE
  assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif








>
>

>
>







52044
52045
52046
52047
52048
52049
52050
52051
52052
52053
52054
52055
52056
52057
52058
52059
52060
52061
52062

  assert( zWalName && zWalName[0] );
  assert( pDbFd );

  /* In the amalgamation, the os_unix.c and os_win.c source files come before
  ** this source file.  Verify that the #defines of the locking byte offsets
  ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
  ** For that matter, if the lock offset ever changes from its initial design
  ** value of 120, we need to know that so there is an assert() to check it.
  */
  assert( 120==WALINDEX_LOCK_OFFSET );
  assert( 136==WALINDEX_HDR_SIZE );
#ifdef WIN_SHM_BASE
  assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
#ifdef UNIX_SHM_BASE
  assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif

51905
51906
51907
51908
51909
51910
51911
51912
51913
51914
51915
51916
51917
51918
51919
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int lockIdx,                    /* Offset of first byte to lock */
  int n                           /* Number of bytes to lock */
){
  int rc;
  do {
    rc = walLockExclusive(pWal, lockIdx, n, 0);
  }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
  return rc;
}

/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.







|







52394
52395
52396
52397
52398
52399
52400
52401
52402
52403
52404
52405
52406
52407
52408
  int (*xBusy)(void*),            /* Function to call when busy */
  void *pBusyArg,                 /* Context argument for xBusyHandler */
  int lockIdx,                    /* Offset of first byte to lock */
  int n                           /* Number of bytes to lock */
){
  int rc;
  do {
    rc = walLockExclusive(pWal, lockIdx, n);
  }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
  return rc;
}

/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
51945
51946
51947
51948
51949
51950
51951

51952
51953
51954
51955
51956
51957
51958
  u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
  pWal->nCkpt++;
  pWal->hdr.mxFrame = 0;
  sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
  memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
  walIndexWriteHdr(pWal);
  pInfo->nBackfill = 0;

  pInfo->aReadMark[1] = 0;
  for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
  assert( pInfo->aReadMark[0]==0 );
}

/*
** Copy as much content as we can from the WAL back into the database file







>







52434
52435
52436
52437
52438
52439
52440
52441
52442
52443
52444
52445
52446
52447
52448
  u32 *aSalt = pWal->hdr.aSalt;   /* Big-endian salt values */
  pWal->nCkpt++;
  pWal->hdr.mxFrame = 0;
  sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
  memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
  walIndexWriteHdr(pWal);
  pInfo->nBackfill = 0;
  pInfo->nBackfillAttempted = 0;
  pInfo->aReadMark[1] = 0;
  for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
  assert( pInfo->aReadMark[0]==0 );
}

/*
** Copy as much content as we can from the WAL back into the database file
52053
52054
52055
52056
52057
52058
52059


52060
52061
52062
52063
52064
52065
52066
    }

    if( pInfo->nBackfill<mxSafeFrame
     && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
    ){
      i64 nSize;                    /* Current size of database file */
      u32 nBackfill = pInfo->nBackfill;



      /* Sync the WAL to disk */
      if( sync_flags ){
        rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
      }

      /* If the database may grow as a result of this checkpoint, hint







>
>







52543
52544
52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
    }

    if( pInfo->nBackfill<mxSafeFrame
     && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
    ){
      i64 nSize;                    /* Current size of database file */
      u32 nBackfill = pInfo->nBackfill;

      pInfo->nBackfillAttempted = mxSafeFrame;

      /* Sync the WAL to disk */
      if( sync_flags ){
        rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
      }

      /* If the database may grow as a result of this checkpoint, hint
52346
52347
52348
52349
52350
52351
52352
52353
52354
52355
52356
52357
52358
52359
52360
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->readOnly & WAL_SHM_RDONLY ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.







|







52838
52839
52840
52841
52842
52843
52844
52845
52846
52847
52848
52849
52850
52851
52852
  assert( badHdr==0 || pWal->writeLock==0 );
  if( badHdr ){
    if( pWal->readOnly & WAL_SHM_RDONLY ){
      if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
        walUnlockShared(pWal, WAL_WRITE_LOCK);
        rc = SQLITE_READONLY_RECOVERY;
      }
    }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
      pWal->writeLock = 1;
      if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
        badHdr = walIndexTryHdr(pWal, pChanged);
        if( badHdr ){
          /* If the wal-index header is still malformed even while holding
          ** a WRITE lock, it can only mean that the header is corrupted and
          ** needs to be reconstructed.  So run recovery to do exactly that.
52437
52438
52439
52440
52441
52442
52443

52444
52445
52446
52447
52448
52449
52450
*/
static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
  volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
  u32 mxReadMark;                 /* Largest aReadMark[] value */
  int mxI;                        /* Index of largest aReadMark[] value */
  int i;                          /* Loop counter */
  int rc = SQLITE_OK;             /* Return code  */


  assert( pWal->readLock<0 );     /* Not currently locked */

  /* Take steps to avoid spinning forever if there is a protocol error.
  **
  ** Circumstances that cause a RETRY should only last for the briefest
  ** instances of time.  No I/O or other system calls are done while the







>







52929
52930
52931
52932
52933
52934
52935
52936
52937
52938
52939
52940
52941
52942
52943
*/
static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
  volatile WalCkptInfo *pInfo;    /* Checkpoint information in wal-index */
  u32 mxReadMark;                 /* Largest aReadMark[] value */
  int mxI;                        /* Index of largest aReadMark[] value */
  int i;                          /* Loop counter */
  int rc = SQLITE_OK;             /* Return code  */
  u32 mxFrame;                    /* Wal frame to lock to */

  assert( pWal->readLock<0 );     /* Not currently locked */

  /* Take steps to avoid spinning forever if there is a protocol error.
  **
  ** Circumstances that cause a RETRY should only last for the briefest
  ** instances of time.  No I/O or other system calls are done while the
52500
52501
52502
52503
52504
52505
52506
52507





52508
52509
52510
52511
52512
52513
52514
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }

  pInfo = walCkptInfo(pWal);
  if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){





    /* The WAL has been completely backfilled (or it is empty).
    ** and can be safely ignored.
    */
    rc = walLockShared(pWal, WAL_READ_LOCK(0));
    walShmBarrier(pWal);
    if( rc==SQLITE_OK ){
      if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){







|
>
>
>
>
>







52993
52994
52995
52996
52997
52998
52999
53000
53001
53002
53003
53004
53005
53006
53007
53008
53009
53010
53011
53012
    }
    if( rc!=SQLITE_OK ){
      return rc;
    }
  }

  pInfo = walCkptInfo(pWal);
  if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame 
#ifdef SQLITE_ENABLE_SNAPSHOT
   && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
     || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
#endif
  ){
    /* The WAL has been completely backfilled (or it is empty).
    ** and can be safely ignored.
    */
    rc = walLockShared(pWal, WAL_READ_LOCK(0));
    walShmBarrier(pWal);
    if( rc==SQLITE_OK ){
      if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
52538
52539
52540
52541
52542
52543
52544






52545
52546
52547
52548
52549
52550
52551
52552
52553
52554
52555
52556
52557
52558
52559
52560
52561
52562
52563
52564
52565
52566
52567
52568
52569
52570
52571
52572
52573
52574
52575
52576
52577
52578
52579
52580
52581
52582
52583
52584
52585
52586
52587
52588
52589
52590
52591
52592
52593
52594
52595
52596
52597
52598
52599
52600
52601
52602
52603
52604
52605
52606
52607
52608
52609
52610
52611
52612
52613
52614
52615
52616
52617
52618
52619
52620
52621
52622
52623
52624
52625
52626
52627
52628
52629
52630
  /* If we get this far, it means that the reader will want to use
  ** the WAL to get at content from recent commits.  The job now is
  ** to select one of the aReadMark[] entries that is closest to
  ** but not exceeding pWal->hdr.mxFrame and lock that entry.
  */
  mxReadMark = 0;
  mxI = 0;






  for(i=1; i<WAL_NREADER; i++){
    u32 thisMark = pInfo->aReadMark[i];
    if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }
  /* There was once an "if" here. The extra "{" is to preserve indentation. */
  {
    if( (pWal->readOnly & WAL_SHM_RDONLY)==0
     && (mxReadMark<pWal->hdr.mxFrame || mxI==0)
    ){
      for(i=1; i<WAL_NREADER; i++){
        rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1, 0);
        if( rc==SQLITE_OK ){
          mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame;
          mxI = i;
          walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
          break;
        }else if( rc!=SQLITE_BUSY ){
          return rc;
        }
      }
    }
    if( mxI==0 ){
      assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
      return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
    }

    rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
    if( rc ){
      return rc==SQLITE_BUSY ? WAL_RETRY : rc;
    }
    /* Now that the read-lock has been obtained, check that neither the
    ** value in the aReadMark[] array or the contents of the wal-index
    ** header have changed.
    **
    ** It is necessary to check that the wal-index header did not change
    ** between the time it was read and when the shared-lock was obtained
    ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
    ** that the log file may have been wrapped by a writer, or that frames
    ** that occur later in the log than pWal->hdr.mxFrame may have been
    ** copied into the database by a checkpointer. If either of these things
    ** happened, then reading the database with the current value of
    ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
    ** instead.
    **
    ** Before checking that the live wal-index header has not changed
    ** since it was read, set Wal.minFrame to the first frame in the wal
    ** file that has not yet been checkpointed. This client will not need
    ** to read any frames earlier than minFrame from the wal file - they
    ** can be safely read directly from the database file.
    **
    ** Because a ShmBarrier() call is made between taking the copy of 
    ** nBackfill and checking that the wal-header in shared-memory still
    ** matches the one cached in pWal->hdr, it is guaranteed that the 
    ** checkpointer that set nBackfill was not working with a wal-index
    ** header newer than that cached in pWal->hdr. If it were, that could
    ** cause a problem. The checkpointer could omit to checkpoint
    ** a version of page X that lies before pWal->minFrame (call that version
    ** A) on the basis that there is a newer version (version B) of the same
    ** page later in the wal file. But if version B happens to like past
    ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
    ** that it can read version A from the database file. However, since
    ** we can guarantee that the checkpointer that set nBackfill could not
    ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
    */
    pWal->minFrame = pInfo->nBackfill+1;
    walShmBarrier(pWal);
    if( pInfo->aReadMark[mxI]!=mxReadMark
     || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
    ){
      walUnlockShared(pWal, WAL_READ_LOCK(mxI));
      return WAL_RETRY;
    }else{
      assert( mxReadMark<=pWal->hdr.mxFrame );
      pWal->readLock = (i16)mxI;
    }
  }
  return rc;
}

/*
** Begin a read transaction on the database.
**







>
>
>
>
>
>


|





<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
<







53036
53037
53038
53039
53040
53041
53042
53043
53044
53045
53046
53047
53048
53049
53050
53051
53052
53053
53054
53055
53056


53057
53058
53059
53060
53061
53062
53063
53064
53065
53066
53067
53068
53069
53070
53071
53072
53073
53074
53075
53076
53077
53078
53079
53080
53081
53082
53083
53084
53085
53086
53087
53088
53089
53090
53091
53092
53093
53094
53095
53096
53097
53098
53099
53100
53101
53102
53103
53104
53105
53106
53107
53108
53109
53110
53111
53112
53113
53114
53115
53116
53117
53118
53119
53120
53121
53122
53123
53124

53125
53126
53127
53128
53129
53130
53131
  /* If we get this far, it means that the reader will want to use
  ** the WAL to get at content from recent commits.  The job now is
  ** to select one of the aReadMark[] entries that is closest to
  ** but not exceeding pWal->hdr.mxFrame and lock that entry.
  */
  mxReadMark = 0;
  mxI = 0;
  mxFrame = pWal->hdr.mxFrame;
#ifdef SQLITE_ENABLE_SNAPSHOT
  if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
    mxFrame = pWal->pSnapshot->mxFrame;
  }
#endif
  for(i=1; i<WAL_NREADER; i++){
    u32 thisMark = pInfo->aReadMark[i];
    if( mxReadMark<=thisMark && thisMark<=mxFrame ){
      assert( thisMark!=READMARK_NOT_USED );
      mxReadMark = thisMark;
      mxI = i;
    }
  }


  if( (pWal->readOnly & WAL_SHM_RDONLY)==0
   && (mxReadMark<mxFrame || mxI==0)
  ){
    for(i=1; i<WAL_NREADER; i++){
      rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
      if( rc==SQLITE_OK ){
        mxReadMark = pInfo->aReadMark[i] = mxFrame;
        mxI = i;
        walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
        break;
      }else if( rc!=SQLITE_BUSY ){
        return rc;
      }
    }
  }
  if( mxI==0 ){
    assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
    return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
  }

  rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
  if( rc ){
    return rc==SQLITE_BUSY ? WAL_RETRY : rc;
  }
  /* Now that the read-lock has been obtained, check that neither the
  ** value in the aReadMark[] array or the contents of the wal-index
  ** header have changed.
  **
  ** It is necessary to check that the wal-index header did not change
  ** between the time it was read and when the shared-lock was obtained
  ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
  ** that the log file may have been wrapped by a writer, or that frames
  ** that occur later in the log than pWal->hdr.mxFrame may have been
  ** copied into the database by a checkpointer. If either of these things
  ** happened, then reading the database with the current value of
  ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
  ** instead.
  **
  ** Before checking that the live wal-index header has not changed
  ** since it was read, set Wal.minFrame to the first frame in the wal
  ** file that has not yet been checkpointed. This client will not need
  ** to read any frames earlier than minFrame from the wal file - they
  ** can be safely read directly from the database file.
  **
  ** Because a ShmBarrier() call is made between taking the copy of 
  ** nBackfill and checking that the wal-header in shared-memory still
  ** matches the one cached in pWal->hdr, it is guaranteed that the 
  ** checkpointer that set nBackfill was not working with a wal-index
  ** header newer than that cached in pWal->hdr. If it were, that could
  ** cause a problem. The checkpointer could omit to checkpoint
  ** a version of page X that lies before pWal->minFrame (call that version
  ** A) on the basis that there is a newer version (version B) of the same
  ** page later in the wal file. But if version B happens to like past
  ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
  ** that it can read version A from the database file. However, since
  ** we can guarantee that the checkpointer that set nBackfill could not
  ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
  */
  pWal->minFrame = pInfo->nBackfill+1;
  walShmBarrier(pWal);
  if( pInfo->aReadMark[mxI]!=mxReadMark
   || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
  ){
    walUnlockShared(pWal, WAL_READ_LOCK(mxI));
    return WAL_RETRY;
  }else{
    assert( mxReadMark<=pWal->hdr.mxFrame );
    pWal->readLock = (i16)mxI;

  }
  return rc;
}

/*
** Begin a read transaction on the database.
**
52639
52640
52641
52642
52643
52644
52645








52646
52647
52648
52649
52650
52651
52652




























































52653
52654
52655
52656
52657
52658
52659
** Pager layer will use this to know that is cache is stale and
** needs to be flushed.
*/
SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int cnt = 0;                    /* Number of TryBeginRead attempts */









  do{
    rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
  }while( rc==WAL_RETRY );
  testcase( (rc&0xff)==SQLITE_BUSY );
  testcase( (rc&0xff)==SQLITE_IOERR );
  testcase( rc==SQLITE_PROTOCOL );
  testcase( rc==SQLITE_OK );




























































  return rc;
}

/*
** Finish with a read transaction.  All this does is release the
** read-lock.
*/







>
>
>
>
>
>
>
>







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







53140
53141
53142
53143
53144
53145
53146
53147
53148
53149
53150
53151
53152
53153
53154
53155
53156
53157
53158
53159
53160
53161
53162
53163
53164
53165
53166
53167
53168
53169
53170
53171
53172
53173
53174
53175
53176
53177
53178
53179
53180
53181
53182
53183
53184
53185
53186
53187
53188
53189
53190
53191
53192
53193
53194
53195
53196
53197
53198
53199
53200
53201
53202
53203
53204
53205
53206
53207
53208
53209
53210
53211
53212
53213
53214
53215
53216
53217
53218
53219
53220
53221
53222
53223
53224
53225
53226
53227
53228
** Pager layer will use this to know that is cache is stale and
** needs to be flushed.
*/
SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
  int rc;                         /* Return code */
  int cnt = 0;                    /* Number of TryBeginRead attempts */

#ifdef SQLITE_ENABLE_SNAPSHOT
  int bChanged = 0;
  WalIndexHdr *pSnapshot = pWal->pSnapshot;
  if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
    bChanged = 1;
  }
#endif

  do{
    rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
  }while( rc==WAL_RETRY );
  testcase( (rc&0xff)==SQLITE_BUSY );
  testcase( (rc&0xff)==SQLITE_IOERR );
  testcase( rc==SQLITE_PROTOCOL );
  testcase( rc==SQLITE_OK );

#ifdef SQLITE_ENABLE_SNAPSHOT
  if( rc==SQLITE_OK ){
    if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
      /* At this point the client has a lock on an aReadMark[] slot holding
      ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
      ** is populated with the wal-index header corresponding to the head
      ** of the wal file. Verify that pSnapshot is still valid before
      ** continuing.  Reasons why pSnapshot might no longer be valid:
      **
      **    (1)  The WAL file has been reset since the snapshot was taken.
      **         In this case, the salt will have changed.
      **
      **    (2)  A checkpoint as been attempted that wrote frames past
      **         pSnapshot->mxFrame into the database file.  Note that the
      **         checkpoint need not have completed for this to cause problems.
      */
      volatile WalCkptInfo *pInfo = walCkptInfo(pWal);

      assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
      assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );

      /* It is possible that there is a checkpointer thread running 
      ** concurrent with this code. If this is the case, it may be that the
      ** checkpointer has already determined that it will checkpoint 
      ** snapshot X, where X is later in the wal file than pSnapshot, but 
      ** has not yet set the pInfo->nBackfillAttempted variable to indicate 
      ** its intent. To avoid the race condition this leads to, ensure that
      ** there is no checkpointer process by taking a shared CKPT lock 
      ** before checking pInfo->nBackfillAttempted.  */
      rc = walLockShared(pWal, WAL_CKPT_LOCK);

      if( rc==SQLITE_OK ){
        /* Check that the wal file has not been wrapped. Assuming that it has
        ** not, also check that no checkpointer has attempted to checkpoint any
        ** frames beyond pSnapshot->mxFrame. If either of these conditions are
        ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
        ** with *pSnapshot and set *pChanged as appropriate for opening the
        ** snapshot.  */
        if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
         && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
        ){
          assert( pWal->readLock>0 );
          memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
          *pChanged = bChanged;
        }else{
          rc = SQLITE_BUSY_SNAPSHOT;
        }

        /* Release the shared CKPT lock obtained above. */
        walUnlockShared(pWal, WAL_CKPT_LOCK);
      }


      if( rc!=SQLITE_OK ){
        sqlite3WalEndReadTransaction(pWal);
      }
    }
  }
#endif
  return rc;
}

/*
** Finish with a read transaction.  All this does is release the
** read-lock.
*/
52826
52827
52828
52829
52830
52831
52832
52833
52834
52835
52836
52837
52838
52839
52840
  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
  */
  rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1, 0);
  if( rc ){
    return rc;
  }
  pWal->writeLock = 1;

  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then







|







53395
53396
53397
53398
53399
53400
53401
53402
53403
53404
53405
53406
53407
53408
53409
  if( pWal->readOnly ){
    return SQLITE_READONLY;
  }

  /* Only one writer allowed at a time.  Get the write lock.  Return
  ** SQLITE_BUSY if unable.
  */
  rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
  if( rc ){
    return rc;
  }
  pWal->writeLock = 1;

  /* If another connection has written to the database file since the
  ** time the read transaction on this connection was started, then
52971
52972
52973
52974
52975
52976
52977
52978
52979
52980
52981
52982
52983
52984
52985

  if( pWal->readLock==0 ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    assert( pInfo->nBackfill==pWal->hdr.mxFrame );
    if( pInfo->nBackfill>0 ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1, 0);
      if( rc==SQLITE_OK ){
        /* If all readers are using WAL_READ_LOCK(0) (in other words if no
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only







|







53540
53541
53542
53543
53544
53545
53546
53547
53548
53549
53550
53551
53552
53553
53554

  if( pWal->readLock==0 ){
    volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
    assert( pInfo->nBackfill==pWal->hdr.mxFrame );
    if( pInfo->nBackfill>0 ){
      u32 salt1;
      sqlite3_randomness(4, &salt1);
      rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
      if( rc==SQLITE_OK ){
        /* If all readers are using WAL_READ_LOCK(0) (in other words if no
        ** readers are currently using the WAL), then the transactions
        ** frames will overwrite the start of the existing log. Update the
        ** wal-index header to reflect this.
        **
        ** In theory it would be Ok to update the cache of the header only
53296
53297
53298
53299
53300
53301
53302
53303
53304
53305
53306
53307
53308
53309
53310
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 
  ** "checkpoint" lock on the database file. */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1, 0);
  if( rc ){
    /* EVIDENCE-OF: R-10421-19736 If any other process is running a
    ** checkpoint operation at the same time, the lock cannot be obtained and
    ** SQLITE_BUSY is returned.
    ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
    ** it will not be invoked in this case.
    */







|







53865
53866
53867
53868
53869
53870
53871
53872
53873
53874
53875
53876
53877
53878
53879
  assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );

  if( pWal->readOnly ) return SQLITE_READONLY;
  WALTRACE(("WAL%p: checkpoint begins\n", pWal));

  /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive 
  ** "checkpoint" lock on the database file. */
  rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
  if( rc ){
    /* EVIDENCE-OF: R-10421-19736 If any other process is running a
    ** checkpoint operation at the same time, the lock cannot be obtained and
    ** SQLITE_BUSY is returned.
    ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
    ** it will not be invoked in this case.
    */
53455
53456
53457
53458
53459
53460
53461





























53462
53463
53464
53465
53466
53467
53468
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false. 
*/
SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
  return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
}






























#ifdef SQLITE_ENABLE_ZIPVFS
/*
** If the argument is not NULL, it points to a Wal object that holds a
** read-lock. This function returns the database page-size if it is known,
** or zero if it is not (or if pWal is NULL).
*/
SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







54024
54025
54026
54027
54028
54029
54030
54031
54032
54033
54034
54035
54036
54037
54038
54039
54040
54041
54042
54043
54044
54045
54046
54047
54048
54049
54050
54051
54052
54053
54054
54055
54056
54057
54058
54059
54060
54061
54062
54063
54064
54065
54066
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false. 
*/
SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
  return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/* Create a snapshot object.  The content of a snapshot is opaque to
** every other subsystem, so the WAL module can put whatever it needs
** in the object.
*/
SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
  int rc = SQLITE_OK;
  WalIndexHdr *pRet;

  assert( pWal->readLock>=0 && pWal->writeLock==0 );

  pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
  if( pRet==0 ){
    rc = SQLITE_NOMEM;
  }else{
    memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
    *ppSnapshot = (sqlite3_snapshot*)pRet;
  }

  return rc;
}

/* Try to open on pSnapshot when the next read-transaction starts
*/
SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
  pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
}
#endif /* SQLITE_ENABLE_SNAPSHOT */

#ifdef SQLITE_ENABLE_ZIPVFS
/*
** If the argument is not NULL, it points to a Wal object that holds a
** read-lock. This function returns the database page-size if it is known,
** or zero if it is not (or if pWal is NULL).
*/
SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){
53962
53963
53964
53965
53966
53967
53968
53969
53970
53971
53972
53973
53974
53975
53976
** based on information extract from the raw disk page.
*/
struct CellInfo {
  i64 nKey;      /* The key for INTKEY tables, or nPayload otherwise */
  u8 *pPayload;  /* Pointer to the start of payload */
  u32 nPayload;  /* Bytes of payload */
  u16 nLocal;    /* Amount of payload held locally, not on overflow */
  u16 iOverflow; /* Offset to overflow page number.  Zero if no overflow */
  u16 nSize;     /* Size of the cell content on the main b-tree page */
};

/*
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
** this will be declared corrupt. This value is calculated based on a
** maximum database size of 2^31 pages a minimum fanout of 2 for a







<







54560
54561
54562
54563
54564
54565
54566

54567
54568
54569
54570
54571
54572
54573
** based on information extract from the raw disk page.
*/
struct CellInfo {
  i64 nKey;      /* The key for INTKEY tables, or nPayload otherwise */
  u8 *pPayload;  /* Pointer to the start of payload */
  u32 nPayload;  /* Bytes of payload */
  u16 nLocal;    /* Amount of payload held locally, not on overflow */

  u16 nSize;     /* Size of the cell content on the main b-tree page */
};

/*
** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
** this will be declared corrupt. This value is calculated based on a
** maximum database size of 2^31 pages a minimum fanout of 2 for a
54009
54010
54011
54012
54013
54014
54015
54016
54017
54018
54019
54020
54021
54022
54023
  i64 nKey;                 /* Size of pKey, or last integer key */
  void *pKey;               /* Saved key that was cursor last known position */
  Pgno pgnoRoot;            /* The root page of this tree */
  int nOvflAlloc;           /* Allocated size of aOverflow[] array */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive.
                   ** Error code if eState==CURSOR_FAULT */
  u8 curFlags;              /* zero or more BTCF_* flags defined below */
  u8 curPagerFlags;         /* Flags to send to sqlite3PagerAcquire() */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                 /* As configured by CursorSetHints() */
  /* All fields above are zeroed when the cursor is allocated.  See
  ** sqlite3BtreeCursorZero().  Fields that follow must be manually
  ** initialized. */
  i8 iPage;                 /* Index of current page in apPage */
  u8 curIntKey;             /* Value of apPage[0]->intKey */







|







54606
54607
54608
54609
54610
54611
54612
54613
54614
54615
54616
54617
54618
54619
54620
  i64 nKey;                 /* Size of pKey, or last integer key */
  void *pKey;               /* Saved key that was cursor last known position */
  Pgno pgnoRoot;            /* The root page of this tree */
  int nOvflAlloc;           /* Allocated size of aOverflow[] array */
  int skipNext;    /* Prev() is noop if negative. Next() is noop if positive.
                   ** Error code if eState==CURSOR_FAULT */
  u8 curFlags;              /* zero or more BTCF_* flags defined below */
  u8 curPagerFlags;         /* Flags to send to sqlite3PagerGet() */
  u8 eState;                /* One of the CURSOR_XXX constants (see below) */
  u8 hints;                 /* As configured by CursorSetHints() */
  /* All fields above are zeroed when the cursor is allocated.  See
  ** sqlite3BtreeCursorZero().  Fields that follow must be manually
  ** initialized. */
  i8 iPage;                 /* Index of current page in apPage */
  u8 curIntKey;             /* Value of apPage[0]->intKey */
55349
55350
55351
55352
55353
55354
55355




















55356
55357
55358
55359
55360
55361
55362
    *pDifferentRow = 1;
  }else{
    assert( pCur->skipNext==0 );
    *pDifferentRow = 0;
  }
  return SQLITE_OK;
}





















#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







55946
55947
55948
55949
55950
55951
55952
55953
55954
55955
55956
55957
55958
55959
55960
55961
55962
55963
55964
55965
55966
55967
55968
55969
55970
55971
55972
55973
55974
55975
55976
55977
55978
55979
    *pDifferentRow = 1;
  }else{
    assert( pCur->skipNext==0 );
    *pDifferentRow = 0;
  }
  return SQLITE_OK;
}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Provide hints to the cursor.  The particular hint given (and the type
** and number of the varargs parameters) is determined by the eHintType
** parameter.  See the definitions of the BTREE_HINT_* macros for details.
*/
SQLITE_PRIVATE void sqlite3BtreeCursorHint(BtCursor *pCur, int eHintType, ...){
  /* Used only by system that substitute their own storage engine */
}
#endif

/*
** Provide flag hints to the cursor.
*/
SQLITE_PRIVATE void sqlite3BtreeCursorHintFlags(BtCursor *pCur, unsigned x){
  assert( x==BTREE_SEEK_EQ || x==BTREE_BULKLOAD || x==0 );
  pCur->hints = x;
}


#ifndef SQLITE_OMIT_AUTOVACUUM
/*
** Given a page number of a regular database page, return the page
** number for the pointer-map page that contains the entry for the
** input page number.
**
55403
55404
55405
55406
55407
55408
55409
55410
55411
55412
55413
55414
55415
55416
55417

  assert( pBt->autoVacuum );
  if( key==0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
  if( rc!=SQLITE_OK ){
    *pRC = rc;
    return;
  }
  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    *pRC = SQLITE_CORRUPT_BKPT;







|







56020
56021
56022
56023
56024
56025
56026
56027
56028
56029
56030
56031
56032
56033
56034

  assert( pBt->autoVacuum );
  if( key==0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
    return;
  }
  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
  if( rc!=SQLITE_OK ){
    *pRC = rc;
    return;
  }
  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
    *pRC = SQLITE_CORRUPT_BKPT;
55446
55447
55448
55449
55450
55451
55452
55453
55454
55455
55456
55457
55458
55459
55460
  u8 *pPtrmap;       /* Pointer map page data */
  int offset;        /* Offset of entry in pointer map */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );

  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
  if( rc!=0 ){
    return rc;
  }
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){







|







56063
56064
56065
56066
56067
56068
56069
56070
56071
56072
56073
56074
56075
56076
56077
  u8 *pPtrmap;       /* Pointer map page data */
  int offset;        /* Offset of entry in pointer map */
  int rc;

  assert( sqlite3_mutex_held(pBt->mutex) );

  iPtrmap = PTRMAP_PAGENO(pBt, key);
  rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage, 0);
  if( rc!=0 ){
    return rc;
  }
  pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);

  offset = PTRMAP_PTROFFSET(iPtrmap, key);
  if( offset<0 ){
55523
55524
55525
55526
55527
55528
55529
55530
55531
55532
55533
55534
55535
55536
55537
55538
  testcase( surplus==maxLocal );
  testcase( surplus==maxLocal+1 );
  if( surplus <= maxLocal ){
    pInfo->nLocal = (u16)surplus;
  }else{
    pInfo->nLocal = (u16)minLocal;
  }
  pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
  pInfo->nSize = pInfo->iOverflow + 4;
}

/*
** The following routines are implementations of the MemPage.xParseCell()
** method.
**
** Parse a cell content block and fill in the CellInfo structure.







|
<







56140
56141
56142
56143
56144
56145
56146
56147

56148
56149
56150
56151
56152
56153
56154
  testcase( surplus==maxLocal );
  testcase( surplus==maxLocal+1 );
  if( surplus <= maxLocal ){
    pInfo->nLocal = (u16)surplus;
  }else{
    pInfo->nLocal = (u16)minLocal;
  }
  pInfo->nSize = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell) + 4;

}

/*
** The following routines are implementations of the MemPage.xParseCell()
** method.
**
** Parse a cell content block and fill in the CellInfo structure.
55556
55557
55558
55559
55560
55561
55562
55563
55564
55565
55566
55567
55568
55569
55570
  assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER(pPage);
#endif
  pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
  pInfo->nPayload = 0;
  pInfo->nLocal = 0;
  pInfo->iOverflow = 0;
  pInfo->pPayload = 0;
  return;
}
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */







<







56172
56173
56174
56175
56176
56177
56178

56179
56180
56181
56182
56183
56184
56185
  assert( pPage->childPtrSize==4 );
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER(pPage);
#endif
  pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
  pInfo->nPayload = 0;
  pInfo->nLocal = 0;

  pInfo->pPayload = 0;
  return;
}
static void btreeParseCellPtr(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
  CellInfo *pInfo         /* Fill in this structure */
55626
55627
55628
55629
55630
55631
55632
55633
55634
55635
55636
55637
55638
55639
55640
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
    pInfo->iOverflow = 0;
  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCellPtrIndex(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */







<







56241
56242
56243
56244
56245
56246
56247

56248
56249
56250
56251
56252
56253
56254
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;

  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCellPtrIndex(
  MemPage *pPage,         /* Page containing the cell */
  u8 *pCell,              /* Pointer to the cell text. */
55665
55666
55667
55668
55669
55670
55671
55672
55673
55674
55675
55676
55677
55678
55679
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;
    pInfo->iOverflow = 0;
  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */







<







56279
56280
56281
56282
56283
56284
56285

56286
56287
56288
56289
56290
56291
56292
  if( nPayload<=pPage->maxLocal ){
    /* This is the (easy) common case where the entire payload fits
    ** on the local page.  No overflow is required.
    */
    pInfo->nSize = nPayload + (u16)(pIter - pCell);
    if( pInfo->nSize<4 ) pInfo->nSize = 4;
    pInfo->nLocal = (u16)nPayload;

  }else{
    btreeParseCellAdjustSizeForOverflow(pPage, pCell, pInfo);
  }
}
static void btreeParseCell(
  MemPage *pPage,         /* Page containing the cell */
  int iCell,              /* The cell index.  First cell is 0 */
55781
55782
55783
55784
55785
55786
55787
55788
55789
55790
55791
55792
55793
55794
55795
55796
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  pPage->xParseCell(pPage, pCell, &info);
  if( info.iOverflow ){
    Pgno ovfl = get4byte(&pCell[info.iOverflow]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif


/*







|
|







56394
56395
56396
56397
56398
56399
56400
56401
56402
56403
56404
56405
56406
56407
56408
56409
** for the overflow page.
*/
static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
  CellInfo info;
  if( *pRC ) return;
  assert( pCell!=0 );
  pPage->xParseCell(pPage, pCell, &info);
  if( info.nLocal<info.nPayload ){
    Pgno ovfl = get4byte(&pCell[info.nSize-4]);
    ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
  }
}
#endif


/*
56373
56374
56375
56376
56377
56378
56379

56380
56381
56382
56383
56384


56385
56386
56387
56388
56389
56390
56391

/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);

  pPage->aData = sqlite3PagerGetData(pDbPage);
  pPage->pDbPage = pDbPage;
  pPage->pBt = pBt;
  pPage->pgno = pgno;
  pPage->hdrOffset = pgno==1 ? 100 : 0;


  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
**







>
|
|
|
|
|
>
>







56986
56987
56988
56989
56990
56991
56992
56993
56994
56995
56996
56997
56998
56999
57000
57001
57002
57003
57004
57005
57006
57007

/*
** Convert a DbPage obtained from the pager into a MemPage used by
** the btree layer.
*/
static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
  MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  if( pgno!=pPage->pgno ){
    pPage->aData = sqlite3PagerGetData(pDbPage);
    pPage->pDbPage = pDbPage;
    pPage->pBt = pBt;
    pPage->pgno = pgno;
    pPage->hdrOffset = pgno==1 ? 100 : 0;
  }
  assert( pPage->aData==sqlite3PagerGetData(pDbPage) );
  return pPage; 
}

/*
** Get a page from the pager.  Initialize the MemPage.pBt and
** MemPage.aData elements if needed.  See also: btreeGetUnusedPage().
**
56403
56404
56405
56406
56407
56408
56409
56410
56411
56412
56413
56414
56415
56416
56417
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
  int rc;
  DbPage *pDbPage;

  assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

/*
** Retrieve a page from the pager cache. If the requested page is not







|







57019
57020
57021
57022
57023
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
  int flags            /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
){
  int rc;
  DbPage *pDbPage;

  assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
  assert( sqlite3_mutex_held(pBt->mutex) );
  rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
  if( rc ) return rc;
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  return SQLITE_OK;
}

/*
** Retrieve a page from the pager cache. If the requested page is not
56468
56469
56470
56471
56472
56473
56474
56475
56476
56477
56478
56479
56480

56481
56482
56483
56484
56485
56486


56487
56488
56489
56490
56491
56492
56493
56494
56495
56496
56497
56498
56499
  assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
  assert( pCur==0 || pCur->iPage>0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
    goto getAndInitPage_error;
  }
  rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
  if( rc ){
    goto getAndInitPage_error;
  }
  *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
  if( (*ppPage)->isInit==0 ){

    rc = btreeInitPage(*ppPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      goto getAndInitPage_error;
    }
  }



  /* If obtaining a child page for a cursor, we must verify that the page is
  ** compatible with the root page. */
  if( pCur
   && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey)
  ){
    rc = SQLITE_CORRUPT_BKPT;
    releasePage(*ppPage);
    goto getAndInitPage_error;
  }
  return SQLITE_OK;

getAndInitPage_error:







|



|

>






>
>



<
|
<







57084
57085
57086
57087
57088
57089
57090
57091
57092
57093
57094
57095
57096
57097
57098
57099
57100
57101
57102
57103
57104
57105
57106
57107
57108

57109

57110
57111
57112
57113
57114
57115
57116
  assert( pCur==0 || bReadOnly==pCur->curPagerFlags );
  assert( pCur==0 || pCur->iPage>0 );

  if( pgno>btreePagecount(pBt) ){
    rc = SQLITE_CORRUPT_BKPT;
    goto getAndInitPage_error;
  }
  rc = sqlite3PagerGet(pBt->pPager, pgno, (DbPage**)&pDbPage, bReadOnly);
  if( rc ){
    goto getAndInitPage_error;
  }
  *ppPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
  if( (*ppPage)->isInit==0 ){
    btreePageFromDbPage(pDbPage, pgno, pBt);
    rc = btreeInitPage(*ppPage);
    if( rc!=SQLITE_OK ){
      releasePage(*ppPage);
      goto getAndInitPage_error;
    }
  }
  assert( (*ppPage)->pgno==pgno );
  assert( (*ppPage)->aData==sqlite3PagerGetData(pDbPage) );

  /* If obtaining a child page for a cursor, we must verify that the page is
  ** compatible with the root page. */

  if( pCur && ((*ppPage)->nCell<1 || (*ppPage)->intKey!=pCur->curIntKey) ){

    rc = SQLITE_CORRUPT_BKPT;
    releasePage(*ppPage);
    goto getAndInitPage_error;
  }
  return SQLITE_OK;

getAndInitPage_error:
57024
57025
57026
57027
57028
57029
57030
57031
57032
57033
57034
57035
57036
57037
57038
57039
57040
57041
57042
57043
57044
57045
57046
57047
57048
57049
57050
57051
57052




















57053
57054
57055
57056
57057
57058
57059
#endif

  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Change the limit on the number of pages allowed in the cache.
**
** The maximum number of cache pages is set to the absolute
** value of mxPage.  If mxPage is negative, the pager will
** operate asynchronously - it will not stop to do fsync()s
** to insure data is written to the disk surface before
** continuing.  Transactions still work if synchronous is off,
** and the database cannot be corrupted if this program
** crashes.  But if the operating system crashes or there is
** an abrupt power failure when synchronous is off, the database
** could be left in an inconsistent and unrecoverable state.
** Synchronous is on by default so database corruption is not
** normally a worry.
*/
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}





















#if SQLITE_MAX_MMAP_SIZE>0
/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){







|
|
|
|
<
<
<
<
|
<
<
<
<









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







57641
57642
57643
57644
57645
57646
57647
57648
57649
57650
57651




57652




57653
57654
57655
57656
57657
57658
57659
57660
57661
57662
57663
57664
57665
57666
57667
57668
57669
57670
57671
57672
57673
57674
57675
57676
57677
57678
57679
57680
57681
57682
57683
57684
57685
57686
57687
57688
#endif

  sqlite3_free(p);
  return SQLITE_OK;
}

/*
** Change the "soft" limit on the number of pages in the cache.
** Unused and unmodified pages will be recycled when the number of
** pages in the cache exceeds this soft limit.  But the size of the
** cache is allowed to grow larger than this limit if it contains




** dirty pages or pages still in active use.




*/
SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  sqlite3PagerSetCachesize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return SQLITE_OK;
}

/*
** Change the "spill" limit on the number of pages in the cache.
** If the number of pages exceeds this limit during a write transaction,
** the pager might attempt to "spill" pages to the journal early in
** order to free up memory.
**
** The value returned is the current spill size.  If zero is passed
** as an argument, no changes are made to the spill size setting, so
** using mxPage of 0 is a way to query the current spill size.
*/
SQLITE_PRIVATE int sqlite3BtreeSetSpillSize(Btree *p, int mxPage){
  BtShared *pBt = p->pBt;
  int res;
  assert( sqlite3_mutex_held(p->db->mutex) );
  sqlite3BtreeEnter(p);
  res = sqlite3PagerSetSpillsize(pBt->pPager, mxPage);
  sqlite3BtreeLeave(p);
  return res;
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** Change the limit on the amount of the database file that may be
** memory mapped.
*/
SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
57804
57805
57806
57807
57808
57809
57810
57811
57812
57813
57814
57815
57816
57817
57818
57819
57820
57821
57822
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.iOverflow
         && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
         && iFrom==get4byte(&pCell[info.iOverflow])
        ){
          put4byte(&pCell[info.iOverflow], iTo);
          break;
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }







|
|
|

|







58433
58434
58435
58436
58437
58438
58439
58440
58441
58442
58443
58444
58445
58446
58447
58448
58449
58450
58451
    nCell = pPage->nCell;

    for(i=0; i<nCell; i++){
      u8 *pCell = findCell(pPage, i);
      if( eType==PTRMAP_OVERFLOW1 ){
        CellInfo info;
        pPage->xParseCell(pPage, pCell, &info);
        if( info.nLocal<info.nPayload
         && pCell+info.nSize-1<=pPage->aData+pPage->maskPage
         && iFrom==get4byte(pCell+info.nSize-4)
        ){
          put4byte(pCell+info.nSize-4, iTo);
          break;
        }
      }else{
        if( get4byte(pCell)==iFrom ){
          put4byte(pCell, iTo);
          break;
        }
58547
58548
58549
58550
58551
58552
58553
58554



58555
58556
58557
58558
58559
58560
58561
58562
58563
58564
58565
58566
58567
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( wrFlag==0 || wrFlag==1 );




  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );
  assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );







|
>
>
>





|







59176
59177
59178
59179
59180
59181
59182
59183
59184
59185
59186
59187
59188
59189
59190
59191
59192
59193
59194
59195
59196
59197
59198
59199
  struct KeyInfo *pKeyInfo,              /* First arg to comparison function */
  BtCursor *pCur                         /* Space for new cursor */
){
  BtShared *pBt = p->pBt;                /* Shared b-tree handle */
  BtCursor *pX;                          /* Looping over other all cursors */

  assert( sqlite3BtreeHoldsMutex(p) );
  assert( wrFlag==0 
       || wrFlag==BTREE_WRCSR 
       || wrFlag==(BTREE_WRCSR|BTREE_FORDELETE) 
  );

  /* The following assert statements verify that if this is a sharable 
  ** b-tree database, the connection is holding the required table locks, 
  ** and that no other connection has any open cursor that conflicts with 
  ** this lock.  */
  assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, (wrFlag?2:1)) );
  assert( wrFlag==0 || !hasReadConflicts(p, iTable) );

  /* Assert that the caller has opened the required transaction. */
  assert( p->inTrans>TRANS_NONE );
  assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
  assert( pBt->pPage1 && pBt->pPage1->aData );
  assert( wrFlag==0 || (pBt->btsFlags & BTS_READ_ONLY)==0 );
58578
58579
58580
58581
58582
58583
58584
58585
58586
58587
58588
58589
58590
58591
58592
58593
  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;
  assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
  pCur->curFlags = wrFlag;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==(Pgno)iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;







<
|







59210
59211
59212
59213
59214
59215
59216

59217
59218
59219
59220
59221
59222
59223
59224
  /* Now that no other errors can occur, finish filling in the BtCursor
  ** variables and link the cursor into the BtShared list.  */
  pCur->pgnoRoot = (Pgno)iTable;
  pCur->iPage = -1;
  pCur->pKeyInfo = pKeyInfo;
  pCur->pBtree = p;
  pCur->pBt = pBt;

  pCur->curFlags = wrFlag ? BTCF_WriteFlag : 0;
  pCur->curPagerFlags = wrFlag ? 0 : PAGER_GET_READONLY;
  /* If there are two or more cursors on the same btree, then all such
  ** cursors *must* have the BTCF_Multiple flag set. */
  for(pX=pBt->pCursor; pX; pX=pX->pNext){
    if( pX->pgnoRoot==(Pgno)iTable ){
      pX->curFlags |= BTCF_Multiple;
      pCur->curFlags |= BTCF_Multiple;
58991
58992
58993
58994
58995
58996
58997

58998

58999
59000
59001
59002
59003
59004
59005
      offset = (offset%ovflSize);
    }

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

      /* If required, populate the overflow page-list cache. */
      if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){

        assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);

        pCur->aOverflow[iIdx] = nextPage;
      }

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow







>
|
>







59622
59623
59624
59625
59626
59627
59628
59629
59630
59631
59632
59633
59634
59635
59636
59637
59638
      offset = (offset%ovflSize);
    }

    for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){

      /* If required, populate the overflow page-list cache. */
      if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
        assert( pCur->aOverflow[iIdx]==0
                || pCur->aOverflow[iIdx]==nextPage
                || CORRUPT_DB );
        pCur->aOverflow[iIdx] = nextPage;
      }

      if( offset>=ovflSize ){
        /* The only reason to read this page is to obtain the page
        ** number for the next page in the overflow chain. The page
        ** data is not required. So first try to lookup the overflow
59061
59062
59063
59064
59065
59066
59067
59068
59069
59070
59071
59072
59073
59074
59075
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
              ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
            sqlite3PagerUnref(pDbPage);







|







59694
59695
59696
59697
59698
59699
59700
59701
59702
59703
59704
59705
59706
59707
59708
          nextPage = get4byte(aWrite);
          memcpy(aWrite, aSave, 4);
        }else
#endif

        {
          DbPage *pDbPage;
          rc = sqlite3PagerGet(pBt->pPager, nextPage, &pDbPage,
              ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
          );
          if( rc==SQLITE_OK ){
            aPayload = sqlite3PagerGetData(pDbPage);
            nextPage = get4byte(aPayload);
            rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
            sqlite3PagerUnref(pDbPage);
59505
59506
59507
59508
59509
59510
59511


59512
59513
59514
59515
59516
59517
59518
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches intKey/pIdxKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than intKey/pIdxKey.
**


*/
SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */







>
>







60138
60139
60140
60141
60142
60143
60144
60145
60146
60147
60148
60149
60150
60151
60152
60153
**
**     *pRes==0     The cursor is left pointing at an entry that
**                  exactly matches intKey/pIdxKey.
**
**     *pRes>0      The cursor is left pointing at an entry that
**                  is larger than intKey/pIdxKey.
**
** For index tables, the pIdxKey->eqSeen field is set to 1 if there
** exists an entry in the table that exactly matches pIdxKey.  
*/
SQLITE_PRIVATE int sqlite3BtreeMovetoUnpacked(
  BtCursor *pCur,          /* The cursor to be moved */
  UnpackedRecord *pIdxKey, /* Unpacked index key */
  i64 intKey,              /* The table key */
  int biasRight,           /* If true, bias the search to the high end */
  int *pRes                /* Write search results here */
60444
60445
60446
60447
60448
60449
60450
60451
60452
60453
60454
60455
60456
60457
60458
60459
60460
60461
60462
60463
60464
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, &info);
  *pnSize = info.nSize;
  if( info.iOverflow==0 ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(&pCell[info.iOverflow]);
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( nOvfl>0 || 
    (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
  );
  while( nOvfl-- ){







|


|


|







61079
61080
61081
61082
61083
61084
61085
61086
61087
61088
61089
61090
61091
61092
61093
61094
61095
61096
61097
61098
61099
  int rc;
  int nOvfl;
  u32 ovflPageSize;

  assert( sqlite3_mutex_held(pPage->pBt->mutex) );
  pPage->xParseCell(pPage, pCell, &info);
  *pnSize = info.nSize;
  if( info.nLocal==info.nPayload ){
    return SQLITE_OK;  /* No overflow pages. Return without doing anything */
  }
  if( pCell+info.nSize-1 > pPage->aData+pPage->maskPage ){
    return SQLITE_CORRUPT_BKPT;  /* Cell extends past end of page */
  }
  ovflPgno = get4byte(pCell + info.nSize - 4);
  assert( pBt->usableSize > 4 );
  ovflPageSize = pBt->usableSize - 4;
  nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
  assert( nOvfl>0 || 
    (CORRUPT_DB && (info.nPayload + ovflPageSize)<ovflPageSize)
  );
  while( nOvfl-- ){
60599
60600
60601
60602
60603
60604
60605
60606
60607
60608
60609
60610
60611
60612
60613
  {
    CellInfo info;
    pPage->xParseCell(pPage, pCell, &info);
    assert( nHeader=(int)(info.pPayload - pCell) );
    assert( info.nKey==nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );
    assert( pPrior == &pCell[info.iOverflow] );
  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */
  while( nPayload>0 ){
    if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM







<







61234
61235
61236
61237
61238
61239
61240

61241
61242
61243
61244
61245
61246
61247
  {
    CellInfo info;
    pPage->xParseCell(pPage, pCell, &info);
    assert( nHeader=(int)(info.pPayload - pCell) );
    assert( info.nKey==nKey );
    assert( *pnSize == info.nSize );
    assert( spaceLeft == info.nLocal );

  }
#endif

  /* Write the payload into the local Cell and any extra into overflow pages */
  while( nPayload>0 ){
    if( spaceLeft==0 ){
#ifndef SQLITE_OMIT_AUTOVACUUM
60920
60921
60922
60923
60924
60925
60926
60927
60928
60929
60930
60931
60932
60933
60934

  i = get2byte(&aData[hdr+5]);
  memcpy(&pTmp[i], &aData[i], usableSize - i);

  pData = pEnd;
  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( pCell>aData && pCell<pEnd ){
      pCell = &pTmp[pCell - aData];
    }
    pData -= szCell[i];
    put2byte(pCellptr, (pData - aData));
    pCellptr += 2;
    if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
    memcpy(pData, pCell, szCell[i]);







|







61554
61555
61556
61557
61558
61559
61560
61561
61562
61563
61564
61565
61566
61567
61568

  i = get2byte(&aData[hdr+5]);
  memcpy(&pTmp[i], &aData[i], usableSize - i);

  pData = pEnd;
  for(i=0; i<nCell; i++){
    u8 *pCell = apCell[i];
    if( SQLITE_WITHIN(pCell,aData,pEnd) ){
      pCell = &pTmp[pCell - aData];
    }
    pData -= szCell[i];
    put2byte(pCellptr, (pData - aData));
    pCellptr += 2;
    if( pData < pCellptr ) return SQLITE_CORRUPT_BKPT;
    memcpy(pData, pCell, szCell[i]);
61031
61032
61033
61034
61035
61036
61037
61038
61039
61040
61041
61042
61043
61044
61045
  int i;
  int iEnd = iFirst + nCell;
  u8 *pFree = 0;
  int szFree = 0;

  for(i=iFirst; i<iEnd; i++){
    u8 *pCell = pCArray->apCell[i];
    if( pCell>=pStart && pCell<pEnd ){
      int sz;
      /* No need to use cachedCellSize() here.  The sizes of all cells that
      ** are to be freed have already been computing while deciding which
      ** cells need freeing */
      sz = pCArray->szCell[i];  assert( sz>0 );
      if( pFree!=(pCell + sz) ){
        if( pFree ){







|







61665
61666
61667
61668
61669
61670
61671
61672
61673
61674
61675
61676
61677
61678
61679
  int i;
  int iEnd = iFirst + nCell;
  u8 *pFree = 0;
  int szFree = 0;

  for(i=iFirst; i<iEnd; i++){
    u8 *pCell = pCArray->apCell[i];
    if( SQLITE_WITHIN(pCell, pStart, pEnd) ){
      int sz;
      /* No need to use cachedCellSize() here.  The sizes of all cells that
      ** are to be freed have already been computing while deciding which
      ** cells need freeing */
      sz = pCArray->szCell[i];  assert( sz>0 );
      if( pFree!=(pCell + sz) ){
        if( pFree ){
61309
61310
61311
61312
61313
61314
61315
61316
61317
61318
61319
61320
61321
61322
61323
61324

    for(j=0; j<pPage->nCell; j++){
      CellInfo info;
      u8 *z;
     
      z = findCell(pPage, j);
      pPage->xParseCell(pPage, z, &info);
      if( info.iOverflow ){
        Pgno ovfl = get4byte(&z[info.iOverflow]);
        ptrmapGet(pBt, ovfl, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
      }
      if( !pPage->leaf ){
        Pgno child = get4byte(z);
        ptrmapGet(pBt, child, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_BTREE );







|
|







61943
61944
61945
61946
61947
61948
61949
61950
61951
61952
61953
61954
61955
61956
61957
61958

    for(j=0; j<pPage->nCell; j++){
      CellInfo info;
      u8 *z;
     
      z = findCell(pPage, j);
      pPage->xParseCell(pPage, z, &info);
      if( info.nLocal<info.nPayload ){
        Pgno ovfl = get4byte(&z[info.nSize-4]);
        ptrmapGet(pBt, ovfl, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
      }
      if( !pPage->leaf ){
        Pgno child = get4byte(z);
        ptrmapGet(pBt, child, &e, &n);
        assert( n==pPage->pgno && e==PTRMAP_BTREE );
61428
61429
61430
61431
61432
61433
61434
61435
61436
61437
61438
61439
61440
61441
61442
61443
61444
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/
#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
#pragma optimize("", off)
#endif
static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot,                     /* True if pParent is a root-page */
  int bBulk                       /* True if this call is part of a bulk load */
){







<
<
<







62062
62063
62064
62065
62066
62067
62068



62069
62070
62071
62072
62073
62074
62075
** size of a cell stored within an internal node is always less than 1/4
** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
** enough for all overflow cells.
**
** If aOvflSpace is set to a null pointer, this function returns 
** SQLITE_NOMEM.
*/



static int balance_nonroot(
  MemPage *pParent,               /* Parent page of siblings being balanced */
  int iParentIdx,                 /* Index of "the page" in pParent */
  u8 *aOvflSpace,                 /* page-size bytes of space for parent ovfl */
  int isRoot,                     /* True if pParent is a root-page */
  int bBulk                       /* True if this call is part of a bulk load */
){
61974
61975
61976
61977
61978
61979
61980
61981
61982
61983
61984
61985
61986
61987
61988
61989
      ** was either part of sibling page iOld (possibly an overflow cell), 
      ** or else the divider cell to the left of sibling page iOld. So,
      ** if sibling page iOld had the same page number as pNew, and if
      ** pCell really was a part of sibling page iOld (not a divider or
      ** overflow cell), we can skip updating the pointer map entries.  */
      if( iOld>=nNew
       || pNew->pgno!=aPgno[iOld]
       || pCell<aOld
       || pCell>=&aOld[usableSize]
      ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
        }
        if( cachedCellSize(&b,i)>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, pCell, &rc);
        }







<
|







62605
62606
62607
62608
62609
62610
62611

62612
62613
62614
62615
62616
62617
62618
62619
      ** was either part of sibling page iOld (possibly an overflow cell), 
      ** or else the divider cell to the left of sibling page iOld. So,
      ** if sibling page iOld had the same page number as pNew, and if
      ** pCell really was a part of sibling page iOld (not a divider or
      ** overflow cell), we can skip updating the pointer map entries.  */
      if( iOld>=nNew
       || pNew->pgno!=aPgno[iOld]

       || !SQLITE_WITHIN(pCell,aOld,&aOld[usableSize])
      ){
        if( !leafCorrection ){
          ptrmapPut(pBt, get4byte(pCell), PTRMAP_BTREE, pNew->pgno, &rc);
        }
        if( cachedCellSize(&b,i)>pNew->minLocal ){
          ptrmapPutOvflPtr(pNew, pCell, &rc);
        }
62176
62177
62178
62179
62180
62181
62182
62183
62184
62185
62186
62187
62188
62189
62190
62191
62192
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }

  return rc;
}
#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
#pragma optimize("", on)
#endif


/*
** This function is called when the root page of a b-tree structure is
** overfull (has one or more overflow pages).
**
** A new child page is allocated and the contents of the current root







<
<
<







62806
62807
62808
62809
62810
62811
62812



62813
62814
62815
62816
62817
62818
62819
  }
  for(i=0; i<nNew; i++){
    releasePage(apNew[i]);
  }

  return rc;
}





/*
** This function is called when the root page of a b-tree structure is
** overfull (has one or more overflow pages).
**
** A new child page is allocated and the contents of the current root
62683
62684
62685
62686
62687
62688
62689
62690
62691
62692
62693
62694
62695
62696
62697
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && pCur->iPage==iCellDepth );
      assert( pPage==pCur->apPage[pCur->iPage] );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{







|







63310
63311
63312
63313
63314
63315
63316
63317
63318
63319
63320
63321
63322
63323
63324
      releasePage(pCur->apPage[pCur->iPage--]);
    }
    rc = balance(pCur);
  }

  if( rc==SQLITE_OK ){
    if( bSkipnext ){
      assert( bPreserve && (pCur->iPage==iCellDepth || CORRUPT_DB) );
      assert( pPage==pCur->apPage[pCur->iPage] );
      assert( (pPage->nCell>0 || CORRUPT_DB) && iCellIdx<=pPage->nCell );
      pCur->eState = CURSOR_SKIPNEXT;
      if( iCellIdx>=pPage->nCell ){
        pCur->skipNext = -1;
        pCur->aiIdx[iCellDepth] = pPage->nCell-1;
      }else{
63377
63378
63379
63380
63381
63382
63383
63384
63385
63386
63387
63388
63389
63390
63391
    if( iPage<1 ){
      checkAppendMsg(pCheck,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
      checkAppendMsg(pCheck, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM







|







64004
64005
64006
64007
64008
64009
64010
64011
64012
64013
64014
64015
64016
64017
64018
    if( iPage<1 ){
      checkAppendMsg(pCheck,
         "%d of %d pages missing from overflow list starting at %d",
          N+1, expected, iFirst);
      break;
    }
    if( checkRef(pCheck, iPage) ) break;
    if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage, 0) ){
      checkAppendMsg(pCheck, "failed to get page %d", iPage);
      break;
    }
    pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
    if( isFreeList ){
      int n = get4byte(&pOvflData[4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
63623
63624
63625
63626
63627
63628
63629
63630
63631
63632
63633
63634
63635
63636
63637
63638
63639
      maxKey = info.nKey;
    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.iOverflow <= usableSize );
      nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
      pgnoOvfl = get4byte(&pCell[info.iOverflow]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage);
    }







|

|







64250
64251
64252
64253
64254
64255
64256
64257
64258
64259
64260
64261
64262
64263
64264
64265
64266
      maxKey = info.nKey;
    }

    /* Check the content overflow list */
    if( info.nPayload>info.nLocal ){
      int nPage;       /* Number of pages on the overflow chain */
      Pgno pgnoOvfl;   /* First page of the overflow chain */
      assert( pc + info.nSize - 4 <= usableSize );
      nPage = (info.nPayload - info.nLocal + usableSize - 5)/(usableSize - 4);
      pgnoOvfl = get4byte(&pCell[info.nSize - 4]);
#ifndef SQLITE_OMIT_AUTOVACUUM
      if( pBt->autoVacuum ){
        checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
      }
#endif
      checkList(pCheck, 0, pgnoOvfl, nPage);
    }
64115
64116
64117
64118
64119
64120
64121
64122
64123
64124
64125
64126
64127
64128
64129
64130
64131
64132
64133
64134
64135
64136
64137
64138
64139
64140
64141
64142
64143
64144
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*
** set the mask of hint flags for cursor pCsr.
*/
SQLITE_PRIVATE void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
  assert( mask==BTREE_BULKLOAD || mask==BTREE_SEEK_EQ || mask==0 );
  pCsr->hints = mask;
}

#ifdef SQLITE_DEBUG
/*
** Return true if the cursor has a hint specified.  This routine is
** only used from within assert() statements
*/
SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
  return (pCsr->hints & mask)!=0;
}
#endif

/*
** Return true if the given Btree is read-only.
*/
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}







<
<
<
<
<
<
<
<
<






<







64742
64743
64744
64745
64746
64747
64748









64749
64750
64751
64752
64753
64754

64755
64756
64757
64758
64759
64760
64761
  }

  pBt->btsFlags &= ~BTS_NO_WAL;
  return rc;
}

/*









** Return true if the cursor has a hint specified.  This routine is
** only used from within assert() statements
*/
SQLITE_PRIVATE int sqlite3BtreeCursorHasHint(BtCursor *pCsr, unsigned int mask){
  return (pCsr->hints & mask)!=0;
}


/*
** Return true if the given Btree is read-only.
*/
SQLITE_PRIVATE int sqlite3BtreeIsReadonly(Btree *p){
  return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;
}
64441
64442
64443
64444
64445
64446
64447
64448
64449
64450
64451
64452
64453
64454
64455
  ** page. For each iteration, variable iOff is set to the byte offset
  ** of the destination page.
  */
  for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
    DbPage *pDestPg = 0;
    Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
    if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
    if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg))
     && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
    ){
      const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
      u8 *zDestData = sqlite3PagerGetData(pDestPg);
      u8 *zOut = &zDestData[iOff%nDestPgsz];

      /* Copy the data from the source page into the destination page.







|







65058
65059
65060
65061
65062
65063
65064
65065
65066
65067
65068
65069
65070
65071
65072
  ** page. For each iteration, variable iOff is set to the byte offset
  ** of the destination page.
  */
  for(iOff=iEnd-(i64)nSrcPgsz; rc==SQLITE_OK && iOff<iEnd; iOff+=nDestPgsz){
    DbPage *pDestPg = 0;
    Pgno iDest = (Pgno)(iOff/nDestPgsz)+1;
    if( iDest==PENDING_BYTE_PAGE(p->pDest->pBt) ) continue;
    if( SQLITE_OK==(rc = sqlite3PagerGet(pDestPager, iDest, &pDestPg, 0))
     && SQLITE_OK==(rc = sqlite3PagerWrite(pDestPg))
    ){
      const u8 *zIn = &zSrcData[iOff%nSrcPgsz];
      u8 *zDestData = sqlite3PagerGetData(pDestPg);
      u8 *zOut = &zDestData[iOff%nDestPgsz];

      /* Copy the data from the source page into the destination page.
64567
64568
64569
64570
64571
64572
64573
64574
64575
64576
64577
64578
64579
64580
64581
64582
    */
    nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerAcquire(pSrcPager, iSrcPg, &pSrcPg,
                                 PAGER_GET_READONLY);
        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }







|
<







65184
65185
65186
65187
65188
65189
65190
65191

65192
65193
65194
65195
65196
65197
65198
    */
    nSrcPage = (int)sqlite3BtreeLastPage(p->pSrc);
    assert( nSrcPage>=0 );
    for(ii=0; (nPage<0 || ii<nPage) && p->iNext<=(Pgno)nSrcPage && !rc; ii++){
      const Pgno iSrcPg = p->iNext;                 /* Source page number */
      if( iSrcPg!=PENDING_BYTE_PAGE(p->pSrc->pBt) ){
        DbPage *pSrcPg;                             /* Source page object */
        rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg,PAGER_GET_READONLY);

        if( rc==SQLITE_OK ){
          rc = backupOnePage(p, iSrcPg, sqlite3PagerGetData(pSrcPg), 0);
          sqlite3PagerUnref(pSrcPg);
        }
      }
      p->iNext++;
    }
64668
64669
64670
64671
64672
64673
64674
64675
64676
64677
64678
64679
64680
64681
64682
64683
64684
64685
64686
64687
64688
64689
64690
64691
64692
64693
64694
64695
64696
64697
64698
64699
64700
64701
64702
          ** the database file in any way, knowing that if a power failure
          ** occurs, the original database will be reconstructed from the 
          ** journal file.  */
          sqlite3PagerPagecount(pDestPager, &nDstPage);
          for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){
            if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){
              DbPage *pPg;
              rc = sqlite3PagerGet(pDestPager, iPg, &pPg);
              if( rc==SQLITE_OK ){
                rc = sqlite3PagerWrite(pPg);
                sqlite3PagerUnref(pPg);
              }
            }
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
          }

          /* Write the extra pages and truncate the database file as required */
          iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
          for(
            iOff=PENDING_BYTE+pgszSrc; 
            rc==SQLITE_OK && iOff<iEnd; 
            iOff+=pgszSrc
          ){
            PgHdr *pSrcPg = 0;
            const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
            rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg);
            if( rc==SQLITE_OK ){
              u8 *zData = sqlite3PagerGetData(pSrcPg);
              rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff);
            }
            sqlite3PagerUnref(pSrcPg);
          }
          if( rc==SQLITE_OK ){







|



















|







65284
65285
65286
65287
65288
65289
65290
65291
65292
65293
65294
65295
65296
65297
65298
65299
65300
65301
65302
65303
65304
65305
65306
65307
65308
65309
65310
65311
65312
65313
65314
65315
65316
65317
65318
          ** the database file in any way, knowing that if a power failure
          ** occurs, the original database will be reconstructed from the 
          ** journal file.  */
          sqlite3PagerPagecount(pDestPager, &nDstPage);
          for(iPg=nDestTruncate; rc==SQLITE_OK && iPg<=(Pgno)nDstPage; iPg++){
            if( iPg!=PENDING_BYTE_PAGE(p->pDest->pBt) ){
              DbPage *pPg;
              rc = sqlite3PagerGet(pDestPager, iPg, &pPg, 0);
              if( rc==SQLITE_OK ){
                rc = sqlite3PagerWrite(pPg);
                sqlite3PagerUnref(pPg);
              }
            }
          }
          if( rc==SQLITE_OK ){
            rc = sqlite3PagerCommitPhaseOne(pDestPager, 0, 1);
          }

          /* Write the extra pages and truncate the database file as required */
          iEnd = MIN(PENDING_BYTE + pgszDest, iSize);
          for(
            iOff=PENDING_BYTE+pgszSrc; 
            rc==SQLITE_OK && iOff<iEnd; 
            iOff+=pgszSrc
          ){
            PgHdr *pSrcPg = 0;
            const Pgno iSrcPg = (Pgno)((iOff/pgszSrc)+1);
            rc = sqlite3PagerGet(pSrcPager, iSrcPg, &pSrcPg, 0);
            if( rc==SQLITE_OK ){
              u8 *zData = sqlite3PagerGetData(pSrcPg);
              rc = sqlite3OsWrite(pFile, zData, pgszSrc, iOff);
            }
            sqlite3PagerUnref(pSrcPg);
          }
          if( rc==SQLITE_OK ){
66376
66377
66378
66379
66380
66381
66382
66383
66384
66385
66386
66387
66388
66389
66390
66391
66392
66393
66394
66395
66396
66397
66398
66399
66400
*/
static void recordFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const int file_format = 1;
  int iSerial;                    /* Serial type */
  int nSerial;                    /* Bytes of space for iSerial as varint */
  int nVal;                       /* Bytes of space required for argv[0] */
  int nRet;
  sqlite3 *db;
  u8 *aRet;

  UNUSED_PARAMETER( argc );
  iSerial = sqlite3VdbeSerialType(argv[0], file_format);
  nSerial = sqlite3VarintLen(iSerial);
  nVal = sqlite3VdbeSerialTypeLen(iSerial);
  db = sqlite3_context_db_handle(context);

  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{







|

|





|

<







66992
66993
66994
66995
66996
66997
66998
66999
67000
67001
67002
67003
67004
67005
67006
67007
67008

67009
67010
67011
67012
67013
67014
67015
*/
static void recordFunc(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  const int file_format = 1;
  u32 iSerial;                    /* Serial type */
  int nSerial;                    /* Bytes of space for iSerial as varint */
  u32 nVal;                       /* Bytes of space required for argv[0] */
  int nRet;
  sqlite3 *db;
  u8 *aRet;

  UNUSED_PARAMETER( argc );
  iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal);
  nSerial = sqlite3VarintLen(iSerial);

  db = sqlite3_context_db_handle(context);

  nRet = 1 + nSerial + nVal;
  aRet = sqlite3DbMallocRaw(db, nRet);
  if( aRet==0 ){
    sqlite3_result_error_nomem(context);
  }else{
66706
66707
66708
66709
66710
66711
66712

66713
66714
66715
66716
66717
66718
66719
  p->pPrev = 0;
  db->pVdbe = p;
  p->magic = VDBE_MAGIC_INIT;
  p->pParse = pParse;
  assert( pParse->aLabel==0 );
  assert( pParse->nLabel==0 );
  assert( pParse->nOpAlloc==0 );

  return p;
}

/*
** Change the error string stored in Vdbe.zErrMsg
*/
SQLITE_PRIVATE void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){







>







67321
67322
67323
67324
67325
67326
67327
67328
67329
67330
67331
67332
67333
67334
67335
  p->pPrev = 0;
  db->pVdbe = p;
  p->magic = VDBE_MAGIC_INIT;
  p->pParse = pParse;
  assert( pParse->aLabel==0 );
  assert( pParse->nLabel==0 );
  assert( pParse->nOpAlloc==0 );
  assert( pParse->szOpAlloc==0 );
  return p;
}

/*
** Change the error string stored in Vdbe.zErrMsg
*/
SQLITE_PRIVATE void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
66795
66796
66797
66798
66799
66800
66801
66802

66803
66804
66805
66806
66807
66808
66809
  UNUSED_PARAMETER(nOp);
#endif

  assert( nOp<=(1024/sizeof(Op)) );
  assert( nNew>=(p->nOpAlloc+nOp) );
  pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
  if( pNew ){
    p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);

    v->aOp = pNew;
  }
  return (pNew ? SQLITE_OK : SQLITE_NOMEM);
}

#ifdef SQLITE_DEBUG
/* This routine is just a convenient place to set a breakpoint that will







|
>







67411
67412
67413
67414
67415
67416
67417
67418
67419
67420
67421
67422
67423
67424
67425
67426
  UNUSED_PARAMETER(nOp);
#endif

  assert( nOp<=(1024/sizeof(Op)) );
  assert( nNew>=(p->nOpAlloc+nOp) );
  pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
  if( pNew ){
    p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
    p->nOpAlloc = p->szOpAlloc/sizeof(Op);
    v->aOp = pNew;
  }
  return (pNew ? SQLITE_OK : SQLITE_NOMEM);
}

#ifdef SQLITE_DEBUG
/* This routine is just a convenient place to set a breakpoint that will
66828
66829
66830
66831
66832
66833
66834






66835
66836
66837
66838
66839
66840
66841
66842
66843
66844
66845
66846
66847
66848
66849
66850
66851
66852
**
**    p1, p2, p3      Operands
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP4() function to change the value of the P4
** operand.
*/






SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( op>0 && op<0xff );
  if( p->pParse->nOpAlloc<=i ){
    if( growOpArray(p, 1) ){
      return 1;
    }
  }
  p->nOp++;
  pOp = &p->aOp[i];
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
  pOp->p1 = p1;
  pOp->p2 = p2;







>
>
>
>
>
>








<
|
<







67445
67446
67447
67448
67449
67450
67451
67452
67453
67454
67455
67456
67457
67458
67459
67460
67461
67462
67463
67464
67465

67466

67467
67468
67469
67470
67471
67472
67473
**
**    p1, p2, p3      Operands
**
** Use the sqlite3VdbeResolveLabel() function to fix an address and
** the sqlite3VdbeChangeP4() function to change the value of the P4
** operand.
*/
static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
  assert( p->pParse->nOpAlloc<=p->nOp );
  if( growOpArray(p, 1) ) return 1;
  assert( p->pParse->nOpAlloc>p->nOp );
  return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
}
SQLITE_PRIVATE int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
  int i;
  VdbeOp *pOp;

  i = p->nOp;
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( op>0 && op<0xff );
  if( p->pParse->nOpAlloc<=i ){

    return growOp3(p, op, p1, p2, p3);

  }
  p->nOp++;
  pOp = &p->aOp[i];
  pOp->opcode = (u8)op;
  pOp->p5 = 0;
  pOp->p1 = p1;
  pOp->p2 = p2;
67016
67017
67018
67019
67020
67021
67022
67023
67024
67025
67026
67027
67028
67029
67030
67031
67032
67033
67034
67035
67036
67037
67038
67039
67040
  if( (i & (i-1))==0 ){
    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 
                                       (i*2+1)*sizeof(p->aLabel[0]));
  }
  if( p->aLabel ){
    p->aLabel[i] = -1;
  }
  return -1-i;
}

/*
** Resolve label "x" to be the address of the next instruction to
** be inserted.  The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){
  Parse *p = v->pParse;
  int j = -1-x;
  assert( v->magic==VDBE_MAGIC_INIT );
  assert( j<p->nLabel );
  assert( j>=0 );
  if( p->aLabel ){
    p->aLabel[j] = v->nOp;
  }
  p->iFixedOp = v->nOp - 1;







|









|







67637
67638
67639
67640
67641
67642
67643
67644
67645
67646
67647
67648
67649
67650
67651
67652
67653
67654
67655
67656
67657
67658
67659
67660
67661
  if( (i & (i-1))==0 ){
    p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, 
                                       (i*2+1)*sizeof(p->aLabel[0]));
  }
  if( p->aLabel ){
    p->aLabel[i] = -1;
  }
  return ADDR(i);
}

/*
** Resolve label "x" to be the address of the next instruction to
** be inserted.  The parameter "x" must have been obtained from
** a prior call to sqlite3VdbeMakeLabel().
*/
SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *v, int x){
  Parse *p = v->pParse;
  int j = ADDR(x);
  assert( v->magic==VDBE_MAGIC_INIT );
  assert( j<p->nLabel );
  assert( j>=0 );
  if( p->aLabel ){
    p->aLabel[j] = v->nOp;
  }
  p->iFixedOp = v->nOp - 1;
67253
67254
67255
67256
67257
67258
67259
67260
67261
67262
67263
67264
67265
67266
67267
67268
        pOp->p4type = P4_ADVANCE;
        break;
      }
    }

    pOp->opflags = sqlite3OpcodeProperty[opcode];
    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( -1-pOp->p2<pParse->nLabel );
      pOp->p2 = aLabel[-1-pOp->p2];
    }
  }
  sqlite3DbFree(p->db, pParse->aLabel);
  pParse->aLabel = 0;
  pParse->nLabel = 0;
  *pMaxFuncArgs = nMaxArgs;
  assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );







|
|







67874
67875
67876
67877
67878
67879
67880
67881
67882
67883
67884
67885
67886
67887
67888
67889
        pOp->p4type = P4_ADVANCE;
        break;
      }
    }

    pOp->opflags = sqlite3OpcodeProperty[opcode];
    if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
      assert( ADDR(pOp->p2)<pParse->nLabel );
      pOp->p2 = aLabel[ADDR(pOp->p2)];
    }
  }
  sqlite3DbFree(p->db, pParse->aLabel);
  pParse->aLabel = 0;
  pParse->nLabel = 0;
  *pMaxFuncArgs = nMaxArgs;
  assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
67311
67312
67313
67314
67315
67316
67317
67318
67319
67320
67321
67322
67323
67324
67325
67326
67327
67328
67329
67330
67331
67332
67333
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
    return 0;
  }
  addr = p->nOp;
  pOut = &p->aOp[addr];
  for(i=0; i<nOp; i++, aOp++, pOut++){
    int p2 = aOp->p2;
    pOut->opcode = aOp->opcode;
    pOut->p1 = aOp->p1;
    if( p2<0 ){
      assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
      pOut->p2 = addr + ADDR(p2);
    }else{
      pOut->p2 = p2;
    }
    pOut->p3 = aOp->p3;
    pOut->p4type = P4_NOTUSED;
    pOut->p4.p = 0;
    pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
    pOut->zComment = 0;
#endif







<


<
<
|
<
|
<







67932
67933
67934
67935
67936
67937
67938

67939
67940


67941

67942

67943
67944
67945
67946
67947
67948
67949
  assert( p->magic==VDBE_MAGIC_INIT );
  if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
    return 0;
  }
  addr = p->nOp;
  pOut = &p->aOp[addr];
  for(i=0; i<nOp; i++, aOp++, pOut++){

    pOut->opcode = aOp->opcode;
    pOut->p1 = aOp->p1;


    pOut->p2 = aOp->p2;

    assert( aOp->p2>=0 );

    pOut->p3 = aOp->p3;
    pOut->p4type = P4_NOTUSED;
    pOut->p4.p = 0;
    pOut->p5 = 0;
#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
    pOut->zComment = 0;
#endif
67434
67435
67436
67437
67438
67439
67440






67441
67442
67443
67444
67445
67446
67447
        sqlite3DbFree(db, p4);
        break;
      }
      case P4_KEYINFO: {
        if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
        break;
      }






      case P4_MPRINTF: {
        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
        break;
      }
      case P4_FUNCDEF: {
        freeEphemeralFunction(db, (FuncDef*)p4);
        break;







>
>
>
>
>
>







68050
68051
68052
68053
68054
68055
68056
68057
68058
68059
68060
68061
68062
68063
68064
68065
68066
68067
68068
68069
        sqlite3DbFree(db, p4);
        break;
      }
      case P4_KEYINFO: {
        if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
        break;
      }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
      case P4_EXPR: {
        sqlite3ExprDelete(db, (Expr*)p4);
        break;
      }
#endif
      case P4_MPRINTF: {
        if( db->pnBytesFreed==0 ) sqlite3_free(p4);
        break;
      }
      case P4_FUNCDEF: {
        freeEphemeralFunction(db, (FuncDef*)p4);
        break;
67498
67499
67500
67501
67502
67503
67504
67505
67506
67507
67508
67509
67510
67511
67512
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
  if( addr<p->nOp ){
    VdbeOp *pOp = &p->aOp[addr];
    sqlite3 *db = p->db;
    freeP4(db, pOp->p4type, pOp->p4.p);
    memset(pOp, 0, sizeof(pOp[0]));
    pOp->opcode = OP_Noop;
    if( addr==p->nOp-1 ) p->nOp--;
  }
}

/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it.  Return true if and only if an opcode was removed.
*/







<







68120
68121
68122
68123
68124
68125
68126

68127
68128
68129
68130
68131
68132
68133
SQLITE_PRIVATE void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
  if( addr<p->nOp ){
    VdbeOp *pOp = &p->aOp[addr];
    sqlite3 *db = p->db;
    freeP4(db, pOp->p4type, pOp->p4.p);
    memset(pOp, 0, sizeof(pOp[0]));
    pOp->opcode = OP_Noop;

  }
}

/*
** If the last opcode is "op" and it is not a jump destination,
** then remove it.  Return true if and only if an opcode was removed.
*/
67566
67567
67568
67569
67570
67571
67572









67573
67574
67575
67576
67577
67578
67579
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = P4_KEYINFO;









  }else if( n==P4_VTAB ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = P4_VTAB;
    sqlite3VtabLock((VTable *)zP4);
    assert( ((VTable *)zP4)->db==p->db );
  }else if( n<0 ){
    pOp->p4.p = (void*)zP4;







>
>
>
>
>
>
>
>
>







68187
68188
68189
68190
68191
68192
68193
68194
68195
68196
68197
68198
68199
68200
68201
68202
68203
68204
68205
68206
68207
68208
68209
    pOp->p4type = P4_INT32;
  }else if( zP4==0 ){
    pOp->p4.p = 0;
    pOp->p4type = P4_NOTUSED;
  }else if( n==P4_KEYINFO ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = P4_KEYINFO;
#ifdef SQLITE_ENABLE_CURSOR_HINTS
  }else if( n==P4_EXPR ){
    /* Responsibility for deleting the Expr tree is handed over to the
    ** VDBE by this operation.  The caller should have already invoked
    ** sqlite3ExprDup() or whatever other routine is needed to make a 
    ** private copy of the tree. */
    pOp->p4.pExpr = (Expr*)zP4;
    pOp->p4type = P4_EXPR;
#endif
  }else if( n==P4_VTAB ){
    pOp->p4.p = (void*)zP4;
    pOp->p4type = P4_VTAB;
    sqlite3VtabLock((VTable *)zP4);
    assert( ((VTable *)zP4)->db==p->db );
  }else if( n<0 ){
    pOp->p4.p = (void*)zP4;
67756
67757
67758
67759
67760
67761
67762





















67763


































67764




67765
















67766
67767
67768
67769
67770
67771
67772
    zTemp[0] = 0;
    jj = 0;
  }
  return jj;
}
#endif /* SQLITE_DEBUG */

























































#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \




     || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
















/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
  char *zP4 = zTemp;
  assert( nTemp>=20 );







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







68386
68387
68388
68389
68390
68391
68392
68393
68394
68395
68396
68397
68398
68399
68400
68401
68402
68403
68404
68405
68406
68407
68408
68409
68410
68411
68412
68413
68414
68415
68416
68417
68418
68419
68420
68421
68422
68423
68424
68425
68426
68427
68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
68456
68457
68458
68459
68460
68461
68462
68463
68464
68465
68466
68467
68468
68469
68470
68471
68472
68473
68474
68475
68476
68477
    zTemp[0] = 0;
    jj = 0;
  }
  return jj;
}
#endif /* SQLITE_DEBUG */

#if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
/*
** Translate the P4.pExpr value for an OP_CursorHint opcode into text
** that can be displayed in the P4 column of EXPLAIN output.
*/
static int displayP4Expr(int nTemp, char *zTemp, Expr *pExpr){
  const char *zOp = 0;
  int n;
  switch( pExpr->op ){
    case TK_STRING:
      sqlite3_snprintf(nTemp, zTemp, "%Q", pExpr->u.zToken);
      break;
    case TK_INTEGER:
      sqlite3_snprintf(nTemp, zTemp, "%d", pExpr->u.iValue);
      break;
    case TK_NULL:
      sqlite3_snprintf(nTemp, zTemp, "NULL");
      break;
    case TK_REGISTER: {
      sqlite3_snprintf(nTemp, zTemp, "r[%d]", pExpr->iTable);
      break;
    }
    case TK_COLUMN: {
      if( pExpr->iColumn<0 ){
        sqlite3_snprintf(nTemp, zTemp, "rowid");
      }else{
        sqlite3_snprintf(nTemp, zTemp, "c%d", (int)pExpr->iColumn);
      }
      break;
    }
    case TK_LT:      zOp = "LT";      break;
    case TK_LE:      zOp = "LE";      break;
    case TK_GT:      zOp = "GT";      break;
    case TK_GE:      zOp = "GE";      break;
    case TK_NE:      zOp = "NE";      break;
    case TK_EQ:      zOp = "EQ";      break;
    case TK_IS:      zOp = "IS";      break;
    case TK_ISNOT:   zOp = "ISNOT";   break;
    case TK_AND:     zOp = "AND";     break;
    case TK_OR:      zOp = "OR";      break;
    case TK_PLUS:    zOp = "ADD";     break;
    case TK_STAR:    zOp = "MUL";     break;
    case TK_MINUS:   zOp = "SUB";     break;
    case TK_REM:     zOp = "REM";     break;
    case TK_BITAND:  zOp = "BITAND";  break;
    case TK_BITOR:   zOp = "BITOR";   break;
    case TK_SLASH:   zOp = "DIV";     break;
    case TK_LSHIFT:  zOp = "LSHIFT";  break;
    case TK_RSHIFT:  zOp = "RSHIFT";  break;
    case TK_CONCAT:  zOp = "CONCAT";  break;
    case TK_UMINUS:  zOp = "MINUS";   break;
    case TK_UPLUS:   zOp = "PLUS";    break;
    case TK_BITNOT:  zOp = "BITNOT";  break;
    case TK_NOT:     zOp = "NOT";     break;
    case TK_ISNULL:  zOp = "ISNULL";  break;
    case TK_NOTNULL: zOp = "NOTNULL"; break;

    default:
      sqlite3_snprintf(nTemp, zTemp, "%s", "expr");
      break;
  }

  if( zOp ){
    sqlite3_snprintf(nTemp, zTemp, "%s(", zOp);
    n = sqlite3Strlen30(zTemp);
    n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pLeft);
    if( n<nTemp-1 && pExpr->pRight ){
      zTemp[n++] = ',';
      n += displayP4Expr(nTemp-n, zTemp+n, pExpr->pRight);
    }
    sqlite3_snprintf(nTemp-n, zTemp+n, ")");
  }
  return sqlite3Strlen30(zTemp);
}
#endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */


#if VDBE_DISPLAY_P4
/*
** Compute a string that describes the P4 parameter for an opcode.
** Use zTemp for any required temporary buffer space.
*/
static char *displayP4(Op *pOp, char *zTemp, int nTemp){
  char *zP4 = zTemp;
  assert( nTemp>=20 );
67798
67799
67800
67801
67802
67803
67804






67805
67806
67807
67808
67809
67810
67811
        i += n;
      }
      zTemp[i++] = ')';
      zTemp[i] = 0;
      assert( i<nTemp );
      break;
    }






    case P4_COLLSEQ: {
      CollSeq *pColl = pOp->p4.pColl;
      sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;







>
>
>
>
>
>







68503
68504
68505
68506
68507
68508
68509
68510
68511
68512
68513
68514
68515
68516
68517
68518
68519
68520
68521
68522
        i += n;
      }
      zTemp[i++] = ')';
      zTemp[i] = 0;
      assert( i<nTemp );
      break;
    }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
    case P4_EXPR: {
      displayP4Expr(nTemp, zTemp, pOp->p4.pExpr);
      break;
    }
#endif
    case P4_COLLSEQ: {
      CollSeq *pColl = pOp->p4.pColl;
      sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
      break;
    }
    case P4_FUNCDEF: {
      FuncDef *pDef = pOp->p4.pFunc;
67873
67874
67875
67876
67877
67878
67879
67880
67881
67882
67883
67884
67885
67886
67887
        zTemp[0] = 0;
      }
    }
  }
  assert( zP4!=0 );
  return zP4;
}
#endif

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
** The prepared statements need to know in advance the complete set of
** attached databases that will be use.  A mask of these databases
** is maintained in p->btreeMask.  The p->lockMask value is the subset of







|







68584
68585
68586
68587
68588
68589
68590
68591
68592
68593
68594
68595
68596
68597
68598
        zTemp[0] = 0;
      }
    }
  }
  assert( zP4!=0 );
  return zP4;
}
#endif /* VDBE_DISPLAY_P4 */

/*
** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
**
** The prepared statements need to know in advance the complete set of
** attached databases that will be use.  A mask of these databases
** is maintained in p->btreeMask.  The p->lockMask value is the subset of
68187
68188
68189
68190
68191
68192
68193
68194
68195
68196
68197
68198
68199
68200
68201
68202
68203
68204
68205
68206
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p3;                          /* P3 */
    pMem++;

    if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
      assert( p->db->mallocFailed );
      return SQLITE_ERROR;
    }
    pMem->flags = MEM_Str|MEM_Term;
    zP4 = displayP4(pOp, pMem->z, 32);
    if( zP4!=pMem->z ){
      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
    }else{
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->enc = SQLITE_UTF8;
    }







|




|







68898
68899
68900
68901
68902
68903
68904
68905
68906
68907
68908
68909
68910
68911
68912
68913
68914
68915
68916
68917
    pMem->u.i = pOp->p2;                          /* P2 */
    pMem++;

    pMem->flags = MEM_Int;
    pMem->u.i = pOp->p3;                          /* P3 */
    pMem++;

    if( sqlite3VdbeMemClearAndResize(pMem, 100) ){ /* P4 */
      assert( p->db->mallocFailed );
      return SQLITE_ERROR;
    }
    pMem->flags = MEM_Str|MEM_Term;
    zP4 = displayP4(pOp, pMem->z, pMem->szMalloc);
    if( zP4!=pMem->z ){
      sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
    }else{
      assert( pMem->z!=0 );
      pMem->n = sqlite3Strlen30(pMem->z);
      pMem->enc = SQLITE_UTF8;
    }
68297
68298
68299
68300
68301
68302
68303
68304
68305
68306
68307
68308
68309
68310
68311
68312
68313
68314

68315
68316
68317
68318
68319
68320
68321
68322
68323
68324

68325
68326
68327


68328
68329
68330
68331
68332
68333
68334
** NULL, it means that memory space has already been allocated and that
** this routine should not allocate any new memory.  When pBuf is not
** NULL simply return pBuf.  Only allocate new memory space when pBuf
** is NULL.
**
** nByte is the number of bytes of space needed.
**
** *ppFrom points to available space and pEnd points to the end of the
** available space.  When space is allocated, *ppFrom is advanced past
** the end of the allocated space.
**
** *pnByte is a counter of the number of bytes of space that have failed
** to allocate.  If there is insufficient space in *ppFrom to satisfy the
** request, then increment *pnByte by the amount of the request.
*/
static void *allocSpace(
  void *pBuf,          /* Where return pointer will be stored */
  int nByte,           /* Number of bytes to allocate */

  u8 **ppFrom,         /* IN/OUT: Allocate from *ppFrom */
  u8 *pEnd,            /* Pointer to 1 byte past the end of *ppFrom buffer */
  int *pnByte          /* If allocation cannot be made, increment *pnByte */
){
  assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
  if( pBuf ) return pBuf;
  nByte = ROUND8(nByte);
  if( &(*ppFrom)[nByte] <= pEnd ){
    pBuf = (void*)*ppFrom;
    *ppFrom += nByte;

  }else{
    *pnByte += nByte;
  }


  return pBuf;
}

/*
** Rewind the VDBE back to the beginning in preparation for
** running it.
*/







<
|
|

|
|
|




>
|
<
|

|
|
|
|
<
|
>
|
|
|
>
>







69008
69009
69010
69011
69012
69013
69014

69015
69016
69017
69018
69019
69020
69021
69022
69023
69024
69025
69026

69027
69028
69029
69030
69031
69032

69033
69034
69035
69036
69037
69038
69039
69040
69041
69042
69043
69044
69045
69046
** NULL, it means that memory space has already been allocated and that
** this routine should not allocate any new memory.  When pBuf is not
** NULL simply return pBuf.  Only allocate new memory space when pBuf
** is NULL.
**
** nByte is the number of bytes of space needed.
**

** pFrom points to *pnFrom bytes of available space.  New space is allocated
** from the end of the pFrom buffer and *pnFrom is decremented.
**
** *pnNeeded is a counter of the number of bytes of space that have failed
** to allocate.  If there is insufficient space in pFrom to satisfy the
** request, then increment *pnNeeded by the amount of the request.
*/
static void *allocSpace(
  void *pBuf,          /* Where return pointer will be stored */
  int nByte,           /* Number of bytes to allocate */
  u8 *pFrom,           /* Memory available for allocation */
  int *pnFrom,         /* IN/OUT: Space available at pFrom */

  int *pnNeeded        /* If allocation cannot be made, increment *pnByte */
){
  assert( EIGHT_BYTE_ALIGNMENT(pFrom) );
  if( pBuf==0 ){
    nByte = ROUND8(nByte);
    if( nByte <= *pnFrom ){

      *pnFrom -= nByte;
      pBuf = &pFrom[*pnFrom];
    }else{
      *pnNeeded += nByte;
    }
  }
  assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
  return pBuf;
}

/*
** Rewind the VDBE back to the beginning in preparation for
** running it.
*/
68393
68394
68395
68396
68397
68398
68399

68400
68401
68402
68403
68404
68405
68406
68407
68408
  sqlite3 *db;                   /* The database connection */
  int nVar;                      /* Number of parameters */
  int nMem;                      /* Number of VM memory registers */
  int nCursor;                   /* Number of cursors required */
  int nArg;                      /* Number of arguments in subprograms */
  int nOnce;                     /* Number of OP_Once instructions */
  int n;                         /* Loop counter */

  u8 *zCsr;                      /* Memory available for allocation */
  u8 *zEnd;                      /* First byte past allocated memory */
  int nByte;                     /* How much extra memory is needed */

  assert( p!=0 );
  assert( p->nOp>0 );
  assert( pParse!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( pParse==p->pParse );







>

<







69105
69106
69107
69108
69109
69110
69111
69112
69113

69114
69115
69116
69117
69118
69119
69120
  sqlite3 *db;                   /* The database connection */
  int nVar;                      /* Number of parameters */
  int nMem;                      /* Number of VM memory registers */
  int nCursor;                   /* Number of cursors required */
  int nArg;                      /* Number of arguments in subprograms */
  int nOnce;                     /* Number of OP_Once instructions */
  int n;                         /* Loop counter */
  int nFree;                     /* Available free space */
  u8 *zCsr;                      /* Memory available for allocation */

  int nByte;                     /* How much extra memory is needed */

  assert( p!=0 );
  assert( p->nOp>0 );
  assert( pParse!=0 );
  assert( p->magic==VDBE_MAGIC_INIT );
  assert( pParse==p->pParse );
68425
68426
68427
68428
68429
68430
68431
68432
68433
68434
68435
68436
68437
68438
68439
68440
68441
68442
68443
68444
68445
68446
68447
68448
68449
68450
68451
68452
68453
68454
68455
68456
68457
68458
68459
68460
68461
68462
68463
68464
68465
68466
68467
68468
68469
68470
68471
68472
68473
68474
68475
68476
68477
68478
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in.
  */
  zCsr = (u8*)&p->aOp[p->nOp];            /* Memory avaliable for allocation */
  zEnd = (u8*)&p->aOp[pParse->nOpAlloc];  /* First byte past end of zCsr[] */

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, zEnd-zCsr);
  zCsr += (zCsr - (u8*)0)&7;
  assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **
  ** This two-pass approach that reuses as much memory as possible from
  ** the leftover space at the end of the opcode array can significantly
  ** reduce the amount of memory held by a prepared statement.
  */
  do {
    nByte = 0;
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          &zCsr, zEnd, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), &zCsr, zEnd, &nByte);
#endif
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    zEnd = &zCsr[nByte];
  }while( nByte && !db->mallocFailed );

  p->nCursor = nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){







|
|






|
<
|














|
|
|
|

|
|

|





|







69137
69138
69139
69140
69141
69142
69143
69144
69145
69146
69147
69148
69149
69150
69151
69152

69153
69154
69155
69156
69157
69158
69159
69160
69161
69162
69163
69164
69165
69166
69167
69168
69169
69170
69171
69172
69173
69174
69175
69176
69177
69178
69179
69180
69181
69182
69183
69184
69185
69186
69187
69188
69189
  ** See also: allocateCursor().
  */
  nMem += nCursor;

  /* Allocate space for memory registers, SQL variables, VDBE cursors and 
  ** an array to marshal SQL function arguments in.
  */
  zCsr = ((u8*)p->aOp) + ROUND8(sizeof(Op)*p->nOp);      /* Available space */
  nFree = pParse->szOpAlloc - ROUND8(sizeof(Op)*p->nOp); /* Size of zCsr */

  resolveP2Values(p, &nArg);
  p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
  if( pParse->explain && nMem<10 ){
    nMem = 10;
  }
  memset(zCsr, 0, nFree);

  assert( EIGHT_BYTE_ALIGNMENT(&zCsr[nFree]) );
  p->expired = 0;

  /* Memory for registers, parameters, cursor, etc, is allocated in two
  ** passes.  On the first pass, we try to reuse unused space at the 
  ** end of the opcode array.  If we are unable to satisfy all memory
  ** requirements by reusing the opcode array tail, then the second
  ** pass will fill in the rest using a fresh allocation.  
  **
  ** This two-pass approach that reuses as much memory as possible from
  ** the leftover space at the end of the opcode array can significantly
  ** reduce the amount of memory held by a prepared statement.
  */
  do {
    nByte = 0;
    p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), zCsr, &nFree, &nByte);
    p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), zCsr, &nFree, &nByte);
    p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), zCsr, &nFree, &nByte);
    p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), zCsr, &nFree, &nByte);
    p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
                          zCsr, &nFree, &nByte);
    p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, zCsr, &nFree, &nByte);
#ifdef SQLITE_ENABLE_STMT_SCANSTATUS
    p->anExec = allocSpace(p->anExec, p->nOp*sizeof(i64), zCsr, &nFree, &nByte);
#endif
    if( nByte ){
      p->pFree = sqlite3DbMallocZero(db, nByte);
    }
    zCsr = p->pFree;
    nFree = nByte;
  }while( nByte && !db->mallocFailed );

  p->nCursor = nCursor;
  p->nOnceFlag = nOnce;
  if( p->aVar ){
    p->nVar = (ynVar)nVar;
    for(n=0; n<nVar; n++){
68501
68502
68503
68504
68505
68506
68507



68508



68509
68510
68511
68512
68513

68514
68515


68516
68517
68518
68519
68520
68521
68522

68523
68524

68525
68526
68527
68528
68529
68530
68531
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }



  sqlite3VdbeSorterClose(p->db, pCx);



  if( pCx->pBt ){
    sqlite3BtreeClose(pCx->pBt);
    /* The pCx->pCursor will be close automatically, if it exists, by
    ** the call above. */
  }else if( pCx->pCursor ){

    sqlite3BtreeCloseCursor(pCx->pCursor);
  }


#ifndef SQLITE_OMIT_VIRTUALTABLE
  else if( pCx->pVtabCursor ){
    sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
    const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
    assert( pVtabCursor->pVtab->nRef>0 );
    pVtabCursor->pVtab->nRef--;
    pModule->xClose(pVtabCursor);

  }
#endif

}

/*
** Close all cursors in the current frame.
*/
static void closeCursorsInFrame(Vdbe *p){
  if( p->apCsr ){







>
>
>
|
>
>
>
|
|
|
|
|
>
|
|
>
>

|
|
|
|
|
|
>
|

>







69212
69213
69214
69215
69216
69217
69218
69219
69220
69221
69222
69223
69224
69225
69226
69227
69228
69229
69230
69231
69232
69233
69234
69235
69236
69237
69238
69239
69240
69241
69242
69243
69244
69245
69246
69247
69248
69249
69250
69251
69252
69253
** Close a VDBE cursor and release all the resources that cursor 
** happens to hold.
*/
SQLITE_PRIVATE void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
  if( pCx==0 ){
    return;
  }
  assert( pCx->pBt==0 || pCx->eCurType==CURTYPE_BTREE );
  switch( pCx->eCurType ){
    case CURTYPE_SORTER: {
      sqlite3VdbeSorterClose(p->db, pCx);
      break;
    }
    case CURTYPE_BTREE: {
      if( pCx->pBt ){
        sqlite3BtreeClose(pCx->pBt);
        /* The pCx->pCursor will be close automatically, if it exists, by
        ** the call above. */
      }else{
        assert( pCx->uc.pCursor!=0 );
        sqlite3BtreeCloseCursor(pCx->uc.pCursor);
      }
      break;
    }
#ifndef SQLITE_OMIT_VIRTUALTABLE
    case CURTYPE_VTAB: {
      sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
      const sqlite3_module *pModule = pVCur->pVtab->pModule;
      assert( pVCur->pVtab->nRef>0 );
      pVCur->pVtab->nRef--;
      pModule->xClose(pVCur);
      break;
    }
#endif
  }
}

/*
** Close all cursors in the current frame.
*/
static void closeCursorsInFrame(Vdbe *p){
  if( p->apCsr ){
69504
69505
69506
69507
69508
69509
69510

69511
69512
69513
69514
69515
69516
69517
69518
69519
69520
69521
69522
69523
69524
69525
69526
69527
69528
69529
69530

69531
69532
69533
69534
69535
69536
69537
69538
69539
69540
69541
69542
69543

69544
69545
69546
69547
69548
69549
69550
69551
69552
69553
69554
69555
69556
69557
69558
69559
69560
69561
69562
69563

69564
69565
69566
69567
69568

69569
69570
69571
69572
69573
69574
69575
static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
  int res, rc;
#ifdef SQLITE_TEST
  extern int sqlite3_search_count;
#endif
  assert( p->deferredMoveto );
  assert( p->isTable );

  rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
  if( rc ) return rc;
  if( res!=0 ) return SQLITE_CORRUPT_BKPT;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  p->deferredMoveto = 0;
  p->cacheStatus = CACHE_STALE;
  return SQLITE_OK;
}

/*
** Something has moved cursor "p" out of place.  Maybe the row it was
** pointed to was deleted out from under it.  Or maybe the btree was
** rebalanced.  Whatever the cause, try to restore "p" to the place it
** is supposed to be pointing.  If the row was deleted out from under the
** cursor, set the cursor to point to a NULL row.
*/
static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
  int isDifferentRow, rc;

  assert( p->pCursor!=0 );
  assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
  rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
  p->cacheStatus = CACHE_STALE;
  if( isDifferentRow ) p->nullRow = 1;
  return rc;
}

/*
** Check to ensure that the cursor is valid.  Restore the cursor
** if need be.  Return any I/O error from the restore operation.
*/
SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor *p){

  if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
    return handleMovedCursor(p);
  }
  return SQLITE_OK;
}

/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error
** prevents us from positioning the cursor to its correct position.
**
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){

  if( p->deferredMoveto ){
    return handleDeferredMoveto(p);
  }
  if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
    return handleMovedCursor(p);

  }
  return SQLITE_OK;
}

/*
** The following functions:
**







>
|



















>
|
|
|










>
|



















>
|
|
|
|
|
>







70226
70227
70228
70229
70230
70231
70232
70233
70234
70235
70236
70237
70238
70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
70261
70262
70263
70264
70265
70266
70267
70268
70269
70270
70271
70272
70273
70274
70275
70276
70277
70278
70279
70280
70281
70282
70283
70284
70285
70286
70287
70288
70289
70290
70291
70292
70293
70294
70295
70296
70297
70298
70299
70300
70301
70302
static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
  int res, rc;
#ifdef SQLITE_TEST
  extern int sqlite3_search_count;
#endif
  assert( p->deferredMoveto );
  assert( p->isTable );
  assert( p->eCurType==CURTYPE_BTREE );
  rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
  if( rc ) return rc;
  if( res!=0 ) return SQLITE_CORRUPT_BKPT;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  p->deferredMoveto = 0;
  p->cacheStatus = CACHE_STALE;
  return SQLITE_OK;
}

/*
** Something has moved cursor "p" out of place.  Maybe the row it was
** pointed to was deleted out from under it.  Or maybe the btree was
** rebalanced.  Whatever the cause, try to restore "p" to the place it
** is supposed to be pointing.  If the row was deleted out from under the
** cursor, set the cursor to point to a NULL row.
*/
static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
  int isDifferentRow, rc;
  assert( p->eCurType==CURTYPE_BTREE );
  assert( p->uc.pCursor!=0 );
  assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
  rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
  p->cacheStatus = CACHE_STALE;
  if( isDifferentRow ) p->nullRow = 1;
  return rc;
}

/*
** Check to ensure that the cursor is valid.  Restore the cursor
** if need be.  Return any I/O error from the restore operation.
*/
SQLITE_PRIVATE int sqlite3VdbeCursorRestore(VdbeCursor *p){
  assert( p->eCurType==CURTYPE_BTREE );
  if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
    return handleMovedCursor(p);
  }
  return SQLITE_OK;
}

/*
** Make sure the cursor p is ready to read or write the row to which it
** was last positioned.  Return an error code if an OOM fault or I/O error
** prevents us from positioning the cursor to its correct position.
**
** If a MoveTo operation is pending on the given cursor, then do that
** MoveTo now.  If no move is pending, check to see if the row has been
** deleted out from under the cursor and if it has, mark the row as
** a NULL row.
**
** If the cursor is already pointing to the correct row and that row has
** not been deleted out from under the cursor, then this routine is a no-op.
*/
SQLITE_PRIVATE int sqlite3VdbeCursorMoveto(VdbeCursor *p){
  if( p->eCurType==CURTYPE_BTREE ){
    if( p->deferredMoveto ){
      return handleDeferredMoveto(p);
    }
    if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
      return handleMovedCursor(p);
    }
  }
  return SQLITE_OK;
}

/*
** The following functions:
**
69611
69612
69613
69614
69615
69616
69617
69618
69619
69620
69621

69622

69623
69624
69625
69626
69627
69628
69629
69630
69631
69632
69633
69634
69635
69636





69637

69638
69639
69640
69641

69642
69643
69644

69645
69646
69647
69648
69649
69650
69651
69652

69653
69654
69655
69656
69657
69658
69659




69660









69661
69662
69663
69664
69665
69666
69667
69668
69669


69670
69671




69672
69673
69674
69675
69676
69677
69678
** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
** of SQLite will not understand those serial types.
*/

/*
** Return the serial-type for the value stored in pMem.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
  int flags = pMem->flags;
  u32 n;


  if( flags&MEM_Null ){

    return 0;
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
    i64 i = pMem->u.i;
    u64 u;
    if( i<0 ){
      u = ~i;
    }else{
      u = i;
    }
    if( u<=127 ){
      return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;





    }

    if( u<=32767 ) return 2;
    if( u<=8388607 ) return 3;
    if( u<=2147483647 ) return 4;
    if( u<=MAX_6BYTE ) return 5;

    return 6;
  }
  if( flags&MEM_Real ){

    return 7;
  }
  assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
  assert( pMem->n>=0 );
  n = (u32)pMem->n;
  if( flags & MEM_Zero ){
    n += pMem->u.nZero;
  }

  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}

/*
** The sizes for serial types less than 12
*/
static const u8 sqlite3SmallTypeSizes[] = {




  0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0









};

/*
** Return the length of the data corresponding to the supplied serial-type.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
  if( serial_type>=12 ){
    return (serial_type-12)/2;
  }else{


    return sqlite3SmallTypeSizes[serial_type];
  }




}

/*
** If we are on an architecture with mixed-endian floating 
** points (ex: ARM7) then swap the lower 4 bytes with the 
** upper 4 bytes.  Return the result.
**







|



>

>













|
>
>
>
>
>
|
>
|
|
|
|
>



>








>




|


>
>
>
>
|
>
>
>
>
>
>
>
>
>






|


>
>


>
>
>
>







70338
70339
70340
70341
70342
70343
70344
70345
70346
70347
70348
70349
70350
70351
70352
70353
70354
70355
70356
70357
70358
70359
70360
70361
70362
70363
70364
70365
70366
70367
70368
70369
70370
70371
70372
70373
70374
70375
70376
70377
70378
70379
70380
70381
70382
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
70404
70405
70406
70407
70408
70409
70410
70411
70412
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431
70432
70433
70434
70435
** The 8 and 9 types were added in 3.3.0, file format 4.  Prior versions
** of SQLite will not understand those serial types.
*/

/*
** Return the serial-type for the value stored in pMem.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
  int flags = pMem->flags;
  u32 n;

  assert( pLen!=0 );
  if( flags&MEM_Null ){
    *pLen = 0;
    return 0;
  }
  if( flags&MEM_Int ){
    /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
#   define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
    i64 i = pMem->u.i;
    u64 u;
    if( i<0 ){
      u = ~i;
    }else{
      u = i;
    }
    if( u<=127 ){
      if( (i&1)==i && file_format>=4 ){
        *pLen = 0;
        return 8+(u32)u;
      }else{
        *pLen = 1;
        return 1;
      }
    }
    if( u<=32767 ){ *pLen = 2; return 2; }
    if( u<=8388607 ){ *pLen = 3; return 3; }
    if( u<=2147483647 ){ *pLen = 4; return 4; }
    if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
    *pLen = 8;
    return 6;
  }
  if( flags&MEM_Real ){
    *pLen = 8;
    return 7;
  }
  assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
  assert( pMem->n>=0 );
  n = (u32)pMem->n;
  if( flags & MEM_Zero ){
    n += pMem->u.nZero;
  }
  *pLen = n;
  return ((n*2) + 12 + ((flags&MEM_Str)!=0));
}

/*
** The sizes for serial types less than 128
*/
static const u8 sqlite3SmallTypeSizes[] = {
        /*  0   1   2   3   4   5   6   7   8   9 */   
/*   0 */   0,  1,  2,  3,  4,  6,  8,  8,  0,  0,
/*  10 */   0,  0,  0,  0,  1,  1,  2,  2,  3,  3,
/*  20 */   4,  4,  5,  5,  6,  6,  7,  7,  8,  8,
/*  30 */   9,  9, 10, 10, 11, 11, 12, 12, 13, 13,
/*  40 */  14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
/*  50 */  19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
/*  60 */  24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
/*  70 */  29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
/*  80 */  34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
/*  90 */  39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
/* 100 */  44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
/* 110 */  49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
/* 120 */  54, 54, 55, 55, 56, 56, 57, 57
};

/*
** Return the length of the data corresponding to the supplied serial-type.
*/
SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
  if( serial_type>=128 ){
    return (serial_type-12)/2;
  }else{
    assert( serial_type<12 
            || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
    return sqlite3SmallTypeSizes[serial_type];
  }
}
SQLITE_PRIVATE u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
  assert( serial_type<128 );
  return sqlite3SmallTypeSizes[serial_type];  
}

/*
** If we are on an architecture with mixed-endian floating 
** points (ex: ARM7) then swap the lower 4 bytes with the 
** upper 4 bytes.  Return the result.
**
69761
69762
69763
69764
69765
69766
69767
69768
69769
69770
69771
69772
69773
69774
69775
  }

  /* String or blob */
  if( serial_type>=12 ){
    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
             == (int)sqlite3VdbeSerialTypeLen(serial_type) );
    len = pMem->n;
    memcpy(buf, pMem->z, len);
    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}








|







70518
70519
70520
70521
70522
70523
70524
70525
70526
70527
70528
70529
70530
70531
70532
  }

  /* String or blob */
  if( serial_type>=12 ){
    assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
             == (int)sqlite3VdbeSerialTypeLen(serial_type) );
    len = pMem->n;
    if( len>0 ) memcpy(buf, pMem->z, len);
    return len;
  }

  /* NULL or constants 0 or 1 */
  return 0;
}

69864
69865
69866
69867
69868
69869
69870




69871
69872
69873
69874
69875
69876
69877
      testcase( pMem->u.i<0 );
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
      ** twos-complement integer. */
      pMem->u.i = FOUR_BYTE_INT(buf);




      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 4;
    }
    case 5: { /* 6-byte signed integer */
      /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
      ** twos-complement integer. */







>
>
>
>







70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
      testcase( pMem->u.i<0 );
      return 3;
    }
    case 4: { /* 4-byte signed integer */
      /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
      ** twos-complement integer. */
      pMem->u.i = FOUR_BYTE_INT(buf);
#ifdef __HP_cc 
      /* Work around a sign-extension bug in the HP compiler for HP/UX */
      if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
#endif
      pMem->flags = MEM_Int;
      testcase( pMem->u.i<0 );
      return 4;
    }
    case 5: { /* 6-byte signed integer */
      /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
      ** twos-complement integer. */
70179
70180
70181
70182
70183
70184
70185




























70186
70187
70188
70189
70190
70191
70192
*/
static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
  int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
  if( c ) return c;
  return pB1->n - pB2->n;
}






























/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







70940
70941
70942
70943
70944
70945
70946
70947
70948
70949
70950
70951
70952
70953
70954
70955
70956
70957
70958
70959
70960
70961
70962
70963
70964
70965
70966
70967
70968
70969
70970
70971
70972
70973
70974
70975
70976
70977
70978
70979
70980
70981
*/
static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
  int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
  if( c ) return c;
  return pB1->n - pB2->n;
}

/*
** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
** number.  Return negative, zero, or positive if the first (i64) is less than,
** equal to, or greater than the second (double).
*/
static int sqlite3IntFloatCompare(i64 i, double r){
  if( sizeof(LONGDOUBLE_TYPE)>8 ){
    LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
    if( x<r ) return -1;
    if( x>r ) return +1;
    return 0;
  }else{
    i64 y;
    double s;
    if( r<-9223372036854775808.0 ) return +1;
    if( r>9223372036854775807.0 ) return -1;
    y = (i64)r;
    if( i<y ) return -1;
    if( i>y ){
      if( y==SMALLEST_INT64 && r>0.0 ) return -1;
      return +1;
    }
    s = (double)i;
    if( s<r ) return -1;
    if( s>r ) return +1;
    return 0;
  }
}

/*
** Compare the values contained by the two memory cells, returning
** negative, zero or positive if pMem1 is less than, equal to, or greater
** than pMem2. Sorting order is NULL's first, followed by numbers (integers
** and reals) sorted numerically, followed by text ordered by the collating
** sequence pColl and finally blob's ordered by memcmp().
70205
70206
70207
70208
70209
70210
70211
70212
70213
70214
70215
70216
70217
70218
70219
70220
70221
70222
70223
70224



70225

70226
70227
70228
70229

70230
70231
70232
70233
70234
70235
70236
70237
70238

70239
70240
70241
70242
70243
70244
70245
70246
70247
70248
70249
70250
70251
70252
70253
70254
70255
70256
70257
70258
70259
70260
  /* If one value is NULL, it is less than the other. If both values
  ** are NULL, return 0.
  */
  if( combined_flags&MEM_Null ){
    return (f2&MEM_Null) - (f1&MEM_Null);
  }

  /* If one value is a number and the other is not, the number is less.
  ** If both are numbers, compare as reals if one is a real, or as integers
  ** if both values are integers.
  */
  if( combined_flags&(MEM_Int|MEM_Real) ){
    double r1, r2;
    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return 1;
      return 0;
    }
    if( (f1&MEM_Real)!=0 ){
      r1 = pMem1->u.r;



    }else if( (f1&MEM_Int)!=0 ){

      r1 = (double)pMem1->u.i;
    }else{
      return 1;
    }

    if( (f2&MEM_Real)!=0 ){
      r2 = pMem2->u.r;
    }else if( (f2&MEM_Int)!=0 ){
      r2 = (double)pMem2->u.i;
    }else{
      return -1;
    }
    if( r1<r2 ) return -1;
    if( r1>r2 ) return 1;

    return 0;
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){
      return 1;
    }
    if( (f2 & MEM_Str)==0 ){
      return -1;
    }

    assert( pMem1->enc==pMem2->enc );
    assert( pMem1->enc==SQLITE_UTF8 || 
            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );

    /* The collation sequence must be defined at this point, even if
    ** the user deletes the collation sequence after the vdbe program is
    ** compiled (this was not always the case).
    */







|
<
<


<


|


|
|
>
>
>
|
>
|
|
|
|
>
|
<
|
|
|
|
|
<
<
>
|













|







70994
70995
70996
70997
70998
70999
71000
71001


71002
71003

71004
71005
71006
71007
71008
71009
71010
71011
71012
71013
71014
71015
71016
71017
71018
71019
71020
71021

71022
71023
71024
71025
71026


71027
71028
71029
71030
71031
71032
71033
71034
71035
71036
71037
71038
71039
71040
71041
71042
71043
71044
71045
71046
71047
71048
71049
  /* If one value is NULL, it is less than the other. If both values
  ** are NULL, return 0.
  */
  if( combined_flags&MEM_Null ){
    return (f2&MEM_Null) - (f1&MEM_Null);
  }

  /* At least one of the two values is a number


  */
  if( combined_flags&(MEM_Int|MEM_Real) ){

    if( (f1 & f2 & MEM_Int)!=0 ){
      if( pMem1->u.i < pMem2->u.i ) return -1;
      if( pMem1->u.i > pMem2->u.i ) return +1;
      return 0;
    }
    if( (f1 & f2 & MEM_Real)!=0 ){
      if( pMem1->u.r < pMem2->u.r ) return -1;
      if( pMem1->u.r > pMem2->u.r ) return +1;
      return 0;
    }
    if( (f1&MEM_Int)!=0 ){
      if( (f2&MEM_Real)!=0 ){
        return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
      }else{
        return -1;
      }
    }
    if( (f1&MEM_Real)!=0 ){

      if( (f2&MEM_Int)!=0 ){
        return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
      }else{
        return -1;
      }


    }
    return +1;
  }

  /* If one value is a string and the other is a blob, the string is less.
  ** If both are strings, compare using the collating functions.
  */
  if( combined_flags&MEM_Str ){
    if( (f1 & MEM_Str)==0 ){
      return 1;
    }
    if( (f2 & MEM_Str)==0 ){
      return -1;
    }

    assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
    assert( pMem1->enc==SQLITE_UTF8 || 
            pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );

    /* The collation sequence must be defined at this point, even if
    ** the user deletes the collation sequence after the vdbe program is
    ** compiled (this was not always the case).
    */
70383
70384
70385
70386
70387
70388
70389
70390
70391
70392
70393
70394
70395
70396
70397
70398
70399
70400
70401
70402
70403
      serial_type = aKey1[idx1];
      testcase( serial_type==12 );
      if( serial_type>=10 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){
        double rhs = (double)pRhs->u.i;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( mem1.u.r<rhs ){
          rc = -1;
        }else if( mem1.u.r>rhs ){
          rc = +1;
        }
      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;







<

<
|
<
<
<







71172
71173
71174
71175
71176
71177
71178

71179

71180



71181
71182
71183
71184
71185
71186
71187
      serial_type = aKey1[idx1];
      testcase( serial_type==12 );
      if( serial_type>=10 ){
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else if( serial_type==7 ){

        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);

        rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);



      }else{
        i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
        i64 rhs = pRhs->u.i;
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;
70413
70414
70415
70416
70417
70418
70419
70420
70421
70422
70423
70424
70425
70426
70427
70428
70429
70430
70431



70432
70433
70434
70435
70436
70437
70438
        ** numbers). Types 10 and 11 are currently "reserved for future 
        ** use", so it doesn't really matter what the results of comparing
        ** them to numberic values are.  */
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{
        double rhs = pRhs->u.r;
        double lhs;
        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          lhs = mem1.u.r;
        }else{
          lhs = (double)mem1.u.i;
        }
        if( lhs<rhs ){
          rc = -1;
        }else if( lhs>rhs ){
          rc = +1;



        }
      }
    }

    /* RHS is a string */
    else if( pRhs->flags & MEM_Str ){
      getVarint32(&aKey1[idx1], serial_type);







<
<


|
<
<
<
<
|
|
|
>
>
>







71197
71198
71199
71200
71201
71202
71203


71204
71205
71206




71207
71208
71209
71210
71211
71212
71213
71214
71215
71216
71217
71218
71219
        ** numbers). Types 10 and 11 are currently "reserved for future 
        ** use", so it doesn't really matter what the results of comparing
        ** them to numberic values are.  */
        rc = +1;
      }else if( serial_type==0 ){
        rc = -1;
      }else{


        sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
        if( serial_type==7 ){
          if( mem1.u.r<pRhs->u.r ){




            rc = -1;
          }else if( mem1.u.r>pRhs->u.r ){
            rc = +1;
          }
        }else{
          rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
        }
      }
    }

    /* RHS is a string */
    else if( pRhs->flags & MEM_Str ){
      getVarint32(&aKey1[idx1], serial_type);
70514
70515
70516
70517
70518
70519
70520

70521
70522
70523
70524
70525
70526
70527
  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
  );

  return pPKey2->default_rc;
}
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2          /* Right key */
){
  return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);







>







71295
71296
71297
71298
71299
71300
71301
71302
71303
71304
71305
71306
71307
71308
71309
  /* rc==0 here means that one or both of the keys ran out of fields and
  ** all the fields up to that point were equal. Return the default_rc
  ** value.  */
  assert( CORRUPT_DB 
       || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc) 
       || pKeyInfo->db->mallocFailed
  );
  pPKey2->eqSeen = 1;
  return pPKey2->default_rc;
}
SQLITE_PRIVATE int sqlite3VdbeRecordCompare(
  int nKey1, const void *pKey1,   /* Left key */
  UnpackedRecord *pPKey2          /* Right key */
){
  return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
70613
70614
70615
70616
70617
70618
70619

70620
70621
70622
70623
70624
70625
70626
70627
70628
70629
70630
70631
70632
70633
70634
70635
70636
70637
70638
70639

70640
70641
70642
70643
70644
70645
70646
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;

  }

  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
  return res;
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;


  vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
  getVarint32(&aKey1[1], serial_type);
  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{







>




















>







71395
71396
71397
71398
71399
71400
71401
71402
71403
71404
71405
71406
71407
71408
71409
71410
71411
71412
71413
71414
71415
71416
71417
71418
71419
71420
71421
71422
71423
71424
71425
71426
71427
71428
71429
71430
    /* The first fields of the two keys are equal. Compare the trailing 
    ** fields.  */
    res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
  }else{
    /* The first fields of the two keys are equal and there are no trailing
    ** fields. Return pPKey2->default_rc in this case. */
    res = pPKey2->default_rc;
    pPKey2->eqSeen = 1;
  }

  assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
  return res;
}

/*
** This function is an optimized version of sqlite3VdbeRecordCompare() 
** that (a) the first field of pPKey2 is a string, that (b) the first field
** uses the collation sequence BINARY and (c) that the size-of-header varint 
** at the start of (pKey1/nKey1) fits in a single byte.
*/
static int vdbeRecordCompareString(
  int nKey1, const void *pKey1, /* Left key */
  UnpackedRecord *pPKey2        /* Right key */
){
  const u8 *aKey1 = (const u8*)pKey1;
  int serial_type;
  int res;

  assert( pPKey2->aMem[0].flags & MEM_Str );
  vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
  getVarint32(&aKey1[1], serial_type);
  if( serial_type<12 ){
    res = pPKey2->r1;      /* (pKey1/nKey1) is a number or a null */
  }else if( !(serial_type & 0x01) ){ 
    res = pPKey2->r2;      /* (pKey1/nKey1) is a blob */
  }else{
70659
70660
70661
70662
70663
70664
70665

70666
70667
70668
70669
70670
70671
70672
    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;

        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;
      }
    }else if( res>0 ){







>







71443
71444
71445
71446
71447
71448
71449
71450
71451
71452
71453
71454
71455
71456
71457
    if( res==0 ){
      res = nStr - pPKey2->aMem[0].n;
      if( res==0 ){
        if( pPKey2->nField>1 ){
          res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
        }else{
          res = pPKey2->default_rc;
          pPKey2->eqSeen = 1;
        }
      }else if( res>0 ){
        res = pPKey2->r2;
      }else{
        res = pPKey2->r1;
      }
    }else if( res>0 ){
70816
70817
70818
70819
70820
70821
70822
70823
70824
70825


70826
70827
70828
70829
70830
70831
70832
70833
70834
70835
70836
70837
70838
70839
70840
70841
70842
70843
  sqlite3 *db,                     /* Database connection */
  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur = pC->pCursor;
  Mem m;



  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}







|


>
>










|







71601
71602
71603
71604
71605
71606
71607
71608
71609
71610
71611
71612
71613
71614
71615
71616
71617
71618
71619
71620
71621
71622
71623
71624
71625
71626
71627
71628
71629
71630
  sqlite3 *db,                     /* Database connection */
  VdbeCursor *pC,                  /* The cursor to compare against */
  UnpackedRecord *pUnpacked,       /* Unpacked version of key */
  int *res                         /* Write the comparison result here */
){
  i64 nCellKey = 0;
  int rc;
  BtCursor *pCur;
  Mem m;

  assert( pC->eCurType==CURTYPE_BTREE );
  pCur = pC->uc.pCursor;
  assert( sqlite3BtreeCursorIsValid(pCur) );
  VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
  assert( rc==SQLITE_OK );    /* pCur is always valid so KeySize cannot fail */
  /* nCellKey will always be between 0 and 0xffffffff because of the way
  ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
  if( nCellKey<=0 || nCellKey>0x7fffffff ){
    *res = 0;
    return SQLITE_CORRUPT_BKPT;
  }
  sqlite3VdbeMemInit(&m, db, 0);
  rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
  if( rc ){
    return rc;
  }
  *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
  sqlite3VdbeMemRelease(&m);
  return SQLITE_OK;
}
72964
72965
72966
72967
72968
72969
72970
72971
72972
72973
72974
72975
72976
72977
72978
72979
72980
72981
72982
72983
72984
72985
72986
72987
72988
72989
** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}

/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
#define isSorter(x) ((x)->pSorter!=0)

/*
** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* Database the cursor belongs to, or -1 */
  int isBtreeCursor     /* True for B-Tree.  False for pseudo-table or vtab */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different







|










|







73751
73752
73753
73754
73755
73756
73757
73758
73759
73760
73761
73762
73763
73764
73765
73766
73767
73768
73769
73770
73771
73772
73773
73774
73775
73776
** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 \
       && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}

/* Return true if the cursor was opened using the OP_OpenSorter opcode. */
#define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)

/*
** Allocate VdbeCursor number iCur.  Return a pointer to it.  Return NULL
** if we run out of memory.
*/
static VdbeCursor *allocateCursor(
  Vdbe *p,              /* The virtual machine */
  int iCur,             /* Index of the new VdbeCursor */
  int nField,           /* Number of fields in the table or index */
  int iDb,              /* Database the cursor belongs to, or -1 */
  u8 eCurType           /* Type of the new cursor */
){
  /* Find the memory cell that will be used to store the blob of memory
  ** required for this VdbeCursor structure. It is convenient to use a 
  ** vdbe memory cell to manage the memory allocation required for a
  ** VdbeCursor structure for the following reasons:
  **
  **   * Sometimes cursor numbers are used for a couple of different
73001
73002
73003
73004
73005
73006
73007
73008
73009
73010
73011
73012
73013
73014
73015
73016
73017

73018
73019
73020
73021
73022
73023
73024
73025
73026
73027
73028
73029
73030
73031
  */
  Mem *pMem = &p->aMem[p->nMem-iCur];

  int nByte;
  VdbeCursor *pCx = 0;
  nByte = 
      ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 
      (isBtreeCursor?sqlite3BtreeCursorSize():0);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));

    pCx->iDb = iDb;
    pCx->nField = nField;
    pCx->aOffset = &pCx->aType[nField];
    if( isBtreeCursor ){
      pCx->pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
      sqlite3BtreeCursorZero(pCx->pCursor);
    }
  }
  return pCx;
}

/*
** Try to convert a value into a numeric representation if we can







|









>



|
|

|







73788
73789
73790
73791
73792
73793
73794
73795
73796
73797
73798
73799
73800
73801
73802
73803
73804
73805
73806
73807
73808
73809
73810
73811
73812
73813
73814
73815
73816
73817
73818
73819
  */
  Mem *pMem = &p->aMem[p->nMem-iCur];

  int nByte;
  VdbeCursor *pCx = 0;
  nByte = 
      ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField + 
      (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);

  assert( iCur<p->nCursor );
  if( p->apCsr[iCur] ){
    sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
    p->apCsr[iCur] = 0;
  }
  if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
    p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
    memset(pCx, 0, sizeof(VdbeCursor));
    pCx->eCurType = eCurType;
    pCx->iDb = iDb;
    pCx->nField = nField;
    pCx->aOffset = &pCx->aType[nField];
    if( eCurType==CURTYPE_BTREE ){
      pCx->uc.pCursor = (BtCursor*)
          &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
      sqlite3BtreeCursorZero(pCx->uc.pCursor);
    }
  }
  return pCx;
}

/*
** Try to convert a value into a numeric representation if we can
73406
73407
73408
73409
73410
73411
73412
73413





73414
73415
73416
73417
73418
73419
73420


73421
73422

73423
73424
73425
73426
73427
73428
73429
  return 1;
}
#endif

/*
** Return the register of pOp->p2 after first preparing it to be
** overwritten with an integer value.
*/ 





static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
  Mem *pOut;
  assert( pOp->p2>0 );
  assert( pOp->p2<=(p->nMem-p->nCursor) );
  pOut = &p->aMem[pOp->p2];
  memAboutToChange(p, pOut);
  if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);


  pOut->flags = MEM_Int;
  return pOut;

}


/*
** Execute as much of a VDBE program as we can.
** This is the core of sqlite3_step().  
*/







|
>
>
>
>
>






|
>
>
|
|
>







74194
74195
74196
74197
74198
74199
74200
74201
74202
74203
74204
74205
74206
74207
74208
74209
74210
74211
74212
74213
74214
74215
74216
74217
74218
74219
74220
74221
74222
74223
74224
74225
  return 1;
}
#endif

/*
** Return the register of pOp->p2 after first preparing it to be
** overwritten with an integer value.
*/
static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
  sqlite3VdbeMemSetNull(pOut);
  pOut->flags = MEM_Int;
  return pOut;
}
static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
  Mem *pOut;
  assert( pOp->p2>0 );
  assert( pOp->p2<=(p->nMem-p->nCursor) );
  pOut = &p->aMem[pOp->p2];
  memAboutToChange(p, pOut);
  if( VdbeMemDynamic(pOut) ){
    return out2PrereleaseWithClear(pOut);
  }else{
    pOut->flags = MEM_Int;
    return pOut;
  }
}


/*
** Execute as much of a VDBE program as we can.
** This is the core of sqlite3_step().  
*/
73967
73968
73969
73970
73971
73972
73973

73974
73975
73976
73977
73978
73979
73980

73981
73982
73983
73984
73985
73986
73987
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);

  if( pOp->p5 ){
    assert( pOp->p3>0 );
    assert( pOp->p3<=(p->nMem-p->nCursor) );
    pIn3 = &aMem[pOp->p3];
    assert( pIn3->flags & MEM_Int );
    if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }

  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL
**
** Write a NULL into registers P2.  If P3 greater than P2, then also write







>







>







74763
74764
74765
74766
74767
74768
74769
74770
74771
74772
74773
74774
74775
74776
74777
74778
74779
74780
74781
74782
74783
74784
74785
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( pOp->p5 ){
    assert( pOp->p3>0 );
    assert( pOp->p3<=(p->nMem-p->nCursor) );
    pIn3 = &aMem[pOp->p3];
    assert( pIn3->flags & MEM_Int );
    if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
  }
#endif
  break;
}

/* Opcode: Null P1 P2 P3 * *
** Synopsis:  r[P2..P3]=NULL
**
** Write a NULL into registers P2.  If P3 greater than P2, then also write
74152
74153
74154
74155
74156
74157
74158
















74159
74160
74161
74162
74163
74164
74165
  assert( pOut!=pIn1 );
  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
#ifdef SQLITE_DEBUG
  if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
#endif
  break;
}

















/* Opcode: ResultRow P1 P2 * * *
** Synopsis:  output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







74950
74951
74952
74953
74954
74955
74956
74957
74958
74959
74960
74961
74962
74963
74964
74965
74966
74967
74968
74969
74970
74971
74972
74973
74974
74975
74976
74977
74978
74979
  assert( pOut!=pIn1 );
  sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
#ifdef SQLITE_DEBUG
  if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
#endif
  break;
}

/* Opcode: IntCopy P1 P2 * * *
** Synopsis: r[P2]=r[P1]
**
** Transfer the integer value held in register P1 into register P2.
**
** This is an optimized version of SCopy that works only for integer
** values.
*/
case OP_IntCopy: {            /* out2 */
  pIn1 = &aMem[pOp->p1];
  assert( (pIn1->flags & MEM_Int)!=0 );
  pOut = &aMem[pOp->p2];
  sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
  break;
}

/* Opcode: ResultRow P1 P2 * * *
** Synopsis:  output=r[P1@P2]
**
** The registers P1 through P1+P2-1 contain a single row of
** results. This opcode causes the sqlite3_step() call to terminate
** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
74842
74843
74844
74845
74846
74847
74848

74849
74850
74851
74852
74853
74854
74855
74856
74857
74858
74859
74860
74861
74862
74863
74864
74865
74866
74867
74868
74869
74870
74871
74872
74873
74874
74875
74876
74877
74878
74879
74880
74881
74882
74883
74884
74885
74886
74887
74888
74889
74890
74891
74892
74893
74894
74895
74896
74897
74898
74899
74900
74901
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];

        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);
      }else{
        VdbeBranchTaken(2,3);
        if( pOp->p5 & SQLITE_JUMPIFNULL ){
          goto jump_to_p2;
        }
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity>=SQLITE_AFF_NUMERIC ){
      if( (pIn1->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn1,0);
      }
      if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn3,0);
      }
    }else if( affinity==SQLITE_AFF_TEXT ){
      if( (pIn1->flags & MEM_Str)==0 && (pIn1->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
        testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
        flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
      }
      if( (pIn3->flags & MEM_Str)==0 && (pIn3->flags & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
        testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
        flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
      }
    }
    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( pIn1->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
    if( pIn3->flags & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }
    if( db->mallocFailed ) goto no_mem;
    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;







>














|


|



|






|








|



|



<







75656
75657
75658
75659
75660
75661
75662
75663
75664
75665
75666
75667
75668
75669
75670
75671
75672
75673
75674
75675
75676
75677
75678
75679
75680
75681
75682
75683
75684
75685
75686
75687
75688
75689
75690
75691
75692
75693
75694
75695
75696
75697
75698
75699
75700
75701
75702
75703
75704
75705
75706
75707
75708

75709
75710
75711
75712
75713
75714
75715
    }else{
      /* SQLITE_NULLEQ is clear and at least one operand is NULL,
      ** then the result is always NULL.
      ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
      */
      if( pOp->p5 & SQLITE_STOREP2 ){
        pOut = &aMem[pOp->p2];
        memAboutToChange(p, pOut);
        MemSetTypeFlag(pOut, MEM_Null);
        REGISTER_TRACE(pOp->p2, pOut);
      }else{
        VdbeBranchTaken(2,3);
        if( pOp->p5 & SQLITE_JUMPIFNULL ){
          goto jump_to_p2;
        }
      }
      break;
    }
  }else{
    /* Neither operand is NULL.  Do a comparison. */
    affinity = pOp->p5 & SQLITE_AFF_MASK;
    if( affinity>=SQLITE_AFF_NUMERIC ){
      if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn1,0);
      }
      if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
        applyNumericAffinity(pIn3,0);
      }
    }else if( affinity==SQLITE_AFF_TEXT ){
      if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn1->flags & MEM_Int );
        testcase( pIn1->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn1, encoding, 1);
        testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
        flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
      }
      if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
        testcase( pIn3->flags & MEM_Int );
        testcase( pIn3->flags & MEM_Real );
        sqlite3VdbeMemStringify(pIn3, encoding, 1);
        testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
        flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
      }
    }
    assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
    if( flags1 & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn1);
      flags1 &= ~MEM_Zero;
    }
    if( flags3 & MEM_Zero ){
      sqlite3VdbeMemExpandBlob(pIn3);
      flags3 &= ~MEM_Zero;
    }

    res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
  }
  switch( pOp->opcode ){
    case OP_Eq:    res = res==0;     break;
    case OP_Ne:    res = res!=0;     break;
    case OP_Lt:    res = res<0;      break;
    case OP_Le:    res = res<=0;     break;
75232
75233
75234
75235
75236
75237
75238
75239
75240
75241
75242
75243
75244
75245
75246
75247
75248
75249
75250
75251
75252
75253
75254
75255
75256
75257
75258
75259
75260
75261
75262
75263
75264
75265
75266
75267
75268
75269
75270
75271
75272
75273
75274
75275
75276
75277

75278
75279
75280
75281
75282
75283
75284
75285
75286
75287
75288
75289
75290
75291
75292
75293
75294
75295
75296
75297


75298
75299
75300
75301
75302
75303
75304
75305
75306
75307
75308
75309
75310
75311
75312
75313
75314
75315
75316
75317
75318
75319
75320
75321
75322
75323
75324
75325
75326
75327
75328
75329
75330














75331
75332
75333
75334
75335
75336
75337
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u32 szField;       /* Number of bytes in the content of a field */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  u16 fx;            /* pDest->flags value */
  Mem *pReg;         /* PseudoTable input register */

  p2 = pOp->p2;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );
  aOffset = pC->aOffset;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  assert( pC->pVtabCursor==0 ); /* OP_Column never called on virtual table */
#endif
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 || pC->pseudoTableReg>0 ); /* pCrsr NULL on PseudoTables */
  assert( pCrsr!=0 || pC->nullRow );          /* pC->nullRow on PseudoTables */

  /* If the cursor cache is stale, bring it up-to-date */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->cacheStatus!=p->cacheCtr ){
    if( pC->nullRow ){
      if( pCrsr==0 ){
        assert( pC->pseudoTableReg>0 );
        pReg = &aMem[pC->pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
        assert( memIsValid(pReg) );
        pC->payloadSize = pC->szRow = avail = pReg->n;
        pC->aRow = (u8*)pReg->z;
      }else{
        sqlite3VdbeMemSetNull(pDest);
        goto op_column_out;
      }
    }else{

      assert( pCrsr );
      if( pC->isTable==0 ){
        assert( sqlite3BtreeCursorIsValid(pCrsr) );
        VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
        assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
        /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
        ** payload size, so it is impossible for payloadSize64 to be
        ** larger than 32 bits. */
        assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
        pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
        pC->payloadSize = (u32)payloadSize64;
      }else{
        assert( sqlite3BtreeCursorIsValid(pCrsr) );
        VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
        assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
        pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
      }
      assert( avail<=65536 );  /* Maximum page size is 64KiB */
      if( pC->payloadSize <= (u32)avail ){
        pC->szRow = pC->payloadSize;


      }else{
        pC->szRow = avail;
      }
      if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
        goto too_big;
      }
    }
    pC->cacheStatus = p->cacheCtr;
    pC->iHdrOffset = getVarint32(pC->aRow, offset);
    pC->nHdrParsed = 0;
    aOffset[0] = offset;

    /* Make sure a corrupt database has not given us an oversize header.
    ** Do this now to avoid an oversize memory allocation.
    **
    ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
    ** types use so much data space that there can only be 4096 and 32 of
    ** them, respectively.  So the maximum header length results from a
    ** 3-byte type for each of the maximum of 32768 columns plus three
    ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
    */
    if( offset > 98307 || offset > pC->payloadSize ){
      rc = SQLITE_CORRUPT_BKPT;
      goto op_column_error;
    }

    if( avail<offset ){
      /* pC->aRow does not have to hold the entire row, but it does at least
      ** need to cover the header of the record.  If pC->aRow does not contain
      ** the complete header, then set it to zero, forcing the header to be
      ** dynamically allocated. */
      pC->aRow = 0;
      pC->szRow = 0;














    }

    /* The following goto is an optimization.  It can be omitted and
    ** everything will still work.  But OP_Column is measurably faster
    ** by skipping the subsequent conditional, which is always true.
    */
    assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */







|














|
|
|
|
<
<






|
|
|









>




















>
>


<
<
<







<
<
<
<
<
<
<
<
<
<
<
<
<








>
>
>
>
>
>
>
>
>
>
>
>
>
>







76046
76047
76048
76049
76050
76051
76052
76053
76054
76055
76056
76057
76058
76059
76060
76061
76062
76063
76064
76065
76066
76067
76068
76069
76070
76071


76072
76073
76074
76075
76076
76077
76078
76079
76080
76081
76082
76083
76084
76085
76086
76087
76088
76089
76090
76091
76092
76093
76094
76095
76096
76097
76098
76099
76100
76101
76102
76103
76104
76105
76106
76107
76108
76109
76110
76111
76112
76113
76114



76115
76116
76117
76118
76119
76120
76121













76122
76123
76124
76125
76126
76127
76128
76129
76130
76131
76132
76133
76134
76135
76136
76137
76138
76139
76140
76141
76142
76143
76144
76145
76146
76147
76148
76149
76150
  int i;             /* Loop counter */
  Mem *pDest;        /* Where to write the extracted value */
  Mem sMem;          /* For storing the record being decoded */
  const u8 *zData;   /* Part of the record being decoded */
  const u8 *zHdr;    /* Next unparsed byte of the header */
  const u8 *zEndHdr; /* Pointer to first byte after the header */
  u32 offset;        /* Offset into the data */
  u64 offset64;      /* 64-bit offset */
  u32 avail;         /* Number of bytes of available data */
  u32 t;             /* A type code from the record header */
  u16 fx;            /* pDest->flags value */
  Mem *pReg;         /* PseudoTable input register */

  p2 = pOp->p2;
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( p2<pC->nField );
  aOffset = pC->aOffset;
  assert( pC->eCurType!=CURTYPE_VTAB );
  assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
  assert( pC->eCurType!=CURTYPE_SORTER );
  pCrsr = pC->uc.pCursor;



  /* If the cursor cache is stale, bring it up-to-date */
  rc = sqlite3VdbeCursorMoveto(pC);
  if( rc ) goto abort_due_to_error;
  if( pC->cacheStatus!=p->cacheCtr ){
    if( pC->nullRow ){
      if( pC->eCurType==CURTYPE_PSEUDO ){
        assert( pC->uc.pseudoTableReg>0 );
        pReg = &aMem[pC->uc.pseudoTableReg];
        assert( pReg->flags & MEM_Blob );
        assert( memIsValid(pReg) );
        pC->payloadSize = pC->szRow = avail = pReg->n;
        pC->aRow = (u8*)pReg->z;
      }else{
        sqlite3VdbeMemSetNull(pDest);
        goto op_column_out;
      }
    }else{
      assert( pC->eCurType==CURTYPE_BTREE );
      assert( pCrsr );
      if( pC->isTable==0 ){
        assert( sqlite3BtreeCursorIsValid(pCrsr) );
        VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
        assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
        /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
        ** payload size, so it is impossible for payloadSize64 to be
        ** larger than 32 bits. */
        assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
        pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
        pC->payloadSize = (u32)payloadSize64;
      }else{
        assert( sqlite3BtreeCursorIsValid(pCrsr) );
        VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
        assert( rc==SQLITE_OK );   /* DataSize() cannot fail */
        pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
      }
      assert( avail<=65536 );  /* Maximum page size is 64KiB */
      if( pC->payloadSize <= (u32)avail ){
        pC->szRow = pC->payloadSize;
      }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
        goto too_big;
      }else{
        pC->szRow = avail;



      }
    }
    pC->cacheStatus = p->cacheCtr;
    pC->iHdrOffset = getVarint32(pC->aRow, offset);
    pC->nHdrParsed = 0;
    aOffset[0] = offset;















    if( avail<offset ){
      /* pC->aRow does not have to hold the entire row, but it does at least
      ** need to cover the header of the record.  If pC->aRow does not contain
      ** the complete header, then set it to zero, forcing the header to be
      ** dynamically allocated. */
      pC->aRow = 0;
      pC->szRow = 0;

      /* Make sure a corrupt database has not given us an oversize header.
      ** Do this now to avoid an oversize memory allocation.
      **
      ** Type entries can be between 1 and 5 bytes each.  But 4 and 5 byte
      ** types use so much data space that there can only be 4096 and 32 of
      ** them, respectively.  So the maximum header length results from a
      ** 3-byte type for each of the maximum of 32768 columns plus three
      ** extra bytes for the header length itself.  32768*3 + 3 = 98307.
      */
      if( offset > 98307 || offset > pC->payloadSize ){
        rc = SQLITE_CORRUPT_BKPT;
        goto op_column_error;
      }
    }

    /* The following goto is an optimization.  It can be omitted and
    ** everything will still work.  But OP_Column is measurably faster
    ** by skipping the subsequent conditional, which is always true.
    */
    assert( pC->nHdrParsed<=p2 );         /* Conditional skipped */
75346
75347
75348
75349
75350
75351
75352
75353
75354
75355
75356
75357
75358
75359
75360
75361
75362
75363
75364
75365
75366
75367
75368
75369
75370
75371
75372

75373
75374
75375
75376
75377
75378
75379
75380
75381
75382
75383
75384
75385
75386
75387
75388
75389
75390
75391
75392
75393
75394
75395
75396
75397
75398
75399
75400
75401
75402
75403
75404
75405
75406


75407
75408
75409
75410
75411
75412
75413
75414
75415
75416
75417
75418
75419
75420


75421
75422
75423
75424
75425
75426
75427
75428
75429
75430
75431
75432
75433
75434
75435
75436
75437
75438
    ** to extract additional fields up through the p2+1-th field 
    */
    op_column_read_header:
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], 
                                     !pC->isTable, &sMem);
        if( rc!=SQLITE_OK ){
          goto op_column_error;
        }
        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
      i = pC->nHdrParsed;
      offset = aOffset[i];
      zHdr = zData + pC->iHdrOffset;
      zEndHdr = zData + aOffset[0];
      assert( i<=p2 && zHdr<zEndHdr );
      do{
        if( zHdr[0]<0x80 ){
          t = zHdr[0];
          zHdr++;

        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);
        }
        pC->aType[i] = t;
        szField = sqlite3VdbeSerialTypeLen(t);
        offset += szField;
        if( offset<szField ){  /* True if offset overflows */
          zHdr = &zEndHdr[1];  /* Forces SQLITE_CORRUPT return below */
          break;
        }
        i++;
        aOffset[i] = offset;
      }while( i<=p2 && zHdr<zEndHdr );
      pC->nHdrParsed = i;
      pC->iHdrOffset = (u32)(zHdr - zData);
      if( pC->aRow==0 ){
        sqlite3VdbeMemRelease(&sMem);
        sMem.flags = MEM_Null;
      }
  
      /* The record is corrupt if any of the following are true:
      ** (1) the bytes of the header extend past the declared header size
      **          (zHdr>zEndHdr)
      ** (2) the entire header was used but not all data was used
      **          (zHdr==zEndHdr && offset!=pC->payloadSize)
      ** (3) the end of the data extends beyond the end of the record.
      **          (offset > pC->payloadSize)
      */
      if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset!=pC->payloadSize))
       || (offset > pC->payloadSize)
      ){
        rc = SQLITE_CORRUPT_BKPT;
        goto op_column_error;
      }


    }

    /* If after trying to extract new entries from the header, nHdrParsed is
    ** still not up to p2, that means that the record has fewer than p2
    ** columns.  So the result will be either the default value or a NULL.
    */
    if( pC->nHdrParsed<=p2 ){
      if( pOp->p4type==P4_MEM ){
        sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
      }else{
        sqlite3VdbeMemSetNull(pDest);
      }
      goto op_column_out;
    }


  }

  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  t = pC->aType[p2];
  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
  }else{
    /* This branch happens only when content is on overflow pages */
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0







|
<
|
<
<







|




<
|

>


<
<
|
<
<
<
<

|
|



|
<
<
<



<

<

<

|
|




>
>














>
>










|







76159
76160
76161
76162
76163
76164
76165
76166

76167


76168
76169
76170
76171
76172
76173
76174
76175
76176
76177
76178
76179

76180
76181
76182
76183
76184


76185




76186
76187
76188
76189
76190
76191
76192



76193
76194
76195

76196

76197

76198
76199
76200
76201
76202
76203
76204
76205
76206
76207
76208
76209
76210
76211
76212
76213
76214
76215
76216
76217
76218
76219
76220
76221
76222
76223
76224
76225
76226
76227
76228
76229
76230
76231
76232
76233
76234
76235
76236
76237
76238
76239
76240
    ** to extract additional fields up through the p2+1-th field 
    */
    op_column_read_header:
    if( pC->iHdrOffset<aOffset[0] ){
      /* Make sure zData points to enough of the record to cover the header. */
      if( pC->aRow==0 ){
        memset(&sMem, 0, sizeof(sMem));
        rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);

        if( rc!=SQLITE_OK ) goto op_column_error;


        zData = (u8*)sMem.z;
      }else{
        zData = pC->aRow;
      }
  
      /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
      i = pC->nHdrParsed;
      offset64 = aOffset[i];
      zHdr = zData + pC->iHdrOffset;
      zEndHdr = zData + aOffset[0];
      assert( i<=p2 && zHdr<zEndHdr );
      do{

        if( (t = zHdr[0])<0x80 ){
          zHdr++;
          offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
        }else{
          zHdr += sqlite3GetVarint32(zHdr, &t);


          offset64 += sqlite3VdbeSerialTypeLen(t);




        }
        pC->aType[i++] = t;
        aOffset[i] = (u32)(offset64 & 0xffffffff);
      }while( i<=p2 && zHdr<zEndHdr );
      pC->nHdrParsed = i;
      pC->iHdrOffset = (u32)(zHdr - zData);
      if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);



  
      /* The record is corrupt if any of the following are true:
      ** (1) the bytes of the header extend past the declared header size

      ** (2) the entire header was used but not all data was used

      ** (3) the end of the data extends beyond the end of the record.

      */
      if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
       || (offset64 > pC->payloadSize)
      ){
        rc = SQLITE_CORRUPT_BKPT;
        goto op_column_error;
      }
    }else{
      t = 0;
    }

    /* If after trying to extract new entries from the header, nHdrParsed is
    ** still not up to p2, that means that the record has fewer than p2
    ** columns.  So the result will be either the default value or a NULL.
    */
    if( pC->nHdrParsed<=p2 ){
      if( pOp->p4type==P4_MEM ){
        sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
      }else{
        sqlite3VdbeMemSetNull(pDest);
      }
      goto op_column_out;
    }
  }else{
    t = pC->aType[p2];
  }

  /* Extract the content for the p2+1-th column.  Control can only
  ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
  ** all valid.
  */
  assert( p2<pC->nHdrParsed );
  assert( rc==SQLITE_OK );
  assert( sqlite3VdbeCheckMemInvariants(pDest) );
  if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
  assert( t==pC->aType[p2] );
  if( pC->szRow>=aOffset[p2+1] ){
    /* This is the common case where the desired content fits on the original
    ** page - where the content is not on an overflow page */
    sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
  }else{
    /* This branch happens only when content is on overflow pages */
    if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
75536
75537
75538
75539
75540
75541
75542
75543
75544
75545
75546
75547
75548
75549
75550
  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */
  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] header */
  int j;                 /* Space used in zNewRecord[] content */
  int len;               /* Length of a field */

  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------







|







76338
76339
76340
76341
76342
76343
76344
76345
76346
76347
76348
76349
76350
76351
76352
  Mem *pData0;           /* First field to be combined into the record */
  Mem *pLast;            /* Last field of the record */
  int nField;            /* Number of fields in the record */
  char *zAffinity;       /* The affinity string for the record */
  int file_format;       /* File format to use for encoding */
  int i;                 /* Space used in zNewRecord[] header */
  int j;                 /* Space used in zNewRecord[] content */
  u32 len;               /* Length of a field */

  /* Assuming the record contains N fields, the record format looks
  ** like this:
  **
  ** ------------------------------------------------------------------------
  ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 | 
  ** ------------------------------------------------------------------------
75586
75587
75588
75589
75590
75591
75592
75593
75594
75595
75596
75597
75598
75599
75600
75601

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
    pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format);
    len = sqlite3VdbeSerialTypeLen(serial_type);
    if( pRec->flags & MEM_Zero ){
      if( nData ){
        if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
      }else{
        nZero += pRec->u.nZero;
        len -= pRec->u.nZero;
      }







|
<







76388
76389
76390
76391
76392
76393
76394
76395

76396
76397
76398
76399
76400
76401
76402

  /* Loop through the elements that will make up the record to figure
  ** out how much space is required for the new record.
  */
  pRec = pLast;
  do{
    assert( memIsValid(pRec) );
    pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);

    if( pRec->flags & MEM_Zero ){
      if( nData ){
        if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
      }else{
        nZero += pRec->u.nZero;
        len -= pRec->u.nZero;
      }
75673
75674
75675
75676
75677
75678
75679

75680
75681
75682
75683
75684
75685
75686
75687
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2 */
  i64 nEntry;
  BtCursor *pCrsr;


  pCrsr = p->apCsr[pOp->p1]->pCursor;
  assert( pCrsr );
  nEntry = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3BtreeCount(pCrsr, &nEntry);
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = nEntry;
  break;
}







>
|







76474
76475
76476
76477
76478
76479
76480
76481
76482
76483
76484
76485
76486
76487
76488
76489
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2 */
  i64 nEntry;
  BtCursor *pCrsr;

  assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
  pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
  assert( pCrsr );
  nEntry = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3BtreeCount(pCrsr, &nEntry);
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = nEntry;
  break;
}
76201
76202
76203
76204
76205
76206
76207
76208
76209
76210
76211
76212
76213
76214
76215
76216
76217
76218
76219
76220
76221
76222
76223
76224
76225
76226
76227
76228

76229
76230
76231
76232
76233
76234
76235
76236
    goto open_cursor_set_hints;
  }
  /* If the cursor is not currently open or is open on a different
  ** index, then fall through into OP_OpenRead to force a reopen */
case OP_OpenRead:
case OP_OpenWrite:

  assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR|OPFLAG_SEEKEQ))==pOp->p5 );
  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT_ROLLBACK;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbMaskTest(p->btreeMask, iDb) );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){

    wrFlag = 1;
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }







<




















>
|







77003
77004
77005
77006
77007
77008
77009

77010
77011
77012
77013
77014
77015
77016
77017
77018
77019
77020
77021
77022
77023
77024
77025
77026
77027
77028
77029
77030
77031
77032
77033
77034
77035
77036
77037
77038
    goto open_cursor_set_hints;
  }
  /* If the cursor is not currently open or is open on a different
  ** index, then fall through into OP_OpenRead to force a reopen */
case OP_OpenRead:
case OP_OpenWrite:


  assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
  assert( p->bIsReader );
  assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
          || p->readOnly==0 );

  if( p->expired ){
    rc = SQLITE_ABORT_ROLLBACK;
    break;
  }

  nField = 0;
  pKeyInfo = 0;
  p2 = pOp->p2;
  iDb = pOp->p3;
  assert( iDb>=0 && iDb<db->nDb );
  assert( DbMaskTest(p->btreeMask, iDb) );
  pDb = &db->aDb[iDb];
  pX = pDb->pBt;
  assert( pX!=0 );
  if( pOp->opcode==OP_OpenWrite ){
    assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
    wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( pDb->pSchema->file_format < p->minWriteFileFormat ){
      p->minWriteFileFormat = pDb->pSchema->file_format;
    }
  }else{
    wrFlag = 0;
  }
76258
76259
76260
76261
76262
76263
76264
76265
76266
76267
76268
76269
76270
76271
76272
76273
76274
76275
76276
76277
76278
76279
76280




76281
76282
76283
76284
76285
76286
76287
76288
76289
    nField = pKeyInfo->nField+pKeyInfo->nXField;
  }else if( pOp->p4type==P4_INT32 ){
    nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
  pCur->pKeyInfo = pKeyInfo;
  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;

open_cursor_set_hints:
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );




  sqlite3BtreeCursorHints(pCur->pCursor,
                          (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.







|




|










>
>
>
>
|
|







77060
77061
77062
77063
77064
77065
77066
77067
77068
77069
77070
77071
77072
77073
77074
77075
77076
77077
77078
77079
77080
77081
77082
77083
77084
77085
77086
77087
77088
77089
77090
77091
77092
77093
77094
77095
    nField = pKeyInfo->nField+pKeyInfo->nXField;
  }else if( pOp->p4type==P4_INT32 ){
    nField = pOp->p4.i;
  }
  assert( pOp->p1>=0 );
  assert( nField>=0 );
  testcase( nField==0 );  /* Table with INTEGER PRIMARY KEY and nothing else */
  pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
  if( pCur==0 ) goto no_mem;
  pCur->nullRow = 1;
  pCur->isOrdered = 1;
  pCur->pgnoRoot = p2;
  rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
  pCur->pKeyInfo = pKeyInfo;
  /* Set the VdbeCursor.isTable variable. Previous versions of
  ** SQLite used to check if the root-page flags were sane at this point
  ** and report database corruption if they were not, but this check has
  ** since moved into the btree layer.  */  
  pCur->isTable = pOp->p4type!=P4_KEYINFO;

open_cursor_set_hints:
  assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
  assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
  testcase( pOp->p5 & OPFLAG_BULKCSR );
#ifdef SQLITE_ENABLE_CURSOR_HINTS
  testcase( pOp->p2 & OPFLAG_SEEKEQ );
#endif
  sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
                               (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
  break;
}

/* Opcode: OpenEphemeral P1 P2 * P4 P5
** Synopsis: nColumn=P2
**
** Open a new cursor P1 to a transient table.
76318
76319
76320
76321
76322
76323
76324
76325
76326
76327
76328
76329
76330
76331
76332
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;
  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);







|







77124
77125
77126
77127
77128
77129
77130
77131
77132
77133
77134
77135
77136
77137
77138
      SQLITE_OPEN_READWRITE |
      SQLITE_OPEN_CREATE |
      SQLITE_OPEN_EXCLUSIVE |
      SQLITE_OPEN_DELETEONCLOSE |
      SQLITE_OPEN_TRANSIENT_DB;
  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->isEphemeral = 1;
  rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt, 
                        BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
  if( rc==SQLITE_OK ){
    rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
76342
76343
76344
76345
76346
76347
76348
76349

76350
76351
76352
76353

76354
76355
76356
76357
76358
76359
76360
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        assert( pKeyInfo->db==db );
        assert( pKeyInfo->enc==ENC(db) );
        pCx->pKeyInfo = pKeyInfo;
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1, pKeyInfo, pCx->pCursor);

      }
      pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);

      pCx->isTable = 1;
    }
  }
  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
  break;
}








|
>



|
>







77148
77149
77150
77151
77152
77153
77154
77155
77156
77157
77158
77159
77160
77161
77162
77163
77164
77165
77166
77167
77168
      assert( pOp->p4type==P4_KEYINFO );
      rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5); 
      if( rc==SQLITE_OK ){
        assert( pgno==MASTER_ROOT+1 );
        assert( pKeyInfo->db==db );
        assert( pKeyInfo->enc==ENC(db) );
        pCx->pKeyInfo = pKeyInfo;
        rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
                                pKeyInfo, pCx->uc.pCursor);
      }
      pCx->isTable = 0;
    }else{
      rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
                              0, pCx->uc.pCursor);
      pCx->isTable = 1;
    }
  }
  pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
  break;
}

76369
76370
76371
76372
76373
76374
76375
76376
76377
76378
76379
76380
76381
76382
76383
76384
76385
76386
76387
76388
76389
76390
76391
76392
76393
76394
76395
76396
76397
76398
76399
76400
76401
76402
76403
** key is sufficient to produce the required results.
*/
case OP_SorterOpen: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  assert( pCx->pKeyInfo->db==db );
  assert( pCx->pKeyInfo->enc==ENC(db) );
  rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
  break;
}

/* Opcode: SequenceTest P1 P2 * * *
** Synopsis: if( cursor[P1].ctr++ ) pc = P2
**
** P1 is a sorter cursor. If the sequence counter is currently zero, jump
** to P2. Regardless of whether or not the jump is taken, increment the
** the sequence value.
*/
case OP_SequenceTest: {
  VdbeCursor *pC;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC->pSorter );
  if( (pC->seqCount++)==0 ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *







|



















|







77177
77178
77179
77180
77181
77182
77183
77184
77185
77186
77187
77188
77189
77190
77191
77192
77193
77194
77195
77196
77197
77198
77199
77200
77201
77202
77203
77204
77205
77206
77207
77208
77209
77210
77211
** key is sufficient to produce the required results.
*/
case OP_SorterOpen: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p2>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
  if( pCx==0 ) goto no_mem;
  pCx->pKeyInfo = pOp->p4.pKeyInfo;
  assert( pCx->pKeyInfo->db==db );
  assert( pCx->pKeyInfo->enc==ENC(db) );
  rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
  break;
}

/* Opcode: SequenceTest P1 P2 * * *
** Synopsis: if( cursor[P1].ctr++ ) pc = P2
**
** P1 is a sorter cursor. If the sequence counter is currently zero, jump
** to P2. Regardless of whether or not the jump is taken, increment the
** the sequence value.
*/
case OP_SequenceTest: {
  VdbeCursor *pC;
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( isSorter(pC) );
  if( (pC->seqCount++)==0 ){
    goto jump_to_p2;
  }
  break;
}

/* Opcode: OpenPseudo P1 P2 P3 * *
76417
76418
76419
76420
76421
76422
76423
76424
76425
76426
76427
76428
76429
76430
76431
76432
76433
76434
** the pseudo-table.
*/
case OP_OpenPseudo: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p3>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->pseudoTableReg = pOp->p2;
  pCx->isTable = 1;
  assert( pOp->p5==0 );
  break;
}

/* Opcode: Close P1 * * * *
**







|


|







77225
77226
77227
77228
77229
77230
77231
77232
77233
77234
77235
77236
77237
77238
77239
77240
77241
77242
** the pseudo-table.
*/
case OP_OpenPseudo: {
  VdbeCursor *pCx;

  assert( pOp->p1>=0 );
  assert( pOp->p3>=0 );
  pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
  if( pCx==0 ) goto no_mem;
  pCx->nullRow = 1;
  pCx->uc.pseudoTableReg = pOp->p2;
  pCx->isTable = 1;
  assert( pOp->p5==0 );
  break;
}

/* Opcode: Close P1 * * * *
**
76452
76453
76454
76455
76456
76457
76458
76459
76460
76461
76462
76463
76464
76465
76466
76467
76468
76469
76470
76471
76472
76473
76474
76475







76476
76477
76478
76479
76480
76481
76482
** first 63 columns of the table or index that are actually used
** by the cursor.  The high-order bit is set if any column after
** the 64th is used.
*/
case OP_ColumnsUsed: {
  VdbeCursor *pC;
  pC = p->apCsr[pOp->p1];
  assert( pC->pCursor );
  pC->maskUsed = *(u64*)pOp->p4.pI64;
  break;
}
#endif

/* Opcode: SeekGE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as the key.  If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.







**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/







|
















>
>
>
>
>
>
>







77260
77261
77262
77263
77264
77265
77266
77267
77268
77269
77270
77271
77272
77273
77274
77275
77276
77277
77278
77279
77280
77281
77282
77283
77284
77285
77286
77287
77288
77289
77290
77291
77292
77293
77294
77295
77296
77297
** first 63 columns of the table or index that are actually used
** by the cursor.  The high-order bit is set if any column after
** the 64th is used.
*/
case OP_ColumnsUsed: {
  VdbeCursor *pC;
  pC = p->apCsr[pOp->p1];
  assert( pC->eCurType==CURTYPE_BTREE );
  pC->maskUsed = *(u64*)pOp->p4.pI64;
  break;
}
#endif

/* Opcode: SeekGE P1 P2 P3 P4 *
** Synopsis: key=r[P3@P4]
**
** If cursor P1 refers to an SQL table (B-Tree that uses integer keys), 
** use the value in register P3 as the key.  If cursor P1 refers 
** to an SQL index, then P3 is the first in an array of P4 registers 
** that are used as an unpacked index key. 
**
** Reposition cursor P1 so that  it points to the smallest entry that 
** is greater than or equal to the key value. If there are no records 
** greater than or equal to the key and P2 is not zero, then jump to P2.
**
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
** opcode will always land on a record that equally equals the key, or
** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
** opcode must be followed by an IdxLE opcode with the same arguments.
** The IdxLE opcode will be skipped if this opcode succeeds, but the
** IdxLE opcode will be used on subsequent loop iterations.
**
** This opcode leaves the cursor configured to move in forward order,
** from the beginning toward the end.  In other words, the cursor is
** configured to use Next, not Prev.
**
** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
*/
76528
76529
76530
76531
76532
76533
76534







76535
76536
76537
76538
76539
76540
76541
76542
76543
76544
76545
76546

76547
76548
76549
76550
76551
76552
76553
76554
76555
76556
76557
76558

76559
76560
76561
76562
76563

76564
76565
76566
76567
76568
76569
76570
76571
76572
76573
76574
76575
76576
76577
76578
76579
76580
76581
76582
76583
76584
76585
76586
** is less than or equal to the key value. If there are no records 
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning.  In other words, the cursor is
** configured to use Prev, not Next.
**







** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLT:         /* jump, in3 */
case OP_SeekLE:         /* jump, in3 */
case OP_SeekGE:         /* jump, in3 */
case OP_SeekGT: {       /* jump, in3 */
  int res;
  int oc;
  VdbeCursor *pC;
  UnpackedRecord r;
  int nField;
  i64 iKey;      /* The rowid we are to seek to */


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( OP_SeekLE == OP_SeekLT+1 );
  assert( OP_SeekGE == OP_SeekLT+2 );
  assert( OP_SeekGT == OP_SeekLT+3 );
  assert( pC->isOrdered );
  assert( pC->pCursor!=0 );
  oc = pOp->opcode;

  pC->nullRow = 0;
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif


  /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
  ** OP_SeekLE opcodes are allowed, and these must be immediately followed
  ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
  */
#ifdef SQLITE_DEBUG
  if( sqlite3BtreeCursorHasHint(pC->pCursor, BTREE_SEEK_EQ) ){
    assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    assert( pOp[1].p1==pOp[0].p1 );
    assert( pOp[1].p2==pOp[0].p2 );
    assert( pOp[1].p3==pOp[0].p3 );
    assert( pOp[1].p4.i==pOp[0].p4.i );
  }
#endif
 
  if( pC->isTable ){
    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
      applyNumericAffinity(pIn3, 0);
    }







>
>
>
>
>
>
>






|
|
|
|
|
|
>





|




|

>





>
|
<
<
<
<
|
<
<
<
<
<
<
|
<
<
<







77343
77344
77345
77346
77347
77348
77349
77350
77351
77352
77353
77354
77355
77356
77357
77358
77359
77360
77361
77362
77363
77364
77365
77366
77367
77368
77369
77370
77371
77372
77373
77374
77375
77376
77377
77378
77379
77380
77381
77382
77383
77384
77385
77386
77387
77388
77389




77390






77391



77392
77393
77394
77395
77396
77397
77398
** is less than or equal to the key value. If there are no records 
** less than or equal to the key and P2 is not zero, then jump to P2.
**
** This opcode leaves the cursor configured to move in reverse order,
** from the end toward the beginning.  In other words, the cursor is
** configured to use Prev, not Next.
**
** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
** opcode will always land on a record that equally equals the key, or
** else jump immediately to P2.  When the cursor is OPFLAG_SEEKEQ, this
** opcode must be followed by an IdxGE opcode with the same arguments.
** The IdxGE opcode will be skipped if this opcode succeeds, but the
** IdxGE opcode will be used on subsequent loop iterations.
**
** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
*/
case OP_SeekLT:         /* jump, in3 */
case OP_SeekLE:         /* jump, in3 */
case OP_SeekGE:         /* jump, in3 */
case OP_SeekGT: {       /* jump, in3 */
  int res;           /* Comparison result */
  int oc;            /* Opcode */
  VdbeCursor *pC;    /* The cursor to seek */
  UnpackedRecord r;  /* The key to seek for */
  int nField;        /* Number of columns or fields in the key */
  i64 iKey;          /* The rowid we are to seek to */
  int eqOnly;        /* Only interested in == results */

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p2!=0 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( OP_SeekLE == OP_SeekLT+1 );
  assert( OP_SeekGE == OP_SeekLT+2 );
  assert( OP_SeekGT == OP_SeekLT+3 );
  assert( pC->isOrdered );
  assert( pC->uc.pCursor!=0 );
  oc = pOp->opcode;
  eqOnly = 0;
  pC->nullRow = 0;
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif

  if( pC->isTable ){
    /* The BTREE_SEEK_EQ flag is only set on index cursors */




    assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );










    /* The input value in P3 might be of any type: integer, real, string,
    ** blob, or NULL.  But it needs to be an integer before we can do
    ** the seek, so convert it. */
    pIn3 = &aMem[pOp->p3];
    if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
      applyNumericAffinity(pIn3, 0);
    }
76615
76616
76617
76618
76619
76620
76621
76622
76623
76624
76625
76626
76627














76628
76629
76630
76631
76632
76633
76634
      else if( pIn3->u.r>(double)iKey ){
        assert( OP_SeekLE==(OP_SeekLT+1) );
        assert( OP_SeekGT==(OP_SeekGE+1) );
        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
      }
    } 
    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
    pC->movetoTarget = iKey;  /* Used by OP_Delete */
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
  }else{














    nField = pOp->p4.i;
    assert( pOp->p4type==P4_INT32 );
    assert( nField>0 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)nField;

    /* The next line of code computes as follows, only faster:







|





>
>
>
>
>
>
>
>
>
>
>
>
>
>







77427
77428
77429
77430
77431
77432
77433
77434
77435
77436
77437
77438
77439
77440
77441
77442
77443
77444
77445
77446
77447
77448
77449
77450
77451
77452
77453
77454
77455
77456
77457
77458
77459
77460
      else if( pIn3->u.r>(double)iKey ){
        assert( OP_SeekLE==(OP_SeekLT+1) );
        assert( OP_SeekGT==(OP_SeekGE+1) );
        assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
        if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
      }
    } 
    rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
    pC->movetoTarget = iKey;  /* Used by OP_Delete */
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
  }else{
    /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
    ** OP_SeekLE opcodes are allowed, and these must be immediately followed
    ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
    */
    if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
      eqOnly = 1;
      assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
      assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
      assert( pOp[1].p1==pOp[0].p1 );
      assert( pOp[1].p2==pOp[0].p2 );
      assert( pOp[1].p3==pOp[0].p3 );
      assert( pOp[1].p4.i==pOp[0].p4.i );
    }

    nField = pOp->p4.i;
    assert( pOp->p4type==P4_INT32 );
    assert( nField>0 );
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)nField;

    /* The next line of code computes as follows, only faster:
76645
76646
76647
76648
76649
76650
76651

76652
76653
76654




76655
76656
76657
76658
76659
76660
76661
76662
76663
76664
76665
76666
76667
76668
76669
76670
76671
76672
76673
76674
76675
76676
76677
76678
76679
76680
76681
76682

76683
76684
76685
76686



76687
76688
76689
76690
76691
76692
76693
76694
76695
76696
76697
76698
76699
76700
76701
76702
76703
76704
76705
76706

76707
76708
76709
76710
76711
76712
76713
76714
    assert( oc!=OP_SeekLT || r.default_rc==+1 );

    r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    ExpandBlob(r.aMem);

    rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;




    }
  }
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
    if( res<0 || (res==0 && oc==OP_SeekGT) ){
      res = 0;
      rc = sqlite3BtreeNext(pC->pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
    }else{
      res = 0;
    }
  }else{
    assert( oc==OP_SeekLT || oc==OP_SeekLE );
    if( res>0 || (res==0 && oc==OP_SeekLT) ){
      res = 0;
      rc = sqlite3BtreePrevious(pC->pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
    }else{
      /* res might be negative because the table is empty.  Check to
      ** see if this is the case.
      */
      res = sqlite3BtreeEof(pC->pCursor);
    }
  }

  assert( pOp->p2>0 );
  VdbeBranchTaken(res!=0,2);
  if( res ){
    goto jump_to_p2;



  }
  break;
}

/* Opcode: Seek P1 P2 * * *
** Synopsis:  intkey=r[P2]
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  assert( pC->pCursor!=0 );
  assert( pC->isTable );
  pC->nullRow = 0;
  pIn2 = &aMem[pOp->p2];
  pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
  pC->deferredMoveto = 1;
  break;
}







>
|


>
>
>
>










|








|





|


>




>
>
>




















>
|







77471
77472
77473
77474
77475
77476
77477
77478
77479
77480
77481
77482
77483
77484
77485
77486
77487
77488
77489
77490
77491
77492
77493
77494
77495
77496
77497
77498
77499
77500
77501
77502
77503
77504
77505
77506
77507
77508
77509
77510
77511
77512
77513
77514
77515
77516
77517
77518
77519
77520
77521
77522
77523
77524
77525
77526
77527
77528
77529
77530
77531
77532
77533
77534
77535
77536
77537
77538
77539
77540
77541
77542
77543
77544
77545
77546
77547
77548
77549
77550
    assert( oc!=OP_SeekLT || r.default_rc==+1 );

    r.aMem = &aMem[pOp->p3];
#ifdef SQLITE_DEBUG
    { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
#endif
    ExpandBlob(r.aMem);
    r.eqSeen = 0;
    rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
    if( rc!=SQLITE_OK ){
      goto abort_due_to_error;
    }
    if( eqOnly && r.eqSeen==0 ){
      assert( res!=0 );
      goto seek_not_found;
    }
  }
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;
#ifdef SQLITE_TEST
  sqlite3_search_count++;
#endif
  if( oc>=OP_SeekGE ){  assert( oc==OP_SeekGE || oc==OP_SeekGT );
    if( res<0 || (res==0 && oc==OP_SeekGT) ){
      res = 0;
      rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
    }else{
      res = 0;
    }
  }else{
    assert( oc==OP_SeekLT || oc==OP_SeekLE );
    if( res>0 || (res==0 && oc==OP_SeekLT) ){
      res = 0;
      rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
      if( rc!=SQLITE_OK ) goto abort_due_to_error;
    }else{
      /* res might be negative because the table is empty.  Check to
      ** see if this is the case.
      */
      res = sqlite3BtreeEof(pC->uc.pCursor);
    }
  }
seek_not_found:
  assert( pOp->p2>0 );
  VdbeBranchTaken(res!=0,2);
  if( res ){
    goto jump_to_p2;
  }else if( eqOnly ){
    assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
    pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
  }
  break;
}

/* Opcode: Seek P1 P2 * * *
** Synopsis:  intkey=r[P2]
**
** P1 is an open table cursor and P2 is a rowid integer.  Arrange
** for P1 to move so that it points to the rowid given by P2.
**
** This is actually a deferred seek.  Nothing actually happens until
** the cursor is used to read a record.  That way, if no reads
** occur, no unnecessary I/O happens.
*/
case OP_Seek: {    /* in2 */
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->isTable );
  pC->nullRow = 0;
  pIn2 = &aMem[pOp->p2];
  pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
  pC->deferredMoveto = 1;
  break;
}
76794
76795
76796
76797
76798
76799
76800

76801
76802
76803
76804
76805
76806
76807
76808
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif
  pIn3 = &aMem[pOp->p3];

  assert( pC->pCursor!=0 );
  assert( pC->isTable==0 );
  pFree = 0;
  if( pOp->p4.i>0 ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p4.i;
    r.aMem = pIn3;
    for(ii=0; ii<r.nField; ii++){







>
|







77630
77631
77632
77633
77634
77635
77636
77637
77638
77639
77640
77641
77642
77643
77644
77645
  assert( pOp->p4type==P4_INT32 );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifdef SQLITE_DEBUG
  pC->seekOp = pOp->opcode;
#endif
  pIn3 = &aMem[pOp->p3];
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->isTable==0 );
  pFree = 0;
  if( pOp->p4.i>0 ){
    r.pKeyInfo = pC->pKeyInfo;
    r.nField = (u16)pOp->p4.i;
    r.aMem = pIn3;
    for(ii=0; ii<r.nField; ii++){
76831
76832
76833
76834
76835
76836
76837
76838
76839
76840
76841
76842
76843
76844
76845
    for(ii=0; ii<pIdxKey->nField; ii++){
      if( pIdxKey->aMem[ii].flags & MEM_Null ){
        takeJump = 1;
        break;
      }
    }
  }
  rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
  sqlite3DbFree(db, pFree);
  if( rc!=SQLITE_OK ){
    break;
  }
  pC->seekResult = res;
  alreadyExists = (res==0);
  pC->nullRow = 1-alreadyExists;







|







77668
77669
77670
77671
77672
77673
77674
77675
77676
77677
77678
77679
77680
77681
77682
    for(ii=0; ii<pIdxKey->nField; ii++){
      if( pIdxKey->aMem[ii].flags & MEM_Null ){
        takeJump = 1;
        break;
      }
    }
  }
  rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
  sqlite3DbFree(db, pFree);
  if( rc!=SQLITE_OK ){
    break;
  }
  pC->seekResult = res;
  alreadyExists = (res==0);
  pC->nullRow = 1-alreadyExists;
76885
76886
76887
76888
76889
76890
76891
76892
76893
76894
76895
76896
76897
76898
76899
76900
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifdef SQLITE_DEBUG
  pC->seekOp = 0;
#endif
  assert( pC->isTable );
  assert( pC->pseudoTableReg==0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  res = 0;
  iKey = pIn3->u.i;
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
  assert( rc==SQLITE_OK || res==0 );
  pC->movetoTarget = iKey;  /* Used by OP_Delete */
  pC->nullRow = 0;







|
|







77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
#ifdef SQLITE_DEBUG
  pC->seekOp = 0;
#endif
  assert( pC->isTable );
  assert( pC->eCurType==CURTYPE_BTREE );
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  res = 0;
  iKey = pIn3->u.i;
  rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
  assert( rc==SQLITE_OK || res==0 );
  pC->movetoTarget = iKey;  /* Used by OP_Delete */
  pC->nullRow = 0;
76920
76921
76922
76923
76924
76925
76926

76927
76928
76929
76930
76931
76932
76933
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2 */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );

  pOut = out2Prerelease(p, pOp);
  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
  break;
}


/* Opcode: NewRowid P1 P2 P3 * *







>







77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2 */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
  break;
}


/* Opcode: NewRowid P1 P2 P3 * *
76955
76956
76957
76958
76959
76960
76961

76962
76963
76964
76965
76966
76967
76968
76969

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  assert( pC->pCursor!=0 );
  {
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second







>
|







77793
77794
77795
77796
77797
77798
77799
77800
77801
77802
77803
77804
77805
77806
77807
77808

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  {
    /* The next rowid or record number (different terms for the same
    ** thing) is obtained in a two-step algorithm.
    **
    ** First we attempt to find the largest existing rowid and add one
    ** to that.  But if the largest existing rowid is already the maximum
    ** positive integer, we have to fall through to the second
76983
76984
76985
76986
76987
76988
76989
76990
76991
76992
76993
76994
76995
76996
76997
76998
76999
77000
77001
77002
77003
77004
77005
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

    if( !pC->useRandomRowid ){
      rc = sqlite3BtreeLast(pC->pCursor, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      if( res ){
        v = 1;   /* IMP: R-61914-48074 */
      }else{
        assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
        rc = sqlite3BtreeKeySize(pC->pCursor, &v);
        assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
        if( v>=MAX_ROWID ){
          pC->useRandomRowid = 1;
        }else{
          v++;   /* IMP: R-29538-34987 */
        }
      }







|






|
|







77822
77823
77824
77825
77826
77827
77828
77829
77830
77831
77832
77833
77834
77835
77836
77837
77838
77839
77840
77841
77842
77843
77844
    ** Others complain about 0x7ffffffffffffffffLL.  The following macro seems
    ** to provide the constant while making all compilers happy.
    */
#   define MAX_ROWID  (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
#endif

    if( !pC->useRandomRowid ){
      rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
      if( rc!=SQLITE_OK ){
        goto abort_due_to_error;
      }
      if( res ){
        v = 1;   /* IMP: R-61914-48074 */
      }else{
        assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
        rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
        assert( rc==SQLITE_OK );   /* Cannot fail following BtreeLast() */
        if( v>=MAX_ROWID ){
          pC->useRandomRowid = 1;
        }else{
          v++;   /* IMP: R-29538-34987 */
        }
      }
77042
77043
77044
77045
77046
77047
77048
77049
77050
77051
77052
77053
77054
77055
77056
      ** it finds one that is not previously used. */
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      cnt = 0;
      do{
        sqlite3_randomness(sizeof(v), &v);
        v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
      }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
                                                 0, &res))==SQLITE_OK)
            && (res==0)
            && (++cnt<100));
      if( rc==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
        goto abort_due_to_error;
      }







|







77881
77882
77883
77884
77885
77886
77887
77888
77889
77890
77891
77892
77893
77894
77895
      ** it finds one that is not previously used. */
      assert( pOp->p3==0 );  /* We cannot be in random rowid mode if this is
                             ** an AUTOINCREMENT table. */
      cnt = 0;
      do{
        sqlite3_randomness(sizeof(v), &v);
        v &= (MAX_ROWID>>1); v++;  /* Ensure that v is greater than zero */
      }while(  ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
                                                 0, &res))==SQLITE_OK)
            && (res==0)
            && (++cnt<100));
      if( rc==SQLITE_OK && res==0 ){
        rc = SQLITE_FULL;   /* IMP: R-38219-53002 */
        goto abort_due_to_error;
      }
77122
77123
77124
77125
77126
77127
77128
77129
77130
77131
77132
77133
77134
77135
77136
77137
  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */

  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pCursor!=0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );







|
|







77961
77962
77963
77964
77965
77966
77967
77968
77969
77970
77971
77972
77973
77974
77975
77976
  int op;           /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */

  pData = &aMem[pOp->p2];
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( memIsValid(pData) );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->isTable );
  REGISTER_TRACE(pOp->p2, pData);

  if( pOp->opcode==OP_Insert ){
    pKey = &aMem[pOp->p3];
    assert( pKey->flags & MEM_Int );
    assert( memIsValid(pKey) );
77152
77153
77154
77155
77156
77157
77158
77159
77160
77161
77162
77163
77164
77165
77166
  }
  seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
  if( pData->flags & MEM_Zero ){
    nZero = pData->u.nZero;
  }else{
    nZero = 0;
  }
  rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
                          pData->z, pData->n, nZero,
                          (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
  );
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */







|







77991
77992
77993
77994
77995
77996
77997
77998
77999
78000
78001
78002
78003
78004
78005
  }
  seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
  if( pData->flags & MEM_Zero ){
    nZero = pData->u.nZero;
  }else{
    nZero = 0;
  }
  rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
                          pData->z, pData->n, nZero,
                          (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
  );
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
77199
77200
77201
77202
77203
77204
77205

77206
77207
77208
77209
77210
77211
77212
77213
77214
77215
77216
77217
77218
77219
77220
77221
77222
77223
77224
77225
77226
77227
77228
77229
77230
77231
77232
case OP_Delete: {
  VdbeCursor *pC;
  u8 hasUpdateCallback;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  assert( pC->pCursor!=0 );  /* Only valid for real tables, no pseudotables */
  assert( pC->deferredMoveto==0 );

  hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
  if( pOp->p5 && hasUpdateCallback ){
    sqlite3BtreeKeySize(pC->pCursor, &pC->movetoTarget);
  }

#ifdef SQLITE_DEBUG
  /* The seek operation that positioned the cursor prior to OP_Delete will
  ** have also set the pC->movetoTarget field to the rowid of the row that
  ** is being deleted */
  if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
    i64 iKey = 0;
    sqlite3BtreeKeySize(pC->pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 
  }
#endif
 
  rc = sqlite3BtreeDelete(pC->pCursor, pOp->p5);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && hasUpdateCallback ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
    assert( pC->iDb>=0 );







>
|




|








|




|







78038
78039
78040
78041
78042
78043
78044
78045
78046
78047
78048
78049
78050
78051
78052
78053
78054
78055
78056
78057
78058
78059
78060
78061
78062
78063
78064
78065
78066
78067
78068
78069
78070
78071
78072
case OP_Delete: {
  VdbeCursor *pC;
  u8 hasUpdateCallback;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0 );
  assert( pC->deferredMoveto==0 );

  hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
  if( pOp->p5 && hasUpdateCallback ){
    sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
  }

#ifdef SQLITE_DEBUG
  /* The seek operation that positioned the cursor prior to OP_Delete will
  ** have also set the pC->movetoTarget field to the rowid of the row that
  ** is being deleted */
  if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
    i64 iKey = 0;
    sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
    assert( pC->movetoTarget==iKey ); 
  }
#endif
 
  rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
  pC->cacheStatus = CACHE_STALE;

  /* Invoke the update-hook if required. */
  if( rc==SQLITE_OK && hasUpdateCallback ){
    db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
                        db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
    assert( pC->iDb>=0 );
77335
77336
77337
77338
77339
77340
77341


77342
77343
77344
77345
77346
77347
77348
77349
77350
77351
77352
77353
77354
77355
77356

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];


  assert( isSorter(pC)==0 );
  assert( pC->isTable || pOp->opcode!=OP_RowData );
  assert( pC->isTable==0 || pOp->opcode==OP_RowData );
  assert( pC!=0 );
  assert( pC->nullRow==0 );
  assert( pC->pseudoTableReg==0 );
  assert( pC->pCursor!=0 );
  pCrsr = pC->pCursor;

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  If this where not the case, on of the following assert()s
  ** would fail.  Should this ever change (because of changes in the code
  ** generator) then the fix would be to insert a call to
  ** sqlite3VdbeCursorMoveto().







>
>



<

<
|
|







78175
78176
78177
78178
78179
78180
78181
78182
78183
78184
78185
78186

78187

78188
78189
78190
78191
78192
78193
78194
78195
78196

  pOut = &aMem[pOp->p2];
  memAboutToChange(p, pOut);

  /* Note that RowKey and RowData are really exactly the same instruction */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( isSorter(pC)==0 );
  assert( pC->isTable || pOp->opcode!=OP_RowData );
  assert( pC->isTable==0 || pOp->opcode==OP_RowData );

  assert( pC->nullRow==0 );

  assert( pC->uc.pCursor!=0 );
  pCrsr = pC->uc.pCursor;

  /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
  ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
  ** the cursor.  If this where not the case, on of the following assert()s
  ** would fail.  Should this ever change (because of changes in the code
  ** generator) then the fix would be to insert a call to
  ** sqlite3VdbeCursorMoveto().
77410
77411
77412
77413
77414
77415
77416
77417
77418
77419
77420
77421
77422
77423
77424

77425
77426
77427
77428
77429
77430
77431

77432
77433
77434
77435
77436
77437
77438
77439
77440
77441
77442
77443
77444
77445
77446
77447
77448
77449
77450
77451
77452
77453
77454
77455
77456
77457
77458
77459
77460

77461
77462
77463
77464
77465
77466
77467
77468
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 || pC->nullRow );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;
  }else if( pC->deferredMoveto ){
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->pVtabCursor ){

    pVtab = pC->pVtabCursor->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->pVtabCursor, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{

    assert( pC->pCursor!=0 );
    rc = sqlite3VdbeCursorRestore(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->nullRow ){
      pOut->flags = MEM_Null;
      break;
    }
    rc = sqlite3BtreeKeySize(pC->pCursor, &v);
    assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->cacheStatus = CACHE_STALE;
  if( pC->pCursor ){

    sqlite3BtreeClearCursor(pC->pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 P3 * *
**
** The next use of the Rowid or Column or Prev instruction for P1 







|






|
>
|


|



>
|






|




















|
>
|







78250
78251
78252
78253
78254
78255
78256
78257
78258
78259
78260
78261
78262
78263
78264
78265
78266
78267
78268
78269
78270
78271
78272
78273
78274
78275
78276
78277
78278
78279
78280
78281
78282
78283
78284
78285
78286
78287
78288
78289
78290
78291
78292
78293
78294
78295
78296
78297
78298
78299
78300
78301
78302
78303
78304
78305
78306
78307
78308
78309
78310
78311
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;
  }else if( pC->deferredMoveto ){
    v = pC->movetoTarget;
#ifndef SQLITE_OMIT_VIRTUALTABLE
  }else if( pC->eCurType==CURTYPE_VTAB ){
    assert( pC->uc.pVCur!=0 );
    pVtab = pC->uc.pVCur->pVtab;
    pModule = pVtab->pModule;
    assert( pModule->xRowid );
    rc = pModule->xRowid(pC->uc.pVCur, &v);
    sqlite3VtabImportErrmsg(p, pVtab);
#endif /* SQLITE_OMIT_VIRTUALTABLE */
  }else{
    assert( pC->eCurType==CURTYPE_BTREE );
    assert( pC->uc.pCursor!=0 );
    rc = sqlite3VdbeCursorRestore(pC);
    if( rc ) goto abort_due_to_error;
    if( pC->nullRow ){
      pOut->flags = MEM_Null;
      break;
    }
    rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
    assert( rc==SQLITE_OK );  /* Always so because of CursorRestore() above */
  }
  pOut->u.i = v;
  break;
}

/* Opcode: NullRow P1 * * * *
**
** Move the cursor P1 to a null row.  Any OP_Column operations
** that occur while the cursor is on the null row will always
** write a NULL.
*/
case OP_NullRow: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pC->nullRow = 1;
  pC->cacheStatus = CACHE_STALE;
  if( pC->eCurType==CURTYPE_BTREE ){
    assert( pC->uc.pCursor!=0 );
    sqlite3BtreeClearCursor(pC->uc.pCursor);
  }
  break;
}

/* Opcode: Last P1 P2 P3 * *
**
** The next use of the Rowid or Column or Prev instruction for P1 
77479
77480
77481
77482
77483
77484
77485

77486
77487
77488
77489
77490
77491
77492
77493
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  pCrsr = pC->pCursor;
  res = 0;
  assert( pCrsr!=0 );
  rc = sqlite3BtreeLast(pCrsr, &res);
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;
  pC->seekResult = pOp->p3;







>
|







78322
78323
78324
78325
78326
78327
78328
78329
78330
78331
78332
78333
78334
78335
78336
78337
  VdbeCursor *pC;
  BtCursor *pCrsr;
  int res;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  pCrsr = pC->uc.pCursor;
  res = 0;
  assert( pCrsr!=0 );
  rc = sqlite3BtreeLast(pCrsr, &res);
  pC->nullRow = (u8)res;
  pC->deferredMoveto = 0;
  pC->cacheStatus = CACHE_STALE;
  pC->seekResult = pOp->p3;
77547
77548
77549
77550
77551
77552
77553

77554
77555
77556
77557
77558
77559
77560
77561
  res = 1;
#ifdef SQLITE_DEBUG
  pC->seekOp = OP_Rewind;
#endif
  if( isSorter(pC) ){
    rc = sqlite3VdbeSorterRewind(pC, &res);
  }else{

    pCrsr = pC->pCursor;
    assert( pCrsr );
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );







>
|







78391
78392
78393
78394
78395
78396
78397
78398
78399
78400
78401
78402
78403
78404
78405
78406
  res = 1;
#ifdef SQLITE_DEBUG
  pC->seekOp = OP_Rewind;
#endif
  if( isSorter(pC) ){
    rc = sqlite3VdbeSorterRewind(pC, &res);
  }else{
    assert( pC->eCurType==CURTYPE_BTREE );
    pCrsr = pC->uc.pCursor;
    assert( pCrsr );
    rc = sqlite3BtreeFirst(pCrsr, &res);
    pC->deferredMoveto = 0;
    pC->cacheStatus = CACHE_STALE;
  }
  pC->nullRow = (u8)res;
  assert( pOp->p2>0 && pOp->p2<p->nOp );
77644
77645
77646
77647
77648
77649
77650
77651
77652
77653
77654
77655
77656
77657
77658
77659
77660
77661
77662
77663
77664
77665
77666
77667
77668
77669
77670
77671
77672
77673
77674
77675
case OP_Next:          /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  res = pOp->p3;
  assert( pC!=0 );
  assert( pC->deferredMoveto==0 );
  assert( pC->pCursor );
  assert( res==0 || (res==1 && pC->isTable==0) );
  testcase( res==1 );
  assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
  assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
  assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
  assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);

  /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
  ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
  assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
       || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
       || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
  assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
       || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
       || pC->seekOp==OP_Last );

  rc = pOp->p4.xAdvance(pC->pCursor, &res);
next_tail:
  pC->cacheStatus = CACHE_STALE;
  VdbeBranchTaken(res==0,2);
  if( res==0 ){
    pC->nullRow = 0;
    p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST







|
















|







78489
78490
78491
78492
78493
78494
78495
78496
78497
78498
78499
78500
78501
78502
78503
78504
78505
78506
78507
78508
78509
78510
78511
78512
78513
78514
78515
78516
78517
78518
78519
78520
case OP_Next:          /* jump */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p5<ArraySize(p->aCounter) );
  pC = p->apCsr[pOp->p1];
  res = pOp->p3;
  assert( pC!=0 );
  assert( pC->deferredMoveto==0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( res==0 || (res==1 && pC->isTable==0) );
  testcase( res==1 );
  assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
  assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
  assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
  assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);

  /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
  ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
  assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
       || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
       || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
  assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
       || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
       || pC->seekOp==OP_Last );

  rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
next_tail:
  pC->cacheStatus = CACHE_STALE;
  VdbeBranchTaken(res==0,2);
  if( res==0 ){
    pC->nullRow = 0;
    p->aCounter[pOp->p5]++;
#ifdef SQLITE_TEST
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  assert( pC->pCursor!=0 );
  assert( pC->isTable==0 );
  rc = ExpandBlob(pIn2);
  if( rc==SQLITE_OK ){
    if( pOp->opcode==OP_SorterInsert ){
      rc = sqlite3VdbeSorterWrite(pC, pIn2);
    }else{
      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pC->pCursor, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
          );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;







|








|







78557
78558
78559
78560
78561
78562
78563
78564
78565
78566
78567
78568
78569
78570
78571
78572
78573
78574
78575
78576
78577
78578
78579
78580
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
  pIn2 = &aMem[pOp->p2];
  assert( pIn2->flags & MEM_Blob );
  if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
  assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
  assert( pC->isTable==0 );
  rc = ExpandBlob(pIn2);
  if( rc==SQLITE_OK ){
    if( pOp->opcode==OP_SorterInsert ){
      rc = sqlite3VdbeSorterWrite(pC, pIn2);
    }else{
      nKey = pIn2->n;
      zKey = pIn2->z;
      rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3, 
          ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
          );
      assert( pC->deferredMoveto==0 );
      pC->cacheStatus = CACHE_STALE;
    }
  }
  break;
77749
77750
77751
77752
77753
77754
77755

77756
77757
77758
77759
77760
77761
77762
77763
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG







>
|







78594
78595
78596
78597
78598
78599
78600
78601
78602
78603
78604
78605
78606
78607
78608
78609
  UnpackedRecord r;

  assert( pOp->p3>0 );
  assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  assert( pOp->p5==0 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p3;
  r.default_rc = 0;
  r.aMem = &aMem[pOp->p2];
#ifdef SQLITE_DEBUG
77786
77787
77788
77789
77790
77791
77792

77793
77794
77795
77796
77797
77798
77799
77800
  VdbeCursor *pC;
  i64 rowid;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );

  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;
  assert( pC->isTable==0 );
  assert( pC->deferredMoveto==0 );

  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
  ** out from under the cursor.  That will never happend for an IdxRowid







>
|







78632
78633
78634
78635
78636
78637
78638
78639
78640
78641
78642
78643
78644
78645
78646
78647
  VdbeCursor *pC;
  i64 rowid;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->eCurType==CURTYPE_BTREE );
  pCrsr = pC->uc.pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;
  assert( pC->isTable==0 );
  assert( pC->deferredMoveto==0 );

  /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
  ** out from under the cursor.  That will never happend for an IdxRowid
77867
77868
77869
77870
77871
77872
77873

77874
77875
77876
77877
77878
77879
77880
77881
  int res;
  UnpackedRecord r;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isOrdered );

  assert( pC->pCursor!=0);
  assert( pC->deferredMoveto==0 );
  assert( pOp->p5==0 || pOp->p5==1 );
  assert( pOp->p4type==P4_INT32 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p4.i;
  if( pOp->opcode<OP_IdxLT ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );







>
|







78714
78715
78716
78717
78718
78719
78720
78721
78722
78723
78724
78725
78726
78727
78728
78729
  int res;
  UnpackedRecord r;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->isOrdered );
  assert( pC->eCurType==CURTYPE_BTREE );
  assert( pC->uc.pCursor!=0);
  assert( pC->deferredMoveto==0 );
  assert( pOp->p5==0 || pOp->p5==1 );
  assert( pOp->p4type==P4_INT32 );
  r.pKeyInfo = pC->pKeyInfo;
  r.nField = (u16)pOp->p4.i;
  if( pOp->opcode<OP_IdxLT ){
    assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
78000
78001
78002
78003
78004
78005
78006
78007
78008
78009

78010
78011
78012
78013
78014
78015
78016
78017
78018
*/
case OP_ResetSorter: {
  VdbeCursor *pC;
 
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( pC->pSorter ){
    sqlite3VdbeSorterReset(db, pC->pSorter);
  }else{

    assert( pC->isEphemeral );
    rc = sqlite3BtreeClearTableOfCursor(pC->pCursor);
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
** Synopsis: r[P2]=root iDb=P1
**







|
|

>

|







78848
78849
78850
78851
78852
78853
78854
78855
78856
78857
78858
78859
78860
78861
78862
78863
78864
78865
78866
78867
*/
case OP_ResetSorter: {
  VdbeCursor *pC;
 
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( isSorter(pC) ){
    sqlite3VdbeSorterReset(db, pC->uc.pSorter);
  }else{
    assert( pC->eCurType==CURTYPE_BTREE );
    assert( pC->isEphemeral );
    rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
  }
  break;
}

/* Opcode: CreateTable P1 P2 * * *
** Synopsis: r[P2]=root iDb=P1
**
79078
79079
79080
79081
79082
79083
79084
79085
79086
79087
79088
79089
79090
79091
79092
79093
79094
79095
79096
79097
79098
79099
79100
79101
79102
79103
79104
79105
79106
79107
79108
79109
79110
79111
79112
79113
79114
79115
79116
79117
79118
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  assert( p->bIsReader );
  pCur = 0;
  pVtabCursor = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  if( pVtab==0 || NEVER(pVtab->pModule==0) ){
    rc = SQLITE_LOCKED;
    break;
  }
  pModule = pVtab->pModule;
  rc = pModule->xOpen(pVtab, &pVtabCursor);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVtabCursor->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
    if( pCur ){
      pCur->pVtabCursor = pVtabCursor;
      pVtab->nRef++;
    }else{
      assert( db->mallocFailed );
      pModule->xClose(pVtabCursor);
      goto no_mem;
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */








|





|






|



|


|

|



|







79927
79928
79929
79930
79931
79932
79933
79934
79935
79936
79937
79938
79939
79940
79941
79942
79943
79944
79945
79946
79947
79948
79949
79950
79951
79952
79953
79954
79955
79956
79957
79958
79959
79960
79961
79962
79963
79964
79965
79966
79967
**
** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
** P1 is a cursor number.  This opcode opens a cursor to the virtual
** table and stores that cursor in P1.
*/
case OP_VOpen: {
  VdbeCursor *pCur;
  sqlite3_vtab_cursor *pVCur;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  assert( p->bIsReader );
  pCur = 0;
  pVCur = 0;
  pVtab = pOp->p4.pVtab->pVtab;
  if( pVtab==0 || NEVER(pVtab->pModule==0) ){
    rc = SQLITE_LOCKED;
    break;
  }
  pModule = pVtab->pModule;
  rc = pModule->xOpen(pVtab, &pVCur);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( SQLITE_OK==rc ){
    /* Initialize sqlite3_vtab_cursor base class */
    pVCur->pVtab = pVtab;

    /* Initialize vdbe cursor object */
    pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
    if( pCur ){
      pCur->uc.pVCur = pVCur;
      pVtab->nRef++;
    }else{
      assert( db->mallocFailed );
      pModule->xClose(pVCur);
      goto no_mem;
    }
  }
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

79138
79139
79140
79141
79142
79143
79144
79145
79146
79147
79148
79149
79150
79151
79152
79153
79154
79155
79156
79157
79158
79159
79160
79161
79162
79163
79164
79165
79166
79167
79168
79169
79170
79171
79172
79173
79174
79175
79176
79177
79178
79179
79180
79181
79182
79183
*/
case OP_VFilter: {   /* jump */
  int nArg;
  int iQuery;
  const sqlite3_module *pModule;
  Mem *pQuery;
  Mem *pArgc;
  sqlite3_vtab_cursor *pVtabCursor;
  sqlite3_vtab *pVtab;
  VdbeCursor *pCur;
  int res;
  int i;
  Mem **apArg;

  pQuery = &aMem[pOp->p3];
  pArgc = &pQuery[1];
  pCur = p->apCsr[pOp->p1];
  assert( memIsValid(pQuery) );
  REGISTER_TRACE(pOp->p3, pQuery);
  assert( pCur->pVtabCursor );
  pVtabCursor = pCur->pVtabCursor;
  pVtab = pVtabCursor->pVtab;
  pModule = pVtab->pModule;

  /* Grab the index number and argc parameters */
  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
  nArg = (int)pArgc->u.i;
  iQuery = (int)pQuery->u.i;

  /* Invoke the xFilter method */
  res = 0;
  apArg = p->apArg;
  for(i = 0; i<nArg; i++){
    apArg[i] = &pArgc[i+1];
  }
  rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pVtabCursor);
  }
  pCur->nullRow = 0;
  VdbeBranchTaken(res!=0,2);
  if( res ) goto jump_to_p2;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */







|











|
|
|













|


|







79987
79988
79989
79990
79991
79992
79993
79994
79995
79996
79997
79998
79999
80000
80001
80002
80003
80004
80005
80006
80007
80008
80009
80010
80011
80012
80013
80014
80015
80016
80017
80018
80019
80020
80021
80022
80023
80024
80025
80026
80027
80028
80029
80030
80031
80032
*/
case OP_VFilter: {   /* jump */
  int nArg;
  int iQuery;
  const sqlite3_module *pModule;
  Mem *pQuery;
  Mem *pArgc;
  sqlite3_vtab_cursor *pVCur;
  sqlite3_vtab *pVtab;
  VdbeCursor *pCur;
  int res;
  int i;
  Mem **apArg;

  pQuery = &aMem[pOp->p3];
  pArgc = &pQuery[1];
  pCur = p->apCsr[pOp->p1];
  assert( memIsValid(pQuery) );
  REGISTER_TRACE(pOp->p3, pQuery);
  assert( pCur->eCurType==CURTYPE_VTAB );
  pVCur = pCur->uc.pVCur;
  pVtab = pVCur->pVtab;
  pModule = pVtab->pModule;

  /* Grab the index number and argc parameters */
  assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
  nArg = (int)pArgc->u.i;
  iQuery = (int)pQuery->u.i;

  /* Invoke the xFilter method */
  res = 0;
  apArg = p->apArg;
  for(i = 0; i<nArg; i++){
    apArg[i] = &pArgc[i+1];
  }
  rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pVCur);
  }
  pCur->nullRow = 0;
  VdbeBranchTaken(res!=0,2);
  if( res ) goto jump_to_p2;
  break;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */
79193
79194
79195
79196
79197
79198
79199
79200
79201
79202
79203
79204
79205
79206
79207
79208
79209
79210
79211
79212
79213
79214
79215
79216
79217
79218
79219
79220
79221
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));
  sContext.pOut = pDest;
  MemSetTypeFlag(pDest, MEM_Null);
  rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }
  sqlite3VdbeChangeEncoding(pDest, encoding);
  REGISTER_TRACE(pOp->p3, pDest);
  UPDATE_MAX_BLOBSIZE(pDest);







|







|





|







80042
80043
80044
80045
80046
80047
80048
80049
80050
80051
80052
80053
80054
80055
80056
80057
80058
80059
80060
80061
80062
80063
80064
80065
80066
80067
80068
80069
80070
case OP_VColumn: {
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  Mem *pDest;
  sqlite3_context sContext;

  VdbeCursor *pCur = p->apCsr[pOp->p1];
  assert( pCur->eCurType==CURTYPE_VTAB );
  assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
  pDest = &aMem[pOp->p3];
  memAboutToChange(p, pDest);
  if( pCur->nullRow ){
    sqlite3VdbeMemSetNull(pDest);
    break;
  }
  pVtab = pCur->uc.pVCur->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xColumn );
  memset(&sContext, 0, sizeof(sContext));
  sContext.pOut = pDest;
  MemSetTypeFlag(pDest, MEM_Null);
  rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( sContext.isError ){
    rc = sContext.isError;
  }
  sqlite3VdbeChangeEncoding(pDest, encoding);
  REGISTER_TRACE(pOp->p3, pDest);
  UPDATE_MAX_BLOBSIZE(pDest);
79238
79239
79240
79241
79242
79243
79244
79245
79246
79247
79248
79249
79250
79251
79252
79253
79254
79255
79256
79257
79258
79259
79260
79261
79262
79263
79264
79265
79266
79267
79268
79269
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  int res;
  VdbeCursor *pCur;

  res = 0;
  pCur = p->apCsr[pOp->p1];
  assert( pCur->pVtabCursor );
  if( pCur->nullRow ){
    break;
  }
  pVtab = pCur->pVtabCursor->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xNext );

  /* Invoke the xNext() method of the module. There is no way for the
  ** underlying implementation to return an error if one occurs during
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  rc = pModule->xNext(pCur->pVtabCursor);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->pVtabCursor);
  }
  VdbeBranchTaken(!res,2);
  if( !res ){
    /* If there is data, jump to P2 */
    goto jump_to_p2_and_check_for_interrupt;
  }
  goto check_for_interrupt;







|



|









|


|







80087
80088
80089
80090
80091
80092
80093
80094
80095
80096
80097
80098
80099
80100
80101
80102
80103
80104
80105
80106
80107
80108
80109
80110
80111
80112
80113
80114
80115
80116
80117
80118
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;
  int res;
  VdbeCursor *pCur;

  res = 0;
  pCur = p->apCsr[pOp->p1];
  assert( pCur->eCurType==CURTYPE_VTAB );
  if( pCur->nullRow ){
    break;
  }
  pVtab = pCur->uc.pVCur->pVtab;
  pModule = pVtab->pModule;
  assert( pModule->xNext );

  /* Invoke the xNext() method of the module. There is no way for the
  ** underlying implementation to return an error if one occurs during
  ** xNext(). Instead, if an error occurs, true is returned (indicating that 
  ** data is available) and the error code returned when xColumn or
  ** some other method is next invoked on the save virtual table cursor.
  */
  rc = pModule->xNext(pCur->uc.pVCur);
  sqlite3VtabImportErrmsg(p, pVtab);
  if( rc==SQLITE_OK ){
    res = pModule->xEof(pCur->uc.pVCur);
  }
  VdbeBranchTaken(!res,2);
  if( !res ){
    /* If there is data, jump to P2 */
    goto jump_to_p2_and_check_for_interrupt;
  }
  goto check_for_interrupt;
79464
79465
79466
79467
79468
79469
79470






















79471
79472
79473
79474
79475
79476
79477
  }
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
  if( pOp->p2 ) goto jump_to_p2;
  break;
}
























/* Opcode: Noop * * * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
/*







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







80313
80314
80315
80316
80317
80318
80319
80320
80321
80322
80323
80324
80325
80326
80327
80328
80329
80330
80331
80332
80333
80334
80335
80336
80337
80338
80339
80340
80341
80342
80343
80344
80345
80346
80347
80348
  }
#endif /* SQLITE_DEBUG */
#endif /* SQLITE_OMIT_TRACE */
  if( pOp->p2 ) goto jump_to_p2;
  break;
}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/* Opcode: CursorHint P1 * * P4 *
**
** Provide a hint to cursor P1 that it only needs to return rows that
** satisfy the Expr in P4.  TK_REGISTER terms in the P4 expression refer
** to values currently held in registers.  TK_COLUMN terms in the P4
** expression refer to columns in the b-tree to which cursor P1 is pointing.
*/
case OP_CursorHint: {
  VdbeCursor *pC;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( pOp->p4type==P4_EXPR );
  pC = p->apCsr[pOp->p1];
  if( pC ){
    assert( pC->eCurType==CURTYPE_BTREE );
    sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
                           pOp->p4.pExpr, aMem);
  }
  break;
}
#endif /* SQLITE_ENABLE_CURSOR_HINTS */

/* Opcode: Noop * * * * *
**
** Do nothing.  This instruction is often useful as a jump
** destination.
*/
/*
79664
79665
79666
79667
79668
79669
79670
79671
79672
79673
79674
79675
79676
79677
79678
      );
      rc = SQLITE_ERROR;
      sqlite3_finalize(p->pStmt);
      p->pStmt = 0;
    }else{
      p->iOffset = pC->aType[p->iCol + pC->nField];
      p->nByte = sqlite3VdbeSerialTypeLen(type);
      p->pCsr =  pC->pCursor;
      sqlite3BtreeIncrblobCursor(p->pCsr);
    }
  }

  if( rc==SQLITE_ROW ){
    rc = SQLITE_OK;
  }else if( p->pStmt ){







|







80535
80536
80537
80538
80539
80540
80541
80542
80543
80544
80545
80546
80547
80548
80549
      );
      rc = SQLITE_ERROR;
      sqlite3_finalize(p->pStmt);
      p->pStmt = 0;
    }else{
      p->iOffset = pC->aType[p->iCol + pC->nField];
      p->nByte = sqlite3VdbeSerialTypeLen(type);
      p->pCsr =  pC->uc.pCursor;
      sqlite3BtreeIncrblobCursor(p->pCsr);
    }
  }

  if( rc==SQLITE_ROW ){
    rc = SQLITE_OK;
  }else if( p->pStmt ){
81028
81029
81030
81031
81032
81033
81034

81035
81036
81037
81038
81039
81040
81041
81042
81043
81044
81045
81046
81047
81048
81049
81050
81051
81052
81053
81054
81055
81056
81057
81058
81059
#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
  if( nWorker>=SORTER_MAX_MERGE_COUNT ){
    nWorker = SORTER_MAX_MERGE_COUNT-1;
  }
#endif

  assert( pCsr->pKeyInfo && pCsr->pBt==0 );

  szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nField-1)*sizeof(CollSeq*);
  sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);

  pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
  pCsr->pSorter = pSorter;
  if( pSorter==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
    memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
    pKeyInfo->db = 0;
    if( nField && nWorker==0 ){
      pKeyInfo->nXField += (pKeyInfo->nField - nField);
      pKeyInfo->nField = nField;
    }
    pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
    pSorter->nTask = nWorker + 1;
    pSorter->iPrev = nWorker-1;
    pSorter->bUseThreads = (pSorter->nTask>1);
    pSorter->db = db;
    for(i=0; i<pSorter->nTask; i++){
      SortSubtask *pTask = &pSorter->aTask[i];
      pTask->pSorter = pSorter;
    }








>




|












|







81899
81900
81901
81902
81903
81904
81905
81906
81907
81908
81909
81910
81911
81912
81913
81914
81915
81916
81917
81918
81919
81920
81921
81922
81923
81924
81925
81926
81927
81928
81929
81930
81931
#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
  if( nWorker>=SORTER_MAX_MERGE_COUNT ){
    nWorker = SORTER_MAX_MERGE_COUNT-1;
  }
#endif

  assert( pCsr->pKeyInfo && pCsr->pBt==0 );
  assert( pCsr->eCurType==CURTYPE_SORTER );
  szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nField-1)*sizeof(CollSeq*);
  sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);

  pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
  pCsr->uc.pSorter = pSorter;
  if( pSorter==0 ){
    rc = SQLITE_NOMEM;
  }else{
    pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
    memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
    pKeyInfo->db = 0;
    if( nField && nWorker==0 ){
      pKeyInfo->nXField += (pKeyInfo->nField - nField);
      pKeyInfo->nField = nField;
    }
    pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
    pSorter->nTask = nWorker + 1;
    pSorter->iPrev = (u8)(nWorker - 1);
    pSorter->bUseThreads = (pSorter->nTask>1);
    pSorter->db = db;
    for(i=0; i<pSorter->nTask; i++){
      SortSubtask *pTask = &pSorter->aTask[i];
      pTask->pSorter = pSorter;
    }

81316
81317
81318
81319
81320
81321
81322
81323


81324
81325
81326
81327
81328
81329
81330
81331
81332
81333
81334
81335
  pSorter->pUnpacked = 0;
}

/*
** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
*/
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter = pCsr->pSorter;


  if( pSorter ){
    sqlite3VdbeSorterReset(db, pSorter);
    sqlite3_free(pSorter->list.aMemory);
    sqlite3DbFree(db, pSorter);
    pCsr->pSorter = 0;
  }
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** The first argument is a file-handle open on a temporary file. The file
** is guaranteed to be nByte bytes or smaller in size. This function







|
>
>




|







82188
82189
82190
82191
82192
82193
82194
82195
82196
82197
82198
82199
82200
82201
82202
82203
82204
82205
82206
82207
82208
82209
  pSorter->pUnpacked = 0;
}

/*
** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
*/
SQLITE_PRIVATE void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
  VdbeSorter *pSorter;
  assert( pCsr->eCurType==CURTYPE_SORTER );
  pSorter = pCsr->uc.pSorter;
  if( pSorter ){
    sqlite3VdbeSorterReset(db, pSorter);
    sqlite3_free(pSorter->list.aMemory);
    sqlite3DbFree(db, pSorter);
    pCsr->uc.pSorter = 0;
  }
}

#if SQLITE_MAX_MMAP_SIZE>0
/*
** The first argument is a file-handle open on a temporary file. The file
** is guaranteed to be nByte bytes or smaller in size. This function
81819
81820
81821
81822
81823
81824
81825
81826
81827
81828
81829
81830
81831
81832
81833
81834


81835
81836
81837
81838
81839
81840
81841
/*
** Add a record to the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
  const VdbeCursor *pCsr,         /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return Code */
  SorterRecord *pNew;             /* New list element */

  int bFlush;                     /* True to flush contents of memory to PMA */
  int nReq;                       /* Bytes of memory required */
  int nPMA;                       /* Bytes of PMA space required */
  int t;                          /* serial type of first record field */



  getVarint32((const u8*)&pVal->z[1], t);
  if( t>0 && t<10 && t!=7 ){
    pSorter->typeMask &= SORTER_TYPE_INTEGER;
  }else if( t>10 && (t & 0x01) ){
    pSorter->typeMask &= SORTER_TYPE_TEXT;
  }else{
    pSorter->typeMask = 0;







|


<





>
>







82693
82694
82695
82696
82697
82698
82699
82700
82701
82702

82703
82704
82705
82706
82707
82708
82709
82710
82711
82712
82713
82714
82715
82716
/*
** Add a record to the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterWrite(
  const VdbeCursor *pCsr,         /* Sorter cursor */
  Mem *pVal                       /* Memory cell containing record */
){
  VdbeSorter *pSorter;
  int rc = SQLITE_OK;             /* Return Code */
  SorterRecord *pNew;             /* New list element */

  int bFlush;                     /* True to flush contents of memory to PMA */
  int nReq;                       /* Bytes of memory required */
  int nPMA;                       /* Bytes of PMA space required */
  int t;                          /* serial type of first record field */

  assert( pCsr->eCurType==CURTYPE_SORTER );
  pSorter = pCsr->uc.pSorter;
  getVarint32((const u8*)&pVal->z[1], t);
  if( t>0 && t<10 && t!=7 ){
    pSorter->typeMask &= SORTER_TYPE_INTEGER;
  }else if( t>10 && (t & 0x01) ){
    pSorter->typeMask &= SORTER_TYPE_TEXT;
  }else{
    pSorter->typeMask = 0;
82619
82620
82621
82622
82623
82624
82625
82626
82627
82628


82629
82630
82631
82632
82633
82634
82635

/*
** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
** this function is called to prepare for iterating through the records
** in sorted order.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc = SQLITE_OK;             /* Return code */



  assert( pSorter );

  /* If no data has been written to disk, then do not do so now. Instead,
  ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
  ** from the in-memory list.  */
  if( pSorter->bUsePMA==0 ){
    if( pSorter->list.pList ){







|


>
>







83494
83495
83496
83497
83498
83499
83500
83501
83502
83503
83504
83505
83506
83507
83508
83509
83510
83511
83512

/*
** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
** this function is called to prepare for iterating through the records
** in sorted order.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter;
  int rc = SQLITE_OK;             /* Return code */

  assert( pCsr->eCurType==CURTYPE_SORTER );
  pSorter = pCsr->uc.pSorter;
  assert( pSorter );

  /* If no data has been written to disk, then do not do so now. Instead,
  ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
  ** from the in-memory list.  */
  if( pSorter->bUsePMA==0 ){
    if( pSorter->list.pList ){
82665
82666
82667
82668
82669
82670
82671
82672
82673
82674


82675
82676
82677
82678
82679
82680
82681
  return rc;
}

/*
** Advance to the next element in the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter = pCsr->pSorter;
  int rc;                         /* Return code */



  assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
  if( pSorter->bUsePMA ){
    assert( pSorter->pReader==0 || pSorter->pMerger==0 );
    assert( pSorter->bUseThreads==0 || pSorter->pReader );
    assert( pSorter->bUseThreads==1 || pSorter->pMerger );
#if SQLITE_MAX_WORKER_THREADS>0
    if( pSorter->bUseThreads ){







|


>
>







83542
83543
83544
83545
83546
83547
83548
83549
83550
83551
83552
83553
83554
83555
83556
83557
83558
83559
83560
  return rc;
}

/*
** Advance to the next element in the sorter.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
  VdbeSorter *pSorter;
  int rc;                         /* Return code */

  assert( pCsr->eCurType==CURTYPE_SORTER );
  pSorter = pCsr->uc.pSorter;
  assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
  if( pSorter->bUsePMA ){
    assert( pSorter->pReader==0 || pSorter->pMerger==0 );
    assert( pSorter->bUseThreads==0 || pSorter->pReader );
    assert( pSorter->bUseThreads==1 || pSorter->pMerger );
#if SQLITE_MAX_WORKER_THREADS>0
    if( pSorter->bUseThreads ){
82727
82728
82729
82730
82731
82732
82733
82734
82735
82736


82737
82738
82739
82740
82741
82742
82743
  return pKey;
}

/*
** Copy the current sorter key into the memory cell pOut.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter = pCsr->pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */



  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);







|


>
>







83606
83607
83608
83609
83610
83611
83612
83613
83614
83615
83616
83617
83618
83619
83620
83621
83622
83623
83624
  return pKey;
}

/*
** Copy the current sorter key into the memory cell pOut.
*/
SQLITE_PRIVATE int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
  VdbeSorter *pSorter;
  void *pKey; int nKey;           /* Sorter key to copy into pOut */

  assert( pCsr->eCurType==CURTYPE_SORTER );
  pSorter = pCsr->uc.pSorter;
  pKey = vdbeSorterRowkey(pSorter, &nKey);
  if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
    return SQLITE_NOMEM;
  }
  pOut->n = nKey;
  MemSetTypeFlag(pOut, MEM_Blob);
  memcpy(pOut->z, pKey, nKey);
82763
82764
82765
82766
82767
82768
82769
82770
82771
82772
82773
82774
82775




82776
82777
82778
82779
82780
82781
82782
*/
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
  const VdbeCursor *pCsr,         /* Sorter cursor */
  Mem *pVal,                      /* Value to compare to current sorter key */
  int nKeyCol,                    /* Compare this many columns */
  int *pRes                       /* OUT: Result of comparison */
){
  VdbeSorter *pSorter = pCsr->pSorter;
  UnpackedRecord *r2 = pSorter->pUnpacked;
  KeyInfo *pKeyInfo = pCsr->pKeyInfo;
  int i;
  void *pKey; int nKey;           /* Sorter key to compare pVal with */





  if( r2==0 ){
    char *p;
    r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo,0,0,&p);
    assert( pSorter->pUnpacked==(UnpackedRecord*)p );
    if( r2==0 ) return SQLITE_NOMEM;
    r2->nField = nKeyCol;
  }







|
|
|



>
>
>
>







83644
83645
83646
83647
83648
83649
83650
83651
83652
83653
83654
83655
83656
83657
83658
83659
83660
83661
83662
83663
83664
83665
83666
83667
*/
SQLITE_PRIVATE int sqlite3VdbeSorterCompare(
  const VdbeCursor *pCsr,         /* Sorter cursor */
  Mem *pVal,                      /* Value to compare to current sorter key */
  int nKeyCol,                    /* Compare this many columns */
  int *pRes                       /* OUT: Result of comparison */
){
  VdbeSorter *pSorter;
  UnpackedRecord *r2;
  KeyInfo *pKeyInfo;
  int i;
  void *pKey; int nKey;           /* Sorter key to compare pVal with */

  assert( pCsr->eCurType==CURTYPE_SORTER );
  pSorter = pCsr->uc.pSorter;
  r2 = pSorter->pUnpacked;
  pKeyInfo = pCsr->pKeyInfo;
  if( r2==0 ){
    char *p;
    r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo,0,0,&p);
    assert( pSorter->pUnpacked==(UnpackedRecord*)p );
    if( r2==0 ) return SQLITE_NOMEM;
    r2->nField = nKeyCol;
  }
83802
83803
83804
83805
83806
83807
83808
83809
83810
83811
83812
83813
83814
83815
83816
              iCol = -1;
            }
            break;
          }
        }
        if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){
          /* IMP: R-51414-32910 */
          /* IMP: R-44911-55124 */
          iCol = -1;
        }
        if( iCol<pTab->nCol ){
          cnt++;
          if( iCol<0 ){
            pExpr->affinity = SQLITE_AFF_INTEGER;
          }else if( pExpr->iTable==0 ){







<







84687
84688
84689
84690
84691
84692
84693

84694
84695
84696
84697
84698
84699
84700
              iCol = -1;
            }
            break;
          }
        }
        if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){
          /* IMP: R-51414-32910 */

          iCol = -1;
        }
        if( iCol<pTab->nCol ){
          cnt++;
          if( iCol<0 ){
            pExpr->affinity = SQLITE_AFF_INTEGER;
          }else if( pExpr->iTable==0 ){
83837
83838
83839
83840
83841
83842
83843
83844
83845
83846
83847
83848
83849
83850
83851
     && cntTab==1
     && pMatch
     && (pNC->ncFlags & NC_IdxExpr)==0
     && sqlite3IsRowid(zCol)
     && VisibleRowid(pMatch->pTab)
    ){
      cnt = 1;
      pExpr->iColumn = -1;     /* IMP: R-44911-55124 */
      pExpr->affinity = SQLITE_AFF_INTEGER;
    }

    /*
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
    ** might refer to an result-set alias.  This happens, for example, when
    ** we are resolving names in the WHERE clause of the following command:







|







84721
84722
84723
84724
84725
84726
84727
84728
84729
84730
84731
84732
84733
84734
84735
     && cntTab==1
     && pMatch
     && (pNC->ncFlags & NC_IdxExpr)==0
     && sqlite3IsRowid(zCol)
     && VisibleRowid(pMatch->pTab)
    ){
      cnt = 1;
      pExpr->iColumn = -1;
      pExpr->affinity = SQLITE_AFF_INTEGER;
    }

    /*
    ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z
    ** might refer to an result-set alias.  This happens, for example, when
    ** we are resolving names in the WHERE clause of the following command:
84897
84898
84899
84900
84901
84902
84903
84904
84905
84906

84907
84908
84909
84910
84911
84912
84913
** list rather than a single expression.
*/
SQLITE_PRIVATE int sqlite3ResolveExprListNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  ExprList *pList         /* The expression list to be analyzed. */
){
  int i;
  assert( pList!=0 );
  for(i=0; i<pList->nExpr; i++){
    if( sqlite3ResolveExprNames(pNC, pList->a[i].pExpr) ) return WRC_Abort;

  }
  return WRC_Continue;
}

/*
** Resolve all names in all expressions of a SELECT and in all
** decendents of the SELECT, including compounds off of p->pPrior,







|
|
|
>







85781
85782
85783
85784
85785
85786
85787
85788
85789
85790
85791
85792
85793
85794
85795
85796
85797
85798
** list rather than a single expression.
*/
SQLITE_PRIVATE int sqlite3ResolveExprListNames( 
  NameContext *pNC,       /* Namespace to resolve expressions in. */
  ExprList *pList         /* The expression list to be analyzed. */
){
  int i;
  if( pList ){
    for(i=0; i<pList->nExpr; i++){
      if( sqlite3ResolveExprNames(pNC, pList->a[i].pExpr) ) return WRC_Abort;
    }
  }
  return WRC_Continue;
}

/*
** Resolve all names in all expressions of a SELECT and in all
** decendents of the SELECT, including compounds off of p->pPrior,
85519
85520
85521
85522
85523
85524
85525
85526
85527
85528
85529
85530
85531
85532
85533
85534
85535
85536
85537
  Parse *pParse,          /* Parsing context */
  int op,                 /* Expression opcode */
  Expr *pLeft,            /* Left operand */
  Expr *pRight,           /* Right operand */
  const Token *pToken     /* Argument token */
){
  Expr *p;
  if( op==TK_AND && pLeft && pRight && pParse->nErr==0 ){
    /* Take advantage of short-circuit false optimization for AND */
    p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
  }else{
    p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
    sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
  }
  if( p ) {
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}







|



|







86404
86405
86406
86407
86408
86409
86410
86411
86412
86413
86414
86415
86416
86417
86418
86419
86420
86421
86422
  Parse *pParse,          /* Parsing context */
  int op,                 /* Expression opcode */
  Expr *pLeft,            /* Left operand */
  Expr *pRight,           /* Right operand */
  const Token *pToken     /* Argument token */
){
  Expr *p;
  if( op==TK_AND && pParse->nErr==0 ){
    /* Take advantage of short-circuit false optimization for AND */
    p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
  }else{
    p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
    sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
  }
  if( p ) {
    sqlite3ExprCheckHeight(pParse, p->nHeight);
  }
  return p;
}
85824
85825
85826
85827
85828
85829
85830

85831
85832
85833
85834
85835
85836
85837
** to store the copy of expression p, the copies of p->u.zToken
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
** if any. Before returning, *pzBuffer is set to the first byte past the
** portion of the buffer copied into by this function.
*/
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  Expr *pNew = 0;                      /* Value to return */

  if( p ){
    const int isReduced = (flags&EXPRDUP_REDUCE);
    u8 *zAlloc;
    u32 staticFlag = 0;

    assert( pzBuffer==0 || isReduced );








>







86709
86710
86711
86712
86713
86714
86715
86716
86717
86718
86719
86720
86721
86722
86723
** to store the copy of expression p, the copies of p->u.zToken
** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
** if any. Before returning, *pzBuffer is set to the first byte past the
** portion of the buffer copied into by this function.
*/
static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
  Expr *pNew = 0;                      /* Value to return */
  assert( flags==0 || flags==EXPRDUP_REDUCE );
  if( p ){
    const int isReduced = (flags&EXPRDUP_REDUCE);
    u8 *zAlloc;
    u32 staticFlag = 0;

    assert( pzBuffer==0 || isReduced );

85858
85859
85860
85861
85862
85863
85864
85865
85866

85867

85868
85869
85870
85871
85872
85873
85874
      }else{
        nToken = 0;
      }
      if( isReduced ){
        assert( ExprHasProperty(p, EP_Reduced)==0 );
        memcpy(zAlloc, p, nNewSize);
      }else{
        int nSize = exprStructSize(p);
        memcpy(zAlloc, p, nSize);

        memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);

      }

      /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
      pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
      pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
      pNew->flags |= staticFlag;








|

>
|
>







86744
86745
86746
86747
86748
86749
86750
86751
86752
86753
86754
86755
86756
86757
86758
86759
86760
86761
86762
      }else{
        nToken = 0;
      }
      if( isReduced ){
        assert( ExprHasProperty(p, EP_Reduced)==0 );
        memcpy(zAlloc, p, nNewSize);
      }else{
        u32 nSize = (u32)exprStructSize(p);
        memcpy(zAlloc, p, nSize);
        if( nSize<EXPR_FULLSIZE ){ 
          memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
        }
      }

      /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
      pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
      pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
      pNew->flags |= staticFlag;

85950
85951
85952
85953
85954
85955
85956

85957
85958
85959
85960
85961
85962
85963
**
** The flags parameter contains a combination of the EXPRDUP_XXX flags.
** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
** truncated version of the usual Expr structure that will be stored as
** part of the in-memory representation of the database schema.
*/
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){

  return exprDup(db, p, flags, 0);
}
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  if( p==0 ) return 0;







>







86838
86839
86840
86841
86842
86843
86844
86845
86846
86847
86848
86849
86850
86851
86852
**
** The flags parameter contains a combination of the EXPRDUP_XXX flags.
** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
** truncated version of the usual Expr structure that will be stored as
** part of the in-memory representation of the database schema.
*/
SQLITE_PRIVATE Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
  assert( flags==0 || flags==EXPRDUP_REDUCE );
  return exprDup(db, p, flags, 0);
}
SQLITE_PRIVATE ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
  ExprList *pNew;
  struct ExprList_item *pItem, *pOldItem;
  int i;
  if( p==0 ) return 0;
86385
86386
86387
86388
86389
86390
86391
















86392
86393
86394
86395
86396
86397
86398
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
  assert( isInit==0 || isInit==1 );
  return exprIsConst(p, 4+isInit, 0);
}

















/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







87274
87275
87276
87277
87278
87279
87280
87281
87282
87283
87284
87285
87286
87287
87288
87289
87290
87291
87292
87293
87294
87295
87296
87297
87298
87299
87300
87301
87302
87303
** is considered a variable but a single-quoted string (ex: 'abc') is
** a constant.
*/
SQLITE_PRIVATE int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
  assert( isInit==0 || isInit==1 );
  return exprIsConst(p, 4+isInit, 0);
}

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Walk an expression tree.  Return 1 if the expression contains a
** subquery of some kind.  Return 0 if there are no subqueries.
*/
SQLITE_PRIVATE int sqlite3ExprContainsSubquery(Expr *p){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.eCode = 1;
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.xSelectCallback = selectNodeIsConstant;
  sqlite3WalkExpr(&w, p);
  return w.eCode==0;
}
#endif

/*
** If the expression p codes a constant integer that is small enough
** to fit in a 32-bit integer, return 1 and put the value of the integer
** in *pValue.  If the expression is not an integer or if it is too big
** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
*/
86844
86845
86846
86847
86848
86849
86850
86851
86852
86853

86854
86855
86856
86857
86858
86859
86860
  */
  if( !ExprHasProperty(pExpr, EP_VarSelect) ){
    jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
  }

#ifndef SQLITE_OMIT_EXPLAIN
  if( pParse->explain==2 ){
    char *zMsg = sqlite3MPrintf(
        pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ",
        pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId

    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {







|
|
|
>







87749
87750
87751
87752
87753
87754
87755
87756
87757
87758
87759
87760
87761
87762
87763
87764
87765
87766
  */
  if( !ExprHasProperty(pExpr, EP_VarSelect) ){
    jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
  }

#ifndef SQLITE_OMIT_EXPLAIN
  if( pParse->explain==2 ){
    char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
        jmpIfDynamic>=0?"":"CORRELATED ",
        pExpr->op==TK_IN?"LIST":"SCALAR",
        pParse->iNextSelectId
    );
    sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
  }
#endif

  switch( pExpr->op ){
    case TK_IN: {
87418
87419
87420
87421
87422
87423
87424
87425
87426
87427
87428
87429
87430
87431
87432
  int regOut      /* Store the index column value in this register */
){
  i16 iTabCol = pIdx->aiColumn[iIdxCol];
  if( iTabCol==XN_EXPR ){
    assert( pIdx->aColExpr );
    assert( pIdx->aColExpr->nExpr>iIdxCol );
    pParse->iSelfTab = iTabCur;
    sqlite3ExprCode(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
  }else{
    sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
                                    iTabCol, regOut);
  }
}

/*







|







88324
88325
88326
88327
88328
88329
88330
88331
88332
88333
88334
88335
88336
88337
88338
  int regOut      /* Store the index column value in this register */
){
  i16 iTabCol = pIdx->aiColumn[iIdxCol];
  if( iTabCol==XN_EXPR ){
    assert( pIdx->aColExpr );
    assert( pIdx->aColExpr->nExpr>iIdxCol );
    pParse->iSelfTab = iTabCur;
    sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
  }else{
    sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
                                    iTabCol, regOut);
  }
}

/*
87452
87453
87454
87455
87456
87457
87458
87459

87460
87461


87462
87463
87464
87465
87466
87467
87468
87469
87470
87471
87472
87473
87474
87475
87476
87477
87478
87479
  if( iCol>=0 ){
    sqlite3ColumnDefault(v, pTab, iCol, regOut);
  }
}

/*
** Generate code that will extract the iColumn-th column from
** table pTab and store the column value in a register.  An effort

** is made to store the column value in register iReg, but this is
** not guaranteed.  The location of the column value is returned.


**
** There must be an open cursor to pTab in iTable when this routine
** is called.  If iColumn<0 then code is generated that extracts the rowid.
*/
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
  Parse *pParse,   /* Parsing and code generating context */
  Table *pTab,     /* Description of the table we are reading from */
  int iColumn,     /* Index of the table column */
  int iTable,      /* The cursor pointing to the table */
  int iReg,        /* Store results here */
  u8 p5            /* P5 value for OP_Column */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct yColCache *p;

  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
    if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){







|
>
|
|
>
>










|







88358
88359
88360
88361
88362
88363
88364
88365
88366
88367
88368
88369
88370
88371
88372
88373
88374
88375
88376
88377
88378
88379
88380
88381
88382
88383
88384
88385
88386
88387
88388
  if( iCol>=0 ){
    sqlite3ColumnDefault(v, pTab, iCol, regOut);
  }
}

/*
** Generate code that will extract the iColumn-th column from
** table pTab and store the column value in a register. 
**
** An effort is made to store the column value in register iReg.  This
** is not garanteeed for GetColumn() - the result can be stored in
** any register.  But the result is guaranteed to land in register iReg
** for GetColumnToReg().
**
** There must be an open cursor to pTab in iTable when this routine
** is called.  If iColumn<0 then code is generated that extracts the rowid.
*/
SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(
  Parse *pParse,   /* Parsing and code generating context */
  Table *pTab,     /* Description of the table we are reading from */
  int iColumn,     /* Index of the table column */
  int iTable,      /* The cursor pointing to the table */
  int iReg,        /* Store results here */
  u8 p5            /* P5 value for OP_Column + FLAGS */
){
  Vdbe *v = pParse->pVdbe;
  int i;
  struct yColCache *p;

  for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
    if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
87487
87488
87489
87490
87491
87492
87493











87494
87495
87496
87497
87498
87499
87500
  if( p5 ){
    sqlite3VdbeChangeP5(v, p5);
  }else{   
    sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
  }
  return iReg;
}












/*
** Clear all column cache entries.
*/
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse *pParse){
  int i;
  struct yColCache *p;







>
>
>
>
>
>
>
>
>
>
>







88396
88397
88398
88399
88400
88401
88402
88403
88404
88405
88406
88407
88408
88409
88410
88411
88412
88413
88414
88415
88416
88417
88418
88419
88420
  if( p5 ){
    sqlite3VdbeChangeP5(v, p5);
  }else{   
    sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
  }
  return iReg;
}
SQLITE_PRIVATE void sqlite3ExprCodeGetColumnToReg(
  Parse *pParse,   /* Parsing and code generating context */
  Table *pTab,     /* Description of the table we are reading from */
  int iColumn,     /* Index of the table column */
  int iTable,      /* The cursor pointing to the table */
  int iReg         /* Store results here */
){
  int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
  if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
}


/*
** Clear all column cache entries.
*/
SQLITE_PRIVATE void sqlite3ExprCacheClear(Parse *pParse){
  int i;
  struct yColCache *p;
88257
88258
88259
88260
88261
88262
88263
88264
88265
88266
88267
88268
88269












88270
88271
88272
88273
88274
88275
88276
  int inReg;

  assert( target>0 && target<=pParse->nMem );
  if( pExpr && pExpr->op==TK_REGISTER ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
  }else{
    inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
    assert( pParse->pVdbe || pParse->db->mallocFailed );
    if( inReg!=target && pParse->pVdbe ){
      sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
    }
  }
}













/*
** Generate code that will evaluate expression pExpr and store the
** results in register target.  The results are guaranteed to appear
** in register target.  If the expression is constant, then this routine
** might choose to code the expression at initialization time.
*/







|





>
>
>
>
>
>
>
>
>
>
>
>







89177
89178
89179
89180
89181
89182
89183
89184
89185
89186
89187
89188
89189
89190
89191
89192
89193
89194
89195
89196
89197
89198
89199
89200
89201
89202
89203
89204
89205
89206
89207
89208
  int inReg;

  assert( target>0 && target<=pParse->nMem );
  if( pExpr && pExpr->op==TK_REGISTER ){
    sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
  }else{
    inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
    assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
    if( inReg!=target && pParse->pVdbe ){
      sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
    }
  }
}

/*
** Make a transient copy of expression pExpr and then code it using
** sqlite3ExprCode().  This routine works just like sqlite3ExprCode()
** except that the input expression is guaranteed to be unchanged.
*/
SQLITE_PRIVATE void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
  sqlite3 *db = pParse->db;
  pExpr = sqlite3ExprDup(db, pExpr, 0);
  if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
  sqlite3ExprDelete(db, pExpr);
}

/*
** Generate code that will evaluate expression pExpr and store the
** results in register target.  The results are guaranteed to appear
** in register target.  If the expression is constant, then this routine
** might choose to code the expression at initialization time.
*/
88313
88314
88315
88316
88317
88318
88319




88320
88321
88322
88323
88324
88325
88326
** Return the number of elements evaluated.
**
** The SQLITE_ECEL_DUP flag prevents the arguments from being
** filled using OP_SCopy.  OP_Copy must be used instead.
**
** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
** factored out into initialization code.




*/
SQLITE_PRIVATE int sqlite3ExprCodeExprList(
  Parse *pParse,     /* Parsing context */
  ExprList *pList,   /* The expression list to be coded */
  int target,        /* Where to write results */
  int srcReg,        /* Source registers if SQLITE_ECEL_REF */
  u8 flags           /* SQLITE_ECEL_* flags */







>
>
>
>







89245
89246
89247
89248
89249
89250
89251
89252
89253
89254
89255
89256
89257
89258
89259
89260
89261
89262
** Return the number of elements evaluated.
**
** The SQLITE_ECEL_DUP flag prevents the arguments from being
** filled using OP_SCopy.  OP_Copy must be used instead.
**
** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
** factored out into initialization code.
**
** The SQLITE_ECEL_REF flag means that expressions in the list with
** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
** in registers at srcReg, and so the value can be copied from there.
*/
SQLITE_PRIVATE int sqlite3ExprCodeExprList(
  Parse *pParse,     /* Parsing context */
  ExprList *pList,   /* The expression list to be coded */
  int target,        /* Where to write results */
  int srcReg,        /* Source registers if SQLITE_ECEL_REF */
  u8 flags           /* SQLITE_ECEL_* flags */
88754
88755
88756
88757
88758
88759
88760
88761
88762
88763
88764
88765
88766
88767
88768
      return 1;
    }
    if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
      return 1;
    }
    return 2;
  }
  if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){
    if( pA->op==TK_FUNCTION ){
      if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
    }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return pA->op==TK_COLLATE ? 1 : 2;
    }
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;







|







89690
89691
89692
89693
89694
89695
89696
89697
89698
89699
89700
89701
89702
89703
89704
      return 1;
    }
    if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
      return 1;
    }
    return 2;
  }
  if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
    if( pA->op==TK_FUNCTION ){
      if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
    }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
      return pA->op==TK_COLLATE ? 1 : 2;
    }
  }
  if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
90999
91000
91001
91002
91003
91004
91005
91006
91007
91008
91009
91010
91011
91012
91013
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );







|







91935
91936
91937
91938
91939
91940
91941
91942
91943
91944
91945
91946
91947
91948
91949
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( pTab->tnum==0 ){
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( sqlite3_strlike("sqlite_%", pTab->zName, 0)==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
93129
93130
93131
93132
93133
93134
93135
93136
93137
93138
93139
93140
93141
93142
93143
93144
93145
93146
93147
93148
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
    pParse->checkSchema = 1;
  }
#if SQLITE_USER_AUTHENTICATION
  else if( pParse->db->auth.authLevel<UAUTH_User ){
    sqlite3ErrorMsg(pParse, "user not authenticated");
    p = 0;
  }
#endif
  return p;
}

/*
** Locate the table identified by *p.
**
** This is a wrapper around sqlite3LocateTable(). The difference between







<
<
<
<
|
<







94065
94066
94067
94068
94069
94070
94071




94072

94073
94074
94075
94076
94077
94078
94079
    if( zDbase ){
      sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
    }else{
      sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
    }
    pParse->checkSchema = 1;
  }






  return p;
}

/*
** Locate the table identified by *p.
**
** This is a wrapper around sqlite3LocateTable(). The difference between
93202
93203
93204
93205
93206
93207
93208
93209
93210
93211
93212
93213
93214
93215
93216
static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif
  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3ExprListDelete(db, p->aColExpr);
  sqlite3DbFree(db, p->zColAff);
  if( p->isResized ) sqlite3DbFree(db, p->azColl);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3_free(p->aiRowEst);
#endif
  sqlite3DbFree(db, p);
}

/*







|







94133
94134
94135
94136
94137
94138
94139
94140
94141
94142
94143
94144
94145
94146
94147
static void freeIndex(sqlite3 *db, Index *p){
#ifndef SQLITE_OMIT_ANALYZE
  sqlite3DeleteIndexSamples(db, p);
#endif
  sqlite3ExprDelete(db, p->pPartIdxWhere);
  sqlite3ExprListDelete(db, p->aColExpr);
  sqlite3DbFree(db, p->zColAff);
  if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
  sqlite3_free(p->aiRowEst);
#endif
  sqlite3DbFree(db, p);
}

/*
93802
93803
93804
93805
93806
93807
93808
93809
93810
93811
93812
93813
93814
93815
93816
93817

93818
93819






93820
93821
93822
93823
93824
93825
93826
93827

  /* If an error occurs, we jump here */
begin_table_error:
  sqlite3DbFree(db, zName);
  return;
}

/*
** This macro is used to compare two strings in a case-insensitive manner.
** It is slightly faster than calling sqlite3StrICmp() directly, but
** produces larger code.
**
** WARNING: This macro is not compatible with the strcmp() family. It
** returns true if the two strings are equal, otherwise false.
*/
#define STRICMP(x, y) (\

sqlite3UpperToLower[*(unsigned char *)(x)]==   \
sqlite3UpperToLower[*(unsigned char *)(y)]     \






&& sqlite3StrICmp((x)+1,(y)+1)==0 )

/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement.  sqlite3StartTable() gets called
** first to get things going.  Then this routine is called for each







|
<
<
<
|
<
<

<
>
|
|
>
>
>
>
>
>
|







94733
94734
94735
94736
94737
94738
94739
94740



94741


94742

94743
94744
94745
94746
94747
94748
94749
94750
94751
94752
94753
94754
94755
94756
94757
94758
94759

  /* If an error occurs, we jump here */
begin_table_error:
  sqlite3DbFree(db, zName);
  return;
}

/* Set properties of a table column based on the (magical)



** name of the column.


*/

#if SQLITE_ENABLE_HIDDEN_COLUMNS
SQLITE_PRIVATE void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
  if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
    pCol->colFlags |= COLFLAG_HIDDEN;
  }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
    pTab->tabFlags |= TF_OOOHidden;
  }
}
#endif


/*
** Add a new column to the table currently being constructed.
**
** The parser calls this routine once for each column declaration
** in a CREATE TABLE statement.  sqlite3StartTable() gets called
** first to get things going.  Then this routine is called for each
93839
93840
93841
93842
93843
93844
93845
93846
93847
93848
93849
93850
93851
93852
93853
93854
93855
93856
93857
93858
93859
93860
93861
93862
93863

93864
93865
93866
93867
93868
93869
93870
    sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
    return;
  }
#endif
  z = sqlite3NameFromToken(db, pName);
  if( z==0 ) return;
  for(i=0; i<p->nCol; i++){
    if( STRICMP(z, p->aCol[i].zName) ){
      sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
      sqlite3DbFree(db, z);
      return;
    }
  }
  if( (p->nCol & 0x7)==0 ){
    Column *aNew;
    aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
    if( aNew==0 ){
      sqlite3DbFree(db, z);
      return;
    }
    p->aCol = aNew;
  }
  pCol = &p->aCol[p->nCol];
  memset(pCol, 0, sizeof(p->aCol[0]));
  pCol->zName = z;

 
  /* If there is no type specified, columns have the default affinity
  ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
  ** be called next to set pCol->affinity correctly.
  */
  pCol->affinity = SQLITE_AFF_BLOB;
  pCol->szEst = 1;







|

















>







94771
94772
94773
94774
94775
94776
94777
94778
94779
94780
94781
94782
94783
94784
94785
94786
94787
94788
94789
94790
94791
94792
94793
94794
94795
94796
94797
94798
94799
94800
94801
94802
94803
    sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
    return;
  }
#endif
  z = sqlite3NameFromToken(db, pName);
  if( z==0 ) return;
  for(i=0; i<p->nCol; i++){
    if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
      sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
      sqlite3DbFree(db, z);
      return;
    }
  }
  if( (p->nCol & 0x7)==0 ){
    Column *aNew;
    aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
    if( aNew==0 ){
      sqlite3DbFree(db, z);
      return;
    }
    p->aCol = aNew;
  }
  pCol = &p->aCol[p->nCol];
  memset(pCol, 0, sizeof(p->aCol[0]));
  pCol->zName = z;
  sqlite3ColumnPropertiesFromName(p, pCol);
 
  /* If there is no type specified, columns have the default affinity
  ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
  ** be called next to set pCol->affinity correctly.
  */
  pCol->affinity = SQLITE_AFF_BLOB;
  pCol->szEst = 1;
94023
94024
94025
94026
94027
94028
94029
























94030
94031
94032
94033
94034
94035
94036
      sqlite3DbFree(db, pCol->zDflt);
      pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
                                     (int)(pSpan->zEnd - pSpan->zStart));
    }
  }
  sqlite3ExprDelete(db, pSpan->pExpr);
}

























/*
** Designate the PRIMARY KEY for the table.  pList is a list of names 
** of columns that form the primary key.  If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key.  If the table already has







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







94956
94957
94958
94959
94960
94961
94962
94963
94964
94965
94966
94967
94968
94969
94970
94971
94972
94973
94974
94975
94976
94977
94978
94979
94980
94981
94982
94983
94984
94985
94986
94987
94988
94989
94990
94991
94992
94993
      sqlite3DbFree(db, pCol->zDflt);
      pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
                                     (int)(pSpan->zEnd - pSpan->zStart));
    }
  }
  sqlite3ExprDelete(db, pSpan->pExpr);
}

/*
** Backwards Compatibility Hack:
** 
** Historical versions of SQLite accepted strings as column names in
** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
**
**     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
**     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
**
** This is goofy.  But to preserve backwards compatibility we continue to
** accept it.  This routine does the necessary conversion.  It converts
** the expression given in its argument from a TK_STRING into a TK_ID
** if the expression is just a TK_STRING with an optional COLLATE clause.
** If the epxression is anything other than TK_STRING, the expression is
** unchanged.
*/
static void sqlite3StringToId(Expr *p){
  if( p->op==TK_STRING ){
    p->op = TK_ID;
  }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
    p->pLeft->op = TK_ID;
  }
}

/*
** Designate the PRIMARY KEY for the table.  pList is a list of names 
** of columns that form the primary key.  If pList is NULL, then the
** most recently added column of the table is the primary key.
**
** A table can have at most one primary key.  If the table already has
94070
94071
94072
94073
94074
94075
94076

94077
94078
94079
94080
94081
94082
94083
    zType = pTab->aCol[iCol].zType;
    nTerm = 1;
  }else{
    nTerm = pList->nExpr;
    for(i=0; i<nTerm; i++){
      Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
      assert( pCExpr!=0 );

      if( pCExpr->op==TK_ID ){
        const char *zCName = pCExpr->u.zToken;
        for(iCol=0; iCol<pTab->nCol; iCol++){
          if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
            pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
            zType = pTab->aCol[iCol].zType;
            break;







>







95027
95028
95029
95030
95031
95032
95033
95034
95035
95036
95037
95038
95039
95040
95041
    zType = pTab->aCol[iCol].zType;
    nTerm = 1;
  }else{
    nTerm = pList->nExpr;
    for(i=0; i<nTerm; i++){
      Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
      assert( pCExpr!=0 );
      sqlite3StringToId(pCExpr);
      if( pCExpr->op==TK_ID ){
        const char *zCName = pCExpr->u.zToken;
        for(iCol=0; iCol<pTab->nCol; iCol++){
          if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
            pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
            zType = pTab->aCol[iCol].zType;
            break;
94366
94367
94368
94369
94370
94371
94372
94373
94374
94375
94376
94377
94378
94379
94380
  int nByte;
  if( pIdx->nColumn>=N ) return SQLITE_OK;
  assert( pIdx->isResized==0 );
  nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
  zExtra = sqlite3DbMallocZero(db, nByte);
  if( zExtra==0 ) return SQLITE_NOMEM;
  memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
  pIdx->azColl = (char**)zExtra;
  zExtra += sizeof(char*)*N;
  memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
  pIdx->aiColumn = (i16*)zExtra;
  zExtra += sizeof(i16)*N;
  memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
  pIdx->aSortOrder = (u8*)zExtra;
  pIdx->nColumn = N;







|







95324
95325
95326
95327
95328
95329
95330
95331
95332
95333
95334
95335
95336
95337
95338
  int nByte;
  if( pIdx->nColumn>=N ) return SQLITE_OK;
  assert( pIdx->isResized==0 );
  nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
  zExtra = sqlite3DbMallocZero(db, nByte);
  if( zExtra==0 ) return SQLITE_NOMEM;
  memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
  pIdx->azColl = (const char**)zExtra;
  zExtra += sizeof(char*)*N;
  memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
  pIdx->aiColumn = (i16*)zExtra;
  zExtra += sizeof(i16)*N;
  memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
  pIdx->aSortOrder = (u8*)zExtra;
  pIdx->nColumn = N;
94505
94506
94507
94508
94509
94510
94511
94512
94513
94514
94515
94516
94517
94518
94519
  assert( pPk!=0 );
  nPk = pPk->nKeyCol;

  /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
  ** do not enforce this for imposter tables.) */
  if( !db->init.imposterTable ){
    for(i=0; i<nPk; i++){
      pTab->aCol[pPk->aiColumn[i]].notNull = 1;
    }
    pPk->uniqNotNull = 1;
  }

  /* The root page of the PRIMARY KEY is the table root page */
  pPk->tnum = pTab->tnum;








|







95463
95464
95465
95466
95467
95468
95469
95470
95471
95472
95473
95474
95475
95476
95477
  assert( pPk!=0 );
  nPk = pPk->nKeyCol;

  /* Make sure every column of the PRIMARY KEY is NOT NULL.  (Except,
  ** do not enforce this for imposter tables.) */
  if( !db->init.imposterTable ){
    for(i=0; i<nPk; i++){
      pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
    }
    pPk->uniqNotNull = 1;
  }

  /* The root page of the PRIMARY KEY is the table root page */
  pPk->tnum = pTab->tnum;

94547
94548
94549
94550
94551
94552
94553
94554
94555
94556
94557
94558
94559
94560
94561
  */
  if( nPk<pTab->nCol ){
    if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
    for(i=0, j=nPk; i<pTab->nCol; i++){
      if( !hasColumn(pPk->aiColumn, j, i) ){
        assert( j<pPk->nColumn );
        pPk->aiColumn[j] = i;
        pPk->azColl[j] = "BINARY";
        j++;
      }
    }
    assert( pPk->nColumn==j );
    assert( pTab->nCol==j );
  }else{
    pPk->nColumn = pTab->nCol;







|







95505
95506
95507
95508
95509
95510
95511
95512
95513
95514
95515
95516
95517
95518
95519
  */
  if( nPk<pTab->nCol ){
    if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
    for(i=0, j=nPk; i<pTab->nCol; i++){
      if( !hasColumn(pPk->aiColumn, j, i) ){
        assert( j<pPk->nColumn );
        pPk->aiColumn[j] = i;
        pPk->azColl[j] = sqlite3StrBINARY;
        j++;
      }
    }
    assert( pPk->nColumn==j );
    assert( pTab->nCol==j );
  }else{
    pPk->nColumn = pTab->nCol;
95597
95598
95599
95600
95601
95602
95603
95604
95605
95606
95607
95608
95609
95610
95611
95612
95613
95614
95615
95616
95617
95618
95619
95620
95621
95622
95623
95624
95625
95626
95627
95628
95629
95630
95631
95632
95633
95634
95635
95636
95637
95638
95639
95640
95641
95642
95643
95644
95645
          ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
          ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
                 sizeof(i16)*nCol +            /* Index.aiColumn   */
                 sizeof(u8)*nCol);             /* Index.aSortOrder */
  p = sqlite3DbMallocZero(db, nByte + nExtra);
  if( p ){
    char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
    p->azColl = (char**)pExtra;       pExtra += ROUND8(sizeof(char*)*nCol);
    p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
    p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
    p->aSortOrder = (u8*)pExtra;
    p->nColumn = nCol;
    p->nKeyCol = nCol - 1;
    *ppExtra = ((char*)p) + nByte;
  }
  return p;
}

/*
** Backwards Compatibility Hack:
** 
** Historical versions of SQLite accepted strings as column names in
** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
**
**     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
**     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
**
** This is goofy.  But to preserve backwards compatibility we continue to
** accept it.  This routine does the necessary conversion.  It converts
** the expression given in its argument from a TK_STRING into a TK_ID
** if the expression is just a TK_STRING with an optional COLLATE clause.
** If the epxression is anything other than TK_STRING, the expression is
** unchanged.
*/
static void sqlite3StringToId(Expr *p){
  if( p->op==TK_STRING ){
    p->op = TK_ID;
  }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
    p->pLeft->op = TK_ID;
  }
}

/*
** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
** and pTblList is the name of the table that is to be indexed.  Both will 
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed.  pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.







|










<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







96555
96556
96557
96558
96559
96560
96561
96562
96563
96564
96565
96566
96567
96568
96569
96570
96571
96572
























96573
96574
96575
96576
96577
96578
96579
          ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
          ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
                 sizeof(i16)*nCol +            /* Index.aiColumn   */
                 sizeof(u8)*nCol);             /* Index.aSortOrder */
  p = sqlite3DbMallocZero(db, nByte + nExtra);
  if( p ){
    char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
    p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
    p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
    p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
    p->aSortOrder = (u8*)pExtra;
    p->nColumn = nCol;
    p->nKeyCol = nCol - 1;
    *ppExtra = ((char*)p) + nByte;
  }
  return p;
}

























/*
** Create a new index for an SQL table.  pName1.pName2 is the name of the index 
** and pTblList is the name of the table that is to be indexed.  Both will 
** be NULL for a primary key or an index that is created to satisfy a
** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
** as the table to be indexed.  pParse->pNewTable is a table that is
** currently being constructed by a CREATE TABLE statement.
95898
95899
95900
95901
95902
95903
95904
95905
95906
95907
95908
95909
95910
95911
95912
  ** TODO: Issue a warning if two or more columns of the index are identical.
  ** TODO: Issue a warning if the table primary key is used as part of the
  ** index key.
  */
  for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
    Expr *pCExpr;                  /* The i-th index expression */
    int requestedSortOrder;        /* ASC or DESC on the i-th expression */
    char *zColl;                   /* Collation sequence name */

    sqlite3StringToId(pListItem->pExpr);
    sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
    if( pParse->nErr ) goto exit_create_index;
    pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
    if( pCExpr->op!=TK_COLUMN ){
      if( pTab==pParse->pNewTable ){







|







96832
96833
96834
96835
96836
96837
96838
96839
96840
96841
96842
96843
96844
96845
96846
  ** TODO: Issue a warning if two or more columns of the index are identical.
  ** TODO: Issue a warning if the table primary key is used as part of the
  ** index key.
  */
  for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
    Expr *pCExpr;                  /* The i-th index expression */
    int requestedSortOrder;        /* ASC or DESC on the i-th expression */
    const char *zColl;             /* Collation sequence name */

    sqlite3StringToId(pListItem->pExpr);
    sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
    if( pParse->nErr ) goto exit_create_index;
    pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
    if( pCExpr->op!=TK_COLUMN ){
      if( pTab==pParse->pNewTable ){
95944
95945
95946
95947
95948
95949
95950
95951
95952
95953
95954
95955
95956
95957
95958
      memcpy(zExtra, zColl, nColl);
      zColl = zExtra;
      zExtra += nColl;
      nExtra -= nColl;
    }else if( j>=0 ){
      zColl = pTab->aCol[j].zColl;
    }
    if( !zColl ) zColl = "BINARY";
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
      goto exit_create_index;
    }
    pIndex->azColl[i] = zColl;
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
    pIndex->aSortOrder[i] = (u8)requestedSortOrder;
  }







|







96878
96879
96880
96881
96882
96883
96884
96885
96886
96887
96888
96889
96890
96891
96892
      memcpy(zExtra, zColl, nColl);
      zColl = zExtra;
      zExtra += nColl;
      nExtra -= nColl;
    }else if( j>=0 ){
      zColl = pTab->aCol[j].zColl;
    }
    if( !zColl ) zColl = sqlite3StrBINARY;
    if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
      goto exit_create_index;
    }
    pIndex->azColl[i] = zColl;
    requestedSortOrder = pListItem->sortOrder & sortOrderMask;
    pIndex->aSortOrder[i] = (u8)requestedSortOrder;
  }
95973
95974
95975
95976
95977
95978
95979
95980
95981
95982
95983
95984
95985
95986
95987
        pIndex->aSortOrder[i] = pPk->aSortOrder[j];
        i++;
      }
    }
    assert( i==pIndex->nColumn );
  }else{
    pIndex->aiColumn[i] = XN_ROWID;
    pIndex->azColl[i] = "BINARY";
  }
  sqlite3DefaultRowEst(pIndex);
  if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or







|







96907
96908
96909
96910
96911
96912
96913
96914
96915
96916
96917
96918
96919
96920
96921
        pIndex->aSortOrder[i] = pPk->aSortOrder[j];
        i++;
      }
    }
    assert( i==pIndex->nColumn );
  }else{
    pIndex->aiColumn[i] = XN_ROWID;
    pIndex->azColl[i] = sqlite3StrBINARY;
  }
  sqlite3DefaultRowEst(pIndex);
  if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);

  if( pTab==pParse->pNewTable ){
    /* This routine has been called to create an automatic index as a
    ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
96626
96627
96628
96629
96630
96631
96632
96633
96634
96635
96636
96637
96638
96639
96640
}

/*
** Add the list of function arguments to the SrcList entry for a
** table-valued-function.
*/
SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
  if( p && pList ){
    struct SrcList_item *pItem = &p->a[p->nSrc-1];
    assert( pItem->fg.notIndexed==0 );
    assert( pItem->fg.isIndexedBy==0 );
    assert( pItem->fg.isTabFunc==0 );
    pItem->u1.pFuncArg = pList;
    pItem->fg.isTabFunc = 1;
  }else{







|







97560
97561
97562
97563
97564
97565
97566
97567
97568
97569
97570
97571
97572
97573
97574
}

/*
** Add the list of function arguments to the SrcList entry for a
** table-valued-function.
*/
SQLITE_PRIVATE void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
  if( p ){
    struct SrcList_item *pItem = &p->a[p->nSrc-1];
    assert( pItem->fg.notIndexed==0 );
    assert( pItem->fg.isIndexedBy==0 );
    assert( pItem->fg.isTabFunc==0 );
    pItem->u1.pFuncArg = pList;
    pItem->fg.isTabFunc = 1;
  }else{
97097
97098
97099
97100
97101
97102
97103
97104
97105
97106
97107
97108
97109
97110
97111
97112
97113
    pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
  }else{
    pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
  }
  if( pKey ){
    assert( sqlite3KeyInfoIsWriteable(pKey) );
    for(i=0; i<nCol; i++){
      char *zColl = pIdx->azColl[i];
      assert( zColl!=0 );
      pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
                        sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }
    if( pParse->nErr ){
      sqlite3KeyInfoUnref(pKey);
      pKey = 0;
    }







|
<
|







98031
98032
98033
98034
98035
98036
98037
98038

98039
98040
98041
98042
98043
98044
98045
98046
    pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
  }else{
    pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
  }
  if( pKey ){
    assert( sqlite3KeyInfoIsWriteable(pKey) );
    for(i=0; i<nCol; i++){
      const char *zColl = pIdx->azColl[i];

      pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
                        sqlite3LocateCollSeq(pParse, zColl);
      pKey->aSortOrder[i] = pIdx->aSortOrder[i];
    }
    if( pParse->nErr ){
      sqlite3KeyInfoUnref(pKey);
      pKey = 0;
    }
97771
97772
97773
97774
97775
97776
97777
97778

97779
97780
97781
97782
97783
97784
97785
  if( pFrom ){
    assert( pFrom->nSrc==1 );
    pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
    pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
    assert( pFrom->a[0].pOn==0 );
    assert( pFrom->a[0].pUsing==0 );
  }
  pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 0, 0, 0);

  sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
  sqlite3Select(pParse, pSel, &dest);
  sqlite3SelectDelete(db, pSel);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */

#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)







|
>







98704
98705
98706
98707
98708
98709
98710
98711
98712
98713
98714
98715
98716
98717
98718
98719
  if( pFrom ){
    assert( pFrom->nSrc==1 );
    pFrom->a[0].zName = sqlite3DbStrDup(db, pView->zName);
    pFrom->a[0].zDatabase = sqlite3DbStrDup(db, db->aDb[iDb].zName);
    assert( pFrom->a[0].pOn==0 );
    assert( pFrom->a[0].pUsing==0 );
  }
  pSel = sqlite3SelectNew(pParse, 0, pFrom, pWhere, 0, 0, 0, 
                          SF_IncludeHidden, 0, 0);
  sqlite3SelectDestInit(&dest, SRT_EphemTab, iCur);
  sqlite3Select(pParse, pSel, &dest);
  sqlite3SelectDelete(db, pSel);
}
#endif /* !defined(SQLITE_OMIT_VIEW) && !defined(SQLITE_OMIT_TRIGGER) */

#if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY)
98143
98144
98145
98146
98147
98148
98149

98150
98151
98152
98153
98154
98155
98156
98157
98158
98159
98160
98161
98162
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){
      int iAddrOnce = 0;

      if( eOnePass==ONEPASS_MULTI ){
        iAddrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
      }
      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iTabCur, aToOpen,
                                 &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
      if( eOnePass==ONEPASS_MULTI ) sqlite3VdbeJumpHere(v, iAddrOnce);
    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.







>




|
|







99077
99078
99079
99080
99081
99082
99083
99084
99085
99086
99087
99088
99089
99090
99091
99092
99093
99094
99095
99096
99097
    /* Unless this is a view, open cursors for the table we are 
    ** deleting from and all its indices. If this is a view, then the
    ** only effect this statement has is to fire the INSTEAD OF 
    ** triggers.
    */
    if( !isView ){
      int iAddrOnce = 0;
      u8 p5 = (eOnePass==ONEPASS_OFF ? 0 : OPFLAG_FORDELETE);
      if( eOnePass==ONEPASS_MULTI ){
        iAddrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v);
      }
      testcase( IsVirtual(pTab) );
      sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, p5, iTabCur, 
                                 aToOpen, &iDataCur, &iIdxCur);
      assert( pPk || IsVirtual(pTab) || iDataCur==iTabCur );
      assert( pPk || IsVirtual(pTab) || iIdxCur==iDataCur+1 );
      if( eOnePass==ONEPASS_MULTI ) sqlite3VdbeJumpHere(v, iAddrOnce);
    }
  
    /* Set up a loop over the rowids/primary-keys that were found in the
    ** where-clause loop above.
99307
99308
99309
99310
99311
99312
99313
99314
99315
99316
99317
99318
99319
99320
99321
99322
99323
99324
99325
99326
99327
99328







99329
99330
99331
99332
99333
99334
99335
          return 0;
        }
        continue;
      }
    }
    c2 = Utf8Read(zString);
    if( c==c2 ) continue;
    if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
      continue;
    }
    if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
    return 0;
  }
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
}








/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called.  This is used for testing
** only.
*/
#ifdef SQLITE_TEST







|














>
>
>
>
>
>
>







100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
          return 0;
        }
        continue;
      }
    }
    c2 = Utf8Read(zString);
    if( c==c2 ) continue;
    if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) ){
      continue;
    }
    if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
    return 0;
  }
  return *zString==0;
}

/*
** The sqlite3_strglob() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlobPattern, const char *zString){
  return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0;
}

/*
** The sqlite3_strlike() interface.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
  return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0;
}

/*
** Count the number of times that the LIKE operator (or GLOB which is
** just a variation of LIKE) gets called.  This is used for testing
** only.
*/
#ifdef SQLITE_TEST
99355
99356
99357
99358
99359
99360
99361











99362
99363
99364
99365
99366
99367
99368
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape = 0;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);












  zB = sqlite3_value_text(argv[0]);
  zA = sqlite3_value_text(argv[1]);

  /* Limit the length of the LIKE or GLOB pattern to avoid problems
  ** of deep recursion and N*N behavior in patternCompare().
  */
  nPat = sqlite3_value_bytes(argv[0]);







>
>
>
>
>
>
>
>
>
>
>







100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
  sqlite3_value **argv
){
  const unsigned char *zA, *zB;
  u32 escape = 0;
  int nPat;
  sqlite3 *db = sqlite3_context_db_handle(context);

#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  if( sqlite3_value_type(argv[0])==SQLITE_BLOB
   || sqlite3_value_type(argv[1])==SQLITE_BLOB
  ){
#ifdef SQLITE_TEST
    sqlite3_like_count++;
#endif
    sqlite3_result_int(context, 0);
    return;
  }
#endif
  zB = sqlite3_value_text(argv[0]);
  zA = sqlite3_value_text(argv[1]);

  /* Limit the length of the LIKE or GLOB pattern to avoid problems
  ** of deep recursion and N*N behavior in patternCompare().
  */
  nPat = sqlite3_value_bytes(argv[0]);
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
        /* If zKey is non-NULL, then this foreign key was declared to
        ** map to an explicit list of columns in table pParent. Check if this
        ** index matches those columns. Also, check that the index uses
        ** the default collation sequences for each column. */
        int i, j;
        for(i=0; i<nCol; i++){
          i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
          char *zDfltColl;                  /* Def. collation for column */
          char *zIdxCol;                    /* Name of indexed column */

          if( iCol<0 ) break; /* No foreign keys against expression indexes */

          /* If the index uses a collation sequence that is different from
          ** the default collation sequence for the column, this index is
          ** unusable. Bail out early in this case.  */
          zDfltColl = pParent->aCol[iCol].zColl;
          if( !zDfltColl ){
            zDfltColl = "BINARY";
          }
          if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;

          zIdxCol = pParent->aCol[iCol].zName;
          for(j=0; j<nCol; j++){
            if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
              if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
              break;







|








|
<
<







101561
101562
101563
101564
101565
101566
101567
101568
101569
101570
101571
101572
101573
101574
101575
101576
101577


101578
101579
101580
101581
101582
101583
101584
        /* If zKey is non-NULL, then this foreign key was declared to
        ** map to an explicit list of columns in table pParent. Check if this
        ** index matches those columns. Also, check that the index uses
        ** the default collation sequences for each column. */
        int i, j;
        for(i=0; i<nCol; i++){
          i16 iCol = pIdx->aiColumn[i];     /* Index of column in parent tbl */
          const char *zDfltColl;            /* Def. collation for column */
          char *zIdxCol;                    /* Name of indexed column */

          if( iCol<0 ) break; /* No foreign keys against expression indexes */

          /* If the index uses a collation sequence that is different from
          ** the default collation sequence for the column, this index is
          ** unusable. Bail out early in this case.  */
          zDfltColl = pParent->aCol[iCol].zColl;
          if( !zDfltColl ) zDfltColl = sqlite3StrBINARY;


          if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;

          zIdxCol = pParent->aCol[iCol].zName;
          for(j=0; j<nCol; j++){
            if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
              if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
              break;
102508
102509
102510
102511
102512
102513
102514
102515
102516
102517
102518
102519
102520
102521
102522
102523
102524
102525
  if( pColumn==0 && nColumn>0 ){
    ipkColumn = pTab->iPKey;
  }

  /* Make sure the number of columns in the source data matches the number
  ** of columns to be inserted into the table.
  */
  if( IsVirtual(pTab) ){
    for(i=0; i<pTab->nCol; i++){
      nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
    }
  }
  if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
    sqlite3ErrorMsg(pParse, 
       "table %S has %d columns but %d values were supplied",
       pTabList, 0, pTab->nCol-nHidden, nColumn);
    goto insert_cleanup;
  }







<
|
|
<







103459
103460
103461
103462
103463
103464
103465

103466
103467

103468
103469
103470
103471
103472
103473
103474
  if( pColumn==0 && nColumn>0 ){
    ipkColumn = pTab->iPKey;
  }

  /* Make sure the number of columns in the source data matches the number
  ** of columns to be inserted into the table.
  */

  for(i=0; i<pTab->nCol; i++){
    nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);

  }
  if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
    sqlite3ErrorMsg(pParse, 
       "table %S has %d columns but %d values were supplied",
       pTabList, 0, pTab->nCol-nHidden, nColumn);
    goto insert_cleanup;
  }
102534
102535
102536
102537
102538
102539
102540
102541
102542
102543
102544
102545
102546
102547
102548
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    int nIdx;
    nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0,
                                      &iDataCur, &iIdxCur);
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
    if( aRegIdx==0 ){
      goto insert_cleanup;
    }
    for(i=0; i<nIdx; i++){
      aRegIdx[i] = ++pParse->nMem;







|







103483
103484
103485
103486
103487
103488
103489
103490
103491
103492
103493
103494
103495
103496
103497
    regRowCount = ++pParse->nMem;
    sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
  }

  /* If this is not a view, open the table and and all indices */
  if( !isView ){
    int nIdx;
    nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
                                      &iDataCur, &iIdxCur);
    aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
    if( aRegIdx==0 ){
      goto insert_cleanup;
    }
    for(i=0; i<nIdx; i++){
      aRegIdx[i] = ++pParse->nMem;
102607
102608
102609
102610
102611
102612
102613
102614
102615
102616
102617
102618
102619
102620
102621
102622

102623
102624
102625
102626
102627
102628
102629

102630
102631
102632
102633
102634
102635
102636
    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert( !IsVirtual(pTab) );

    /* Create the new column data
    */
    for(i=0; i<pTab->nCol; i++){
      if( pColumn==0 ){
        j = i;
      }else{
        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){

        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
      }else if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 
      }else{
        assert( pSelect==0 ); /* Otherwise useTempTable is true */
        sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
      }

    }

    /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
    ** do not attempt any conversions before assembling the record.
    ** If this is a real table, attempt conversions as required by the
    ** table column affinities.
    */







|
|
<
<




|
>







>







103556
103557
103558
103559
103560
103561
103562
103563
103564


103565
103566
103567
103568
103569
103570
103571
103572
103573
103574
103575
103576
103577
103578
103579
103580
103581
103582
103583
103584
103585
    /* Cannot have triggers on a virtual table. If it were possible,
    ** this block would have to account for hidden column.
    */
    assert( !IsVirtual(pTab) );

    /* Create the new column data
    */
    for(i=j=0; i<pTab->nCol; i++){
      if( pColumn ){


        for(j=0; j<pColumn->nId; j++){
          if( pColumn->a[j].idx==i ) break;
        }
      }
      if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId)
            || (pColumn==0 && IsOrdinaryHiddenColumn(&pTab->aCol[i])) ){
        sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
      }else if( useTempTable ){
        sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); 
      }else{
        assert( pSelect==0 ); /* Otherwise useTempTable is true */
        sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
      }
      if( pColumn==0 && !IsOrdinaryHiddenColumn(&pTab->aCol[i]) ) j++;
    }

    /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
    ** do not attempt any conversions before assembling the record.
    ** If this is a real table, attempt conversions as required by the
    ** table column affinities.
    */
102706
102707
102708
102709
102710
102711
102712
102713
102714
102715
102716
102717
102718
102719
102720
        ** taking up data space with information that will never be used.
        ** As there may be shallow copies of this value, make it a soft-NULL */
        sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
        continue;
      }
      if( pColumn==0 ){
        if( IsHiddenColumn(&pTab->aCol[i]) ){
          assert( IsVirtual(pTab) );
          j = -1;
          nHidden++;
        }else{
          j = i - nHidden;
        }
      }else{
        for(j=0; j<pColumn->nId; j++){







<







103655
103656
103657
103658
103659
103660
103661

103662
103663
103664
103665
103666
103667
103668
        ** taking up data space with information that will never be used.
        ** As there may be shallow copies of this value, make it a soft-NULL */
        sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
        continue;
      }
      if( pColumn==0 ){
        if( IsHiddenColumn(&pTab->aCol[i]) ){

          j = -1;
          nHidden++;
        }else{
          j = i - nHidden;
        }
      }else{
        for(j=0; j<pColumn->nId; j++){
103183
103184
103185
103186
103187
103188
103189
103190
103191
103192
103193
103194
103195
103196
103197
103198
103199
103200
103201
103202
103203
103204
103205
103206
103207
103208
    */
    regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
    for(i=0; i<pIdx->nColumn; i++){
      int iField = pIdx->aiColumn[i];
      int x;
      if( iField==XN_EXPR ){
        pParse->ckBase = regNewData+1;
        sqlite3ExprCode(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
        pParse->ckBase = 0;
        VdbeComment((v, "%s column %d", pIdx->zName, i));
      }else{
        if( iField==XN_ROWID || iField==pTab->iPKey ){
          if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
          x = regNewData;
          regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
        }else{
          x = iField + regNewData + 1;
        }
        sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
        VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
      }
    }
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
    VdbeComment((v, "for %s", pIdx->zName));
    sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);








|










|







104131
104132
104133
104134
104135
104136
104137
104138
104139
104140
104141
104142
104143
104144
104145
104146
104147
104148
104149
104150
104151
104152
104153
104154
104155
104156
    */
    regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn);
    for(i=0; i<pIdx->nColumn; i++){
      int iField = pIdx->aiColumn[i];
      int x;
      if( iField==XN_EXPR ){
        pParse->ckBase = regNewData+1;
        sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
        pParse->ckBase = 0;
        VdbeComment((v, "%s column %d", pIdx->zName, i));
      }else{
        if( iField==XN_ROWID || iField==pTab->iPKey ){
          if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */
          x = regNewData;
          regRowid =  pIdx->pPartIdxWhere ? -1 : regIdx+i;
        }else{
          x = iField + regNewData + 1;
        }
        sqlite3VdbeAddOp2(v, iField<0 ? OP_IntCopy : OP_SCopy, x, regIdx+i);
        VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName));
      }
    }
    sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
    VdbeComment((v, "for %s", pIdx->zName));
    sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn);

103422
103423
103424
103425
103426
103427
103428

103429
103430
103431
103432
103433
103434
103435
103436
103437
103438
103439
103440

103441
103442
103443
103444
103445
103446
103447
** If pTab is a virtual table, then this routine is a no-op and the
** *piDataCur and *piIdxCur values are left uninitialized.
*/
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
  Parse *pParse,   /* Parsing context */
  Table *pTab,     /* Table to be opened */
  int op,          /* OP_OpenRead or OP_OpenWrite */

  int iBase,       /* Use this for the table cursor, if there is one */
  u8 *aToOpen,     /* If not NULL: boolean for each table and index */
  int *piDataCur,  /* Write the database source cursor number here */
  int *piIdxCur    /* Write the first index cursor number here */
){
  int i;
  int iDb;
  int iDataCur;
  Index *pIdx;
  Vdbe *v;

  assert( op==OP_OpenRead || op==OP_OpenWrite );

  if( IsVirtual(pTab) ){
    /* This routine is a no-op for virtual tables. Leave the output
    ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
    ** can detect if they are used by mistake in the caller. */
    return 0;
  }
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);







>












>







104370
104371
104372
104373
104374
104375
104376
104377
104378
104379
104380
104381
104382
104383
104384
104385
104386
104387
104388
104389
104390
104391
104392
104393
104394
104395
104396
104397
** If pTab is a virtual table, then this routine is a no-op and the
** *piDataCur and *piIdxCur values are left uninitialized.
*/
SQLITE_PRIVATE int sqlite3OpenTableAndIndices(
  Parse *pParse,   /* Parsing context */
  Table *pTab,     /* Table to be opened */
  int op,          /* OP_OpenRead or OP_OpenWrite */
  u8 p5,           /* P5 value for OP_Open* instructions */
  int iBase,       /* Use this for the table cursor, if there is one */
  u8 *aToOpen,     /* If not NULL: boolean for each table and index */
  int *piDataCur,  /* Write the database source cursor number here */
  int *piIdxCur    /* Write the first index cursor number here */
){
  int i;
  int iDb;
  int iDataCur;
  Index *pIdx;
  Vdbe *v;

  assert( op==OP_OpenRead || op==OP_OpenWrite );
  assert( op==OP_OpenWrite || p5==0 );
  if( IsVirtual(pTab) ){
    /* This routine is a no-op for virtual tables. Leave the output
    ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
    ** can detect if they are used by mistake in the caller. */
    return 0;
  }
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
103461
103462
103463
103464
103465
103466
103467

103468
103469
103470
103471
103472
103473
103474
103475
103476
103477
103478
103479
103480
103481
103482
103483
103484
103485
103486
103487
103488
103489
103490
103491
103492
103493
103494
103495
103496
103497
103498
103499
103500
103501
103502
103503
103504
103505
103506
103507
103508
    assert( pIdx->pSchema==pTab->pSchema );
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
      *piDataCur = iIdxCur;
    }
    if( aToOpen==0 || aToOpen[i+1] ){
      sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
      sqlite3VdbeSetP4KeyInfo(pParse, pIdx);

      VdbeComment((v, "%s", pIdx->zName));
    }
  }
  if( iBase>pParse->nTab ) pParse->nTab = iBase;
  return i;
}


#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used.  This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is supposed to.
*/
SQLITE_API int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */


#ifndef SQLITE_OMIT_XFER_OPT
/*
** Check to collation names to see if they are compatible.
*/
static int xferCompatibleCollation(const char *z1, const char *z2){
  if( z1==0 ){
    return z2==0;
  }
  if( z2==0 ){
    return 0;
  }
  return sqlite3StrICmp(z1, z2)==0;
}


/*
** Check to see if index pSrc is compatible as a source of data
** for index pDest in an insert transfer optimization.  The rules
** for a compatible index:
**
**    *   The index is over the same set of columns
**    *   The same DESC and ASC markings occurs on all columns







>




















<
<
<
<
<
<
<
<
<
<
<
<
<
<







104411
104412
104413
104414
104415
104416
104417
104418
104419
104420
104421
104422
104423
104424
104425
104426
104427
104428
104429
104430
104431
104432
104433
104434
104435
104436
104437
104438














104439
104440
104441
104442
104443
104444
104445
    assert( pIdx->pSchema==pTab->pSchema );
    if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){
      *piDataCur = iIdxCur;
    }
    if( aToOpen==0 || aToOpen[i+1] ){
      sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
      sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
      sqlite3VdbeChangeP5(v, p5);
      VdbeComment((v, "%s", pIdx->zName));
    }
  }
  if( iBase>pParse->nTab ) pParse->nTab = iBase;
  return i;
}


#ifdef SQLITE_TEST
/*
** The following global variable is incremented whenever the
** transfer optimization is used.  This is used for testing
** purposes only - to make sure the transfer optimization really
** is happening when it is supposed to.
*/
SQLITE_API int sqlite3_xferopt_count;
#endif /* SQLITE_TEST */


#ifndef SQLITE_OMIT_XFER_OPT














/*
** Check to see if index pSrc is compatible as a source of data
** for index pDest in an insert transfer optimization.  The rules
** for a compatible index:
**
**    *   The index is over the same set of columns
**    *   The same DESC and ASC markings occurs on all columns
103530
103531
103532
103533
103534
103535
103536
103537
103538
103539
103540
103541
103542
103543
103544
                             pDest->aColExpr->a[i].pExpr, -1)!=0 ){
        return 0;   /* Different expressions in the index */
      }
    }
    if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
      return 0;   /* Different sort orders */
    }
    if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
      return 0;   /* Different collating sequences */
    }
  }
  if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
    return 0;     /* Different WHERE clauses */
  }








|







104467
104468
104469
104470
104471
104472
104473
104474
104475
104476
104477
104478
104479
104480
104481
                             pDest->aColExpr->a[i].pExpr, -1)!=0 ){
        return 0;   /* Different expressions in the index */
      }
    }
    if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
      return 0;   /* Different sort orders */
    }
    if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
      return 0;   /* Different collating sequences */
    }
  }
  if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
    return 0;     /* Different WHERE clauses */
  }

103645
103646
103647
103648
103649
103650
103651
103652
103653
103654
103655
103656
103657
103658
103659
  }
  pEList = pSelect->pEList;
  assert( pEList!=0 );
  if( pEList->nExpr!=1 ){
    return 0;   /* The result set must have exactly one column */
  }
  assert( pEList->a[0].pExpr );
  if( pEList->a[0].pExpr->op!=TK_ALL ){
    return 0;   /* The result set must be the special operator "*" */
  }

  /* At this point we have established that the statement is of the
  ** correct syntactic form to participate in this optimization.  Now
  ** we have to check the semantics.
  */







|







104582
104583
104584
104585
104586
104587
104588
104589
104590
104591
104592
104593
104594
104595
104596
  }
  pEList = pSelect->pEList;
  assert( pEList!=0 );
  if( pEList->nExpr!=1 ){
    return 0;   /* The result set must have exactly one column */
  }
  assert( pEList->a[0].pExpr );
  if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
    return 0;   /* The result set must be the special operator "*" */
  }

  /* At this point we have established that the statement is of the
  ** correct syntactic form to participate in this optimization.  Now
  ** we have to check the semantics.
  */
103681
103682
103683
103684
103685
103686
103687







103688
103689
103690
103691
103692
103693
103694
103695
103696
103697
103698
  }
  if( pDest->iPKey!=pSrc->iPKey ){
    return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
  }
  for(i=0; i<pDest->nCol; i++){
    Column *pDestCol = &pDest->aCol[i];
    Column *pSrcCol = &pSrc->aCol[i];







    if( pDestCol->affinity!=pSrcCol->affinity ){
      return 0;    /* Affinity must be the same on all columns */
    }
    if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){
      return 0;    /* Collating sequence must be the same on all columns */
    }
    if( pDestCol->notNull && !pSrcCol->notNull ){
      return 0;    /* tab2 must be NOT NULL if tab1 is */
    }
    /* Default values for second and subsequent columns need to match. */
    if( i>0







>
>
>
>
>
>
>



|







104618
104619
104620
104621
104622
104623
104624
104625
104626
104627
104628
104629
104630
104631
104632
104633
104634
104635
104636
104637
104638
104639
104640
104641
104642
  }
  if( pDest->iPKey!=pSrc->iPKey ){
    return 0;   /* Both tables must have the same INTEGER PRIMARY KEY */
  }
  for(i=0; i<pDest->nCol; i++){
    Column *pDestCol = &pDest->aCol[i];
    Column *pSrcCol = &pSrc->aCol[i];
#ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
    if( (db->flags & SQLITE_Vacuum)==0 
     && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN 
    ){
      return 0;    /* Neither table may have __hidden__ columns */
    }
#endif
    if( pDestCol->affinity!=pSrcCol->affinity ){
      return 0;    /* Affinity must be the same on all columns */
    }
    if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
      return 0;    /* Collating sequence must be the same on all columns */
    }
    if( pDestCol->notNull && !pSrcCol->notNull ){
      return 0;    /* tab2 must be NOT NULL if tab1 is */
    }
    /* Default values for second and subsequent columns need to match. */
    if( i>0
103831
103832
103833
103834
103835
103836
103837
103838
103839

103840
103841
103842
103843
103844
103845
103846
103847
      **
      ** If any of the indexed columns use a collation sequence other than
      ** BINARY, this optimization is disabled. This is because the user 
      ** might change the definition of a collation sequence and then run
      ** a VACUUM command. In that case keys may not be written in strictly
      ** sorted order.  */
      for(i=0; i<pSrcIdx->nColumn; i++){
        char *zColl = pSrcIdx->azColl[i];
        assert( zColl!=0 );

        if( sqlite3_stricmp("BINARY", zColl) ) break;
      }
      if( i==pSrcIdx->nColumn ){
        idxInsFlags = OPFLAG_USESEEKRESULT;
        sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
      }
    }
    if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){







|
|
>
|







104775
104776
104777
104778
104779
104780
104781
104782
104783
104784
104785
104786
104787
104788
104789
104790
104791
104792
      **
      ** If any of the indexed columns use a collation sequence other than
      ** BINARY, this optimization is disabled. This is because the user 
      ** might change the definition of a collation sequence and then run
      ** a VACUUM command. In that case keys may not be written in strictly
      ** sorted order.  */
      for(i=0; i<pSrcIdx->nColumn; i++){
        const char *zColl = pSrcIdx->azColl[i];
        assert( sqlite3_stricmp(sqlite3StrBINARY, zColl)!=0
                    || sqlite3StrBINARY==zColl );
        if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
      }
      if( i==pSrcIdx->nColumn ){
        idxInsFlags = OPFLAG_USESEEKRESULT;
        sqlite3VdbeAddOp3(v, OP_Last, iDest, 0, -1);
      }
    }
    if( !HasRowid(pSrc) && pDestIdx->idxType==2 ){
104307
104308
104309
104310
104311
104312
104313
104314
104315
104316




104317
104318
104319
104320
104321
104322
104323
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);
  /* Version 3.8.11 and later */
  sqlite3_value *(*value_dup)(const sqlite3_value*);
  void (*value_free)(sqlite3_value*);
  int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
  int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
  /* Version 3.8.12 and later */
  unsigned int (*value_subtype)(sqlite3_value*);
  void (*result_subtype)(sqlite3_context*,unsigned int);




};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file







|


>
>
>
>







105252
105253
105254
105255
105256
105257
105258
105259
105260
105261
105262
105263
105264
105265
105266
105267
105268
105269
105270
105271
105272
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);
  /* Version 3.8.11 and later */
  sqlite3_value *(*value_dup)(const sqlite3_value*);
  void (*value_free)(sqlite3_value*);
  int (*result_zeroblob64)(sqlite3_context*,sqlite3_uint64);
  int (*bind_zeroblob64)(sqlite3_stmt*, int, sqlite3_uint64);
  /* Version 3.9.0 and later */
  unsigned int (*value_subtype)(sqlite3_value*);
  void (*result_subtype)(sqlite3_context*,unsigned int);
  /* Version 3.10.0 and later */
  int (*status64)(int,sqlite3_int64*,sqlite3_int64*,int);
  int (*strlike)(const char*,const char*,unsigned int);
  int (*db_cacheflush)(sqlite3*);
};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
104546
104547
104548
104549
104550
104551
104552
104553
104554
104555




104556
104557
104558
104559
104560
104561
104562
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#define sqlite3_result_zeroblob64      sqlite3_api->result_zeroblob64
#define sqlite3_bind_zeroblob64        sqlite3_api->bind_zeroblob64
/* Version 3.8.12 and later */
#define sqlite3_value_subtype          sqlite3_api->value_subtype
#define sqlite3_result_subtype         sqlite3_api->result_subtype




#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;







|


>
>
>
>







105495
105496
105497
105498
105499
105500
105501
105502
105503
105504
105505
105506
105507
105508
105509
105510
105511
105512
105513
105514
105515
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#define sqlite3_result_zeroblob64      sqlite3_api->result_zeroblob64
#define sqlite3_bind_zeroblob64        sqlite3_api->bind_zeroblob64
/* Version 3.9.0 and later */
#define sqlite3_value_subtype          sqlite3_api->value_subtype
#define sqlite3_result_subtype         sqlite3_api->result_subtype
/* Version 3.10.0 and later */
#define sqlite3_status64               sqlite3_api->status64
#define sqlite3_strlike                sqlite3_api->strlike
#define sqlite3_db_cacheflush          sqlite3_api->db_cacheflush
#endif /* !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION) */

#if !defined(SQLITE_CORE) && !defined(SQLITE_OMIT_LOAD_EXTENSION)
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;
104961
104962
104963
104964
104965
104966
104967
104968
104969
104970




104971
104972
104973
104974
104975
104976
104977
  sqlite3_result_text64,
  sqlite3_strglob,
  /* Version 3.8.11 and later */
  (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup,
  sqlite3_value_free,
  sqlite3_result_zeroblob64,
  sqlite3_bind_zeroblob64,
  /* Version 3.8.12 and later */
  sqlite3_value_subtype,
  sqlite3_result_subtype




};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.







|

|
>
>
>
>







105914
105915
105916
105917
105918
105919
105920
105921
105922
105923
105924
105925
105926
105927
105928
105929
105930
105931
105932
105933
105934
  sqlite3_result_text64,
  sqlite3_strglob,
  /* Version 3.8.11 and later */
  (sqlite3_value*(*)(const sqlite3_value*))sqlite3_value_dup,
  sqlite3_value_free,
  sqlite3_result_zeroblob64,
  sqlite3_bind_zeroblob64,
  /* Version 3.9.0 and later */
  sqlite3_value_subtype,
  sqlite3_result_subtype,
  /* Version 3.10.0 and later */
  sqlite3_status64,
  sqlite3_strlike,
  sqlite3_db_cacheflush
};

/*
** Attempt to load an SQLite extension library contained in the file
** zFile.  The entry point is zProc.  zProc may be 0 in which case a
** default entry point name (sqlite3_extension_init) is used.  Use
** of the default name is recommended.
105168
105169
105170
105171
105172
105173
105174
105175
105176
105177
105178
105179
105180
105181
105182
/*
** The auto-extension code added regardless of whether or not extension
** loading is supported.  We need a dummy sqlite3Apis pointer for that
** code if regular extension loading is not available.  This is that
** dummy pointer.
*/
#ifdef SQLITE_OMIT_LOAD_EXTENSION
static const sqlite3_api_routines sqlite3Apis;
#endif


/*
** The following object holds the list of automatically loaded
** extensions.
**







|







106125
106126
106127
106128
106129
106130
106131
106132
106133
106134
106135
106136
106137
106138
106139
/*
** The auto-extension code added regardless of whether or not extension
** loading is supported.  We need a dummy sqlite3Apis pointer for that
** code if regular extension loading is not available.  This is that
** dummy pointer.
*/
#ifdef SQLITE_OMIT_LOAD_EXTENSION
static const sqlite3_api_routines sqlite3Apis = { 0 };
#endif


/*
** The following object holds the list of automatically loaded
** extensions.
**
105374
105375
105376
105377
105378
105379
105380

105381
105382
105383
105384
105385
105386
105387
105388
105389
105390
105391
105392
105393
105394
105395
105396
105397
105398
105399
105400
105401
105402
105403
105404
105405
105406
105407
105408
105409
105410
105411
105412
105413
105414
105415
105416
105417
105418
105419
105420
105421
105422
105423
105424
** that script and rerun it.
*/
#define PragTyp_HEADER_VALUE                   0
#define PragTyp_AUTO_VACUUM                    1
#define PragTyp_FLAG                           2
#define PragTyp_BUSY_TIMEOUT                   3
#define PragTyp_CACHE_SIZE                     4

#define PragTyp_CASE_SENSITIVE_LIKE            5
#define PragTyp_COLLATION_LIST                 6
#define PragTyp_COMPILE_OPTIONS                7
#define PragTyp_DATA_STORE_DIRECTORY           8
#define PragTyp_DATABASE_LIST                  9
#define PragTyp_DEFAULT_CACHE_SIZE            10
#define PragTyp_ENCODING                      11
#define PragTyp_FOREIGN_KEY_CHECK             12
#define PragTyp_FOREIGN_KEY_LIST              13
#define PragTyp_INCREMENTAL_VACUUM            14
#define PragTyp_INDEX_INFO                    15
#define PragTyp_INDEX_LIST                    16
#define PragTyp_INTEGRITY_CHECK               17
#define PragTyp_JOURNAL_MODE                  18
#define PragTyp_JOURNAL_SIZE_LIMIT            19
#define PragTyp_LOCK_PROXY_FILE               20
#define PragTyp_LOCKING_MODE                  21
#define PragTyp_PAGE_COUNT                    22
#define PragTyp_MMAP_SIZE                     23
#define PragTyp_PAGE_SIZE                     24
#define PragTyp_SECURE_DELETE                 25
#define PragTyp_SHRINK_MEMORY                 26
#define PragTyp_SOFT_HEAP_LIMIT               27
#define PragTyp_STATS                         28
#define PragTyp_SYNCHRONOUS                   29
#define PragTyp_TABLE_INFO                    30
#define PragTyp_TEMP_STORE                    31
#define PragTyp_TEMP_STORE_DIRECTORY          32
#define PragTyp_THREADS                       33
#define PragTyp_WAL_AUTOCHECKPOINT            34
#define PragTyp_WAL_CHECKPOINT                35
#define PragTyp_ACTIVATE_EXTENSIONS           36
#define PragTyp_HEXKEY                        37
#define PragTyp_KEY                           38
#define PragTyp_REKEY                         39
#define PragTyp_LOCK_STATUS                   40
#define PragTyp_PARSER_TRACE                  41
#define PragFlag_NeedSchema           0x01
#define PragFlag_ReadOnly             0x02
static const struct sPragmaNames {
  const char *const zName;  /* Name of pragma */
  u8 ePragTyp;              /* PragTyp_XXX value */
  u8 mPragFlag;             /* Zero or more PragFlag_XXX values */
  u32 iArg;                 /* Extra argument */







>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







106331
106332
106333
106334
106335
106336
106337
106338
106339
106340
106341
106342
106343
106344
106345
106346
106347
106348
106349
106350
106351
106352
106353
106354
106355
106356
106357
106358
106359
106360
106361
106362
106363
106364
106365
106366
106367
106368
106369
106370
106371
106372
106373
106374
106375
106376
106377
106378
106379
106380
106381
106382
** that script and rerun it.
*/
#define PragTyp_HEADER_VALUE                   0
#define PragTyp_AUTO_VACUUM                    1
#define PragTyp_FLAG                           2
#define PragTyp_BUSY_TIMEOUT                   3
#define PragTyp_CACHE_SIZE                     4
#define PragTyp_CACHE_SPILL                    5
#define PragTyp_CASE_SENSITIVE_LIKE            6
#define PragTyp_COLLATION_LIST                 7
#define PragTyp_COMPILE_OPTIONS                8
#define PragTyp_DATA_STORE_DIRECTORY           9
#define PragTyp_DATABASE_LIST                 10
#define PragTyp_DEFAULT_CACHE_SIZE            11
#define PragTyp_ENCODING                      12
#define PragTyp_FOREIGN_KEY_CHECK             13
#define PragTyp_FOREIGN_KEY_LIST              14
#define PragTyp_INCREMENTAL_VACUUM            15
#define PragTyp_INDEX_INFO                    16
#define PragTyp_INDEX_LIST                    17
#define PragTyp_INTEGRITY_CHECK               18
#define PragTyp_JOURNAL_MODE                  19
#define PragTyp_JOURNAL_SIZE_LIMIT            20
#define PragTyp_LOCK_PROXY_FILE               21
#define PragTyp_LOCKING_MODE                  22
#define PragTyp_PAGE_COUNT                    23
#define PragTyp_MMAP_SIZE                     24
#define PragTyp_PAGE_SIZE                     25
#define PragTyp_SECURE_DELETE                 26
#define PragTyp_SHRINK_MEMORY                 27
#define PragTyp_SOFT_HEAP_LIMIT               28
#define PragTyp_STATS                         29
#define PragTyp_SYNCHRONOUS                   30
#define PragTyp_TABLE_INFO                    31
#define PragTyp_TEMP_STORE                    32
#define PragTyp_TEMP_STORE_DIRECTORY          33
#define PragTyp_THREADS                       34
#define PragTyp_WAL_AUTOCHECKPOINT            35
#define PragTyp_WAL_CHECKPOINT                36
#define PragTyp_ACTIVATE_EXTENSIONS           37
#define PragTyp_HEXKEY                        38
#define PragTyp_KEY                           39
#define PragTyp_REKEY                         40
#define PragTyp_LOCK_STATUS                   41
#define PragTyp_PARSER_TRACE                  42
#define PragFlag_NeedSchema           0x01
#define PragFlag_ReadOnly             0x02
static const struct sPragmaNames {
  const char *const zName;  /* Name of pragma */
  u8 ePragTyp;              /* PragTyp_XXX value */
  u8 mPragFlag;             /* Zero or more PragFlag_XXX values */
  u32 iArg;                 /* Extra argument */
105452
105453
105454
105455
105456
105457
105458
105459
105460
105461
105462
105463
105464
105465
105466
105467
105468
105469
105470
105471
105472
105473
  { /* zName:     */ "busy_timeout",
    /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  { /* zName:     */ "cache_size",
    /* ePragTyp:  */ PragTyp_CACHE_SIZE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "cache_spill",
    /* ePragTyp:  */ PragTyp_FLAG,
    /* ePragFlag: */ 0,
    /* iArg:      */ SQLITE_CacheSpill },
#endif
  { /* zName:     */ "case_sensitive_like",
    /* ePragTyp:  */ PragTyp_CASE_SENSITIVE_LIKE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
  { /* zName:     */ "cell_size_check",
    /* ePragTyp:  */ PragTyp_FLAG,







|




|

|







106410
106411
106412
106413
106414
106415
106416
106417
106418
106419
106420
106421
106422
106423
106424
106425
106426
106427
106428
106429
106430
106431
  { /* zName:     */ "busy_timeout",
    /* ePragTyp:  */ PragTyp_BUSY_TIMEOUT,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  { /* zName:     */ "cache_size",
    /* ePragTyp:  */ PragTyp_CACHE_SIZE,
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "cache_spill",
    /* ePragTyp:  */ PragTyp_CACHE_SPILL,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
  { /* zName:     */ "case_sensitive_like",
    /* ePragTyp:  */ PragTyp_CASE_SENSITIVE_LIKE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
  { /* zName:     */ "cell_size_check",
    /* ePragTyp:  */ PragTyp_FLAG,
105673
105674
105675
105676
105677
105678
105679
105680
105681
105682
105683
105684
105685
105686
105687
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
  { /* zName:     */ "page_size",
    /* ePragTyp:  */ PragTyp_PAGE_SIZE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if defined(SQLITE_DEBUG)
  { /* zName:     */ "parser_trace",
    /* ePragTyp:  */ PragTyp_PARSER_TRACE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "query_only",







|







106631
106632
106633
106634
106635
106636
106637
106638
106639
106640
106641
106642
106643
106644
106645
    /* ePragFlag: */ PragFlag_NeedSchema,
    /* iArg:      */ 0 },
  { /* zName:     */ "page_size",
    /* ePragTyp:  */ PragTyp_PAGE_SIZE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if defined(SQLITE_DEBUG) && !defined(SQLITE_OMIT_PARSER_TRACE)
  { /* zName:     */ "parser_trace",
    /* ePragTyp:  */ PragTyp_PARSER_TRACE,
    /* ePragFlag: */ 0,
    /* iArg:      */ 0 },
#endif
#if !defined(SQLITE_OMIT_FLAG_PRAGMAS)
  { /* zName:     */ "query_only",
106080
106081
106082
106083
106084
106085
106086
106087
106088
106089
106090
106091
106092
106093
106094
106095
106096
106097
106098
106099
106100
106101
106102
106103
106104
106105
106106
106107
106108
106109
106110
106111
106112
106113
106114
106115
106116
106117
106118
106119
106120
106121
106122
106123
106124
106125
106126
106127
106128
}

/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [database.]id [= value]
**
** The identifier might also be a string.  The value is a string, and
** identifier, or a number.  If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
**
** If the left side is "database.id" then pId1 is the database name
** and pId2 is the id.  If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
SQLITE_PRIVATE void sqlite3Pragma(
  Parse *pParse, 
  Token *pId1,        /* First part of [database.]id field */
  Token *pId2,        /* Second part of [database.]id field, or NULL */
  Token *pValue,      /* Token for <value>, or NULL */
  int minusFlag       /* True if a '-' sign preceded <value> */
){
  char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
  char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
  const char *zDb = 0;   /* The database name */
  Token *pId;            /* Pointer to <id> token */
  char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
  int iDb;               /* Database index for <database> */
  int lwr, upr, mid = 0;       /* Binary search bounds */
  int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
  sqlite3 *db = pParse->db;    /* The database connection */
  Db *pDb;                     /* The specific database being pragmaed */
  Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
  const struct sPragmaNames *pPragma;

  if( v==0 ) return;
  sqlite3VdbeRunOnlyOnce(v);
  pParse->nMem = 2;

  /* Interpret the [database.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */
  iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
  if( iDb<0 ) return;
  pDb = &db->aDb[iDb];

  /* If the temp database has been explicitly named as part of the 
  ** pragma, make sure it is open. 







|











|
|




















|







107038
107039
107040
107041
107042
107043
107044
107045
107046
107047
107048
107049
107050
107051
107052
107053
107054
107055
107056
107057
107058
107059
107060
107061
107062
107063
107064
107065
107066
107067
107068
107069
107070
107071
107072
107073
107074
107075
107076
107077
107078
107079
107080
107081
107082
107083
107084
107085
107086
}

/*
** Process a pragma statement.  
**
** Pragmas are of this form:
**
**      PRAGMA [schema.]id [= value]
**
** The identifier might also be a string.  The value is a string, and
** identifier, or a number.  If minusFlag is true, then the value is
** a number that was preceded by a minus sign.
**
** If the left side is "database.id" then pId1 is the database name
** and pId2 is the id.  If the left side is just "id" then pId1 is the
** id and pId2 is any empty string.
*/
SQLITE_PRIVATE void sqlite3Pragma(
  Parse *pParse, 
  Token *pId1,        /* First part of [schema.]id field */
  Token *pId2,        /* Second part of [schema.]id field, or NULL */
  Token *pValue,      /* Token for <value>, or NULL */
  int minusFlag       /* True if a '-' sign preceded <value> */
){
  char *zLeft = 0;       /* Nul-terminated UTF-8 string <id> */
  char *zRight = 0;      /* Nul-terminated UTF-8 string <value>, or NULL */
  const char *zDb = 0;   /* The database name */
  Token *pId;            /* Pointer to <id> token */
  char *aFcntl[4];       /* Argument to SQLITE_FCNTL_PRAGMA */
  int iDb;               /* Database index for <database> */
  int lwr, upr, mid = 0;       /* Binary search bounds */
  int rc;                      /* return value form SQLITE_FCNTL_PRAGMA */
  sqlite3 *db = pParse->db;    /* The database connection */
  Db *pDb;                     /* The specific database being pragmaed */
  Vdbe *v = sqlite3GetVdbe(pParse);  /* Prepared statement */
  const struct sPragmaNames *pPragma;

  if( v==0 ) return;
  sqlite3VdbeRunOnlyOnce(v);
  pParse->nMem = 2;

  /* Interpret the [schema.] part of the pragma statement. iDb is the
  ** index of the database this pragma is being applied to in db.aDb[]. */
  iDb = sqlite3TwoPartName(pParse, pId1, pId2, &pId);
  if( iDb<0 ) return;
  pDb = &db->aDb[iDb];

  /* If the temp database has been explicitly named as part of the 
  ** pragma, make sure it is open. 
106203
106204
106205
106206
106207
106208
106209
106210
106211
106212
106213
106214
106215
106216
106217
106218
  }

  /* Jump to the appropriate pragma handler */
  switch( pPragma->ePragTyp ){
  
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
  /*
  **  PRAGMA [database.]default_cache_size
  **  PRAGMA [database.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **







|
|







107161
107162
107163
107164
107165
107166
107167
107168
107169
107170
107171
107172
107173
107174
107175
107176
  }

  /* Jump to the appropriate pragma handler */
  switch( pPragma->ePragTyp ){
  
#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) && !defined(SQLITE_OMIT_DEPRECATED)
  /*
  **  PRAGMA [schema.]default_cache_size
  **  PRAGMA [schema.]default_cache_size=N
  **
  ** The first form reports the current persistent setting for the
  ** page cache size.  The value returned is the maximum number of
  ** pages in the page cache.  The second form sets both the current
  ** page cache size value and the persistent page cache size value
  ** stored in the database file.
  **
106255
106256
106257
106258
106259
106260
106261
106262
106263
106264
106265
106266
106267
106268
106269
106270
    }
    break;
  }
#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  /*
  **  PRAGMA [database.]page_size
  **  PRAGMA [database.]page_size=N
  **
  ** The first form reports the current setting for the
  ** database page size in bytes.  The second form sets the
  ** database page size value.  The value can only be set if
  ** the database has not yet been created.
  */
  case PragTyp_PAGE_SIZE: {







|
|







107213
107214
107215
107216
107217
107218
107219
107220
107221
107222
107223
107224
107225
107226
107227
107228
    }
    break;
  }
#endif /* !SQLITE_OMIT_PAGER_PRAGMAS && !SQLITE_OMIT_DEPRECATED */

#if !defined(SQLITE_OMIT_PAGER_PRAGMAS)
  /*
  **  PRAGMA [schema.]page_size
  **  PRAGMA [schema.]page_size=N
  **
  ** The first form reports the current setting for the
  ** database page size in bytes.  The second form sets the
  ** database page size value.  The value can only be set if
  ** the database has not yet been created.
  */
  case PragTyp_PAGE_SIZE: {
106282
106283
106284
106285
106286
106287
106288
106289
106290
106291
106292
106293
106294
106295
106296
106297
        db->mallocFailed = 1;
      }
    }
    break;
  }

  /*
  **  PRAGMA [database.]secure_delete
  **  PRAGMA [database.]secure_delete=ON/OFF
  **
  ** The first form reports the current setting for the
  ** secure_delete flag.  The second form changes the secure_delete
  ** flag setting and reports thenew value.
  */
  case PragTyp_SECURE_DELETE: {
    Btree *pBt = pDb->pBt;







|
|







107240
107241
107242
107243
107244
107245
107246
107247
107248
107249
107250
107251
107252
107253
107254
107255
        db->mallocFailed = 1;
      }
    }
    break;
  }

  /*
  **  PRAGMA [schema.]secure_delete
  **  PRAGMA [schema.]secure_delete=ON/OFF
  **
  ** The first form reports the current setting for the
  ** secure_delete flag.  The second form changes the secure_delete
  ** flag setting and reports thenew value.
  */
  case PragTyp_SECURE_DELETE: {
    Btree *pBt = pDb->pBt;
106308
106309
106310
106311
106312
106313
106314
106315
106316
106317
106318
106319
106320
106321
106322
106323
106324
106325
106326
106327
106328
106329
106330
106331
106332
106333
106334
106335
106336
106337
106338
106339
106340
106341
106342
106343
106344
106345
106346
106347
106348
106349
106350
106351
106352
106353
106354
106355
106356
    }
    b = sqlite3BtreeSecureDelete(pBt, b);
    returnSingleInt(v, "secure_delete", b);
    break;
  }

  /*
  **  PRAGMA [database.]max_page_count
  **  PRAGMA [database.]max_page_count=N
  **
  ** The first form reports the current setting for the
  ** maximum number of pages in the database file.  The 
  ** second form attempts to change this setting.  Both
  ** forms return the current setting.
  **
  ** The absolute value of N is used.  This is undocumented and might
  ** change.  The only purpose is to provide an easy way to test
  ** the sqlite3AbsInt32() function.
  **
  **  PRAGMA [database.]page_count
  **
  ** Return the number of pages in the specified database.
  */
  case PragTyp_PAGE_COUNT: {
    int iReg;
    sqlite3CodeVerifySchema(pParse, iDb);
    iReg = ++pParse->nMem;
    if( sqlite3Tolower(zLeft[0])=='p' ){
      sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
    }else{
      sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 
                        sqlite3AbsInt32(sqlite3Atoi(zRight)));
    }
    sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
    break;
  }

  /*
  **  PRAGMA [database.]locking_mode
  **  PRAGMA [database.]locking_mode = (normal|exclusive)
  */
  case PragTyp_LOCKING_MODE: {
    const char *zRet = "normal";
    int eMode = getLockingMode(zRight);

    if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
      /* Simple "PRAGMA locking_mode;" statement. This is a query for







|
|










|




















|
|







107266
107267
107268
107269
107270
107271
107272
107273
107274
107275
107276
107277
107278
107279
107280
107281
107282
107283
107284
107285
107286
107287
107288
107289
107290
107291
107292
107293
107294
107295
107296
107297
107298
107299
107300
107301
107302
107303
107304
107305
107306
107307
107308
107309
107310
107311
107312
107313
107314
    }
    b = sqlite3BtreeSecureDelete(pBt, b);
    returnSingleInt(v, "secure_delete", b);
    break;
  }

  /*
  **  PRAGMA [schema.]max_page_count
  **  PRAGMA [schema.]max_page_count=N
  **
  ** The first form reports the current setting for the
  ** maximum number of pages in the database file.  The 
  ** second form attempts to change this setting.  Both
  ** forms return the current setting.
  **
  ** The absolute value of N is used.  This is undocumented and might
  ** change.  The only purpose is to provide an easy way to test
  ** the sqlite3AbsInt32() function.
  **
  **  PRAGMA [schema.]page_count
  **
  ** Return the number of pages in the specified database.
  */
  case PragTyp_PAGE_COUNT: {
    int iReg;
    sqlite3CodeVerifySchema(pParse, iDb);
    iReg = ++pParse->nMem;
    if( sqlite3Tolower(zLeft[0])=='p' ){
      sqlite3VdbeAddOp2(v, OP_Pagecount, iDb, iReg);
    }else{
      sqlite3VdbeAddOp3(v, OP_MaxPgcnt, iDb, iReg, 
                        sqlite3AbsInt32(sqlite3Atoi(zRight)));
    }
    sqlite3VdbeAddOp2(v, OP_ResultRow, iReg, 1);
    sqlite3VdbeSetNumCols(v, 1);
    sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLeft, SQLITE_TRANSIENT);
    break;
  }

  /*
  **  PRAGMA [schema.]locking_mode
  **  PRAGMA [schema.]locking_mode = (normal|exclusive)
  */
  case PragTyp_LOCKING_MODE: {
    const char *zRet = "normal";
    int eMode = getLockingMode(zRight);

    if( pId2->n==0 && eMode==PAGER_LOCKINGMODE_QUERY ){
      /* Simple "PRAGMA locking_mode;" statement. This is a query for
106387
106388
106389
106390
106391
106392
106393
106394
106395
106396
106397
106398
106399
106400
106401
106402
      zRet = "exclusive";
    }
    returnSingleText(v, "locking_mode", zRet);
    break;
  }

  /*
  **  PRAGMA [database.]journal_mode
  **  PRAGMA [database.]journal_mode =
  **                      (delete|persist|off|truncate|memory|wal|off)
  */
  case PragTyp_JOURNAL_MODE: {
    int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
    int ii;           /* Loop counter */

    setOneColumnName(v, "journal_mode");







|
|







107345
107346
107347
107348
107349
107350
107351
107352
107353
107354
107355
107356
107357
107358
107359
107360
      zRet = "exclusive";
    }
    returnSingleText(v, "locking_mode", zRet);
    break;
  }

  /*
  **  PRAGMA [schema.]journal_mode
  **  PRAGMA [schema.]journal_mode =
  **                      (delete|persist|off|truncate|memory|wal|off)
  */
  case PragTyp_JOURNAL_MODE: {
    int eMode;        /* One of the PAGER_JOURNALMODE_XXX symbols */
    int ii;           /* Loop counter */

    setOneColumnName(v, "journal_mode");
106428
106429
106430
106431
106432
106433
106434
106435
106436
106437
106438
106439
106440
106441
106442
106443
106444
106445
106446
106447
106448
106449
106450
106451
106452
106453
106454
106455
106456
106457
106458
106459
106460
106461
106462
106463
      }
    }
    sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
    break;
  }

  /*
  **  PRAGMA [database.]journal_size_limit
  **  PRAGMA [database.]journal_size_limit=N
  **
  ** Get or set the size limit on rollback journal files.
  */
  case PragTyp_JOURNAL_SIZE_LIMIT: {
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3DecOrHexToI64(zRight, &iLimit);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(v, "journal_size_limit", iLimit);
    break;
  }

#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

  /*
  **  PRAGMA [database.]auto_vacuum
  **  PRAGMA [database.]auto_vacuum=N
  **
  ** Get or set the value of the database 'auto-vacuum' parameter.
  ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  case PragTyp_AUTO_VACUUM: {
    Btree *pBt = pDb->pBt;







|
|


















|
|







107386
107387
107388
107389
107390
107391
107392
107393
107394
107395
107396
107397
107398
107399
107400
107401
107402
107403
107404
107405
107406
107407
107408
107409
107410
107411
107412
107413
107414
107415
107416
107417
107418
107419
107420
107421
      }
    }
    sqlite3VdbeAddOp2(v, OP_ResultRow, 1, 1);
    break;
  }

  /*
  **  PRAGMA [schema.]journal_size_limit
  **  PRAGMA [schema.]journal_size_limit=N
  **
  ** Get or set the size limit on rollback journal files.
  */
  case PragTyp_JOURNAL_SIZE_LIMIT: {
    Pager *pPager = sqlite3BtreePager(pDb->pBt);
    i64 iLimit = -2;
    if( zRight ){
      sqlite3DecOrHexToI64(zRight, &iLimit);
      if( iLimit<-1 ) iLimit = -1;
    }
    iLimit = sqlite3PagerJournalSizeLimit(pPager, iLimit);
    returnSingleInt(v, "journal_size_limit", iLimit);
    break;
  }

#endif /* SQLITE_OMIT_PAGER_PRAGMAS */

  /*
  **  PRAGMA [schema.]auto_vacuum
  **  PRAGMA [schema.]auto_vacuum=N
  **
  ** Get or set the value of the database 'auto-vacuum' parameter.
  ** The value is one of:  0 NONE 1 FULL 2 INCREMENTAL
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  case PragTyp_AUTO_VACUUM: {
    Btree *pBt = pDb->pBt;
106500
106501
106502
106503
106504
106505
106506
106507
106508
106509
106510
106511
106512
106513
106514
      }
    }
    break;
  }
#endif

  /*
  **  PRAGMA [database.]incremental_vacuum(N)
  **
  ** Do N steps of incremental vacuuming on a database.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  case PragTyp_INCREMENTAL_VACUUM: {
    int iLimit, addr;
    if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){







|







107458
107459
107460
107461
107462
107463
107464
107465
107466
107467
107468
107469
107470
107471
107472
      }
    }
    break;
  }
#endif

  /*
  **  PRAGMA [schema.]incremental_vacuum(N)
  **
  ** Do N steps of incremental vacuuming on a database.
  */
#ifndef SQLITE_OMIT_AUTOVACUUM
  case PragTyp_INCREMENTAL_VACUUM: {
    int iLimit, addr;
    if( zRight==0 || !sqlite3GetInt32(zRight, &iLimit) || iLimit<=0 ){
106523
106524
106525
106526
106527
106528
106529
106530
106531
106532
106533
106534
106535
106536
106537
106538
106539
106540
106541
106542
106543
106544
106545
106546
106547
106548



106549
































106550







106551
106552
106553
106554
106555
106556
106557
106558
106559
106560
106561
106562
    sqlite3VdbeJumpHere(v, addr);
    break;
  }
#endif

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [database.]cache_size
  **  PRAGMA [database.]cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size. The second form sets the local
  ** page cache size value.  If N is positive then that is the
  ** number of pages in the cache.  If N is negative, then the
  ** number of pages is adjusted so that the cache uses -N kibibytes
  ** of memory.
  */
  case PragTyp_CACHE_SIZE: {
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( !zRight ){
      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
      returnSingleInt(v, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = sqlite3Atoi(zRight);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);



      if( sqlite3ReadSchema(pParse) ) goto pragma_out;
































    }







    break;
  }

  /*
  **  PRAGMA [database.]mmap_size(N)
  **
  ** Used to set mapping size limit. The mapping size limit is
  ** used to limit the aggregate size of all memory mapped regions of the
  ** database file. If this parameter is set to zero, then memory mapping
  ** is not used at all.  If N is negative, then the default memory map
  ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
  ** The parameter N is measured in bytes.







|
|











<





>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
>
>
>
>
>




|







107481
107482
107483
107484
107485
107486
107487
107488
107489
107490
107491
107492
107493
107494
107495
107496
107497
107498
107499
107500

107501
107502
107503
107504
107505
107506
107507
107508
107509
107510
107511
107512
107513
107514
107515
107516
107517
107518
107519
107520
107521
107522
107523
107524
107525
107526
107527
107528
107529
107530
107531
107532
107533
107534
107535
107536
107537
107538
107539
107540
107541
107542
107543
107544
107545
107546
107547
107548
107549
107550
107551
107552
107553
107554
107555
107556
107557
107558
107559
107560
107561
    sqlite3VdbeJumpHere(v, addr);
    break;
  }
#endif

#ifndef SQLITE_OMIT_PAGER_PRAGMAS
  /*
  **  PRAGMA [schema.]cache_size
  **  PRAGMA [schema.]cache_size=N
  **
  ** The first form reports the current local setting for the
  ** page cache size. The second form sets the local
  ** page cache size value.  If N is positive then that is the
  ** number of pages in the cache.  If N is negative, then the
  ** number of pages is adjusted so that the cache uses -N kibibytes
  ** of memory.
  */
  case PragTyp_CACHE_SIZE: {
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( !zRight ){

      returnSingleInt(v, "cache_size", pDb->pSchema->cache_size);
    }else{
      int size = sqlite3Atoi(zRight);
      pDb->pSchema->cache_size = size;
      sqlite3BtreeSetCacheSize(pDb->pBt, pDb->pSchema->cache_size);
    }
    break;
  }

  /*
  **  PRAGMA [schema.]cache_spill
  **  PRAGMA cache_spill=BOOLEAN
  **  PRAGMA [schema.]cache_spill=N
  **
  ** The first form reports the current local setting for the
  ** page cache spill size. The second form turns cache spill on
  ** or off.  When turnning cache spill on, the size is set to the
  ** current cache_size.  The third form sets a spill size that
  ** may be different form the cache size.
  ** If N is positive then that is the
  ** number of pages in the cache.  If N is negative, then the
  ** number of pages is adjusted so that the cache uses -N kibibytes
  ** of memory.
  **
  ** If the number of cache_spill pages is less then the number of
  ** cache_size pages, no spilling occurs until the page count exceeds
  ** the number of cache_size pages.
  **
  ** The cache_spill=BOOLEAN setting applies to all attached schemas,
  ** not just the schema specified.
  */
  case PragTyp_CACHE_SPILL: {
    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
    if( !zRight ){
      returnSingleInt(v, "cache_spill", 
         (db->flags & SQLITE_CacheSpill)==0 ? 0 : 
            sqlite3BtreeSetSpillSize(pDb->pBt,0));
    }else{
      int size = 1;
      if( sqlite3GetInt32(zRight, &size) ){
        sqlite3BtreeSetSpillSize(pDb->pBt, size);
      }
      if( sqlite3GetBoolean(zRight, size!=0) ){
        db->flags |= SQLITE_CacheSpill;
      }else{
        db->flags &= ~SQLITE_CacheSpill;
      }
      setAllPagerFlags(db);
    }
    break;
  }

  /*
  **  PRAGMA [schema.]mmap_size(N)
  **
  ** Used to set mapping size limit. The mapping size limit is
  ** used to limit the aggregate size of all memory mapped regions of the
  ** database file. If this parameter is set to zero, then memory mapping
  ** is not used at all.  If N is negative, then the default memory map
  ** limit determined by sqlite3_config(SQLITE_CONFIG_MMAP_SIZE) is set.
  ** The parameter N is measured in bytes.
106692
106693
106694
106695
106696
106697
106698
106699
106700
106701
106702
106703
106704
106705
106706
106707
    }
    break;
  }
#endif

#if SQLITE_ENABLE_LOCKING_STYLE
  /*
  **   PRAGMA [database.]lock_proxy_file
  **   PRAGMA [database.]lock_proxy_file = ":auto:"|"lock_file_path"
  **
  ** Return or set the value of the lock_proxy_file flag.  Changing
  ** the value sets a specific file to be used for database access locks.
  **
  */
  case PragTyp_LOCK_PROXY_FILE: {
    if( !zRight ){







|
|







107691
107692
107693
107694
107695
107696
107697
107698
107699
107700
107701
107702
107703
107704
107705
107706
    }
    break;
  }
#endif

#if SQLITE_ENABLE_LOCKING_STYLE
  /*
  **   PRAGMA [schema.]lock_proxy_file
  **   PRAGMA [schema.]lock_proxy_file = ":auto:"|"lock_file_path"
  **
  ** Return or set the value of the lock_proxy_file flag.  Changing
  ** the value sets a specific file to be used for database access locks.
  **
  */
  case PragTyp_LOCK_PROXY_FILE: {
    if( !zRight ){
106728
106729
106730
106731
106732
106733
106734
106735
106736
106737
106738
106739
106740
106741
106742
106743
      }
    }
    break;
  }
#endif /* SQLITE_ENABLE_LOCKING_STYLE */      
    
  /*
  **   PRAGMA [database.]synchronous
  **   PRAGMA [database.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  case PragTyp_SYNCHRONOUS: {







|
|







107727
107728
107729
107730
107731
107732
107733
107734
107735
107736
107737
107738
107739
107740
107741
107742
      }
    }
    break;
  }
#endif /* SQLITE_ENABLE_LOCKING_STYLE */      
    
  /*
  **   PRAGMA [schema.]synchronous
  **   PRAGMA [schema.]synchronous=OFF|ON|NORMAL|FULL
  **
  ** Return or set the local value of the synchronous flag.  Changing
  ** the local value does not make changes to the disk file and the
  ** default value will be restored the next time the database is
  ** opened.
  */
  case PragTyp_SYNCHRONOUS: {
107125
107126
107127
107128
107129
107130
107131
107132
107133
107134
107135
107136
107137
107138
107139
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  case PragTyp_PARSER_TRACE: {
    if( zRight ){
      if( sqlite3GetBoolean(zRight, 0) ){
        sqlite3ParserTrace(stderr, "parser: ");
      }else{
        sqlite3ParserTrace(0, 0);
      }
    }
  }
  break;
#endif







|







108124
108125
108126
108127
108128
108129
108130
108131
108132
108133
108134
108135
108136
108137
108138
#endif /* !defined(SQLITE_OMIT_TRIGGER) */
#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */

#ifndef NDEBUG
  case PragTyp_PARSER_TRACE: {
    if( zRight ){
      if( sqlite3GetBoolean(zRight, 0) ){
        sqlite3ParserTrace(stdout, "parser: ");
      }else{
        sqlite3ParserTrace(0, 0);
      }
    }
  }
  break;
#endif
107266
107267
107268
107269
107270
107271
107272
107273
107274
107275
107276
107277
107278
107279
107280
        if( pTab->pIndex==0 ) continue;
        pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
        addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
        VdbeCoverage(v);
        sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);
        sqlite3ExprCacheClear(pParse);
        sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead,
                                   1, 0, &iDataCur, &iIdxCur);
        sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
        }
        pParse->nMem = MAX(pParse->nMem, 8+j);
        sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);







|







108265
108266
108267
108268
108269
108270
108271
108272
108273
108274
108275
108276
108277
108278
108279
        if( pTab->pIndex==0 ) continue;
        pPk = HasRowid(pTab) ? 0 : sqlite3PrimaryKeyIndex(pTab);
        addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1);  /* Stop if out of errors */
        VdbeCoverage(v);
        sqlite3VdbeAddOp2(v, OP_Halt, 0, 0);
        sqlite3VdbeJumpHere(v, addr);
        sqlite3ExprCacheClear(pParse);
        sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenRead, 0,
                                   1, 0, &iDataCur, &iIdxCur);
        sqlite3VdbeAddOp2(v, OP_Integer, 0, 7);
        for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){
          sqlite3VdbeAddOp2(v, OP_Integer, 0, 8+j); /* index entries counter */
        }
        pParse->nMem = MAX(pParse->nMem, 8+j);
        sqlite3VdbeAddOp2(v, OP_Rewind, iDataCur, 0); VdbeCoverage(v);
107445
107446
107447
107448
107449
107450
107451
107452
107453
107454
107455
107456
107457
107458
107459
107460
107461
107462
107463
107464
107465
107466
107467
107468
    }
  }
  break;
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  /*
  **   PRAGMA [database.]schema_version
  **   PRAGMA [database.]schema_version = <integer>
  **
  **   PRAGMA [database.]user_version
  **   PRAGMA [database.]user_version = <integer>
  **
  **   PRAGMA [database.]freelist_count = <integer>
  **
  **   PRAGMA [database.]application_id
  **   PRAGMA [database.]application_id = <integer>
  **
  ** The pragma's schema_version and user_version are used to set or get
  ** the value of the schema-version and user-version, respectively. Both
  ** the schema-version and the user-version are 32-bit signed integers
  ** stored in the database header.
  **
  ** The schema-cookie is usually only manipulated internally by SQLite. It







|
|

|
|

|

|
|







108444
108445
108446
108447
108448
108449
108450
108451
108452
108453
108454
108455
108456
108457
108458
108459
108460
108461
108462
108463
108464
108465
108466
108467
    }
  }
  break;
#endif /* SQLITE_OMIT_UTF16 */

#ifndef SQLITE_OMIT_SCHEMA_VERSION_PRAGMAS
  /*
  **   PRAGMA [schema.]schema_version
  **   PRAGMA [schema.]schema_version = <integer>
  **
  **   PRAGMA [schema.]user_version
  **   PRAGMA [schema.]user_version = <integer>
  **
  **   PRAGMA [schema.]freelist_count = <integer>
  **
  **   PRAGMA [schema.]application_id
  **   PRAGMA [schema.]application_id = <integer>
  **
  ** The pragma's schema_version and user_version are used to set or get
  ** the value of the schema-version and user-version, respectively. Both
  ** the schema-version and the user-version are 32-bit signed integers
  ** stored in the database header.
  **
  ** The schema-cookie is usually only manipulated internally by SQLite. It
107529
107530
107531
107532
107533
107534
107535
107536
107537
107538
107539
107540
107541
107542
107543
    }
  }
  break;
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */

#ifndef SQLITE_OMIT_WAL
  /*
  **   PRAGMA [database.]wal_checkpoint = passive|full|restart|truncate
  **
  ** Checkpoint the database.
  */
  case PragTyp_WAL_CHECKPOINT: {
    static const char *azCol[] = { "busy", "log", "checkpointed" };
    int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
    int eMode = SQLITE_CHECKPOINT_PASSIVE;







|







108528
108529
108530
108531
108532
108533
108534
108535
108536
108537
108538
108539
108540
108541
108542
    }
  }
  break;
#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */

#ifndef SQLITE_OMIT_WAL
  /*
  **   PRAGMA [schema.]wal_checkpoint = passive|full|restart|truncate
  **
  ** Checkpoint the database.
  */
  case PragTyp_WAL_CHECKPOINT: {
    static const char *azCol[] = { "busy", "log", "checkpointed" };
    int iBt = (pId2->z?iDb:SQLITE_MAX_ATTACHED);
    int eMode = SQLITE_CHECKPOINT_PASSIVE;
108743
108744
108745
108746
108747
108748
108749
108750
108751
108752
108753
108754
108755
108756
108757
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;
    memset(pNew, 0, sizeof(*pNew));
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ALL,0));
  }
  pNew->pEList = pEList;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;







|







109742
109743
109744
109745
109746
109747
109748
109749
109750
109751
109752
109753
109754
109755
109756
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ){
    assert( db->mallocFailed );
    pNew = &standin;
    memset(pNew, 0, sizeof(*pNew));
  }
  if( pEList==0 ){
    pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0));
  }
  pNew->pEList = pEList;
  if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc));
  pNew->pSrc = pSrc;
  pNew->pWhere = pWhere;
  pNew->pGroupBy = pGroupBy;
  pNew->pHaving = pHaving;
109965
109966
109967
109968
109969
109970
109971

109972
109973
109974
109975
109976
109977
109978
109979
  u8 estWidth = 1;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
  char const *zOrigDb = 0;
  char const *zOrigTab = 0;
  char const *zOrigCol = 0;
#endif


  if( NEVER(pExpr==0) || pNC->pSrcList==0 ) return 0;
  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
      /* The expression is a column. Locate the table the column is being
      ** extracted from in NameContext.pSrcList. This table may be real
      ** database table or a subquery.
      */







>
|







110964
110965
110966
110967
110968
110969
110970
110971
110972
110973
110974
110975
110976
110977
110978
110979
  u8 estWidth = 1;
#ifdef SQLITE_ENABLE_COLUMN_METADATA
  char const *zOrigDb = 0;
  char const *zOrigTab = 0;
  char const *zOrigCol = 0;
#endif

  assert( pExpr!=0 );
  assert( pNC->pSrcList!=0 );
  switch( pExpr->op ){
    case TK_AGG_COLUMN:
    case TK_COLUMN: {
      /* The expression is a column. Locate the table the column is being
      ** extracted from in NameContext.pSrcList. This table may be real
      ** database table or a subquery.
      */
110153
110154
110155
110156
110157
110158
110159
110160


110161
110162
110163
110164
110165
110166
110167
110168
110169
110170
110171
110172
110173
110174
110175
110176
110177
110178
110179
#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet || NEVER(v==0) || db->mallocFailed ) return;


  pParse->colNamesSet = 1;
  fullNames = (db->flags & SQLITE_FullColNames)!=0;
  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  sqlite3VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) && pTabList ){
      Table *pTab;
      char *zCol;
      int iCol = p->iColumn;
      for(j=0; ALWAYS(j<pTabList->nSrc); j++){
        if( pTabList->a[j].iCursor==p->iTable ) break;
      }
      assert( j<pTabList->nSrc );







|
>
>











|







111153
111154
111155
111156
111157
111158
111159
111160
111161
111162
111163
111164
111165
111166
111167
111168
111169
111170
111171
111172
111173
111174
111175
111176
111177
111178
111179
111180
111181
#ifndef SQLITE_OMIT_EXPLAIN
  /* If this is an EXPLAIN, skip this step */
  if( pParse->explain ){
    return;
  }
#endif

  if( pParse->colNamesSet || db->mallocFailed ) return;
  assert( v!=0 );
  assert( pTabList!=0 );
  pParse->colNamesSet = 1;
  fullNames = (db->flags & SQLITE_FullColNames)!=0;
  shortNames = (db->flags & SQLITE_ShortColNames)!=0;
  sqlite3VdbeSetNumCols(v, pEList->nExpr);
  for(i=0; i<pEList->nExpr; i++){
    Expr *p;
    p = pEList->a[i].pExpr;
    if( NEVER(p==0) ) continue;
    if( pEList->a[i].zName ){
      char *zName = pEList->a[i].zName;
      sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
    }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){
      Table *pTab;
      char *zCol;
      int iCol = p->iColumn;
      for(j=0; ALWAYS(j<pTabList->nSrc); j++){
        if( pTabList->a[j].iCursor==p->iTable ) break;
      }
      assert( j<pTabList->nSrc );
110221
110222
110223
110224
110225
110226
110227
110228
110229
110230
110231
110232
110233

110234

110235
110236
110237
110238
110239
110240
110241
110242

110243
110244
110245
110246
110247
110248
110249
110250
110251
110252
110253
110254
110255
110256
110257
110258
110259
110260
110261
110262
110263
110264
110265
110266
110267
110268
110269
110270
110271
110272
110273
110274
110275
110276
110277
110278
110279
110280
110281
110282


110283
110284
110285
110286
110287
110288
110289
110290
110291
110292
110293
110294
110295
110296


110297
110298



110299


110300
110301
110302
110303
110304
110305
110306
  Parse *pParse,          /* Parsing context */
  ExprList *pEList,       /* Expr list from which to derive column names */
  i16 *pnCol,             /* Write the number of columns here */
  Column **paCol          /* Write the new column list here */
){
  sqlite3 *db = pParse->db;   /* Database connection */
  int i, j;                   /* Loop counters */
  int cnt;                    /* Index added to make the name unique */
  Column *aCol, *pCol;        /* For looping over result columns */
  int nCol;                   /* Number of columns in the result set */
  Expr *p;                    /* Expression for a single result column */
  char *zName;                /* Column name */
  int nName;                  /* Size of name in zName[] */



  if( pEList ){
    nCol = pEList->nExpr;
    aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
    testcase( aCol==0 );
  }else{
    nCol = 0;
    aCol = 0;
  }

  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */
      zName = sqlite3DbStrDup(db, zName);
    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;
        zName = sqlite3MPrintf(db, "%s",
                 iCol>=0 ? pTab->aCol[iCol].zName : "rowid");
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = sqlite3MPrintf(db, "%s", pColExpr->u.zToken);
      }else{
        /* Use the original text of the column expression as its name */
        zName = sqlite3MPrintf(db, "%s", pEList->a[i].zSpan);
      }
    }
    if( db->mallocFailed ){
      sqlite3DbFree(db, zName);
      break;
    }

    /* Make sure the column name is unique.  If the name is not unique,
    ** append an integer to the name so that it becomes unique.
    */


    nName = sqlite3Strlen30(zName);
    for(j=cnt=0; j<i; j++){
      if( sqlite3StrICmp(aCol[j].zName, zName)==0 ){
        char *zNewName;
        int k;
        for(k=nName-1; k>1 && sqlite3Isdigit(zName[k]); k--){}
        if( k>=0 && zName[k]==':' ) nName = k;
        zName[nName] = 0;
        zNewName = sqlite3MPrintf(db, "%s:%d", zName, ++cnt);
        sqlite3DbFree(db, zName);
        zName = zNewName;
        j = -1;
        if( zName==0 ) break;
      }


    }
    pCol->zName = zName;



  }


  if( db->mallocFailed ){
    for(j=0; j<i; j++){
      sqlite3DbFree(db, aCol[j].zName);
    }
    sqlite3DbFree(db, aCol);
    *paCol = 0;
    *pnCol = 0;







|





>

>








>



|





<












<
|


|


|


<
|
<
<




>
>
|
<
<
|
<
|
|
<
<
<
<
<
<

>
>


>
>
>
|
>
>







111223
111224
111225
111226
111227
111228
111229
111230
111231
111232
111233
111234
111235
111236
111237
111238
111239
111240
111241
111242
111243
111244
111245
111246
111247
111248
111249
111250
111251
111252
111253
111254
111255
111256

111257
111258
111259
111260
111261
111262
111263
111264
111265
111266
111267
111268

111269
111270
111271
111272
111273
111274
111275
111276
111277

111278


111279
111280
111281
111282
111283
111284
111285


111286

111287
111288






111289
111290
111291
111292
111293
111294
111295
111296
111297
111298
111299
111300
111301
111302
111303
111304
111305
111306
  Parse *pParse,          /* Parsing context */
  ExprList *pEList,       /* Expr list from which to derive column names */
  i16 *pnCol,             /* Write the number of columns here */
  Column **paCol          /* Write the new column list here */
){
  sqlite3 *db = pParse->db;   /* Database connection */
  int i, j;                   /* Loop counters */
  u32 cnt;                    /* Index added to make the name unique */
  Column *aCol, *pCol;        /* For looping over result columns */
  int nCol;                   /* Number of columns in the result set */
  Expr *p;                    /* Expression for a single result column */
  char *zName;                /* Column name */
  int nName;                  /* Size of name in zName[] */
  Hash ht;                    /* Hash table of column names */

  sqlite3HashInit(&ht);
  if( pEList ){
    nCol = pEList->nExpr;
    aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
    testcase( aCol==0 );
  }else{
    nCol = 0;
    aCol = 0;
  }
  assert( nCol==(i16)nCol );
  *pnCol = nCol;
  *paCol = aCol;

  for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
    /* Get an appropriate name for the column
    */
    p = sqlite3ExprSkipCollate(pEList->a[i].pExpr);
    if( (zName = pEList->a[i].zName)!=0 ){
      /* If the column contains an "AS <name>" phrase, use <name> as the name */

    }else{
      Expr *pColExpr = p;  /* The expression that is the result column name */
      Table *pTab;         /* Table associated with this expression */
      while( pColExpr->op==TK_DOT ){
        pColExpr = pColExpr->pRight;
        assert( pColExpr!=0 );
      }
      if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){
        /* For columns use the column name name */
        int iCol = pColExpr->iColumn;
        pTab = pColExpr->pTab;
        if( iCol<0 ) iCol = pTab->iPKey;

        zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
      }else if( pColExpr->op==TK_ID ){
        assert( !ExprHasProperty(pColExpr, EP_IntValue) );
        zName = pColExpr->u.zToken;
      }else{
        /* Use the original text of the column expression as its name */
        zName = pEList->a[i].zSpan;
      }
    }

    zName = sqlite3MPrintf(db, "%s", zName);



    /* Make sure the column name is unique.  If the name is not unique,
    ** append an integer to the name so that it becomes unique.
    */
    cnt = 0;
    while( zName && sqlite3HashFind(&ht, zName)!=0 ){
      nName = sqlite3Strlen30(zName);


      if( nName>0 ){

        for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
        if( zName[j]==':' ) nName = j;






      }
      zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
      if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
    }
    pCol->zName = zName;
    sqlite3ColumnPropertiesFromName(0, pCol);
    if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
      db->mallocFailed = 1;
    }
  }
  sqlite3HashClear(&ht);
  if( db->mallocFailed ){
    for(j=0; j<i; j++){
      sqlite3DbFree(db, aCol[j].zName);
    }
    sqlite3DbFree(db, aCol);
    *paCol = 0;
    *pnCol = 0;
110996
110997
110998
110999
111000
111001
111002
111003
111004
111005
111006
111007
111008
111009
111010
      assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
      if( dest.eDest!=priorOp ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Output ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, 0, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
        iStart = sqlite3VdbeCurrentAddr(v);
        selectInnerLoop(pParse, p, p->pEList, unionTab,







|







111996
111997
111998
111999
112000
112001
112002
112003
112004
112005
112006
112007
112008
112009
112010
      assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
      if( dest.eDest!=priorOp ){
        int iCont, iBreak, iStart;
        assert( p->pEList );
        if( dest.eDest==SRT_Output ){
          Select *pFirst = p;
          while( pFirst->pPrior ) pFirst = pFirst->pPrior;
          generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
        }
        iBreak = sqlite3VdbeMakeLabel(v);
        iCont = sqlite3VdbeMakeLabel(v);
        computeLimitRegisters(pParse, p, iBreak);
        sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
        iStart = sqlite3VdbeCurrentAddr(v);
        selectInnerLoop(pParse, p, p->pEList, unionTab,
111071
111072
111073
111074
111075
111076
111077
111078
111079
111080
111081
111082
111083
111084
111085
      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      if( dest.eDest==SRT_Output ){
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, 0, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
      r1 = sqlite3GetTempReg(pParse);
      iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);







|







112071
112072
112073
112074
112075
112076
112077
112078
112079
112080
112081
112082
112083
112084
112085
      /* Generate code to take the intersection of the two temporary
      ** tables.
      */
      assert( p->pEList );
      if( dest.eDest==SRT_Output ){
        Select *pFirst = p;
        while( pFirst->pPrior ) pFirst = pFirst->pPrior;
        generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
      }
      iBreak = sqlite3VdbeMakeLabel(v);
      iCont = sqlite3VdbeMakeLabel(v);
      computeLimitRegisters(pParse, p, iBreak);
      sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
      r1 = sqlite3GetTempReg(pParse);
      iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1);
111686
111687
111688
111689
111690
111691
111692
111693
111694
111695
111696
111697
111698
111699
111700
111701
111702
111703
111704
111705
111706
111707
111708
111709
111710
111711
111712
111713
111714
111715
111716
111717
111718
111719
111720
111721
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Output ){
    Select *pFirst = pPrior;
    while( pFirst->pPrior ) pFirst = pFirst->pPrior;
    generateColumnNames(pParse, 0, pFirst->pEList);
  }

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */
  if( p->pPrior ){
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;
  pPrior->pNext = p;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/* Forward Declarations */
static void substExprList(sqlite3*, ExprList*, int, ExprList*);
static void substSelect(sqlite3*, Select *, int, ExprList *);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**







|




















|







112686
112687
112688
112689
112690
112691
112692
112693
112694
112695
112696
112697
112698
112699
112700
112701
112702
112703
112704
112705
112706
112707
112708
112709
112710
112711
112712
112713
112714
112715
112716
112717
112718
112719
112720
112721
  sqlite3VdbeResolveLabel(v, labelEnd);

  /* Set the number of output columns
  */
  if( pDest->eDest==SRT_Output ){
    Select *pFirst = pPrior;
    while( pFirst->pPrior ) pFirst = pFirst->pPrior;
    generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList);
  }

  /* Reassembly the compound query so that it will be freed correctly
  ** by the calling function */
  if( p->pPrior ){
    sqlite3SelectDelete(db, p->pPrior);
  }
  p->pPrior = pPrior;
  pPrior->pNext = p;

  /*** TBD:  Insert subroutine calls to close cursors on incomplete
  **** subqueries ****/
  explainComposite(pParse, p->op, iSub1, iSub2, 0);
  return pParse->nErr!=0;
}
#endif

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/* Forward Declarations */
static void substExprList(sqlite3*, ExprList*, int, ExprList*);
static void substSelect(sqlite3*, Select *, int, ExprList*, int);

/*
** Scan through the expression pExpr.  Replace every reference to
** a column in table number iTable with a copy of the iColumn-th
** entry in pEList.  (But leave references to the ROWID column 
** unchanged.)
**
111744
111745
111746
111747
111748
111749
111750
111751
111752
111753
111754
111755
111756
111757
111758
      sqlite3ExprDelete(db, pExpr);
      pExpr = pNew;
    }
  }else{
    pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
    pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(db, pExpr->x.pSelect, iTable, pEList);
    }else{
      substExprList(db, pExpr->x.pList, iTable, pEList);
    }
  }
  return pExpr;
}
static void substExprList(







|







112744
112745
112746
112747
112748
112749
112750
112751
112752
112753
112754
112755
112756
112757
112758
      sqlite3ExprDelete(db, pExpr);
      pExpr = pNew;
    }
  }else{
    pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList);
    pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList);
    if( ExprHasProperty(pExpr, EP_xIsSelect) ){
      substSelect(db, pExpr->x.pSelect, iTable, pEList, 1);
    }else{
      substExprList(db, pExpr->x.pList, iTable, pEList);
    }
  }
  return pExpr;
}
static void substExprList(
111767
111768
111769
111770
111771
111772
111773
111774

111775
111776
111777
111778
111779

111780
111781
111782
111783
111784
111785
111786
111787
111788
111789
111790


111791
111792

111793
111794
111795
111796
111797
111798
111799
    pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
  }
}
static void substSelect(
  sqlite3 *db,         /* Report malloc errors here */
  Select *p,           /* SELECT statement in which to make substitutions */
  int iTable,          /* Table to be replaced */
  ExprList *pEList     /* Substitute values */

){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;

  substExprList(db, p->pEList, iTable, pEList);
  substExprList(db, p->pGroupBy, iTable, pEList);
  substExprList(db, p->pOrderBy, iTable, pEList);
  p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
  p->pWhere = substExpr(db, p->pWhere, iTable, pEList);
  substSelect(db, p->pPrior, iTable, pEList);
  pSrc = p->pSrc;
  assert( pSrc );  /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
  if( ALWAYS(pSrc) ){
    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(db, pItem->pSelect, iTable, pEList);


    }
  }

}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** This routine attempts to flatten subqueries as a performance optimization.
** This routine returns 1 if it makes changes and 0 if no flattening occurs.







|
>





>
|
|
|
|
|
<
|
|
<

|
>
>
|
|
>







112767
112768
112769
112770
112771
112772
112773
112774
112775
112776
112777
112778
112779
112780
112781
112782
112783
112784
112785
112786

112787
112788

112789
112790
112791
112792
112793
112794
112795
112796
112797
112798
112799
112800
112801
112802
    pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList);
  }
}
static void substSelect(
  sqlite3 *db,         /* Report malloc errors here */
  Select *p,           /* SELECT statement in which to make substitutions */
  int iTable,          /* Table to be replaced */
  ExprList *pEList,    /* Substitute values */
  int doPrior          /* Do substitutes on p->pPrior too */
){
  SrcList *pSrc;
  struct SrcList_item *pItem;
  int i;
  if( !p ) return;
  do{
    substExprList(db, p->pEList, iTable, pEList);
    substExprList(db, p->pGroupBy, iTable, pEList);
    substExprList(db, p->pOrderBy, iTable, pEList);
    p->pHaving = substExpr(db, p->pHaving, iTable, pEList);
    p->pWhere = substExpr(db, p->pWhere, iTable, pEList);

    pSrc = p->pSrc;
    assert( pSrc!=0 );

    for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
      substSelect(db, pItem->pSelect, iTable, pEList, 1);
      if( pItem->fg.isTabFunc ){
        substExprList(db, pItem->u1.pFuncArg, iTable, pEList);
      }
    }
  }while( doPrior && (p = p->pPrior)!=0 );
}
#endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */

#if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
/*
** This routine attempts to flatten subqueries as a performance optimization.
** This routine returns 1 if it makes changes and 0 if no flattening occurs.
111937
111938
111939
111940
111941
111942
111943
111944
111945
111946
111947
111948
111949
111950
111951
  Parse *pParse,       /* Parsing context */
  Select *p,           /* The parent or outer SELECT statement */
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  int isAgg,           /* True if outer SELECT uses aggregate functions */
  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
){
  const char *zSavedAuthContext = pParse->zAuthContext;
  Select *pParent;
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int i;              /* Loop counter */







|







112940
112941
112942
112943
112944
112945
112946
112947
112948
112949
112950
112951
112952
112953
112954
  Parse *pParse,       /* Parsing context */
  Select *p,           /* The parent or outer SELECT statement */
  int iFrom,           /* Index in p->pSrc->a[] of the inner subquery */
  int isAgg,           /* True if outer SELECT uses aggregate functions */
  int subqueryIsAgg    /* True if the subquery uses aggregate functions */
){
  const char *zSavedAuthContext = pParse->zAuthContext;
  Select *pParent;    /* Current UNION ALL term of the other query */
  Select *pSub;       /* The inner query or "subquery" */
  Select *pSub1;      /* Pointer to the rightmost select in sub-query */
  SrcList *pSrc;      /* The FROM clause of the outer query */
  SrcList *pSubSrc;   /* The FROM clause of the subquery */
  ExprList *pList;    /* The result set of the outer query */
  int iParent;        /* VDBE cursor number of the pSub result set temp table */
  int i;              /* Loop counter */
112232
112233
112234
112235
112236
112237
112238
112239
112240
112241
112242
112243
112244
112245
112246
112247
112248
112249
112250
112251
112252
112253
112254

112255
112256
112257
112258
112259
112260
112261
    **
    ** Example:
    **
    **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
    **
    ** The outer query has 3 slots in its FROM clause.  One slot of the
    ** outer query (the middle slot) is used by the subquery.  The next
    ** block of code will expand the out query to 4 slots.  The middle
    ** slot is expanded to two slots in order to make space for the
    ** two elements in the FROM clause of the subquery.
    */
    if( nSubSrc>1 ){
      pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
      if( db->mallocFailed ){
        break;
      }
    }

    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);

      pSrc->a[i+iFrom] = pSubSrc->a[i];
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.







|
|
|













>







113235
113236
113237
113238
113239
113240
113241
113242
113243
113244
113245
113246
113247
113248
113249
113250
113251
113252
113253
113254
113255
113256
113257
113258
113259
113260
113261
113262
113263
113264
113265
    **
    ** Example:
    **
    **    SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
    **
    ** The outer query has 3 slots in its FROM clause.  One slot of the
    ** outer query (the middle slot) is used by the subquery.  The next
    ** block of code will expand the outer query FROM clause to 4 slots.
    ** The middle slot is expanded to two slots in order to make space
    ** for the two elements in the FROM clause of the subquery.
    */
    if( nSubSrc>1 ){
      pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1);
      if( db->mallocFailed ){
        break;
      }
    }

    /* Transfer the FROM clause terms from the subquery into the
    ** outer query.
    */
    for(i=0; i<nSubSrc; i++){
      sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
      assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
      pSrc->a[i+iFrom] = pSubSrc->a[i];
      memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
    }
    pSrc->a[iFrom].fg.jointype = jointype;
  
    /* Now begin substituting subquery result set expressions for 
    ** references to the iParent in the outer query.
112273
112274
112275
112276
112277
112278
112279
112280
112281
112282
112283
112284
112285
112286
112287
112288
112289
112290
112291
112292
112293
112294
112295
112296
112297
112298
112299
112300
112301
112302
112303
112304
112305
112306
112307
112308
112309
112310
112311
112312
112313
112314
112315
112316
112317
112318
112319
112320
112321
112322
112323
112324

112325
112326
112327
112328
112329
112330
112331
    for(i=0; i<pList->nExpr; i++){
      if( pList->a[i].zName==0 ){
        char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
        sqlite3Dequote(zName);
        pList->a[i].zName = zName;
      }
    }
    substExprList(db, pParent->pEList, iParent, pSub->pEList);
    if( isAgg ){
      substExprList(db, pParent->pGroupBy, iParent, pSub->pEList);
      pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
    }
    if( pSub->pOrderBy ){
      /* At this point, any non-zero iOrderByCol values indicate that the
      ** ORDER BY column expression is identical to the iOrderByCol'th
      ** expression returned by SELECT statement pSub. Since these values
      ** do not necessarily correspond to columns in SELECT statement pParent,
      ** zero them before transfering the ORDER BY clause.
      **
      ** Not doing this may cause an error if a subsequent call to this
      ** function attempts to flatten a compound sub-query into pParent
      ** (the only way this can happen is if the compound sub-query is
      ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
      ExprList *pOrderBy = pSub->pOrderBy;
      for(i=0; i<pOrderBy->nExpr; i++){
        pOrderBy->a[i].u.x.iOrderByCol = 0;
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;
    }else if( pParent->pOrderBy ){
      substExprList(db, pParent->pOrderBy, iParent, pSub->pEList);
    }
    if( pSub->pWhere ){
      pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);
    }else{
      pWhere = 0;
    }
    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;
      pParent->pHaving = substExpr(db, pParent->pHaving, iParent, pSub->pEList);
      pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
                                  sqlite3ExprDup(db, pSub->pHaving, 0));
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{
      pParent->pWhere = substExpr(db, pParent->pWhere, iParent, pSub->pEList);
      pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
    }

  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  
    /*







<
<
<
<
<



















<
<

<
|
<
<
<




<





<


>







113277
113278
113279
113280
113281
113282
113283





113284
113285
113286
113287
113288
113289
113290
113291
113292
113293
113294
113295
113296
113297
113298
113299
113300
113301
113302


113303

113304



113305
113306
113307
113308

113309
113310
113311
113312
113313

113314
113315
113316
113317
113318
113319
113320
113321
113322
113323
    for(i=0; i<pList->nExpr; i++){
      if( pList->a[i].zName==0 ){
        char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan);
        sqlite3Dequote(zName);
        pList->a[i].zName = zName;
      }
    }





    if( pSub->pOrderBy ){
      /* At this point, any non-zero iOrderByCol values indicate that the
      ** ORDER BY column expression is identical to the iOrderByCol'th
      ** expression returned by SELECT statement pSub. Since these values
      ** do not necessarily correspond to columns in SELECT statement pParent,
      ** zero them before transfering the ORDER BY clause.
      **
      ** Not doing this may cause an error if a subsequent call to this
      ** function attempts to flatten a compound sub-query into pParent
      ** (the only way this can happen is if the compound sub-query is
      ** currently part of pSub->pSrc). See ticket [d11a6e908f].  */
      ExprList *pOrderBy = pSub->pOrderBy;
      for(i=0; i<pOrderBy->nExpr; i++){
        pOrderBy->a[i].u.x.iOrderByCol = 0;
      }
      assert( pParent->pOrderBy==0 );
      assert( pSub->pPrior==0 );
      pParent->pOrderBy = pOrderBy;
      pSub->pOrderBy = 0;


    }

    pWhere = sqlite3ExprDup(db, pSub->pWhere, 0);



    if( subqueryIsAgg ){
      assert( pParent->pHaving==0 );
      pParent->pHaving = pParent->pWhere;
      pParent->pWhere = pWhere;

      pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, 
                                  sqlite3ExprDup(db, pSub->pHaving, 0));
      assert( pParent->pGroupBy==0 );
      pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0);
    }else{

      pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere);
    }
    substSelect(db, pParent, iParent, pSub->pEList, 0);
  
    /* The flattened query is distinct if either the inner or the
    ** outer query is distinct. 
    */
    pParent->selFlags |= pSub->selFlags & SF_Distinct;
  
    /*
112575
112576
112577
112578
112579
112580
112581
112582
112583
112584
112585
112586
112587
112588
112589
112590
112591
112592
112593
112594
112595
112596
112597
112598
112599













112600
112601
112602
112603
112604
112605
112606
112607
112608
112609
112610
112611
112612
112613
112614
112615
112616
112617
112618
112619
112620
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ) return WRC_Abort;
  memset(&dummy, 0, sizeof(dummy));
  pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
  if( pNewSrc==0 ) return WRC_Abort;
  *pNew = *p;
  p->pSrc = pNewSrc;
  p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ALL, 0));
  p->op = TK_SELECT;
  p->pWhere = 0;
  pNew->pGroupBy = 0;
  pNew->pHaving = 0;
  pNew->pOrderBy = 0;
  p->pPrior = 0;
  p->pNext = 0;
  p->pWith = 0;
  p->selFlags &= ~SF_Compound;
  assert( (p->selFlags & SF_Converted)==0 );
  p->selFlags |= SF_Converted;
  assert( pNew->pPrior!=0 );
  pNew->pPrior->pNext = pNew;
  pNew->pLimit = 0;
  pNew->pOffset = 0;
  return WRC_Continue;
}














#ifndef SQLITE_OMIT_CTE
/*
** Argument pWith (which may be NULL) points to a linked list of nested 
** WITH contexts, from inner to outermost. If the table identified by 
** FROM clause element pItem is really a common-table-expression (CTE) 
** then return a pointer to the CTE definition for that table. Otherwise
** return NULL.
**
** If a non-NULL value is returned, set *ppContext to point to the With
** object that the returned CTE belongs to.
*/
static struct Cte *searchWith(
  With *pWith,                    /* Current outermost WITH clause */
  struct SrcList_item *pItem,     /* FROM clause element to resolve */
  With **ppContext                /* OUT: WITH clause return value belongs to */
){
  const char *zName;
  if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
    With *p;
    for(p=pWith; p; p=p->pOuter){







|

















>
>
>
>
>
>
>
>
>
>
>
>
>













|







113567
113568
113569
113570
113571
113572
113573
113574
113575
113576
113577
113578
113579
113580
113581
113582
113583
113584
113585
113586
113587
113588
113589
113590
113591
113592
113593
113594
113595
113596
113597
113598
113599
113600
113601
113602
113603
113604
113605
113606
113607
113608
113609
113610
113611
113612
113613
113614
113615
113616
113617
113618
113619
113620
113621
113622
113623
113624
113625
  pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
  if( pNew==0 ) return WRC_Abort;
  memset(&dummy, 0, sizeof(dummy));
  pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
  if( pNewSrc==0 ) return WRC_Abort;
  *pNew = *p;
  p->pSrc = pNewSrc;
  p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
  p->op = TK_SELECT;
  p->pWhere = 0;
  pNew->pGroupBy = 0;
  pNew->pHaving = 0;
  pNew->pOrderBy = 0;
  p->pPrior = 0;
  p->pNext = 0;
  p->pWith = 0;
  p->selFlags &= ~SF_Compound;
  assert( (p->selFlags & SF_Converted)==0 );
  p->selFlags |= SF_Converted;
  assert( pNew->pPrior!=0 );
  pNew->pPrior->pNext = pNew;
  pNew->pLimit = 0;
  pNew->pOffset = 0;
  return WRC_Continue;
}

/*
** Check to see if the FROM clause term pFrom has table-valued function
** arguments.  If it does, leave an error message in pParse and return
** non-zero, since pFrom is not allowed to be a table-valued function.
*/
static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
  if( pFrom->fg.isTabFunc ){
    sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
    return 1;
  }
  return 0;
}

#ifndef SQLITE_OMIT_CTE
/*
** Argument pWith (which may be NULL) points to a linked list of nested 
** WITH contexts, from inner to outermost. If the table identified by 
** FROM clause element pItem is really a common-table-expression (CTE) 
** then return a pointer to the CTE definition for that table. Otherwise
** return NULL.
**
** If a non-NULL value is returned, set *ppContext to point to the With
** object that the returned CTE belongs to.
*/
static struct Cte *searchWith(
  With *pWith,                    /* Current innermost WITH clause */
  struct SrcList_item *pItem,     /* FROM clause element to resolve */
  With **ppContext                /* OUT: WITH clause return value belongs to */
){
  const char *zName;
  if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
    With *p;
    for(p=pWith; p; p=p->pOuter){
112637
112638
112639
112640
112641
112642
112643
112644
112645

112646
112647
112648
112649
112650
112651
112652
112653
112654
112655
** onto the top of the stack. If argument bFree is true, then this
** WITH clause will never be popped from the stack. In this case it
** should be freed along with the Parse object. In other cases, when
** bFree==0, the With object will be freed along with the SELECT 
** statement with which it is associated.
*/
SQLITE_PRIVATE void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
  assert( bFree==0 || pParse->pWith==0 );
  if( pWith ){

    pWith->pOuter = pParse->pWith;
    pParse->pWith = pWith;
    pParse->bFreeWith = bFree;
  }
}

/*
** This function checks if argument pFrom refers to a CTE declared by 
** a WITH clause on the stack currently maintained by the parser. And,
** if currently processing a CTE expression, if it is a recursive







|

>


|







113642
113643
113644
113645
113646
113647
113648
113649
113650
113651
113652
113653
113654
113655
113656
113657
113658
113659
113660
113661
** onto the top of the stack. If argument bFree is true, then this
** WITH clause will never be popped from the stack. In this case it
** should be freed along with the Parse object. In other cases, when
** bFree==0, the With object will be freed along with the SELECT 
** statement with which it is associated.
*/
SQLITE_PRIVATE void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
  assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
  if( pWith ){
    assert( pParse->pWith!=pWith );
    pWith->pOuter = pParse->pWith;
    pParse->pWith = pWith;
    if( bFree ) pParse->pWithToFree = pWith;
  }
}

/*
** This function checks if argument pFrom refers to a CTE declared by 
** a WITH clause on the stack currently maintained by the parser. And,
** if currently processing a CTE expression, if it is a recursive
112688
112689
112690
112691
112692
112693
112694

112695
112696
112697
112698
112699
112700
112701
    ** recursive reference to CTE pCte. Leave an error in pParse and return
    ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
    ** In this case, proceed.  */
    if( pCte->zCteErr ){
      sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
      return SQLITE_ERROR;
    }


    assert( pFrom->pTab==0 );
    pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
    if( pTab==0 ) return WRC_Abort;
    pTab->nRef = 1;
    pTab->zName = sqlite3DbStrDup(db, pCte->zName);
    pTab->iPKey = -1;







>







113694
113695
113696
113697
113698
113699
113700
113701
113702
113703
113704
113705
113706
113707
113708
    ** recursive reference to CTE pCte. Leave an error in pParse and return
    ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
    ** In this case, proceed.  */
    if( pCte->zCteErr ){
      sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
      return SQLITE_ERROR;
    }
    if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;

    assert( pFrom->pTab==0 );
    pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
    if( pTab==0 ) return WRC_Abort;
    pTab->nRef = 1;
    pTab->zName = sqlite3DbStrDup(db, pCte->zName);
    pTab->iPKey = -1;
112734
112735
112736
112737
112738
112739
112740

112741
112742
112743
112744
112745
112746
112747
    }
    assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));

    pCte->zCteErr = "circular reference: %s";
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;
    sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);


    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
            pCte->zName, pEList->nExpr, pCte->pCols->nExpr







>







113741
113742
113743
113744
113745
113746
113747
113748
113749
113750
113751
113752
113753
113754
113755
    }
    assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 ));

    pCte->zCteErr = "circular reference: %s";
    pSavedWith = pParse->pWith;
    pParse->pWith = pWith;
    sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel);
    pParse->pWith = pWith;

    for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
    pEList = pLeft->pEList;
    if( pCte->pCols ){
      if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
        sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
            pCte->zName, pEList->nExpr, pCte->pCols->nExpr
112880
112881
112882
112883
112884
112885
112886



112887
112888

112889
112890
112891
112892
112893
112894
112895
112896


112897

112898
112899
112900
112901
112902
112903
112904
112905
112906
112907
112908
112909
112910
112911
112912
112913
112914
112915
112916
112917
112918
112919

112920
112921
112922
112923
112924
112925
112926
112927
112928
112929
112930
112931
112932
112933
112934
112935
112936
112937
112938
112939
112940
112941
112942
112943
112944
112945
112946

112947

112948
112949
112950
112951
112952
112953
112954
      if( pTab->nRef==0xffff ){
        sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
           pTab->zName);
        pFrom->pTab = 0;
        return WRC_Abort;
      }
      pTab->nRef++;



#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( pTab->pSelect || IsVirtual(pTab) ){

        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );
        if( pFrom->fg.isTabFunc && !IsVirtual(pTab) ){
          sqlite3ErrorMsg(pParse, "'%s' is not a function", pTab->zName);
          return WRC_Abort;
        }
        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
        sqlite3SelectSetName(pFrom->pSelect, pTab->zName);


        sqlite3WalkSelect(pWalker, pFrom->pSelect);

      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( sqlite3IndexedByLookup(pParse, pFrom) ){
      return WRC_Abort;
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
    return WRC_Abort;
  }

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ALL operator for each "*" that it found in the column list.
  ** The following code just has to locate the TK_ALL expressions and expand
  ** each one to the list of all columns in all tables.

  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    pE = pEList->a[k].pExpr;
    if( pE->op==TK_ALL ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ALL ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      pE = a[k].pExpr;
      pRight = pE->pRight;
      assert( pE->op!=TK_DOT || pRight!=0 );

      if( pE->op!=TK_ALL && (pE->op!=TK_DOT || pRight->op!=TK_ALL) ){

        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
          pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
          a[k].zName = 0;







>
>
>

|
>


<
<
<
<


>
>

>



















|
|
|
>






|


|

















>
|
>







113888
113889
113890
113891
113892
113893
113894
113895
113896
113897
113898
113899
113900
113901
113902




113903
113904
113905
113906
113907
113908
113909
113910
113911
113912
113913
113914
113915
113916
113917
113918
113919
113920
113921
113922
113923
113924
113925
113926
113927
113928
113929
113930
113931
113932
113933
113934
113935
113936
113937
113938
113939
113940
113941
113942
113943
113944
113945
113946
113947
113948
113949
113950
113951
113952
113953
113954
113955
113956
113957
113958
113959
113960
113961
113962
113963
113964
113965
113966
113967
113968
      if( pTab->nRef==0xffff ){
        sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
           pTab->zName);
        pFrom->pTab = 0;
        return WRC_Abort;
      }
      pTab->nRef++;
      if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
        return WRC_Abort;
      }
#if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
      if( IsVirtual(pTab) || pTab->pSelect ){
        i16 nCol;
        if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
        assert( pFrom->pSelect==0 );




        pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
        sqlite3SelectSetName(pFrom->pSelect, pTab->zName);
        nCol = pTab->nCol;
        pTab->nCol = -1;
        sqlite3WalkSelect(pWalker, pFrom->pSelect);
        pTab->nCol = nCol;
      }
#endif
    }

    /* Locate the index named by the INDEXED BY clause, if any. */
    if( sqlite3IndexedByLookup(pParse, pFrom) ){
      return WRC_Abort;
    }
  }

  /* Process NATURAL keywords, and ON and USING clauses of joins.
  */
  if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){
    return WRC_Abort;
  }

  /* For every "*" that occurs in the column list, insert the names of
  ** all columns in all tables.  And for every TABLE.* insert the names
  ** of all columns in TABLE.  The parser inserted a special expression
  ** with the TK_ASTERISK operator for each "*" that it found in the column
  ** list.  The following code just has to locate the TK_ASTERISK
  ** expressions and expand each one to the list of all columns in
  ** all tables.
  **
  ** The first loop just checks to see if there are any "*" operators
  ** that need expanding.
  */
  for(k=0; k<pEList->nExpr; k++){
    pE = pEList->a[k].pExpr;
    if( pE->op==TK_ASTERISK ) break;
    assert( pE->op!=TK_DOT || pE->pRight!=0 );
    assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
    if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
  }
  if( k<pEList->nExpr ){
    /*
    ** If we get here it means the result set contains one or more "*"
    ** operators that need to be expanded.  Loop through each expression
    ** in the result set and expand them one by one.
    */
    struct ExprList_item *a = pEList->a;
    ExprList *pNew = 0;
    int flags = pParse->db->flags;
    int longNames = (flags & SQLITE_FullColNames)!=0
                      && (flags & SQLITE_ShortColNames)==0;

    for(k=0; k<pEList->nExpr; k++){
      pE = a[k].pExpr;
      pRight = pE->pRight;
      assert( pE->op!=TK_DOT || pRight!=0 );
      if( pE->op!=TK_ASTERISK
       && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
      ){
        /* This particular expression does not need to be expanded.
        */
        pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
        if( pNew ){
          pNew->a[pNew->nExpr-1].zName = a[k].zName;
          pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan;
          a[k].zName = 0;
112992
112993
112994
112995
112996
112997
112998
112999
113000
113001

113002

113003
113004

113005
113006
113007
113008
113009
113010
113011
            assert( zName );
            if( zTName && pSub
             && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
            ){
              continue;
            }

            /* If a column is marked as 'hidden' (currently only possible
            ** for virtual tables), do not include it in the expanded
            ** result-set list.

            */

            if( IsHiddenColumn(&pTab->aCol[j]) ){
              assert(IsVirtual(pTab));

              continue;
            }
            tableSeen = 1;

            if( i>0 && zTName==0 ){
              if( (pFrom->fg.jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)







|
<
|
>

>
|
<
>







114006
114007
114008
114009
114010
114011
114012
114013

114014
114015
114016
114017
114018

114019
114020
114021
114022
114023
114024
114025
114026
            assert( zName );
            if( zTName && pSub
             && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0
            ){
              continue;
            }

            /* If a column is marked as 'hidden', omit it from the expanded

            ** result-set list unless the SELECT has the SF_IncludeHidden
            ** bit set.
            */
            if( (p->selFlags & SF_IncludeHidden)==0
             && IsHiddenColumn(&pTab->aCol[j]) 

            ){
              continue;
            }
            tableSeen = 1;

            if( i>0 && zTName==0 ){
              if( (pFrom->fg.jointype & JT_NATURAL)!=0
                && tableAndColumnIndex(pTabList, i, zName, 0, 0)
113068
113069
113070
113071
113072
113073
113074

113075
113076
113077
113078
113079
113080
113081
113082
113083
113084
113085
113086
113087
113088
113089
113090
113091
113092
113093
113094
113095
113096
113097
113098
113099
113100
113101
113102
113103
113104
113105
113106
113107
113108
113109
113110
113111
113112
113113
113114
113115
113116
113117
    }
    sqlite3ExprListDelete(db, pEList);
    p->pEList = pNew;
  }
#if SQLITE_MAX_COLUMN
  if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many columns in result set");

  }
#endif
  return WRC_Continue;
}

/*
** No-op routine for the parse-tree walker.
**
** When this routine is the Walker.xExprCallback then expression trees
** are walked without any actions being taken at each node.  Presumably,
** when this routine is used for Walker.xExprCallback then 
** Walker.xSelectCallback is set to do something useful for every 
** subquery in the parser tree.
*/
static int exprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  return WRC_Continue;
}

/*
** This routine "expands" a SELECT statement and all of its subqueries.
** For additional information on what it means to "expand" a SELECT
** statement, see the comment on the selectExpand worker callback above.
**
** Expanding a SELECT statement is the first step in processing a
** SELECT statement.  The SELECT statement must be expanded before
** name resolution is performed.
**
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  if( (pSelect->selFlags & SF_MultiValue)==0 ){







>














|




















|







114083
114084
114085
114086
114087
114088
114089
114090
114091
114092
114093
114094
114095
114096
114097
114098
114099
114100
114101
114102
114103
114104
114105
114106
114107
114108
114109
114110
114111
114112
114113
114114
114115
114116
114117
114118
114119
114120
114121
114122
114123
114124
114125
114126
114127
114128
114129
114130
114131
114132
114133
    }
    sqlite3ExprListDelete(db, pEList);
    p->pEList = pNew;
  }
#if SQLITE_MAX_COLUMN
  if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
    sqlite3ErrorMsg(pParse, "too many columns in result set");
    return WRC_Abort;
  }
#endif
  return WRC_Continue;
}

/*
** No-op routine for the parse-tree walker.
**
** When this routine is the Walker.xExprCallback then expression trees
** are walked without any actions being taken at each node.  Presumably,
** when this routine is used for Walker.xExprCallback then 
** Walker.xSelectCallback is set to do something useful for every 
** subquery in the parser tree.
*/
SQLITE_PRIVATE int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){
  UNUSED_PARAMETER2(NotUsed, NotUsed2);
  return WRC_Continue;
}

/*
** This routine "expands" a SELECT statement and all of its subqueries.
** For additional information on what it means to "expand" a SELECT
** statement, see the comment on the selectExpand worker callback above.
**
** Expanding a SELECT statement is the first step in processing a
** SELECT statement.  The SELECT statement must be expanded before
** name resolution is performed.
**
** If anything goes wrong, an error message is written into pParse.
** The calling function can detect the problem by looking at pParse->nErr
** and/or pParse->db->mallocFailed.
*/
static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.pParse = pParse;
  if( pParse->hasCompound ){
    w.xSelectCallback = convertCompoundSelectToSubquery;
    sqlite3WalkSelect(&w, pSelect);
  }
  w.xSelectCallback = selectExpander;
  if( (pSelect->selFlags & SF_MultiValue)==0 ){
113170
113171
113172
113173
113174
113175
113176
113177
113178
113179
113180
113181
113182
113183
113184
** Use this routine after name resolution.
*/
static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
#ifndef SQLITE_OMIT_SUBQUERY
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xSelectCallback2 = selectAddSubqueryTypeInfo;
  w.xExprCallback = exprWalkNoop;
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
#endif
}


/*







|







114186
114187
114188
114189
114190
114191
114192
114193
114194
114195
114196
114197
114198
114199
114200
** Use this routine after name resolution.
*/
static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
#ifndef SQLITE_OMIT_SUBQUERY
  Walker w;
  memset(&w, 0, sizeof(w));
  w.xSelectCallback2 = selectAddSubqueryTypeInfo;
  w.xExprCallback = sqlite3ExprWalkNoop;
  w.pParse = pParse;
  sqlite3WalkSelect(&w, pSelect);
#endif
}


/*
113925
113926
113927
113928
113929
113930
113931
113932
113933
113934
113935
113936
113937
113938
113939
113940
113941
113942
113943
113944
113945
        sqlite3ExprCacheClear(pParse);
        sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
        j = nGroupBy;
        for(i=0; i<sAggInfo.nColumn; i++){
          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
          if( pCol->iSorterColumn>=j ){
            int r1 = j + regBase;
            int r2;

            r2 = sqlite3ExprCodeGetColumn(pParse, 
                               pCol->pTab, pCol->iColumn, pCol->iTable, r1, 0);
            if( r1!=r2 ){
              sqlite3VdbeAddOp2(v, OP_SCopy, r2, r1);
            }
            j++;
          }
        }
        regRecord = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
        sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
        sqlite3ReleaseTempReg(pParse, regRecord);







<
<
|
|
<
<
<







114941
114942
114943
114944
114945
114946
114947


114948
114949



114950
114951
114952
114953
114954
114955
114956
        sqlite3ExprCacheClear(pParse);
        sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
        j = nGroupBy;
        for(i=0; i<sAggInfo.nColumn; i++){
          struct AggInfo_col *pCol = &sAggInfo.aCol[i];
          if( pCol->iSorterColumn>=j ){
            int r1 = j + regBase;


            sqlite3ExprCodeGetColumnToReg(pParse, 
                               pCol->pTab, pCol->iColumn, pCol->iTable, r1);



            j++;
          }
        }
        regRecord = sqlite3GetTempReg(pParse);
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
        sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord);
        sqlite3ReleaseTempReg(pParse, regRecord);
115011
115012
115013
115014
115015
115016
115017
115018
115019
115020
115021
115022
115023
115024
115025
115026
115027
115028
115029
115030
115031
115032
115033
115034
115035
115036

115037
115038
115039
115040
115041
115042
115043
115044
115045
115046
115047
115048
115049
  }
#endif

  /* Generate code to destroy the database record of the trigger.
  */
  assert( pTable!=0 );
  if( (v = sqlite3GetVdbe(pParse))!=0 ){
    int base;
    static const int iLn = VDBE_OFFSET_LINENO(2);
    static const VdbeOpList dropTrigger[] = {
      { OP_Rewind,     0, ADDR(9),  0},
      { OP_String8,    0, 1,        0}, /* 1 */
      { OP_Column,     0, 1,        2},
      { OP_Ne,         2, ADDR(8),  1},
      { OP_String8,    0, 1,        0}, /* 4: "trigger" */
      { OP_Column,     0, 0,        2},
      { OP_Ne,         2, ADDR(8),  1},
      { OP_Delete,     0, 0,        0},
      { OP_Next,       0, ADDR(1),  0}, /* 8 */
    };

    sqlite3BeginWriteOperation(pParse, 0, iDb);
    sqlite3OpenMasterTable(pParse, iDb);
    base = sqlite3VdbeAddOpList(v,  ArraySize(dropTrigger), dropTrigger, iLn);
    sqlite3VdbeChangeP4(v, base+1, pTrigger->zName, P4_TRANSIENT);
    sqlite3VdbeChangeP4(v, base+4, "trigger", P4_STATIC);

    sqlite3ChangeCookie(pParse, iDb);
    sqlite3VdbeAddOp2(v, OP_Close, 0, 0);
    sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);
    if( pParse->nMem<3 ){
      pParse->nMem = 3;
    }
  }
}

/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){







|
<
<
<
<
<
<
<
<
<
<
<
<
|
<
<
<
|
<
>

<

<
<
<







116022
116023
116024
116025
116026
116027
116028
116029












116030



116031

116032
116033

116034



116035
116036
116037
116038
116039
116040
116041
  }
#endif

  /* Generate code to destroy the database record of the trigger.
  */
  assert( pTable!=0 );
  if( (v = sqlite3GetVdbe(pParse))!=0 ){
    sqlite3NestedParse(pParse,












       "DELETE FROM %Q.%s WHERE name=%Q AND type='trigger'",



       db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pTrigger->zName

    );
    sqlite3ChangeCookie(pParse, iDb);

    sqlite3VdbeAddOp4(v, OP_DropTrigger, iDb, 0, 0, pTrigger->zName, 0);



  }
}

/*
** Remove a trigger from the hash tables of the sqlite* pointer.
*/
SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTrigger(sqlite3 *db, int iDb, const char *zName){
115837
115838
115839
115840
115841
115842
115843
115844
115845


115846
115847
115848
115849
115850
115851
115852
115853
115854
#endif
  }
  assert( (chngRowid & chngPk)==0 );
  assert( chngRowid==0 || chngRowid==1 );
  assert( chngPk==0 || chngPk==1 );
  chngKey = chngRowid + chngPk;

  /* The SET expressions are not actually used inside the WHERE loop.
  ** So reset the colUsed mask


  */
  pTabList->a[0].colUsed = 0;

  hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);

  /* There is one entry in the aRegIdx[] array for each index on the table
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **







|
|
>
>

|







116829
116830
116831
116832
116833
116834
116835
116836
116837
116838
116839
116840
116841
116842
116843
116844
116845
116846
116847
116848
#endif
  }
  assert( (chngRowid & chngPk)==0 );
  assert( chngRowid==0 || chngRowid==1 );
  assert( chngPk==0 || chngPk==1 );
  chngKey = chngRowid + chngPk;

  /* The SET expressions are not actually used inside the WHERE loop.  
  ** So reset the colUsed mask. Unless this is a virtual table. In that
  ** case, set all bits of the colUsed mask (to ensure that the virtual
  ** table implementation makes all columns available).
  */
  pTabList->a[0].colUsed = IsVirtual(pTab) ? (Bitmask)-1 : 0;

  hasFK = sqlite3FkRequired(pParse, pTab, aXRef, chngKey);

  /* There is one entry in the aRegIdx[] array for each index on the table
  ** being updated.  Fill in aRegIdx[] with a register number that will hold
  ** the key for accessing each index.
  **
116003
116004
116005
116006
116007
116008
116009
116010
116011
116012
116013
116014
116015
116016
116017
        }
      }
    }
    if( okOnePass ){
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
    }
    sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, iBaseCur, aToOpen,
                               0, 0);
  }

  /* Top of the update loop */
  if( okOnePass ){
    if( aToOpen[iDataCur-iBaseCur] && !isView ){
      assert( pPk );







|







116997
116998
116999
117000
117001
117002
117003
117004
117005
117006
117007
117008
117009
117010
117011
        }
      }
    }
    if( okOnePass ){
      if( aiCurOnePass[0]>=0 ) aToOpen[aiCurOnePass[0]-iBaseCur] = 0;
      if( aiCurOnePass[1]>=0 ) aToOpen[aiCurOnePass[1]-iBaseCur] = 0;
    }
    sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, iBaseCur, aToOpen,
                               0, 0);
  }

  /* Top of the update loop */
  if( okOnePass ){
    if( aToOpen[iDataCur-iBaseCur] && !isView ){
      assert( pPk );
116096
116097
116098
116099
116100
116101
116102
116103
116104
116105
116106
116107
116108
116109
116110
        /* This branch loads the value of a column that will not be changed 
        ** into a register. This is done if there are no BEFORE triggers, or
        ** if there are one or more BEFORE triggers that use this value via
        ** a new.* reference in a trigger program.
        */
        testcase( i==31 );
        testcase( i==32 );
        sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regNew+i);
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
      }
    }
  }

  /* Fire any BEFORE UPDATE triggers. This happens before constraints are







|







117090
117091
117092
117093
117094
117095
117096
117097
117098
117099
117100
117101
117102
117103
117104
        /* This branch loads the value of a column that will not be changed 
        ** into a register. This is done if there are no BEFORE triggers, or
        ** if there are one or more BEFORE triggers that use this value via
        ** a new.* reference in a trigger program.
        */
        testcase( i==31 );
        testcase( i==32 );
        sqlite3ExprCodeGetColumnToReg(pParse, pTab, i, iDataCur, regNew+i);
      }else{
        sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i);
      }
    }
  }

  /* Fire any BEFORE UPDATE triggers. This happens before constraints are
118066
118067
118068
118069
118070
118071
118072

118073
118074

118075
118076
118077
118078
118079
118080
118081
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrSkip;         /* Jump here for next iteration of skip-scan */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */

  int iLikeRepCntr;     /* LIKE range processing counter register */
  int addrLikeRep;      /* LIKE range processing address */

  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {







>


>







119060
119061
119062
119063
119064
119065
119066
119067
119068
119069
119070
119071
119072
119073
119074
119075
119076
119077
  int iIdxCur;          /* The VDBE cursor used to access pIdx */
  int addrBrk;          /* Jump here to break out of the loop */
  int addrNxt;          /* Jump here to start the next IN combination */
  int addrSkip;         /* Jump here for next iteration of skip-scan */
  int addrCont;         /* Jump here to continue with the next loop cycle */
  int addrFirst;        /* First instruction of interior of the loop */
  int addrBody;         /* Beginning of the body of this loop */
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
  int iLikeRepCntr;     /* LIKE range processing counter register */
  int addrLikeRep;      /* LIKE range processing address */
#endif
  u8 iFrom;             /* Which entry in the FROM clause */
  u8 op, p3, p5;        /* Opcode, P3 & P5 of the opcode that ends the loop */
  int p1, p2;           /* Operands of the opcode used to ends the loop */
  union {               /* Information that depends on pWLoop->wsFlags */
    struct {
      int nIn;              /* Number of entries in aInLoop[] */
      struct InLoop {
118250
118251
118252
118253
118254
118255
118256

118257
118258
118259
118260
118261
118262
118263
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  LogEst truthProb;       /* Probability of truth for this expression */
  u16 eOperator;          /* A WO_xx value describing <op> */
  u16 wtFlags;            /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */

  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
};

/*
** Allowed values of WhereTerm.wtFlags







>







119246
119247
119248
119249
119250
119251
119252
119253
119254
119255
119256
119257
119258
119259
119260
    WhereOrInfo *pOrInfo;   /* Extra information if (eOperator & WO_OR)!=0 */
    WhereAndInfo *pAndInfo; /* Extra information if (eOperator& WO_AND)!=0 */
  } u;
  LogEst truthProb;       /* Probability of truth for this expression */
  u16 eOperator;          /* A WO_xx value describing <op> */
  u16 wtFlags;            /* TERM_xxx bit flags.  See below */
  u8 nChild;              /* Number of children that must disable us */
  u8 eMatchOp;            /* Op for vtab MATCH/LIKE/GLOB/REGEXP terms */
  WhereClause *pWC;       /* The clause this term is part of */
  Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
  Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
};

/*
** Allowed values of WhereTerm.wtFlags
118282
118283
118284
118285
118286
118287
118288
118289
118290
118291
118292
118293
118294
118295
118296
/*
** An instance of the WhereScan object is used as an iterator for locating
** terms in the WHERE clause that are useful to the query planner.
*/
struct WhereScan {
  WhereClause *pOrigWC;      /* Original, innermost WhereClause */
  WhereClause *pWC;          /* WhereClause currently being scanned */
  char *zCollName;           /* Required collating sequence, if not NULL */
  Expr *pIdxExpr;            /* Search for this index expression */
  char idxaff;               /* Must match this affinity, if zCollName!=NULL */
  unsigned char nEquiv;      /* Number of entries in aEquiv[] */
  unsigned char iEquiv;      /* Next unused slot in aEquiv[] */
  u32 opMask;                /* Acceptable operators */
  int k;                     /* Resume scanning at this->pWC->a[this->k] */
  int aiCur[11];             /* Cursors in the equivalence class */







|







119279
119280
119281
119282
119283
119284
119285
119286
119287
119288
119289
119290
119291
119292
119293
/*
** An instance of the WhereScan object is used as an iterator for locating
** terms in the WHERE clause that are useful to the query planner.
*/
struct WhereScan {
  WhereClause *pOrigWC;      /* Original, innermost WhereClause */
  WhereClause *pWC;          /* WhereClause currently being scanned */
  const char *zCollName;     /* Required collating sequence, if not NULL */
  Expr *pIdxExpr;            /* Search for this index expression */
  char idxaff;               /* Must match this affinity, if zCollName!=NULL */
  unsigned char nEquiv;      /* Number of entries in aEquiv[] */
  unsigned char iEquiv;      /* Next unused slot in aEquiv[] */
  u32 opMask;                /* Acceptable operators */
  int k;                     /* Resume scanning at this->pWC->a[this->k] */
  int aiCur[11];             /* Cursors in the equivalence class */
119072
119073
119074
119075
119076
119077
119078

119079
119080
119081
119082
119083
119084
119085
119086
119087
119088
119089




119090
119091
119092
119093
119094
119095
119096
119097
119098
119099
119100
119101
119102
119103
119104
119105
119106



119107




















































































































































119108
119109
119110
119111
119112
119113
119114
      }
    }
  }
  *pzAff = zAff;
  return regBase;
}


/*
** If the most recently coded instruction is a constant range contraint
** that originated from the LIKE optimization, then change the P3 to be
** pLoop->iLikeRepCntr and set P5.
**
** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
** scan loop run twice, once for strings and a second time for BLOBs.
** The OP_String opcodes on the second pass convert the upper and lower
** bound string contants to blobs.  This routine makes the necessary changes
** to the OP_String opcodes for that to happen.




*/
static void whereLikeOptimizationStringFixup(
  Vdbe *v,                /* prepared statement under construction */
  WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
  WhereTerm *pTerm        /* The upper or lower bound just coded */
){
  if( pTerm->wtFlags & TERM_LIKEOPT ){
    VdbeOp *pOp;
    assert( pLevel->iLikeRepCntr>0 );
    pOp = sqlite3VdbeGetOp(v, -1);
    assert( pOp!=0 );
    assert( pOp->opcode==OP_String8 
            || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
    pOp->p3 = pLevel->iLikeRepCntr;
    pOp->p5 = 1;
  }
}

























































































































































/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */







>











>
>
>
>

















>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







120069
120070
120071
120072
120073
120074
120075
120076
120077
120078
120079
120080
120081
120082
120083
120084
120085
120086
120087
120088
120089
120090
120091
120092
120093
120094
120095
120096
120097
120098
120099
120100
120101
120102
120103
120104
120105
120106
120107
120108
120109
120110
120111
120112
120113
120114
120115
120116
120117
120118
120119
120120
120121
120122
120123
120124
120125
120126
120127
120128
120129
120130
120131
120132
120133
120134
120135
120136
120137
120138
120139
120140
120141
120142
120143
120144
120145
120146
120147
120148
120149
120150
120151
120152
120153
120154
120155
120156
120157
120158
120159
120160
120161
120162
120163
120164
120165
120166
120167
120168
120169
120170
120171
120172
120173
120174
120175
120176
120177
120178
120179
120180
120181
120182
120183
120184
120185
120186
120187
120188
120189
120190
120191
120192
120193
120194
120195
120196
120197
120198
120199
120200
120201
120202
120203
120204
120205
120206
120207
120208
120209
120210
120211
120212
120213
120214
120215
120216
120217
120218
120219
120220
120221
120222
120223
120224
120225
120226
120227
120228
120229
120230
120231
120232
120233
120234
120235
120236
120237
120238
120239
120240
120241
120242
120243
120244
120245
120246
120247
120248
120249
120250
120251
120252
120253
120254
120255
120256
120257
120258
120259
120260
120261
120262
120263
120264
120265
120266
120267
      }
    }
  }
  *pzAff = zAff;
  return regBase;
}

#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
/*
** If the most recently coded instruction is a constant range contraint
** that originated from the LIKE optimization, then change the P3 to be
** pLoop->iLikeRepCntr and set P5.
**
** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
** expression: "x>='ABC' AND x<'abd'".  But this requires that the range
** scan loop run twice, once for strings and a second time for BLOBs.
** The OP_String opcodes on the second pass convert the upper and lower
** bound string contants to blobs.  This routine makes the necessary changes
** to the OP_String opcodes for that to happen.
**
** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
** only the one pass through the string space is required, so this routine
** becomes a no-op.
*/
static void whereLikeOptimizationStringFixup(
  Vdbe *v,                /* prepared statement under construction */
  WhereLevel *pLevel,     /* The loop that contains the LIKE operator */
  WhereTerm *pTerm        /* The upper or lower bound just coded */
){
  if( pTerm->wtFlags & TERM_LIKEOPT ){
    VdbeOp *pOp;
    assert( pLevel->iLikeRepCntr>0 );
    pOp = sqlite3VdbeGetOp(v, -1);
    assert( pOp!=0 );
    assert( pOp->opcode==OP_String8 
            || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
    pOp->p3 = pLevel->iLikeRepCntr;
    pOp->p5 = 1;
  }
}
#else
# define whereLikeOptimizationStringFixup(A,B,C)
#endif

#ifdef SQLITE_ENABLE_CURSOR_HINTS
/*
** Information is passed from codeCursorHint() down to individual nodes of
** the expression tree (by sqlite3WalkExpr()) using an instance of this
** structure.
*/
struct CCurHint {
  int iTabCur;    /* Cursor for the main table */
  int iIdxCur;    /* Cursor for the index, if pIdx!=0.  Unused otherwise */
  Index *pIdx;    /* The index used to access the table */
};

/*
** This function is called for every node of an expression that is a candidate
** for a cursor hint on an index cursor.  For TK_COLUMN nodes that reference
** the table CCurHint.iTabCur, verify that the same column can be
** accessed through the index.  If it cannot, then set pWalker->eCode to 1.
*/
static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
  struct CCurHint *pHint = pWalker->u.pCCurHint;
  assert( pHint->pIdx!=0 );
  if( pExpr->op==TK_COLUMN
   && pExpr->iTable==pHint->iTabCur
   && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
  ){
    pWalker->eCode = 1;
  }
  return WRC_Continue;
}


/*
** This function is called on every node of an expression tree used as an
** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
** that accesses any table other than the one identified by
** CCurHint.iTabCur, then do the following:
**
**   1) allocate a register and code an OP_Column instruction to read 
**      the specified column into the new register, and
**
**   2) transform the expression node to a TK_REGISTER node that reads 
**      from the newly populated register.
**
** Also, if the node is a TK_COLUMN that does access the table idenified
** by pCCurHint.iTabCur, and an index is being used (which we will
** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
** an access of the index rather than the original table.
*/
static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
  int rc = WRC_Continue;
  struct CCurHint *pHint = pWalker->u.pCCurHint;
  if( pExpr->op==TK_COLUMN ){
    if( pExpr->iTable!=pHint->iTabCur ){
      Vdbe *v = pWalker->pParse->pVdbe;
      int reg = ++pWalker->pParse->nMem;   /* Register for column value */
      sqlite3ExprCodeGetColumnOfTable(
          v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
      );
      pExpr->op = TK_REGISTER;
      pExpr->iTable = reg;
    }else if( pHint->pIdx!=0 ){
      pExpr->iTable = pHint->iIdxCur;
      pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
      assert( pExpr->iColumn>=0 );
    }
  }else if( pExpr->op==TK_AGG_FUNCTION ){
    /* An aggregate function in the WHERE clause of a query means this must
    ** be a correlated sub-query, and expression pExpr is an aggregate from
    ** the parent context. Do not walk the function arguments in this case.
    **
    ** todo: It should be possible to replace this node with a TK_REGISTER
    ** expression, as the result of the expression must be stored in a 
    ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
    rc = WRC_Prune;
  }
  return rc;
}

/*
** Insert an OP_CursorHint instruction if it is appropriate to do so.
*/
static void codeCursorHint(
  WhereInfo *pWInfo,    /* The where clause */
  WhereLevel *pLevel,   /* Which loop to provide hints for */
  WhereTerm *pEndRange  /* Hint this end-of-scan boundary term if not NULL */
){
  Parse *pParse = pWInfo->pParse;
  sqlite3 *db = pParse->db;
  Vdbe *v = pParse->pVdbe;
  Expr *pExpr = 0;
  WhereLoop *pLoop = pLevel->pWLoop;
  int iCur;
  WhereClause *pWC;
  WhereTerm *pTerm;
  int i, j;
  struct CCurHint sHint;
  Walker sWalker;

  if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
  iCur = pLevel->iTabCur;
  assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
  sHint.iTabCur = iCur;
  sHint.iIdxCur = pLevel->iIdxCur;
  sHint.pIdx = pLoop->u.btree.pIndex;
  memset(&sWalker, 0, sizeof(sWalker));
  sWalker.pParse = pParse;
  sWalker.u.pCCurHint = &sHint;
  pWC = &pWInfo->sWC;
  for(i=0; i<pWC->nTerm; i++){
    pTerm = &pWC->a[i];
    if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
    if( pTerm->prereqAll & pLevel->notReady ) continue;
    if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;

    /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
    ** the cursor.  These terms are not needed as hints for a pure range
    ** scan (that has no == terms) so omit them. */
    if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
      for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
      if( j<pLoop->nLTerm ) continue;
    }

    /* No subqueries or non-deterministic functions allowed */
    if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;

    /* For an index scan, make sure referenced columns are actually in
    ** the index. */
    if( sHint.pIdx!=0 ){
      sWalker.eCode = 0;
      sWalker.xExprCallback = codeCursorHintCheckExpr;
      sqlite3WalkExpr(&sWalker, pTerm->pExpr);
      if( sWalker.eCode ) continue;
    }

    /* If we survive all prior tests, that means this term is worth hinting */
    pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
  }
  if( pExpr!=0 ){
    sWalker.xExprCallback = codeCursorHintFixExpr;
    sqlite3WalkExpr(&sWalker, pExpr);
    sqlite3VdbeAddOp4(v, OP_CursorHint, 
                      (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
                      (const char*)pExpr, P4_EXPR);
  }
}
#else
# define codeCursorHint(A,B,C)  /* No-op */
#endif /* SQLITE_ENABLE_CURSOR_HINTS */

/*
** Generate code for the start of the iLevel-th loop in the WHERE clause
** implementation described by pWInfo.
*/
SQLITE_PRIVATE Bitmask sqlite3WhereCodeOneLoopStart(
  WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
119265
119266
119267
119268
119269
119270
119271

119272
119273
119274
119275
119276
119277
119278
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
    assert( pStart!=0 || pEnd!=0 );
    if( bRev ){
      pTerm = pStart;
      pStart = pEnd;
      pEnd = pTerm;
    }

    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
      int r1, rTemp;        /* Registers for holding the start boundary */

      /* The following constant maps TK_xx codes into corresponding 
      ** seek opcodes.  It depends on a particular ordering of TK_xx
      */







>







120418
120419
120420
120421
120422
120423
120424
120425
120426
120427
120428
120429
120430
120431
120432
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
    assert( pStart!=0 || pEnd!=0 );
    if( bRev ){
      pTerm = pStart;
      pStart = pEnd;
      pEnd = pTerm;
    }
    codeCursorHint(pWInfo, pLevel, pEnd);
    if( pStart ){
      Expr *pX;             /* The expression that defines the start bound */
      int r1, rTemp;        /* Registers for holding the start boundary */

      /* The following constant maps TK_xx codes into corresponding 
      ** seek opcodes.  It depends on a particular ordering of TK_xx
      */
119437
119438
119439
119440
119441
119442
119443

119444
119445
119446
119447
119448
119449
119450
119451
119452
119453
119454
119455

119456
119457
119458
119459
119460
119461
119462
119463
119464
119465
119466
119467
119468
119469
119470
119471
119472
119473
119474
119475
119476
119477
119478
119479
119480
119481
119482
119483










119484
119485
119486
119487
119488
119489
119490
      /* Like optimization range constraints always occur in pairs */
      assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 
              (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;

      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = ++pParse->nMem;
        testcase( bRev );
        testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
        sqlite3VdbeAddOp2(v, OP_Integer,
                          bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
                          pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));
        pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
      }

      if( pRangeStart==0
       && (j = pIdx->aiColumn[nEq])>=0 
       && pIdx->pTable->aCol[j].notNull==0
      ){
        bSeekPastNull = 1;
      }
    }
    assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
    assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
    if( zStartAff ) cEndAff = zStartAff[nEq];
    addrNxt = pLevel->addrNxt;

    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nKeyCol==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
      SWAP(u8, bSeekPastNull, bStopAtNull);
    }











    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);







>












>









<
<
<
<
<
<
<
<
<










>
>
>
>
>
>
>
>
>
>







120591
120592
120593
120594
120595
120596
120597
120598
120599
120600
120601
120602
120603
120604
120605
120606
120607
120608
120609
120610
120611
120612
120613
120614
120615
120616
120617
120618
120619
120620









120621
120622
120623
120624
120625
120626
120627
120628
120629
120630
120631
120632
120633
120634
120635
120636
120637
120638
120639
120640
120641
120642
120643
120644
120645
120646
120647
      /* Like optimization range constraints always occur in pairs */
      assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 
              (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
    }
    if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
      pRangeEnd = pLoop->aLTerm[j++];
      nExtraReg = 1;
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
        assert( pRangeStart!=0 );                     /* LIKE opt constraints */
        assert( pRangeStart->wtFlags & TERM_LIKEOPT );   /* occur in pairs */
        pLevel->iLikeRepCntr = ++pParse->nMem;
        testcase( bRev );
        testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
        sqlite3VdbeAddOp2(v, OP_Integer,
                          bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
                          pLevel->iLikeRepCntr);
        VdbeComment((v, "LIKE loop counter"));
        pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
      }
#endif
      if( pRangeStart==0
       && (j = pIdx->aiColumn[nEq])>=0 
       && pIdx->pTable->aCol[j].notNull==0
      ){
        bSeekPastNull = 1;
      }
    }
    assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );










    /* If we are doing a reverse order scan on an ascending index, or
    ** a forward order scan on a descending index, interchange the 
    ** start and end terms (pRangeStart and pRangeEnd).
    */
    if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
     || (bRev && pIdx->nKeyCol==nEq)
    ){
      SWAP(WhereTerm *, pRangeEnd, pRangeStart);
      SWAP(u8, bSeekPastNull, bStopAtNull);
    }

    /* Generate code to evaluate all constraint terms using == or IN
    ** and store the values of those terms in an array of registers
    ** starting at regBase.
    */
    codeCursorHint(pWInfo, pLevel, pRangeEnd);
    regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
    assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
    if( zStartAff ) cEndAff = zStartAff[nEq];
    addrNxt = pLevel->addrNxt;

    testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
    testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
    testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
    startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
    endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
119760
119761
119762
119763
119764
119765
119766
119767
119768
119769
119770
119771
119772
119773
119774
        if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */







|







120917
120918
120919
120920
120921
120922
120923
120924
120925
120926
120927
120928
120929
120930
120931
        if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
        if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
        testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
        pExpr = sqlite3ExprDup(db, pExpr, 0);
        pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
      }
      if( pAndExpr ){
        pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
      }
    }

    /* Run a separate WHERE clause for each term of the OR clause.  After
    ** eliminating duplicates from other WHERE clauses, the action for each
    ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
    */
119816
119817
119818
119819
119820
119821
119822
119823
119824
119825
119826
119827
119828
119829
119830
119831
119832
119833
119834
              int nPk = pPk->nKeyCol;
              int iPk;

              /* Read the PK into an array of temp registers. */
              r = sqlite3GetTempRange(pParse, nPk);
              for(iPk=0; iPk<nPk; iPk++){
                int iCol = pPk->aiColumn[iPk];
                int rx;
                rx = sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur,r+iPk,0);
                if( rx!=r+iPk ){
                  sqlite3VdbeAddOp2(v, OP_SCopy, rx, r+iPk);
                }
              }

              /* Check if the temp table already contains this key. If so,
              ** the row has already been included in the result set and
              ** can be ignored (by jumping past the Gosub below). Otherwise,
              ** insert the key into the temp table and proceed with processing
              ** the row.







<
|
<
<
<







120973
120974
120975
120976
120977
120978
120979

120980



120981
120982
120983
120984
120985
120986
120987
              int nPk = pPk->nKeyCol;
              int iPk;

              /* Read the PK into an array of temp registers. */
              r = sqlite3GetTempRange(pParse, nPk);
              for(iPk=0; iPk<nPk; iPk++){
                int iCol = pPk->aiColumn[iPk];

                sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);



              }

              /* Check if the temp table already contains this key. If so,
              ** the row has already been included in the result set and
              ** can be ignored (by jumping past the Gosub below). Otherwise,
              ** insert the key into the temp table and proceed with processing
              ** the row.
119920
119921
119922
119923
119924
119925
119926

119927
119928
119929
119930
119931
119932
119933
    static const u8 aStart[] = { OP_Rewind, OP_Last };
    assert( bRev==0 || bRev==1 );
    if( pTabItem->fg.isRecursive ){
      /* Tables marked isRecursive have only a single row that is stored in
      ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
      pLevel->op = OP_Noop;
    }else{

      pLevel->op = aStep[bRev];
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }







>







121073
121074
121075
121076
121077
121078
121079
121080
121081
121082
121083
121084
121085
121086
121087
    static const u8 aStart[] = { OP_Rewind, OP_Last };
    assert( bRev==0 || bRev==1 );
    if( pTabItem->fg.isRecursive ){
      /* Tables marked isRecursive have only a single row that is stored in
      ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
      pLevel->op = OP_Noop;
    }else{
      codeCursorHint(pWInfo, pLevel, 0);
      pLevel->op = aStep[bRev];
      pLevel->p1 = iCur;
      pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
      VdbeCoverageIf(v, bRev==0);
      VdbeCoverageIf(v, bRev!=0);
      pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
    }
119954
119955
119956
119957
119958
119959
119960



119961
119962
119963

119964
119965
119966
119967
119968
119969
119970
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    if( pTerm->wtFlags & TERM_LIKECOND ){



      assert( pLevel->iLikeRepCntr>0 );
      skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
      VdbeCoverage(v);

    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
    pTerm->wtFlags |= TERM_CODED;
  }

  /* Insert code to test for implied constraints based on transitivity







>
>
>



>







121108
121109
121110
121111
121112
121113
121114
121115
121116
121117
121118
121119
121120
121121
121122
121123
121124
121125
121126
121127
121128
    }
    pE = pTerm->pExpr;
    assert( pE!=0 );
    if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
      continue;
    }
    if( pTerm->wtFlags & TERM_LIKECOND ){
#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
      continue;
#else
      assert( pLevel->iLikeRepCntr>0 );
      skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
      VdbeCoverage(v);
#endif
    }
    sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
    if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
    pTerm->wtFlags |= TERM_CODED;
  }

  /* Insert code to test for implied constraints based on transitivity
120305
120306
120307
120308
120309
120310
120311
120312



120313
120314
120315
120316
120317

120318









120319


120320
120321
120322
120323
120324

120325
120326
120327
120328

120329
120330

120331

120332
120333

120334
120335
120336
120337
120338
120339
120340
120341
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */


#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Check to see if the given expression is of the form
**
**         column MATCH expr



**
** If it is then return TRUE.  If not, return FALSE.
*/
static int isMatchOfColumn(
  Expr *pExpr      /* Test this expression */

){









  ExprList *pList;



  if( pExpr->op!=TK_FUNCTION ){
    return 0;
  }
  if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){

    return 0;
  }
  pList = pExpr->x.pList;
  if( pList->nExpr!=2 ){

    return 0;
  }

  if( pList->a[1].pExpr->op != TK_COLUMN ){

    return 0;
  }

  return 1;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** If the pBase expression originated in the ON or USING clause of
** a join, then transfer the appropriate markings over to derived.
*/







|
>
>
>




|
>

>
>
>
>
>
>
>
>
>

>
>




|
>


<
|
>


>
|
>
|
|
>
|







121463
121464
121465
121466
121467
121468
121469
121470
121471
121472
121473
121474
121475
121476
121477
121478
121479
121480
121481
121482
121483
121484
121485
121486
121487
121488
121489
121490
121491
121492
121493
121494
121495
121496
121497
121498
121499
121500

121501
121502
121503
121504
121505
121506
121507
121508
121509
121510
121511
121512
121513
121514
121515
121516
121517
121518
#endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */


#ifndef SQLITE_OMIT_VIRTUALTABLE
/*
** Check to see if the given expression is of the form
**
**         column OP expr
**
** where OP is one of MATCH, GLOB, LIKE or REGEXP and "column" is a 
** column of a virtual table.
**
** If it is then return TRUE.  If not, return FALSE.
*/
static int isMatchOfColumn(
  Expr *pExpr,                    /* Test this expression */
  unsigned char *peOp2            /* OUT: 0 for MATCH, or else an op2 value */
){
  struct Op2 {
    const char *zOp;
    unsigned char eOp2;
  } aOp[] = {
    { "match",  SQLITE_INDEX_CONSTRAINT_MATCH },
    { "glob",   SQLITE_INDEX_CONSTRAINT_GLOB },
    { "like",   SQLITE_INDEX_CONSTRAINT_LIKE },
    { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP }
  };
  ExprList *pList;
  Expr *pCol;                     /* Column reference */
  int i;

  if( pExpr->op!=TK_FUNCTION ){
    return 0;
  }
  pList = pExpr->x.pList;
  if( pList==0 || pList->nExpr!=2 ){
    return 0;
  }

  pCol = pList->a[1].pExpr;
  if( pCol->op!=TK_COLUMN || !IsVirtual(pCol->pTab) ){
    return 0;
  }
  for(i=0; i<ArraySize(aOp); i++){
    if( sqlite3StrICmp(pExpr->u.zToken, aOp[i].zOp)==0 ){
      *peOp2 = aOp[i].eOp2;
      return 1;
    }
  }
  return 0;
}
#endif /* SQLITE_OMIT_VIRTUALTABLE */

/*
** If the pBase expression originated in the ON or USING clause of
** a join, then transfer the appropriate markings over to derived.
*/
120904
120905
120906
120907
120908
120909
120910

120911
120912
120913
120914
120915
120916
120917
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */


  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;







>







122081
122082
122083
122084
122085
122086
122087
122088
122089
122090
122091
122092
122093
122094
122095
  Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
  Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
  int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
  int noCase = 0;                  /* uppercase equivalent to lowercase */
  int op;                          /* Top-level operator.  pExpr->op */
  Parse *pParse = pWInfo->pParse;  /* Parsing context */
  sqlite3 *db = pParse->db;        /* Database connection */
  unsigned char eOp2;              /* op2 value for LIKE/REGEXP/GLOB */

  if( db->mallocFailed ){
    return;
  }
  pTerm = &pWC->a[idxTerm];
  pMaskSet = &pWInfo->sMaskSet;
  pExpr = pTerm->pExpr;
121127
121128
121129
121130
121131
121132
121133
121134
121135
121136
121137
121138
121139
121140
121141
121142
121143
121144
121145
121146
121147
121148
121149
121150
121151
121152
121153
121154

121155
121156
121157
121158
121159
121160
121161
#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Add a WO_MATCH auxiliary term to the constraint set if the
  ** current expression is of the form:  column MATCH expr.
  ** This information is used by the xBestIndex methods of
  ** virtual tables.  The native query optimizer does not attempt
  ** to do anything with MATCH functions.
  */
  if( isMatchOfColumn(pExpr) ){
    int idxNew;
    Expr *pRight, *pLeft;
    WhereTerm *pNewTerm;
    Bitmask prereqColumn, prereqExpr;

    pRight = pExpr->x.pList->a[0].pExpr;
    pLeft = pExpr->x.pList->a[1].pExpr;
    prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
    prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
    if( (prereqExpr & prereqColumn)==0 ){
      Expr *pNewExpr;
      pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
                              0, sqlite3ExprDup(db, pRight, 0), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = prereqExpr;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_MATCH;

      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */







|




















>







122305
122306
122307
122308
122309
122310
122311
122312
122313
122314
122315
122316
122317
122318
122319
122320
122321
122322
122323
122324
122325
122326
122327
122328
122329
122330
122331
122332
122333
122334
122335
122336
122337
122338
122339
122340
#ifndef SQLITE_OMIT_VIRTUALTABLE
  /* Add a WO_MATCH auxiliary term to the constraint set if the
  ** current expression is of the form:  column MATCH expr.
  ** This information is used by the xBestIndex methods of
  ** virtual tables.  The native query optimizer does not attempt
  ** to do anything with MATCH functions.
  */
  if( isMatchOfColumn(pExpr, &eOp2) ){
    int idxNew;
    Expr *pRight, *pLeft;
    WhereTerm *pNewTerm;
    Bitmask prereqColumn, prereqExpr;

    pRight = pExpr->x.pList->a[0].pExpr;
    pLeft = pExpr->x.pList->a[1].pExpr;
    prereqExpr = sqlite3WhereExprUsage(pMaskSet, pRight);
    prereqColumn = sqlite3WhereExprUsage(pMaskSet, pLeft);
    if( (prereqExpr & prereqColumn)==0 ){
      Expr *pNewExpr;
      pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 
                              0, sqlite3ExprDup(db, pRight, 0), 0);
      idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
      testcase( idxNew==0 );
      pNewTerm = &pWC->a[idxNew];
      pNewTerm->prereqRight = prereqExpr;
      pNewTerm->leftCursor = pLeft->iTable;
      pNewTerm->u.leftColumn = pLeft->iColumn;
      pNewTerm->eOperator = WO_MATCH;
      pNewTerm->eMatchOp = eOp2;
      markTermAsChild(pWC, idxNew, idxTerm);
      pTerm = &pWC->a[idxTerm];
      pTerm->wtFlags |= TERM_COPIED;
      pNewTerm->prereqAll = pTerm->prereqAll;
    }
  }
#endif /* SQLITE_OMIT_VIRTUALTABLE */
121250
121251
121252
121253
121254
121255
121256
121257

121258
121259
121260
121261
121262
121263
121264
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;
}

/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of sqlite3WhereClauseInit().

*/
SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  sqlite3 *db = pWC->pWInfo->pParse->db;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->wtFlags & TERM_DYNAMIC ){







|
>







122429
122430
122431
122432
122433
122434
122435
122436
122437
122438
122439
122440
122441
122442
122443
122444
  pWC->nTerm = 0;
  pWC->nSlot = ArraySize(pWC->aStatic);
  pWC->a = pWC->aStatic;
}

/*
** Deallocate a WhereClause structure.  The WhereClause structure
** itself is not freed.  This routine is the inverse of
** sqlite3WhereClauseInit().
*/
SQLITE_PRIVATE void sqlite3WhereClauseClear(WhereClause *pWC){
  int i;
  WhereTerm *a;
  sqlite3 *db = pWC->pWInfo->pParse->db;
  for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
    if( a->wtFlags & TERM_DYNAMIC ){
121344
121345
121346
121347
121348
121349
121350
121351
121352
121353
121354
121355
121356
121357
121358
121359
121360
  ExprList *pArgs;
  Expr *pColRef;
  Expr *pTerm;
  if( pItem->fg.isTabFunc==0 ) return;
  pTab = pItem->pTab;
  assert( pTab!=0 );
  pArgs = pItem->u1.pFuncArg;
  assert( pArgs!=0 );
  for(j=k=0; j<pArgs->nExpr; j++){
    while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){ k++; }
    if( k>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
                      pTab->zName, j);
      return;
    }
    pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
    if( pColRef==0 ) return;







|

|







122524
122525
122526
122527
122528
122529
122530
122531
122532
122533
122534
122535
122536
122537
122538
122539
122540
  ExprList *pArgs;
  Expr *pColRef;
  Expr *pTerm;
  if( pItem->fg.isTabFunc==0 ) return;
  pTab = pItem->pTab;
  assert( pTab!=0 );
  pArgs = pItem->u1.pFuncArg;
  if( pArgs==0 ) return;
  for(j=k=0; j<pArgs->nExpr; j++){
    while( k<pTab->nCol && (pTab->aCol[k].colFlags & COLFLAG_HIDDEN)==0 ){k++;}
    if( k>=pTab->nCol ){
      sqlite3ErrorMsg(pParse, "too many arguments on %s() - max %d",
                      pTab->zName, j);
      return;
    }
    pColRef = sqlite3PExpr(pParse, TK_COLUMN, 0, 0, 0);
    if( pColRef==0 ) return;
121852
121853
121854
121855
121856
121857
121858
121859
121860





121861
121862
121863
121864
121865
121866

121867
121868
121869
121870
121871
121872
121873
121874
121875
121876
121877






121878
121879
121880

121881
121882
121883
121884
121885
121886
121887
  return N<=10 ? 0 : sqlite3LogEst(N) - 33;
}

/*
** Convert OP_Column opcodes to OP_Copy in previously generated code.
**
** This routine runs over generated VDBE code and translates OP_Column
** opcodes into OP_Copy, and OP_Rowid into OP_Null, when the table is being
** accessed via co-routine instead of via table lookup.





*/
static void translateColumnToCopy(
  Vdbe *v,            /* The VDBE containing code to translate */
  int iStart,         /* Translate from this opcode to the end */
  int iTabCur,        /* OP_Column/OP_Rowid references to this table */
  int iRegister       /* The first column is in this register */

){
  VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
  int iEnd = sqlite3VdbeCurrentAddr(v);
  for(; iStart<iEnd; iStart++, pOp++){
    if( pOp->p1!=iTabCur ) continue;
    if( pOp->opcode==OP_Column ){
      pOp->opcode = OP_Copy;
      pOp->p1 = pOp->p2 + iRegister;
      pOp->p2 = pOp->p3;
      pOp->p3 = 0;
    }else if( pOp->opcode==OP_Rowid ){






      pOp->opcode = OP_Null;
      pOp->p1 = 0;
      pOp->p3 = 0;

    }
  }
}

/*
** Two routines for printing the content of an sqlite3_index_info
** structure.  Used for testing and debugging only.  If neither







|
|
>
>
>
>
>





|
>











>
>
>
>
>
>
|
|
|
>







123032
123033
123034
123035
123036
123037
123038
123039
123040
123041
123042
123043
123044
123045
123046
123047
123048
123049
123050
123051
123052
123053
123054
123055
123056
123057
123058
123059
123060
123061
123062
123063
123064
123065
123066
123067
123068
123069
123070
123071
123072
123073
123074
123075
123076
123077
123078
123079
123080
  return N<=10 ? 0 : sqlite3LogEst(N) - 33;
}

/*
** Convert OP_Column opcodes to OP_Copy in previously generated code.
**
** This routine runs over generated VDBE code and translates OP_Column
** opcodes into OP_Copy when the table is being accessed via co-routine 
** instead of via table lookup.
**
** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
** then each OP_Rowid is transformed into an instruction to increment the
** value stored in its output register.
*/
static void translateColumnToCopy(
  Vdbe *v,            /* The VDBE containing code to translate */
  int iStart,         /* Translate from this opcode to the end */
  int iTabCur,        /* OP_Column/OP_Rowid references to this table */
  int iRegister,      /* The first column is in this register */
  int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
){
  VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
  int iEnd = sqlite3VdbeCurrentAddr(v);
  for(; iStart<iEnd; iStart++, pOp++){
    if( pOp->p1!=iTabCur ) continue;
    if( pOp->opcode==OP_Column ){
      pOp->opcode = OP_Copy;
      pOp->p1 = pOp->p2 + iRegister;
      pOp->p2 = pOp->p3;
      pOp->p3 = 0;
    }else if( pOp->opcode==OP_Rowid ){
      if( bIncrRowid ){
        /* Increment the value stored in the P2 operand of the OP_Rowid. */
        pOp->opcode = OP_AddImm;
        pOp->p1 = pOp->p2;
        pOp->p2 = 1;
      }else{
        pOp->opcode = OP_Null;
        pOp->p1 = 0;
        pOp->p3 = 0;
      }
    }
  }
}

/*
** Two routines for printing the content of an sqlite3_index_info
** structure.  Used for testing and debugging only.  If neither
121981
121982
121983
121984
121985
121986
121987


121988
121989
121990
121991
121992
121993
121994
  char *zNotUsed;             /* Extra space on the end of pIdx */
  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */
  u8 sentWarning = 0;         /* True if a warnning has been issued */
  Expr *pPartial = 0;         /* Partial Index Expression */
  int iContinue = 0;          /* Jump here to skip excluded rows */
  struct SrcList_item *pTabItem;  /* FROM clause term being indexed */



  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
  addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);








>
>







123174
123175
123176
123177
123178
123179
123180
123181
123182
123183
123184
123185
123186
123187
123188
123189
  char *zNotUsed;             /* Extra space on the end of pIdx */
  Bitmask idxCols;            /* Bitmap of columns used for indexing */
  Bitmask extraCols;          /* Bitmap of additional columns */
  u8 sentWarning = 0;         /* True if a warnning has been issued */
  Expr *pPartial = 0;         /* Partial Index Expression */
  int iContinue = 0;          /* Jump here to skip excluded rows */
  struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
  int addrCounter = 0;        /* Address where integer counter is initialized */
  int regBase;                /* Array of registers where record is assembled */

  /* Generate code to skip over the creation and initialization of the
  ** transient index on 2nd and subsequent iterations of the loop. */
  v = pParse->pVdbe;
  assert( v!=0 );
  addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);

122070
122071
122072
122073
122074
122075
122076
122077
122078
122079
122080
122081
122082
122083
122084
122085
122086
122087
122088
122089
122090
122091
122092
122093
122094
122095
122096
122097
122098
122099
122100
122101
122102
122103
122104
122105
122106
122107
122108
122109
122110
122111
122112
122113
122114
122115

122116
122117
122118
122119
122120
122121
122122
122123
122124
122125
122126
122127
122128

122129

122130
122131
122132
122133

122134
122135
122136
122137
122138
122139
122140
122141
      testcase( iCol==BMS-1 );
      testcase( iCol==BMS );
      if( (idxCols & cMask)==0 ){
        Expr *pX = pTerm->pExpr;
        idxCols |= cMask;
        pIdx->aiColumn[n] = pTerm->u.leftColumn;
        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        pIdx->azColl[n] = pColl ? pColl->zName : "BINARY";
        n++;
      }
    }
  }
  assert( (u32)n==pLoop->u.btree.nEq );

  /* Add additional columns needed to make the automatic index into
  ** a covering index */
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    for(i=BMS-1; i<pTable->nCol; i++){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = "BINARY";
      n++;
    }
  }
  assert( n==nKeyCol );
  pIdx->aiColumn[n] = XN_ROWID;
  pIdx->azColl[n] = "BINARY";

  /* Create the automatic index */
  assert( pLevel->iIdxCur>=0 );
  pLevel->iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
  sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  sqlite3ExprCachePush(pParse);
  pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
  if( pTabItem->fg.viaCoroutine ){
    int regYield = pTabItem->regReturn;

    sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
    addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeCoverage(v);
    VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
  }else{
    addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
  }
  if( pPartial ){
    iContinue = sqlite3VdbeMakeLabel(v);
    sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
    pLoop->wsFlags |= WHERE_PARTIALIDX;
  }
  regRecord = sqlite3GetTempReg(pParse);

  sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);

  sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
  if( pTabItem->fg.viaCoroutine ){

    translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult);
    sqlite3VdbeGoto(v, addrTop);
    pTabItem->fg.viaCoroutine = 0;
  }else{
    sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
  }
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);







|











|






|





|













>













>
|
>




>
|







123265
123266
123267
123268
123269
123270
123271
123272
123273
123274
123275
123276
123277
123278
123279
123280
123281
123282
123283
123284
123285
123286
123287
123288
123289
123290
123291
123292
123293
123294
123295
123296
123297
123298
123299
123300
123301
123302
123303
123304
123305
123306
123307
123308
123309
123310
123311
123312
123313
123314
123315
123316
123317
123318
123319
123320
123321
123322
123323
123324
123325
123326
123327
123328
123329
123330
123331
123332
123333
123334
123335
123336
123337
123338
123339
123340
      testcase( iCol==BMS-1 );
      testcase( iCol==BMS );
      if( (idxCols & cMask)==0 ){
        Expr *pX = pTerm->pExpr;
        idxCols |= cMask;
        pIdx->aiColumn[n] = pTerm->u.leftColumn;
        pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
        pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
        n++;
      }
    }
  }
  assert( (u32)n==pLoop->u.btree.nEq );

  /* Add additional columns needed to make the automatic index into
  ** a covering index */
  for(i=0; i<mxBitCol; i++){
    if( extraCols & MASKBIT(i) ){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = sqlite3StrBINARY;
      n++;
    }
  }
  if( pSrc->colUsed & MASKBIT(BMS-1) ){
    for(i=BMS-1; i<pTable->nCol; i++){
      pIdx->aiColumn[n] = i;
      pIdx->azColl[n] = sqlite3StrBINARY;
      n++;
    }
  }
  assert( n==nKeyCol );
  pIdx->aiColumn[n] = XN_ROWID;
  pIdx->azColl[n] = sqlite3StrBINARY;

  /* Create the automatic index */
  assert( pLevel->iIdxCur>=0 );
  pLevel->iIdxCur = pParse->nTab++;
  sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
  sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
  VdbeComment((v, "for %s", pTable->zName));

  /* Fill the automatic index with content */
  sqlite3ExprCachePush(pParse);
  pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
  if( pTabItem->fg.viaCoroutine ){
    int regYield = pTabItem->regReturn;
    addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
    sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
    addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
    VdbeCoverage(v);
    VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
  }else{
    addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
  }
  if( pPartial ){
    iContinue = sqlite3VdbeMakeLabel(v);
    sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
    pLoop->wsFlags |= WHERE_PARTIALIDX;
  }
  regRecord = sqlite3GetTempReg(pParse);
  regBase = sqlite3GenerateIndexKey(
      pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
  );
  sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
  sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
  if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
  if( pTabItem->fg.viaCoroutine ){
    sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
    translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1);
    sqlite3VdbeGoto(v, addrTop);
    pTabItem->fg.viaCoroutine = 0;
  }else{
    sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
  }
  sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
  sqlite3VdbeJumpHere(v, addrTop);
122241
122242
122243
122244
122245
122246
122247



122248
122249
122250
122251
122252
122253
122254
    if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    assert( pTerm->u.leftColumn>=(-1) );
    pIdxCons[j].iColumn = pTerm->u.leftColumn;
    pIdxCons[j].iTermOffset = i;
    op = (u8)pTerm->eOperator & WO_ALL;
    if( op==WO_IN ) op = WO_EQ;



    pIdxCons[j].op = op;
    /* The direct assignment in the previous line is possible only because
    ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
    ** following asserts verify this fact. */
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );







>
>
>







123440
123441
123442
123443
123444
123445
123446
123447
123448
123449
123450
123451
123452
123453
123454
123455
123456
    if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
    if( pTerm->wtFlags & TERM_VNULL ) continue;
    assert( pTerm->u.leftColumn>=(-1) );
    pIdxCons[j].iColumn = pTerm->u.leftColumn;
    pIdxCons[j].iTermOffset = i;
    op = (u8)pTerm->eOperator & WO_ALL;
    if( op==WO_IN ) op = WO_EQ;
    if( op==WO_MATCH ){
      op = pTerm->eMatchOp;
    }
    pIdxCons[j].op = op;
    /* The direct assignment in the previous line is possible only because
    ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
    ** following asserts verify this fact. */
    assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
    assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
    assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
124209
124210
124211
124212
124213
124214
124215

124216
124217
124218
124219
124220
124221
124222
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
    pIdxInfo->estimatedRows = 25;
    pIdxInfo->idxFlags = 0;

    rc = vtabBestIndex(pParse, pTab, pIdxInfo);
    if( rc ) goto whereLoopAddVtab_exit;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pNew->prereq = mExtra;
    mxTerm = -1;
    assert( pNew->nLSlot>=nConstraint );
    for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;







>







125411
125412
125413
125414
125415
125416
125417
125418
125419
125420
125421
125422
125423
125424
125425
    pIdxInfo->idxStr = 0;
    pIdxInfo->idxNum = 0;
    pIdxInfo->needToFreeIdxStr = 0;
    pIdxInfo->orderByConsumed = 0;
    pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
    pIdxInfo->estimatedRows = 25;
    pIdxInfo->idxFlags = 0;
    pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
    rc = vtabBestIndex(pParse, pTab, pIdxInfo);
    if( rc ) goto whereLoopAddVtab_exit;
    pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
    pNew->prereq = mExtra;
    mxTerm = -1;
    assert( pNew->nLSlot>=nConstraint );
    for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
125358
125359
125360
125361
125362
125363
125364

125365
125366
125367
125368
125369
125370
125371
  WhereLoopBuilder sWLB;     /* The WhereLoop builder */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */


  assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
        (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
     && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 
  ));

  /* Variable initialization */







>







126561
126562
126563
126564
126565
126566
126567
126568
126569
126570
126571
126572
126573
126574
126575
  WhereLoopBuilder sWLB;     /* The WhereLoop builder */
  WhereMaskSet *pMaskSet;    /* The expression mask set */
  WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
  WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
  int ii;                    /* Loop counter */
  sqlite3 *db;               /* Database connection */
  int rc;                    /* Return code */
  u8 bFordelete = 0;

  assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
        (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 
     && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 
  ));

  /* Variable initialization */
125613
125614
125615
125616
125617
125618
125619
125620



125621
125622
125623
125624
125625
125626
125627
125628
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
    int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
    int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
    if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW)
       && 0==(wsFlags & WHERE_VIRTUALTABLE)
    )){
      pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
      if( HasRowid(pTabList->a[0].pTab) ){



        pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
      }
    }
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */







|
>
>
>
|







126817
126818
126819
126820
126821
126822
126823
126824
126825
126826
126827
126828
126829
126830
126831
126832
126833
126834
126835
  if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
    int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
    int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
    if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW)
       && 0==(wsFlags & WHERE_VIRTUALTABLE)
    )){
      pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
      if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
        if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
          bFordelete = OPFLAG_FORDELETE;
        }
        pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
      }
    }
  }

  /* Open all tables in the pTabList and any indices selected for
  ** searching those tables.
  */
125662
125663
125664
125665
125666
125667
125668








125669
125670
125671
125672
125673
125674
125675
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }








#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
      sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
                            (const u8*)&pTabItem->colUsed, P4_INT64);
#endif
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }







>
>
>
>
>
>
>
>







126869
126870
126871
126872
126873
126874
126875
126876
126877
126878
126879
126880
126881
126882
126883
126884
126885
126886
126887
126888
126889
126890
        Bitmask b = pTabItem->colUsed;
        int n = 0;
        for(; b; b=b>>1, n++){}
        sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 
                            SQLITE_INT_TO_PTR(n), P4_INT32);
        assert( n<=pTab->nCol );
      }
#ifdef SQLITE_ENABLE_CURSOR_HINTS
      if( pLoop->u.btree.pIndex!=0 ){
        sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
      }else
#endif
      {
        sqlite3VdbeChangeP5(v, bFordelete);
      }
#ifdef SQLITE_ENABLE_COLUMN_USED_MASK
      sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
                            (const u8*)&pTabItem->colUsed, P4_INT64);
#endif
    }else{
      sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
    }
125824
125825
125826
125827
125828
125829
125830

125831
125832
125833
125834
125835
125836
125837
125838
125839
125840

125841
125842
125843
125844
125845
125846
125847
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->addrSkip ){
      sqlite3VdbeGoto(v, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
      sqlite3VdbeJumpHere(v, pLevel->addrSkip);
      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
    }

    if( pLevel->addrLikeRep ){
      int op;
      if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
        op = OP_DecrJumpZero;
      }else{
        op = OP_JumpZeroIncr;
      }
      sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
      VdbeCoverage(v);
    }

    if( pLevel->iLeftJoin ){
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }







>










>







127039
127040
127041
127042
127043
127044
127045
127046
127047
127048
127049
127050
127051
127052
127053
127054
127055
127056
127057
127058
127059
127060
127061
127062
127063
127064
    sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
    if( pLevel->addrSkip ){
      sqlite3VdbeGoto(v, pLevel->addrSkip);
      VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
      sqlite3VdbeJumpHere(v, pLevel->addrSkip);
      sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
    }
#ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
    if( pLevel->addrLikeRep ){
      int op;
      if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
        op = OP_DecrJumpZero;
      }else{
        op = OP_JumpZeroIncr;
      }
      sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
      VdbeCoverage(v);
    }
#endif
    if( pLevel->iLeftJoin ){
      addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
      assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
           || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
      if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
        sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
      }
125876
125877
125878
125879
125880
125881
125882
125883
125884
125885
125886
125887
125888
125889
125890

    /* For a co-routine, change all OP_Column references to the table of
    ** the co-routine into OP_Copy of result contained in a register.
    ** OP_Rowid becomes OP_Null.
    */
    if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
      translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
                            pTabItem->regResult);
      continue;
    }

    /* Close all of the cursors that were opened by sqlite3WhereBegin.
    ** Except, do not close cursors that will be reused by the OR optimization
    ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors
    ** created for the ONEPASS optimization.







|







127093
127094
127095
127096
127097
127098
127099
127100
127101
127102
127103
127104
127105
127106
127107

    /* For a co-routine, change all OP_Column references to the table of
    ** the co-routine into OP_Copy of result contained in a register.
    ** OP_Rowid becomes OP_Null.
    */
    if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
      translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
                            pTabItem->regResult, 0);
      continue;
    }

    /* Close all of the cursors that were opened by sqlite3WhereBegin.
    ** Except, do not close cursors that will be reused by the OR optimization
    ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors
    ** created for the ONEPASS optimization.
125957
125958
125959
125960
125961
125962
125963
125964


125965

125966
125967







125968


125969
125970

125971
125972
125973

125974

125975

125976
125977
125978
125979
125980
125981
125982
125983
125984
125985
125986
125987
125988
125989












125990
125991
125992
125993
125994
125995
125996
  pParse->nQueryLoop = pWInfo->savedNQueryLoop;
  whereInfoFree(db, pWInfo);
  return;
}

/************** End of where.c ***********************************************/
/************** Begin file parse.c *******************************************/
/* Driver template for the LEMON parser generator.


** The author disclaims copyright to this source code.

**
** This version of "lempar.c" is modified, slightly, for use by SQLite.







** The only modifications are the addition of a couple of NEVER()


** macros to disable tests that are needed in the case of a general
** LALR(1) grammar but which are always false in the

** specific grammar used by SQLite.
*/
/* First off, code is included that follows the "include" declaration

** in the input grammar file. */

/* #include <stdio.h> */


/* #include "sqliteInt.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.
*/
#define YYNOERRORRECOVERY 1

/*
** Make yytestcase() the same as testcase()
*/
#define yytestcase(X) testcase(X)













/*
** An instance of this structure holds information about the
** LIMIT clause of a SELECT statement.
*/
struct LimitVal {
  Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
  Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */







|
>
>
|
>

<
>
>
>
>
>
>
>
|
>
>
|
|
>
|
|
<
>
|
>

>














>
>
>
>
>
>
>
>
>
>
>
>







127174
127175
127176
127177
127178
127179
127180
127181
127182
127183
127184
127185
127186

127187
127188
127189
127190
127191
127192
127193
127194
127195
127196
127197
127198
127199
127200
127201

127202
127203
127204
127205
127206
127207
127208
127209
127210
127211
127212
127213
127214
127215
127216
127217
127218
127219
127220
127221
127222
127223
127224
127225
127226
127227
127228
127229
127230
127231
127232
127233
127234
127235
127236
127237
127238
127239
  pParse->nQueryLoop = pWInfo->savedNQueryLoop;
  whereInfoFree(db, pWInfo);
  return;
}

/************** End of where.c ***********************************************/
/************** Begin file parse.c *******************************************/
/*
** 2000-05-29
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**

**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Driver template for the LEMON parser generator.
**
** The "lemon" program processes an LALR(1) input grammar file, then uses
** this template to construct a parser.  The "lemon" program inserts text
** at each "%%" line.  Also, any "P-a-r-s-e" identifer prefix (without the
** interstitial "-" characters) contained in this template is changed into
** the value of the %name directive from the grammar.  Otherwise, the content
** of this template is copied straight through into the generate parser
** source file.
**

** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/* #include <stdio.h> */
/************ Begin %include sections from the grammar ************************/

/* #include "sqliteInt.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.
*/
#define YYNOERRORRECOVERY 1

/*
** Make yytestcase() the same as testcase()
*/
#define yytestcase(X) testcase(X)

/*
** Indicate that sqlite3ParserFree() will never be called with a null
** pointer.
*/
#define YYPARSEFREENEVERNULL 1

/*
** Alternative datatype for the argument to the malloc() routine passed
** into sqlite3ParserAlloc().  The default is size_t.
*/
#define YYMALLOCARGTYPE  u64

/*
** An instance of this structure holds information about the
** LIMIT clause of a SELECT statement.
*/
struct LimitVal {
  Expr *pLimit;    /* The LIMIT expression.  NULL if there is no limit */
  Expr *pOffset;   /* The OFFSET expression.  NULL if there is none */
126073
126074
126075
126076
126077
126078
126079







126080
126081
126082
126083
126084
126085
126086
    ExprSpan *pLeft,    /* The left operand */
    ExprSpan *pRight    /* The right operand */
  ){
    pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
    pOut->zStart = pLeft->zStart;
    pOut->zEnd = pRight->zEnd;
  }








  /* Construct an expression node for a unary postfix operator
  */
  static void spanUnaryPostfix(
    ExprSpan *pOut,        /* Write the new expression node here */
    Parse *pParse,         /* Parsing context to record errors */
    int op,                /* The operator */







>
>
>
>
>
>
>







127316
127317
127318
127319
127320
127321
127322
127323
127324
127325
127326
127327
127328
127329
127330
127331
127332
127333
127334
127335
127336
    ExprSpan *pLeft,    /* The left operand */
    ExprSpan *pRight    /* The right operand */
  ){
    pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0);
    pOut->zStart = pLeft->zStart;
    pOut->zEnd = pRight->zEnd;
  }

  /* If doNot is true, then add a TK_NOT Expr-node wrapper around the
  ** outside of *ppExpr.
  */
  static void exprNot(Parse *pParse, int doNot, Expr **ppExpr){
    if( doNot ) *ppExpr = sqlite3PExpr(pParse, TK_NOT, *ppExpr, 0, 0);
  }

  /* Construct an expression node for a unary postfix operator
  */
  static void spanUnaryPostfix(
    ExprSpan *pOut,        /* Write the new expression node here */
    Parse *pParse,         /* Parsing context to record errors */
    int op,                /* The operator */
126135
126136
126137
126138
126139
126140
126141
126142
126143
126144
126145
126146
126147
126148
126149
126150
126151
126152
126153
126154

126155

126156
126157
126158
126159
126160
126161
126162
126163
126164
126165
126166
126167

126168

126169
126170
126171
126172
126173
126174







126175
126176
126177
126178
126179
126180
126181
126182
126183
126184
126185
126186
126187
126188
126189
126190
126191
126192
126193
126194
126195
126196
126197




126198
126199
126200
126201
126202
126203
126204
126205
126206

126207
126208

126209
126210
126211
126212
126213
126214
126215
126216
126217
126218
126219
126220
126221
126222
126223
126224
126225
126226
126227
126228
126229
126230
126231
126232
126233
126234
126235
126236
126237
126238
126239

126240
126241
126242
126243
126244
126245
126246
    ){
      sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
                         pIdToken->n, pIdToken->z);
    }
    sqlite3ExprListSetName(pParse, p, pIdToken, 1);
    return p;
  }
/* Next is all token values, in a form suitable for use by makeheaders.
** This section will be null unless lemon is run with the -m switch.
*/
/* 
** These constants (all generated automatically by the parser generator)
** specify the various kinds of tokens (terminals) that the parser
** understands. 
**
** Each symbol here is a terminal symbol in the grammar.
*/
/* Make sure the INTERFACE macro is defined.
*/
#ifndef INTERFACE

# define INTERFACE 1

#endif
/* The next thing included is series of defines which control
** various aspects of the generated parser.
**    YYCODETYPE         is the data type used for storing terminal
**                       and nonterminal numbers.  "unsigned char" is
**                       used if there are fewer than 250 terminals
**                       and nonterminals.  "int" is used otherwise.
**    YYNOCODE           is a number of type YYCODETYPE which corresponds
**                       to no legal terminal or nonterminal number.  This
**                       number is used to fill in empty slots of the hash 
**                       table.
**    YYFALLBACK         If defined, this indicates that one or more tokens

**                       have fall-back values which should be used if the

**                       original value of the token will not parse.
**    YYACTIONTYPE       is the data type used for storing terminal
**                       and nonterminal numbers.  "unsigned char" is
**                       used if there are fewer than 250 rules and
**                       states combined.  "int" is used otherwise.
**    sqlite3ParserTOKENTYPE     is the data type used for minor tokens given 







**                       directly to the parser from the tokenizer.
**    YYMINORTYPE        is the data type used for all minor tokens.
**                       This is typically a union of many types, one of
**                       which is sqlite3ParserTOKENTYPE.  The entry in the union
**                       for base tokens is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    sqlite3ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3ParserARG_STORE     Code to store %extra_argument into yypParser
**    sqlite3ParserARG_FETCH     Code to extract %extra_argument from yypParser
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_MIN_REDUCE      Maximum value for reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
*/




#define YYCODETYPE unsigned char
#define YYNOCODE 254
#define YYACTIONTYPE unsigned short int
#define YYWILDCARD 70
#define sqlite3ParserTOKENTYPE Token
typedef union {
  int yyinit;
  sqlite3ParserTOKENTYPE yy0;
  Select* yy3;

  ExprList* yy14;
  With* yy59;

  SrcList* yy65;
  struct LikeOp yy96;
  Expr* yy132;
  u8 yy186;
  int yy328;
  ExprSpan yy346;
  struct TrigEvent yy378;
  u16 yy381;
  IdList* yy408;
  struct {int value; int mask;} yy429;
  TriggerStep* yy473;
  struct LimitVal yy476;
} YYMINORTYPE;
#ifndef YYSTACKDEPTH
#define YYSTACKDEPTH 100
#endif
#define sqlite3ParserARG_SDECL Parse *pParse;
#define sqlite3ParserARG_PDECL ,Parse *pParse
#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
#define sqlite3ParserARG_STORE yypParser->pParse = pParse
#define YYFALLBACK 1
#define YYNSTATE             436
#define YYNRULE              328
#define YY_MAX_SHIFT         435
#define YY_MIN_SHIFTREDUCE   649
#define YY_MAX_SHIFTREDUCE   976
#define YY_MIN_REDUCE        977
#define YY_MAX_REDUCE        1304
#define YY_ERROR_ACTION      1305
#define YY_ACCEPT_ACTION     1306
#define YY_NO_ACTION         1307


/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor = { 0 };

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.







|
<
<
<
<
|
|
<
<
<
<
<
<
>
|
>
|
|

|
|
|
|
|
<
<
|

>
|
>
|
|
|
|
<
|
>
>
>
>
>
>
>
|
|


|


















>
>
>
>

|






|
>
|
|
>
|
|
|
<
|
<
|
<
|
<
|
|



















>







127385
127386
127387
127388
127389
127390
127391
127392




127393
127394






127395
127396
127397
127398
127399
127400
127401
127402
127403
127404
127405


127406
127407
127408
127409
127410
127411
127412
127413
127414

127415
127416
127417
127418
127419
127420
127421
127422
127423
127424
127425
127426
127427
127428
127429
127430
127431
127432
127433
127434
127435
127436
127437
127438
127439
127440
127441
127442
127443
127444
127445
127446
127447
127448
127449
127450
127451
127452
127453
127454
127455
127456
127457
127458
127459
127460
127461
127462
127463
127464
127465

127466

127467

127468

127469
127470
127471
127472
127473
127474
127475
127476
127477
127478
127479
127480
127481
127482
127483
127484
127485
127486
127487
127488
127489
127490
127491
127492
127493
127494
127495
127496
127497
    ){
      sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"",
                         pIdToken->n, pIdToken->z);
    }
    sqlite3ExprListSetName(pParse, p, pIdToken, 1);
    return p;
  }
/**************** End of %include directives **********************************/




/* These constants specify the various numeric values for terminal symbols
** in a format understandable to "makeheaders".  This section is blank unless






** "lemon" is run with the "-m" command-line option.
***************** Begin makeheaders token definitions *************************/
/**************** End makeheaders token definitions ***************************/

/* The next sections is a series of control #defines.
** various aspects of the generated parser.
**    YYCODETYPE         is the data type used to store the integer codes
**                       that represent terminal and non-terminal symbols.
**                       "unsigned char" is used if there are fewer than
**                       256 symbols.  Larger types otherwise.
**    YYNOCODE           is a number of type YYCODETYPE that is not used for


**                       any terminal or nonterminal symbol.
**    YYFALLBACK         If defined, this indicates that one or more tokens
**                       (also known as: "terminal symbols") have fall-back
**                       values which should be used if the original symbol
**                       would not parse.  This permits keywords to sometimes
**                       be used as identifiers, for example.
**    YYACTIONTYPE       is the data type used for "action codes" - numbers
**                       that indicate what to do in response to the next
**                       token.

**    sqlite3ParserTOKENTYPE     is the data type used for minor type for terminal
**                       symbols.  Background: A "minor type" is a semantic
**                       value associated with a terminal or non-terminal
**                       symbols.  For example, for an "ID" terminal symbol,
**                       the minor type might be the name of the identifier.
**                       Each non-terminal can have a different minor type.
**                       Terminal symbols all have the same minor type, though.
**                       This macros defines the minor type for terminal 
**                       symbols.
**    YYMINORTYPE        is the data type used for all minor types.
**                       This is typically a union of many types, one of
**                       which is sqlite3ParserTOKENTYPE.  The entry in the union
**                       for terminal symbols is called "yy0".
**    YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    sqlite3ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3ParserARG_STORE     Code to store %extra_argument into yypParser
**    sqlite3ParserARG_FETCH     Code to extract %extra_argument from yypParser
**    YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    YYNSTATE           the combined number of states.
**    YYNRULE            the number of rules in the grammar
**    YY_MAX_SHIFT       Maximum value for shift actions
**    YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    YY_MIN_REDUCE      Maximum value for reduce actions
**    YY_ERROR_ACTION    The yy_action[] code for syntax error
**    YY_ACCEPT_ACTION   The yy_action[] code for accept
**    YY_NO_ACTION       The yy_action[] code for no-op
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define YYCODETYPE unsigned char
#define YYNOCODE 253
#define YYACTIONTYPE unsigned short int
#define YYWILDCARD 70
#define sqlite3ParserTOKENTYPE Token
typedef union {
  int yyinit;
  sqlite3ParserTOKENTYPE yy0;
  int yy4;
  struct TrigEvent yy90;
  ExprSpan yy118;
  TriggerStep* yy203;
  struct {int value; int mask;} yy215;
  SrcList* yy259;
  struct LimitVal yy292;
  Expr* yy314;

  ExprList* yy322;

  struct LikeOp yy342;

  IdList* yy384;

  Select* yy387;
  With* yy451;
} YYMINORTYPE;
#ifndef YYSTACKDEPTH
#define YYSTACKDEPTH 100
#endif
#define sqlite3ParserARG_SDECL Parse *pParse;
#define sqlite3ParserARG_PDECL ,Parse *pParse
#define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse
#define sqlite3ParserARG_STORE yypParser->pParse = pParse
#define YYFALLBACK 1
#define YYNSTATE             436
#define YYNRULE              328
#define YY_MAX_SHIFT         435
#define YY_MIN_SHIFTREDUCE   649
#define YY_MAX_SHIFTREDUCE   976
#define YY_MIN_REDUCE        977
#define YY_MAX_REDUCE        1304
#define YY_ERROR_ACTION      1305
#define YY_ACCEPT_ACTION     1306
#define YY_NO_ACTION         1307
/************* End control #defines *******************************************/

/* The yyzerominor constant is used to initialize instances of
** YYMINORTYPE objects to zero. */
static const YYMINORTYPE yyzerominor = { 0 };

/* Define the yytestcase() macro to be a no-op if is not already defined
** otherwise.
126301
126302
126303
126304
126305
126306
126307
126308

126309
126310
126311
126312
126313
126314
126315
126316
126317
126318
126319
126320
126321
126322
126323
126324
126325
126326
126327
126328
126329
126330
126331
126332
126333
126334
126335
126336
126337
126338
126339
126340
126341
126342
126343
126344
126345
126346
126347
126348
126349
126350
126351
126352
126353
126354
126355
126356
126357
126358
126359
126360
126361
126362
126363
126364
126365
126366
126367
126368
126369
126370
126371
126372
126373
126374
126375
126376
126377
126378
126379
126380
126381
126382
126383
126384
126385
126386
126387
126388
126389
126390
126391
126392
126393
126394
126395
126396
126397
126398
126399
126400
126401
126402
126403
126404
126405
126406
126407
126408
126409
126410
126411
126412
126413
126414
126415
126416
126417
126418
126419
126420
126421
126422
126423
126424
126425
126426
126427
126428
126429
126430
126431
126432
126433
126434
126435
126436
126437
126438
126439
126440
126441
126442
126443
126444
126445
126446
126447
126448
126449
126450
126451
126452
126453
126454
126455
126456
126457
126458
126459
126460
126461
126462
126463
126464
126465
126466
126467
126468
126469
126470
126471
126472
126473
126474
126475
126476
126477
126478
126479
126480
126481
126482
126483
126484
126485
126486
126487
126488
126489
126490
126491
126492
126493
126494
126495
126496
126497
126498
126499
126500
126501
126502
126503
126504
126505
126506
126507
126508
126509
126510
126511
126512
126513
126514
126515
126516
126517
126518
126519
126520
126521
126522
126523
126524
126525
126526
126527
126528
126529
126530
126531
126532
126533
126534
126535
126536
126537
126538
126539
126540
126541
126542
126543
126544
126545
126546
126547
126548
126549
126550
126551
126552
126553
126554
126555
126556
126557
126558
126559
126560
126561
126562
126563
126564
126565
126566
126567
126568
126569
126570
126571
126572
126573
126574
126575
126576
126577
126578
126579
126580
126581
126582
126583
126584
126585
126586
126587
126588
126589
126590
126591
126592
126593
126594
126595
126596
126597
126598
126599
126600
126601
126602
126603
126604
126605
126606
126607
126608
126609
126610
126611
126612
126613
126614
126615
126616
126617
126618
126619
126620
126621
126622
126623
126624
126625
126626
126627
126628
126629
126630
126631
126632
126633
126634
126635
126636
126637
126638
126639
126640
126641
126642
126643
126644
126645
126646
126647
126648
126649
126650
126651
126652
126653
126654
126655
126656
126657
126658
126659
126660
126661
126662
126663
126664
126665
126666
126667
126668
126669
126670
126671
126672
126673
126674
126675
126676
126677
126678
126679
126680
126681
126682
126683
126684
126685
126686
126687
126688
126689
126690
126691
126692
126693
126694
126695
126696
126697
126698
126699
126700
126701
126702
126703
126704
126705
126706
126707
126708
126709
**  yy_lookahead[]     A table containing the lookahead for each entry in
**                     yy_action.  Used to detect hash collisions.
**  yy_shift_ofst[]    For each state, the offset into yy_action for
**                     shifting terminals.
**  yy_reduce_ofst[]   For each state, the offset into yy_action for
**                     shifting non-terminals after a reduce.
**  yy_default[]       Default action for each state.
*/

#define YY_ACTTAB_COUNT (1501)
static const YYACTIONTYPE yy_action[] = {
 /*     0 */   311, 1306,  145,  651,    2,  192,  652,  338,  780,   92,
 /*    10 */    92,   92,   92,   85,   90,   90,   90,   90,   89,   89,
 /*    20 */    88,   88,   88,   87,  335,   88,   88,   88,   87,  335,
 /*    30 */   327,  856,  856,   92,   92,   92,   92,  776,   90,   90,
 /*    40 */    90,   90,   89,   89,   88,   88,   88,   87,  335,   86,
 /*    50 */    83,  166,   93,   94,   84,  868,  871,  860,  860,   91,
 /*    60 */    91,   92,   92,   92,   92,  335,   90,   90,   90,   90,
 /*    70 */    89,   89,   88,   88,   88,   87,  335,  311,  780,   90,
 /*    80 */    90,   90,   90,   89,   89,   88,   88,   88,   87,  335,
 /*    90 */   123,  808,  689,  689,  689,  689,  112,  230,  430,  257,
 /*   100 */   809,  698,  430,   86,   83,  166,  324,   55,  856,  856,
 /*   110 */   201,  158,  276,  387,  271,  386,  188,  689,  689,  828,
 /*   120 */   833,   49,  944,  269,  833,   49,  123,   87,  335,   93,
 /*   130 */    94,   84,  868,  871,  860,  860,   91,   91,   92,   92,
 /*   140 */    92,   92,  342,   90,   90,   90,   90,   89,   89,   88,
 /*   150 */    88,   88,   87,  335,  311,  328,  333,  332,  701,  408,
 /*   160 */   394,   69,  690,  691,  690,  691,  715,  910,  251,  354,
 /*   170 */   250,  698,  704,  430,  908,  430,  909,   89,   89,   88,
 /*   180 */    88,   88,   87,  335,  391,  856,  856,  690,  691,  183,
 /*   190 */    95,  340,  384,  381,  380,  833,   31,  833,   49,  912,
 /*   200 */   912,  333,  332,  379,  123,  311,   93,   94,   84,  868,
 /*   210 */   871,  860,  860,   91,   91,   92,   92,   92,   92,  114,
 /*   220 */    90,   90,   90,   90,   89,   89,   88,   88,   88,   87,
 /*   230 */   335,  430,  408,  399,  435,  657,  856,  856,  346,   57,
 /*   240 */   232,  828,  109,   20,  912,  912,  231,  393,  937,  760,
 /*   250 */    97,  751,  752,  833,   49,  708,  708,   93,   94,   84,
 /*   260 */   868,  871,  860,  860,   91,   91,   92,   92,   92,   92,
 /*   270 */   707,   90,   90,   90,   90,   89,   89,   88,   88,   88,
 /*   280 */    87,  335,  311,  114,   22,  706,  688,   58,  408,  390,
 /*   290 */   251,  349,  240,  749,  752,  689,  689,  847,  685,  115,
 /*   300 */    21,  231,  393,  689,  689,  697,  183,  355,  430,  384,
 /*   310 */   381,  380,  192,  856,  856,  780,  123,  160,  159,  223,
 /*   320 */   379,  738,   25,  315,  362,  841,  143,  689,  689,  835,
 /*   330 */   833,   48,  339,  937,   93,   94,   84,  868,  871,  860,
 /*   340 */   860,   91,   91,   92,   92,   92,   92,  914,   90,   90,
 /*   350 */    90,   90,   89,   89,   88,   88,   88,   87,  335,  311,
 /*   360 */   840,  840,  840,  266,  430,  690,  691,  778,  114, 1300,
 /*   370 */  1300,  430,    1,  690,  691,  697,  688,  689,  689,  689,
 /*   380 */   689,  689,  689,  287,  298,  780,  833,   10,  686,  115,
 /*   390 */   856,  856,  355,  833,   10,  828,  366,  690,  691,  363,
 /*   400 */   321,   76,  123,   74,   23,  737,  807,  323,  356,  353,
 /*   410 */   847,   93,   94,   84,  868,  871,  860,  860,   91,   91,
 /*   420 */    92,   92,   92,   92,  940,   90,   90,   90,   90,   89,
 /*   430 */    89,   88,   88,   88,   87,  335,  311,  806,  841,  429,
 /*   440 */   713,  941,  835,  430,  251,  354,  250,  690,  691,  690,
 /*   450 */   691,  690,  691,   86,   83,  166,   24,  942,  151,  753,
 /*   460 */   285,  907,  403,  907,  164,  833,   10,  856,  856,  965,
 /*   470 */   306,  754,  679,  840,  840,  840,  795,  216,  794,  222,
 /*   480 */   906,  344,  906,  904,   86,   83,  166,  286,   93,   94,
 /*   490 */    84,  868,  871,  860,  860,   91,   91,   92,   92,   92,
 /*   500 */    92,  430,   90,   90,   90,   90,   89,   89,   88,   88,
 /*   510 */    88,   87,  335,  311,  430,  724,  352,  705,  427,  699,
 /*   520 */   700,  376,  210,  833,   49,  793,  397,  857,  857,  940,
 /*   530 */   213,  762,  727,  334,  699,  700,  833,   10,   86,   83,
 /*   540 */   166,  345,  396,  902,  856,  856,  941,  385,  833,    9,
 /*   550 */   406,  869,  872,  187,  890,  728,  347,  398,  404,  977,
 /*   560 */   652,  338,  942,  954,  413,   93,   94,   84,  868,  871,
 /*   570 */   860,  860,   91,   91,   92,   92,   92,   92,  861,   90,
 /*   580 */    90,   90,   90,   89,   89,   88,   88,   88,   87,  335,
 /*   590 */   311, 1219,  114,  430,  834,  430,    5,  165,  192,  688,
 /*   600 */   832,  780,  430,  723,  430,  234,  325,  189,  163,  316,
 /*   610 */   356,  955,  115,  235,  269,  833,   35,  833,   36,  747,
 /*   620 */   720,  856,  856,  793,  833,   12,  833,   27,  745,  174,
 /*   630 */   968, 1290,  968, 1291, 1290,  310, 1291,  693,  317,  245,
 /*   640 */   264,  311,   93,   94,   84,  868,  871,  860,  860,   91,
 /*   650 */    91,   92,   92,   92,   92,  832,   90,   90,   90,   90,
 /*   660 */    89,   89,   88,   88,   88,   87,  335,  430,  320,  213,
 /*   670 */   762,  780,  856,  856,  920,  920,  369,  257,  966,  220,
 /*   680 */   966,  396,  663,  664,  665,  242,  259,  244,  262,  833,
 /*   690 */    37,  650,    2,   93,   94,   84,  868,  871,  860,  860,
 /*   700 */    91,   91,   92,   92,   92,   92,  430,   90,   90,   90,
 /*   710 */    90,   89,   89,   88,   88,   88,   87,  335,  311,  430,
 /*   720 */   239,  430,  917,  368,  430,  238,  916,  793,  833,   38,
 /*   730 */   430,  825,  430,   66,  430,  392,  430,  766,  766,  430,
 /*   740 */   367,  833,   39,  833,   28,  430,  833,   29,   68,  856,
 /*   750 */   856,  900,  833,   40,  833,   41,  833,   42,  833,   11,
 /*   760 */    72,  833,   43,  243,  305,  970,  114,  833,   99,  961,
 /*   770 */    93,   94,   84,  868,  871,  860,  860,   91,   91,   92,
 /*   780 */    92,   92,   92,  430,   90,   90,   90,   90,   89,   89,
 /*   790 */    88,   88,   88,   87,  335,  311,  430,  361,  430,  165,
 /*   800 */   147,  430,  186,  185,  184,  833,   44,  430,  289,  430,
 /*   810 */   246,  430,  971,  430,  212,  163,  430,  357,  833,   45,
 /*   820 */   833,   32,  932,  833,   46,  793,  856,  856,  718,  833,
 /*   830 */    47,  833,   33,  833,  117,  833,  118,   75,  833,  119,
 /*   840 */   288,  305,  967,  214,  935,  322,  311,   93,   94,   84,
 /*   850 */   868,  871,  860,  860,   91,   91,   92,   92,   92,   92,
 /*   860 */   430,   90,   90,   90,   90,   89,   89,   88,   88,   88,
 /*   870 */    87,  335,  430,  832,  426,  317,  288,  856,  856,  114,
 /*   880 */   763,  257,  833,   53,  930,  219,  364,  257,  257,  971,
 /*   890 */   361,  396,  257,  257,  833,   34,  257,  311,   93,   94,
 /*   900 */    84,  868,  871,  860,  860,   91,   91,   92,   92,   92,
 /*   910 */    92,  430,   90,   90,   90,   90,   89,   89,   88,   88,
 /*   920 */    88,   87,  335,  430,  217,  318,  124,  253,  856,  856,
 /*   930 */   218,  943,  257,  833,  100,  898,  759,  774,  361,  755,
 /*   940 */   423,  329,  758, 1017,  289,  833,   50,  682,  311,   93,
 /*   950 */    82,   84,  868,  871,  860,  860,   91,   91,   92,   92,
 /*   960 */    92,   92,  430,   90,   90,   90,   90,   89,   89,   88,
 /*   970 */    88,   88,   87,  335,  430,  256,  419,  114,  249,  856,
 /*   980 */   856,  331,  114,  400,  833,  101,  359,  187, 1064,  726,
 /*   990 */   725,  739,  401,  416,  420,  360,  833,  102,  424,  311,
 /*  1000 */   258,   94,   84,  868,  871,  860,  860,   91,   91,   92,
 /*  1010 */    92,   92,   92,  430,   90,   90,   90,   90,   89,   89,
 /*  1020 */    88,   88,   88,   87,  335,  430,  221,  261,  114,  114,
 /*  1030 */   856,  856,  808,  114,  156,  833,   98,  772,  733,  734,
 /*  1040 */   275,  809,  771,  316,  263,  265,  960,  833,  116,  307,
 /*  1050 */   741,  274,  722,   84,  868,  871,  860,  860,   91,   91,
 /*  1060 */    92,   92,   92,   92,  430,   90,   90,   90,   90,   89,
 /*  1070 */    89,   88,   88,   88,   87,  335,   80,  425,  830,    3,
 /*  1080 */  1214,  191,  430,  721,  336,  336,  833,  113,  252,   80,
 /*  1090 */   425,   68,    3,  913,  913,  428,  270,  336,  336,  430,
 /*  1100 */   377,  784,  430,  197,  833,  106,  430,  716,  428,  430,
 /*  1110 */   267,  430,  897,   68,  414,  430,  769,  409,  430,   71,
 /*  1120 */   430,  833,  105,  123,  833,  103,  847,  414,  833,   49,
 /*  1130 */   843,  833,  104,  833,   52,  800,  123,  833,   54,  847,
 /*  1140 */   833,   51,  833,   26,  831,  802,   77,   78,  191,  389,
 /*  1150 */   430,  372,  114,   79,  432,  431,  911,  911,  835,   77,
 /*  1160 */    78,  779,  893,  408,  410,  197,   79,  432,  431,  791,
 /*  1170 */   226,  835,  833,   30,  772,   80,  425,  716,    3,  771,
 /*  1180 */   411,  412,  897,  336,  336,  290,  291,  839,  703,  840,
 /*  1190 */   840,  840,  842,   19,  428,  695,  684,  672,  111,  671,
 /*  1200 */   843,  673,  840,  840,  840,  842,   19,  207,  661,  278,
 /*  1210 */   148,  304,  280,  414,  282,    6,  822,  348,  248,  241,
 /*  1220 */   358,  934,  720,   80,  425,  847,    3,  161,  382,  273,
 /*  1230 */   284,  336,  336,  415,  296,  958,  895,  894,  157,  674,
 /*  1240 */   107,  194,  428,  948,  135,   77,   78,  777,  953,  951,
 /*  1250 */    56,  319,   79,  432,  431,  121,   66,  835,   59,  128,
 /*  1260 */   146,  414,  350,  130,  351,  819,  131,  132,  133,  375,
 /*  1270 */   173,  149,  138,  847,  936,  365,  178,   70,  425,  827,
 /*  1280 */     3,  889,   62,  371,  915,  336,  336,  792,  840,  840,
 /*  1290 */   840,  842,   19,   77,   78,  208,  428,  144,  179,  373,
 /*  1300 */    79,  432,  431,  255,  180,  835,  260,  675,  181,  308,
 /*  1310 */   388,  744,  326,  743,  742,  414,  731,  718,  712,  402,
 /*  1320 */   309,  711,  788,   65,  277,  272,  789,  847,  730,  710,
 /*  1330 */   709,  279,  193,  787,  281,  876,  840,  840,  840,  842,
 /*  1340 */    19,  786,  283,   73,  418,  330,  422,   77,   78,  227,
 /*  1350 */    96,  407,   67,  405,   79,  432,  431,  292,  228,  835,
 /*  1360 */   215,  202,  229,  293,  767,  303,  302,  301,  204,  299,
 /*  1370 */   294,  295,  676,    7,  681,  433,  669,  206,  110,  224,
 /*  1380 */   203,  205,  434,  667,  666,  658,  120,  168,  656,  237,
 /*  1390 */   840,  840,  840,  842,   19,  337,  155,  233,  236,  341,
 /*  1400 */   167,  905,  108,  313,  903,  826,  314,  125,  126,  127,
 /*  1410 */   129,  170,  247,  756,  172,  928,  134,  136,  171,   60,
 /*  1420 */    61,  123,  169,  137,  175,  933,  176,  927,    8,   13,
 /*  1430 */   177,  254,  191,  918,  139,  370,  924,  140,  678,  150,
 /*  1440 */   374,  274,  182,  378,  141,  122,   63,   14,  383,  729,
 /*  1450 */   268,   15,   64,  225,  846,  845,  874,   16,  765,  770,
 /*  1460 */     4,  162,  209,  395,  211,  142,  878,  796,  801,  312,
 /*  1470 */   190,   71,   68,  875,  873,  939,  199,  938,   17,  195,
 /*  1480 */    18,  196,  417,  975,  152,  653,  976,  198,  153,  421,
 /*  1490 */   877,  154,  200,  844,  696,   81,  343,  297, 1019, 1018,
 /*  1500 */   300,
};
static const YYCODETYPE yy_lookahead[] = {
 /*     0 */    19,  144,  145,  146,  147,   24,    1,    2,   27,   80,
 /*    10 */    81,   82,   83,   84,   85,   86,   87,   88,   89,   90,
 /*    20 */    91,   92,   93,   94,   95,   91,   92,   93,   94,   95,
 /*    30 */    19,   50,   51,   80,   81,   82,   83,  212,   85,   86,
 /*    40 */    87,   88,   89,   90,   91,   92,   93,   94,   95,  224,
 /*    50 */   225,  226,   71,   72,   73,   74,   75,   76,   77,   78,
 /*    60 */    79,   80,   81,   82,   83,   95,   85,   86,   87,   88,
 /*    70 */    89,   90,   91,   92,   93,   94,   95,   19,   97,   85,
 /*    80 */    86,   87,   88,   89,   90,   91,   92,   93,   94,   95,
 /*    90 */    66,   33,   27,   28,   27,   28,   22,  201,  152,  152,
 /*   100 */    42,   27,  152,  224,  225,  226,   95,  211,   50,   51,
 /*   110 */    99,  100,  101,  102,  103,  104,  105,   27,   28,   59,
 /*   120 */   174,  175,  243,  112,  174,  175,   66,   94,   95,   71,
 /*   130 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
 /*   140 */    82,   83,  195,   85,   86,   87,   88,   89,   90,   91,
 /*   150 */    92,   93,   94,   95,   19,  209,   89,   90,  173,  209,
 /*   160 */   210,   26,   97,   98,   97,   98,  181,  100,  108,  109,
 /*   170 */   110,   97,  174,  152,  107,  152,  109,   89,   90,   91,
 /*   180 */    92,   93,   94,   95,  163,   50,   51,   97,   98,   99,
 /*   190 */    55,  244,  102,  103,  104,  174,  175,  174,  175,  132,
 /*   200 */   133,   89,   90,  113,   66,   19,   71,   72,   73,   74,
 /*   210 */    75,   76,   77,   78,   79,   80,   81,   82,   83,  198,
 /*   220 */    85,   86,   87,   88,   89,   90,   91,   92,   93,   94,
 /*   230 */    95,  152,  209,  210,  148,  149,   50,   51,  100,   53,
 /*   240 */   154,   59,  156,   22,  132,  133,  119,  120,  163,  163,
 /*   250 */    22,  192,  193,  174,  175,   27,   28,   71,   72,   73,
 /*   260 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 /*   270 */   174,   85,   86,   87,   88,   89,   90,   91,   92,   93,
 /*   280 */    94,   95,   19,  198,  198,  174,  152,   24,  209,  210,
 /*   290 */   108,  109,  110,  192,  193,   27,   28,   69,  164,  165,
 /*   300 */    79,  119,  120,   27,   28,   27,   99,  222,  152,  102,
 /*   310 */   103,  104,   24,   50,   51,   27,   66,   89,   90,  185,
 /*   320 */   113,  187,   22,  157,  239,   97,   58,   27,   28,  101,
 /*   330 */   174,  175,  246,  163,   71,   72,   73,   74,   75,   76,
 /*   340 */    77,   78,   79,   80,   81,   82,   83,   11,   85,   86,
 /*   350 */    87,   88,   89,   90,   91,   92,   93,   94,   95,   19,
 /*   360 */   132,  133,  134,   23,  152,   97,   98,   91,  198,  119,
 /*   370 */   120,  152,   22,   97,   98,   97,  152,   27,   28,   27,
 /*   380 */    28,   27,   28,  227,  160,   97,  174,  175,  164,  165,
 /*   390 */    50,   51,  222,  174,  175,   59,  230,   97,   98,  233,
 /*   400 */   188,  137,   66,  139,  234,  187,  177,  188,  152,  239,
 /*   410 */    69,   71,   72,   73,   74,   75,   76,   77,   78,   79,
 /*   420 */    80,   81,   82,   83,   12,   85,   86,   87,   88,   89,
 /*   430 */    90,   91,   92,   93,   94,   95,   19,  177,   97,  152,
 /*   440 */    23,   29,  101,  152,  108,  109,  110,   97,   98,   97,
 /*   450 */    98,   97,   98,  224,  225,  226,   22,   45,   24,   47,
 /*   460 */   152,  152,  152,  152,  152,  174,  175,   50,   51,  249,
 /*   470 */   250,   59,   21,  132,  133,  134,  124,  221,  124,  188,
 /*   480 */   171,  172,  171,  172,  224,  225,  226,  152,   71,   72,
 /*   490 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
 /*   500 */    83,  152,   85,   86,   87,   88,   89,   90,   91,   92,
 /*   510 */    93,   94,   95,   19,  152,  183,   65,   23,  170,  171,
 /*   520 */   172,   19,   23,  174,  175,   26,  152,   50,   51,   12,
 /*   530 */   196,  197,   37,  170,  171,  172,  174,  175,  224,  225,
 /*   540 */   226,  232,  208,  232,   50,   51,   29,   52,  174,  175,
 /*   550 */   188,   74,   75,   51,  103,   60,  222,  163,  209,    0,
 /*   560 */     1,    2,   45,  152,   47,   71,   72,   73,   74,   75,
 /*   570 */    76,   77,   78,   79,   80,   81,   82,   83,  101,   85,
 /*   580 */    86,   87,   88,   89,   90,   91,   92,   93,   94,   95,
 /*   590 */    19,  140,  198,  152,   23,  152,   22,   98,   24,  152,
 /*   600 */   152,   27,  152,  183,  152,  152,  111,  213,  214,  107,
 /*   610 */   152,  164,  165,  152,  112,  174,  175,  174,  175,  181,
 /*   620 */   182,   50,   51,  124,  174,  175,  174,  175,  190,   26,
 /*   630 */    22,   23,   22,   23,   26,  166,   26,  168,  169,   16,
 /*   640 */    16,   19,   71,   72,   73,   74,   75,   76,   77,   78,
 /*   650 */    79,   80,   81,   82,   83,  152,   85,   86,   87,   88,
 /*   660 */    89,   90,   91,   92,   93,   94,   95,  152,  220,  196,
 /*   670 */   197,   97,   50,   51,  108,  109,  110,  152,   70,  221,
 /*   680 */    70,  208,    7,    8,    9,   62,   62,   64,   64,  174,
 /*   690 */   175,  146,  147,   71,   72,   73,   74,   75,   76,   77,
 /*   700 */    78,   79,   80,   81,   82,   83,  152,   85,   86,   87,
 /*   710 */    88,   89,   90,   91,   92,   93,   94,   95,   19,  152,
 /*   720 */   195,  152,   31,  220,  152,  152,   35,   26,  174,  175,
 /*   730 */   152,  163,  152,  130,  152,  115,  152,  117,  118,  152,
 /*   740 */    49,  174,  175,  174,  175,  152,  174,  175,   26,   50,
 /*   750 */    51,  152,  174,  175,  174,  175,  174,  175,  174,  175,
 /*   760 */   138,  174,  175,  140,   22,   23,  198,  174,  175,  152,
 /*   770 */    71,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*   780 */    81,   82,   83,  152,   85,   86,   87,   88,   89,   90,
 /*   790 */    91,   92,   93,   94,   95,   19,  152,  152,  152,   98,
 /*   800 */    24,  152,  108,  109,  110,  174,  175,  152,  152,  152,
 /*   810 */   152,  152,   70,  152,  213,  214,  152,  152,  174,  175,
 /*   820 */   174,  175,  152,  174,  175,  124,   50,   51,  106,  174,
 /*   830 */   175,  174,  175,  174,  175,  174,  175,  138,  174,  175,
 /*   840 */   152,   22,   23,   22,  163,  189,   19,   71,   72,   73,
 /*   850 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 /*   860 */   152,   85,   86,   87,   88,   89,   90,   91,   92,   93,
 /*   870 */    94,   95,  152,  152,  168,  169,  152,   50,   51,  198,
 /*   880 */   197,  152,  174,  175,  152,  240,  152,  152,  152,   70,
 /*   890 */   152,  208,  152,  152,  174,  175,  152,   19,   71,   72,
 /*   900 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
 /*   910 */    83,  152,   85,   86,   87,   88,   89,   90,   91,   92,
 /*   920 */    93,   94,   95,  152,  195,  247,  248,  152,   50,   51,
 /*   930 */   195,  195,  152,  174,  175,  195,  195,   26,  152,  195,
 /*   940 */   252,  220,  163,  122,  152,  174,  175,  163,   19,   71,
 /*   950 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
 /*   960 */    82,   83,  152,   85,   86,   87,   88,   89,   90,   91,
 /*   970 */    92,   93,   94,   95,  152,  195,  252,  198,  240,   50,
 /*   980 */    51,  189,  198,   19,  174,  175,   19,   51,   23,  100,
 /*   990 */   101,   26,   28,  163,  163,   28,  174,  175,  163,   19,
 /*  1000 */   152,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*  1010 */    81,   82,   83,  152,   85,   86,   87,   88,   89,   90,
 /*  1020 */    91,   92,   93,   94,   95,  152,  240,  152,  198,  198,
 /*  1030 */    50,   51,   33,  198,  123,  174,  175,  116,    7,    8,
 /*  1040 */   101,   42,  121,  107,  152,  152,   23,  174,  175,   26,
 /*  1050 */   152,  112,  183,   73,   74,   75,   76,   77,   78,   79,
 /*  1060 */    80,   81,   82,   83,  152,   85,   86,   87,   88,   89,
 /*  1070 */    90,   91,   92,   93,   94,   95,   19,   20,   23,   22,
 /*  1080 */    23,   26,  152,  152,   27,   28,  174,  175,   23,   19,
 /*  1090 */    20,   26,   22,  132,  133,   38,  152,   27,   28,  152,
 /*  1100 */    23,  215,  152,   26,  174,  175,  152,   27,   38,  152,
 /*  1110 */    23,  152,   27,   26,   57,  152,   23,  163,  152,   26,
 /*  1120 */   152,  174,  175,   66,  174,  175,   69,   57,  174,  175,
 /*  1130 */    27,  174,  175,  174,  175,  152,   66,  174,  175,   69,
 /*  1140 */   174,  175,  174,  175,  152,   23,   89,   90,   26,   91,
 /*  1150 */   152,  236,  198,   96,   97,   98,  132,  133,  101,   89,
 /*  1160 */    90,  152,   23,  209,  210,   26,   96,   97,   98,  152,
 /*  1170 */   212,  101,  174,  175,  116,   19,   20,   97,   22,  121,
 /*  1180 */   152,  193,   97,   27,   28,  152,  152,  152,  152,  132,
 /*  1190 */   133,  134,  135,  136,   38,   23,  152,  152,   26,  152,
 /*  1200 */    97,  152,  132,  133,  134,  135,  136,  235,  152,  212,
 /*  1210 */   199,  150,  212,   57,  212,  200,  203,  216,  241,  216,
 /*  1220 */   241,  203,  182,   19,   20,   69,   22,  186,  178,  177,
 /*  1230 */   216,   27,   28,  229,  202,   39,  177,  177,  200,  155,
 /*  1240 */   245,  122,   38,   41,   22,   89,   90,   91,  159,  159,
 /*  1250 */   242,  159,   96,   97,   98,   71,  130,  101,  242,  191,
 /*  1260 */   223,   57,   18,  194,  159,  203,  194,  194,  194,   18,
 /*  1270 */   158,  223,  191,   69,  203,  159,  158,   19,   20,  191,
 /*  1280 */    22,  203,  137,   46,  238,   27,   28,  159,  132,  133,
 /*  1290 */   134,  135,  136,   89,   90,  159,   38,   22,  158,  179,
 /*  1300 */    96,   97,   98,  237,  158,  101,  159,  159,  158,  179,
 /*  1310 */   107,  176,   48,  176,  176,   57,  184,  106,  176,  125,
 /*  1320 */   179,  178,  218,  107,  217,  176,  218,   69,  184,  176,
 /*  1330 */   176,  217,  159,  218,  217,  159,  132,  133,  134,  135,
 /*  1340 */   136,  218,  217,  137,  179,   95,  179,   89,   90,  228,
 /*  1350 */   129,  126,  128,  127,   96,   97,   98,  206,  231,  101,
 /*  1360 */     5,   25,  231,  205,  207,   10,   11,   12,   13,   14,
 /*  1370 */   204,  203,   17,   26,  162,  161,   13,    6,  180,  180,
 /*  1380 */   153,  153,  151,  151,  151,  151,  167,   32,    4,   34,
 /*  1390 */   132,  133,  134,  135,  136,    3,   22,  142,   43,   68,
 /*  1400 */    15,   23,   16,  251,   23,  120,  251,  248,  131,  111,
 /*  1410 */   123,   56,   16,   20,  125,    1,  123,  131,   63,   79,
 /*  1420 */    79,   66,   67,  111,   36,   28,  122,    1,    5,   22,
 /*  1430 */   107,  140,   26,   54,   54,   44,   61,  107,   20,   24,
 /*  1440 */    19,  112,  105,   53,   22,   40,   22,   22,   53,   30,
 /*  1450 */    23,   22,   22,   53,   23,   23,   23,   22,  116,   23,
 /*  1460 */    22,  122,   23,   26,   23,   22,   11,  124,   28,  114,
 /*  1470 */    36,   26,   26,   23,   23,   23,  122,   23,   36,   26,
 /*  1480 */    36,   22,   24,   23,   22,    1,   23,   26,   22,   24,
 /*  1490 */    23,   22,  122,   23,   23,   22,  141,   23,  122,  122,
 /*  1500 */    15,
};
#define YY_SHIFT_USE_DFLT (-72)
#define YY_SHIFT_COUNT (435)
#define YY_SHIFT_MIN   (-71)
#define YY_SHIFT_MAX   (1485)
static const short yy_shift_ofst[] = {
 /*     0 */     5, 1057, 1355, 1070, 1204, 1204, 1204,   90,   60,  -19,
 /*    10 */    58,   58,  186, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
 /*    20 */    67,   67,  182,  336,   65,  250,  135,  263,  340,  417,
 /*    30 */   494,  571,  622,  699,  776,  827,  827,  827,  827,  827,
 /*    40 */   827,  827,  827,  827,  827,  827,  827,  827,  827,  827,
 /*    50 */   878,  827,  929,  980,  980, 1156, 1204, 1204, 1204, 1204,
 /*    60 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
 /*    70 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
 /*    80 */  1204, 1204, 1204, 1204, 1258, 1204, 1204, 1204, 1204, 1204,
 /*    90 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,  -71,  -47,
 /*   100 */   -47,  -47,  -47,  -47,   -6,   88,  -66,   65,   65,  451,
 /*   110 */   502,  112,  112,   33,  127,  278,  -30,  -72,  -72,  -72,
 /*   120 */    11,  412,  412,  268,  608,  610,   65,   65,   65,   65,
 /*   130 */    65,   65,   65,   65,   65,   65,   65,   65,   65,   65,
 /*   140 */    65,   65,   65,   65,   65,  559,  138,  278,  127,   24,
 /*   150 */    24,   24,   24,   24,   24,  -72,  -72,  -72,  228,  341,
 /*   160 */   341,  207,  276,  300,  352,  354,  350,   65,   65,   65,
 /*   170 */    65,   65,   65,   65,   65,   65,   65,   65,   65,   65,
 /*   180 */    65,   65,   65,   65,  495,  495,  495,   65,   65,  499,
 /*   190 */    65,   65,   65,  574,   65,   65,  517,   65,   65,   65,
 /*   200 */    65,   65,   65,   65,   65,   65,   65,  566,  691,  288,
 /*   210 */   288,  288,  701,  620, 1058,  675,  603,  964,  964,  967,
 /*   220 */   603,  967,  722,  965,  936,  999,  964,  264,  999,  999,
 /*   230 */   911,  921,  434, 1196, 1119, 1119, 1202, 1202, 1119, 1222,
 /*   240 */  1184, 1126, 1244, 1244, 1244, 1244, 1119, 1251, 1126, 1222,
 /*   250 */  1184, 1184, 1126, 1119, 1251, 1145, 1237, 1119, 1119, 1251,
 /*   260 */  1275, 1119, 1251, 1119, 1251, 1275, 1203, 1203, 1203, 1264,
 /*   270 */  1275, 1203, 1211, 1203, 1264, 1203, 1203, 1194, 1216, 1194,
 /*   280 */  1216, 1194, 1216, 1194, 1216, 1119, 1119, 1206, 1275, 1250,
 /*   290 */  1250, 1275, 1221, 1225, 1224, 1226, 1126, 1336, 1347, 1363,
 /*   300 */  1363, 1371, 1371, 1371, 1371,  -72,  -72,  -72,  -72,  -72,
 /*   310 */   -72,  477,  623,  742,  819,  624,  694,   74, 1023,  221,
 /*   320 */  1055, 1065, 1077, 1087, 1080,  889, 1031,  939, 1093, 1122,
 /*   330 */  1085, 1139,  961, 1024, 1172, 1103,  821, 1384, 1392, 1374,
 /*   340 */  1255, 1385, 1331, 1386, 1378, 1381, 1285, 1277, 1298, 1287,
 /*   350 */  1393, 1289, 1396, 1414, 1293, 1286, 1340, 1341, 1312, 1397,
 /*   360 */  1388, 1304, 1426, 1423, 1407, 1323, 1291, 1379, 1406, 1380,
 /*   370 */  1375, 1391, 1330, 1415, 1418, 1421, 1329, 1337, 1422, 1390,
 /*   380 */  1424, 1425, 1427, 1429, 1395, 1419, 1430, 1400, 1405, 1431,
 /*   390 */  1432, 1433, 1342, 1435, 1436, 1438, 1437, 1339, 1439, 1441,
 /*   400 */  1440, 1434, 1443, 1343, 1445, 1442, 1446, 1444, 1445, 1450,
 /*   410 */  1451, 1452, 1453, 1454, 1459, 1455, 1460, 1462, 1458, 1461,
 /*   420 */  1463, 1466, 1465, 1461, 1467, 1469, 1470, 1471, 1473, 1354,
 /*   430 */  1370, 1376, 1377, 1474, 1485, 1484,
};
#define YY_REDUCE_USE_DFLT (-176)
#define YY_REDUCE_COUNT (310)
#define YY_REDUCE_MIN   (-175)
#define YY_REDUCE_MAX   (1234)
static const short yy_reduce_ofst[] = {
 /*     0 */  -143,  954,   86,   21,  -50,   23,   79,  134,  170, -175,
 /*    10 */   229,  260, -121,  212,  219,  291,  -54,  349,  362,  156,
 /*    20 */   309,  311,  334,   85,  224,  394,  314,  314,  314,  314,
 /*    30 */   314,  314,  314,  314,  314,  314,  314,  314,  314,  314,
 /*    40 */   314,  314,  314,  314,  314,  314,  314,  314,  314,  314,
 /*    50 */   314,  314,  314,  314,  314,  374,  441,  443,  450,  452,
 /*    60 */   515,  554,  567,  569,  572,  578,  580,  582,  584,  587,
 /*    70 */   593,  631,  644,  646,  649,  655,  657,  659,  661,  664,
 /*    80 */   708,  720,  759,  771,  810,  822,  861,  873,  912,  930,
 /*    90 */   947,  950,  957,  959,  963,  966,  968,  998,  314,  314,
 /*   100 */   314,  314,  314,  314,  314,  314,  314,  447,  -53,  166,
 /*   110 */   438,  348,  363,  314,  473,  469,  314,  314,  314,  314,
 /*   120 */   -15,   59,  101,  688,  220,  220,  525,  256,  729,  735,
 /*   130 */   736,  740,  741,  744,  645,  448,  738,  458,  786,  503,
 /*   140 */   780,  656,  721,  724,  792,  545,  568,  706,  683,  681,
 /*   150 */   779,  784,  830,  831,  835,  678,  601, -104,   -2,   96,
 /*   160 */   111,  218,  287,  308,  310,  312,  335,  411,  453,  461,
 /*   170 */   573,  599,  617,  658,  665,  670,  732,  734,  775,  848,
 /*   180 */   875,  892,  893,  898,  332,  420,  869,  931,  944,  886,
 /*   190 */   983,  992, 1009,  958, 1017, 1028,  988, 1033, 1034, 1035,
 /*   200 */   287, 1036, 1044, 1045, 1047, 1049, 1056,  915,  972,  997,
 /*   210 */  1000, 1002,  886, 1011, 1015, 1061, 1013, 1001, 1003,  977,
 /*   220 */  1018,  979, 1050, 1041, 1040, 1052, 1014, 1004, 1059, 1060,
 /*   230 */  1032, 1038, 1084,  995, 1089, 1090, 1008, 1016, 1092, 1037,
 /*   240 */  1068, 1062, 1069, 1072, 1073, 1074, 1105, 1112, 1071, 1048,
 /*   250 */  1081, 1088, 1078, 1116, 1118, 1046, 1066, 1128, 1136, 1140,
 /*   260 */  1120, 1147, 1146, 1148, 1150, 1130, 1135, 1137, 1138, 1132,
 /*   270 */  1141, 1142, 1143, 1149, 1144, 1153, 1154, 1104, 1107, 1108,
 /*   280 */  1114, 1115, 1117, 1123, 1125, 1173, 1176, 1121, 1165, 1127,
 /*   290 */  1131, 1167, 1157, 1151, 1158, 1166, 1168, 1212, 1214, 1227,
 /*   300 */  1228, 1231, 1232, 1233, 1234, 1152, 1155, 1159, 1198, 1199,
 /*   310 */  1219,
};
static const YYACTIONTYPE yy_default[] = {
 /*     0 */   982, 1300, 1300, 1300, 1214, 1214, 1214, 1305, 1300, 1109,
 /*    10 */  1138, 1138, 1274, 1305, 1305, 1305, 1305, 1305, 1305, 1212,
 /*    20 */  1305, 1305, 1305, 1300, 1305, 1113, 1144, 1305, 1305, 1305,
 /*    30 */  1305, 1305, 1305, 1305, 1305, 1273, 1275, 1152, 1151, 1254,
 /*    40 */  1125, 1149, 1142, 1146, 1215, 1208, 1209, 1207, 1211, 1216,







|
>





|
|
|



|
|

|

|
|
|
|

|
|



|
|

|
|
|
|
|
|
|


|
|
|
|
|

|
|
|
|
|
|
|


|
|
|
|
|
|


|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|


|
|
|
|
|
|


|
|
|


|
|
|


|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|





|
|
|



|
|

|


|
|
|

|
|



|


|
|
|
|
|
|
|


|
|
|
|
|

|
|
|
|
|
|
|


|
|
|
|
|
|


|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|


|
|
|
|

|


|
|
|


|
|
|


|
|
|


|
|
|
|


|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|



|







|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|







127552
127553
127554
127555
127556
127557
127558
127559
127560
127561
127562
127563
127564
127565
127566
127567
127568
127569
127570
127571
127572
127573
127574
127575
127576
127577
127578
127579
127580
127581
127582
127583
127584
127585
127586
127587
127588
127589
127590
127591
127592
127593
127594
127595
127596
127597
127598
127599
127600
127601
127602
127603
127604
127605
127606
127607
127608
127609
127610
127611
127612
127613
127614
127615
127616
127617
127618
127619
127620
127621
127622
127623
127624
127625
127626
127627
127628
127629
127630
127631
127632
127633
127634
127635
127636
127637
127638
127639
127640
127641
127642
127643
127644
127645
127646
127647
127648
127649
127650
127651
127652
127653
127654
127655
127656
127657
127658
127659
127660
127661
127662
127663
127664
127665
127666
127667
127668
127669
127670
127671
127672
127673
127674
127675
127676
127677
127678
127679
127680
127681
127682
127683
127684
127685
127686
127687
127688
127689
127690
127691
127692
127693
127694
127695
127696
127697
127698
127699
127700
127701
127702
127703
127704
127705
127706
127707
127708
127709
127710
127711
127712
127713
127714
127715
127716
127717
127718
127719
127720
127721
127722
127723
127724
127725
127726
127727
127728
127729
127730
127731
127732
127733
127734
127735
127736
127737
127738
127739
127740
127741
127742
127743
127744
127745
127746
127747
127748
127749
127750
127751
127752
127753
127754
127755
127756
127757
127758
127759
127760
127761
127762
127763
127764
127765
127766
127767
127768
127769
127770
127771
127772
127773
127774
127775
127776
127777
127778
127779
127780
127781
127782
127783
127784
127785
127786
127787
127788
127789
127790
127791
127792
127793
127794
127795
127796
127797
127798
127799
127800
127801
127802
127803
127804
127805
127806
127807
127808
127809
127810
127811
127812
127813
127814
127815
127816
127817
127818
127819
127820
127821
127822
127823
127824
127825
127826
127827
127828
127829
127830
127831
127832
127833
127834
127835
127836
127837
127838
127839
127840
127841
127842
127843
127844
127845
127846
127847
127848
127849
127850
127851
127852
127853
127854
127855
127856
127857
127858
127859
127860
127861
127862
127863
127864
127865
127866
127867
127868
127869
127870
127871
127872
127873
127874
127875
127876
127877
127878
127879
127880
127881
127882
127883
127884
127885
127886
127887
127888
127889
127890
127891
127892
127893
127894
127895
127896
127897
127898
127899
127900
127901
127902
127903
127904
127905
127906
127907
127908
127909
127910
127911
127912
127913
127914
127915
127916
127917
127918
127919
127920
127921
127922
127923
127924
127925
127926
127927
127928
127929
127930
127931
127932
127933
127934
127935
127936
127937
127938
127939
127940
127941
127942
127943
127944
127945
127946
127947
127948
127949
127950
127951
127952
127953
127954
127955
127956
127957
127958
127959
127960
127961
**  yy_lookahead[]     A table containing the lookahead for each entry in
**                     yy_action.  Used to detect hash collisions.
**  yy_shift_ofst[]    For each state, the offset into yy_action for
**                     shifting terminals.
**  yy_reduce_ofst[]   For each state, the offset into yy_action for
**                     shifting non-terminals after a reduce.
**  yy_default[]       Default action for each state.
**
*********** Begin parsing tables **********************************************/
#define YY_ACTTAB_COUNT (1501)
static const YYACTIONTYPE yy_action[] = {
 /*     0 */   311, 1306,  145,  651,    2,  192,  652,  338,  780,   92,
 /*    10 */    92,   92,   92,   85,   90,   90,   90,   90,   89,   89,
 /*    20 */    88,   88,   88,   87,  335,   88,   88,   88,   87,  335,
 /*    30 */   327,  856,  856,   92,   92,   92,   92,  697,   90,   90,
 /*    40 */    90,   90,   89,   89,   88,   88,   88,   87,  335,   76,
 /*    50 */   807,   74,   93,   94,   84,  868,  871,  860,  860,   91,
 /*    60 */    91,   92,   92,   92,   92,  335,   90,   90,   90,   90,
 /*    70 */    89,   89,   88,   88,   88,   87,  335,  311,  780,   90,
 /*    80 */    90,   90,   90,   89,   89,   88,   88,   88,   87,  335,
 /*    90 */   356,  808,  776,  701,  689,  689,   86,   83,  166,  257,
 /*   100 */   809,  715,  430,   86,   83,  166,  324,  697,  856,  856,
 /*   110 */   201,  158,  276,  387,  271,  386,  188,  689,  689,  828,
 /*   120 */    86,   83,  166,  269,  833,   49,  123,   87,  335,   93,
 /*   130 */    94,   84,  868,  871,  860,  860,   91,   91,   92,   92,
 /*   140 */    92,   92,  239,   90,   90,   90,   90,   89,   89,   88,
 /*   150 */    88,   88,   87,  335,  311,  763,  333,  332,  216,  408,
 /*   160 */   394,   69,  231,  393,  690,  691,  396,  910,  251,  354,
 /*   170 */   250,  288,  315,  430,  908,  430,  909,   89,   89,   88,
 /*   180 */    88,   88,   87,  335,  391,  856,  856,  690,  691,  183,
 /*   190 */    95,  123,  384,  381,  380,  833,   31,  833,   49,  912,
 /*   200 */   912,  751,  752,  379,  123,  311,   93,   94,   84,  868,
 /*   210 */   871,  860,  860,   91,   91,   92,   92,   92,   92,  114,
 /*   220 */    90,   90,   90,   90,   89,   89,   88,   88,   88,   87,
 /*   230 */   335,  430,  408,  399,  435,  657,  856,  856,  346,   57,
 /*   240 */   232,  828,  109,  704,  366,  689,  689,  363,  825,  760,
 /*   250 */    97,  749,  752,  833,   49,  708,  708,   93,   94,   84,
 /*   260 */   868,  871,  860,  860,   91,   91,   92,   92,   92,   92,
 /*   270 */   423,   90,   90,   90,   90,   89,   89,   88,   88,   88,
 /*   280 */    87,  335,  311,  114,   22,  361,  688,   58,  408,  390,
 /*   290 */   251,  349,  240,  213,  762,  689,  689,  847,  685,  115,
 /*   300 */   361,  231,  393,  689,  689,  396,  183,  689,  689,  384,
 /*   310 */   381,  380,  361,  856,  856,  690,  691,  160,  159,  223,
 /*   320 */   379,  738,   25,  806,  707,  841,  143,  689,  689,  835,
 /*   330 */   392,  339,  766,  766,   93,   94,   84,  868,  871,  860,
 /*   340 */   860,   91,   91,   92,   92,   92,   92,  914,   90,   90,
 /*   350 */    90,   90,   89,   89,   88,   88,   88,   87,  335,  311,
 /*   360 */   840,  840,  840,  266,  257,  690,  691,  778,  706,   86,
 /*   370 */    83,  166,  219,  690,  691,  737,    1,  690,  691,  689,
 /*   380 */   689,  689,  689,  430,   86,   83,  166,  249,  688,  937,
 /*   390 */   856,  856,  427,  699,  700,  828,  298,  690,  691,  221,
 /*   400 */   686,  115,  123,  944,  795,  833,   48,  342,  305,  970,
 /*   410 */   847,   93,   94,   84,  868,  871,  860,  860,   91,   91,
 /*   420 */    92,   92,   92,   92,  114,   90,   90,   90,   90,   89,
 /*   430 */    89,   88,   88,   88,   87,  335,  311,  940,  841,  679,
 /*   440 */   713,  429,  835,  430,  251,  354,  250,  355,  288,  690,
 /*   450 */   691,  690,  691,  285,  941,  340,  971,  287,  210,   23,
 /*   460 */   174,  793,  832,  430,  353,  833,   10,  856,  856,   24,
 /*   470 */   942,  151,  753,  840,  840,  840,  794,  968, 1290,  321,
 /*   480 */   398, 1290,  356,  352,  754,  833,   49,  935,   93,   94,
 /*   490 */    84,  868,  871,  860,  860,   91,   91,   92,   92,   92,
 /*   500 */    92,  430,   90,   90,   90,   90,   89,   89,   88,   88,
 /*   510 */    88,   87,  335,  311,  376,  114,  907,  705,  430,  907,
 /*   520 */   328,  890,  114,  833,   10,  966,  430,  857,  857,  320,
 /*   530 */   189,  163,  832,  165,  430,  906,  344,  323,  906,  904,
 /*   540 */   833,   10,  965,  306,  856,  856,  187,  419,  833,   10,
 /*   550 */   220,  869,  872,  832,  222,  403,  833,   49, 1219,  793,
 /*   560 */    68,  937,  406,  245,   66,   93,   94,   84,  868,  871,
 /*   570 */   860,  860,   91,   91,   92,   92,   92,   92,  861,   90,
 /*   580 */    90,   90,   90,   89,   89,   88,   88,   88,   87,  335,
 /*   590 */   311,  404,  213,  762,  834,  345,  114,  940,  902,  368,
 /*   600 */   727,    5,  316,  192,  396,  772,  780,  269,  230,  242,
 /*   610 */   771,  244,  397,  164,  941,  385,  123,  347,   55,  355,
 /*   620 */   329,  856,  856,  728,  333,  332,  688,  968, 1291,  724,
 /*   630 */   942, 1291,  413,  214,  833,    9,  362,  286,  955,  115,
 /*   640 */   718,  311,   93,   94,   84,  868,  871,  860,  860,   91,
 /*   650 */    91,   92,   92,   92,   92,  430,   90,   90,   90,   90,
 /*   660 */    89,   89,   88,   88,   88,   87,  335,  912,  912, 1300,
 /*   670 */  1300,  758,  856,  856,  325,  966,  780,  833,   35,  747,
 /*   680 */   720,  334,  699,  700,  977,  652,  338,  243,  745,  920,
 /*   690 */   920,  369,  187,   93,   94,   84,  868,  871,  860,  860,
 /*   700 */    91,   91,   92,   92,   92,   92,  114,   90,   90,   90,
 /*   710 */    90,   89,   89,   88,   88,   88,   87,  335,  311,  430,
 /*   720 */   954,  430,  112,  310,  430,  693,  317,  698,  400,  430,
 /*   730 */   793,  359,  430, 1017,  430,  192,  430,  401,  780,  430,
 /*   740 */   360,  833,   36,  833,   12,  430,  833,   27,  316,  856,
 /*   750 */   856,  833,   37,   20,  833,   38,  833,   39,  833,   28,
 /*   760 */    72,  833,   29,  663,  664,  665,  264,  833,   40,  234,
 /*   770 */    93,   94,   84,  868,  871,  860,  860,   91,   91,   92,
 /*   780 */    92,   92,   92,  430,   90,   90,   90,   90,   89,   89,
 /*   790 */    88,   88,   88,   87,  335,  311,  430,  698,  430,  917,
 /*   800 */   147,  430,  165,  916,  275,  833,   41,  430,  780,  430,
 /*   810 */    21,  430,  259,  430,  262,  274,  430,  367,  833,   42,
 /*   820 */   833,   11,  430,  833,   43,  235,  856,  856,  793,  833,
 /*   830 */    99,  833,   44,  833,   45,  833,   32,   75,  833,   46,
 /*   840 */   305,  967,  257,  257,  833,   47,  311,   93,   94,   84,
 /*   850 */   868,  871,  860,  860,   91,   91,   92,   92,   92,   92,
 /*   860 */   430,   90,   90,   90,   90,   89,   89,   88,   88,   88,
 /*   870 */    87,  335,  430,  186,  185,  184,  238,  856,  856,  650,
 /*   880 */     2, 1064,  833,   33,  739,  217,  218,  257,  971,  257,
 /*   890 */   426,  317,  257,  774,  833,  117,  257,  311,   93,   94,
 /*   900 */    84,  868,  871,  860,  860,   91,   91,   92,   92,   92,
 /*   910 */    92,  430,   90,   90,   90,   90,   89,   89,   88,   88,
 /*   920 */    88,   87,  335,  430,  318,  124,  212,  163,  856,  856,
 /*   930 */   943,  900,  898,  833,  118,  759,  726,  725,  257,  755,
 /*   940 */   289,  289,  733,  734,  961,  833,  119,  682,  311,   93,
 /*   950 */    82,   84,  868,  871,  860,  860,   91,   91,   92,   92,
 /*   960 */    92,   92,  430,   90,   90,   90,   90,   89,   89,   88,
 /*   970 */    88,   88,   87,  335,  430,  716,  246,  322,  331,  856,
 /*   980 */   856,  256,  114,  357,  833,   53,  808,  913,  913,  932,
 /*   990 */   156,  416,  420,  424,  930,  809,  833,   34,  364,  311,
 /*  1000 */   253,   94,   84,  868,  871,  860,  860,   91,   91,   92,
 /*  1010 */    92,   92,   92,  430,   90,   90,   90,   90,   89,   89,
 /*  1020 */    88,   88,   88,   87,  335,  430,  114,  114,  114,  960,
 /*  1030 */   856,  856,  307,  258,  830,  833,  100,  191,  252,  377,
 /*  1040 */   267,   68,  197,   68,  261,  716,  769,  833,   50,   71,
 /*  1050 */   911,  911,  263,   84,  868,  871,  860,  860,   91,   91,
 /*  1060 */    92,   92,   92,   92,  430,   90,   90,   90,   90,   89,
 /*  1070 */    89,   88,   88,   88,   87,  335,   80,  425,  802,    3,
 /*  1080 */  1214,  191,  430,  265,  336,  336,  833,  101,  741,   80,
 /*  1090 */   425,  897,    3,  723,  722,  428,  721,  336,  336,  430,
 /*  1100 */   893,  270,  430,  197,  833,  102,  430,  800,  428,  430,
 /*  1110 */   695,  430,  843,  111,  414,  430,  784,  409,  430,  831,
 /*  1120 */   430,  833,   98,  123,  833,  116,  847,  414,  833,   49,
 /*  1130 */   779,  833,  113,  833,  106,  226,  123,  833,  105,  847,
 /*  1140 */   833,  103,  833,  104,  791,  411,   77,   78,  290,  412,
 /*  1150 */   430,  291,  114,   79,  432,  431,  389,  430,  835,   77,
 /*  1160 */    78,  897,  839,  408,  410,  430,   79,  432,  431,  372,
 /*  1170 */   703,  835,  833,   52,  430,   80,  425,  430,    3,  833,
 /*  1180 */    54,  772,  843,  336,  336,  684,  771,  833,   51,  840,
 /*  1190 */   840,  840,  842,   19,  428,  672,  833,   26,  671,  833,
 /*  1200 */    30,  673,  840,  840,  840,  842,   19,  207,  661,  278,
 /*  1210 */   304,  148,  280,  414,  282,  248,  358,  822,  382,    6,
 /*  1220 */   348,  161,  273,   80,  425,  847,    3,  934,  895,  720,
 /*  1230 */   894,  336,  336,  296,  157,  415,  241,  284,  674,  958,
 /*  1240 */   194,  953,  428,  951,  948,   77,   78,  777,  319,   56,
 /*  1250 */    59,  135,   79,  432,  431,  121,   66,  835,  146,  128,
 /*  1260 */   350,  414,  819,  130,  351,  131,  132,  133,  375,  173,
 /*  1270 */   107,  138,  149,  847,  365,  178,   62,   70,  425,  936,
 /*  1280 */     3,  827,  889,  371,  255,  336,  336,  792,  840,  840,
 /*  1290 */   840,  842,   19,   77,   78,  915,  428,  208,  179,  144,
 /*  1300 */    79,  432,  431,  373,  260,  835,  180,  326,  675,  181,
 /*  1310 */   308,  744,  388,  743,  731,  414,  718,  742,  730,  712,
 /*  1320 */   402,  309,  711,  272,  788,   65,  710,  847,  709,  277,
 /*  1330 */   193,  789,  787,  279,  876,   73,  840,  840,  840,  842,
 /*  1340 */    19,  786,  281,  418,  283,  422,  227,   77,   78,  330,
 /*  1350 */   228,  229,   96,  767,   79,  432,  431,  407,   67,  835,
 /*  1360 */   215,  292,  293,  405,  294,  303,  302,  301,  204,  299,
 /*  1370 */   295,  202,  676,  681,    7,  433,  669,  203,  205,  206,
 /*  1380 */   125,  110,  313,  434,  667,  666,  658,  168,  224,  237,
 /*  1390 */   840,  840,  840,  842,   19,  120,  656,  337,  236,  155,
 /*  1400 */   167,  341,  233,  314,  108,  905,  903,  826,  127,  126,
 /*  1410 */   756,  170,  129,  172,  247,  928,  134,  136,  171,   60,
 /*  1420 */    61,  123,  169,  137,  933,  175,  176,  927,    8,   13,
 /*  1430 */   177,  254,  918,  139,  191,  924,  140,  370,  678,  150,
 /*  1440 */   374,  182,  274,  268,  141,  122,   63,   14,  378,   15,
 /*  1450 */   383,   64,  225,  846,  845,  874,   16,    4,  729,  765,
 /*  1460 */   770,  162,  395,  209,  211,  142,  801,  878,  796,  312,
 /*  1470 */    71,   68,  875,  873,  939,  190,  417,  938,   17,  195,
 /*  1480 */   196,  152,   18,  975,  199,  976,  153,  198,  154,  421,
 /*  1490 */   877,  844,  696,   81,  200,  297,  343, 1019, 1018,  300,
 /*  1500 */   653,
};
static const YYCODETYPE yy_lookahead[] = {
 /*     0 */    19,  144,  145,  146,  147,   24,    1,    2,   27,   80,
 /*    10 */    81,   82,   83,   84,   85,   86,   87,   88,   89,   90,
 /*    20 */    91,   92,   93,   94,   95,   91,   92,   93,   94,   95,
 /*    30 */    19,   50,   51,   80,   81,   82,   83,   27,   85,   86,
 /*    40 */    87,   88,   89,   90,   91,   92,   93,   94,   95,  137,
 /*    50 */   177,  139,   71,   72,   73,   74,   75,   76,   77,   78,
 /*    60 */    79,   80,   81,   82,   83,   95,   85,   86,   87,   88,
 /*    70 */    89,   90,   91,   92,   93,   94,   95,   19,   97,   85,
 /*    80 */    86,   87,   88,   89,   90,   91,   92,   93,   94,   95,
 /*    90 */   152,   33,  212,  173,   27,   28,  223,  224,  225,  152,
 /*   100 */    42,  181,  152,  223,  224,  225,   95,   97,   50,   51,
 /*   110 */    99,  100,  101,  102,  103,  104,  105,   27,   28,   59,
 /*   120 */   223,  224,  225,  112,  174,  175,   66,   94,   95,   71,
 /*   130 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
 /*   140 */    82,   83,  195,   85,   86,   87,   88,   89,   90,   91,
 /*   150 */    92,   93,   94,   95,   19,  197,   89,   90,  220,  209,
 /*   160 */   210,   26,  119,  120,   97,   98,  208,  100,  108,  109,
 /*   170 */   110,  152,  157,  152,  107,  152,  109,   89,   90,   91,
 /*   180 */    92,   93,   94,   95,  163,   50,   51,   97,   98,   99,
 /*   190 */    55,   66,  102,  103,  104,  174,  175,  174,  175,  132,
 /*   200 */   133,  192,  193,  113,   66,   19,   71,   72,   73,   74,
 /*   210 */    75,   76,   77,   78,   79,   80,   81,   82,   83,  198,
 /*   220 */    85,   86,   87,   88,   89,   90,   91,   92,   93,   94,
 /*   230 */    95,  152,  209,  210,  148,  149,   50,   51,  100,   53,
 /*   240 */   154,   59,  156,  174,  229,   27,   28,  232,  163,  163,
 /*   250 */    22,  192,  193,  174,  175,   27,   28,   71,   72,   73,
 /*   260 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 /*   270 */   251,   85,   86,   87,   88,   89,   90,   91,   92,   93,
 /*   280 */    94,   95,   19,  198,  198,  152,  152,   24,  209,  210,
 /*   290 */   108,  109,  110,  196,  197,   27,   28,   69,  164,  165,
 /*   300 */   152,  119,  120,   27,   28,  208,   99,   27,   28,  102,
 /*   310 */   103,  104,  152,   50,   51,   97,   98,   89,   90,  185,
 /*   320 */   113,  187,   22,  177,  174,   97,   58,   27,   28,  101,
 /*   330 */   115,  245,  117,  118,   71,   72,   73,   74,   75,   76,
 /*   340 */    77,   78,   79,   80,   81,   82,   83,   11,   85,   86,
 /*   350 */    87,   88,   89,   90,   91,   92,   93,   94,   95,   19,
 /*   360 */   132,  133,  134,   23,  152,   97,   98,   91,  174,  223,
 /*   370 */   224,  225,  239,   97,   98,  187,   22,   97,   98,   27,
 /*   380 */    28,   27,   28,  152,  223,  224,  225,  239,  152,  163,
 /*   390 */    50,   51,  170,  171,  172,   59,  160,   97,   98,  239,
 /*   400 */   164,  165,   66,  242,  124,  174,  175,  195,   22,   23,
 /*   410 */    69,   71,   72,   73,   74,   75,   76,   77,   78,   79,
 /*   420 */    80,   81,   82,   83,  198,   85,   86,   87,   88,   89,
 /*   430 */    90,   91,   92,   93,   94,   95,   19,   12,   97,   21,
 /*   440 */    23,  152,  101,  152,  108,  109,  110,  221,  152,   97,
 /*   450 */    98,   97,   98,  152,   29,  243,   70,  226,   23,  233,
 /*   460 */    26,   26,  152,  152,  238,  174,  175,   50,   51,   22,
 /*   470 */    45,   24,   47,  132,  133,  134,  124,   22,   23,  188,
 /*   480 */   163,   26,  152,   65,   59,  174,  175,  163,   71,   72,
 /*   490 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
 /*   500 */    83,  152,   85,   86,   87,   88,   89,   90,   91,   92,
 /*   510 */    93,   94,   95,   19,   19,  198,  152,   23,  152,  152,
 /*   520 */   209,  103,  198,  174,  175,   70,  152,   50,   51,  219,
 /*   530 */   213,  214,  152,   98,  152,  171,  172,  188,  171,  172,
 /*   540 */   174,  175,  248,  249,   50,   51,   51,  251,  174,  175,
 /*   550 */   220,   74,   75,  152,  188,  152,  174,  175,  140,  124,
 /*   560 */    26,  163,  188,   16,  130,   71,   72,   73,   74,   75,
 /*   570 */    76,   77,   78,   79,   80,   81,   82,   83,  101,   85,
 /*   580 */    86,   87,   88,   89,   90,   91,   92,   93,   94,   95,
 /*   590 */    19,  209,  196,  197,   23,  231,  198,   12,  231,  219,
 /*   600 */    37,   22,  107,   24,  208,  116,   27,  112,  201,   62,
 /*   610 */   121,   64,  152,  152,   29,   52,   66,  221,  211,  221,
 /*   620 */   219,   50,   51,   60,   89,   90,  152,   22,   23,  183,
 /*   630 */    45,   26,   47,   22,  174,  175,  238,  152,  164,  165,
 /*   640 */   106,   19,   71,   72,   73,   74,   75,   76,   77,   78,
 /*   650 */    79,   80,   81,   82,   83,  152,   85,   86,   87,   88,
 /*   660 */    89,   90,   91,   92,   93,   94,   95,  132,  133,  119,
 /*   670 */   120,  163,   50,   51,  111,   70,   97,  174,  175,  181,
 /*   680 */   182,  170,  171,  172,    0,    1,    2,  140,  190,  108,
 /*   690 */   109,  110,   51,   71,   72,   73,   74,   75,   76,   77,
 /*   700 */    78,   79,   80,   81,   82,   83,  198,   85,   86,   87,
 /*   710 */    88,   89,   90,   91,   92,   93,   94,   95,   19,  152,
 /*   720 */   152,  152,   22,  166,  152,  168,  169,   27,   19,  152,
 /*   730 */    26,   19,  152,  122,  152,   24,  152,   28,   27,  152,
 /*   740 */    28,  174,  175,  174,  175,  152,  174,  175,  107,   50,
 /*   750 */    51,  174,  175,   22,  174,  175,  174,  175,  174,  175,
 /*   760 */   138,  174,  175,    7,    8,    9,   16,  174,  175,  152,
 /*   770 */    71,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*   780 */    81,   82,   83,  152,   85,   86,   87,   88,   89,   90,
 /*   790 */    91,   92,   93,   94,   95,   19,  152,   97,  152,   31,
 /*   800 */    24,  152,   98,   35,  101,  174,  175,  152,   97,  152,
 /*   810 */    79,  152,   62,  152,   64,  112,  152,   49,  174,  175,
 /*   820 */   174,  175,  152,  174,  175,  152,   50,   51,  124,  174,
 /*   830 */   175,  174,  175,  174,  175,  174,  175,  138,  174,  175,
 /*   840 */    22,   23,  152,  152,  174,  175,   19,   71,   72,   73,
 /*   850 */    74,   75,   76,   77,   78,   79,   80,   81,   82,   83,
 /*   860 */   152,   85,   86,   87,   88,   89,   90,   91,   92,   93,
 /*   870 */    94,   95,  152,  108,  109,  110,  152,   50,   51,  146,
 /*   880 */   147,   23,  174,  175,   26,  195,  195,  152,   70,  152,
 /*   890 */   168,  169,  152,   26,  174,  175,  152,   19,   71,   72,
 /*   900 */    73,   74,   75,   76,   77,   78,   79,   80,   81,   82,
 /*   910 */    83,  152,   85,   86,   87,   88,   89,   90,   91,   92,
 /*   920 */    93,   94,   95,  152,  246,  247,  213,  214,   50,   51,
 /*   930 */   195,  152,  195,  174,  175,  195,  100,  101,  152,  195,
 /*   940 */   152,  152,    7,    8,  152,  174,  175,  163,   19,   71,
 /*   950 */    72,   73,   74,   75,   76,   77,   78,   79,   80,   81,
 /*   960 */    82,   83,  152,   85,   86,   87,   88,   89,   90,   91,
 /*   970 */    92,   93,   94,   95,  152,   27,  152,  189,  189,   50,
 /*   980 */    51,  195,  198,  152,  174,  175,   33,  132,  133,  152,
 /*   990 */   123,  163,  163,  163,  152,   42,  174,  175,  152,   19,
 /*  1000 */   152,   72,   73,   74,   75,   76,   77,   78,   79,   80,
 /*  1010 */    81,   82,   83,  152,   85,   86,   87,   88,   89,   90,
 /*  1020 */    91,   92,   93,   94,   95,  152,  198,  198,  198,   23,
 /*  1030 */    50,   51,   26,  152,   23,  174,  175,   26,   23,   23,
 /*  1040 */    23,   26,   26,   26,  152,   97,   23,  174,  175,   26,
 /*  1050 */   132,  133,  152,   73,   74,   75,   76,   77,   78,   79,
 /*  1060 */    80,   81,   82,   83,  152,   85,   86,   87,   88,   89,
 /*  1070 */    90,   91,   92,   93,   94,   95,   19,   20,   23,   22,
 /*  1080 */    23,   26,  152,  152,   27,   28,  174,  175,  152,   19,
 /*  1090 */    20,   27,   22,  183,  183,   38,  152,   27,   28,  152,
 /*  1100 */    23,  152,  152,   26,  174,  175,  152,  152,   38,  152,
 /*  1110 */    23,  152,   27,   26,   57,  152,  215,  163,  152,  152,
 /*  1120 */   152,  174,  175,   66,  174,  175,   69,   57,  174,  175,
 /*  1130 */   152,  174,  175,  174,  175,  212,   66,  174,  175,   69,
 /*  1140 */   174,  175,  174,  175,  152,  152,   89,   90,  152,  193,
 /*  1150 */   152,  152,  198,   96,   97,   98,   91,  152,  101,   89,
 /*  1160 */    90,   97,  152,  209,  210,  152,   96,   97,   98,  235,
 /*  1170 */   152,  101,  174,  175,  152,   19,   20,  152,   22,  174,
 /*  1180 */   175,  116,   97,   27,   28,  152,  121,  174,  175,  132,
 /*  1190 */   133,  134,  135,  136,   38,  152,  174,  175,  152,  174,
 /*  1200 */   175,  152,  132,  133,  134,  135,  136,  234,  152,  212,
 /*  1210 */   150,  199,  212,   57,  212,  240,  240,  203,  178,  200,
 /*  1220 */   216,  186,  177,   19,   20,   69,   22,  203,  177,  182,
 /*  1230 */   177,   27,   28,  202,  200,  228,  216,  216,  155,   39,
 /*  1240 */   122,  159,   38,  159,   41,   89,   90,   91,  159,  241,
 /*  1250 */   241,   22,   96,   97,   98,   71,  130,  101,  222,  191,
 /*  1260 */    18,   57,  203,  194,  159,  194,  194,  194,   18,  158,
 /*  1270 */   244,  191,  222,   69,  159,  158,  137,   19,   20,  203,
 /*  1280 */    22,  191,  203,   46,  236,   27,   28,  159,  132,  133,
 /*  1290 */   134,  135,  136,   89,   90,  237,   38,  159,  158,   22,
 /*  1300 */    96,   97,   98,  179,  159,  101,  158,   48,  159,  158,
 /*  1310 */   179,  176,  107,  176,  184,   57,  106,  176,  184,  176,
 /*  1320 */   125,  179,  178,  176,  218,  107,  176,   69,  176,  217,
 /*  1330 */   159,  218,  218,  217,  159,  137,  132,  133,  134,  135,
 /*  1340 */   136,  218,  217,  179,  217,  179,  227,   89,   90,   95,
 /*  1350 */   230,  230,  129,  207,   96,   97,   98,  126,  128,  101,
 /*  1360 */     5,  206,  205,  127,  204,   10,   11,   12,   13,   14,
 /*  1370 */   203,   25,   17,  162,   26,  161,   13,  153,  153,    6,
 /*  1380 */   247,  180,  250,  151,  151,  151,  151,   32,  180,   34,
 /*  1390 */   132,  133,  134,  135,  136,  167,    4,    3,   43,   22,
 /*  1400 */    15,   68,  142,  250,   16,   23,   23,  120,  111,  131,
 /*  1410 */    20,   56,  123,  125,   16,    1,  123,  131,   63,   79,
 /*  1420 */    79,   66,   67,  111,   28,   36,  122,    1,    5,   22,
 /*  1430 */   107,  140,   54,   54,   26,   61,  107,   44,   20,   24,
 /*  1440 */    19,  105,  112,   23,   22,   40,   22,   22,   53,   22,
 /*  1450 */    53,   22,   53,   23,   23,   23,   22,   22,   30,  116,
 /*  1460 */    23,  122,   26,   23,   23,   22,   28,   11,  124,  114,
 /*  1470 */    26,   26,   23,   23,   23,   36,   24,   23,   36,   26,
 /*  1480 */    22,   22,   36,   23,  122,   23,   22,   26,   22,   24,
 /*  1490 */    23,   23,   23,   22,  122,   23,  141,  122,  122,   15,
 /*  1500 */     1,
};
#define YY_SHIFT_USE_DFLT (-89)
#define YY_SHIFT_COUNT (435)
#define YY_SHIFT_MIN   (-88)
#define YY_SHIFT_MAX   (1499)
static const short yy_shift_ofst[] = {
 /*     0 */     5, 1057, 1355, 1070, 1204, 1204, 1204,   90,   60,  -19,
 /*    10 */    58,   58,  186, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
 /*    20 */    67,   67,  182,  336,  218,  550,  135,  263,  340,  417,
 /*    30 */   494,  571,  622,  699,  776,  827,  827,  827,  827,  827,
 /*    40 */   827,  827,  827,  827,  827,  827,  827,  827,  827,  827,
 /*    50 */   878,  827,  929,  980,  980, 1156, 1204, 1204, 1204, 1204,
 /*    60 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
 /*    70 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,
 /*    80 */  1204, 1204, 1204, 1204, 1258, 1204, 1204, 1204, 1204, 1204,
 /*    90 */  1204, 1204, 1204, 1204, 1204, 1204, 1204, 1204,  -71,  -47,
 /*   100 */   -47,  -47,  -47,  -47,   -6,   88,  -66,  218,  218,  418,
 /*   110 */   495,  535,  535,   33,   43,   10,  -30,  -89,  -89,  -89,
 /*   120 */    11,  425,  425,  268,  455,  605,  218,  218,  218,  218,
 /*   130 */   218,  218,  218,  218,  218,  218,  218,  218,  218,  218,
 /*   140 */   218,  218,  218,  218,  218,  684,  138,   10,   43,  125,
 /*   150 */   125,  125,  125,  125,  125,  -89,  -89,  -89,  228,  341,
 /*   160 */   341,  207,  276,  300,  280,  352,  354,  218,  218,  218,
 /*   170 */   218,  218,  218,  218,  218,  218,  218,  218,  218,  218,
 /*   180 */   218,  218,  218,  218,  563,  563,  563,  218,  218,  435,
 /*   190 */   218,  218,  218,  579,  218,  218,  585,  218,  218,  218,
 /*   200 */   218,  218,  218,  218,  218,  218,  218,  581,  768,  711,
 /*   210 */   711,  711,  704,  215, 1065,  756,  434,  709,  709,  712,
 /*   220 */   434,  712,  534,  858,  641,  953,  709,  -88,  953,  953,
 /*   230 */   867,  489,  447, 1200, 1118, 1118, 1203, 1203, 1118, 1229,
 /*   240 */  1184, 1126, 1242, 1242, 1242, 1242, 1118, 1250, 1126, 1229,
 /*   250 */  1184, 1184, 1126, 1118, 1250, 1139, 1237, 1118, 1118, 1250,
 /*   260 */  1277, 1118, 1250, 1118, 1250, 1277, 1205, 1205, 1205, 1259,
 /*   270 */  1277, 1205, 1210, 1205, 1259, 1205, 1205, 1195, 1218, 1195,
 /*   280 */  1218, 1195, 1218, 1195, 1218, 1118, 1118, 1198, 1277, 1254,
 /*   290 */  1254, 1277, 1223, 1231, 1230, 1236, 1126, 1346, 1348, 1363,
 /*   300 */  1363, 1373, 1373, 1373, 1373,  -89,  -89,  -89,  -89,  -89,
 /*   310 */   -89,  477,  547,  386,  818,  750,  765,  700, 1006,  731,
 /*   320 */  1011, 1015, 1016, 1017,  948,  836,  935,  703, 1023, 1055,
 /*   330 */  1064, 1077,  855,  918, 1087, 1085,  611, 1392, 1394, 1377,
 /*   340 */  1260, 1385, 1333, 1388, 1382, 1383, 1287, 1278, 1297, 1289,
 /*   350 */  1390, 1288, 1398, 1414, 1293, 1286, 1340, 1341, 1312, 1396,
 /*   360 */  1389, 1304, 1426, 1423, 1407, 1323, 1291, 1378, 1408, 1379,
 /*   370 */  1374, 1393, 1329, 1415, 1418, 1421, 1330, 1336, 1422, 1395,
 /*   380 */  1424, 1425, 1420, 1427, 1397, 1428, 1429, 1399, 1405, 1430,
 /*   390 */  1431, 1432, 1343, 1434, 1437, 1435, 1436, 1339, 1440, 1441,
 /*   400 */  1438, 1439, 1443, 1344, 1444, 1442, 1445, 1446, 1444, 1449,
 /*   410 */  1450, 1451, 1453, 1454, 1458, 1456, 1460, 1459, 1452, 1461,
 /*   420 */  1462, 1464, 1465, 1461, 1467, 1466, 1468, 1469, 1471, 1362,
 /*   430 */  1372, 1375, 1376, 1472, 1484, 1499,
};
#define YY_REDUCE_USE_DFLT (-144)
#define YY_REDUCE_COUNT (310)
#define YY_REDUCE_MIN   (-143)
#define YY_REDUCE_MAX   (1235)
static const short yy_reduce_ofst[] = {
 /*     0 */  -143,  954,   86,   21,  -50,   23,   79,  134,  226, -120,
 /*    10 */  -127,  146,  161,  291,  349,  366,  311,  382,  374,  231,
 /*    20 */   364,  367,  396,  398,  236,  317, -103, -103, -103, -103,
 /*    30 */  -103, -103, -103, -103, -103, -103, -103, -103, -103, -103,
 /*    40 */  -103, -103, -103, -103, -103, -103, -103, -103, -103, -103,
 /*    50 */  -103, -103, -103, -103, -103,  460,  503,  567,  569,  572,
 /*    60 */   577,  580,  582,  584,  587,  593,  631,  644,  646,  649,
 /*    70 */   655,  657,  659,  661,  664,  670,  708,  720,  759,  771,
 /*    80 */   810,  822,  861,  873,  912,  930,  947,  950,  957,  959,
 /*    90 */   963,  966,  968,  998, 1005, 1013, 1022, 1025, -103, -103,
 /*   100 */  -103, -103, -103, -103, -103, -103, -103,  474,  212,   15,
 /*   110 */   498,  222,  511, -103,   97,  557, -103, -103, -103, -103,
 /*   120 */   -80,    9,   59,   19,  294,  294,  -53,  -62,  690,  691,
 /*   130 */   735,  737,  740,  744,  133,  310,  148,  330,  160,  380,
 /*   140 */   786,  788,  401,  296,  789,  733,   85,  722,  -42,  324,
 /*   150 */   508,  784,  828,  829,  830,  678,  713,  407,   69,  150,
 /*   160 */   194,  188,  289,  301,  403,  461,  485,  568,  617,  673,
 /*   170 */   724,  779,  792,  824,  831,  837,  842,  846,  848,  881,
 /*   180 */   892,  900,  931,  936,  446,  910,  911,  944,  949,  901,
 /*   190 */   955,  967,  978,  923,  992,  993,  956,  996,  999, 1010,
 /*   200 */   289, 1018, 1033, 1043, 1046, 1049, 1056,  934,  973,  997,
 /*   210 */  1000, 1002,  901, 1012, 1019, 1060, 1014, 1004, 1020,  975,
 /*   220 */  1024,  976, 1040, 1035, 1047, 1045, 1021, 1007, 1051, 1053,
 /*   230 */  1031, 1034, 1083, 1026, 1082, 1084, 1008, 1009, 1089, 1036,
 /*   240 */  1068, 1059, 1069, 1071, 1072, 1073, 1105, 1111, 1076, 1050,
 /*   250 */  1080, 1090, 1079, 1115, 1117, 1058, 1048, 1128, 1138, 1140,
 /*   260 */  1124, 1145, 1148, 1149, 1151, 1131, 1135, 1137, 1141, 1130,
 /*   270 */  1142, 1143, 1144, 1147, 1134, 1150, 1152, 1106, 1112, 1113,
 /*   280 */  1116, 1114, 1125, 1123, 1127, 1171, 1175, 1119, 1164, 1120,
 /*   290 */  1121, 1166, 1146, 1155, 1157, 1160, 1167, 1211, 1214, 1224,
 /*   300 */  1225, 1232, 1233, 1234, 1235, 1132, 1153, 1133, 1201, 1208,
 /*   310 */  1228,
};
static const YYACTIONTYPE yy_default[] = {
 /*     0 */   982, 1300, 1300, 1300, 1214, 1214, 1214, 1305, 1300, 1109,
 /*    10 */  1138, 1138, 1274, 1305, 1305, 1305, 1305, 1305, 1305, 1212,
 /*    20 */  1305, 1305, 1305, 1300, 1305, 1113, 1144, 1305, 1305, 1305,
 /*    30 */  1305, 1305, 1305, 1305, 1305, 1273, 1275, 1152, 1151, 1254,
 /*    40 */  1125, 1149, 1142, 1146, 1215, 1208, 1209, 1207, 1211, 1216,
126743
126744
126745
126746
126747
126748
126749

126750
126751
126752
126753
126754
126755
126756
126757
126758
126759




126760
126761
126762
126763
126764
126765
126766
 /*   380 */  1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305,
 /*   390 */  1305, 1305, 1092, 1305, 1305, 1305, 1096, 1305, 1305, 1305,
 /*   400 */  1305, 1305, 1305, 1305, 1140, 1305, 1133, 1305, 1213, 1305,
 /*   410 */  1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1302,
 /*   420 */  1305, 1305, 1305, 1301, 1305, 1305, 1305, 1305, 1305, 1166,
 /*   430 */  1305, 1165, 1169, 1305,  996, 1305,
};


/* The next table maps tokens into fallback tokens.  If a construct
** like the following:
** 
**      %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z.  Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.




*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
    0,  /*          $ => nothing */
    0,  /*       SEMI => nothing */
   27,  /*    EXPLAIN => ID */
   27,  /*      QUERY => ID */







>

|
|







>
>
>
>







127995
127996
127997
127998
127999
128000
128001
128002
128003
128004
128005
128006
128007
128008
128009
128010
128011
128012
128013
128014
128015
128016
128017
128018
128019
128020
128021
128022
128023
 /*   380 */  1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305,
 /*   390 */  1305, 1305, 1092, 1305, 1305, 1305, 1096, 1305, 1305, 1305,
 /*   400 */  1305, 1305, 1305, 1305, 1140, 1305, 1133, 1305, 1213, 1305,
 /*   410 */  1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1305, 1302,
 /*   420 */  1305, 1305, 1305, 1301, 1305, 1305, 1305, 1305, 1305, 1166,
 /*   430 */  1305, 1165, 1169, 1305,  996, 1305,
};
/********** End of lemon-generated parsing tables *****************************/

/* The next table maps tokens (terminal symbols) into fallback tokens.  
** If a construct like the following:
** 
**      %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z.  Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
**
** This feature can be used, for example, to cause some keywords in a language
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef YYFALLBACK
static const YYCODETYPE yyFallback[] = {
    0,  /*          $ => nothing */
    0,  /*       SEMI => nothing */
   27,  /*    EXPLAIN => ID */
   27,  /*      QUERY => ID */
126962
126963
126964
126965
126966
126967
126968
126969
126970
126971
126972
126973
126974
126975
126976
126977
126978
126979
126980
126981
126982
126983
126984
126985
  "sortlist",      "eidlist",       "defer_subclause_opt",  "orconf",      
  "resolvetype",   "raisetype",     "ifexists",      "fullname",    
  "selectnowith",  "oneselect",     "with",          "multiselect_op",
  "distinct",      "selcollist",    "from",          "where_opt",   
  "groupby_opt",   "having_opt",    "orderby_opt",   "limit_opt",   
  "values",        "nexprlist",     "exprlist",      "sclp",        
  "as",            "seltablist",    "stl_prefix",    "joinop",      
  "indexed_opt",   "on_opt",        "using_opt",     "joinop2",     
  "idlist",        "setlist",       "insert_cmd",    "idlist_opt",  
  "likeop",        "between_op",    "in_op",         "case_operand",
  "case_exprlist",  "case_else",     "uniqueflag",    "collate",     
  "nmnum",         "trigger_decl",  "trigger_cmd_list",  "trigger_time",
  "trigger_event",  "foreach_clause",  "when_clause",   "trigger_cmd", 
  "trnm",          "tridxby",       "database_kw_opt",  "key_opt",     
  "add_column_fullname",  "kwcolumn_opt",  "create_vtab",   "vtabarglist", 
  "vtabarg",       "vtabargtoken",  "lp",            "anylist",     
  "wqlist",      
};
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {







|
|
|
|
|
|
|
|
|
<







128219
128220
128221
128222
128223
128224
128225
128226
128227
128228
128229
128230
128231
128232
128233
128234

128235
128236
128237
128238
128239
128240
128241
  "sortlist",      "eidlist",       "defer_subclause_opt",  "orconf",      
  "resolvetype",   "raisetype",     "ifexists",      "fullname",    
  "selectnowith",  "oneselect",     "with",          "multiselect_op",
  "distinct",      "selcollist",    "from",          "where_opt",   
  "groupby_opt",   "having_opt",    "orderby_opt",   "limit_opt",   
  "values",        "nexprlist",     "exprlist",      "sclp",        
  "as",            "seltablist",    "stl_prefix",    "joinop",      
  "indexed_opt",   "on_opt",        "using_opt",     "idlist",      
  "setlist",       "insert_cmd",    "idlist_opt",    "likeop",      
  "between_op",    "in_op",         "case_operand",  "case_exprlist",
  "case_else",     "uniqueflag",    "collate",       "nmnum",       
  "trigger_decl",  "trigger_cmd_list",  "trigger_time",  "trigger_event",
  "foreach_clause",  "when_clause",   "trigger_cmd",   "trnm",        
  "tridxby",       "database_kw_opt",  "key_opt",       "add_column_fullname",
  "kwcolumn_opt",  "create_vtab",   "vtabarglist",   "vtabarg",     
  "vtabargtoken",  "lp",            "anylist",       "wqlist",      

};
#endif /* NDEBUG */

#ifndef NDEBUG
/* For tracing reduce actions, the names of all rules are required.
*/
static const char *const yyRuleName[] = {
127334
127335
127336
127337
127338
127339
127340









127341
127342
127343
127344
127345
127346
127347
127348
127349
127350
127351
127352
127353
127354
127355
127356
127357
127358
127359
127360
127361
127362
127363
127364
127365
127366
127367
127368
127369
127370
127371
127372
127373


127374
127375
127376
127377
127378
127379
127380
127381
127382
127383
127384
127385
127386
127387
127388
127389
127390
127391

127392
127393
127394
127395
127396
127397
127398
127399
127400
127401
127402
127403
127404
127405
127406
127407
127408
127409
127410
127411
127412
127413
127414
127415
127416
127417
127418
127419
127420
127421
127422
127423
127424
127425
127426
127427
127428
127429
127430
127431
127432
127433
127434
127435
127436
127437
127438
127439
127440
127441
127442
127443
127444
127445
127446
127447
127448
127449
127450
127451
127452
127453
127454
127455
127456
127457
127458
127459
127460
127461
127462
127463

127464
127465
127466
127467
127468
127469
127470
127471
127472
127473
127474
127475
127476
127477
127478
127479
127480
127481
127482

127483
127484
127485
127486
127487
127488
127489
127490
127491
127492
127493
127494
127495
127496
127497
127498
127499
127500
127501
127502
127503
127504
127505
127506
127507
127508
127509
127510
127511
127512
127513
127514
127515

127516
127517
127518
127519
127520
127521
127522
127523
127524
127525
127526
127527
127528
127529
127530
127531
127532
127533
127534
127535
127536
127537
127538
127539
127540
127541
127542
127543
127544
127545
127546
127547
127548
127549

127550
127551
127552
127553
127554
127555
127556
127557
127558
127559
127560
127561
127562
127563
127564
127565

127566

127567
127568
127569
127570
127571
127572
127573
127574
127575
127576
127577
127578
127579
127580
127581
127582
127583
127584

127585
127586
127587
127588
127589
127590
127591
127592
127593
127594
127595

127596
127597
127598
127599
127600
127601
127602
127603
127604
127605
127606
127607
127608
127609
127610
127611
              yyTracePrompt, p->yystksz);
    }
#endif
  }
}
#endif










/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Parser and sqlite3ParserFree.
*/
SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(u64)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (u64)sizeof(yyParser) );
  if( pParser ){
    pParser->yyidx = -1;
#ifdef YYTRACKMAXSTACKDEPTH
    pParser->yyidxMax = 0;
#endif
#if YYSTACKDEPTH<=0
    pParser->yystack = NULL;
    pParser->yystksz = 0;
    yyGrowStack(pParser);
#endif
  }
  return pParser;
}

/* The following function deletes the value associated with a
** symbol.  The symbol can be either a terminal or nonterminal.
** "yymajor" is the symbol code, and "yypminor" is a pointer to
** the value.


*/
static void yy_destructor(
  yyParser *yypParser,    /* The parser */
  YYCODETYPE yymajor,     /* Type code for object to destroy */
  YYMINORTYPE *yypminor   /* The object to be destroyed */
){
  sqlite3ParserARG_FETCH;
  switch( yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are not used
    ** inside the C code.
    */

    case 163: /* select */
    case 196: /* selectnowith */
    case 197: /* oneselect */
    case 208: /* values */
{
sqlite3SelectDelete(pParse->db, (yypminor->yy3));
}
      break;
    case 174: /* term */
    case 175: /* expr */
{
sqlite3ExprDelete(pParse->db, (yypminor->yy346).pExpr);
}
      break;
    case 179: /* eidlist_opt */
    case 188: /* sortlist */
    case 189: /* eidlist */
    case 201: /* selcollist */
    case 204: /* groupby_opt */
    case 206: /* orderby_opt */
    case 209: /* nexprlist */
    case 210: /* exprlist */
    case 211: /* sclp */
    case 221: /* setlist */
    case 228: /* case_exprlist */
{
sqlite3ExprListDelete(pParse->db, (yypminor->yy14));
}
      break;
    case 195: /* fullname */
    case 202: /* from */
    case 213: /* seltablist */
    case 214: /* stl_prefix */
{
sqlite3SrcListDelete(pParse->db, (yypminor->yy65));
}
      break;
    case 198: /* with */
    case 252: /* wqlist */
{
sqlite3WithDelete(pParse->db, (yypminor->yy59));
}
      break;
    case 203: /* where_opt */
    case 205: /* having_opt */
    case 217: /* on_opt */
    case 227: /* case_operand */
    case 229: /* case_else */
    case 238: /* when_clause */
    case 243: /* key_opt */
{
sqlite3ExprDelete(pParse->db, (yypminor->yy132));
}
      break;
    case 218: /* using_opt */
    case 220: /* idlist */
    case 223: /* idlist_opt */
{
sqlite3IdListDelete(pParse->db, (yypminor->yy408));
}
      break;
    case 234: /* trigger_cmd_list */
    case 239: /* trigger_cmd */
{
sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy473));
}
      break;
    case 236: /* trigger_event */
{
sqlite3IdListDelete(pParse->db, (yypminor->yy378).b);
}
      break;

    default:  break;   /* If no destructor action specified: do nothing */
  }
}

/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.
**
** Return the major token number for the symbol popped.
*/
static int yy_pop_parser_stack(yyParser *pParser){
  YYCODETYPE yymajor;
  yyStackEntry *yytos = &pParser->yystack[pParser->yyidx];

  /* There is no mechanism by which the parser stack can be popped below
  ** empty in SQLite.  */
  assert( pParser->yyidx>=0 );

#ifndef NDEBUG
  if( yyTraceFILE && pParser->yyidx>=0 ){
    fprintf(yyTraceFILE,"%sPopping %s\n",
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif
  yymajor = yytos->major;
  yy_destructor(pParser, yymajor, &yytos->minor);
  pParser->yyidx--;
  return yymajor;
}

/* 
** Deallocate and destroy a parser.  Destructors are all called for
** all stack elements before shutting the parser down.
**
** Inputs:
** <ul>
** <li>  A pointer to the parser.  This should be a pointer
**       obtained from sqlite3ParserAlloc.
** <li>  A pointer to a function used to reclaim memory obtained
**       from malloc.
** </ul>
*/
SQLITE_PRIVATE void sqlite3ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  yyParser *pParser = (yyParser*)p;
  /* In SQLite, we never try to destroy a parser that was not successfully
  ** created in the first place. */
  if( NEVER(pParser==0) ) return;

  while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
  free(pParser->yystack);
#endif
  (*freeProc)((void*)pParser);
}

/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
  yyParser *pParser = (yyParser*)p;
  return pParser->yyidxMax;
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is YYNOCODE, then check to see if the action is
** independent of the look-ahead.  If it is, return the action, otherwise
** return YY_NO_ACTION.
*/
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 
  if( stateno>=YY_MIN_REDUCE ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );

  i = yy_shift_ofst[stateno];
  if( i==YY_SHIFT_USE_DFLT ) return yy_default[stateno];
  assert( iLookAhead!=YYNOCODE );
  i += iLookAhead;
  if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
    if( iLookAhead>0 ){
#ifdef YYFALLBACK
      YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
             && (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
        if( yyTraceFILE ){
          fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
             yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
        }
#endif

        return yy_find_shift_action(pParser, iFallback);

      }
#endif
#ifdef YYWILDCARD
      {
        int j = i - iLookAhead + YYWILDCARD;
        if( 
#if YY_SHIFT_MIN+YYWILDCARD<0
          j>=0 &&
#endif
#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
          j<YY_ACTTAB_COUNT &&
#endif
          yy_lookahead[j]==YYWILDCARD
        ){
#ifndef NDEBUG
          if( yyTraceFILE ){
            fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
               yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[YYWILDCARD]);

          }
#endif /* NDEBUG */
          return yy_action[j];
        }
      }
#endif /* YYWILDCARD */
    }
    return yy_default[stateno];
  }else{
    return yy_action[i];
  }

}

/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is YYNOCODE, then check to see if the action is
** independent of the look-ahead.  If it is, return the action, otherwise
** return YY_NO_ACTION.
*/
static int yy_find_reduce_action(
  int stateno,              /* Current state number */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
#ifdef YYERRORSYMBOL







>
>
>
>
>
>
>
>
>












|

|














|
|
|
|
>
>















|


>





|





|











|
|

|







|



|

|





|
|
|
|

|



|
|

|


|
|

|


|

|


>









<
<

|
<
|
<
<
<

>

|





<
|
<
<



|


|
|
|
<
<
<
<






|
<
|
>




















<
<
<
<










>
|
|
|
|
|
|

|
|
|

|
|
|
|

>
|
>
|


|
|
|

|


|

|
|

|
|
|
>
|

|
|
|

|
|
|
|
|
>





<
<
<
<







128590
128591
128592
128593
128594
128595
128596
128597
128598
128599
128600
128601
128602
128603
128604
128605
128606
128607
128608
128609
128610
128611
128612
128613
128614
128615
128616
128617
128618
128619
128620
128621
128622
128623
128624
128625
128626
128627
128628
128629
128630
128631
128632
128633
128634
128635
128636
128637
128638
128639
128640
128641
128642
128643
128644
128645
128646
128647
128648
128649
128650
128651
128652
128653
128654
128655
128656
128657
128658
128659
128660
128661
128662
128663
128664
128665
128666
128667
128668
128669
128670
128671
128672
128673
128674
128675
128676
128677
128678
128679
128680
128681
128682
128683
128684
128685
128686
128687
128688
128689
128690
128691
128692
128693
128694
128695
128696
128697
128698
128699
128700
128701
128702
128703
128704
128705
128706
128707
128708
128709
128710
128711
128712
128713
128714
128715
128716
128717
128718
128719
128720
128721
128722
128723
128724
128725
128726
128727
128728
128729
128730
128731
128732
128733
128734
128735
128736
128737
128738
128739
128740
128741


128742
128743

128744



128745
128746
128747
128748
128749
128750
128751
128752
128753

128754


128755
128756
128757
128758
128759
128760
128761
128762
128763




128764
128765
128766
128767
128768
128769
128770

128771
128772
128773
128774
128775
128776
128777
128778
128779
128780
128781
128782
128783
128784
128785
128786
128787
128788
128789
128790
128791
128792




128793
128794
128795
128796
128797
128798
128799
128800
128801
128802
128803
128804
128805
128806
128807
128808
128809
128810
128811
128812
128813
128814
128815
128816
128817
128818
128819
128820
128821
128822
128823
128824
128825
128826
128827
128828
128829
128830
128831
128832
128833
128834
128835
128836
128837
128838
128839
128840
128841
128842
128843
128844
128845
128846
128847
128848
128849
128850
128851
128852
128853
128854
128855
128856
128857
128858




128859
128860
128861
128862
128863
128864
128865
              yyTracePrompt, p->yystksz);
    }
#endif
  }
}
#endif

/* Datatype of the argument to the memory allocated passed as the
** second argument to sqlite3ParserAlloc() below.  This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef YYMALLOCARGTYPE
# define YYMALLOCARGTYPE size_t
#endif

/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Parser and sqlite3ParserFree.
*/
SQLITE_PRIVATE void *sqlite3ParserAlloc(void *(*mallocProc)(YYMALLOCARGTYPE)){
  yyParser *pParser;
  pParser = (yyParser*)(*mallocProc)( (YYMALLOCARGTYPE)sizeof(yyParser) );
  if( pParser ){
    pParser->yyidx = -1;
#ifdef YYTRACKMAXSTACKDEPTH
    pParser->yyidxMax = 0;
#endif
#if YYSTACKDEPTH<=0
    pParser->yystack = NULL;
    pParser->yystksz = 0;
    yyGrowStack(pParser);
#endif
  }
  return pParser;
}

/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "yymajor" is the symbol code, and "yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
static void yy_destructor(
  yyParser *yypParser,    /* The parser */
  YYCODETYPE yymajor,     /* Type code for object to destroy */
  YYMINORTYPE *yypminor   /* The object to be destroyed */
){
  sqlite3ParserARG_FETCH;
  switch( yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are *not* used
    ** inside the C code.
    */
/********* Begin destructor definitions ***************************************/
    case 163: /* select */
    case 196: /* selectnowith */
    case 197: /* oneselect */
    case 208: /* values */
{
sqlite3SelectDelete(pParse->db, (yypminor->yy387));
}
      break;
    case 174: /* term */
    case 175: /* expr */
{
sqlite3ExprDelete(pParse->db, (yypminor->yy118).pExpr);
}
      break;
    case 179: /* eidlist_opt */
    case 188: /* sortlist */
    case 189: /* eidlist */
    case 201: /* selcollist */
    case 204: /* groupby_opt */
    case 206: /* orderby_opt */
    case 209: /* nexprlist */
    case 210: /* exprlist */
    case 211: /* sclp */
    case 220: /* setlist */
    case 227: /* case_exprlist */
{
sqlite3ExprListDelete(pParse->db, (yypminor->yy322));
}
      break;
    case 195: /* fullname */
    case 202: /* from */
    case 213: /* seltablist */
    case 214: /* stl_prefix */
{
sqlite3SrcListDelete(pParse->db, (yypminor->yy259));
}
      break;
    case 198: /* with */
    case 251: /* wqlist */
{
sqlite3WithDelete(pParse->db, (yypminor->yy451));
}
      break;
    case 203: /* where_opt */
    case 205: /* having_opt */
    case 217: /* on_opt */
    case 226: /* case_operand */
    case 228: /* case_else */
    case 237: /* when_clause */
    case 242: /* key_opt */
{
sqlite3ExprDelete(pParse->db, (yypminor->yy314));
}
      break;
    case 218: /* using_opt */
    case 219: /* idlist */
    case 222: /* idlist_opt */
{
sqlite3IdListDelete(pParse->db, (yypminor->yy384));
}
      break;
    case 233: /* trigger_cmd_list */
    case 238: /* trigger_cmd */
{
sqlite3DeleteTriggerStep(pParse->db, (yypminor->yy203));
}
      break;
    case 235: /* trigger_event */
{
sqlite3IdListDelete(pParse->db, (yypminor->yy90).b);
}
      break;
/********* End destructor definitions *****************************************/
    default:  break;   /* If no destructor action specified: do nothing */
  }
}

/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.


*/
static void yy_pop_parser_stack(yyParser *pParser){

  yyStackEntry *yytos;



  assert( pParser->yyidx>=0 );
  yytos = &pParser->yystack[pParser->yyidx--];
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sPopping %s\n",
      yyTracePrompt,
      yyTokenName[yytos->major]);
  }
#endif

  yy_destructor(pParser, yytos->major, &yytos->minor);


}

/* 
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
**
** If the YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.




*/
SQLITE_PRIVATE void sqlite3ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  yyParser *pParser = (yyParser*)p;
#ifndef YYPARSEFREENEVERNULL

  if( pParser==0 ) return;
#endif
  while( pParser->yyidx>=0 ) yy_pop_parser_stack(pParser);
#if YYSTACKDEPTH<=0
  free(pParser->yystack);
#endif
  (*freeProc)((void*)pParser);
}

/*
** Return the peak depth of the stack for a parser.
*/
#ifdef YYTRACKMAXSTACKDEPTH
SQLITE_PRIVATE int sqlite3ParserStackPeak(void *p){
  yyParser *pParser = (yyParser*)p;
  return pParser->yyidxMax;
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.




*/
static int yy_find_shift_action(
  yyParser *pParser,        /* The parser */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->yystack[pParser->yyidx].stateno;
 
  if( stateno>=YY_MIN_REDUCE ) return stateno;
  assert( stateno <= YY_SHIFT_COUNT );
  do{
    i = yy_shift_ofst[stateno];
    if( i==YY_SHIFT_USE_DFLT ) return yy_default[stateno];
    assert( iLookAhead!=YYNOCODE );
    i += iLookAhead;
    if( i<0 || i>=YY_ACTTAB_COUNT || yy_lookahead[i]!=iLookAhead ){
      if( iLookAhead>0 ){
#ifdef YYFALLBACK
        YYCODETYPE iFallback;            /* Fallback token */
        if( iLookAhead<sizeof(yyFallback)/sizeof(yyFallback[0])
               && (iFallback = yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
          if( yyTraceFILE ){
            fprintf(yyTraceFILE, "%sFALLBACK %s => %s\n",
               yyTracePrompt, yyTokenName[iLookAhead], yyTokenName[iFallback]);
          }
#endif
          assert( yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
          iLookAhead = iFallback;
          continue;
        }
#endif
#ifdef YYWILDCARD
        {
          int j = i - iLookAhead + YYWILDCARD;
          if( 
#if YY_SHIFT_MIN+YYWILDCARD<0
            j>=0 &&
#endif
#if YY_SHIFT_MAX+YYWILDCARD>=YY_ACTTAB_COUNT
            j<YY_ACTTAB_COUNT &&
#endif
            yy_lookahead[j]==YYWILDCARD
          ){
#ifndef NDEBUG
            if( yyTraceFILE ){
              fprintf(yyTraceFILE, "%sWILDCARD %s => %s\n",
                 yyTracePrompt, yyTokenName[iLookAhead],
                 yyTokenName[YYWILDCARD]);
            }
#endif /* NDEBUG */
            return yy_action[j];
          }
        }
#endif /* YYWILDCARD */
      }
      return yy_default[stateno];
    }else{
      return yy_action[i];
    }
  }while(1);
}

/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.




*/
static int yy_find_reduce_action(
  int stateno,              /* Current state number */
  YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
#ifdef YYERRORSYMBOL
127640
127641
127642
127643
127644
127645
127646

127647
127648
127649

127650
127651
127652
127653
127654
127655
127656
127657
127658
127659
127660
127661
127662
127663
127664
127665
127666
127667

127668
127669
127670
127671
127672
127673
127674
127675
127676
127677
127678
127679
127680
127681
127682
127683
   if( yyTraceFILE ){
     fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
   }
#endif
   while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */


  UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
  sqlite3ErrorMsg(pParse, "parser stack overflow");

   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState){
  if( yyTraceFILE ){
    int i;
    if( yyNewState<YYNSTATE ){
      fprintf(yyTraceFILE,"%sShift %d\n",yyTracePrompt,yyNewState);
      fprintf(yyTraceFILE,"%sStack:",yyTracePrompt);
      for(i=1; i<=yypParser->yyidx; i++)
        fprintf(yyTraceFILE," %s",yyTokenName[yypParser->yystack[i].major]);
      fprintf(yyTraceFILE,"\n");
    }else{
      fprintf(yyTraceFILE,"%sShift *\n",yyTracePrompt);

    }
  }
}
#else
# define yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.  Return the number of errors.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
){







>



>









<

|
<
<
|
|

|
>








|







128894
128895
128896
128897
128898
128899
128900
128901
128902
128903
128904
128905
128906
128907
128908
128909
128910
128911
128912
128913
128914

128915
128916


128917
128918
128919
128920
128921
128922
128923
128924
128925
128926
128927
128928
128929
128930
128931
128932
128933
128934
128935
128936
128937
   if( yyTraceFILE ){
     fprintf(yyTraceFILE,"%sStack Overflow!\n",yyTracePrompt);
   }
#endif
   while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/

  UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */
  sqlite3ErrorMsg(pParse, "parser stack overflow");
/******** End %stack_overflow code ********************************************/
   sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void yyTraceShift(yyParser *yypParser, int yyNewState){
  if( yyTraceFILE ){

    if( yyNewState<YYNSTATE ){
      fprintf(yyTraceFILE,"%sShift '%s', go to state %d\n",


         yyTracePrompt,yyTokenName[yypParser->yystack[yypParser->yyidx].major],
         yyNewState);
    }else{
      fprintf(yyTraceFILE,"%sShift '%s'\n",
         yyTracePrompt,yyTokenName[yypParser->yystack[yypParser->yyidx].major]);
    }
  }
}
#else
# define yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.
*/
static void yy_shift(
  yyParser *yypParser,          /* The parser to be shifted */
  int yyNewState,               /* The new state to shift in */
  int yyMajor,                  /* The major token to shift in */
  YYMINORTYPE *yypMinor         /* Pointer to the minor token to shift in */
){
127886
127887
127888
127889
127890
127891
127892
127893
127894
127895
127896
127897
127898
127899
127900
127901
127902
127903
127904
127905
127906
127907
127908
127909
  { 207, 2 },
  { 207, 4 },
  { 207, 4 },
  { 149, 6 },
  { 203, 0 },
  { 203, 2 },
  { 149, 8 },
  { 221, 5 },
  { 221, 3 },
  { 149, 6 },
  { 149, 7 },
  { 222, 2 },
  { 222, 1 },
  { 223, 0 },
  { 223, 3 },
  { 220, 3 },
  { 220, 1 },
  { 175, 1 },
  { 175, 3 },
  { 174, 1 },
  { 175, 1 },
  { 175, 1 },
  { 175, 3 },
  { 175, 5 },







|
|


|
|
|
|
|
|







129140
129141
129142
129143
129144
129145
129146
129147
129148
129149
129150
129151
129152
129153
129154
129155
129156
129157
129158
129159
129160
129161
129162
129163
  { 207, 2 },
  { 207, 4 },
  { 207, 4 },
  { 149, 6 },
  { 203, 0 },
  { 203, 2 },
  { 149, 8 },
  { 220, 5 },
  { 220, 3 },
  { 149, 6 },
  { 149, 7 },
  { 221, 2 },
  { 221, 1 },
  { 222, 0 },
  { 222, 3 },
  { 219, 3 },
  { 219, 1 },
  { 175, 1 },
  { 175, 3 },
  { 174, 1 },
  { 175, 1 },
  { 175, 1 },
  { 175, 3 },
  { 175, 5 },
127919
127920
127921
127922
127923
127924
127925
127926
127927
127928
127929
127930
127931
127932
127933
127934
127935
127936
127937
127938
127939
127940
127941
127942
127943
127944
127945
127946
127947
127948
127949
127950
127951
127952
127953
127954
127955
127956
127957
127958
127959
127960
127961
127962
127963
127964
127965
127966
127967
127968
127969
127970
127971
127972
127973
127974
127975
127976
127977
127978
127979
127980
127981
127982
127983
127984
127985
127986



127987
127988
127989
127990
127991
127992
127993
127994
127995
127996
127997
127998
127999
128000
128001
128002
128003
128004
128005
128006
128007
128008
128009
128010
128011
128012
128013
128014
128015
128016
128017
128018
128019
128020
128021
128022
128023
128024
128025
128026
128027
128028
128029
128030

128031

128032
128033
128034
128035
128036
128037
128038
128039
128040
128041
128042
128043
128044
128045
128046
128047
128048
128049
128050
128051
128052
128053
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 224, 1 },
  { 224, 2 },
  { 175, 3 },
  { 175, 5 },
  { 175, 2 },
  { 175, 3 },
  { 175, 3 },
  { 175, 4 },
  { 175, 2 },
  { 175, 2 },
  { 175, 2 },
  { 175, 2 },
  { 225, 1 },
  { 225, 2 },
  { 175, 5 },
  { 226, 1 },
  { 226, 2 },
  { 175, 5 },
  { 175, 3 },
  { 175, 5 },
  { 175, 4 },
  { 175, 4 },
  { 175, 5 },
  { 228, 5 },
  { 228, 4 },
  { 229, 2 },
  { 229, 0 },
  { 227, 1 },
  { 227, 0 },
  { 210, 1 },
  { 210, 0 },
  { 209, 3 },
  { 209, 1 },
  { 149, 12 },
  { 230, 1 },
  { 230, 0 },
  { 179, 0 },
  { 179, 3 },
  { 189, 5 },
  { 189, 3 },
  { 231, 0 },
  { 231, 2 },
  { 149, 4 },
  { 149, 1 },
  { 149, 2 },
  { 149, 3 },
  { 149, 5 },
  { 149, 6 },
  { 149, 5 },
  { 149, 6 },
  { 232, 1 },
  { 232, 1 },
  { 232, 1 },
  { 232, 1 },
  { 232, 1 },
  { 171, 2 },
  { 171, 1 },
  { 172, 2 },
  { 149, 5 },
  { 233, 11 },
  { 235, 1 },



  { 235, 1 },
  { 235, 2 },
  { 235, 0 },
  { 236, 1 },
  { 236, 1 },
  { 236, 3 },
  { 237, 0 },
  { 237, 3 },
  { 238, 0 },
  { 238, 2 },
  { 234, 3 },
  { 234, 2 },
  { 240, 1 },
  { 240, 3 },
  { 241, 0 },
  { 241, 3 },
  { 241, 2 },
  { 239, 7 },
  { 239, 5 },
  { 239, 5 },
  { 239, 1 },
  { 175, 4 },
  { 175, 6 },
  { 193, 1 },
  { 193, 1 },
  { 193, 1 },
  { 149, 4 },
  { 149, 6 },
  { 149, 3 },
  { 243, 0 },
  { 243, 2 },
  { 242, 1 },
  { 242, 0 },
  { 149, 1 },
  { 149, 3 },
  { 149, 1 },
  { 149, 3 },
  { 149, 6 },
  { 149, 6 },
  { 244, 1 },
  { 245, 0 },
  { 245, 1 },
  { 149, 1 },
  { 149, 4 },

  { 246, 8 },

  { 247, 1 },
  { 247, 3 },
  { 248, 0 },
  { 248, 2 },
  { 249, 1 },
  { 249, 3 },
  { 250, 1 },
  { 251, 0 },
  { 251, 4 },
  { 251, 2 },
  { 198, 0 },
  { 198, 2 },
  { 198, 3 },
  { 252, 6 },
  { 252, 8 },
};

static void yy_accept(yyParser*);  /* Forward Declaration */

/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.







|
|










|
|

|
|






|
|
|
|
|
|





|
|




|
|








|
|
|
|
|




|
|
>
>
>

|
|
|
<


|
|
|
|
|
|

<
<
|
|
|
|
|








|
|
|
|






|
|
|


>
|
>
|
|
|
|

<
|
<
|
|



|
|







129173
129174
129175
129176
129177
129178
129179
129180
129181
129182
129183
129184
129185
129186
129187
129188
129189
129190
129191
129192
129193
129194
129195
129196
129197
129198
129199
129200
129201
129202
129203
129204
129205
129206
129207
129208
129209
129210
129211
129212
129213
129214
129215
129216
129217
129218
129219
129220
129221
129222
129223
129224
129225
129226
129227
129228
129229
129230
129231
129232
129233
129234
129235
129236
129237
129238
129239
129240
129241
129242
129243
129244
129245
129246
129247

129248
129249
129250
129251
129252
129253
129254
129255
129256


129257
129258
129259
129260
129261
129262
129263
129264
129265
129266
129267
129268
129269
129270
129271
129272
129273
129274
129275
129276
129277
129278
129279
129280
129281
129282
129283
129284
129285
129286
129287
129288
129289
129290
129291
129292

129293

129294
129295
129296
129297
129298
129299
129300
129301
129302
129303
129304
129305
129306
129307
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 175, 3 },
  { 223, 1 },
  { 223, 2 },
  { 175, 3 },
  { 175, 5 },
  { 175, 2 },
  { 175, 3 },
  { 175, 3 },
  { 175, 4 },
  { 175, 2 },
  { 175, 2 },
  { 175, 2 },
  { 175, 2 },
  { 224, 1 },
  { 224, 2 },
  { 175, 5 },
  { 225, 1 },
  { 225, 2 },
  { 175, 5 },
  { 175, 3 },
  { 175, 5 },
  { 175, 4 },
  { 175, 4 },
  { 175, 5 },
  { 227, 5 },
  { 227, 4 },
  { 228, 2 },
  { 228, 0 },
  { 226, 1 },
  { 226, 0 },
  { 210, 1 },
  { 210, 0 },
  { 209, 3 },
  { 209, 1 },
  { 149, 12 },
  { 229, 1 },
  { 229, 0 },
  { 179, 0 },
  { 179, 3 },
  { 189, 5 },
  { 189, 3 },
  { 230, 0 },
  { 230, 2 },
  { 149, 4 },
  { 149, 1 },
  { 149, 2 },
  { 149, 3 },
  { 149, 5 },
  { 149, 6 },
  { 149, 5 },
  { 149, 6 },
  { 231, 1 },
  { 231, 1 },
  { 231, 1 },
  { 231, 1 },
  { 231, 1 },
  { 171, 2 },
  { 171, 1 },
  { 172, 2 },
  { 149, 5 },
  { 232, 11 },
  { 234, 1 },
  { 234, 1 },
  { 234, 2 },
  { 234, 0 },
  { 235, 1 },
  { 235, 1 },
  { 235, 3 },
  { 236, 0 },

  { 236, 3 },
  { 237, 0 },
  { 237, 2 },
  { 233, 3 },
  { 233, 2 },
  { 239, 1 },
  { 239, 3 },
  { 240, 0 },
  { 240, 3 },


  { 240, 2 },
  { 238, 7 },
  { 238, 5 },
  { 238, 5 },
  { 238, 1 },
  { 175, 4 },
  { 175, 6 },
  { 193, 1 },
  { 193, 1 },
  { 193, 1 },
  { 149, 4 },
  { 149, 6 },
  { 149, 3 },
  { 242, 0 },
  { 242, 2 },
  { 241, 1 },
  { 241, 0 },
  { 149, 1 },
  { 149, 3 },
  { 149, 1 },
  { 149, 3 },
  { 149, 6 },
  { 149, 6 },
  { 243, 1 },
  { 244, 0 },
  { 244, 1 },
  { 149, 1 },
  { 149, 4 },
  { 245, 8 },
  { 246, 1 },
  { 246, 3 },
  { 247, 0 },
  { 247, 2 },
  { 248, 1 },
  { 248, 3 },
  { 249, 1 },

  { 250, 0 },

  { 250, 4 },
  { 250, 2 },
  { 198, 0 },
  { 198, 2 },
  { 198, 3 },
  { 251, 6 },
  { 251, 8 },
};

static void yy_accept(yyParser*);  /* Forward Declaration */

/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.
128063
128064
128065
128066
128067
128068
128069
128070
128071
128072
128073
128074
128075
128076
128077
128078
128079
128080
128081
128082
128083
128084
128085
128086
128087
128088
128089
128090
128091
128092
128093
128094
128095
128096
128097
128098
128099
128100
128101

128102
128103
128104
128105
128106
128107
128108
128109
128110
128111
128112
128113
128114
128115
128116
128117
128118
128119
128120
128121
128122
128123
128124
128125
128126
128127
128128
128129
128130
128131
128132
  int yysize;                     /* Amount to pop the stack */
  sqlite3ParserARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    fprintf(yyTraceFILE, "%sReduce [%s] -> state %d.\n", yyTracePrompt,
      yyRuleName[yyruleno], yymsp[-yysize].stateno);
  }
#endif /* NDEBUG */

  /* Silence complaints from purify about yygotominor being uninitialized
  ** in some cases when it is copied into the stack after the following
  ** switch.  yygotominor is uninitialized when a rule reduces that does
  ** not set the value of its left-hand side nonterminal.  Leaving the
  ** value of the nonterminal uninitialized is utterly harmless as long
  ** as the value is never used.  So really the only thing this code
  ** accomplishes is to quieten purify.  
  **
  ** 2007-01-16:  The wireshark project (www.wireshark.org) reports that
  ** without this code, their parser segfaults.  I'm not sure what there
  ** parser is doing to make this happen.  This is the second bug report
  ** from wireshark this week.  Clearly they are stressing Lemon in ways
  ** that it has not been previously stressed...  (SQLite ticket #2172)
  */
  /*memset(&yygotominor, 0, sizeof(yygotominor));*/
  yygotominor = yyzerominor;


  switch( yyruleno ){
  /* Beginning here are the reduction cases.  A typical example
  ** follows:
  **   case 0:
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */

      case 5: /* explain ::= */
{ sqlite3BeginParse(pParse, 0); }
        break;
      case 6: /* explain ::= EXPLAIN */
{ sqlite3BeginParse(pParse, 1); }
        break;
      case 7: /* explain ::= EXPLAIN QUERY PLAN */
{ sqlite3BeginParse(pParse, 2); }
        break;
      case 8: /* cmdx ::= cmd */
{ sqlite3FinishCoding(pParse); }
        break;
      case 9: /* cmd ::= BEGIN transtype trans_opt */
{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy328);}
        break;
      case 13: /* transtype ::= */
{yygotominor.yy328 = TK_DEFERRED;}
        break;
      case 14: /* transtype ::= DEFERRED */
      case 15: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==15);
      case 16: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==16);
      case 115: /* multiselect_op ::= UNION */ yytestcase(yyruleno==115);
      case 117: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==117);
{yygotominor.yy328 = yymsp[0].major;}
        break;
      case 17: /* cmd ::= COMMIT trans_opt */
      case 18: /* cmd ::= END trans_opt */ yytestcase(yyruleno==18);
{sqlite3CommitTransaction(pParse);}
        break;
      case 19: /* cmd ::= ROLLBACK trans_opt */
{sqlite3RollbackTransaction(pParse);}







|



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<










>













|


|






|







129317
129318
129319
129320
129321
129322
129323
129324
129325
129326
129327
















129328

129329
129330
129331
129332
129333
129334
129335
129336
129337
129338
129339
129340
129341
129342
129343
129344
129345
129346
129347
129348
129349
129350
129351
129352
129353
129354
129355
129356
129357
129358
129359
129360
129361
129362
129363
129364
129365
129366
129367
129368
129369
129370
  int yysize;                     /* Amount to pop the stack */
  sqlite3ParserARG_FETCH;
  yymsp = &yypParser->yystack[yypParser->yyidx];
#ifndef NDEBUG
  if( yyTraceFILE && yyruleno>=0 
        && yyruleno<(int)(sizeof(yyRuleName)/sizeof(yyRuleName[0])) ){
    yysize = yyRuleInfo[yyruleno].nrhs;
    fprintf(yyTraceFILE, "%sReduce [%s], go to state %d.\n", yyTracePrompt,
      yyRuleName[yyruleno], yymsp[-yysize].stateno);
  }
#endif /* NDEBUG */
















  yygotominor = yyzerominor;


  switch( yyruleno ){
  /* Beginning here are the reduction cases.  A typical example
  ** follows:
  **   case 0:
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */
/********** Begin reduce actions **********************************************/
      case 5: /* explain ::= */
{ sqlite3BeginParse(pParse, 0); }
        break;
      case 6: /* explain ::= EXPLAIN */
{ sqlite3BeginParse(pParse, 1); }
        break;
      case 7: /* explain ::= EXPLAIN QUERY PLAN */
{ sqlite3BeginParse(pParse, 2); }
        break;
      case 8: /* cmdx ::= cmd */
{ sqlite3FinishCoding(pParse); }
        break;
      case 9: /* cmd ::= BEGIN transtype trans_opt */
{sqlite3BeginTransaction(pParse, yymsp[-1].minor.yy4);}
        break;
      case 13: /* transtype ::= */
{yygotominor.yy4 = TK_DEFERRED;}
        break;
      case 14: /* transtype ::= DEFERRED */
      case 15: /* transtype ::= IMMEDIATE */ yytestcase(yyruleno==15);
      case 16: /* transtype ::= EXCLUSIVE */ yytestcase(yyruleno==16);
      case 115: /* multiselect_op ::= UNION */ yytestcase(yyruleno==115);
      case 117: /* multiselect_op ::= EXCEPT|INTERSECT */ yytestcase(yyruleno==117);
{yygotominor.yy4 = yymsp[0].major;}
        break;
      case 17: /* cmd ::= COMMIT trans_opt */
      case 18: /* cmd ::= END trans_opt */ yytestcase(yyruleno==18);
{sqlite3CommitTransaction(pParse);}
        break;
      case 19: /* cmd ::= ROLLBACK trans_opt */
{sqlite3RollbackTransaction(pParse);}
128144
128145
128146
128147
128148
128149
128150
128151
128152
128153
128154
128155
128156
128157
128158
128159
128160
128161

128162
128163
128164
128165
128166
128167

128168
128169
128170
128171
128172
128173
128174
128175
128176
128177
128178
128179
128180
128181
128182
128183
128184
128185
128186
128187
128188
128189
128190
128191
128192
128193
128194
128195
128196
128197
128198
128199
128200
128201
128202
128203
128204
128205
128206
128207
128208
128209
      case 24: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
{
  sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
}
        break;
      case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
{
   sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy328,0,0,yymsp[-2].minor.yy328);
}
        break;
      case 27: /* createkw ::= CREATE */
{
  pParse->db->lookaside.bEnabled = 0;
  yygotominor.yy0 = yymsp[0].minor.yy0;
}
        break;
      case 28: /* ifnotexists ::= */
      case 31: /* temp ::= */ yytestcase(yyruleno==31);

      case 68: /* autoinc ::= */ yytestcase(yyruleno==68);
      case 81: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==81);
      case 83: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==83);
      case 85: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==85);
      case 97: /* defer_subclause_opt ::= */ yytestcase(yyruleno==97);
      case 108: /* ifexists ::= */ yytestcase(yyruleno==108);

      case 219: /* between_op ::= BETWEEN */ yytestcase(yyruleno==219);
      case 222: /* in_op ::= IN */ yytestcase(yyruleno==222);
      case 247: /* collate ::= */ yytestcase(yyruleno==247);
{yygotominor.yy328 = 0;}
        break;
      case 29: /* ifnotexists ::= IF NOT EXISTS */
      case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
      case 69: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==69);
      case 84: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==84);
      case 107: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==107);
      case 220: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==220);
      case 223: /* in_op ::= NOT IN */ yytestcase(yyruleno==223);
      case 248: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==248);
{yygotominor.yy328 = 1;}
        break;
      case 32: /* create_table_args ::= LP columnlist conslist_opt RP table_options */
{
  sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy186,0);
}
        break;
      case 33: /* create_table_args ::= AS select */
{
  sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy3);
  sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
}
        break;
      case 34: /* table_options ::= */
{yygotominor.yy186 = 0;}
        break;
      case 35: /* table_options ::= WITHOUT nm */
{
  if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){
    yygotominor.yy186 = TF_WithoutRowid | TF_NoVisibleRowid;
  }else{
    yygotominor.yy186 = 0;
    sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
  }
}
        break;
      case 38: /* column ::= columnid type carglist */
{
  yygotominor.yy0.z = yymsp[-2].minor.yy0.z;







|










>






>



|









|



|




|
|


<
<
<



|

|







129382
129383
129384
129385
129386
129387
129388
129389
129390
129391
129392
129393
129394
129395
129396
129397
129398
129399
129400
129401
129402
129403
129404
129405
129406
129407
129408
129409
129410
129411
129412
129413
129414
129415
129416
129417
129418
129419
129420
129421
129422
129423
129424
129425
129426
129427
129428
129429
129430
129431
129432
129433



129434
129435
129436
129437
129438
129439
129440
129441
129442
129443
129444
129445
129446
      case 24: /* cmd ::= ROLLBACK trans_opt TO savepoint_opt nm */
{
  sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &yymsp[0].minor.yy0);
}
        break;
      case 26: /* create_table ::= createkw temp TABLE ifnotexists nm dbnm */
{
   sqlite3StartTable(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,yymsp[-4].minor.yy4,0,0,yymsp[-2].minor.yy4);
}
        break;
      case 27: /* createkw ::= CREATE */
{
  pParse->db->lookaside.bEnabled = 0;
  yygotominor.yy0 = yymsp[0].minor.yy0;
}
        break;
      case 28: /* ifnotexists ::= */
      case 31: /* temp ::= */ yytestcase(yyruleno==31);
      case 34: /* table_options ::= */ yytestcase(yyruleno==34);
      case 68: /* autoinc ::= */ yytestcase(yyruleno==68);
      case 81: /* defer_subclause ::= NOT DEFERRABLE init_deferred_pred_opt */ yytestcase(yyruleno==81);
      case 83: /* init_deferred_pred_opt ::= */ yytestcase(yyruleno==83);
      case 85: /* init_deferred_pred_opt ::= INITIALLY IMMEDIATE */ yytestcase(yyruleno==85);
      case 97: /* defer_subclause_opt ::= */ yytestcase(yyruleno==97);
      case 108: /* ifexists ::= */ yytestcase(yyruleno==108);
      case 124: /* distinct ::= */ yytestcase(yyruleno==124);
      case 219: /* between_op ::= BETWEEN */ yytestcase(yyruleno==219);
      case 222: /* in_op ::= IN */ yytestcase(yyruleno==222);
      case 247: /* collate ::= */ yytestcase(yyruleno==247);
{yygotominor.yy4 = 0;}
        break;
      case 29: /* ifnotexists ::= IF NOT EXISTS */
      case 30: /* temp ::= TEMP */ yytestcase(yyruleno==30);
      case 69: /* autoinc ::= AUTOINCR */ yytestcase(yyruleno==69);
      case 84: /* init_deferred_pred_opt ::= INITIALLY DEFERRED */ yytestcase(yyruleno==84);
      case 107: /* ifexists ::= IF EXISTS */ yytestcase(yyruleno==107);
      case 220: /* between_op ::= NOT BETWEEN */ yytestcase(yyruleno==220);
      case 223: /* in_op ::= NOT IN */ yytestcase(yyruleno==223);
      case 248: /* collate ::= COLLATE ID|STRING */ yytestcase(yyruleno==248);
{yygotominor.yy4 = 1;}
        break;
      case 32: /* create_table_args ::= LP columnlist conslist_opt RP table_options */
{
  sqlite3EndTable(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,yymsp[0].minor.yy4,0);
}
        break;
      case 33: /* create_table_args ::= AS select */
{
  sqlite3EndTable(pParse,0,0,0,yymsp[0].minor.yy387);
  sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy387);
}
        break;



      case 35: /* table_options ::= WITHOUT nm */
{
  if( yymsp[0].minor.yy0.n==5 && sqlite3_strnicmp(yymsp[0].minor.yy0.z,"rowid",5)==0 ){
    yygotominor.yy4 = TF_WithoutRowid | TF_NoVisibleRowid;
  }else{
    yygotominor.yy4 = 0;
    sqlite3ErrorMsg(pParse, "unknown table option: %.*s", yymsp[0].minor.yy0.n, yymsp[0].minor.yy0.z);
  }
}
        break;
      case 38: /* column ::= columnid type carglist */
{
  yygotominor.yy0.z = yymsp[-2].minor.yy0.z;
128257
128258
128259
128260
128261
128262
128263
128264
128265
128266
128267
128268
128269
128270
128271
128272
128273
128274
128275
128276
128277
128278
128279
128280
128281
128282
128283
128284
128285
128286
128287
128288
128289
128290
128291
128292
128293
128294
128295
128296
128297
128298
128299
128300
128301
128302
128303
128304
128305
128306
128307
128308
128309
128310
128311
128312
128313
128314
128315
128316
128317
128318
128319
128320
128321
128322
128323
128324
128325
128326
128327
128328
128329
128330
128331
128332
128333
128334
128335
128336
128337
128338
128339

128340

128341
128342
128343
128344
128345
128346
128347
128348
128349
128350
128351
128352
128353
128354
128355
128356
128357
128358
128359
128360
128361
128362
128363
128364
128365
128366
128367
128368
128369
128370
128371
128372
128373
128374
128375
128376
128377
128378
128379

128380
128381
128382
128383
128384
128385
128386
128387
128388
128389
128390
128391
128392
128393
128394
128395
128396
128397
128398
128399
128400
128401
128402
128403
128404
128405
128406
128407
128408
128409
128410
128411
128412
128413
128414
128415
128416
128417
128418
128419
128420
128421
128422
128423
128424
128425
128426
128427
128428
128429
128430
128431
128432
128433
128434
128435
128436
128437
128438
128439
128440
128441
128442
128443
128444
128445
128446
128447
128448
128449
128450
128451
128452
128453
128454
128455
128456
128457
128458
128459
128460
128461
128462
128463
128464
128465
128466
128467
128468
128469
128470
128471
128472
128473
128474
128475
128476
128477
128478
128479
128480
128481
128482
128483
128484
128485
128486
128487
128488
128489
128490
128491
128492
128493
128494
128495
128496
128497
128498
128499
128500
128501
128502
128503
128504
128505
128506
128507
128508
128509
128510
128511
128512
128513
128514
128515
128516
128517
128518
128519
128520
128521
128522
128523
128524
128525
128526
128527
128528
128529
128530
128531
128532
128533
128534
128535
128536
128537
128538
128539
128540
128541
128542
128543
128544
128545
128546
128547
128548
128549
128550
128551
128552
128553
128554
128555
128556
128557
128558
128559
128560
128561
128562
128563
128564
128565
128566
128567
128568
128569
128570
128571
128572
128573
128574
128575
128576
128577
128578
128579
128580
128581
128582
128583
128584
128585
128586
128587
128588
128589
128590
128591
128592
128593
128594
128595
128596
128597
128598
128599
128600
128601
128602
128603
128604
128605
128606
128607
128608
128609
128610
128611
128612
128613
128614
128615
128616
128617
128618
128619
128620
128621
128622
128623
128624
128625
128626
128627
128628
128629
128630
128631
128632
128633
128634
128635
128636
128637
128638
128639
128640
128641
128642
128643
128644
128645
128646
128647
128648
128649
128650
128651
128652
128653
128654
128655
128656
128657
128658
128659
128660
128661
128662
128663
128664
128665
128666
128667
128668
128669
128670
128671
128672
128673
128674
128675
128676
128677
128678
128679
128680
128681
128682
128683
128684
128685
128686
128687
128688
128689
128690
128691
128692
128693
128694
128695
128696
128697
128698
128699
128700
128701
128702
128703
128704
128705
128706
128707
128708
128709
128710
128711
128712
128713
128714
128715
128716
128717
128718
128719
128720
128721
128722
128723
128724
128725
128726
128727
128728
128729
128730
128731
128732
128733
128734
128735
128736
128737
128738
128739
128740
128741
128742
128743
128744
128745
128746
128747
128748
128749
128750
128751
128752
128753
128754
128755
128756
128757
128758
128759
128760
128761
128762
128763
128764
128765
128766
128767
128768
128769
128770
128771
128772
128773
128774
128775
128776
128777
128778
128779
128780
128781
128782
128783
128784
128785
128786
128787
128788
128789
128790
128791
128792
128793
128794
128795
128796
128797
128798
128799
128800
128801
128802
128803
128804
128805
128806
128807
128808
128809
128810
128811
128812
128813
128814
128815
128816
128817
128818
128819
128820
128821
128822
128823
128824
128825
128826
128827
128828
128829
128830
128831
128832
128833
128834
128835
128836
128837
128838
128839
128840
128841
128842
128843
128844
128845
128846
128847
128848
128849
128850
128851
128852
128853
128854
128855
128856
128857
128858
128859
128860
128861
128862
128863
128864
128865
128866
128867
128868
128869
128870
128871
128872
128873
128874
128875
128876
128877
128878
128879
128880
128881
128882
128883
128884
128885
128886
128887
128888
128889
128890
128891
128892
128893
128894
128895
128896
128897
128898
128899
128900
128901
128902
128903
128904
128905
128906
128907
128908
128909
128910
128911
128912
128913
128914
128915
128916
128917
128918
128919
128920
128921
128922
128923
128924
128925
128926
128927
128928
128929
128930
128931
128932
128933
128934
128935
128936
128937
128938
128939
128940
128941
128942
128943
128944
128945
128946
128947
128948
128949
128950
128951
128952
128953
128954
128955
128956
128957
128958
128959
128960
128961
128962
128963
128964
128965
128966
128967
128968
128969
128970
128971
128972
128973
128974
128975
128976
128977
128978
128979
128980
128981
128982
128983
128984
128985
128986
128987
128988
128989
128990
128991
128992
128993
128994
128995
128996
128997
128998
128999
129000
129001
129002
129003
129004
129005
129006
129007
129008
129009
129010
129011
129012
129013
129014
129015
129016
129017
129018
129019
129020
129021
129022
129023
129024
129025
129026
129027
129028
129029
129030
129031
129032
129033
129034
129035
129036
129037
129038
129039
129040
129041
129042
129043
129044
129045
129046
129047
129048
129049
129050
129051
129052
129053
129054
129055
129056
129057
129058
129059
129060
129061
129062
129063
129064
129065
129066
129067
129068
129069
129070
129071
129072
129073
129074
129075
129076
129077
129078
129079
129080
129081
129082
129083
        break;
      case 54: /* ccons ::= CONSTRAINT nm */
      case 92: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==92);
{pParse->constraintName = yymsp[0].minor.yy0;}
        break;
      case 55: /* ccons ::= DEFAULT term */
      case 57: /* ccons ::= DEFAULT PLUS term */ yytestcase(yyruleno==57);
{sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy346);}
        break;
      case 56: /* ccons ::= DEFAULT LP expr RP */
{sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy346);}
        break;
      case 58: /* ccons ::= DEFAULT MINUS term */
{
  ExprSpan v;
  v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy346.pExpr, 0, 0);
  v.zStart = yymsp[-1].minor.yy0.z;
  v.zEnd = yymsp[0].minor.yy346.zEnd;
  sqlite3AddDefaultValue(pParse,&v);
}
        break;
      case 59: /* ccons ::= DEFAULT ID|INDEXED */
{
  ExprSpan v;
  spanExpr(&v, pParse, TK_STRING, &yymsp[0].minor.yy0);
  sqlite3AddDefaultValue(pParse,&v);
}
        break;
      case 61: /* ccons ::= NOT NULL onconf */
{sqlite3AddNotNull(pParse, yymsp[0].minor.yy328);}
        break;
      case 62: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy328,yymsp[0].minor.yy328,yymsp[-2].minor.yy328);}
        break;
      case 63: /* ccons ::= UNIQUE onconf */
{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy328,0,0,0,0);}
        break;
      case 64: /* ccons ::= CHECK LP expr RP */
{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy346.pExpr);}
        break;
      case 65: /* ccons ::= REFERENCES nm eidlist_opt refargs */
{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy14,yymsp[0].minor.yy328);}
        break;
      case 66: /* ccons ::= defer_subclause */
{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy328);}
        break;
      case 67: /* ccons ::= COLLATE ID|STRING */
{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
        break;
      case 70: /* refargs ::= */
{ yygotominor.yy328 = OE_None*0x0101; /* EV: R-19803-45884 */}
        break;
      case 71: /* refargs ::= refargs refarg */
{ yygotominor.yy328 = (yymsp[-1].minor.yy328 & ~yymsp[0].minor.yy429.mask) | yymsp[0].minor.yy429.value; }
        break;
      case 72: /* refarg ::= MATCH nm */
      case 73: /* refarg ::= ON INSERT refact */ yytestcase(yyruleno==73);
{ yygotominor.yy429.value = 0;     yygotominor.yy429.mask = 0x000000; }
        break;
      case 74: /* refarg ::= ON DELETE refact */
{ yygotominor.yy429.value = yymsp[0].minor.yy328;     yygotominor.yy429.mask = 0x0000ff; }
        break;
      case 75: /* refarg ::= ON UPDATE refact */
{ yygotominor.yy429.value = yymsp[0].minor.yy328<<8;  yygotominor.yy429.mask = 0x00ff00; }
        break;
      case 76: /* refact ::= SET NULL */
{ yygotominor.yy328 = OE_SetNull;  /* EV: R-33326-45252 */}
        break;
      case 77: /* refact ::= SET DEFAULT */
{ yygotominor.yy328 = OE_SetDflt;  /* EV: R-33326-45252 */}
        break;
      case 78: /* refact ::= CASCADE */
{ yygotominor.yy328 = OE_Cascade;  /* EV: R-33326-45252 */}
        break;
      case 79: /* refact ::= RESTRICT */
{ yygotominor.yy328 = OE_Restrict; /* EV: R-33326-45252 */}
        break;
      case 80: /* refact ::= NO ACTION */
{ yygotominor.yy328 = OE_None;     /* EV: R-33326-45252 */}
        break;
      case 82: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
      case 98: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==98);
      case 100: /* onconf ::= ON CONFLICT resolvetype */ yytestcase(yyruleno==100);

      case 103: /* resolvetype ::= raisetype */ yytestcase(yyruleno==103);

{yygotominor.yy328 = yymsp[0].minor.yy328;}
        break;
      case 86: /* conslist_opt ::= */
{yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;}
        break;
      case 87: /* conslist_opt ::= COMMA conslist */
{yygotominor.yy0 = yymsp[-1].minor.yy0;}
        break;
      case 90: /* tconscomma ::= COMMA */
{pParse->constraintName.n = 0;}
        break;
      case 93: /* tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy14,yymsp[0].minor.yy328,yymsp[-2].minor.yy328,0);}
        break;
      case 94: /* tcons ::= UNIQUE LP sortlist RP onconf */
{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy14,yymsp[0].minor.yy328,0,0,0,0);}
        break;
      case 95: /* tcons ::= CHECK LP expr RP onconf */
{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy346.pExpr);}
        break;
      case 96: /* tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
{
    sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy14, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy14, yymsp[-1].minor.yy328);
    sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy328);
}
        break;
      case 99: /* onconf ::= */
{yygotominor.yy328 = OE_Default;}
        break;
      case 101: /* orconf ::= */
{yygotominor.yy186 = OE_Default;}
        break;
      case 102: /* orconf ::= OR resolvetype */
{yygotominor.yy186 = (u8)yymsp[0].minor.yy328;}
        break;
      case 104: /* resolvetype ::= IGNORE */
{yygotominor.yy328 = OE_Ignore;}
        break;
      case 105: /* resolvetype ::= REPLACE */

{yygotominor.yy328 = OE_Replace;}
        break;
      case 106: /* cmd ::= DROP TABLE ifexists fullname */
{
  sqlite3DropTable(pParse, yymsp[0].minor.yy65, 0, yymsp[-1].minor.yy328);
}
        break;
      case 109: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
{
  sqlite3CreateView(pParse, &yymsp[-8].minor.yy0, &yymsp[-4].minor.yy0, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy14, yymsp[0].minor.yy3, yymsp[-7].minor.yy328, yymsp[-5].minor.yy328);
}
        break;
      case 110: /* cmd ::= DROP VIEW ifexists fullname */
{
  sqlite3DropTable(pParse, yymsp[0].minor.yy65, 1, yymsp[-1].minor.yy328);
}
        break;
      case 111: /* cmd ::= select */
{
  SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
  sqlite3Select(pParse, yymsp[0].minor.yy3, &dest);
  sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy3);
}
        break;
      case 112: /* select ::= with selectnowith */
{
  Select *p = yymsp[0].minor.yy3;
  if( p ){
    p->pWith = yymsp[-1].minor.yy59;
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy59);
  }
  yygotominor.yy3 = p;
}
        break;
      case 113: /* selectnowith ::= oneselect */
      case 119: /* oneselect ::= values */ yytestcase(yyruleno==119);
{yygotominor.yy3 = yymsp[0].minor.yy3;}
        break;
      case 114: /* selectnowith ::= selectnowith multiselect_op oneselect */
{
  Select *pRhs = yymsp[0].minor.yy3;
  Select *pLhs = yymsp[-2].minor.yy3;
  if( pRhs && pRhs->pPrior ){
    SrcList *pFrom;
    Token x;
    x.n = 0;
    parserDoubleLinkSelect(pParse, pRhs);
    pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
    pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
  }
  if( pRhs ){
    pRhs->op = (u8)yymsp[-1].minor.yy328;
    pRhs->pPrior = pLhs;
    if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
    pRhs->selFlags &= ~SF_MultiValue;
    if( yymsp[-1].minor.yy328!=TK_ALL ) pParse->hasCompound = 1;
  }else{
    sqlite3SelectDelete(pParse->db, pLhs);
  }
  yygotominor.yy3 = pRhs;
}
        break;
      case 116: /* multiselect_op ::= UNION ALL */
{yygotominor.yy328 = TK_ALL;}
        break;
      case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
  yygotominor.yy3 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy14,yymsp[-5].minor.yy65,yymsp[-4].minor.yy132,yymsp[-3].minor.yy14,yymsp[-2].minor.yy132,yymsp[-1].minor.yy14,yymsp[-7].minor.yy381,yymsp[0].minor.yy476.pLimit,yymsp[0].minor.yy476.pOffset);
#if SELECTTRACE_ENABLED
  /* Populate the Select.zSelName[] string that is used to help with
  ** query planner debugging, to differentiate between multiple Select
  ** objects in a complex query.
  **
  ** If the SELECT keyword is immediately followed by a C-style comment
  ** then extract the first few alphanumeric characters from within that
  ** comment to be the zSelName value.  Otherwise, the label is #N where
  ** is an integer that is incremented with each SELECT statement seen.
  */
  if( yygotominor.yy3!=0 ){
    const char *z = yymsp[-8].minor.yy0.z+6;
    int i;
    sqlite3_snprintf(sizeof(yygotominor.yy3->zSelName), yygotominor.yy3->zSelName, "#%d",
                     ++pParse->nSelect);
    while( z[0]==' ' ) z++;
    if( z[0]=='/' && z[1]=='*' ){
      z += 2;
      while( z[0]==' ' ) z++;
      for(i=0; sqlite3Isalnum(z[i]); i++){}
      sqlite3_snprintf(sizeof(yygotominor.yy3->zSelName), yygotominor.yy3->zSelName, "%.*s", i, z);
    }
  }
#endif /* SELECTRACE_ENABLED */
}
        break;
      case 120: /* values ::= VALUES LP nexprlist RP */
{
  yygotominor.yy3 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy14,0,0,0,0,0,SF_Values,0,0);
}
        break;
      case 121: /* values ::= values COMMA LP exprlist RP */
{
  Select *pRight, *pLeft = yymsp[-4].minor.yy3;
  pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy14,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
  if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
  if( pRight ){
    pRight->op = TK_ALL;
    pLeft = yymsp[-4].minor.yy3;
    pRight->pPrior = pLeft;
    yygotominor.yy3 = pRight;
  }else{
    yygotominor.yy3 = pLeft;
  }
}
        break;
      case 122: /* distinct ::= DISTINCT */
{yygotominor.yy381 = SF_Distinct;}
        break;
      case 123: /* distinct ::= ALL */
{yygotominor.yy381 = SF_All;}
        break;
      case 124: /* distinct ::= */
{yygotominor.yy381 = 0;}
        break;
      case 125: /* sclp ::= selcollist COMMA */
      case 244: /* eidlist_opt ::= LP eidlist RP */ yytestcase(yyruleno==244);
{yygotominor.yy14 = yymsp[-1].minor.yy14;}
        break;
      case 126: /* sclp ::= */
      case 155: /* orderby_opt ::= */ yytestcase(yyruleno==155);
      case 162: /* groupby_opt ::= */ yytestcase(yyruleno==162);
      case 237: /* exprlist ::= */ yytestcase(yyruleno==237);
      case 243: /* eidlist_opt ::= */ yytestcase(yyruleno==243);
{yygotominor.yy14 = 0;}
        break;
      case 127: /* selcollist ::= sclp expr as */
{
   yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy14, yymsp[-1].minor.yy346.pExpr);
   if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[0].minor.yy0, 1);
   sqlite3ExprListSetSpan(pParse,yygotominor.yy14,&yymsp[-1].minor.yy346);
}
        break;
      case 128: /* selcollist ::= sclp STAR */
{
  Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy14, p);
}
        break;
      case 129: /* selcollist ::= sclp nm DOT STAR */
{
  Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &yymsp[0].minor.yy0);
  Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
  Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy14, pDot);
}
        break;
      case 132: /* as ::= */
{yygotominor.yy0.n = 0;}
        break;
      case 133: /* from ::= */
{yygotominor.yy65 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy65));}
        break;
      case 134: /* from ::= FROM seltablist */
{
  yygotominor.yy65 = yymsp[0].minor.yy65;
  sqlite3SrcListShiftJoinType(yygotominor.yy65);
}
        break;
      case 135: /* stl_prefix ::= seltablist joinop */
{
   yygotominor.yy65 = yymsp[-1].minor.yy65;
   if( ALWAYS(yygotominor.yy65 && yygotominor.yy65->nSrc>0) ) yygotominor.yy65->a[yygotominor.yy65->nSrc-1].fg.jointype = (u8)yymsp[0].minor.yy328;
}
        break;
      case 136: /* stl_prefix ::= */
{yygotominor.yy65 = 0;}
        break;
      case 137: /* seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt */
{
  yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,&yymsp[-5].minor.yy0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,0,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
  sqlite3SrcListIndexedBy(pParse, yygotominor.yy65, &yymsp[-2].minor.yy0);
}
        break;
      case 138: /* seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_opt using_opt */
{
  yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-8].minor.yy65,&yymsp[-7].minor.yy0,&yymsp[-6].minor.yy0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
  sqlite3SrcListFuncArgs(pParse, yygotominor.yy65, yymsp[-4].minor.yy14);
}
        break;
      case 139: /* seltablist ::= stl_prefix LP select RP as on_opt using_opt */
{
    yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy3,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
  }
        break;
      case 140: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
{
    if( yymsp[-6].minor.yy65==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy132==0 && yymsp[0].minor.yy408==0 ){
      yygotominor.yy65 = yymsp[-4].minor.yy65;
    }else if( yymsp[-4].minor.yy65->nSrc==1 ){
      yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
      if( yygotominor.yy65 ){
        struct SrcList_item *pNew = &yygotominor.yy65->a[yygotominor.yy65->nSrc-1];
        struct SrcList_item *pOld = yymsp[-4].minor.yy65->a;
        pNew->zName = pOld->zName;
        pNew->zDatabase = pOld->zDatabase;
        pNew->pSelect = pOld->pSelect;
        pOld->zName = pOld->zDatabase = 0;
        pOld->pSelect = 0;
      }
      sqlite3SrcListDelete(pParse->db, yymsp[-4].minor.yy65);
    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy65);
      pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy65,0,0,0,0,SF_NestedFrom,0,0);
      yygotominor.yy65 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy65,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy132,yymsp[0].minor.yy408);
    }
  }
        break;
      case 141: /* dbnm ::= */
      case 150: /* indexed_opt ::= */ yytestcase(yyruleno==150);
{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
        break;
      case 143: /* fullname ::= nm dbnm */
{yygotominor.yy65 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);}
        break;
      case 144: /* joinop ::= COMMA|JOIN */
{ yygotominor.yy328 = JT_INNER; }
        break;
      case 145: /* joinop ::= JOIN_KW JOIN */
{ yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
        break;
      case 146: /* joinop ::= JOIN_KW nm JOIN */
{ yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
        break;
      case 147: /* joinop ::= JOIN_KW nm nm JOIN */
{ yygotominor.yy328 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
        break;
      case 148: /* on_opt ::= ON expr */
      case 165: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==165);
      case 172: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==172);
      case 232: /* case_else ::= ELSE expr */ yytestcase(yyruleno==232);
      case 234: /* case_operand ::= expr */ yytestcase(yyruleno==234);
{yygotominor.yy132 = yymsp[0].minor.yy346.pExpr;}
        break;
      case 149: /* on_opt ::= */
      case 164: /* having_opt ::= */ yytestcase(yyruleno==164);
      case 171: /* where_opt ::= */ yytestcase(yyruleno==171);
      case 233: /* case_else ::= */ yytestcase(yyruleno==233);
      case 235: /* case_operand ::= */ yytestcase(yyruleno==235);
{yygotominor.yy132 = 0;}
        break;
      case 152: /* indexed_opt ::= NOT INDEXED */
{yygotominor.yy0.z=0; yygotominor.yy0.n=1;}
        break;
      case 153: /* using_opt ::= USING LP idlist RP */
      case 181: /* idlist_opt ::= LP idlist RP */ yytestcase(yyruleno==181);
{yygotominor.yy408 = yymsp[-1].minor.yy408;}
        break;
      case 154: /* using_opt ::= */
      case 180: /* idlist_opt ::= */ yytestcase(yyruleno==180);
{yygotominor.yy408 = 0;}
        break;
      case 156: /* orderby_opt ::= ORDER BY sortlist */
      case 163: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==163);
      case 236: /* exprlist ::= nexprlist */ yytestcase(yyruleno==236);
{yygotominor.yy14 = yymsp[0].minor.yy14;}
        break;
      case 157: /* sortlist ::= sortlist COMMA expr sortorder */
{
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy14,yymsp[-1].minor.yy346.pExpr);
  sqlite3ExprListSetSortOrder(yygotominor.yy14,yymsp[0].minor.yy328);
}
        break;
      case 158: /* sortlist ::= expr sortorder */
{
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy346.pExpr);
  sqlite3ExprListSetSortOrder(yygotominor.yy14,yymsp[0].minor.yy328);
}
        break;
      case 159: /* sortorder ::= ASC */
{yygotominor.yy328 = SQLITE_SO_ASC;}
        break;
      case 160: /* sortorder ::= DESC */
{yygotominor.yy328 = SQLITE_SO_DESC;}
        break;
      case 161: /* sortorder ::= */
{yygotominor.yy328 = SQLITE_SO_UNDEFINED;}
        break;
      case 166: /* limit_opt ::= */
{yygotominor.yy476.pLimit = 0; yygotominor.yy476.pOffset = 0;}
        break;
      case 167: /* limit_opt ::= LIMIT expr */
{yygotominor.yy476.pLimit = yymsp[0].minor.yy346.pExpr; yygotominor.yy476.pOffset = 0;}
        break;
      case 168: /* limit_opt ::= LIMIT expr OFFSET expr */
{yygotominor.yy476.pLimit = yymsp[-2].minor.yy346.pExpr; yygotominor.yy476.pOffset = yymsp[0].minor.yy346.pExpr;}
        break;
      case 169: /* limit_opt ::= LIMIT expr COMMA expr */
{yygotominor.yy476.pOffset = yymsp[-2].minor.yy346.pExpr; yygotominor.yy476.pLimit = yymsp[0].minor.yy346.pExpr;}
        break;
      case 170: /* cmd ::= with DELETE FROM fullname indexed_opt where_opt */
{
  sqlite3WithPush(pParse, yymsp[-5].minor.yy59, 1);
  sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy65, &yymsp[-1].minor.yy0);
  sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy65,yymsp[0].minor.yy132);
}
        break;
      case 173: /* cmd ::= with UPDATE orconf fullname indexed_opt SET setlist where_opt */
{
  sqlite3WithPush(pParse, yymsp[-7].minor.yy59, 1);
  sqlite3SrcListIndexedBy(pParse, yymsp[-4].minor.yy65, &yymsp[-3].minor.yy0);
  sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy14,"set list"); 
  sqlite3Update(pParse,yymsp[-4].minor.yy65,yymsp[-1].minor.yy14,yymsp[0].minor.yy132,yymsp[-5].minor.yy186);
}
        break;
      case 174: /* setlist ::= setlist COMMA nm EQ expr */
{
  yygotominor.yy14 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy14, yymsp[0].minor.yy346.pExpr);
  sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
}
        break;
      case 175: /* setlist ::= nm EQ expr */
{
  yygotominor.yy14 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy346.pExpr);
  sqlite3ExprListSetName(pParse, yygotominor.yy14, &yymsp[-2].minor.yy0, 1);
}
        break;
      case 176: /* cmd ::= with insert_cmd INTO fullname idlist_opt select */
{
  sqlite3WithPush(pParse, yymsp[-5].minor.yy59, 1);
  sqlite3Insert(pParse, yymsp[-2].minor.yy65, yymsp[0].minor.yy3, yymsp[-1].minor.yy408, yymsp[-4].minor.yy186);
}
        break;
      case 177: /* cmd ::= with insert_cmd INTO fullname idlist_opt DEFAULT VALUES */
{
  sqlite3WithPush(pParse, yymsp[-6].minor.yy59, 1);
  sqlite3Insert(pParse, yymsp[-3].minor.yy65, 0, yymsp[-2].minor.yy408, yymsp[-5].minor.yy186);
}
        break;
      case 178: /* insert_cmd ::= INSERT orconf */
{yygotominor.yy186 = yymsp[0].minor.yy186;}
        break;
      case 179: /* insert_cmd ::= REPLACE */
{yygotominor.yy186 = OE_Replace;}
        break;
      case 182: /* idlist ::= idlist COMMA nm */
{yygotominor.yy408 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy408,&yymsp[0].minor.yy0);}
        break;
      case 183: /* idlist ::= nm */
{yygotominor.yy408 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);}
        break;
      case 184: /* expr ::= term */
{yygotominor.yy346 = yymsp[0].minor.yy346;}
        break;
      case 185: /* expr ::= LP expr RP */
{yygotominor.yy346.pExpr = yymsp[-1].minor.yy346.pExpr; spanSet(&yygotominor.yy346,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);}
        break;
      case 186: /* term ::= NULL */
      case 191: /* term ::= INTEGER|FLOAT|BLOB */ yytestcase(yyruleno==191);
      case 192: /* term ::= STRING */ yytestcase(yyruleno==192);
{spanExpr(&yygotominor.yy346, pParse, yymsp[0].major, &yymsp[0].minor.yy0);}
        break;
      case 187: /* expr ::= ID|INDEXED */
      case 188: /* expr ::= JOIN_KW */ yytestcase(yyruleno==188);
{spanExpr(&yygotominor.yy346, pParse, TK_ID, &yymsp[0].minor.yy0);}
        break;
      case 189: /* expr ::= nm DOT nm */
{
  Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
  Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
  spanSet(&yygotominor.yy346,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 190: /* expr ::= nm DOT nm DOT nm */
{
  Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0);
  Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
  Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
  Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
  spanSet(&yygotominor.yy346,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 193: /* expr ::= VARIABLE */
{
  if( yymsp[0].minor.yy0.n>=2 && yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1]) ){
    /* When doing a nested parse, one can include terms in an expression
    ** that look like this:   #1 #2 ...  These terms refer to registers
    ** in the virtual machine.  #N is the N-th register. */
    if( pParse->nested==0 ){
      sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &yymsp[0].minor.yy0);
      yygotominor.yy346.pExpr = 0;
    }else{
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &yymsp[0].minor.yy0);
      if( yygotominor.yy346.pExpr ) sqlite3GetInt32(&yymsp[0].minor.yy0.z[1], &yygotominor.yy346.pExpr->iTable);
    }
  }else{
    spanExpr(&yygotominor.yy346, pParse, TK_VARIABLE, &yymsp[0].minor.yy0);
    sqlite3ExprAssignVarNumber(pParse, yygotominor.yy346.pExpr);
  }
  spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
        break;
      case 194: /* expr ::= expr COLLATE ID|STRING */
{
  yygotominor.yy346.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy346.pExpr, &yymsp[0].minor.yy0, 1);
  yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 195: /* expr ::= CAST LP expr AS typetoken RP */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy346.pExpr, 0, &yymsp[-1].minor.yy0);
  spanSet(&yygotominor.yy346,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 196: /* expr ::= ID|INDEXED LP distinct exprlist RP */
{
  if( yymsp[-1].minor.yy14 && yymsp[-1].minor.yy14->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
  }
  yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy14, &yymsp[-4].minor.yy0);
  spanSet(&yygotominor.yy346,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
  if( yymsp[-2].minor.yy381==SF_Distinct && yygotominor.yy346.pExpr ){
    yygotominor.yy346.pExpr->flags |= EP_Distinct;
  }
}
        break;
      case 197: /* expr ::= ID|INDEXED LP STAR RP */
{
  yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
  spanSet(&yygotominor.yy346,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 198: /* term ::= CTIME_KW */
{
  yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0);
  spanSet(&yygotominor.yy346, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
        break;
      case 199: /* expr ::= expr AND expr */
      case 200: /* expr ::= expr OR expr */ yytestcase(yyruleno==200);
      case 201: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==201);
      case 202: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==202);
      case 203: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==203);
      case 204: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==204);
      case 205: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==205);
      case 206: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==206);
{spanBinaryExpr(&yygotominor.yy346,pParse,yymsp[-1].major,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy346);}
        break;
      case 207: /* likeop ::= LIKE_KW|MATCH */
{yygotominor.yy96.eOperator = yymsp[0].minor.yy0; yygotominor.yy96.bNot = 0;}
        break;
      case 208: /* likeop ::= NOT LIKE_KW|MATCH */
{yygotominor.yy96.eOperator = yymsp[0].minor.yy0; yygotominor.yy96.bNot = 1;}
        break;
      case 209: /* expr ::= expr likeop expr */
{
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy346.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy346.pExpr);
  yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy96.eOperator);
  if( yymsp[-1].minor.yy96.bNot ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
  yygotominor.yy346.zStart = yymsp[-2].minor.yy346.zStart;
  yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
  if( yygotominor.yy346.pExpr ) yygotominor.yy346.pExpr->flags |= EP_InfixFunc;
}
        break;
      case 210: /* expr ::= expr likeop expr ESCAPE expr */
{
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy346.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy346.pExpr);
  yygotominor.yy346.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy96.eOperator);
  if( yymsp[-3].minor.yy96.bNot ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
  yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
  yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
  if( yygotominor.yy346.pExpr ) yygotominor.yy346.pExpr->flags |= EP_InfixFunc;
}
        break;
      case 211: /* expr ::= expr ISNULL|NOTNULL */
{spanUnaryPostfix(&yygotominor.yy346,pParse,yymsp[0].major,&yymsp[-1].minor.yy346,&yymsp[0].minor.yy0);}
        break;
      case 212: /* expr ::= expr NOT NULL */
{spanUnaryPostfix(&yygotominor.yy346,pParse,TK_NOTNULL,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy0);}
        break;
      case 213: /* expr ::= expr IS expr */
{
  spanBinaryExpr(&yygotominor.yy346,pParse,TK_IS,&yymsp[-2].minor.yy346,&yymsp[0].minor.yy346);
  binaryToUnaryIfNull(pParse, yymsp[0].minor.yy346.pExpr, yygotominor.yy346.pExpr, TK_ISNULL);
}
        break;
      case 214: /* expr ::= expr IS NOT expr */
{
  spanBinaryExpr(&yygotominor.yy346,pParse,TK_ISNOT,&yymsp[-3].minor.yy346,&yymsp[0].minor.yy346);
  binaryToUnaryIfNull(pParse, yymsp[0].minor.yy346.pExpr, yygotominor.yy346.pExpr, TK_NOTNULL);
}
        break;
      case 215: /* expr ::= NOT expr */
      case 216: /* expr ::= BITNOT expr */ yytestcase(yyruleno==216);
{spanUnaryPrefix(&yygotominor.yy346,pParse,yymsp[-1].major,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
        break;
      case 217: /* expr ::= MINUS expr */
{spanUnaryPrefix(&yygotominor.yy346,pParse,TK_UMINUS,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
        break;
      case 218: /* expr ::= PLUS expr */
{spanUnaryPrefix(&yygotominor.yy346,pParse,TK_UPLUS,&yymsp[0].minor.yy346,&yymsp[-1].minor.yy0);}
        break;
      case 221: /* expr ::= expr between_op expr AND expr */
{
  ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy346.pExpr);
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy346.pExpr, 0, 0);
  if( yygotominor.yy346.pExpr ){
    yygotominor.yy346.pExpr->x.pList = pList;
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  } 
  if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
  yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
  yygotominor.yy346.zEnd = yymsp[0].minor.yy346.zEnd;
}
        break;
      case 224: /* expr ::= expr in_op LP exprlist RP */
{
    if( yymsp[-1].minor.yy14==0 ){
      /* Expressions of the form
      **
      **      expr1 IN ()
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[yymsp[-3].minor.yy328]);
      sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy346.pExpr);
    }else if( yymsp[-1].minor.yy14->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something
      ** like this:
      **
      **      expr1 == ?1
      **      expr1 <> ?2
      **
      ** But, the RHS of the == or <> is marked with the EP_Generic flag
      ** so that it may not contribute to the computation of comparison
      ** affinity or the collating sequence to use for comparison.  Otherwise,
      ** the semantics would be subtly different from IN or NOT IN.
      */
      Expr *pRHS = yymsp[-1].minor.yy14->a[0].pExpr;
      yymsp[-1].minor.yy14->a[0].pExpr = 0;
      sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, yymsp[-3].minor.yy328 ? TK_NE : TK_EQ, yymsp[-4].minor.yy346.pExpr, pRHS, 0);
    }else{
      yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
      if( yygotominor.yy346.pExpr ){
        yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy14;
        sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy14);
      }
      if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    }
    yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 225: /* expr ::= LP select RP */
{
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    yygotominor.yy346.zStart = yymsp[-2].minor.yy0.z;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 226: /* expr ::= expr in_op LP select RP */
{
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy346.pExpr, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    if( yymsp[-3].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    yygotominor.yy346.zStart = yymsp[-4].minor.yy346.zStart;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 227: /* expr ::= expr in_op nm dbnm */
{
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
    yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy346.pExpr, 0, 0);
    if( yygotominor.yy346.pExpr ){
      yygotominor.yy346.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(yygotominor.yy346.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    if( yymsp[-2].minor.yy328 ) yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_NOT, yygotominor.yy346.pExpr, 0, 0);
    yygotominor.yy346.zStart = yymsp[-3].minor.yy346.zStart;
    yygotominor.yy346.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
  }
        break;
      case 228: /* expr ::= EXISTS LP select RP */
{
    Expr *p = yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = yymsp[-1].minor.yy3;
      ExprSetProperty(p, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, p);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy3);
    }
    yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
    yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 229: /* expr ::= CASE case_operand case_exprlist case_else END */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy132, 0, 0);
  if( yygotominor.yy346.pExpr ){
    yygotominor.yy346.pExpr->x.pList = yymsp[-1].minor.yy132 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[-1].minor.yy132) : yymsp[-2].minor.yy14;
    sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy346.pExpr);
  }else{
    sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy14);
    sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy132);
  }
  yygotominor.yy346.zStart = yymsp[-4].minor.yy0.z;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 230: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
{
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy14, yymsp[-2].minor.yy346.pExpr);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yygotominor.yy14, yymsp[0].minor.yy346.pExpr);
}
        break;
      case 231: /* case_exprlist ::= WHEN expr THEN expr */
{
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy346.pExpr);
  yygotominor.yy14 = sqlite3ExprListAppend(pParse,yygotominor.yy14, yymsp[0].minor.yy346.pExpr);
}
        break;
      case 238: /* nexprlist ::= nexprlist COMMA expr */
{yygotominor.yy14 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy14,yymsp[0].minor.yy346.pExpr);}
        break;
      case 239: /* nexprlist ::= expr */
{yygotominor.yy14 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy346.pExpr);}
        break;
      case 240: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
{
  sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, 
                     sqlite3SrcListAppend(pParse->db,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy14, yymsp[-10].minor.yy328,
                      &yymsp[-11].minor.yy0, yymsp[0].minor.yy132, SQLITE_SO_ASC, yymsp[-8].minor.yy328);
}
        break;
      case 241: /* uniqueflag ::= UNIQUE */
      case 292: /* raisetype ::= ABORT */ yytestcase(yyruleno==292);
{yygotominor.yy328 = OE_Abort;}
        break;
      case 242: /* uniqueflag ::= */
{yygotominor.yy328 = OE_None;}
        break;
      case 245: /* eidlist ::= eidlist COMMA nm collate sortorder */
{
  yygotominor.yy14 = parserAddExprIdListTerm(pParse, yymsp[-4].minor.yy14, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy328, yymsp[0].minor.yy328);
}
        break;
      case 246: /* eidlist ::= nm collate sortorder */
{
  yygotominor.yy14 = parserAddExprIdListTerm(pParse, 0, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy328, yymsp[0].minor.yy328);
}
        break;
      case 249: /* cmd ::= DROP INDEX ifexists fullname */
{sqlite3DropIndex(pParse, yymsp[0].minor.yy65, yymsp[-1].minor.yy328);}
        break;
      case 250: /* cmd ::= VACUUM */
      case 251: /* cmd ::= VACUUM nm */ yytestcase(yyruleno==251);
{sqlite3Vacuum(pParse);}
        break;
      case 252: /* cmd ::= PRAGMA nm dbnm */
{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}







|


|




|

|











|


|


|


|


|


|





|


|



|


|


|


|


|


|


|


|




>

>
|











|


|


|



|
|



<
<
|
|

<
<
<

|


>
|



|




|




|





|
|




|

|


|

|




|



|
|









|



|



|



|



|










|


|






|







|




|
|



|

|

|




|


<
<
<
|



|






|



|
|
|




|
|




|


|






|



|
|




|
|



|



|
|




|
|




|




|
|
|
|
|
|
|






|


|
|
|








|


|


|


|


|






|






|






|



|




|



|
|




|
|



|


|


|


|


|


|


|



|
|
|




|
|
|
|




|
|




|
|




|
|




|
|


<
<
<
<
<
<

|


|


|


|




|



|





|
|








|
|










|

|
|


|
|

|




|
|
|




|
|




|


|
|
|
|





|
|




|
|










|


|


|




|
|
|
|
|
|
|





|
|
|
|
|
|
|
|



|


|



|
|




|
|




|


|


|



|
|
|
|
|



|
|
|




|








|
|
|
















|
|
|






|

|
|
|
|

|

|

|
|




|
|
|
|
|

|

|
|




|
|
|
|
|

|

|
|
|





|
|
|
|
|



|
|
|




|

|



|

|
|




|
|
|
|

|
|

|
|




|
|




|
|



|


|




|
|




|


|



|




|



|







129494
129495
129496
129497
129498
129499
129500
129501
129502
129503
129504
129505
129506
129507
129508
129509
129510
129511
129512
129513
129514
129515
129516
129517
129518
129519
129520
129521
129522
129523
129524
129525
129526
129527
129528
129529
129530
129531
129532
129533
129534
129535
129536
129537
129538
129539
129540
129541
129542
129543
129544
129545
129546
129547
129548
129549
129550
129551
129552
129553
129554
129555
129556
129557
129558
129559
129560
129561
129562
129563
129564
129565
129566
129567
129568
129569
129570
129571
129572
129573
129574
129575
129576
129577
129578
129579
129580
129581
129582
129583
129584
129585
129586
129587
129588
129589
129590
129591
129592
129593
129594
129595
129596
129597
129598
129599
129600
129601
129602
129603
129604
129605
129606


129607
129608
129609



129610
129611
129612
129613
129614
129615
129616
129617
129618
129619
129620
129621
129622
129623
129624
129625
129626
129627
129628
129629
129630
129631
129632
129633
129634
129635
129636
129637
129638
129639
129640
129641
129642
129643
129644
129645
129646
129647
129648
129649
129650
129651
129652
129653
129654
129655
129656
129657
129658
129659
129660
129661
129662
129663
129664
129665
129666
129667
129668
129669
129670
129671
129672
129673
129674
129675
129676
129677
129678
129679
129680
129681
129682
129683
129684
129685
129686
129687
129688
129689
129690
129691
129692
129693
129694
129695
129696
129697
129698
129699
129700
129701
129702
129703
129704
129705
129706
129707
129708
129709
129710
129711
129712
129713
129714
129715
129716
129717
129718
129719
129720
129721
129722
129723
129724
129725
129726
129727
129728
129729
129730
129731
129732
129733
129734



129735
129736
129737
129738
129739
129740
129741
129742
129743
129744
129745
129746
129747
129748
129749
129750
129751
129752
129753
129754
129755
129756
129757
129758
129759
129760
129761
129762
129763
129764
129765
129766
129767
129768
129769
129770
129771
129772
129773
129774
129775
129776
129777
129778
129779
129780
129781
129782
129783
129784
129785
129786
129787
129788
129789
129790
129791
129792
129793
129794
129795
129796
129797
129798
129799
129800
129801
129802
129803
129804
129805
129806
129807
129808
129809
129810
129811
129812
129813
129814
129815
129816
129817
129818
129819
129820
129821
129822
129823
129824
129825
129826
129827
129828
129829
129830
129831
129832
129833
129834
129835
129836
129837
129838
129839
129840
129841
129842
129843
129844
129845
129846
129847
129848
129849
129850
129851
129852
129853
129854
129855
129856
129857
129858
129859
129860
129861
129862
129863
129864
129865
129866
129867
129868
129869
129870
129871
129872
129873
129874
129875
129876
129877
129878
129879
129880
129881
129882
129883
129884
129885
129886
129887
129888
129889
129890
129891
129892
129893
129894
129895
129896
129897
129898
129899
129900
129901
129902
129903
129904
129905
129906
129907
129908
129909
129910
129911
129912
129913
129914
129915
129916
129917
129918
129919
129920
129921
129922
129923
129924
129925
129926
129927
129928
129929
129930
129931
129932
129933
129934
129935
129936
129937
129938
129939
129940
129941
129942
129943
129944
129945
129946
129947
129948
129949
129950
129951






129952
129953
129954
129955
129956
129957
129958
129959
129960
129961
129962
129963
129964
129965
129966
129967
129968
129969
129970
129971
129972
129973
129974
129975
129976
129977
129978
129979
129980
129981
129982
129983
129984
129985
129986
129987
129988
129989
129990
129991
129992
129993
129994
129995
129996
129997
129998
129999
130000
130001
130002
130003
130004
130005
130006
130007
130008
130009
130010
130011
130012
130013
130014
130015
130016
130017
130018
130019
130020
130021
130022
130023
130024
130025
130026
130027
130028
130029
130030
130031
130032
130033
130034
130035
130036
130037
130038
130039
130040
130041
130042
130043
130044
130045
130046
130047
130048
130049
130050
130051
130052
130053
130054
130055
130056
130057
130058
130059
130060
130061
130062
130063
130064
130065
130066
130067
130068
130069
130070
130071
130072
130073
130074
130075
130076
130077
130078
130079
130080
130081
130082
130083
130084
130085
130086
130087
130088
130089
130090
130091
130092
130093
130094
130095
130096
130097
130098
130099
130100
130101
130102
130103
130104
130105
130106
130107
130108
130109
130110
130111
130112
130113
130114
130115
130116
130117
130118
130119
130120
130121
130122
130123
130124
130125
130126
130127
130128
130129
130130
130131
130132
130133
130134
130135
130136
130137
130138
130139
130140
130141
130142
130143
130144
130145
130146
130147
130148
130149
130150
130151
130152
130153
130154
130155
130156
130157
130158
130159
130160
130161
130162
130163
130164
130165
130166
130167
130168
130169
130170
130171
130172
130173
130174
130175
130176
130177
130178
130179
130180
130181
130182
130183
130184
130185
130186
130187
130188
130189
130190
130191
130192
130193
130194
130195
130196
130197
130198
130199
130200
130201
130202
130203
130204
130205
130206
130207
130208
130209
130210
130211
130212
130213
130214
130215
130216
130217
130218
130219
130220
130221
130222
130223
130224
130225
130226
130227
130228
130229
130230
130231
130232
130233
130234
130235
130236
130237
130238
130239
130240
130241
130242
130243
130244
130245
130246
130247
130248
130249
130250
130251
130252
130253
130254
130255
130256
130257
130258
130259
130260
130261
130262
130263
130264
130265
130266
130267
130268
130269
130270
130271
130272
130273
130274
130275
130276
130277
130278
130279
130280
130281
130282
130283
130284
130285
130286
130287
130288
130289
130290
130291
130292
130293
130294
130295
130296
130297
130298
130299
130300
130301
130302
130303
130304
130305
130306
130307
130308
130309
        break;
      case 54: /* ccons ::= CONSTRAINT nm */
      case 92: /* tcons ::= CONSTRAINT nm */ yytestcase(yyruleno==92);
{pParse->constraintName = yymsp[0].minor.yy0;}
        break;
      case 55: /* ccons ::= DEFAULT term */
      case 57: /* ccons ::= DEFAULT PLUS term */ yytestcase(yyruleno==57);
{sqlite3AddDefaultValue(pParse,&yymsp[0].minor.yy118);}
        break;
      case 56: /* ccons ::= DEFAULT LP expr RP */
{sqlite3AddDefaultValue(pParse,&yymsp[-1].minor.yy118);}
        break;
      case 58: /* ccons ::= DEFAULT MINUS term */
{
  ExprSpan v;
  v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, yymsp[0].minor.yy118.pExpr, 0, 0);
  v.zStart = yymsp[-1].minor.yy0.z;
  v.zEnd = yymsp[0].minor.yy118.zEnd;
  sqlite3AddDefaultValue(pParse,&v);
}
        break;
      case 59: /* ccons ::= DEFAULT ID|INDEXED */
{
  ExprSpan v;
  spanExpr(&v, pParse, TK_STRING, &yymsp[0].minor.yy0);
  sqlite3AddDefaultValue(pParse,&v);
}
        break;
      case 61: /* ccons ::= NOT NULL onconf */
{sqlite3AddNotNull(pParse, yymsp[0].minor.yy4);}
        break;
      case 62: /* ccons ::= PRIMARY KEY sortorder onconf autoinc */
{sqlite3AddPrimaryKey(pParse,0,yymsp[-1].minor.yy4,yymsp[0].minor.yy4,yymsp[-2].minor.yy4);}
        break;
      case 63: /* ccons ::= UNIQUE onconf */
{sqlite3CreateIndex(pParse,0,0,0,0,yymsp[0].minor.yy4,0,0,0,0);}
        break;
      case 64: /* ccons ::= CHECK LP expr RP */
{sqlite3AddCheckConstraint(pParse,yymsp[-1].minor.yy118.pExpr);}
        break;
      case 65: /* ccons ::= REFERENCES nm eidlist_opt refargs */
{sqlite3CreateForeignKey(pParse,0,&yymsp[-2].minor.yy0,yymsp[-1].minor.yy322,yymsp[0].minor.yy4);}
        break;
      case 66: /* ccons ::= defer_subclause */
{sqlite3DeferForeignKey(pParse,yymsp[0].minor.yy4);}
        break;
      case 67: /* ccons ::= COLLATE ID|STRING */
{sqlite3AddCollateType(pParse, &yymsp[0].minor.yy0);}
        break;
      case 70: /* refargs ::= */
{ yygotominor.yy4 = OE_None*0x0101; /* EV: R-19803-45884 */}
        break;
      case 71: /* refargs ::= refargs refarg */
{ yygotominor.yy4 = (yymsp[-1].minor.yy4 & ~yymsp[0].minor.yy215.mask) | yymsp[0].minor.yy215.value; }
        break;
      case 72: /* refarg ::= MATCH nm */
      case 73: /* refarg ::= ON INSERT refact */ yytestcase(yyruleno==73);
{ yygotominor.yy215.value = 0;     yygotominor.yy215.mask = 0x000000; }
        break;
      case 74: /* refarg ::= ON DELETE refact */
{ yygotominor.yy215.value = yymsp[0].minor.yy4;     yygotominor.yy215.mask = 0x0000ff; }
        break;
      case 75: /* refarg ::= ON UPDATE refact */
{ yygotominor.yy215.value = yymsp[0].minor.yy4<<8;  yygotominor.yy215.mask = 0x00ff00; }
        break;
      case 76: /* refact ::= SET NULL */
{ yygotominor.yy4 = OE_SetNull;  /* EV: R-33326-45252 */}
        break;
      case 77: /* refact ::= SET DEFAULT */
{ yygotominor.yy4 = OE_SetDflt;  /* EV: R-33326-45252 */}
        break;
      case 78: /* refact ::= CASCADE */
{ yygotominor.yy4 = OE_Cascade;  /* EV: R-33326-45252 */}
        break;
      case 79: /* refact ::= RESTRICT */
{ yygotominor.yy4 = OE_Restrict; /* EV: R-33326-45252 */}
        break;
      case 80: /* refact ::= NO ACTION */
{ yygotominor.yy4 = OE_None;     /* EV: R-33326-45252 */}
        break;
      case 82: /* defer_subclause ::= DEFERRABLE init_deferred_pred_opt */
      case 98: /* defer_subclause_opt ::= defer_subclause */ yytestcase(yyruleno==98);
      case 100: /* onconf ::= ON CONFLICT resolvetype */ yytestcase(yyruleno==100);
      case 102: /* orconf ::= OR resolvetype */ yytestcase(yyruleno==102);
      case 103: /* resolvetype ::= raisetype */ yytestcase(yyruleno==103);
      case 178: /* insert_cmd ::= INSERT orconf */ yytestcase(yyruleno==178);
{yygotominor.yy4 = yymsp[0].minor.yy4;}
        break;
      case 86: /* conslist_opt ::= */
{yygotominor.yy0.n = 0; yygotominor.yy0.z = 0;}
        break;
      case 87: /* conslist_opt ::= COMMA conslist */
{yygotominor.yy0 = yymsp[-1].minor.yy0;}
        break;
      case 90: /* tconscomma ::= COMMA */
{pParse->constraintName.n = 0;}
        break;
      case 93: /* tcons ::= PRIMARY KEY LP sortlist autoinc RP onconf */
{sqlite3AddPrimaryKey(pParse,yymsp[-3].minor.yy322,yymsp[0].minor.yy4,yymsp[-2].minor.yy4,0);}
        break;
      case 94: /* tcons ::= UNIQUE LP sortlist RP onconf */
{sqlite3CreateIndex(pParse,0,0,0,yymsp[-2].minor.yy322,yymsp[0].minor.yy4,0,0,0,0);}
        break;
      case 95: /* tcons ::= CHECK LP expr RP onconf */
{sqlite3AddCheckConstraint(pParse,yymsp[-2].minor.yy118.pExpr);}
        break;
      case 96: /* tcons ::= FOREIGN KEY LP eidlist RP REFERENCES nm eidlist_opt refargs defer_subclause_opt */
{
    sqlite3CreateForeignKey(pParse, yymsp[-6].minor.yy322, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[-1].minor.yy4);
    sqlite3DeferForeignKey(pParse, yymsp[0].minor.yy4);
}
        break;
      case 99: /* onconf ::= */


      case 101: /* orconf ::= */ yytestcase(yyruleno==101);
{yygotominor.yy4 = OE_Default;}
        break;



      case 104: /* resolvetype ::= IGNORE */
{yygotominor.yy4 = OE_Ignore;}
        break;
      case 105: /* resolvetype ::= REPLACE */
      case 179: /* insert_cmd ::= REPLACE */ yytestcase(yyruleno==179);
{yygotominor.yy4 = OE_Replace;}
        break;
      case 106: /* cmd ::= DROP TABLE ifexists fullname */
{
  sqlite3DropTable(pParse, yymsp[0].minor.yy259, 0, yymsp[-1].minor.yy4);
}
        break;
      case 109: /* cmd ::= createkw temp VIEW ifnotexists nm dbnm eidlist_opt AS select */
{
  sqlite3CreateView(pParse, &yymsp[-8].minor.yy0, &yymsp[-4].minor.yy0, &yymsp[-3].minor.yy0, yymsp[-2].minor.yy322, yymsp[0].minor.yy387, yymsp[-7].minor.yy4, yymsp[-5].minor.yy4);
}
        break;
      case 110: /* cmd ::= DROP VIEW ifexists fullname */
{
  sqlite3DropTable(pParse, yymsp[0].minor.yy259, 1, yymsp[-1].minor.yy4);
}
        break;
      case 111: /* cmd ::= select */
{
  SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0};
  sqlite3Select(pParse, yymsp[0].minor.yy387, &dest);
  sqlite3SelectDelete(pParse->db, yymsp[0].minor.yy387);
}
        break;
      case 112: /* select ::= with selectnowith */
{
  Select *p = yymsp[0].minor.yy387;
  if( p ){
    p->pWith = yymsp[-1].minor.yy451;
    parserDoubleLinkSelect(pParse, p);
  }else{
    sqlite3WithDelete(pParse->db, yymsp[-1].minor.yy451);
  }
  yygotominor.yy387 = p;
}
        break;
      case 113: /* selectnowith ::= oneselect */
      case 119: /* oneselect ::= values */ yytestcase(yyruleno==119);
{yygotominor.yy387 = yymsp[0].minor.yy387;}
        break;
      case 114: /* selectnowith ::= selectnowith multiselect_op oneselect */
{
  Select *pRhs = yymsp[0].minor.yy387;
  Select *pLhs = yymsp[-2].minor.yy387;
  if( pRhs && pRhs->pPrior ){
    SrcList *pFrom;
    Token x;
    x.n = 0;
    parserDoubleLinkSelect(pParse, pRhs);
    pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
    pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
  }
  if( pRhs ){
    pRhs->op = (u8)yymsp[-1].minor.yy4;
    pRhs->pPrior = pLhs;
    if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
    pRhs->selFlags &= ~SF_MultiValue;
    if( yymsp[-1].minor.yy4!=TK_ALL ) pParse->hasCompound = 1;
  }else{
    sqlite3SelectDelete(pParse->db, pLhs);
  }
  yygotominor.yy387 = pRhs;
}
        break;
      case 116: /* multiselect_op ::= UNION ALL */
{yygotominor.yy4 = TK_ALL;}
        break;
      case 118: /* oneselect ::= SELECT distinct selcollist from where_opt groupby_opt having_opt orderby_opt limit_opt */
{
  yygotominor.yy387 = sqlite3SelectNew(pParse,yymsp[-6].minor.yy322,yymsp[-5].minor.yy259,yymsp[-4].minor.yy314,yymsp[-3].minor.yy322,yymsp[-2].minor.yy314,yymsp[-1].minor.yy322,yymsp[-7].minor.yy4,yymsp[0].minor.yy292.pLimit,yymsp[0].minor.yy292.pOffset);
#if SELECTTRACE_ENABLED
  /* Populate the Select.zSelName[] string that is used to help with
  ** query planner debugging, to differentiate between multiple Select
  ** objects in a complex query.
  **
  ** If the SELECT keyword is immediately followed by a C-style comment
  ** then extract the first few alphanumeric characters from within that
  ** comment to be the zSelName value.  Otherwise, the label is #N where
  ** is an integer that is incremented with each SELECT statement seen.
  */
  if( yygotominor.yy387!=0 ){
    const char *z = yymsp[-8].minor.yy0.z+6;
    int i;
    sqlite3_snprintf(sizeof(yygotominor.yy387->zSelName), yygotominor.yy387->zSelName, "#%d",
                     ++pParse->nSelect);
    while( z[0]==' ' ) z++;
    if( z[0]=='/' && z[1]=='*' ){
      z += 2;
      while( z[0]==' ' ) z++;
      for(i=0; sqlite3Isalnum(z[i]); i++){}
      sqlite3_snprintf(sizeof(yygotominor.yy387->zSelName), yygotominor.yy387->zSelName, "%.*s", i, z);
    }
  }
#endif /* SELECTRACE_ENABLED */
}
        break;
      case 120: /* values ::= VALUES LP nexprlist RP */
{
  yygotominor.yy387 = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values,0,0);
}
        break;
      case 121: /* values ::= values COMMA LP exprlist RP */
{
  Select *pRight, *pLeft = yymsp[-4].minor.yy387;
  pRight = sqlite3SelectNew(pParse,yymsp[-1].minor.yy322,0,0,0,0,0,SF_Values|SF_MultiValue,0,0);
  if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue;
  if( pRight ){
    pRight->op = TK_ALL;
    pLeft = yymsp[-4].minor.yy387;
    pRight->pPrior = pLeft;
    yygotominor.yy387 = pRight;
  }else{
    yygotominor.yy387 = pLeft;
  }
}
        break;
      case 122: /* distinct ::= DISTINCT */
{yygotominor.yy4 = SF_Distinct;}
        break;
      case 123: /* distinct ::= ALL */



{yygotominor.yy4 = SF_All;}
        break;
      case 125: /* sclp ::= selcollist COMMA */
      case 244: /* eidlist_opt ::= LP eidlist RP */ yytestcase(yyruleno==244);
{yygotominor.yy322 = yymsp[-1].minor.yy322;}
        break;
      case 126: /* sclp ::= */
      case 155: /* orderby_opt ::= */ yytestcase(yyruleno==155);
      case 162: /* groupby_opt ::= */ yytestcase(yyruleno==162);
      case 237: /* exprlist ::= */ yytestcase(yyruleno==237);
      case 243: /* eidlist_opt ::= */ yytestcase(yyruleno==243);
{yygotominor.yy322 = 0;}
        break;
      case 127: /* selcollist ::= sclp expr as */
{
   yygotominor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-2].minor.yy322, yymsp[-1].minor.yy118.pExpr);
   if( yymsp[0].minor.yy0.n>0 ) sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[0].minor.yy0, 1);
   sqlite3ExprListSetSpan(pParse,yygotominor.yy322,&yymsp[-1].minor.yy118);
}
        break;
      case 128: /* selcollist ::= sclp STAR */
{
  Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0);
  yygotominor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-1].minor.yy322, p);
}
        break;
      case 129: /* selcollist ::= sclp nm DOT STAR */
{
  Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, &yymsp[0].minor.yy0);
  Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
  Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0);
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322, pDot);
}
        break;
      case 132: /* as ::= */
{yygotominor.yy0.n = 0;}
        break;
      case 133: /* from ::= */
{yygotominor.yy259 = sqlite3DbMallocZero(pParse->db, sizeof(*yygotominor.yy259));}
        break;
      case 134: /* from ::= FROM seltablist */
{
  yygotominor.yy259 = yymsp[0].minor.yy259;
  sqlite3SrcListShiftJoinType(yygotominor.yy259);
}
        break;
      case 135: /* stl_prefix ::= seltablist joinop */
{
   yygotominor.yy259 = yymsp[-1].minor.yy259;
   if( ALWAYS(yygotominor.yy259 && yygotominor.yy259->nSrc>0) ) yygotominor.yy259->a[yygotominor.yy259->nSrc-1].fg.jointype = (u8)yymsp[0].minor.yy4;
}
        break;
      case 136: /* stl_prefix ::= */
{yygotominor.yy259 = 0;}
        break;
      case 137: /* seltablist ::= stl_prefix nm dbnm as indexed_opt on_opt using_opt */
{
  yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,&yymsp[-5].minor.yy0,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,0,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
  sqlite3SrcListIndexedBy(pParse, yygotominor.yy259, &yymsp[-2].minor.yy0);
}
        break;
      case 138: /* seltablist ::= stl_prefix nm dbnm LP exprlist RP as on_opt using_opt */
{
  yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-8].minor.yy259,&yymsp[-7].minor.yy0,&yymsp[-6].minor.yy0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
  sqlite3SrcListFuncArgs(pParse, yygotominor.yy259, yymsp[-4].minor.yy322);
}
        break;
      case 139: /* seltablist ::= stl_prefix LP select RP as on_opt using_opt */
{
    yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,0,0,&yymsp[-2].minor.yy0,yymsp[-4].minor.yy387,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
  }
        break;
      case 140: /* seltablist ::= stl_prefix LP seltablist RP as on_opt using_opt */
{
    if( yymsp[-6].minor.yy259==0 && yymsp[-2].minor.yy0.n==0 && yymsp[-1].minor.yy314==0 && yymsp[0].minor.yy384==0 ){
      yygotominor.yy259 = yymsp[-4].minor.yy259;
    }else if( yymsp[-4].minor.yy259->nSrc==1 ){
      yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,0,0,&yymsp[-2].minor.yy0,0,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
      if( yygotominor.yy259 ){
        struct SrcList_item *pNew = &yygotominor.yy259->a[yygotominor.yy259->nSrc-1];
        struct SrcList_item *pOld = yymsp[-4].minor.yy259->a;
        pNew->zName = pOld->zName;
        pNew->zDatabase = pOld->zDatabase;
        pNew->pSelect = pOld->pSelect;
        pOld->zName = pOld->zDatabase = 0;
        pOld->pSelect = 0;
      }
      sqlite3SrcListDelete(pParse->db, yymsp[-4].minor.yy259);
    }else{
      Select *pSubquery;
      sqlite3SrcListShiftJoinType(yymsp[-4].minor.yy259);
      pSubquery = sqlite3SelectNew(pParse,0,yymsp[-4].minor.yy259,0,0,0,0,SF_NestedFrom,0,0);
      yygotominor.yy259 = sqlite3SrcListAppendFromTerm(pParse,yymsp[-6].minor.yy259,0,0,&yymsp[-2].minor.yy0,pSubquery,yymsp[-1].minor.yy314,yymsp[0].minor.yy384);
    }
  }
        break;
      case 141: /* dbnm ::= */
      case 150: /* indexed_opt ::= */ yytestcase(yyruleno==150);
{yygotominor.yy0.z=0; yygotominor.yy0.n=0;}
        break;
      case 143: /* fullname ::= nm dbnm */
{yygotominor.yy259 = sqlite3SrcListAppend(pParse->db,0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);}
        break;
      case 144: /* joinop ::= COMMA|JOIN */
{ yygotominor.yy4 = JT_INNER; }
        break;
      case 145: /* joinop ::= JOIN_KW JOIN */
{ yygotominor.yy4 = sqlite3JoinType(pParse,&yymsp[-1].minor.yy0,0,0); }
        break;
      case 146: /* joinop ::= JOIN_KW nm JOIN */
{ yygotominor.yy4 = sqlite3JoinType(pParse,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0,0); }
        break;
      case 147: /* joinop ::= JOIN_KW nm nm JOIN */
{ yygotominor.yy4 = sqlite3JoinType(pParse,&yymsp[-3].minor.yy0,&yymsp[-2].minor.yy0,&yymsp[-1].minor.yy0); }
        break;
      case 148: /* on_opt ::= ON expr */
      case 165: /* having_opt ::= HAVING expr */ yytestcase(yyruleno==165);
      case 172: /* where_opt ::= WHERE expr */ yytestcase(yyruleno==172);
      case 232: /* case_else ::= ELSE expr */ yytestcase(yyruleno==232);
      case 234: /* case_operand ::= expr */ yytestcase(yyruleno==234);
{yygotominor.yy314 = yymsp[0].minor.yy118.pExpr;}
        break;
      case 149: /* on_opt ::= */
      case 164: /* having_opt ::= */ yytestcase(yyruleno==164);
      case 171: /* where_opt ::= */ yytestcase(yyruleno==171);
      case 233: /* case_else ::= */ yytestcase(yyruleno==233);
      case 235: /* case_operand ::= */ yytestcase(yyruleno==235);
{yygotominor.yy314 = 0;}
        break;
      case 152: /* indexed_opt ::= NOT INDEXED */
{yygotominor.yy0.z=0; yygotominor.yy0.n=1;}
        break;
      case 153: /* using_opt ::= USING LP idlist RP */
      case 181: /* idlist_opt ::= LP idlist RP */ yytestcase(yyruleno==181);
{yygotominor.yy384 = yymsp[-1].minor.yy384;}
        break;
      case 154: /* using_opt ::= */
      case 180: /* idlist_opt ::= */ yytestcase(yyruleno==180);
{yygotominor.yy384 = 0;}
        break;
      case 156: /* orderby_opt ::= ORDER BY sortlist */
      case 163: /* groupby_opt ::= GROUP BY nexprlist */ yytestcase(yyruleno==163);
      case 236: /* exprlist ::= nexprlist */ yytestcase(yyruleno==236);
{yygotominor.yy322 = yymsp[0].minor.yy322;}
        break;
      case 157: /* sortlist ::= sortlist COMMA expr sortorder */
{
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-3].minor.yy322,yymsp[-1].minor.yy118.pExpr);
  sqlite3ExprListSetSortOrder(yygotominor.yy322,yymsp[0].minor.yy4);
}
        break;
      case 158: /* sortlist ::= expr sortorder */
{
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[-1].minor.yy118.pExpr);
  sqlite3ExprListSetSortOrder(yygotominor.yy322,yymsp[0].minor.yy4);
}
        break;
      case 159: /* sortorder ::= ASC */
{yygotominor.yy4 = SQLITE_SO_ASC;}
        break;
      case 160: /* sortorder ::= DESC */
{yygotominor.yy4 = SQLITE_SO_DESC;}
        break;
      case 161: /* sortorder ::= */
{yygotominor.yy4 = SQLITE_SO_UNDEFINED;}
        break;
      case 166: /* limit_opt ::= */
{yygotominor.yy292.pLimit = 0; yygotominor.yy292.pOffset = 0;}
        break;
      case 167: /* limit_opt ::= LIMIT expr */
{yygotominor.yy292.pLimit = yymsp[0].minor.yy118.pExpr; yygotominor.yy292.pOffset = 0;}
        break;
      case 168: /* limit_opt ::= LIMIT expr OFFSET expr */
{yygotominor.yy292.pLimit = yymsp[-2].minor.yy118.pExpr; yygotominor.yy292.pOffset = yymsp[0].minor.yy118.pExpr;}
        break;
      case 169: /* limit_opt ::= LIMIT expr COMMA expr */
{yygotominor.yy292.pOffset = yymsp[-2].minor.yy118.pExpr; yygotominor.yy292.pLimit = yymsp[0].minor.yy118.pExpr;}
        break;
      case 170: /* cmd ::= with DELETE FROM fullname indexed_opt where_opt */
{
  sqlite3WithPush(pParse, yymsp[-5].minor.yy451, 1);
  sqlite3SrcListIndexedBy(pParse, yymsp[-2].minor.yy259, &yymsp[-1].minor.yy0);
  sqlite3DeleteFrom(pParse,yymsp[-2].minor.yy259,yymsp[0].minor.yy314);
}
        break;
      case 173: /* cmd ::= with UPDATE orconf fullname indexed_opt SET setlist where_opt */
{
  sqlite3WithPush(pParse, yymsp[-7].minor.yy451, 1);
  sqlite3SrcListIndexedBy(pParse, yymsp[-4].minor.yy259, &yymsp[-3].minor.yy0);
  sqlite3ExprListCheckLength(pParse,yymsp[-1].minor.yy322,"set list"); 
  sqlite3Update(pParse,yymsp[-4].minor.yy259,yymsp[-1].minor.yy322,yymsp[0].minor.yy314,yymsp[-5].minor.yy4);
}
        break;
      case 174: /* setlist ::= setlist COMMA nm EQ expr */
{
  yygotominor.yy322 = sqlite3ExprListAppend(pParse, yymsp[-4].minor.yy322, yymsp[0].minor.yy118.pExpr);
  sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[-2].minor.yy0, 1);
}
        break;
      case 175: /* setlist ::= nm EQ expr */
{
  yygotominor.yy322 = sqlite3ExprListAppend(pParse, 0, yymsp[0].minor.yy118.pExpr);
  sqlite3ExprListSetName(pParse, yygotominor.yy322, &yymsp[-2].minor.yy0, 1);
}
        break;
      case 176: /* cmd ::= with insert_cmd INTO fullname idlist_opt select */
{
  sqlite3WithPush(pParse, yymsp[-5].minor.yy451, 1);
  sqlite3Insert(pParse, yymsp[-2].minor.yy259, yymsp[0].minor.yy387, yymsp[-1].minor.yy384, yymsp[-4].minor.yy4);
}
        break;
      case 177: /* cmd ::= with insert_cmd INTO fullname idlist_opt DEFAULT VALUES */
{
  sqlite3WithPush(pParse, yymsp[-6].minor.yy451, 1);
  sqlite3Insert(pParse, yymsp[-3].minor.yy259, 0, yymsp[-2].minor.yy384, yymsp[-5].minor.yy4);
}
        break;






      case 182: /* idlist ::= idlist COMMA nm */
{yygotominor.yy384 = sqlite3IdListAppend(pParse->db,yymsp[-2].minor.yy384,&yymsp[0].minor.yy0);}
        break;
      case 183: /* idlist ::= nm */
{yygotominor.yy384 = sqlite3IdListAppend(pParse->db,0,&yymsp[0].minor.yy0);}
        break;
      case 184: /* expr ::= term */
{yygotominor.yy118 = yymsp[0].minor.yy118;}
        break;
      case 185: /* expr ::= LP expr RP */
{yygotominor.yy118.pExpr = yymsp[-1].minor.yy118.pExpr; spanSet(&yygotominor.yy118,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);}
        break;
      case 186: /* term ::= NULL */
      case 191: /* term ::= INTEGER|FLOAT|BLOB */ yytestcase(yyruleno==191);
      case 192: /* term ::= STRING */ yytestcase(yyruleno==192);
{spanExpr(&yygotominor.yy118, pParse, yymsp[0].major, &yymsp[0].minor.yy0);}
        break;
      case 187: /* expr ::= ID|INDEXED */
      case 188: /* expr ::= JOIN_KW */ yytestcase(yyruleno==188);
{spanExpr(&yygotominor.yy118, pParse, TK_ID, &yymsp[0].minor.yy0);}
        break;
      case 189: /* expr ::= nm DOT nm */
{
  Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
  Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0);
  spanSet(&yygotominor.yy118,&yymsp[-2].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 190: /* expr ::= nm DOT nm DOT nm */
{
  Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-4].minor.yy0);
  Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[-2].minor.yy0);
  Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &yymsp[0].minor.yy0);
  Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0);
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0);
  spanSet(&yygotominor.yy118,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 193: /* expr ::= VARIABLE */
{
  if( yymsp[0].minor.yy0.n>=2 && yymsp[0].minor.yy0.z[0]=='#' && sqlite3Isdigit(yymsp[0].minor.yy0.z[1]) ){
    /* When doing a nested parse, one can include terms in an expression
    ** that look like this:   #1 #2 ...  These terms refer to registers
    ** in the virtual machine.  #N is the N-th register. */
    if( pParse->nested==0 ){
      sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &yymsp[0].minor.yy0);
      yygotominor.yy118.pExpr = 0;
    }else{
      yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &yymsp[0].minor.yy0);
      if( yygotominor.yy118.pExpr ) sqlite3GetInt32(&yymsp[0].minor.yy0.z[1], &yygotominor.yy118.pExpr->iTable);
    }
  }else{
    spanExpr(&yygotominor.yy118, pParse, TK_VARIABLE, &yymsp[0].minor.yy0);
    sqlite3ExprAssignVarNumber(pParse, yygotominor.yy118.pExpr);
  }
  spanSet(&yygotominor.yy118, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
        break;
      case 194: /* expr ::= expr COLLATE ID|STRING */
{
  yygotominor.yy118.pExpr = sqlite3ExprAddCollateToken(pParse, yymsp[-2].minor.yy118.pExpr, &yymsp[0].minor.yy0, 1);
  yygotominor.yy118.zStart = yymsp[-2].minor.yy118.zStart;
  yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 195: /* expr ::= CAST LP expr AS typetoken RP */
{
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_CAST, yymsp[-3].minor.yy118.pExpr, 0, &yymsp[-1].minor.yy0);
  spanSet(&yygotominor.yy118,&yymsp[-5].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 196: /* expr ::= ID|INDEXED LP distinct exprlist RP */
{
  if( yymsp[-1].minor.yy322 && yymsp[-1].minor.yy322->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){
    sqlite3ErrorMsg(pParse, "too many arguments on function %T", &yymsp[-4].minor.yy0);
  }
  yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, yymsp[-1].minor.yy322, &yymsp[-4].minor.yy0);
  spanSet(&yygotominor.yy118,&yymsp[-4].minor.yy0,&yymsp[0].minor.yy0);
  if( yymsp[-2].minor.yy4==SF_Distinct && yygotominor.yy118.pExpr ){
    yygotominor.yy118.pExpr->flags |= EP_Distinct;
  }
}
        break;
      case 197: /* expr ::= ID|INDEXED LP STAR RP */
{
  yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[-3].minor.yy0);
  spanSet(&yygotominor.yy118,&yymsp[-3].minor.yy0,&yymsp[0].minor.yy0);
}
        break;
      case 198: /* term ::= CTIME_KW */
{
  yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, 0, &yymsp[0].minor.yy0);
  spanSet(&yygotominor.yy118, &yymsp[0].minor.yy0, &yymsp[0].minor.yy0);
}
        break;
      case 199: /* expr ::= expr AND expr */
      case 200: /* expr ::= expr OR expr */ yytestcase(yyruleno==200);
      case 201: /* expr ::= expr LT|GT|GE|LE expr */ yytestcase(yyruleno==201);
      case 202: /* expr ::= expr EQ|NE expr */ yytestcase(yyruleno==202);
      case 203: /* expr ::= expr BITAND|BITOR|LSHIFT|RSHIFT expr */ yytestcase(yyruleno==203);
      case 204: /* expr ::= expr PLUS|MINUS expr */ yytestcase(yyruleno==204);
      case 205: /* expr ::= expr STAR|SLASH|REM expr */ yytestcase(yyruleno==205);
      case 206: /* expr ::= expr CONCAT expr */ yytestcase(yyruleno==206);
{spanBinaryExpr(&yygotominor.yy118,pParse,yymsp[-1].major,&yymsp[-2].minor.yy118,&yymsp[0].minor.yy118);}
        break;
      case 207: /* likeop ::= LIKE_KW|MATCH */
{yygotominor.yy342.eOperator = yymsp[0].minor.yy0; yygotominor.yy342.bNot = 0;}
        break;
      case 208: /* likeop ::= NOT LIKE_KW|MATCH */
{yygotominor.yy342.eOperator = yymsp[0].minor.yy0; yygotominor.yy342.bNot = 1;}
        break;
      case 209: /* expr ::= expr likeop expr */
{
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, yymsp[0].minor.yy118.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[-2].minor.yy118.pExpr);
  yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-1].minor.yy342.eOperator);
  exprNot(pParse, yymsp[-1].minor.yy342.bNot, &yygotominor.yy118.pExpr);
  yygotominor.yy118.zStart = yymsp[-2].minor.yy118.zStart;
  yygotominor.yy118.zEnd = yymsp[0].minor.yy118.zEnd;
  if( yygotominor.yy118.pExpr ) yygotominor.yy118.pExpr->flags |= EP_InfixFunc;
}
        break;
      case 210: /* expr ::= expr likeop expr ESCAPE expr */
{
  ExprList *pList;
  pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy118.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[-4].minor.yy118.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy118.pExpr);
  yygotominor.yy118.pExpr = sqlite3ExprFunction(pParse, pList, &yymsp[-3].minor.yy342.eOperator);
  exprNot(pParse, yymsp[-3].minor.yy342.bNot, &yygotominor.yy118.pExpr);
  yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
  yygotominor.yy118.zEnd = yymsp[0].minor.yy118.zEnd;
  if( yygotominor.yy118.pExpr ) yygotominor.yy118.pExpr->flags |= EP_InfixFunc;
}
        break;
      case 211: /* expr ::= expr ISNULL|NOTNULL */
{spanUnaryPostfix(&yygotominor.yy118,pParse,yymsp[0].major,&yymsp[-1].minor.yy118,&yymsp[0].minor.yy0);}
        break;
      case 212: /* expr ::= expr NOT NULL */
{spanUnaryPostfix(&yygotominor.yy118,pParse,TK_NOTNULL,&yymsp[-2].minor.yy118,&yymsp[0].minor.yy0);}
        break;
      case 213: /* expr ::= expr IS expr */
{
  spanBinaryExpr(&yygotominor.yy118,pParse,TK_IS,&yymsp[-2].minor.yy118,&yymsp[0].minor.yy118);
  binaryToUnaryIfNull(pParse, yymsp[0].minor.yy118.pExpr, yygotominor.yy118.pExpr, TK_ISNULL);
}
        break;
      case 214: /* expr ::= expr IS NOT expr */
{
  spanBinaryExpr(&yygotominor.yy118,pParse,TK_ISNOT,&yymsp[-3].minor.yy118,&yymsp[0].minor.yy118);
  binaryToUnaryIfNull(pParse, yymsp[0].minor.yy118.pExpr, yygotominor.yy118.pExpr, TK_NOTNULL);
}
        break;
      case 215: /* expr ::= NOT expr */
      case 216: /* expr ::= BITNOT expr */ yytestcase(yyruleno==216);
{spanUnaryPrefix(&yygotominor.yy118,pParse,yymsp[-1].major,&yymsp[0].minor.yy118,&yymsp[-1].minor.yy0);}
        break;
      case 217: /* expr ::= MINUS expr */
{spanUnaryPrefix(&yygotominor.yy118,pParse,TK_UMINUS,&yymsp[0].minor.yy118,&yymsp[-1].minor.yy0);}
        break;
      case 218: /* expr ::= PLUS expr */
{spanUnaryPrefix(&yygotominor.yy118,pParse,TK_UPLUS,&yymsp[0].minor.yy118,&yymsp[-1].minor.yy0);}
        break;
      case 221: /* expr ::= expr between_op expr AND expr */
{
  ExprList *pList = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy118.pExpr);
  pList = sqlite3ExprListAppend(pParse,pList, yymsp[0].minor.yy118.pExpr);
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, yymsp[-4].minor.yy118.pExpr, 0, 0);
  if( yygotominor.yy118.pExpr ){
    yygotominor.yy118.pExpr->x.pList = pList;
  }else{
    sqlite3ExprListDelete(pParse->db, pList);
  } 
  exprNot(pParse, yymsp[-3].minor.yy4, &yygotominor.yy118.pExpr);
  yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
  yygotominor.yy118.zEnd = yymsp[0].minor.yy118.zEnd;
}
        break;
      case 224: /* expr ::= expr in_op LP exprlist RP */
{
    if( yymsp[-1].minor.yy322==0 ){
      /* Expressions of the form
      **
      **      expr1 IN ()
      **      expr1 NOT IN ()
      **
      ** simplify to constants 0 (false) and 1 (true), respectively,
      ** regardless of the value of expr1.
      */
      yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[yymsp[-3].minor.yy4]);
      sqlite3ExprDelete(pParse->db, yymsp[-4].minor.yy118.pExpr);
    }else if( yymsp[-1].minor.yy322->nExpr==1 ){
      /* Expressions of the form:
      **
      **      expr1 IN (?1)
      **      expr1 NOT IN (?2)
      **
      ** with exactly one value on the RHS can be simplified to something
      ** like this:
      **
      **      expr1 == ?1
      **      expr1 <> ?2
      **
      ** But, the RHS of the == or <> is marked with the EP_Generic flag
      ** so that it may not contribute to the computation of comparison
      ** affinity or the collating sequence to use for comparison.  Otherwise,
      ** the semantics would be subtly different from IN or NOT IN.
      */
      Expr *pRHS = yymsp[-1].minor.yy322->a[0].pExpr;
      yymsp[-1].minor.yy322->a[0].pExpr = 0;
      sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
      /* pRHS cannot be NULL because a malloc error would have been detected
      ** before now and control would have never reached this point */
      if( ALWAYS(pRHS) ){
        pRHS->flags &= ~EP_Collate;
        pRHS->flags |= EP_Generic;
      }
      yygotominor.yy118.pExpr = sqlite3PExpr(pParse, yymsp[-3].minor.yy4 ? TK_NE : TK_EQ, yymsp[-4].minor.yy118.pExpr, pRHS, 0);
    }else{
      yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy118.pExpr, 0, 0);
      if( yygotominor.yy118.pExpr ){
        yygotominor.yy118.pExpr->x.pList = yymsp[-1].minor.yy322;
        sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy118.pExpr);
      }else{
        sqlite3ExprListDelete(pParse->db, yymsp[-1].minor.yy322);
      }
      exprNot(pParse, yymsp[-3].minor.yy4, &yygotominor.yy118.pExpr);
    }
    yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
    yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 225: /* expr ::= LP select RP */
{
    yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0);
    if( yygotominor.yy118.pExpr ){
      yygotominor.yy118.pExpr->x.pSelect = yymsp[-1].minor.yy387;
      ExprSetProperty(yygotominor.yy118.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy118.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy387);
    }
    yygotominor.yy118.zStart = yymsp[-2].minor.yy0.z;
    yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 226: /* expr ::= expr in_op LP select RP */
{
    yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-4].minor.yy118.pExpr, 0, 0);
    if( yygotominor.yy118.pExpr ){
      yygotominor.yy118.pExpr->x.pSelect = yymsp[-1].minor.yy387;
      ExprSetProperty(yygotominor.yy118.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy118.pExpr);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy387);
    }
    exprNot(pParse, yymsp[-3].minor.yy4, &yygotominor.yy118.pExpr);
    yygotominor.yy118.zStart = yymsp[-4].minor.yy118.zStart;
    yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 227: /* expr ::= expr in_op nm dbnm */
{
    SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0);
    yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_IN, yymsp[-3].minor.yy118.pExpr, 0, 0);
    if( yygotominor.yy118.pExpr ){
      yygotominor.yy118.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0);
      ExprSetProperty(yygotominor.yy118.pExpr, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy118.pExpr);
    }else{
      sqlite3SrcListDelete(pParse->db, pSrc);
    }
    exprNot(pParse, yymsp[-2].minor.yy4, &yygotominor.yy118.pExpr);
    yygotominor.yy118.zStart = yymsp[-3].minor.yy118.zStart;
    yygotominor.yy118.zEnd = yymsp[0].minor.yy0.z ? &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n] : &yymsp[-1].minor.yy0.z[yymsp[-1].minor.yy0.n];
  }
        break;
      case 228: /* expr ::= EXISTS LP select RP */
{
    Expr *p = yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0);
    if( p ){
      p->x.pSelect = yymsp[-1].minor.yy387;
      ExprSetProperty(p, EP_xIsSelect|EP_Subquery);
      sqlite3ExprSetHeightAndFlags(pParse, p);
    }else{
      sqlite3SelectDelete(pParse->db, yymsp[-1].minor.yy387);
    }
    yygotominor.yy118.zStart = yymsp[-3].minor.yy0.z;
    yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
  }
        break;
      case 229: /* expr ::= CASE case_operand case_exprlist case_else END */
{
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_CASE, yymsp[-3].minor.yy314, 0, 0);
  if( yygotominor.yy118.pExpr ){
    yygotominor.yy118.pExpr->x.pList = yymsp[-1].minor.yy314 ? sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[-1].minor.yy314) : yymsp[-2].minor.yy322;
    sqlite3ExprSetHeightAndFlags(pParse, yygotominor.yy118.pExpr);
  }else{
    sqlite3ExprListDelete(pParse->db, yymsp[-2].minor.yy322);
    sqlite3ExprDelete(pParse->db, yymsp[-1].minor.yy314);
  }
  yygotominor.yy118.zStart = yymsp[-4].minor.yy0.z;
  yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 230: /* case_exprlist ::= case_exprlist WHEN expr THEN expr */
{
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-4].minor.yy322, yymsp[-2].minor.yy118.pExpr);
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,yygotominor.yy322, yymsp[0].minor.yy118.pExpr);
}
        break;
      case 231: /* case_exprlist ::= WHEN expr THEN expr */
{
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,0, yymsp[-2].minor.yy118.pExpr);
  yygotominor.yy322 = sqlite3ExprListAppend(pParse,yygotominor.yy322, yymsp[0].minor.yy118.pExpr);
}
        break;
      case 238: /* nexprlist ::= nexprlist COMMA expr */
{yygotominor.yy322 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy322,yymsp[0].minor.yy118.pExpr);}
        break;
      case 239: /* nexprlist ::= expr */
{yygotominor.yy322 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy118.pExpr);}
        break;
      case 240: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP sortlist RP where_opt */
{
  sqlite3CreateIndex(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, 
                     sqlite3SrcListAppend(pParse->db,0,&yymsp[-4].minor.yy0,0), yymsp[-2].minor.yy322, yymsp[-10].minor.yy4,
                      &yymsp[-11].minor.yy0, yymsp[0].minor.yy314, SQLITE_SO_ASC, yymsp[-8].minor.yy4);
}
        break;
      case 241: /* uniqueflag ::= UNIQUE */
      case 292: /* raisetype ::= ABORT */ yytestcase(yyruleno==292);
{yygotominor.yy4 = OE_Abort;}
        break;
      case 242: /* uniqueflag ::= */
{yygotominor.yy4 = OE_None;}
        break;
      case 245: /* eidlist ::= eidlist COMMA nm collate sortorder */
{
  yygotominor.yy322 = parserAddExprIdListTerm(pParse, yymsp[-4].minor.yy322, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy4, yymsp[0].minor.yy4);
}
        break;
      case 246: /* eidlist ::= nm collate sortorder */
{
  yygotominor.yy322 = parserAddExprIdListTerm(pParse, 0, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy4, yymsp[0].minor.yy4);
}
        break;
      case 249: /* cmd ::= DROP INDEX ifexists fullname */
{sqlite3DropIndex(pParse, yymsp[0].minor.yy259, yymsp[-1].minor.yy4);}
        break;
      case 250: /* cmd ::= VACUUM */
      case 251: /* cmd ::= VACUUM nm */ yytestcase(yyruleno==251);
{sqlite3Vacuum(pParse);}
        break;
      case 252: /* cmd ::= PRAGMA nm dbnm */
{sqlite3Pragma(pParse,&yymsp[-1].minor.yy0,&yymsp[0].minor.yy0,0,0);}
129095
129096
129097
129098
129099
129100
129101
129102
129103
129104
129105
129106
129107
129108
129109
129110
129111
129112
129113
129114
129115
129116
129117
129118
129119
129120
129121
129122
129123
129124
129125
129126
129127
129128
129129
129130
129131
129132
129133
129134
129135
129136
129137
129138
129139
129140
129141
129142
129143
129144
129145
129146
129147
129148
129149
129150
129151
129152
129153
129154
129155
{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
        break;
      case 265: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
{
  Token all;
  all.z = yymsp[-3].minor.yy0.z;
  all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
  sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy473, &all);
}
        break;
      case 266: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
{
  sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy328, yymsp[-4].minor.yy378.a, yymsp[-4].minor.yy378.b, yymsp[-2].minor.yy65, yymsp[0].minor.yy132, yymsp[-10].minor.yy328, yymsp[-8].minor.yy328);
  yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0);
}
        break;
      case 267: /* trigger_time ::= BEFORE */
      case 270: /* trigger_time ::= */ yytestcase(yyruleno==270);
{ yygotominor.yy328 = TK_BEFORE; }
        break;
      case 268: /* trigger_time ::= AFTER */
{ yygotominor.yy328 = TK_AFTER;  }
        break;
      case 269: /* trigger_time ::= INSTEAD OF */
{ yygotominor.yy328 = TK_INSTEAD;}
        break;
      case 271: /* trigger_event ::= DELETE|INSERT */
      case 272: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==272);
{yygotominor.yy378.a = yymsp[0].major; yygotominor.yy378.b = 0;}
        break;
      case 273: /* trigger_event ::= UPDATE OF idlist */
{yygotominor.yy378.a = TK_UPDATE; yygotominor.yy378.b = yymsp[0].minor.yy408;}
        break;
      case 276: /* when_clause ::= */
      case 297: /* key_opt ::= */ yytestcase(yyruleno==297);
{ yygotominor.yy132 = 0; }
        break;
      case 277: /* when_clause ::= WHEN expr */
      case 298: /* key_opt ::= KEY expr */ yytestcase(yyruleno==298);
{ yygotominor.yy132 = yymsp[0].minor.yy346.pExpr; }
        break;
      case 278: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
{
  assert( yymsp[-2].minor.yy473!=0 );
  yymsp[-2].minor.yy473->pLast->pNext = yymsp[-1].minor.yy473;
  yymsp[-2].minor.yy473->pLast = yymsp[-1].minor.yy473;
  yygotominor.yy473 = yymsp[-2].minor.yy473;
}
        break;
      case 279: /* trigger_cmd_list ::= trigger_cmd SEMI */
{ 
  assert( yymsp[-1].minor.yy473!=0 );
  yymsp[-1].minor.yy473->pLast = yymsp[-1].minor.yy473;
  yygotominor.yy473 = yymsp[-1].minor.yy473;
}
        break;
      case 281: /* trnm ::= nm DOT nm */
{
  yygotominor.yy0 = yymsp[0].minor.yy0;
  sqlite3ErrorMsg(pParse, 
        "qualified table names are not allowed on INSERT, UPDATE, and DELETE "







|




|





|


|


|



|


|



|



|



|
|
|
|




|
|
|







130321
130322
130323
130324
130325
130326
130327
130328
130329
130330
130331
130332
130333
130334
130335
130336
130337
130338
130339
130340
130341
130342
130343
130344
130345
130346
130347
130348
130349
130350
130351
130352
130353
130354
130355
130356
130357
130358
130359
130360
130361
130362
130363
130364
130365
130366
130367
130368
130369
130370
130371
130372
130373
130374
130375
130376
130377
130378
130379
130380
130381
{sqlite3Pragma(pParse,&yymsp[-4].minor.yy0,&yymsp[-3].minor.yy0,&yymsp[-1].minor.yy0,1);}
        break;
      case 265: /* cmd ::= createkw trigger_decl BEGIN trigger_cmd_list END */
{
  Token all;
  all.z = yymsp[-3].minor.yy0.z;
  all.n = (int)(yymsp[0].minor.yy0.z - yymsp[-3].minor.yy0.z) + yymsp[0].minor.yy0.n;
  sqlite3FinishTrigger(pParse, yymsp[-1].minor.yy203, &all);
}
        break;
      case 266: /* trigger_decl ::= temp TRIGGER ifnotexists nm dbnm trigger_time trigger_event ON fullname foreach_clause when_clause */
{
  sqlite3BeginTrigger(pParse, &yymsp[-7].minor.yy0, &yymsp[-6].minor.yy0, yymsp[-5].minor.yy4, yymsp[-4].minor.yy90.a, yymsp[-4].minor.yy90.b, yymsp[-2].minor.yy259, yymsp[0].minor.yy314, yymsp[-10].minor.yy4, yymsp[-8].minor.yy4);
  yygotominor.yy0 = (yymsp[-6].minor.yy0.n==0?yymsp[-7].minor.yy0:yymsp[-6].minor.yy0);
}
        break;
      case 267: /* trigger_time ::= BEFORE */
      case 270: /* trigger_time ::= */ yytestcase(yyruleno==270);
{ yygotominor.yy4 = TK_BEFORE; }
        break;
      case 268: /* trigger_time ::= AFTER */
{ yygotominor.yy4 = TK_AFTER;  }
        break;
      case 269: /* trigger_time ::= INSTEAD OF */
{ yygotominor.yy4 = TK_INSTEAD;}
        break;
      case 271: /* trigger_event ::= DELETE|INSERT */
      case 272: /* trigger_event ::= UPDATE */ yytestcase(yyruleno==272);
{yygotominor.yy90.a = yymsp[0].major; yygotominor.yy90.b = 0;}
        break;
      case 273: /* trigger_event ::= UPDATE OF idlist */
{yygotominor.yy90.a = TK_UPDATE; yygotominor.yy90.b = yymsp[0].minor.yy384;}
        break;
      case 276: /* when_clause ::= */
      case 297: /* key_opt ::= */ yytestcase(yyruleno==297);
{ yygotominor.yy314 = 0; }
        break;
      case 277: /* when_clause ::= WHEN expr */
      case 298: /* key_opt ::= KEY expr */ yytestcase(yyruleno==298);
{ yygotominor.yy314 = yymsp[0].minor.yy118.pExpr; }
        break;
      case 278: /* trigger_cmd_list ::= trigger_cmd_list trigger_cmd SEMI */
{
  assert( yymsp[-2].minor.yy203!=0 );
  yymsp[-2].minor.yy203->pLast->pNext = yymsp[-1].minor.yy203;
  yymsp[-2].minor.yy203->pLast = yymsp[-1].minor.yy203;
  yygotominor.yy203 = yymsp[-2].minor.yy203;
}
        break;
      case 279: /* trigger_cmd_list ::= trigger_cmd SEMI */
{ 
  assert( yymsp[-1].minor.yy203!=0 );
  yymsp[-1].minor.yy203->pLast = yymsp[-1].minor.yy203;
  yygotominor.yy203 = yymsp[-1].minor.yy203;
}
        break;
      case 281: /* trnm ::= nm DOT nm */
{
  yygotominor.yy0 = yymsp[0].minor.yy0;
  sqlite3ErrorMsg(pParse, 
        "qualified table names are not allowed on INSERT, UPDATE, and DELETE "
129167
129168
129169
129170
129171
129172
129173
129174
129175
129176
129177
129178
129179
129180
129181
129182
129183
129184
129185
129186
129187
129188
129189
129190
129191
129192
129193
129194
129195
129196
129197
129198
129199
129200
129201
129202
129203
129204
129205
129206
129207
129208
129209
129210
129211
129212
129213
129214
129215
129216
129217
129218
129219
129220
129221
129222
129223
129224
129225
129226
129227
129228
129229
129230
129231
129232
129233
129234
129235
129236
129237
129238
129239
129240
129241
129242
129243
129244
129245
129246
129247
129248
129249
129250
129251
129252
129253
129254
129255
129256
129257
129258
129259
129260
129261
129262
129263
129264
129265
129266
129267
129268
129269
129270
129271
129272
129273
129274
129275
129276
129277
129278
129279
129280
129281
129282
129283
129284
129285
129286
129287
129288
129289
129290
129291
129292
129293
129294
{
  sqlite3ErrorMsg(pParse,
        "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
        "within triggers");
}
        break;
      case 285: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt */
{ yygotominor.yy473 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-4].minor.yy0, yymsp[-1].minor.yy14, yymsp[0].minor.yy132, yymsp[-5].minor.yy186); }
        break;
      case 286: /* trigger_cmd ::= insert_cmd INTO trnm idlist_opt select */
{yygotominor.yy473 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy408, yymsp[0].minor.yy3, yymsp[-4].minor.yy186);}
        break;
      case 287: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt */
{yygotominor.yy473 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[0].minor.yy132);}
        break;
      case 288: /* trigger_cmd ::= select */
{yygotominor.yy473 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy3); }
        break;
      case 289: /* expr ::= RAISE LP IGNORE RP */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 
  if( yygotominor.yy346.pExpr ){
    yygotominor.yy346.pExpr->affinity = OE_Ignore;
  }
  yygotominor.yy346.zStart = yymsp[-3].minor.yy0.z;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 290: /* expr ::= RAISE LP raisetype COMMA nm RP */
{
  yygotominor.yy346.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0); 
  if( yygotominor.yy346.pExpr ) {
    yygotominor.yy346.pExpr->affinity = (char)yymsp[-3].minor.yy328;
  }
  yygotominor.yy346.zStart = yymsp[-5].minor.yy0.z;
  yygotominor.yy346.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 291: /* raisetype ::= ROLLBACK */
{yygotominor.yy328 = OE_Rollback;}
        break;
      case 293: /* raisetype ::= FAIL */
{yygotominor.yy328 = OE_Fail;}
        break;
      case 294: /* cmd ::= DROP TRIGGER ifexists fullname */
{
  sqlite3DropTrigger(pParse,yymsp[0].minor.yy65,yymsp[-1].minor.yy328);
}
        break;
      case 295: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
{
  sqlite3Attach(pParse, yymsp[-3].minor.yy346.pExpr, yymsp[-1].minor.yy346.pExpr, yymsp[0].minor.yy132);
}
        break;
      case 296: /* cmd ::= DETACH database_kw_opt expr */
{
  sqlite3Detach(pParse, yymsp[0].minor.yy346.pExpr);
}
        break;
      case 301: /* cmd ::= REINDEX */
{sqlite3Reindex(pParse, 0, 0);}
        break;
      case 302: /* cmd ::= REINDEX nm dbnm */
{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
        break;
      case 303: /* cmd ::= ANALYZE */
{sqlite3Analyze(pParse, 0, 0);}
        break;
      case 304: /* cmd ::= ANALYZE nm dbnm */
{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
        break;
      case 305: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
{
  sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy65,&yymsp[0].minor.yy0);
}
        break;
      case 306: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
  sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
}
        break;
      case 307: /* add_column_fullname ::= fullname */
{
  pParse->db->lookaside.bEnabled = 0;
  sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy65);
}
        break;
      case 310: /* cmd ::= create_vtab */
{sqlite3VtabFinishParse(pParse,0);}
        break;
      case 311: /* cmd ::= create_vtab LP vtabarglist RP */
{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
        break;
      case 312: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
{
    sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy328);
}
        break;
      case 315: /* vtabarg ::= */
{sqlite3VtabArgInit(pParse);}
        break;
      case 317: /* vtabargtoken ::= ANY */
      case 318: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==318);
      case 319: /* lp ::= LP */ yytestcase(yyruleno==319);
{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
        break;
      case 323: /* with ::= */
{yygotominor.yy59 = 0;}
        break;
      case 324: /* with ::= WITH wqlist */
      case 325: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==325);
{ yygotominor.yy59 = yymsp[0].minor.yy59; }
        break;
      case 326: /* wqlist ::= nm eidlist_opt AS LP select RP */
{
  yygotominor.yy59 = sqlite3WithAdd(pParse, 0, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy14, yymsp[-1].minor.yy3);
}
        break;
      case 327: /* wqlist ::= wqlist COMMA nm eidlist_opt AS LP select RP */
{
  yygotominor.yy59 = sqlite3WithAdd(pParse, yymsp[-7].minor.yy59, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy14, yymsp[-1].minor.yy3);
}
        break;
      default:
      /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
      /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
      /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
      /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);







|


|


|


|



|
|
|

|
|




|
|
|

|
|



|


|



|




|




|
















|










|










|











|



|



|




|







130393
130394
130395
130396
130397
130398
130399
130400
130401
130402
130403
130404
130405
130406
130407
130408
130409
130410
130411
130412
130413
130414
130415
130416
130417
130418
130419
130420
130421
130422
130423
130424
130425
130426
130427
130428
130429
130430
130431
130432
130433
130434
130435
130436
130437
130438
130439
130440
130441
130442
130443
130444
130445
130446
130447
130448
130449
130450
130451
130452
130453
130454
130455
130456
130457
130458
130459
130460
130461
130462
130463
130464
130465
130466
130467
130468
130469
130470
130471
130472
130473
130474
130475
130476
130477
130478
130479
130480
130481
130482
130483
130484
130485
130486
130487
130488
130489
130490
130491
130492
130493
130494
130495
130496
130497
130498
130499
130500
130501
130502
130503
130504
130505
130506
130507
130508
130509
130510
130511
130512
130513
130514
130515
130516
130517
130518
130519
130520
{
  sqlite3ErrorMsg(pParse,
        "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements "
        "within triggers");
}
        break;
      case 285: /* trigger_cmd ::= UPDATE orconf trnm tridxby SET setlist where_opt */
{ yygotominor.yy203 = sqlite3TriggerUpdateStep(pParse->db, &yymsp[-4].minor.yy0, yymsp[-1].minor.yy322, yymsp[0].minor.yy314, yymsp[-5].minor.yy4); }
        break;
      case 286: /* trigger_cmd ::= insert_cmd INTO trnm idlist_opt select */
{yygotominor.yy203 = sqlite3TriggerInsertStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[-1].minor.yy384, yymsp[0].minor.yy387, yymsp[-4].minor.yy4);}
        break;
      case 287: /* trigger_cmd ::= DELETE FROM trnm tridxby where_opt */
{yygotominor.yy203 = sqlite3TriggerDeleteStep(pParse->db, &yymsp[-2].minor.yy0, yymsp[0].minor.yy314);}
        break;
      case 288: /* trigger_cmd ::= select */
{yygotominor.yy203 = sqlite3TriggerSelectStep(pParse->db, yymsp[0].minor.yy387); }
        break;
      case 289: /* expr ::= RAISE LP IGNORE RP */
{
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); 
  if( yygotominor.yy118.pExpr ){
    yygotominor.yy118.pExpr->affinity = OE_Ignore;
  }
  yygotominor.yy118.zStart = yymsp[-3].minor.yy0.z;
  yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 290: /* expr ::= RAISE LP raisetype COMMA nm RP */
{
  yygotominor.yy118.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &yymsp[-1].minor.yy0); 
  if( yygotominor.yy118.pExpr ) {
    yygotominor.yy118.pExpr->affinity = (char)yymsp[-3].minor.yy4;
  }
  yygotominor.yy118.zStart = yymsp[-5].minor.yy0.z;
  yygotominor.yy118.zEnd = &yymsp[0].minor.yy0.z[yymsp[0].minor.yy0.n];
}
        break;
      case 291: /* raisetype ::= ROLLBACK */
{yygotominor.yy4 = OE_Rollback;}
        break;
      case 293: /* raisetype ::= FAIL */
{yygotominor.yy4 = OE_Fail;}
        break;
      case 294: /* cmd ::= DROP TRIGGER ifexists fullname */
{
  sqlite3DropTrigger(pParse,yymsp[0].minor.yy259,yymsp[-1].minor.yy4);
}
        break;
      case 295: /* cmd ::= ATTACH database_kw_opt expr AS expr key_opt */
{
  sqlite3Attach(pParse, yymsp[-3].minor.yy118.pExpr, yymsp[-1].minor.yy118.pExpr, yymsp[0].minor.yy314);
}
        break;
      case 296: /* cmd ::= DETACH database_kw_opt expr */
{
  sqlite3Detach(pParse, yymsp[0].minor.yy118.pExpr);
}
        break;
      case 301: /* cmd ::= REINDEX */
{sqlite3Reindex(pParse, 0, 0);}
        break;
      case 302: /* cmd ::= REINDEX nm dbnm */
{sqlite3Reindex(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
        break;
      case 303: /* cmd ::= ANALYZE */
{sqlite3Analyze(pParse, 0, 0);}
        break;
      case 304: /* cmd ::= ANALYZE nm dbnm */
{sqlite3Analyze(pParse, &yymsp[-1].minor.yy0, &yymsp[0].minor.yy0);}
        break;
      case 305: /* cmd ::= ALTER TABLE fullname RENAME TO nm */
{
  sqlite3AlterRenameTable(pParse,yymsp[-3].minor.yy259,&yymsp[0].minor.yy0);
}
        break;
      case 306: /* cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column */
{
  sqlite3AlterFinishAddColumn(pParse, &yymsp[0].minor.yy0);
}
        break;
      case 307: /* add_column_fullname ::= fullname */
{
  pParse->db->lookaside.bEnabled = 0;
  sqlite3AlterBeginAddColumn(pParse, yymsp[0].minor.yy259);
}
        break;
      case 310: /* cmd ::= create_vtab */
{sqlite3VtabFinishParse(pParse,0);}
        break;
      case 311: /* cmd ::= create_vtab LP vtabarglist RP */
{sqlite3VtabFinishParse(pParse,&yymsp[0].minor.yy0);}
        break;
      case 312: /* create_vtab ::= createkw VIRTUAL TABLE ifnotexists nm dbnm USING nm */
{
    sqlite3VtabBeginParse(pParse, &yymsp[-3].minor.yy0, &yymsp[-2].minor.yy0, &yymsp[0].minor.yy0, yymsp[-4].minor.yy4);
}
        break;
      case 315: /* vtabarg ::= */
{sqlite3VtabArgInit(pParse);}
        break;
      case 317: /* vtabargtoken ::= ANY */
      case 318: /* vtabargtoken ::= lp anylist RP */ yytestcase(yyruleno==318);
      case 319: /* lp ::= LP */ yytestcase(yyruleno==319);
{sqlite3VtabArgExtend(pParse,&yymsp[0].minor.yy0);}
        break;
      case 323: /* with ::= */
{yygotominor.yy451 = 0;}
        break;
      case 324: /* with ::= WITH wqlist */
      case 325: /* with ::= WITH RECURSIVE wqlist */ yytestcase(yyruleno==325);
{ yygotominor.yy451 = yymsp[0].minor.yy451; }
        break;
      case 326: /* wqlist ::= nm eidlist_opt AS LP select RP */
{
  yygotominor.yy451 = sqlite3WithAdd(pParse, 0, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy322, yymsp[-1].minor.yy387);
}
        break;
      case 327: /* wqlist ::= wqlist COMMA nm eidlist_opt AS LP select RP */
{
  yygotominor.yy451 = sqlite3WithAdd(pParse, yymsp[-7].minor.yy451, &yymsp[-5].minor.yy0, yymsp[-4].minor.yy322, yymsp[-1].minor.yy387);
}
        break;
      default:
      /* (0) input ::= cmdlist */ yytestcase(yyruleno==0);
      /* (1) cmdlist ::= cmdlist ecmd */ yytestcase(yyruleno==1);
      /* (2) cmdlist ::= ecmd */ yytestcase(yyruleno==2);
      /* (3) ecmd ::= SEMI */ yytestcase(yyruleno==3);
129320
129321
129322
129323
129324
129325
129326

129327
129328
129329
129330
129331
129332
129333
      /* (313) vtabarglist ::= vtabarg */ yytestcase(yyruleno==313);
      /* (314) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==314);
      /* (316) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==316);
      /* (320) anylist ::= */ yytestcase(yyruleno==320);
      /* (321) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==321);
      /* (322) anylist ::= anylist ANY */ yytestcase(yyruleno==322);
        break;

  };
  assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact <= YY_MAX_SHIFTREDUCE ){







>







130546
130547
130548
130549
130550
130551
130552
130553
130554
130555
130556
130557
130558
130559
130560
      /* (313) vtabarglist ::= vtabarg */ yytestcase(yyruleno==313);
      /* (314) vtabarglist ::= vtabarglist COMMA vtabarg */ yytestcase(yyruleno==314);
      /* (316) vtabarg ::= vtabarg vtabargtoken */ yytestcase(yyruleno==316);
      /* (320) anylist ::= */ yytestcase(yyruleno==320);
      /* (321) anylist ::= anylist LP anylist RP */ yytestcase(yyruleno==321);
      /* (322) anylist ::= anylist ANY */ yytestcase(yyruleno==322);
        break;
/********** End reduce actions ************************************************/
  };
  assert( yyruleno>=0 && yyruleno<sizeof(yyRuleInfo)/sizeof(yyRuleInfo[0]) );
  yygoto = yyRuleInfo[yyruleno].lhs;
  yysize = yyRuleInfo[yyruleno].nrhs;
  yypParser->yyidx -= yysize;
  yyact = yy_find_reduce_action(yymsp[-yysize].stateno,(YYCODETYPE)yygoto);
  if( yyact <= YY_MAX_SHIFTREDUCE ){
129364
129365
129366
129367
129368
129369
129370


129371
129372
129373
129374
129375
129376
129377
129378
129379
129380
129381
129382
129383
129384

129385
129386
129387
129388

129389
129390
129391
129392
129393
129394
129395
129396
129397
129398
129399
129400
129401
129402
129403
129404
129405
129406


129407
129408
129409
129410
129411
129412
129413
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */


  sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
#endif /* YYNOERRORRECOVERY */

/*
** The following code executes when a syntax error first occurs.
*/
static void yy_syntax_error(
  yyParser *yypParser,           /* The parser */
  int yymajor,                   /* The major type of the error token */
  YYMINORTYPE yyminor            /* The minor type of the error token */
){
  sqlite3ParserARG_FETCH;
#define TOKEN (yyminor.yy0)


  UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
  assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
  sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);

  sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/*
** The following is executed when the parser accepts
*/
static void yy_accept(
  yyParser *yypParser           /* The parser */
){
  sqlite3ParserARG_FETCH;
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */


  sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "sqlite3ParserAlloc" which describes the current state of the parser.
** The second argument is the major token number.  The third is







>
>














>




>


















>
>







130591
130592
130593
130594
130595
130596
130597
130598
130599
130600
130601
130602
130603
130604
130605
130606
130607
130608
130609
130610
130611
130612
130613
130614
130615
130616
130617
130618
130619
130620
130621
130622
130623
130624
130625
130626
130627
130628
130629
130630
130631
130632
130633
130634
130635
130636
130637
130638
130639
130640
130641
130642
130643
130644
130645
130646
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sFail!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */
/************ Begin %parse_failure code ***************************************/
/************ End %parse_failure code *****************************************/
  sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
#endif /* YYNOERRORRECOVERY */

/*
** The following code executes when a syntax error first occurs.
*/
static void yy_syntax_error(
  yyParser *yypParser,           /* The parser */
  int yymajor,                   /* The major type of the error token */
  YYMINORTYPE yyminor            /* The minor type of the error token */
){
  sqlite3ParserARG_FETCH;
#define TOKEN (yyminor.yy0)
/************ Begin %syntax_error code ****************************************/

  UNUSED_PARAMETER(yymajor);  /* Silence some compiler warnings */
  assert( TOKEN.z[0] );  /* The tokenizer always gives us a token */
  sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN);
/************ End %syntax_error code ******************************************/
  sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/*
** The following is executed when the parser accepts
*/
static void yy_accept(
  yyParser *yypParser           /* The parser */
){
  sqlite3ParserARG_FETCH;
#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sAccept!\n",yyTracePrompt);
  }
#endif
  while( yypParser->yyidx>=0 ) yy_pop_parser_stack(yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */
/*********** Begin %parse_accept code *****************************************/
/*********** End %parse_accept code *******************************************/
  sqlite3ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "sqlite3ParserAlloc" which describes the current state of the parser.
** The second argument is the major token number.  The third is
129453
129454
129455
129456
129457
129458
129459






129460
129461
129462
129463
129464
129465
129466
129467
129468
129469
129470
129471
129472
129473
129474
129475
129476
      return;
    }
#endif
    yypParser->yyidx = 0;
    yypParser->yyerrcnt = -1;
    yypParser->yystack[0].stateno = 0;
    yypParser->yystack[0].major = 0;






  }
  yyminorunion.yy0 = yyminor;
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  yyendofinput = (yymajor==0);
#endif
  sqlite3ParserARG_STORE;

#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput %s\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact <= YY_MAX_SHIFTREDUCE ){
      if( yyact > YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;







>
>
>
>
>
>









|







130686
130687
130688
130689
130690
130691
130692
130693
130694
130695
130696
130697
130698
130699
130700
130701
130702
130703
130704
130705
130706
130707
130708
130709
130710
130711
130712
130713
130714
130715
      return;
    }
#endif
    yypParser->yyidx = 0;
    yypParser->yyerrcnt = -1;
    yypParser->yystack[0].stateno = 0;
    yypParser->yystack[0].major = 0;
#ifndef NDEBUG
    if( yyTraceFILE ){
      fprintf(yyTraceFILE,"%sInitialize. Empty stack. State 0\n",
              yyTracePrompt);
    }
#endif
  }
  yyminorunion.yy0 = yyminor;
#if !defined(YYERRORSYMBOL) && !defined(YYNOERRORRECOVERY)
  yyendofinput = (yymajor==0);
#endif
  sqlite3ParserARG_STORE;

#ifndef NDEBUG
  if( yyTraceFILE ){
    fprintf(yyTraceFILE,"%sInput '%s'\n",yyTracePrompt,yyTokenName[yymajor]);
  }
#endif

  do{
    yyact = yy_find_shift_action(yypParser,(YYCODETYPE)yymajor);
    if( yyact <= YY_MAX_SHIFTREDUCE ){
      if( yyact > YY_MAX_SHIFT ) yyact += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
129576
129577
129578
129579
129580
129581
129582

129583




129584
129585
129586
129587
129588
129589
129590
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
#ifndef NDEBUG
  if( yyTraceFILE ){

    fprintf(yyTraceFILE,"%sReturn\n",yyTracePrompt);




  }
#endif
  return;
}

/************** End of parse.c ***********************************************/
/************** Begin file tokenize.c ****************************************/







>
|
>
>
>
>







130815
130816
130817
130818
130819
130820
130821
130822
130823
130824
130825
130826
130827
130828
130829
130830
130831
130832
130833
130834
      }
      yymajor = YYNOCODE;
#endif
    }
  }while( yymajor!=YYNOCODE && yypParser->yyidx>=0 );
#ifndef NDEBUG
  if( yyTraceFILE ){
    int i;
    fprintf(yyTraceFILE,"%sReturn. Stack=",yyTracePrompt);
    for(i=1; i<=yypParser->yyidx; i++)
      fprintf(yyTraceFILE,"%c%s", i==1 ? '[' : ' ', 
              yyTokenName[yypParser->yystack[i].major]);
    fprintf(yyTraceFILE,"]\n");
  }
#endif
  return;
}

/************** End of parse.c ***********************************************/
/************** Begin file tokenize.c ****************************************/
129664
129665
129666
129667
129668
129669
129670
129671
129672
129673
129674
129675
129676
129677
129678
** or not a given identifier is really an SQL keyword.  The same thing
** might be implemented more directly using a hand-written hash table.
** But by using this automatically generated code, the size of the code
** is substantially reduced.  This is important for embedded applications
** on platforms with limited memory.
*/
/* Hash score: 182 */
static int keywordCode(const char *z, int n){
  /* zText[] encodes 834 bytes of keywords in 554 bytes */
  /*   REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT       */
  /*   ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE         */
  /*   XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY         */
  /*   UNIQUERYWITHOUTERELEASEATTACHAVINGROUPDATEBEGINNERECURSIVE         */
  /*   BETWEENOTNULLIKECASCADELETECASECOLLATECREATECURRENT_DATEDETACH     */
  /*   IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN     */







|







130908
130909
130910
130911
130912
130913
130914
130915
130916
130917
130918
130919
130920
130921
130922
** or not a given identifier is really an SQL keyword.  The same thing
** might be implemented more directly using a hand-written hash table.
** But by using this automatically generated code, the size of the code
** is substantially reduced.  This is important for embedded applications
** on platforms with limited memory.
*/
/* Hash score: 182 */
static int keywordCode(const char *z, int n, int *pType){
  /* zText[] encodes 834 bytes of keywords in 554 bytes */
  /*   REINDEXEDESCAPEACHECKEYBEFOREIGNOREGEXPLAINSTEADDATABASELECT       */
  /*   ABLEFTHENDEFERRABLELSEXCEPTRANSACTIONATURALTERAISEXCLUSIVE         */
  /*   XISTSAVEPOINTERSECTRIGGEREFERENCESCONSTRAINTOFFSETEMPORARY         */
  /*   UNIQUERYWITHOUTERELEASEATTACHAVINGROUPDATEBEGINNERECURSIVE         */
  /*   BETWEENOTNULLIKECASCADELETECASECOLLATECREATECURRENT_DATEDETACH     */
  /*   IMMEDIATEJOINSERTMATCHPLANALYZEPRAGMABORTVALUESVIRTUALIMITWHEN     */
129785
129786
129787
129788
129789
129790
129791
129792
129793
129794
129795
129796
129797
129798
129799
129800
129801
129802
129803
129804
129805
129806
129807
129808
129809
129810
129811
129812
129813
129814
129815
129816
129817
129818
129819
129820
129821
129822
129823
129824
129825
129826
129827
129828
129829
129830
129831
129832
129833
129834
129835
129836
129837
129838
129839
129840
129841
129842
129843
129844
129845
129846
129847
129848
129849
129850
129851
129852
129853
129854
129855
129856
129857
129858
129859
129860
129861
129862
129863
129864
129865
129866
129867
129868
129869
129870
129871
129872
129873
129874
129875
129876
129877
129878
129879
129880
129881
129882
129883
129884
129885
129886
129887
129888
129889
129890
129891
129892
129893
129894
129895
129896
129897
129898
129899
129900
129901
129902
129903
129904
129905
129906
129907
129908
129909
129910
129911
129912
129913
129914
129915
129916
129917
129918
129919
129920
129921
129922

129923
129924

129925
129926
129927

129928

129929
129930
129931
129932
129933
129934
129935
    TK_CTIME_KW,   TK_PRIMARY,    TK_DEFERRED,   TK_DISTINCT,   TK_IS,         
    TK_DROP,       TK_FAIL,       TK_FROM,       TK_JOIN_KW,    TK_LIKE_KW,    
    TK_BY,         TK_IF,         TK_ISNULL,     TK_ORDER,      TK_RESTRICT,   
    TK_JOIN_KW,    TK_ROLLBACK,   TK_ROW,        TK_UNION,      TK_USING,      
    TK_VACUUM,     TK_VIEW,       TK_INITIALLY,  TK_ALL,        
  };
  int h, i;
  if( n<2 ) return TK_ID;
  h = ((charMap(z[0])*4) ^
      (charMap(z[n-1])*3) ^
      n) % 127;
  for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
    if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
      testcase( i==0 ); /* REINDEX */
      testcase( i==1 ); /* INDEXED */
      testcase( i==2 ); /* INDEX */
      testcase( i==3 ); /* DESC */
      testcase( i==4 ); /* ESCAPE */
      testcase( i==5 ); /* EACH */
      testcase( i==6 ); /* CHECK */
      testcase( i==7 ); /* KEY */
      testcase( i==8 ); /* BEFORE */
      testcase( i==9 ); /* FOREIGN */
      testcase( i==10 ); /* FOR */
      testcase( i==11 ); /* IGNORE */
      testcase( i==12 ); /* REGEXP */
      testcase( i==13 ); /* EXPLAIN */
      testcase( i==14 ); /* INSTEAD */
      testcase( i==15 ); /* ADD */
      testcase( i==16 ); /* DATABASE */
      testcase( i==17 ); /* AS */
      testcase( i==18 ); /* SELECT */
      testcase( i==19 ); /* TABLE */
      testcase( i==20 ); /* LEFT */
      testcase( i==21 ); /* THEN */
      testcase( i==22 ); /* END */
      testcase( i==23 ); /* DEFERRABLE */
      testcase( i==24 ); /* ELSE */
      testcase( i==25 ); /* EXCEPT */
      testcase( i==26 ); /* TRANSACTION */
      testcase( i==27 ); /* ACTION */
      testcase( i==28 ); /* ON */
      testcase( i==29 ); /* NATURAL */
      testcase( i==30 ); /* ALTER */
      testcase( i==31 ); /* RAISE */
      testcase( i==32 ); /* EXCLUSIVE */
      testcase( i==33 ); /* EXISTS */
      testcase( i==34 ); /* SAVEPOINT */
      testcase( i==35 ); /* INTERSECT */
      testcase( i==36 ); /* TRIGGER */
      testcase( i==37 ); /* REFERENCES */
      testcase( i==38 ); /* CONSTRAINT */
      testcase( i==39 ); /* INTO */
      testcase( i==40 ); /* OFFSET */
      testcase( i==41 ); /* OF */
      testcase( i==42 ); /* SET */
      testcase( i==43 ); /* TEMPORARY */
      testcase( i==44 ); /* TEMP */
      testcase( i==45 ); /* OR */
      testcase( i==46 ); /* UNIQUE */
      testcase( i==47 ); /* QUERY */
      testcase( i==48 ); /* WITHOUT */
      testcase( i==49 ); /* WITH */
      testcase( i==50 ); /* OUTER */
      testcase( i==51 ); /* RELEASE */
      testcase( i==52 ); /* ATTACH */
      testcase( i==53 ); /* HAVING */
      testcase( i==54 ); /* GROUP */
      testcase( i==55 ); /* UPDATE */
      testcase( i==56 ); /* BEGIN */
      testcase( i==57 ); /* INNER */
      testcase( i==58 ); /* RECURSIVE */
      testcase( i==59 ); /* BETWEEN */
      testcase( i==60 ); /* NOTNULL */
      testcase( i==61 ); /* NOT */
      testcase( i==62 ); /* NO */
      testcase( i==63 ); /* NULL */
      testcase( i==64 ); /* LIKE */
      testcase( i==65 ); /* CASCADE */
      testcase( i==66 ); /* ASC */
      testcase( i==67 ); /* DELETE */
      testcase( i==68 ); /* CASE */
      testcase( i==69 ); /* COLLATE */
      testcase( i==70 ); /* CREATE */
      testcase( i==71 ); /* CURRENT_DATE */
      testcase( i==72 ); /* DETACH */
      testcase( i==73 ); /* IMMEDIATE */
      testcase( i==74 ); /* JOIN */
      testcase( i==75 ); /* INSERT */
      testcase( i==76 ); /* MATCH */
      testcase( i==77 ); /* PLAN */
      testcase( i==78 ); /* ANALYZE */
      testcase( i==79 ); /* PRAGMA */
      testcase( i==80 ); /* ABORT */
      testcase( i==81 ); /* VALUES */
      testcase( i==82 ); /* VIRTUAL */
      testcase( i==83 ); /* LIMIT */
      testcase( i==84 ); /* WHEN */
      testcase( i==85 ); /* WHERE */
      testcase( i==86 ); /* RENAME */
      testcase( i==87 ); /* AFTER */
      testcase( i==88 ); /* REPLACE */
      testcase( i==89 ); /* AND */
      testcase( i==90 ); /* DEFAULT */
      testcase( i==91 ); /* AUTOINCREMENT */
      testcase( i==92 ); /* TO */
      testcase( i==93 ); /* IN */
      testcase( i==94 ); /* CAST */
      testcase( i==95 ); /* COLUMN */
      testcase( i==96 ); /* COMMIT */
      testcase( i==97 ); /* CONFLICT */
      testcase( i==98 ); /* CROSS */
      testcase( i==99 ); /* CURRENT_TIMESTAMP */
      testcase( i==100 ); /* CURRENT_TIME */
      testcase( i==101 ); /* PRIMARY */
      testcase( i==102 ); /* DEFERRED */
      testcase( i==103 ); /* DISTINCT */
      testcase( i==104 ); /* IS */
      testcase( i==105 ); /* DROP */
      testcase( i==106 ); /* FAIL */
      testcase( i==107 ); /* FROM */
      testcase( i==108 ); /* FULL */
      testcase( i==109 ); /* GLOB */
      testcase( i==110 ); /* BY */
      testcase( i==111 ); /* IF */
      testcase( i==112 ); /* ISNULL */
      testcase( i==113 ); /* ORDER */
      testcase( i==114 ); /* RESTRICT */
      testcase( i==115 ); /* RIGHT */
      testcase( i==116 ); /* ROLLBACK */
      testcase( i==117 ); /* ROW */
      testcase( i==118 ); /* UNION */
      testcase( i==119 ); /* USING */
      testcase( i==120 ); /* VACUUM */
      testcase( i==121 ); /* VIEW */
      testcase( i==122 ); /* INITIALLY */
      testcase( i==123 ); /* ALL */
      return aCode[i];

    }
  }

  return TK_ID;
}
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){

  return keywordCode((char*)z, n);

}
#define SQLITE_N_KEYWORD 124

/************** End of keywordhash.h *****************************************/
/************** Continuing where we left off in tokenize.c *******************/









|
|
<
<
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>
|
|
>
|


>
|
>







131029
131030
131031
131032
131033
131034
131035
131036
131037


131038
131039
131040
131041
131042
131043
131044
131045
131046
131047
131048
131049
131050
131051
131052
131053
131054
131055
131056
131057
131058
131059
131060
131061
131062
131063
131064
131065
131066
131067
131068
131069
131070
131071
131072
131073
131074
131075
131076
131077
131078
131079
131080
131081
131082
131083
131084
131085
131086
131087
131088
131089
131090
131091
131092
131093
131094
131095
131096
131097
131098
131099
131100
131101
131102
131103
131104
131105
131106
131107
131108
131109
131110
131111
131112
131113
131114
131115
131116
131117
131118
131119
131120
131121
131122
131123
131124
131125
131126
131127
131128
131129
131130
131131
131132
131133
131134
131135
131136
131137
131138
131139
131140
131141
131142
131143
131144
131145
131146
131147
131148
131149
131150
131151
131152
131153
131154
131155
131156
131157
131158
131159
131160
131161
131162
131163
131164
131165
131166
131167
131168
131169
131170
131171
131172
131173
131174
131175
131176
131177
131178
131179
131180
131181
    TK_CTIME_KW,   TK_PRIMARY,    TK_DEFERRED,   TK_DISTINCT,   TK_IS,         
    TK_DROP,       TK_FAIL,       TK_FROM,       TK_JOIN_KW,    TK_LIKE_KW,    
    TK_BY,         TK_IF,         TK_ISNULL,     TK_ORDER,      TK_RESTRICT,   
    TK_JOIN_KW,    TK_ROLLBACK,   TK_ROW,        TK_UNION,      TK_USING,      
    TK_VACUUM,     TK_VIEW,       TK_INITIALLY,  TK_ALL,        
  };
  int h, i;
  if( n>=2 ){
    h = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) % 127;


    for(i=((int)aHash[h])-1; i>=0; i=((int)aNext[i])-1){
      if( aLen[i]==n && sqlite3StrNICmp(&zText[aOffset[i]],z,n)==0 ){
        testcase( i==0 ); /* REINDEX */
        testcase( i==1 ); /* INDEXED */
        testcase( i==2 ); /* INDEX */
        testcase( i==3 ); /* DESC */
        testcase( i==4 ); /* ESCAPE */
        testcase( i==5 ); /* EACH */
        testcase( i==6 ); /* CHECK */
        testcase( i==7 ); /* KEY */
        testcase( i==8 ); /* BEFORE */
        testcase( i==9 ); /* FOREIGN */
        testcase( i==10 ); /* FOR */
        testcase( i==11 ); /* IGNORE */
        testcase( i==12 ); /* REGEXP */
        testcase( i==13 ); /* EXPLAIN */
        testcase( i==14 ); /* INSTEAD */
        testcase( i==15 ); /* ADD */
        testcase( i==16 ); /* DATABASE */
        testcase( i==17 ); /* AS */
        testcase( i==18 ); /* SELECT */
        testcase( i==19 ); /* TABLE */
        testcase( i==20 ); /* LEFT */
        testcase( i==21 ); /* THEN */
        testcase( i==22 ); /* END */
        testcase( i==23 ); /* DEFERRABLE */
        testcase( i==24 ); /* ELSE */
        testcase( i==25 ); /* EXCEPT */
        testcase( i==26 ); /* TRANSACTION */
        testcase( i==27 ); /* ACTION */
        testcase( i==28 ); /* ON */
        testcase( i==29 ); /* NATURAL */
        testcase( i==30 ); /* ALTER */
        testcase( i==31 ); /* RAISE */
        testcase( i==32 ); /* EXCLUSIVE */
        testcase( i==33 ); /* EXISTS */
        testcase( i==34 ); /* SAVEPOINT */
        testcase( i==35 ); /* INTERSECT */
        testcase( i==36 ); /* TRIGGER */
        testcase( i==37 ); /* REFERENCES */
        testcase( i==38 ); /* CONSTRAINT */
        testcase( i==39 ); /* INTO */
        testcase( i==40 ); /* OFFSET */
        testcase( i==41 ); /* OF */
        testcase( i==42 ); /* SET */
        testcase( i==43 ); /* TEMPORARY */
        testcase( i==44 ); /* TEMP */
        testcase( i==45 ); /* OR */
        testcase( i==46 ); /* UNIQUE */
        testcase( i==47 ); /* QUERY */
        testcase( i==48 ); /* WITHOUT */
        testcase( i==49 ); /* WITH */
        testcase( i==50 ); /* OUTER */
        testcase( i==51 ); /* RELEASE */
        testcase( i==52 ); /* ATTACH */
        testcase( i==53 ); /* HAVING */
        testcase( i==54 ); /* GROUP */
        testcase( i==55 ); /* UPDATE */
        testcase( i==56 ); /* BEGIN */
        testcase( i==57 ); /* INNER */
        testcase( i==58 ); /* RECURSIVE */
        testcase( i==59 ); /* BETWEEN */
        testcase( i==60 ); /* NOTNULL */
        testcase( i==61 ); /* NOT */
        testcase( i==62 ); /* NO */
        testcase( i==63 ); /* NULL */
        testcase( i==64 ); /* LIKE */
        testcase( i==65 ); /* CASCADE */
        testcase( i==66 ); /* ASC */
        testcase( i==67 ); /* DELETE */
        testcase( i==68 ); /* CASE */
        testcase( i==69 ); /* COLLATE */
        testcase( i==70 ); /* CREATE */
        testcase( i==71 ); /* CURRENT_DATE */
        testcase( i==72 ); /* DETACH */
        testcase( i==73 ); /* IMMEDIATE */
        testcase( i==74 ); /* JOIN */
        testcase( i==75 ); /* INSERT */
        testcase( i==76 ); /* MATCH */
        testcase( i==77 ); /* PLAN */
        testcase( i==78 ); /* ANALYZE */
        testcase( i==79 ); /* PRAGMA */
        testcase( i==80 ); /* ABORT */
        testcase( i==81 ); /* VALUES */
        testcase( i==82 ); /* VIRTUAL */
        testcase( i==83 ); /* LIMIT */
        testcase( i==84 ); /* WHEN */
        testcase( i==85 ); /* WHERE */
        testcase( i==86 ); /* RENAME */
        testcase( i==87 ); /* AFTER */
        testcase( i==88 ); /* REPLACE */
        testcase( i==89 ); /* AND */
        testcase( i==90 ); /* DEFAULT */
        testcase( i==91 ); /* AUTOINCREMENT */
        testcase( i==92 ); /* TO */
        testcase( i==93 ); /* IN */
        testcase( i==94 ); /* CAST */
        testcase( i==95 ); /* COLUMN */
        testcase( i==96 ); /* COMMIT */
        testcase( i==97 ); /* CONFLICT */
        testcase( i==98 ); /* CROSS */
        testcase( i==99 ); /* CURRENT_TIMESTAMP */
        testcase( i==100 ); /* CURRENT_TIME */
        testcase( i==101 ); /* PRIMARY */
        testcase( i==102 ); /* DEFERRED */
        testcase( i==103 ); /* DISTINCT */
        testcase( i==104 ); /* IS */
        testcase( i==105 ); /* DROP */
        testcase( i==106 ); /* FAIL */
        testcase( i==107 ); /* FROM */
        testcase( i==108 ); /* FULL */
        testcase( i==109 ); /* GLOB */
        testcase( i==110 ); /* BY */
        testcase( i==111 ); /* IF */
        testcase( i==112 ); /* ISNULL */
        testcase( i==113 ); /* ORDER */
        testcase( i==114 ); /* RESTRICT */
        testcase( i==115 ); /* RIGHT */
        testcase( i==116 ); /* ROLLBACK */
        testcase( i==117 ); /* ROW */
        testcase( i==118 ); /* UNION */
        testcase( i==119 ); /* USING */
        testcase( i==120 ); /* VACUUM */
        testcase( i==121 ); /* VIEW */
        testcase( i==122 ); /* INITIALLY */
        testcase( i==123 ); /* ALL */
        *pType = aCode[i];
        break;
      }
    }
  }
  return n;
}
SQLITE_PRIVATE int sqlite3KeywordCode(const unsigned char *z, int n){
  int id = TK_ID;
  keywordCode((char*)z, n, &id);
  return id;
}
#define SQLITE_N_KEYWORD 124

/************** End of keywordhash.h *****************************************/
/************** Continuing where we left off in tokenize.c *******************/


130233
130234
130235
130236
130237
130238
130239
130240
130241
130242
130243
130244
130245
130246
130247
130248
    }
#endif
    default: {
      if( !IdChar(*z) ){
        break;
      }
      for(i=1; IdChar(z[i]); i++){}
      *tokenType = keywordCode((char*)z, i);
      return i;
    }
  }
  *tokenType = TK_ILLEGAL;
  return 1;
}

/*







|
|







131479
131480
131481
131482
131483
131484
131485
131486
131487
131488
131489
131490
131491
131492
131493
131494
    }
#endif
    default: {
      if( !IdChar(*z) ){
        break;
      }
      for(i=1; IdChar(z[i]); i++){}
      *tokenType = TK_ID;
      return keywordCode((char*)z, i, tokenType);
    }
  }
  *tokenType = TK_ILLEGAL;
  return 1;
}

/*
130280
130281
130282
130283
130284
130285
130286
130287
130288
130289
130290
130291
130292
130293
130294
130295
130296
130297
130298
130299
130300
130301
130302
130303
130304
130305
130306
130307
130308

130309
130310
130311
130312
130313
130314
130315
130316
130317
130318
130319
130320
130321
130322
130323
130324
130325
130326
130327
130328
130329
130330
130331
130332
130333
130334
130335
130336
130337
130338
130339
130340
130341
130342
130343
130344
130345
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nzVar==0 );
  assert( pParse->azVar==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( !db->mallocFailed && zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    if( i>mxSqlLen ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
    switch( tokenType ){
      case TK_SPACE: {
        if( db->u1.isInterrupted ){
          sqlite3ErrorMsg(pParse, "interrupt");
          pParse->rc = SQLITE_INTERRUPT;
          goto abort_parse;
        }
        break;
      }
      case TK_ILLEGAL: {
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"",
                        &pParse->sLastToken);
        goto abort_parse;

      }
      case TK_SEMI: {
        pParse->zTail = &zSql[i];
        /* Fall thru into the default case */
      }
      default: {
        sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
        lastTokenParsed = tokenType;
        if( pParse->rc!=SQLITE_OK ){
          goto abort_parse;
        }
        break;
      }
    }
  }
abort_parse:
  assert( nErr==0 );
  if( pParse->rc==SQLITE_OK && db->mallocFailed==0 ){
    assert( zSql[i]==0 );
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    if( pParse->rc==SQLITE_OK && db->mallocFailed==0 ){
      sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
    }
  }
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusSet(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){







|








|
|
|
|
|
<
<


|


<
>

|
|
<
<
<
|
|
|
<
|
<
|
<
<
<













|







131526
131527
131528
131529
131530
131531
131532
131533
131534
131535
131536
131537
131538
131539
131540
131541
131542
131543
131544
131545
131546


131547
131548
131549
131550
131551

131552
131553
131554
131555



131556
131557
131558

131559

131560



131561
131562
131563
131564
131565
131566
131567
131568
131569
131570
131571
131572
131573
131574
131575
131576
131577
131578
131579
131580
131581
  assert( pParse->pNewTable==0 );
  assert( pParse->pNewTrigger==0 );
  assert( pParse->nVar==0 );
  assert( pParse->nzVar==0 );
  assert( pParse->azVar==0 );
  enableLookaside = db->lookaside.bEnabled;
  if( db->lookaside.pStart ) db->lookaside.bEnabled = 1;
  while( zSql[i]!=0 ){
    assert( i>=0 );
    pParse->sLastToken.z = &zSql[i];
    pParse->sLastToken.n = sqlite3GetToken((unsigned char*)&zSql[i],&tokenType);
    i += pParse->sLastToken.n;
    if( i>mxSqlLen ){
      pParse->rc = SQLITE_TOOBIG;
      break;
    }
    if( tokenType>=TK_SPACE ){
      assert( tokenType==TK_SPACE || tokenType==TK_ILLEGAL );
      if( db->u1.isInterrupted ){
        sqlite3ErrorMsg(pParse, "interrupt");
        pParse->rc = SQLITE_INTERRUPT;


        break;
      }
      if( tokenType==TK_ILLEGAL ){
        sqlite3ErrorMsg(pParse, "unrecognized token: \"%T\"",
                        &pParse->sLastToken);

        break;
      }
    }else{
      if( tokenType==TK_SEMI ) pParse->zTail = &zSql[i];



      sqlite3Parser(pEngine, tokenType, pParse->sLastToken, pParse);
      lastTokenParsed = tokenType;
      if( pParse->rc!=SQLITE_OK || db->mallocFailed ) break;

    }

  }



  assert( nErr==0 );
  if( pParse->rc==SQLITE_OK && db->mallocFailed==0 ){
    assert( zSql[i]==0 );
    if( lastTokenParsed!=TK_SEMI ){
      sqlite3Parser(pEngine, TK_SEMI, pParse->sLastToken, pParse);
      pParse->zTail = &zSql[i];
    }
    if( pParse->rc==SQLITE_OK && db->mallocFailed==0 ){
      sqlite3Parser(pEngine, 0, pParse->sLastToken, pParse);
    }
  }
#ifdef YYTRACKMAXSTACKDEPTH
  sqlite3_mutex_enter(sqlite3MallocMutex());
  sqlite3StatusHighwater(SQLITE_STATUS_PARSER_STACK,
      sqlite3ParserStackPeak(pEngine)
  );
  sqlite3_mutex_leave(sqlite3MallocMutex());
#endif /* YYDEBUG */
  sqlite3ParserFree(pEngine, sqlite3_free);
  db->lookaside.bEnabled = enableLookaside;
  if( db->mallocFailed ){
130374
130375
130376
130377
130378
130379
130380
130381
130382
130383
130384
130385
130386
130387
130388
    /* If the pParse->declareVtab flag is set, do not delete any table 
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }

  if( pParse->bFreeWith ) sqlite3WithDelete(db, pParse->pWith);
  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]);
  sqlite3DbFree(db, pParse->azVar);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);







|







131610
131611
131612
131613
131614
131615
131616
131617
131618
131619
131620
131621
131622
131623
131624
    /* If the pParse->declareVtab flag is set, do not delete any table 
    ** structure built up in pParse->pNewTable. The calling code (see vtab.c)
    ** will take responsibility for freeing the Table structure.
    */
    sqlite3DeleteTable(db, pParse->pNewTable);
  }

  sqlite3WithDelete(db, pParse->pWithToFree);
  sqlite3DeleteTrigger(db, pParse->pNewTrigger);
  for(i=pParse->nzVar-1; i>=0; i--) sqlite3DbFree(db, pParse->azVar[i]);
  sqlite3DbFree(db, pParse->azVar);
  while( pParse->pAinc ){
    AutoincInfo *p = pParse->pAinc;
    pParse->pAinc = p->pNext;
    sqlite3DbFree(db, p);
131000
131001
131002
131003
131004
131005
131006






131007
131008
131009
131010
131011
131012
131013
  ** methods.  The sqlite3_pcache_methods.xInit() all is embedded in the
  ** call to sqlite3PcacheInitialize().
  */
  sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
  if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
    FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
    sqlite3GlobalConfig.inProgress = 1;






    memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
    sqlite3RegisterGlobalFunctions();
    if( sqlite3GlobalConfig.isPCacheInit==0 ){
      rc = sqlite3PcacheInitialize();
    }
    if( rc==SQLITE_OK ){
      sqlite3GlobalConfig.isPCacheInit = 1;







>
>
>
>
>
>







132236
132237
132238
132239
132240
132241
132242
132243
132244
132245
132246
132247
132248
132249
132250
132251
132252
132253
132254
132255
  ** methods.  The sqlite3_pcache_methods.xInit() all is embedded in the
  ** call to sqlite3PcacheInitialize().
  */
  sqlite3_mutex_enter(sqlite3GlobalConfig.pInitMutex);
  if( sqlite3GlobalConfig.isInit==0 && sqlite3GlobalConfig.inProgress==0 ){
    FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
    sqlite3GlobalConfig.inProgress = 1;
#ifdef SQLITE_ENABLE_SQLLOG
    {
      extern void sqlite3_init_sqllog(void);
      sqlite3_init_sqllog();
    }
#endif
    memset(pHash, 0, sizeof(sqlite3GlobalFunctions));
    sqlite3RegisterGlobalFunctions();
    if( sqlite3GlobalConfig.isPCacheInit==0 ){
      rc = sqlite3PcacheInitialize();
    }
    if( rc==SQLITE_OK ){
      sqlite3GlobalConfig.isPCacheInit = 1;
131219
131220
131221
131222
131223
131224
131225
131226
131227
131228

131229
131230
131231
131232
131233
131234
131235
      ** allocation (sz), and the maximum number of scratch allocations (N). */
      sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite3GlobalConfig.szScratch = va_arg(ap, int);
      sqlite3GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {
      /* EVIDENCE-OF: R-31408-40510 There are three arguments to
      ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory, the size
      ** of each page buffer (sz), and the number of pages (N). */

      sqlite3GlobalConfig.pPage = va_arg(ap, void*);
      sqlite3GlobalConfig.szPage = va_arg(ap, int);
      sqlite3GlobalConfig.nPage = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PCACHE_HDRSZ: {
      /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes







|
|
|
>







132461
132462
132463
132464
132465
132466
132467
132468
132469
132470
132471
132472
132473
132474
132475
132476
132477
132478
      ** allocation (sz), and the maximum number of scratch allocations (N). */
      sqlite3GlobalConfig.pScratch = va_arg(ap, void*);
      sqlite3GlobalConfig.szScratch = va_arg(ap, int);
      sqlite3GlobalConfig.nScratch = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PAGECACHE: {
      /* EVIDENCE-OF: R-18761-36601 There are three arguments to
      ** SQLITE_CONFIG_PAGECACHE: A pointer to 8-byte aligned memory (pMem),
      ** the size of each page cache line (sz), and the number of cache lines
      ** (N). */
      sqlite3GlobalConfig.pPage = va_arg(ap, void*);
      sqlite3GlobalConfig.szPage = va_arg(ap, int);
      sqlite3GlobalConfig.nPage = va_arg(ap, int);
      break;
    }
    case SQLITE_CONFIG_PCACHE_HDRSZ: {
      /* EVIDENCE-OF: R-39100-27317 The SQLITE_CONFIG_PCACHE_HDRSZ option takes
131519
131520
131521
131522
131523
131524
131525






























131526
131527
131528
131529
131530
131531
131532
      sqlite3PagerShrink(pPager);
    }
  }
  sqlite3BtreeLeaveAll(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}































/*
** Configuration settings for an individual database connection
*/
SQLITE_API int SQLITE_CDECL sqlite3_db_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







132762
132763
132764
132765
132766
132767
132768
132769
132770
132771
132772
132773
132774
132775
132776
132777
132778
132779
132780
132781
132782
132783
132784
132785
132786
132787
132788
132789
132790
132791
132792
132793
132794
132795
132796
132797
132798
132799
132800
132801
132802
132803
132804
132805
      sqlite3PagerShrink(pPager);
    }
  }
  sqlite3BtreeLeaveAll(db);
  sqlite3_mutex_leave(db->mutex);
  return SQLITE_OK;
}

/*
** Flush any dirty pages in the pager-cache for any attached database
** to disk.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_cacheflush(sqlite3 *db){
  int i;
  int rc = SQLITE_OK;
  int bSeenBusy = 0;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
#endif
  sqlite3_mutex_enter(db->mutex);
  sqlite3BtreeEnterAll(db);
  for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
    Btree *pBt = db->aDb[i].pBt;
    if( pBt && sqlite3BtreeIsInTrans(pBt) ){
      Pager *pPager = sqlite3BtreePager(pBt);
      rc = sqlite3PagerFlush(pPager);
      if( rc==SQLITE_BUSY ){
        bSeenBusy = 1;
        rc = SQLITE_OK;
      }
    }
  }
  sqlite3BtreeLeaveAll(db);
  sqlite3_mutex_leave(db->mutex);
  return ((rc==SQLITE_OK && bSeenBusy) ? SQLITE_BUSY : rc);
}

/*
** Configuration settings for an individual database connection
*/
SQLITE_API int SQLITE_CDECL sqlite3_db_config(sqlite3 *db, int op, ...){
  va_list ap;
  int rc;
133572
133573
133574
133575
133576
133577
133578
133579
133580
133581
133582
133583
133584
133585
133586
133587
133588
133589
133590
133591
133592
133593
133594
133595
133596
133597
  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  **
  ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
  ** functions:
  */
  createCollation(db, "BINARY", SQLITE_UTF8, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16BE, 0, binCollFunc, 0);
  createCollation(db, "BINARY", SQLITE_UTF16LE, 0, binCollFunc, 0);
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }
  /* EVIDENCE-OF: R-08308-17224 The default collating function for all
  ** strings is BINARY. 
  */
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, "BINARY", 0);
  assert( db->pDfltColl!=0 );

  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;







|
|
|








|







134845
134846
134847
134848
134849
134850
134851
134852
134853
134854
134855
134856
134857
134858
134859
134860
134861
134862
134863
134864
134865
134866
134867
134868
134869
134870
  /* Add the default collation sequence BINARY. BINARY works for both UTF-8
  ** and UTF-16, so add a version for each to avoid any unnecessary
  ** conversions. The only error that can occur here is a malloc() failure.
  **
  ** EVIDENCE-OF: R-52786-44878 SQLite defines three built-in collating
  ** functions:
  */
  createCollation(db, sqlite3StrBINARY, SQLITE_UTF8, 0, binCollFunc, 0);
  createCollation(db, sqlite3StrBINARY, SQLITE_UTF16BE, 0, binCollFunc, 0);
  createCollation(db, sqlite3StrBINARY, SQLITE_UTF16LE, 0, binCollFunc, 0);
  createCollation(db, "NOCASE", SQLITE_UTF8, 0, nocaseCollatingFunc, 0);
  createCollation(db, "RTRIM", SQLITE_UTF8, (void*)1, binCollFunc, 0);
  if( db->mallocFailed ){
    goto opendb_out;
  }
  /* EVIDENCE-OF: R-08308-17224 The default collating function for all
  ** strings is BINARY. 
  */
  db->pDfltColl = sqlite3FindCollSeq(db, SQLITE_UTF8, sqlite3StrBINARY, 0);
  assert( db->pDfltColl!=0 );

  /* Parse the filename/URI argument. */
  db->openFlags = flags;
  rc = sqlite3ParseUri(zVfs, zFilename, &flags, &db->pVfs, &zOpen, &zErrMsg);
  if( rc!=SQLITE_OK ){
    if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
133733
133734
133735
133736
133737
133738
133739















133740
133741
133742
133743
133744
133745
133746
  }
  *ppDb = db;
#ifdef SQLITE_ENABLE_SQLLOG
  if( sqlite3GlobalConfig.xSqllog ){
    /* Opening a db handle. Fourth parameter is passed 0. */
    void *pArg = sqlite3GlobalConfig.pSqllogArg;
    sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);















  }
#endif
  return rc & 0xff;
}

/*
** Open a new database handle.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







135006
135007
135008
135009
135010
135011
135012
135013
135014
135015
135016
135017
135018
135019
135020
135021
135022
135023
135024
135025
135026
135027
135028
135029
135030
135031
135032
135033
135034
  }
  *ppDb = db;
#ifdef SQLITE_ENABLE_SQLLOG
  if( sqlite3GlobalConfig.xSqllog ){
    /* Opening a db handle. Fourth parameter is passed 0. */
    void *pArg = sqlite3GlobalConfig.pSqllogArg;
    sqlite3GlobalConfig.xSqllog(pArg, db, zFilename, 0);
  }
#endif
#if defined(SQLITE_HAS_CODEC)
  if( rc==SQLITE_OK ){
    const char *zHexKey = sqlite3_uri_parameter(zOpen, "hexkey");
    if( zHexKey && zHexKey[0] ){
      u8 iByte;
      int i;
      char zKey[40];
      for(i=0, iByte=0; i<sizeof(zKey)*2 && sqlite3Isxdigit(zHexKey[i]); i++){
        iByte = (iByte<<4) + sqlite3HexToInt(zHexKey[i]);
        if( (i&1)!=0 ) zKey[i/2] = iByte;
      }
      sqlite3_key_v2(db, 0, zKey, i/2);
    }
  }
#endif
  return rc & 0xff;
}

/*
** Open a new database handle.
134068
134069
134070
134071
134072
134073
134074
134075
134076
134077
134078
134079
134080
134081
134082
    primarykey  = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
    autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
  }else{
    zDataType = "INTEGER";
    primarykey = 1;
  }
  if( !zCollSeq ){
    zCollSeq = "BINARY";
  }

error_out:
  sqlite3BtreeLeaveAll(db);

  /* Whether the function call succeeded or failed, set the output parameters
  ** to whatever their local counterparts contain. If an error did occur,







|







135356
135357
135358
135359
135360
135361
135362
135363
135364
135365
135366
135367
135368
135369
135370
    primarykey  = (pCol->colFlags & COLFLAG_PRIMKEY)!=0;
    autoinc = pTab->iPKey==iCol && (pTab->tabFlags & TF_Autoincrement)!=0;
  }else{
    zDataType = "INTEGER";
    primarykey = 1;
  }
  if( !zCollSeq ){
    zCollSeq = sqlite3StrBINARY;
  }

error_out:
  sqlite3BtreeLeaveAll(db);

  /* Whether the function call succeeded or failed, set the output parameters
  ** to whatever their local counterparts contain. If an error did occur,
134149
134150
134151
134152
134153
134154
134155



134156
134157
134158
134159
134160
134161
134162
    pPager = sqlite3BtreePager(pBtree);
    assert( pPager!=0 );
    fd = sqlite3PagerFile(pPager);
    assert( fd!=0 );
    if( op==SQLITE_FCNTL_FILE_POINTER ){
      *(sqlite3_file**)pArg = fd;
      rc = SQLITE_OK;



    }else if( fd->pMethods ){
      rc = sqlite3OsFileControl(fd, op, pArg);
    }else{
      rc = SQLITE_NOTFOUND;
    }
    sqlite3BtreeLeave(pBtree);
  }







>
>
>







135437
135438
135439
135440
135441
135442
135443
135444
135445
135446
135447
135448
135449
135450
135451
135452
135453
    pPager = sqlite3BtreePager(pBtree);
    assert( pPager!=0 );
    fd = sqlite3PagerFile(pPager);
    assert( fd!=0 );
    if( op==SQLITE_FCNTL_FILE_POINTER ){
      *(sqlite3_file**)pArg = fd;
      rc = SQLITE_OK;
    }else if( op==SQLITE_FCNTL_VFS_POINTER ){
      *(sqlite3_vfs**)pArg = sqlite3PagerVfs(pPager);
      rc = SQLITE_OK;
    }else if( fd->pMethods ){
      rc = sqlite3OsFileControl(fd, op, pArg);
    }else{
      rc = SQLITE_NOTFOUND;
    }
    sqlite3BtreeLeave(pBtree);
  }
134592
134593
134594
134595
134596
134597
134598


















































































134599
134600
134601
134602
134603
134604
134605
    return -1;
  }
#endif
  pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
}



















































































/************** End of main.c ************************************************/
/************** Begin file notify.c ******************************************/
/*
** 2009 March 3
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







135883
135884
135885
135886
135887
135888
135889
135890
135891
135892
135893
135894
135895
135896
135897
135898
135899
135900
135901
135902
135903
135904
135905
135906
135907
135908
135909
135910
135911
135912
135913
135914
135915
135916
135917
135918
135919
135920
135921
135922
135923
135924
135925
135926
135927
135928
135929
135930
135931
135932
135933
135934
135935
135936
135937
135938
135939
135940
135941
135942
135943
135944
135945
135946
135947
135948
135949
135950
135951
135952
135953
135954
135955
135956
135957
135958
135959
135960
135961
135962
135963
135964
135965
135966
135967
135968
135969
135970
135971
135972
135973
135974
135975
135976
135977
135978
    return -1;
  }
#endif
  pBt = sqlite3DbNameToBtree(db, zDbName);
  return pBt ? sqlite3BtreeIsReadonly(pBt) : -1;
}

#ifdef SQLITE_ENABLE_SNAPSHOT
/*
** Obtain a snapshot handle for the snapshot of database zDb currently 
** being read by handle db.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_snapshot_get(
  sqlite3 *db, 
  const char *zDb,
  sqlite3_snapshot **ppSnapshot
){
  int rc = SQLITE_ERROR;
#ifndef SQLITE_OMIT_WAL
  int iDb;

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);

  iDb = sqlite3FindDbName(db, zDb);
  if( iDb==0 || iDb>1 ){
    Btree *pBt = db->aDb[iDb].pBt;
    if( 0==sqlite3BtreeIsInTrans(pBt) ){
      rc = sqlite3BtreeBeginTrans(pBt, 0);
      if( rc==SQLITE_OK ){
        rc = sqlite3PagerSnapshotGet(sqlite3BtreePager(pBt), ppSnapshot);
      }
    }
  }

  sqlite3_mutex_leave(db->mutex);
#endif   /* SQLITE_OMIT_WAL */
  return rc;
}

/*
** Open a read-transaction on the snapshot idendified by pSnapshot.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_snapshot_open(
  sqlite3 *db, 
  const char *zDb, 
  sqlite3_snapshot *pSnapshot
){
  int rc = SQLITE_ERROR;
#ifndef SQLITE_OMIT_WAL

#ifdef SQLITE_ENABLE_API_ARMOR
  if( !sqlite3SafetyCheckOk(db) ){
    return SQLITE_MISUSE_BKPT;
  }
#endif
  sqlite3_mutex_enter(db->mutex);
  if( db->autoCommit==0 ){
    int iDb;
    iDb = sqlite3FindDbName(db, zDb);
    if( iDb==0 || iDb>1 ){
      Btree *pBt = db->aDb[iDb].pBt;
      if( 0==sqlite3BtreeIsInReadTrans(pBt) ){
        rc = sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), pSnapshot);
        if( rc==SQLITE_OK ){
          rc = sqlite3BtreeBeginTrans(pBt, 0);
          sqlite3PagerSnapshotOpen(sqlite3BtreePager(pBt), 0);
        }
      }
    }
  }

  sqlite3_mutex_leave(db->mutex);
#endif   /* SQLITE_OMIT_WAL */
  return rc;
}

/*
** Free a snapshot handle obtained from sqlite3_snapshot_get().
*/
SQLITE_API void SQLITE_STDCALL sqlite3_snapshot_free(sqlite3_snapshot *pSnapshot){
  sqlite3_free(pSnapshot);
}
#endif /* SQLITE_ENABLE_SNAPSHOT */

/************** End of main.c ************************************************/
/************** Begin file notify.c ******************************************/
/*
** 2009 March 3
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
158660
158661
158662
158663
158664
158665
158666




158667
158668
158669
158670
158671
158672
158673
*/

#ifndef _SQLITE3RBU_H
#define _SQLITE3RBU_H

/* #include "sqlite3.h"              ** Required for error code definitions ** */





typedef struct sqlite3rbu sqlite3rbu;

/*
** Open an RBU handle.
**
** Argument zTarget is the path to the target database. Argument zRbu is
** the path to the RBU database. Each call to this function must be matched







>
>
>
>







160033
160034
160035
160036
160037
160038
160039
160040
160041
160042
160043
160044
160045
160046
160047
160048
160049
160050
*/

#ifndef _SQLITE3RBU_H
#define _SQLITE3RBU_H

/* #include "sqlite3.h"              ** Required for error code definitions ** */

#if 0
extern "C" {
#endif

typedef struct sqlite3rbu sqlite3rbu;

/*
** Open an RBU handle.
**
** Argument zTarget is the path to the target database. Argument zRbu is
** the path to the RBU database. Each call to this function must be matched
158728
158729
158730
158731
158732
158733
158734



158735
158736
158737
158738
158739
158740
158741
**   * If the application uses the "rbu_delta()" feature described above,
**     it must use sqlite3_create_function() or similar to register the
**     rbu_delta() implementation with the target database handle.
**
** If an error has occurred, either while opening or stepping the RBU object,
** this function may return NULL. The error code and message may be collected
** when sqlite3rbu_close() is called.



*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3rbu_db(sqlite3rbu*, int bRbu);

/*
** Do some work towards applying the RBU update to the target db. 
**
** Return SQLITE_DONE if the update has been completely applied, or 







>
>
>







160105
160106
160107
160108
160109
160110
160111
160112
160113
160114
160115
160116
160117
160118
160119
160120
160121
**   * If the application uses the "rbu_delta()" feature described above,
**     it must use sqlite3_create_function() or similar to register the
**     rbu_delta() implementation with the target database handle.
**
** If an error has occurred, either while opening or stepping the RBU object,
** this function may return NULL. The error code and message may be collected
** when sqlite3rbu_close() is called.
**
** Database handles returned by this function remain valid until the next
** call to any sqlite3rbu_xxx() function other than sqlite3rbu_db().
*/
SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3rbu_db(sqlite3rbu*, int bRbu);

/*
** Do some work towards applying the RBU update to the target db. 
**
** Return SQLITE_DONE if the update has been completely applied, or 
158838
158839
158840
158841
158842
158843
158844




158845
158846
158847
158848
158849
158850
158851
**
** VFS objects are not reference counted. If a VFS object is destroyed
** before all database handles that use it have been closed, the results
** are undefined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3rbu_destroy_vfs(const char *zName);





#endif /* _SQLITE3RBU_H */

/************** End of sqlite3rbu.h ******************************************/
/************** Continuing where we left off in sqlite3rbu.c *****************/

#if defined(_WIN32_WCE)
/* #include "windows.h" */







>
>
>
>







160218
160219
160220
160221
160222
160223
160224
160225
160226
160227
160228
160229
160230
160231
160232
160233
160234
160235
**
** VFS objects are not reference counted. If a VFS object is destroyed
** before all database handles that use it have been closed, the results
** are undefined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3rbu_destroy_vfs(const char *zName);

#if 0
}  /* end of the 'extern "C"' block */
#endif

#endif /* _SQLITE3RBU_H */

/************** End of sqlite3rbu.h ******************************************/
/************** Continuing where we left off in sqlite3rbu.c *****************/

#if defined(_WIN32_WCE)
/* #include "windows.h" */
163202
163203
163204
163205
163206
163207
163208
163209
163210
163211
163212
163213
163214
163215
163216
          pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
          if( pCell->aOvfl==0 ) return SQLITE_NOMEM;
          pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
          for(j=1; j<nOvfl; j++){
            int rc;
            u32 iPrev = pCell->aOvfl[j-1];
            DbPage *pPg = 0;
            rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg);
            if( rc!=SQLITE_OK ){
              assert( pPg==0 );
              return rc;
            } 
            pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
            sqlite3PagerUnref(pPg);
          }







|







164586
164587
164588
164589
164590
164591
164592
164593
164594
164595
164596
164597
164598
164599
164600
          pCell->aOvfl = sqlite3_malloc64(sizeof(u32)*nOvfl);
          if( pCell->aOvfl==0 ) return SQLITE_NOMEM;
          pCell->aOvfl[0] = sqlite3Get4byte(&aData[iOff+nLocal]);
          for(j=1; j<nOvfl; j++){
            int rc;
            u32 iPrev = pCell->aOvfl[j-1];
            DbPage *pPg = 0;
            rc = sqlite3PagerGet(sqlite3BtreePager(pBt), iPrev, &pPg, 0);
            if( rc!=SQLITE_OK ){
              assert( pPg==0 );
              return rc;
            } 
            pCell->aOvfl[j] = sqlite3Get4byte(sqlite3PagerGetData(pPg));
            sqlite3PagerUnref(pPg);
          }
163270
163271
163272
163273
163274
163275
163276
163277
163278
163279
163280
163281
163282
163283
163284
      int nPage;
      u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
      sqlite3PagerPagecount(pPager, &nPage);
      if( nPage==0 ){
        pCsr->isEof = 1;
        return sqlite3_reset(pCsr->pStmt);
      }
      rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg);
      pCsr->aPage[0].iPgno = iRoot;
      pCsr->aPage[0].iCell = 0;
      pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
      pCsr->iPage = 0;
      if( z==0 ) rc = SQLITE_NOMEM;
    }else{
      pCsr->isEof = 1;







|







164654
164655
164656
164657
164658
164659
164660
164661
164662
164663
164664
164665
164666
164667
164668
      int nPage;
      u32 iRoot = (u32)sqlite3_column_int64(pCsr->pStmt, 1);
      sqlite3PagerPagecount(pPager, &nPage);
      if( nPage==0 ){
        pCsr->isEof = 1;
        return sqlite3_reset(pCsr->pStmt);
      }
      rc = sqlite3PagerGet(pPager, iRoot, &pCsr->aPage[0].pPg, 0);
      pCsr->aPage[0].iPgno = iRoot;
      pCsr->aPage[0].iCell = 0;
      pCsr->aPage[0].zPath = z = sqlite3_mprintf("/");
      pCsr->iPage = 0;
      if( z==0 ) rc = SQLITE_NOMEM;
    }else{
      pCsr->isEof = 1;
163330
163331
163332
163333
163334
163335
163336
163337
163338
163339
163340
163341
163342
163343
163344
    assert( p==&pCsr->aPage[pCsr->iPage-1] );

    if( p->iCell==p->nCell ){
      p[1].iPgno = p->iRightChildPg;
    }else{
      p[1].iPgno = p->aCell[p->iCell].iChildPg;
    }
    rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg);
    p[1].iCell = 0;
    p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
    p->iCell++;
    if( z==0 ) rc = SQLITE_NOMEM;
  }









|







164714
164715
164716
164717
164718
164719
164720
164721
164722
164723
164724
164725
164726
164727
164728
    assert( p==&pCsr->aPage[pCsr->iPage-1] );

    if( p->iCell==p->nCell ){
      p[1].iPgno = p->iRightChildPg;
    }else{
      p[1].iPgno = p->aCell[p->iCell].iChildPg;
    }
    rc = sqlite3PagerGet(pPager, p[1].iPgno, &p[1].pPg, 0);
    p[1].iCell = 0;
    p[1].zPath = z = sqlite3_mprintf("%s%.3x/", p->zPath, p->iCell);
    p->iCell++;
    if( z==0 ) rc = SQLITE_NOMEM;
  }


163547
163548
163549
163550
163551
163552
163553
163554
163555
163556
163557
163558
163559
163560
163561
163562
163563
163564
163565
163566
163567
163568








163569
163570

163571
163572
163573
163574
163575
163576
163577
163578
163579
163580
163581
163582
163583
163584
163585
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_JSON1)
#if !defined(_SQLITEINT_H_)
/* #include "sqlite3ext.h" */
#endif
SQLITE_EXTENSION_INIT1
/* #include <assert.h> */
/* #include <string.h> */
#include <ctype.h>  /* amalgamator: keep */
/* #include <stdlib.h> */
/* #include <stdarg.h> */

#define UNUSED_PARAM(X)  (void)(X)

#ifndef LARGEST_INT64
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*
** Versions of isspace(), isalnum() and isdigit() to which it is safe
** to pass signed char values.
*/








#define safe_isdigit(x) isdigit((unsigned char)(x))
#define safe_isalnum(x) isalnum((unsigned char)(x))


/*
** Growing our own isspace() routine this way is twice as fast as
** the library isspace() function, resulting in a 7% overall performance
** increase for the parser.  (Ubuntu14.10 gcc 4.8.4 x64 with -Os).
*/
static const char jsonIsSpace[] = {
  0, 0, 0, 0, 0, 0, 0, 0,     0, 1, 1, 0, 1, 1, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  1, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,







<














>
>
>
>
>
>
>
>
|
|
>







|







164931
164932
164933
164934
164935
164936
164937

164938
164939
164940
164941
164942
164943
164944
164945
164946
164947
164948
164949
164950
164951
164952
164953
164954
164955
164956
164957
164958
164959
164960
164961
164962
164963
164964
164965
164966
164967
164968
164969
164970
164971
164972
164973
164974
164975
164976
164977
#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_JSON1)
#if !defined(_SQLITEINT_H_)
/* #include "sqlite3ext.h" */
#endif
SQLITE_EXTENSION_INIT1
/* #include <assert.h> */
/* #include <string.h> */

/* #include <stdlib.h> */
/* #include <stdarg.h> */

#define UNUSED_PARAM(X)  (void)(X)

#ifndef LARGEST_INT64
# define LARGEST_INT64  (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32))
# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64)
#endif

/*
** Versions of isspace(), isalnum() and isdigit() to which it is safe
** to pass signed char values.
*/
#ifdef sqlite3Isdigit
   /* Use the SQLite core versions if this routine is part of the
   ** SQLite amalgamation */
#  define safe_isdigit(x) sqlite3Isdigit(x)
#  define safe_isalnum(x) sqlite3Isalnum(x)
#else
   /* Use the standard library for separate compilation */
#include <ctype.h>  /* amalgamator: keep */
#  define safe_isdigit(x) isdigit((unsigned char)(x))
#  define safe_isalnum(x) isalnum((unsigned char)(x))
#endif

/*
** Growing our own isspace() routine this way is twice as fast as
** the library isspace() function, resulting in a 7% overall performance
** increase for the parser.  (Ubuntu14.10 gcc 4.8.4 x64 with -Os).
*/
static const char jsonIsSpace[] = {
  0, 0, 0, 0, 0, 0, 0, 0,     0, 1, 1, 0, 0, 1, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  1, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
  0, 0, 0, 0, 0, 0, 0, 0,     0, 0, 0, 0, 0, 0, 0, 0,
164033
164034
164035
164036
164037
164038
164039





164040

164041
164042
164043
164044
164045
164046
164047
      if( pNode->u.zJContent[0]=='-' ){ i = -i; }
      sqlite3_result_int64(pCtx, i);
      int_done:
      break;
      int_as_real: /* fall through to real */;
    }
    case JSON_REAL: {





      double r = strtod(pNode->u.zJContent, 0);

      sqlite3_result_double(pCtx, r);
      break;
    }
    case JSON_STRING: {
#if 0 /* Never happens because JNODE_RAW is only set by json_set(),
      ** json_insert() and json_replace() and those routines do not
      ** call jsonReturn() */







>
>
>
>
>
|
>







165425
165426
165427
165428
165429
165430
165431
165432
165433
165434
165435
165436
165437
165438
165439
165440
165441
165442
165443
165444
165445
      if( pNode->u.zJContent[0]=='-' ){ i = -i; }
      sqlite3_result_int64(pCtx, i);
      int_done:
      break;
      int_as_real: /* fall through to real */;
    }
    case JSON_REAL: {
      double r;
#ifdef SQLITE_AMALGAMATION
      const char *z = pNode->u.zJContent;
      sqlite3AtoF(z, &r, sqlite3Strlen30(z), SQLITE_UTF8);
#else
      r = strtod(pNode->u.zJContent, 0);
#endif
      sqlite3_result_double(pCtx, r);
      break;
    }
    case JSON_STRING: {
#if 0 /* Never happens because JNODE_RAW is only set by json_set(),
      ** json_insert() and json_replace() and those routines do not
      ** call jsonReturn() */
164404
164405
164406
164407
164408
164409
164410
164411
164412
164413
164414
164415
164416
164417
164418
  return SQLITE_OK;
}

/*
** Compare the OBJECT label at pNode against zKey,nKey.  Return true on
** a match.
*/
static int jsonLabelCompare(JsonNode *pNode, const char *zKey, int nKey){
  if( pNode->jnFlags & JNODE_RAW ){
    if( pNode->n!=nKey ) return 0;
    return strncmp(pNode->u.zJContent, zKey, nKey)==0;
  }else{
    if( pNode->n!=nKey+2 ) return 0;
    return strncmp(pNode->u.zJContent+1, zKey, nKey)==0;
  }







|







165802
165803
165804
165805
165806
165807
165808
165809
165810
165811
165812
165813
165814
165815
165816
  return SQLITE_OK;
}

/*
** Compare the OBJECT label at pNode against zKey,nKey.  Return true on
** a match.
*/
static int jsonLabelCompare(JsonNode *pNode, const char *zKey, u32 nKey){
  if( pNode->jnFlags & JNODE_RAW ){
    if( pNode->n!=nKey ) return 0;
    return strncmp(pNode->u.zJContent, zKey, nKey)==0;
  }else{
    if( pNode->n!=nKey+2 ) return 0;
    return strncmp(pNode->u.zJContent+1, zKey, nKey)==0;
  }
164686
164687
164688
164689
164690
164691
164692
164693
164694
164695
164696
164697
164698
164699
164700
){
  UNUSED_PARAM(argc);
  sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE);
}
#endif /* SQLITE_DEBUG */

/****************************************************************************
** SQL function implementations
****************************************************************************/

/*
** Implementation of the json_array(VALUE,...) function.  Return a JSON
** array that contains all values given in arguments.  Or if any argument
** is a BLOB, throw an error.
*/







|







166084
166085
166086
166087
166088
166089
166090
166091
166092
166093
166094
166095
166096
166097
166098
){
  UNUSED_PARAM(argc);
  sqlite3_result_int(ctx, sqlite3_value_subtype(argv[0])==JSON_SUBTYPE);
}
#endif /* SQLITE_DEBUG */

/****************************************************************************
** Scalar SQL function implementations
****************************************************************************/

/*
** Implementation of the json_array(VALUE,...) function.  Return a JSON
** array that contains all values given in arguments.  Or if any argument
** is a BLOB, throw an error.
*/
165018
165019
165020
165021
165022
165023
165024
































































































165025
165026
165027
165028
165029
165030
165031
  UNUSED_PARAM(argc);
  if( jsonParse(&x, 0, (const char*)sqlite3_value_text(argv[0]))==0 ){
    rc = 1;
  }
  jsonParseReset(&x);
  sqlite3_result_int(ctx, rc);
}

































































































#ifndef SQLITE_OMIT_VIRTUALTABLE
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







166416
166417
166418
166419
166420
166421
166422
166423
166424
166425
166426
166427
166428
166429
166430
166431
166432
166433
166434
166435
166436
166437
166438
166439
166440
166441
166442
166443
166444
166445
166446
166447
166448
166449
166450
166451
166452
166453
166454
166455
166456
166457
166458
166459
166460
166461
166462
166463
166464
166465
166466
166467
166468
166469
166470
166471
166472
166473
166474
166475
166476
166477
166478
166479
166480
166481
166482
166483
166484
166485
166486
166487
166488
166489
166490
166491
166492
166493
166494
166495
166496
166497
166498
166499
166500
166501
166502
166503
166504
166505
166506
166507
166508
166509
166510
166511
166512
166513
166514
166515
166516
166517
166518
166519
166520
166521
166522
166523
166524
166525
  UNUSED_PARAM(argc);
  if( jsonParse(&x, 0, (const char*)sqlite3_value_text(argv[0]))==0 ){
    rc = 1;
  }
  jsonParseReset(&x);
  sqlite3_result_int(ctx, rc);
}


/****************************************************************************
** Aggregate SQL function implementations
****************************************************************************/
/*
** json_group_array(VALUE)
**
** Return a JSON array composed of all values in the aggregate.
*/
static void jsonArrayStep(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '[');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    jsonAppendValue(pStr, argv[0]);
  }
}
static void jsonArrayFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    pStr->pCtx = ctx;
    jsonAppendChar(pStr, ']');
    if( pStr->bErr ){
      sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{
    sqlite3_result_text(ctx, "[]", 2, SQLITE_STATIC);
  }
  sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}

/*
** json_group_obj(NAME,VALUE)
**
** Return a JSON object composed of all names and values in the aggregate.
*/
static void jsonObjectStep(
  sqlite3_context *ctx,
  int argc,
  sqlite3_value **argv
){
  JsonString *pStr;
  const char *z;
  u32 n;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, sizeof(*pStr));
  if( pStr ){
    if( pStr->zBuf==0 ){
      jsonInit(pStr, ctx);
      jsonAppendChar(pStr, '{');
    }else{
      jsonAppendChar(pStr, ',');
      pStr->pCtx = ctx;
    }
    z = (const char*)sqlite3_value_text(argv[0]);
    n = (u32)sqlite3_value_bytes(argv[0]);
    jsonAppendString(pStr, z, n);
    jsonAppendChar(pStr, ':');
    jsonAppendValue(pStr, argv[1]);
  }
}
static void jsonObjectFinal(sqlite3_context *ctx){
  JsonString *pStr;
  pStr = (JsonString*)sqlite3_aggregate_context(ctx, 0);
  if( pStr ){
    jsonAppendChar(pStr, '}');
    if( pStr->bErr ){
      sqlite3_result_error_nomem(ctx);
      assert( pStr->bStatic );
    }else{
      sqlite3_result_text(ctx, pStr->zBuf, pStr->nUsed,
                          pStr->bStatic ? SQLITE_TRANSIENT : sqlite3_free);
      pStr->bStatic = 1;
    }
  }else{
    sqlite3_result_text(ctx, "{}", 2, SQLITE_STATIC);
  }
  sqlite3_result_subtype(ctx, JSON_SUBTYPE);
}


#ifndef SQLITE_OMIT_VIRTUALTABLE
/****************************************************************************
** The json_each virtual table
****************************************************************************/
typedef struct JsonEachCursor JsonEachCursor;
struct JsonEachCursor {
165517
165518
165519
165520
165521
165522
165523









165524
165525
165526
165527
165528
165529
165530
165531
165532
165533
165534
165535
165536
165537
165538





165539
165540
165541
165542
165543
165544
165545
165546
165547

165548
165549
165550
165551
165552
165553
165554
165555
165556
165557
165558
165559

165560
165561
165562
165563
165564
165565
165566

#if SQLITE_DEBUG
    /* DEBUG and TESTING functions */
    { "json_parse",           1, 0,   jsonParseFunc         },
    { "json_test1",           1, 0,   jsonTest1Func         },
#endif
  };









#ifndef SQLITE_OMIT_VIRTUALTABLE
  static const struct {
     const char *zName;
     sqlite3_module *pModule;
  } aMod[] = {
    { "json_each",            &jsonEachModule               },
    { "json_tree",            &jsonTreeModule               },
  };
#endif
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8 | SQLITE_DETERMINISTIC, 
                                 (void*)&aFunc[i].flag,
                                 aFunc[i].xFunc, 0, 0);
  }





#ifndef SQLITE_OMIT_VIRTUALTABLE
  for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);
  }
#endif
  return rc;
}



#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int SQLITE_STDCALL sqlite3_json_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  (void)pzErrMsg;  /* Unused parameter */
  return sqlite3Json1Init(db);
}

#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_JSON1) */

/************** End of json1.c ***********************************************/
/************** Begin file fts5.c ********************************************/


#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) 







>
>
>
>
>
>
>
>
>















>
>
>
>
>









>












>







167011
167012
167013
167014
167015
167016
167017
167018
167019
167020
167021
167022
167023
167024
167025
167026
167027
167028
167029
167030
167031
167032
167033
167034
167035
167036
167037
167038
167039
167040
167041
167042
167043
167044
167045
167046
167047
167048
167049
167050
167051
167052
167053
167054
167055
167056
167057
167058
167059
167060
167061
167062
167063
167064
167065
167066
167067
167068
167069
167070
167071
167072
167073
167074
167075
167076

#if SQLITE_DEBUG
    /* DEBUG and TESTING functions */
    { "json_parse",           1, 0,   jsonParseFunc         },
    { "json_test1",           1, 0,   jsonTest1Func         },
#endif
  };
  static const struct {
     const char *zName;
     int nArg;
     void (*xStep)(sqlite3_context*,int,sqlite3_value**);
     void (*xFinal)(sqlite3_context*);
  } aAgg[] = {
    { "json_group_array",     1,   jsonArrayStep,   jsonArrayFinal  },
    { "json_group_object",    2,   jsonObjectStep,  jsonObjectFinal },
  };
#ifndef SQLITE_OMIT_VIRTUALTABLE
  static const struct {
     const char *zName;
     sqlite3_module *pModule;
  } aMod[] = {
    { "json_each",            &jsonEachModule               },
    { "json_tree",            &jsonTreeModule               },
  };
#endif
  for(i=0; i<sizeof(aFunc)/sizeof(aFunc[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aFunc[i].zName, aFunc[i].nArg,
                                 SQLITE_UTF8 | SQLITE_DETERMINISTIC, 
                                 (void*)&aFunc[i].flag,
                                 aFunc[i].xFunc, 0, 0);
  }
  for(i=0; i<sizeof(aAgg)/sizeof(aAgg[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_function(db, aAgg[i].zName, aAgg[i].nArg,
                                 SQLITE_UTF8 | SQLITE_DETERMINISTIC, 0,
                                 0, aAgg[i].xStep, aAgg[i].xFinal);
  }
#ifndef SQLITE_OMIT_VIRTUALTABLE
  for(i=0; i<sizeof(aMod)/sizeof(aMod[0]) && rc==SQLITE_OK; i++){
    rc = sqlite3_create_module(db, aMod[i].zName, aMod[i].pModule, 0);
  }
#endif
  return rc;
}


#ifndef SQLITE_CORE
#ifdef _WIN32
__declspec(dllexport)
#endif
SQLITE_API int SQLITE_STDCALL sqlite3_json_init(
  sqlite3 *db, 
  char **pzErrMsg, 
  const sqlite3_api_routines *pApi
){
  SQLITE_EXTENSION_INIT2(pApi);
  (void)pzErrMsg;  /* Unused parameter */
  return sqlite3Json1Init(db);
}
#endif
#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_JSON1) */

/************** End of json1.c ***********************************************/
/************** Begin file fts5.c ********************************************/


#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS5) 
165593
165594
165595
165596
165597
165598
165599




165600
165601
165602
165603
165604
165605
165606


#ifndef _FTS5_H
#define _FTS5_H

/* #include "sqlite3.h" */





/*************************************************************************
** CUSTOM AUXILIARY FUNCTIONS
**
** Virtual table implementations may overload SQL functions by implementing
** the sqlite3_module.xFindFunction() method.
*/








>
>
>
>







167103
167104
167105
167106
167107
167108
167109
167110
167111
167112
167113
167114
167115
167116
167117
167118
167119
167120


#ifndef _FTS5_H
#define _FTS5_H

/* #include "sqlite3.h" */

#if 0
extern "C" {
#endif

/*************************************************************************
** CUSTOM AUXILIARY FUNCTIONS
**
** Virtual table implementations may overload SQL functions by implementing
** the sqlite3_module.xFindFunction() method.
*/

166078
166079
166080
166081
166082
166083
166084




166085
166086
166087
166088
166089
166090
166091
166092
166093
166094
166095
166096
166097
166098
166099
166100
166101
166102
166103

166104
166105
166106
166107
166108
166109
166110
  );
};

/*
** END OF REGISTRATION API
*************************************************************************/





#endif /* _FTS5_H */


/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/
#ifndef _FTS5INT_H
#define _FTS5INT_H


/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1

/* #include <string.h> */
/* #include <assert.h> */

#ifndef SQLITE_AMALGAMATION







>
>
>
>



















>







167592
167593
167594
167595
167596
167597
167598
167599
167600
167601
167602
167603
167604
167605
167606
167607
167608
167609
167610
167611
167612
167613
167614
167615
167616
167617
167618
167619
167620
167621
167622
167623
167624
167625
167626
167627
167628
167629
  );
};

/*
** END OF REGISTRATION API
*************************************************************************/

#if 0
}  /* end of the 'extern "C"' block */
#endif

#endif /* _FTS5_H */


/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/
#ifndef _FTS5INT_H
#define _FTS5INT_H

/* #include "fts5.h" */
/* #include "sqlite3ext.h" */
SQLITE_EXTENSION_INIT1

/* #include <string.h> */
/* #include <assert.h> */

#ifndef SQLITE_AMALGAMATION
166242
166243
166244
166245
166246
166247
166248

166249
166250
166251
166252
166253
166254
166255
  fts5_tokenizer *pTokApi;

  /* Values loaded from the %_config table */
  int iCookie;                    /* Incremented when %_config is modified */
  int pgsz;                       /* Approximate page size used in %_data */
  int nAutomerge;                 /* 'automerge' setting */
  int nCrisisMerge;               /* Maximum allowed segments per level */

  char *zRank;                    /* Name of rank function */
  char *zRankArgs;                /* Arguments to rank function */

  /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
  char **pzErrmsg;

#ifdef SQLITE_DEBUG







>







167761
167762
167763
167764
167765
167766
167767
167768
167769
167770
167771
167772
167773
167774
167775
  fts5_tokenizer *pTokApi;

  /* Values loaded from the %_config table */
  int iCookie;                    /* Incremented when %_config is modified */
  int pgsz;                       /* Approximate page size used in %_data */
  int nAutomerge;                 /* 'automerge' setting */
  int nCrisisMerge;               /* Maximum allowed segments per level */
  int nHashSize;                  /* Bytes of memory for in-memory hash */
  char *zRank;                    /* Name of rank function */
  char *zRankArgs;                /* Arguments to rank function */

  /* If non-NULL, points to sqlite3_vtab.base.zErrmsg. Often NULL. */
  char **pzErrmsg;

#ifdef SQLITE_DEBUG
166306
166307
166308
166309
166310
166311
166312
166313
166314
166315
166316
166317
166318
166319
166320
166321
166322
166323
166324
166325
166326
166327
166328
166329
166330
166331




166332
166333
166334
166335
166336
166337
166338
166339
166340
166341
166342
166343
166344
166345
166346
166347
166348
166349
166350
166351
166352
166353
166354
166355
166356
166357
166358
166359
166360
166361
166362
typedef struct Fts5Buffer Fts5Buffer;
struct Fts5Buffer {
  u8 *p;
  int n;
  int nSpace;
};

static int sqlite3Fts5BufferGrow(int*, Fts5Buffer*, int);
static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
static void sqlite3Fts5BufferFree(Fts5Buffer*);
static void sqlite3Fts5BufferZero(Fts5Buffer*);
static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);
static void sqlite3Fts5BufferAppend32(int*, Fts5Buffer*, int);

static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);

#define fts5BufferZero(x)             sqlite3Fts5BufferZero(x)
#define fts5BufferGrow(a,b,c)         sqlite3Fts5BufferGrow(a,b,c)
#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
#define fts5BufferFree(a)             sqlite3Fts5BufferFree(a)
#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
#define fts5BufferSet(a,b,c,d)        sqlite3Fts5BufferSet(a,b,c,d)
#define fts5BufferAppend32(a,b,c)     sqlite3Fts5BufferAppend32(a,b,c)





/* Write and decode big-endian 32-bit integer values */
static void sqlite3Fts5Put32(u8*, int);
static int sqlite3Fts5Get32(const u8*);

#define FTS5_POS2COLUMN(iPos) (int)(iPos >> 32)
#define FTS5_POS2OFFSET(iPos) (int)(iPos & 0xFFFFFFFF)

typedef struct Fts5PoslistReader Fts5PoslistReader;
struct Fts5PoslistReader {
  /* Variables used only by sqlite3Fts5PoslistIterXXX() functions. */
  int iCol;                       /* If (iCol>=0), this column only */
  const u8 *a;                    /* Position list to iterate through */
  int n;                          /* Size of buffer at a[] in bytes */
  int i;                          /* Current offset in a[] */

  u8 bFlag;                       /* For client use (any custom purpose) */

  /* Output variables */
  u8 bEof;                        /* Set to true at EOF */
  i64 iPos;                       /* (iCol<<32) + iPos */
};
static int sqlite3Fts5PoslistReaderInit(
  int iCol,                       /* If (iCol>=0), this column only */
  const u8 *a, int n,             /* Poslist buffer to iterate through */
  Fts5PoslistReader *pIter        /* Iterator object to initialize */
);
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);

typedef struct Fts5PoslistWriter Fts5PoslistWriter;
struct Fts5PoslistWriter {







|







<




<




|
>
>
>
>











<











<







167826
167827
167828
167829
167830
167831
167832
167833
167834
167835
167836
167837
167838
167839
167840

167841
167842
167843
167844

167845
167846
167847
167848
167849
167850
167851
167852
167853
167854
167855
167856
167857
167858
167859
167860
167861
167862
167863
167864

167865
167866
167867
167868
167869
167870
167871
167872
167873
167874
167875

167876
167877
167878
167879
167880
167881
167882
typedef struct Fts5Buffer Fts5Buffer;
struct Fts5Buffer {
  u8 *p;
  int n;
  int nSpace;
};

static int sqlite3Fts5BufferSize(int*, Fts5Buffer*, int);
static void sqlite3Fts5BufferAppendVarint(int*, Fts5Buffer*, i64);
static void sqlite3Fts5BufferAppendBlob(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendString(int *, Fts5Buffer*, const char*);
static void sqlite3Fts5BufferFree(Fts5Buffer*);
static void sqlite3Fts5BufferZero(Fts5Buffer*);
static void sqlite3Fts5BufferSet(int*, Fts5Buffer*, int, const u8*);
static void sqlite3Fts5BufferAppendPrintf(int *, Fts5Buffer*, char *zFmt, ...);


static char *sqlite3Fts5Mprintf(int *pRc, const char *zFmt, ...);

#define fts5BufferZero(x)             sqlite3Fts5BufferZero(x)

#define fts5BufferAppendVarint(a,b,c) sqlite3Fts5BufferAppendVarint(a,b,c)
#define fts5BufferFree(a)             sqlite3Fts5BufferFree(a)
#define fts5BufferAppendBlob(a,b,c,d) sqlite3Fts5BufferAppendBlob(a,b,c,d)
#define fts5BufferSet(a,b,c,d)        sqlite3Fts5BufferSet(a,b,c,d)

#define fts5BufferGrow(pRc,pBuf,nn) ( \
  (pBuf)->n + (nn) <= (pBuf)->nSpace ? 0 : \
    sqlite3Fts5BufferSize((pRc),(pBuf),(nn)+(pBuf)->n) \
)

/* Write and decode big-endian 32-bit integer values */
static void sqlite3Fts5Put32(u8*, int);
static int sqlite3Fts5Get32(const u8*);

#define FTS5_POS2COLUMN(iPos) (int)(iPos >> 32)
#define FTS5_POS2OFFSET(iPos) (int)(iPos & 0xFFFFFFFF)

typedef struct Fts5PoslistReader Fts5PoslistReader;
struct Fts5PoslistReader {
  /* Variables used only by sqlite3Fts5PoslistIterXXX() functions. */

  const u8 *a;                    /* Position list to iterate through */
  int n;                          /* Size of buffer at a[] in bytes */
  int i;                          /* Current offset in a[] */

  u8 bFlag;                       /* For client use (any custom purpose) */

  /* Output variables */
  u8 bEof;                        /* Set to true at EOF */
  i64 iPos;                       /* (iCol<<32) + iPos */
};
static int sqlite3Fts5PoslistReaderInit(

  const u8 *a, int n,             /* Poslist buffer to iterate through */
  Fts5PoslistReader *pIter        /* Iterator object to initialize */
);
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader*);

typedef struct Fts5PoslistWriter Fts5PoslistWriter;
struct Fts5PoslistWriter {
166429
166430
166431
166432
166433
166434
166435
166436
166437
166438
166439
166440
166441
166442
166443
** The various operations on open token or token prefix iterators opened
** using sqlite3Fts5IndexQuery().
*/
static int sqlite3Fts5IterEof(Fts5IndexIter*);
static int sqlite3Fts5IterNext(Fts5IndexIter*);
static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
static i64 sqlite3Fts5IterRowid(Fts5IndexIter*);
static int sqlite3Fts5IterPoslist(Fts5IndexIter*, const u8 **pp, int *pn, i64 *pi);
static int sqlite3Fts5IterPoslistBuffer(Fts5IndexIter *pIter, Fts5Buffer *pBuf);

/*
** Close an iterator opened by sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter*);








|







167949
167950
167951
167952
167953
167954
167955
167956
167957
167958
167959
167960
167961
167962
167963
** The various operations on open token or token prefix iterators opened
** using sqlite3Fts5IndexQuery().
*/
static int sqlite3Fts5IterEof(Fts5IndexIter*);
static int sqlite3Fts5IterNext(Fts5IndexIter*);
static int sqlite3Fts5IterNextFrom(Fts5IndexIter*, i64 iMatch);
static i64 sqlite3Fts5IterRowid(Fts5IndexIter*);
static int sqlite3Fts5IterPoslist(Fts5IndexIter*,Fts5Colset*, const u8**, int*, i64*);
static int sqlite3Fts5IterPoslistBuffer(Fts5IndexIter *pIter, Fts5Buffer *pBuf);

/*
** Close an iterator opened by sqlite3Fts5IndexQuery().
*/
static void sqlite3Fts5IterClose(Fts5IndexIter*);

166559
166560
166561
166562
166563
166564
166565
166566
166567
166568
166569
166570
166571
166572
166573
  const char **azArg,
  int nArg,
  Fts5Tokenizer**,
  fts5_tokenizer**,
  char **pzErr
);

static Fts5Index *sqlite3Fts5IndexFromCsrid(Fts5Global*, i64, int*);

/*
** End of interface to code in fts5.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_hash.c. 







|







168079
168080
168081
168082
168083
168084
168085
168086
168087
168088
168089
168090
168091
168092
168093
  const char **azArg,
  int nArg,
  Fts5Tokenizer**,
  fts5_tokenizer**,
  char **pzErr
);

static Fts5Index *sqlite3Fts5IndexFromCsrid(Fts5Global*, i64, Fts5Config **);

/*
** End of interface to code in fts5.c.
**************************************************************************/

/**************************************************************************
** Interface to code in fts5_hash.c. 
166816
166817
166818
166819
166820
166821
166822
166823


166824

166825
166826







166827


166828
166829

166830
166831
166832

166833

166834

166835


166836
166837
166838
166839
166840
166841
166842
166843
166844
166845
166846
166847
166848
166849
166850
166851
166852
166853
166854

166855
166856
166857

166858



166859
166860
166861






166862
166863
166864
166865
166866
166867
166868
166869
166870
166871
166872
166873

166874

166875
166876
166877
166878
166879
166880







166881
166882
166883
166884
166885
166886
166887
166888
166889
166890
166891
166892
166893
166894
166895
166896
166897
166898
166899
166900
166901
166902
166903




166904
166905
166906
166907
166908
166909
166910
#define FTS5_LCP                              8
#define FTS5_RCP                              9
#define FTS5_STRING                          10
#define FTS5_COMMA                           11
#define FTS5_PLUS                            12
#define FTS5_STAR                            13

/* Driver template for the LEMON parser generator.


** The author disclaims copyright to this source code.

**
** This version of "lempar.c" is modified, slightly, for use by SQLite.







** The only modifications are the addition of a couple of NEVER()


** macros to disable tests that are needed in the case of a general
** LALR(1) grammar but which are always false in the

** specific grammar used by SQLite.
*/
/* First off, code is included that follows the "include" declaration

** in the input grammar file. */

/* #include <stdio.h> */





/*
** Disable all error recovery processing in the parser push-down
** automaton.
*/
#define fts5YYNOERRORRECOVERY 1

/*
** Make fts5yytestcase() the same as testcase()
*/
#define fts5yytestcase(X) testcase(X)

/* Next is all token values, in a form suitable for use by makeheaders.
** This section will be null unless lemon is run with the -m switch.
*/
/* 
** These constants (all generated automatically by the parser generator)
** specify the various kinds of tokens (terminals) that the parser
** understands. 

**
** Each symbol here is a terminal symbol in the grammar.
*/

/* Make sure the INTERFACE macro is defined.



*/
#ifndef INTERFACE
# define INTERFACE 1






#endif
/* The next thing included is series of defines which control
** various aspects of the generated parser.
**    fts5YYCODETYPE         is the data type used for storing terminal
**                       and nonterminal numbers.  "unsigned char" is
**                       used if there are fewer than 250 terminals
**                       and nonterminals.  "int" is used otherwise.
**    fts5YYNOCODE           is a number of type fts5YYCODETYPE which corresponds
**                       to no legal terminal or nonterminal number.  This
**                       number is used to fill in empty slots of the hash 
**                       table.
**    fts5YYFALLBACK         If defined, this indicates that one or more tokens

**                       have fall-back values which should be used if the

**                       original value of the token will not parse.
**    fts5YYACTIONTYPE       is the data type used for storing terminal
**                       and nonterminal numbers.  "unsigned char" is
**                       used if there are fewer than 250 rules and
**                       states combined.  "int" is used otherwise.
**    sqlite3Fts5ParserFTS5TOKENTYPE     is the data type used for minor tokens given 







**                       directly to the parser from the tokenizer.
**    fts5YYMINORTYPE        is the data type used for all minor tokens.
**                       This is typically a union of many types, one of
**                       which is sqlite3Fts5ParserFTS5TOKENTYPE.  The entry in the union
**                       for base tokens is called "fts5yy0".
**    fts5YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    sqlite3Fts5ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3Fts5ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3Fts5ParserARG_STORE     Code to store %extra_argument into fts5yypParser
**    sqlite3Fts5ParserARG_FETCH     Code to extract %extra_argument from fts5yypParser
**    fts5YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    fts5YYNSTATE           the combined number of states.
**    fts5YYNRULE            the number of rules in the grammar
**    fts5YY_MAX_SHIFT       Maximum value for shift actions
**    fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    fts5YY_MIN_REDUCE      Maximum value for reduce actions
**    fts5YY_ERROR_ACTION    The fts5yy_action[] code for syntax error
**    fts5YY_ACCEPT_ACTION   The fts5yy_action[] code for accept
**    fts5YY_NO_ACTION       The fts5yy_action[] code for no-op
*/




#define fts5YYCODETYPE unsigned char
#define fts5YYNOCODE 27
#define fts5YYACTIONTYPE unsigned char
#define sqlite3Fts5ParserFTS5TOKENTYPE Fts5Token
typedef union {
  int fts5yyinit;
  sqlite3Fts5ParserFTS5TOKENTYPE fts5yy0;







|
>
>
|
>

<
>
>
>
>
>
>
>
|
>
>
|
|
>
|
|
<
>
|
>

>

>
>












<
<
<
|
<
<
<
>
|
<

>
|
>
>
>

|
|
>
>
>
>
>
>
|
|

|
|
|
|
|
<
<
|

>
|
>
|
|
|
|
<
|
>
>
>
>
>
>
>
|
|


|


















>
>
>
>







168336
168337
168338
168339
168340
168341
168342
168343
168344
168345
168346
168347
168348

168349
168350
168351
168352
168353
168354
168355
168356
168357
168358
168359
168360
168361
168362
168363

168364
168365
168366
168367
168368
168369
168370
168371
168372
168373
168374
168375
168376
168377
168378
168379
168380
168381
168382
168383



168384



168385
168386

168387
168388
168389
168390
168391
168392
168393
168394
168395
168396
168397
168398
168399
168400
168401
168402
168403
168404
168405
168406
168407
168408
168409


168410
168411
168412
168413
168414
168415
168416
168417
168418

168419
168420
168421
168422
168423
168424
168425
168426
168427
168428
168429
168430
168431
168432
168433
168434
168435
168436
168437
168438
168439
168440
168441
168442
168443
168444
168445
168446
168447
168448
168449
168450
168451
168452
168453
168454
168455
168456
168457
168458
168459
168460
#define FTS5_LCP                              8
#define FTS5_RCP                              9
#define FTS5_STRING                          10
#define FTS5_COMMA                           11
#define FTS5_PLUS                            12
#define FTS5_STAR                            13

/*
** 2000-05-29
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**

**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Driver template for the LEMON parser generator.
**
** The "lemon" program processes an LALR(1) input grammar file, then uses
** this template to construct a parser.  The "lemon" program inserts text
** at each "%%" line.  Also, any "P-a-r-s-e" identifer prefix (without the
** interstitial "-" characters) contained in this template is changed into
** the value of the %name directive from the grammar.  Otherwise, the content
** of this template is copied straight through into the generate parser
** source file.
**

** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/* #include <stdio.h> */
/************ Begin %include sections from the grammar ************************/

/* #include "fts5Int.h" */
/* #include "fts5parse.h" */

/*
** Disable all error recovery processing in the parser push-down
** automaton.
*/
#define fts5YYNOERRORRECOVERY 1

/*
** Make fts5yytestcase() the same as testcase()
*/
#define fts5yytestcase(X) testcase(X)




/*



** Indicate that sqlite3ParserFree() will never be called with a null
** pointer.

*/
#define fts5YYPARSEFREENOTNULL 1

/*
** Alternative datatype for the argument to the malloc() routine passed
** into sqlite3ParserAlloc().  The default is size_t.
*/
#define fts5YYMALLOCARGTYPE  u64

/**************** End of %include directives **********************************/
/* These constants specify the various numeric values for terminal symbols
** in a format understandable to "makeheaders".  This section is blank unless
** "lemon" is run with the "-m" command-line option.
***************** Begin makeheaders token definitions *************************/
/**************** End makeheaders token definitions ***************************/

/* The next sections is a series of control #defines.
** various aspects of the generated parser.
**    fts5YYCODETYPE         is the data type used to store the integer codes
**                       that represent terminal and non-terminal symbols.
**                       "unsigned char" is used if there are fewer than
**                       256 symbols.  Larger types otherwise.
**    fts5YYNOCODE           is a number of type fts5YYCODETYPE that is not used for


**                       any terminal or nonterminal symbol.
**    fts5YYFALLBACK         If defined, this indicates that one or more tokens
**                       (also known as: "terminal symbols") have fall-back
**                       values which should be used if the original symbol
**                       would not parse.  This permits keywords to sometimes
**                       be used as identifiers, for example.
**    fts5YYACTIONTYPE       is the data type used for "action codes" - numbers
**                       that indicate what to do in response to the next
**                       token.

**    sqlite3Fts5ParserFTS5TOKENTYPE     is the data type used for minor type for terminal
**                       symbols.  Background: A "minor type" is a semantic
**                       value associated with a terminal or non-terminal
**                       symbols.  For example, for an "ID" terminal symbol,
**                       the minor type might be the name of the identifier.
**                       Each non-terminal can have a different minor type.
**                       Terminal symbols all have the same minor type, though.
**                       This macros defines the minor type for terminal 
**                       symbols.
**    fts5YYMINORTYPE        is the data type used for all minor types.
**                       This is typically a union of many types, one of
**                       which is sqlite3Fts5ParserFTS5TOKENTYPE.  The entry in the union
**                       for terminal symbols is called "fts5yy0".
**    fts5YYSTACKDEPTH       is the maximum depth of the parser's stack.  If
**                       zero the stack is dynamically sized using realloc()
**    sqlite3Fts5ParserARG_SDECL     A static variable declaration for the %extra_argument
**    sqlite3Fts5ParserARG_PDECL     A parameter declaration for the %extra_argument
**    sqlite3Fts5ParserARG_STORE     Code to store %extra_argument into fts5yypParser
**    sqlite3Fts5ParserARG_FETCH     Code to extract %extra_argument from fts5yypParser
**    fts5YYERRORSYMBOL      is the code number of the error symbol.  If not
**                       defined, then do no error processing.
**    fts5YYNSTATE           the combined number of states.
**    fts5YYNRULE            the number of rules in the grammar
**    fts5YY_MAX_SHIFT       Maximum value for shift actions
**    fts5YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
**    fts5YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
**    fts5YY_MIN_REDUCE      Maximum value for reduce actions
**    fts5YY_ERROR_ACTION    The fts5yy_action[] code for syntax error
**    fts5YY_ACCEPT_ACTION   The fts5yy_action[] code for accept
**    fts5YY_NO_ACTION       The fts5yy_action[] code for no-op
*/
#ifndef INTERFACE
# define INTERFACE 1
#endif
/************* Begin control #defines *****************************************/
#define fts5YYCODETYPE unsigned char
#define fts5YYNOCODE 27
#define fts5YYACTIONTYPE unsigned char
#define sqlite3Fts5ParserFTS5TOKENTYPE Fts5Token
typedef union {
  int fts5yyinit;
  sqlite3Fts5ParserFTS5TOKENTYPE fts5yy0;
166927
166928
166929
166930
166931
166932
166933

166934
166935
166936
166937
166938
166939
166940
#define fts5YY_MIN_SHIFTREDUCE   40
#define fts5YY_MAX_SHIFTREDUCE   63
#define fts5YY_MIN_REDUCE        64
#define fts5YY_MAX_REDUCE        87
#define fts5YY_ERROR_ACTION      88
#define fts5YY_ACCEPT_ACTION     89
#define fts5YY_NO_ACTION         90


/* The fts5yyzerominor constant is used to initialize instances of
** fts5YYMINORTYPE objects to zero. */
static const fts5YYMINORTYPE fts5yyzerominor = { 0 };

/* Define the fts5yytestcase() macro to be a no-op if is not already defined
** otherwise.







>







168477
168478
168479
168480
168481
168482
168483
168484
168485
168486
168487
168488
168489
168490
168491
#define fts5YY_MIN_SHIFTREDUCE   40
#define fts5YY_MAX_SHIFTREDUCE   63
#define fts5YY_MIN_REDUCE        64
#define fts5YY_MAX_REDUCE        87
#define fts5YY_ERROR_ACTION      88
#define fts5YY_ACCEPT_ACTION     89
#define fts5YY_NO_ACTION         90
/************* End control #defines *******************************************/

/* The fts5yyzerominor constant is used to initialize instances of
** fts5YYMINORTYPE objects to zero. */
static const fts5YYMINORTYPE fts5yyzerominor = { 0 };

/* Define the fts5yytestcase() macro to be a no-op if is not already defined
** otherwise.
166995
166996
166997
166998
166999
167000
167001
167002

167003
167004
167005
167006
167007
167008
167009
**  fts5yy_lookahead[]     A table containing the lookahead for each entry in
**                     fts5yy_action.  Used to detect hash collisions.
**  fts5yy_shift_ofst[]    For each state, the offset into fts5yy_action for
**                     shifting terminals.
**  fts5yy_reduce_ofst[]   For each state, the offset into fts5yy_action for
**                     shifting non-terminals after a reduce.
**  fts5yy_default[]       Default action for each state.
*/

#define fts5YY_ACTTAB_COUNT (78)
static const fts5YYACTIONTYPE fts5yy_action[] = {
 /*     0 */    89,   15,   46,    5,   48,   24,   12,   19,   23,   14,
 /*    10 */    46,    5,   48,   24,   20,   21,   23,   43,   46,    5,
 /*    20 */    48,   24,    6,   18,   23,   17,   46,    5,   48,   24,
 /*    30 */    75,    7,   23,   25,   46,    5,   48,   24,   62,   47,
 /*    40 */    23,   48,   24,    7,   11,   23,    9,    3,    4,    2,







|
>







168546
168547
168548
168549
168550
168551
168552
168553
168554
168555
168556
168557
168558
168559
168560
168561
**  fts5yy_lookahead[]     A table containing the lookahead for each entry in
**                     fts5yy_action.  Used to detect hash collisions.
**  fts5yy_shift_ofst[]    For each state, the offset into fts5yy_action for
**                     shifting terminals.
**  fts5yy_reduce_ofst[]   For each state, the offset into fts5yy_action for
**                     shifting non-terminals after a reduce.
**  fts5yy_default[]       Default action for each state.
**
*********** Begin parsing tables **********************************************/
#define fts5YY_ACTTAB_COUNT (78)
static const fts5YYACTIONTYPE fts5yy_action[] = {
 /*     0 */    89,   15,   46,    5,   48,   24,   12,   19,   23,   14,
 /*    10 */    46,    5,   48,   24,   20,   21,   23,   43,   46,    5,
 /*    20 */    48,   24,    6,   18,   23,   17,   46,    5,   48,   24,
 /*    30 */    75,    7,   23,   25,   46,    5,   48,   24,   62,   47,
 /*    40 */    23,   48,   24,    7,   11,   23,    9,    3,    4,    2,
167039
167040
167041
167042
167043
167044
167045

167046
167047
167048
167049
167050
167051
167052
167053
167054
167055




167056
167057
167058
167059
167060
167061
167062
 /*    10 */    44,   43,   44,   48,
};
static const fts5YYACTIONTYPE fts5yy_default[] = {
 /*     0 */    88,   88,   88,   88,   88,   69,   82,   88,   88,   87,
 /*    10 */    87,   88,   87,   87,   88,   88,   88,   66,   80,   88,
 /*    20 */    81,   88,   88,   78,   88,   65,
};


/* The next table maps tokens into fallback tokens.  If a construct
** like the following:
** 
**      %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z.  Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.




*/
#ifdef fts5YYFALLBACK
static const fts5YYCODETYPE fts5yyFallback[] = {
};
#endif /* fts5YYFALLBACK */

/* The following structure represents a single element of the







>

|
|







>
>
>
>







168591
168592
168593
168594
168595
168596
168597
168598
168599
168600
168601
168602
168603
168604
168605
168606
168607
168608
168609
168610
168611
168612
168613
168614
168615
168616
168617
168618
168619
 /*    10 */    44,   43,   44,   48,
};
static const fts5YYACTIONTYPE fts5yy_default[] = {
 /*     0 */    88,   88,   88,   88,   88,   69,   82,   88,   88,   87,
 /*    10 */    87,   88,   87,   87,   88,   88,   88,   66,   80,   88,
 /*    20 */    81,   88,   88,   78,   88,   65,
};
/********** End of lemon-generated parsing tables *****************************/

/* The next table maps tokens (terminal symbols) into fallback tokens.  
** If a construct like the following:
** 
**      %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z.  Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
**
** This feature can be used, for example, to cause some keywords in a language
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
#ifdef fts5YYFALLBACK
static const fts5YYCODETYPE fts5yyFallback[] = {
};
#endif /* fts5YYFALLBACK */

/* The following structure represents a single element of the
167199
167200
167201
167202
167203
167204
167205









167206
167207
167208
167209
167210
167211
167212
167213
167214
167215
167216
167217
167218
167219
167220
167221
167222
167223
167224
167225
167226
167227
167228
167229
167230
167231
167232
167233
167234
167235
167236
167237
167238


167239
167240
167241
167242
167243
167244
167245
167246
167247
167248
167249
167250
167251
167252
167253
167254
167255
167256

167257
167258
167259
167260
167261
167262
167263
              fts5yyTracePrompt, p->fts5yystksz);
    }
#endif
  }
}
#endif










/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
*/
static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64)){
  fts5yyParser *pParser;
  pParser = (fts5yyParser*)(*mallocProc)( (u64)sizeof(fts5yyParser) );
  if( pParser ){
    pParser->fts5yyidx = -1;
#ifdef fts5YYTRACKMAXSTACKDEPTH
    pParser->fts5yyidxMax = 0;
#endif
#if fts5YYSTACKDEPTH<=0
    pParser->fts5yystack = NULL;
    pParser->fts5yystksz = 0;
    fts5yyGrowStack(pParser);
#endif
  }
  return pParser;
}

/* The following function deletes the value associated with a
** symbol.  The symbol can be either a terminal or nonterminal.
** "fts5yymajor" is the symbol code, and "fts5yypminor" is a pointer to
** the value.


*/
static void fts5yy_destructor(
  fts5yyParser *fts5yypParser,    /* The parser */
  fts5YYCODETYPE fts5yymajor,     /* Type code for object to destroy */
  fts5YYMINORTYPE *fts5yypminor   /* The object to be destroyed */
){
  sqlite3Fts5ParserARG_FETCH;
  switch( fts5yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are not used
    ** inside the C code.
    */

    case 15: /* input */
{
 (void)pParse; 
}
      break;
    case 16: /* expr */
    case 17: /* cnearset */







>
>
>
>
>
>
>
>
>












|

|














|
|
|
|
>
>















|


>







168756
168757
168758
168759
168760
168761
168762
168763
168764
168765
168766
168767
168768
168769
168770
168771
168772
168773
168774
168775
168776
168777
168778
168779
168780
168781
168782
168783
168784
168785
168786
168787
168788
168789
168790
168791
168792
168793
168794
168795
168796
168797
168798
168799
168800
168801
168802
168803
168804
168805
168806
168807
168808
168809
168810
168811
168812
168813
168814
168815
168816
168817
168818
168819
168820
168821
168822
168823
168824
168825
168826
168827
168828
168829
168830
168831
168832
              fts5yyTracePrompt, p->fts5yystksz);
    }
#endif
  }
}
#endif

/* Datatype of the argument to the memory allocated passed as the
** second argument to sqlite3Fts5ParserAlloc() below.  This can be changed by
** putting an appropriate #define in the %include section of the input
** grammar.
*/
#ifndef fts5YYMALLOCARGTYPE
# define fts5YYMALLOCARGTYPE size_t
#endif

/* 
** This function allocates a new parser.
** The only argument is a pointer to a function which works like
** malloc.
**
** Inputs:
** A pointer to the function used to allocate memory.
**
** Outputs:
** A pointer to a parser.  This pointer is used in subsequent calls
** to sqlite3Fts5Parser and sqlite3Fts5ParserFree.
*/
static void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(fts5YYMALLOCARGTYPE)){
  fts5yyParser *pParser;
  pParser = (fts5yyParser*)(*mallocProc)( (fts5YYMALLOCARGTYPE)sizeof(fts5yyParser) );
  if( pParser ){
    pParser->fts5yyidx = -1;
#ifdef fts5YYTRACKMAXSTACKDEPTH
    pParser->fts5yyidxMax = 0;
#endif
#if fts5YYSTACKDEPTH<=0
    pParser->fts5yystack = NULL;
    pParser->fts5yystksz = 0;
    fts5yyGrowStack(pParser);
#endif
  }
  return pParser;
}

/* The following function deletes the "minor type" or semantic value
** associated with a symbol.  The symbol can be either a terminal
** or nonterminal. "fts5yymajor" is the symbol code, and "fts5yypminor" is
** a pointer to the value to be deleted.  The code used to do the 
** deletions is derived from the %destructor and/or %token_destructor
** directives of the input grammar.
*/
static void fts5yy_destructor(
  fts5yyParser *fts5yypParser,    /* The parser */
  fts5YYCODETYPE fts5yymajor,     /* Type code for object to destroy */
  fts5YYMINORTYPE *fts5yypminor   /* The object to be destroyed */
){
  sqlite3Fts5ParserARG_FETCH;
  switch( fts5yymajor ){
    /* Here is inserted the actions which take place when a
    ** terminal or non-terminal is destroyed.  This can happen
    ** when the symbol is popped from the stack during a
    ** reduce or during error processing or when a parser is 
    ** being destroyed before it is finished parsing.
    **
    ** Note: during a reduce, the only symbols destroyed are those
    ** which appear on the RHS of the rule, but which are *not* used
    ** inside the C code.
    */
/********* Begin destructor definitions ***************************************/
    case 15: /* input */
{
 (void)pParse; 
}
      break;
    case 16: /* expr */
    case 17: /* cnearset */
167279
167280
167281
167282
167283
167284
167285

167286
167287
167288
167289
167290
167291
167292
167293
167294
167295
167296
167297
167298
167299
167300
167301
167302
167303
167304

167305
167306
167307
167308
167309
167310
167311
167312
167313
167314
167315
167316
167317
167318
167319
167320
167321
167322
167323
167324
167325
167326
167327
167328
167329
167330
167331
167332
167333
167334
167335
167336
167337

167338
167339
167340
167341
167342
167343
167344
167345
167346
167347
167348
167349
167350
167351
167352
167353
167354
167355
167356
167357
167358
167359
167360
167361
167362
167363
167364
167365
167366
167367
167368
167369
167370
167371

167372
167373
167374
167375
167376
167377
167378
167379
167380
167381
167382
167383
167384
167385
167386
167387

167388

167389
167390
167391
167392
167393
167394
167395
167396
167397
167398
167399
167400
167401
167402
167403
167404
167405
167406

167407
167408
167409
167410
167411
167412
167413
167414
167415
167416
167417

167418
167419
167420
167421
167422
167423
167424
167425
167426
167427
167428
167429
167430
167431
167432
167433
}
      break;
    case 23: /* phrase */
{
 sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy11)); 
}
      break;

    default:  break;   /* If no destructor action specified: do nothing */
  }
}

/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.
**
** Return the major token number for the symbol popped.
*/
static int fts5yy_pop_parser_stack(fts5yyParser *pParser){
  fts5YYCODETYPE fts5yymajor;
  fts5yyStackEntry *fts5yytos = &pParser->fts5yystack[pParser->fts5yyidx];

  /* There is no mechanism by which the parser stack can be popped below
  ** empty in SQLite.  */
  assert( pParser->fts5yyidx>=0 );

#ifndef NDEBUG
  if( fts5yyTraceFILE && pParser->fts5yyidx>=0 ){
    fprintf(fts5yyTraceFILE,"%sPopping %s\n",
      fts5yyTracePrompt,
      fts5yyTokenName[fts5yytos->major]);
  }
#endif
  fts5yymajor = fts5yytos->major;
  fts5yy_destructor(pParser, fts5yymajor, &fts5yytos->minor);
  pParser->fts5yyidx--;
  return fts5yymajor;
}

/* 
** Deallocate and destroy a parser.  Destructors are all called for
** all stack elements before shutting the parser down.
**
** Inputs:
** <ul>
** <li>  A pointer to the parser.  This should be a pointer
**       obtained from sqlite3Fts5ParserAlloc.
** <li>  A pointer to a function used to reclaim memory obtained
**       from malloc.
** </ul>
*/
static void sqlite3Fts5ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  fts5yyParser *pParser = (fts5yyParser*)p;
  /* In SQLite, we never try to destroy a parser that was not successfully
  ** created in the first place. */
  if( NEVER(pParser==0) ) return;

  while( pParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(pParser);
#if fts5YYSTACKDEPTH<=0
  free(pParser->fts5yystack);
#endif
  (*freeProc)((void*)pParser);
}

/*
** Return the peak depth of the stack for a parser.
*/
#ifdef fts5YYTRACKMAXSTACKDEPTH
static int sqlite3Fts5ParserStackPeak(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;
  return pParser->fts5yyidxMax;
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is fts5YYNOCODE, then check to see if the action is
** independent of the look-ahead.  If it is, return the action, otherwise
** return fts5YY_NO_ACTION.
*/
static int fts5yy_find_shift_action(
  fts5yyParser *pParser,        /* The parser */
  fts5YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->fts5yystack[pParser->fts5yyidx].stateno;
 
  if( stateno>=fts5YY_MIN_REDUCE ) return stateno;
  assert( stateno <= fts5YY_SHIFT_COUNT );

  i = fts5yy_shift_ofst[stateno];
  if( i==fts5YY_SHIFT_USE_DFLT ) return fts5yy_default[stateno];
  assert( iLookAhead!=fts5YYNOCODE );
  i += iLookAhead;
  if( i<0 || i>=fts5YY_ACTTAB_COUNT || fts5yy_lookahead[i]!=iLookAhead ){
    if( iLookAhead>0 ){
#ifdef fts5YYFALLBACK
      fts5YYCODETYPE iFallback;            /* Fallback token */
      if( iLookAhead<sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0])
             && (iFallback = fts5yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
        if( fts5yyTraceFILE ){
          fprintf(fts5yyTraceFILE, "%sFALLBACK %s => %s\n",
             fts5yyTracePrompt, fts5yyTokenName[iLookAhead], fts5yyTokenName[iFallback]);
        }
#endif

        return fts5yy_find_shift_action(pParser, iFallback);

      }
#endif
#ifdef fts5YYWILDCARD
      {
        int j = i - iLookAhead + fts5YYWILDCARD;
        if( 
#if fts5YY_SHIFT_MIN+fts5YYWILDCARD<0
          j>=0 &&
#endif
#if fts5YY_SHIFT_MAX+fts5YYWILDCARD>=fts5YY_ACTTAB_COUNT
          j<fts5YY_ACTTAB_COUNT &&
#endif
          fts5yy_lookahead[j]==fts5YYWILDCARD
        ){
#ifndef NDEBUG
          if( fts5yyTraceFILE ){
            fprintf(fts5yyTraceFILE, "%sWILDCARD %s => %s\n",
               fts5yyTracePrompt, fts5yyTokenName[iLookAhead], fts5yyTokenName[fts5YYWILDCARD]);

          }
#endif /* NDEBUG */
          return fts5yy_action[j];
        }
      }
#endif /* fts5YYWILDCARD */
    }
    return fts5yy_default[stateno];
  }else{
    return fts5yy_action[i];
  }

}

/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
**
** If the look-ahead token is fts5YYNOCODE, then check to see if the action is
** independent of the look-ahead.  If it is, return the action, otherwise
** return fts5YY_NO_ACTION.
*/
static int fts5yy_find_reduce_action(
  int stateno,              /* Current state number */
  fts5YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
#ifdef fts5YYERRORSYMBOL







>









<
<

|
<
|
<
<
<

>

|





<
|
<
<



|


|
|
|
<
<
<
<






|
<
|
>




















<
<
<
<










>
|
|
|
|
|
|

|
|
|

|
|
|
|

>
|
>
|


|
|
|

|


|

|
|

|
|
|
>
|

|
|
|

|
|
|
|
|
>





<
<
<
<







168848
168849
168850
168851
168852
168853
168854
168855
168856
168857
168858
168859
168860
168861
168862
168863
168864


168865
168866

168867



168868
168869
168870
168871
168872
168873
168874
168875
168876

168877


168878
168879
168880
168881
168882
168883
168884
168885
168886




168887
168888
168889
168890
168891
168892
168893

168894
168895
168896
168897
168898
168899
168900
168901
168902
168903
168904
168905
168906
168907
168908
168909
168910
168911
168912
168913
168914
168915




168916
168917
168918
168919
168920
168921
168922
168923
168924
168925
168926
168927
168928
168929
168930
168931
168932
168933
168934
168935
168936
168937
168938
168939
168940
168941
168942
168943
168944
168945
168946
168947
168948
168949
168950
168951
168952
168953
168954
168955
168956
168957
168958
168959
168960
168961
168962
168963
168964
168965
168966
168967
168968
168969
168970
168971
168972
168973
168974
168975
168976
168977
168978
168979
168980
168981




168982
168983
168984
168985
168986
168987
168988
}
      break;
    case 23: /* phrase */
{
 sqlite3Fts5ParsePhraseFree((fts5yypminor->fts5yy11)); 
}
      break;
/********* End destructor definitions *****************************************/
    default:  break;   /* If no destructor action specified: do nothing */
  }
}

/*
** Pop the parser's stack once.
**
** If there is a destructor routine associated with the token which
** is popped from the stack, then call it.


*/
static void fts5yy_pop_parser_stack(fts5yyParser *pParser){

  fts5yyStackEntry *fts5yytos;



  assert( pParser->fts5yyidx>=0 );
  fts5yytos = &pParser->fts5yystack[pParser->fts5yyidx--];
#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sPopping %s\n",
      fts5yyTracePrompt,
      fts5yyTokenName[fts5yytos->major]);
  }
#endif

  fts5yy_destructor(pParser, fts5yytos->major, &fts5yytos->minor);


}

/* 
** Deallocate and destroy a parser.  Destructors are called for
** all stack elements before shutting the parser down.
**
** If the fts5YYPARSEFREENEVERNULL macro exists (for example because it
** is defined in a %include section of the input grammar) then it is
** assumed that the input pointer is never NULL.




*/
static void sqlite3Fts5ParserFree(
  void *p,                    /* The parser to be deleted */
  void (*freeProc)(void*)     /* Function used to reclaim memory */
){
  fts5yyParser *pParser = (fts5yyParser*)p;
#ifndef fts5YYPARSEFREENEVERNULL

  if( pParser==0 ) return;
#endif
  while( pParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(pParser);
#if fts5YYSTACKDEPTH<=0
  free(pParser->fts5yystack);
#endif
  (*freeProc)((void*)pParser);
}

/*
** Return the peak depth of the stack for a parser.
*/
#ifdef fts5YYTRACKMAXSTACKDEPTH
static int sqlite3Fts5ParserStackPeak(void *p){
  fts5yyParser *pParser = (fts5yyParser*)p;
  return pParser->fts5yyidxMax;
}
#endif

/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.




*/
static int fts5yy_find_shift_action(
  fts5yyParser *pParser,        /* The parser */
  fts5YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
  int stateno = pParser->fts5yystack[pParser->fts5yyidx].stateno;
 
  if( stateno>=fts5YY_MIN_REDUCE ) return stateno;
  assert( stateno <= fts5YY_SHIFT_COUNT );
  do{
    i = fts5yy_shift_ofst[stateno];
    if( i==fts5YY_SHIFT_USE_DFLT ) return fts5yy_default[stateno];
    assert( iLookAhead!=fts5YYNOCODE );
    i += iLookAhead;
    if( i<0 || i>=fts5YY_ACTTAB_COUNT || fts5yy_lookahead[i]!=iLookAhead ){
      if( iLookAhead>0 ){
#ifdef fts5YYFALLBACK
        fts5YYCODETYPE iFallback;            /* Fallback token */
        if( iLookAhead<sizeof(fts5yyFallback)/sizeof(fts5yyFallback[0])
               && (iFallback = fts5yyFallback[iLookAhead])!=0 ){
#ifndef NDEBUG
          if( fts5yyTraceFILE ){
            fprintf(fts5yyTraceFILE, "%sFALLBACK %s => %s\n",
               fts5yyTracePrompt, fts5yyTokenName[iLookAhead], fts5yyTokenName[iFallback]);
          }
#endif
          assert( fts5yyFallback[iFallback]==0 ); /* Fallback loop must terminate */
          iLookAhead = iFallback;
          continue;
        }
#endif
#ifdef fts5YYWILDCARD
        {
          int j = i - iLookAhead + fts5YYWILDCARD;
          if( 
#if fts5YY_SHIFT_MIN+fts5YYWILDCARD<0
            j>=0 &&
#endif
#if fts5YY_SHIFT_MAX+fts5YYWILDCARD>=fts5YY_ACTTAB_COUNT
            j<fts5YY_ACTTAB_COUNT &&
#endif
            fts5yy_lookahead[j]==fts5YYWILDCARD
          ){
#ifndef NDEBUG
            if( fts5yyTraceFILE ){
              fprintf(fts5yyTraceFILE, "%sWILDCARD %s => %s\n",
                 fts5yyTracePrompt, fts5yyTokenName[iLookAhead],
                 fts5yyTokenName[fts5YYWILDCARD]);
            }
#endif /* NDEBUG */
            return fts5yy_action[j];
          }
        }
#endif /* fts5YYWILDCARD */
      }
      return fts5yy_default[stateno];
    }else{
      return fts5yy_action[i];
    }
  }while(1);
}

/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.




*/
static int fts5yy_find_reduce_action(
  int stateno,              /* Current state number */
  fts5YYCODETYPE iLookAhead     /* The look-ahead token */
){
  int i;
#ifdef fts5YYERRORSYMBOL
167462
167463
167464
167465
167466
167467
167468

167469
167470

167471
167472
167473
167474
167475
167476
167477
167478
167479
167480
167481
167482
167483
167484
167485
167486
167487
167488

167489
167490
167491
167492
167493
167494
167495
167496
167497
167498
167499
167500
167501
167502
167503
167504
   if( fts5yyTraceFILE ){
     fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
   }
#endif
   while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */


  assert( 0 );

   sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void fts5yyTraceShift(fts5yyParser *fts5yypParser, int fts5yyNewState){
  if( fts5yyTraceFILE ){
    int i;
    if( fts5yyNewState<fts5YYNSTATE ){
      fprintf(fts5yyTraceFILE,"%sShift %d\n",fts5yyTracePrompt,fts5yyNewState);
      fprintf(fts5yyTraceFILE,"%sStack:",fts5yyTracePrompt);
      for(i=1; i<=fts5yypParser->fts5yyidx; i++)
        fprintf(fts5yyTraceFILE," %s",fts5yyTokenName[fts5yypParser->fts5yystack[i].major]);
      fprintf(fts5yyTraceFILE,"\n");
    }else{
      fprintf(fts5yyTraceFILE,"%sShift *\n",fts5yyTracePrompt);

    }
  }
}
#else
# define fts5yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.  Return the number of errors.
*/
static void fts5yy_shift(
  fts5yyParser *fts5yypParser,          /* The parser to be shifted */
  int fts5yyNewState,               /* The new state to shift in */
  int fts5yyMajor,                  /* The major token to shift in */
  fts5YYMINORTYPE *fts5yypMinor         /* Pointer to the minor token to shift in */
){







>


>









<

<
|
<
|
|

|
>








|







169017
169018
169019
169020
169021
169022
169023
169024
169025
169026
169027
169028
169029
169030
169031
169032
169033
169034
169035
169036

169037

169038

169039
169040
169041
169042
169043
169044
169045
169046
169047
169048
169049
169050
169051
169052
169053
169054
169055
169056
169057
169058
169059
   if( fts5yyTraceFILE ){
     fprintf(fts5yyTraceFILE,"%sStack Overflow!\n",fts5yyTracePrompt);
   }
#endif
   while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
   /* Here code is inserted which will execute if the parser
   ** stack every overflows */
/******** Begin %stack_overflow code ******************************************/

  assert( 0 );
/******** End %stack_overflow code ********************************************/
   sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument var */
}

/*
** Print tracing information for a SHIFT action
*/
#ifndef NDEBUG
static void fts5yyTraceShift(fts5yyParser *fts5yypParser, int fts5yyNewState){
  if( fts5yyTraceFILE ){

    if( fts5yyNewState<fts5YYNSTATE ){

      fprintf(fts5yyTraceFILE,"%sShift '%s', go to state %d\n",

         fts5yyTracePrompt,fts5yyTokenName[fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx].major],
         fts5yyNewState);
    }else{
      fprintf(fts5yyTraceFILE,"%sShift '%s'\n",
         fts5yyTracePrompt,fts5yyTokenName[fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx].major]);
    }
  }
}
#else
# define fts5yyTraceShift(X,Y)
#endif

/*
** Perform a shift action.
*/
static void fts5yy_shift(
  fts5yyParser *fts5yypParser,          /* The parser to be shifted */
  int fts5yyNewState,               /* The new state to shift in */
  int fts5yyMajor,                  /* The major token to shift in */
  fts5YYMINORTYPE *fts5yypMinor         /* Pointer to the minor token to shift in */
){
167580
167581
167582
167583
167584
167585
167586
167587
167588
167589
167590
167591
167592
167593
167594
167595
167596
167597
167598
167599
167600
167601
167602
167603
167604
167605
167606
167607
167608
167609
167610
167611
167612
167613
167614
167615
167616
167617
167618

167619
167620
167621
167622
167623
167624
167625
  int fts5yysize;                     /* Amount to pop the stack */
  sqlite3Fts5ParserARG_FETCH;
  fts5yymsp = &fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx];
#ifndef NDEBUG
  if( fts5yyTraceFILE && fts5yyruleno>=0 
        && fts5yyruleno<(int)(sizeof(fts5yyRuleName)/sizeof(fts5yyRuleName[0])) ){
    fts5yysize = fts5yyRuleInfo[fts5yyruleno].nrhs;
    fprintf(fts5yyTraceFILE, "%sReduce [%s] -> state %d.\n", fts5yyTracePrompt,
      fts5yyRuleName[fts5yyruleno], fts5yymsp[-fts5yysize].stateno);
  }
#endif /* NDEBUG */

  /* Silence complaints from purify about fts5yygotominor being uninitialized
  ** in some cases when it is copied into the stack after the following
  ** switch.  fts5yygotominor is uninitialized when a rule reduces that does
  ** not set the value of its left-hand side nonterminal.  Leaving the
  ** value of the nonterminal uninitialized is utterly harmless as long
  ** as the value is never used.  So really the only thing this code
  ** accomplishes is to quieten purify.  
  **
  ** 2007-01-16:  The wireshark project (www.wireshark.org) reports that
  ** without this code, their parser segfaults.  I'm not sure what there
  ** parser is doing to make this happen.  This is the second bug report
  ** from wireshark this week.  Clearly they are stressing Lemon in ways
  ** that it has not been previously stressed...  (SQLite ticket #2172)
  */
  /*memset(&fts5yygotominor, 0, sizeof(fts5yygotominor));*/
  fts5yygotominor = fts5yyzerominor;


  switch( fts5yyruleno ){
  /* Beginning here are the reduction cases.  A typical example
  ** follows:
  **   case 0:
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */

      case 0: /* input ::= expr */
{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy18); }
        break;
      case 1: /* expr ::= expr AND expr */
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}







|



<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

<










>







169135
169136
169137
169138
169139
169140
169141
169142
169143
169144
169145
















169146

169147
169148
169149
169150
169151
169152
169153
169154
169155
169156
169157
169158
169159
169160
169161
169162
169163
169164
  int fts5yysize;                     /* Amount to pop the stack */
  sqlite3Fts5ParserARG_FETCH;
  fts5yymsp = &fts5yypParser->fts5yystack[fts5yypParser->fts5yyidx];
#ifndef NDEBUG
  if( fts5yyTraceFILE && fts5yyruleno>=0 
        && fts5yyruleno<(int)(sizeof(fts5yyRuleName)/sizeof(fts5yyRuleName[0])) ){
    fts5yysize = fts5yyRuleInfo[fts5yyruleno].nrhs;
    fprintf(fts5yyTraceFILE, "%sReduce [%s], go to state %d.\n", fts5yyTracePrompt,
      fts5yyRuleName[fts5yyruleno], fts5yymsp[-fts5yysize].stateno);
  }
#endif /* NDEBUG */
















  fts5yygotominor = fts5yyzerominor;


  switch( fts5yyruleno ){
  /* Beginning here are the reduction cases.  A typical example
  ** follows:
  **   case 0:
  **  #line <lineno> <grammarfile>
  **     { ... }           // User supplied code
  **  #line <lineno> <thisfile>
  **     break;
  */
/********** Begin reduce actions **********************************************/
      case 0: /* input ::= expr */
{ sqlite3Fts5ParseFinished(pParse, fts5yymsp[0].minor.fts5yy18); }
        break;
      case 1: /* expr ::= expr AND expr */
{
  fts5yygotominor.fts5yy18 = sqlite3Fts5ParseNode(pParse, FTS5_AND, fts5yymsp[-2].minor.fts5yy18, fts5yymsp[0].minor.fts5yy18, 0);
}
167714
167715
167716
167717
167718
167719
167720

167721
167722
167723
167724
167725
167726
167727
{ fts5yygotominor.fts5yy20 = 1; }
        break;
      case 23: /* star_opt ::= */
{ fts5yygotominor.fts5yy20 = 0; }
        break;
      default:
        break;

  };
  assert( fts5yyruleno>=0 && fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );
  fts5yygoto = fts5yyRuleInfo[fts5yyruleno].lhs;
  fts5yysize = fts5yyRuleInfo[fts5yyruleno].nrhs;
  fts5yypParser->fts5yyidx -= fts5yysize;
  fts5yyact = fts5yy_find_reduce_action(fts5yymsp[-fts5yysize].stateno,(fts5YYCODETYPE)fts5yygoto);
  if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){







>







169253
169254
169255
169256
169257
169258
169259
169260
169261
169262
169263
169264
169265
169266
169267
{ fts5yygotominor.fts5yy20 = 1; }
        break;
      case 23: /* star_opt ::= */
{ fts5yygotominor.fts5yy20 = 0; }
        break;
      default:
        break;
/********** End reduce actions ************************************************/
  };
  assert( fts5yyruleno>=0 && fts5yyruleno<sizeof(fts5yyRuleInfo)/sizeof(fts5yyRuleInfo[0]) );
  fts5yygoto = fts5yyRuleInfo[fts5yyruleno].lhs;
  fts5yysize = fts5yyRuleInfo[fts5yyruleno].nrhs;
  fts5yypParser->fts5yyidx -= fts5yysize;
  fts5yyact = fts5yy_find_reduce_action(fts5yymsp[-fts5yysize].stateno,(fts5YYCODETYPE)fts5yygoto);
  if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
167758
167759
167760
167761
167762
167763
167764


167765
167766
167767
167768
167769
167770
167771
167772
167773
167774
167775
167776
167777
167778

167779
167780
167781
167782

167783
167784
167785
167786
167787
167788
167789
167790
167791
167792
167793
167794
167795
167796
167797
167798
167799
167800


167801
167802
167803
167804
167805
167806
167807
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sFail!\n",fts5yyTracePrompt);
  }
#endif
  while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */


  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
#endif /* fts5YYNOERRORRECOVERY */

/*
** The following code executes when a syntax error first occurs.
*/
static void fts5yy_syntax_error(
  fts5yyParser *fts5yypParser,           /* The parser */
  int fts5yymajor,                   /* The major type of the error token */
  fts5YYMINORTYPE fts5yyminor            /* The minor type of the error token */
){
  sqlite3Fts5ParserARG_FETCH;
#define FTS5TOKEN (fts5yyminor.fts5yy0)


  sqlite3Fts5ParseError(
    pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
  );

  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/*
** The following is executed when the parser accepts
*/
static void fts5yy_accept(
  fts5yyParser *fts5yypParser           /* The parser */
){
  sqlite3Fts5ParserARG_FETCH;
#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sAccept!\n",fts5yyTracePrompt);
  }
#endif
  while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */


  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "sqlite3Fts5ParserAlloc" which describes the current state of the parser.
** The second argument is the major token number.  The third is







>
>














>




>


















>
>







169298
169299
169300
169301
169302
169303
169304
169305
169306
169307
169308
169309
169310
169311
169312
169313
169314
169315
169316
169317
169318
169319
169320
169321
169322
169323
169324
169325
169326
169327
169328
169329
169330
169331
169332
169333
169334
169335
169336
169337
169338
169339
169340
169341
169342
169343
169344
169345
169346
169347
169348
169349
169350
169351
169352
169353
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sFail!\n",fts5yyTracePrompt);
  }
#endif
  while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser fails */
/************ Begin %parse_failure code ***************************************/
/************ End %parse_failure code *****************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}
#endif /* fts5YYNOERRORRECOVERY */

/*
** The following code executes when a syntax error first occurs.
*/
static void fts5yy_syntax_error(
  fts5yyParser *fts5yypParser,           /* The parser */
  int fts5yymajor,                   /* The major type of the error token */
  fts5YYMINORTYPE fts5yyminor            /* The minor type of the error token */
){
  sqlite3Fts5ParserARG_FETCH;
#define FTS5TOKEN (fts5yyminor.fts5yy0)
/************ Begin %syntax_error code ****************************************/

  sqlite3Fts5ParseError(
    pParse, "fts5: syntax error near \"%.*s\"",FTS5TOKEN.n,FTS5TOKEN.p
  );
/************ End %syntax_error code ******************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/*
** The following is executed when the parser accepts
*/
static void fts5yy_accept(
  fts5yyParser *fts5yypParser           /* The parser */
){
  sqlite3Fts5ParserARG_FETCH;
#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sAccept!\n",fts5yyTracePrompt);
  }
#endif
  while( fts5yypParser->fts5yyidx>=0 ) fts5yy_pop_parser_stack(fts5yypParser);
  /* Here code is inserted which will be executed whenever the
  ** parser accepts */
/*********** Begin %parse_accept code *****************************************/
/*********** End %parse_accept code *******************************************/
  sqlite3Fts5ParserARG_STORE; /* Suppress warning about unused %extra_argument variable */
}

/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "sqlite3Fts5ParserAlloc" which describes the current state of the parser.
** The second argument is the major token number.  The third is
167847
167848
167849
167850
167851
167852
167853






167854
167855
167856
167857
167858
167859
167860
167861
167862
167863
167864
167865
167866
167867
167868
167869
167870
      return;
    }
#endif
    fts5yypParser->fts5yyidx = 0;
    fts5yypParser->fts5yyerrcnt = -1;
    fts5yypParser->fts5yystack[0].stateno = 0;
    fts5yypParser->fts5yystack[0].major = 0;






  }
  fts5yyminorunion.fts5yy0 = fts5yyminor;
#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
  fts5yyendofinput = (fts5yymajor==0);
#endif
  sqlite3Fts5ParserARG_STORE;

#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sInput %s\n",fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
  }
#endif

  do{
    fts5yyact = fts5yy_find_shift_action(fts5yypParser,(fts5YYCODETYPE)fts5yymajor);
    if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
      if( fts5yyact > fts5YY_MAX_SHIFT ) fts5yyact += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;







>
>
>
>
>
>









|







169393
169394
169395
169396
169397
169398
169399
169400
169401
169402
169403
169404
169405
169406
169407
169408
169409
169410
169411
169412
169413
169414
169415
169416
169417
169418
169419
169420
169421
169422
      return;
    }
#endif
    fts5yypParser->fts5yyidx = 0;
    fts5yypParser->fts5yyerrcnt = -1;
    fts5yypParser->fts5yystack[0].stateno = 0;
    fts5yypParser->fts5yystack[0].major = 0;
#ifndef NDEBUG
    if( fts5yyTraceFILE ){
      fprintf(fts5yyTraceFILE,"%sInitialize. Empty stack. State 0\n",
              fts5yyTracePrompt);
    }
#endif
  }
  fts5yyminorunion.fts5yy0 = fts5yyminor;
#if !defined(fts5YYERRORSYMBOL) && !defined(fts5YYNOERRORRECOVERY)
  fts5yyendofinput = (fts5yymajor==0);
#endif
  sqlite3Fts5ParserARG_STORE;

#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    fprintf(fts5yyTraceFILE,"%sInput '%s'\n",fts5yyTracePrompt,fts5yyTokenName[fts5yymajor]);
  }
#endif

  do{
    fts5yyact = fts5yy_find_shift_action(fts5yypParser,(fts5YYCODETYPE)fts5yymajor);
    if( fts5yyact <= fts5YY_MAX_SHIFTREDUCE ){
      if( fts5yyact > fts5YY_MAX_SHIFT ) fts5yyact += fts5YY_MIN_REDUCE - fts5YY_MIN_SHIFTREDUCE;
167970
167971
167972
167973
167974
167975
167976





167977
167978
167979
167980
167981
167982
167983
167984
167985
167986
167987
167988
167989
167990
167991
167992
167993
167994
167995
167996

167997
167998
167999
168000
168001
168002
168003
      }
      fts5yymajor = fts5YYNOCODE;
#endif
    }
  }while( fts5yymajor!=fts5YYNOCODE && fts5yypParser->fts5yyidx>=0 );
#ifndef NDEBUG
  if( fts5yyTraceFILE ){





    fprintf(fts5yyTraceFILE,"%sReturn\n",fts5yyTracePrompt);
  }
#endif
  return;
}

/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/



#include <math.h>                 /* amalgamator: keep */

/*
** Object used to iterate through all "coalesced phrase instances" in 
** a single column of the current row. If the phrase instances in the
** column being considered do not overlap, this object simply iterates
** through them. Or, if they do overlap (share one or more tokens in







>
>
>
>
>
|



















>







169522
169523
169524
169525
169526
169527
169528
169529
169530
169531
169532
169533
169534
169535
169536
169537
169538
169539
169540
169541
169542
169543
169544
169545
169546
169547
169548
169549
169550
169551
169552
169553
169554
169555
169556
169557
169558
169559
169560
169561
      }
      fts5yymajor = fts5YYNOCODE;
#endif
    }
  }while( fts5yymajor!=fts5YYNOCODE && fts5yypParser->fts5yyidx>=0 );
#ifndef NDEBUG
  if( fts5yyTraceFILE ){
    int i;
    fprintf(fts5yyTraceFILE,"%sReturn. Stack=",fts5yyTracePrompt);
    for(i=1; i<=fts5yypParser->fts5yyidx; i++)
      fprintf(fts5yyTraceFILE,"%c%s", i==1 ? '[' : ' ', 
              fts5yyTokenName[fts5yypParser->fts5yystack[i].major]);
    fprintf(fts5yyTraceFILE,"]\n");
  }
#endif
  return;
}

/*
** 2014 May 31
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/


/* #include "fts5Int.h" */
#include <math.h>                 /* amalgamator: keep */

/*
** Object used to iterate through all "coalesced phrase instances" in 
** a single column of the current row. If the phrase instances in the
** column being considered do not overlap, this object simply iterates
** through them. Or, if they do overlap (share one or more tokens in
168114
168115
168116
168117
168118
168119
168120
168121
168122
168123
168124
168125
168126
168127
168128
*/
static void fts5HighlightAppend(
  int *pRc, 
  HighlightContext *p, 
  const char *z, int n
){
  if( *pRc==SQLITE_OK ){
    if( n<0 ) n = strlen(z);
    p->zOut = sqlite3_mprintf("%z%.*s", p->zOut, n, z);
    if( p->zOut==0 ) *pRc = SQLITE_NOMEM;
  }
}

/*
** Tokenizer callback used by implementation of highlight() function.







|







169672
169673
169674
169675
169676
169677
169678
169679
169680
169681
169682
169683
169684
169685
169686
*/
static void fts5HighlightAppend(
  int *pRc, 
  HighlightContext *p, 
  const char *z, int n
){
  if( *pRc==SQLITE_OK ){
    if( n<0 ) n = (int)strlen(z);
    p->zOut = sqlite3_mprintf("%z%.*s", p->zOut, n, z);
    if( p->zOut==0 ) *pRc = SQLITE_NOMEM;
  }
}

/*
** Tokenizer callback used by implementation of highlight() function.
168521
168522
168523
168524
168525
168526
168527
168528
168529
168530
168531
168532
168533
168534
168535
    { "snippet",   0, fts5SnippetFunction, 0 },
    { "highlight", 0, fts5HighlightFunction, 0 },
    { "bm25",      0, fts5Bm25Function,    0 },
  };
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<sizeof(aBuiltin)/sizeof(aBuiltin[0]); i++){
    rc = pApi->xCreateFunction(pApi,
        aBuiltin[i].zFunc,
        aBuiltin[i].pUserData,
        aBuiltin[i].xFunc,
        aBuiltin[i].xDestroy
    );
  }







|







170079
170080
170081
170082
170083
170084
170085
170086
170087
170088
170089
170090
170091
170092
170093
    { "snippet",   0, fts5SnippetFunction, 0 },
    { "highlight", 0, fts5HighlightFunction, 0 },
    { "bm25",      0, fts5Bm25Function,    0 },
  };
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aBuiltin); i++){
    rc = pApi->xCreateFunction(pApi,
        aBuiltin[i].zFunc,
        aBuiltin[i].pUserData,
        aBuiltin[i].xFunc,
        aBuiltin[i].xDestroy
    );
  }
168550
168551
168552
168553
168554
168555
168556

168557
168558
168559
168560
168561
168562
168563
168564
168565
168566
168567
168568
168569
168570
168571
168572
168573
168574
168575
168576
168577
168578
168579
168580

168581
168582
168583
168584
168585
168586
168587
168588
168589
168590
168591
168592
168593
168594
168595
168596
168597
168598
168599
168600
168601
168602
168603
168604
168605
168606
168607
168608
168609
168610
168611
168612
168613
168614
168615
168616
168617
168618
168619
168620
168621
168622
168623
168624
168625
168626
168627
168628
168629
168630
168631
168632
168633
168634
168635
168636
168637
168638
168639
168640
168641
168642
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/





static int sqlite3Fts5BufferGrow(int *pRc, Fts5Buffer *pBuf, int nByte){

  if( (pBuf->n + nByte) > pBuf->nSpace ){
    u8 *pNew;
    int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;

    /* A no-op if an error has already occurred */
    if( *pRc ) return 1;

    while( nNew<(pBuf->n + nByte) ){
      nNew = nNew * 2;
    }
    pNew = sqlite3_realloc(pBuf->p, nNew);
    if( pNew==0 ){
      *pRc = SQLITE_NOMEM;
      return 1;
    }else{
      pBuf->nSpace = nNew;
      pBuf->p = pNew;
    }
  }
  return 0;
}


/*
** Encode value iVal as an SQLite varint and append it to the buffer object
** pBuf. If an OOM error occurs, set the error code in p.
*/
static void sqlite3Fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
  if( sqlite3Fts5BufferGrow(pRc, pBuf, 9) ) return;
  pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iVal);
}

static void sqlite3Fts5Put32(u8 *aBuf, int iVal){
  aBuf[0] = (iVal>>24) & 0x00FF;
  aBuf[1] = (iVal>>16) & 0x00FF;
  aBuf[2] = (iVal>> 8) & 0x00FF;
  aBuf[3] = (iVal>> 0) & 0x00FF;
}

static int sqlite3Fts5Get32(const u8 *aBuf){
  return (aBuf[0] << 24) + (aBuf[1] << 16) + (aBuf[2] << 8) + aBuf[3];
}

static void sqlite3Fts5BufferAppend32(int *pRc, Fts5Buffer *pBuf, int iVal){
  if( sqlite3Fts5BufferGrow(pRc, pBuf, 4) ) return;
  sqlite3Fts5Put32(&pBuf->p[pBuf->n], iVal);
  pBuf->n += 4;
}

/*
** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set 
** the error code in p. If an error has already occurred when this function
** is called, it is a no-op.
*/
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  int nData, 
  const u8 *pData
){
  assert( *pRc || nData>=0 );
  if( sqlite3Fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function
** ensures that the byte following the buffer data is set to 0x00, even 
** though this byte is not included in the pBuf->n count.
*/
static void sqlite3Fts5BufferAppendString(
  int *pRc,
  Fts5Buffer *pBuf, 
  const char *zStr
){
  int nStr = strlen(zStr);
  sqlite3Fts5BufferAppendBlob(pRc, pBuf, nStr+1, (const u8*)zStr);
  pBuf->n--;
}

/*
** Argument zFmt is a printf() style format string. This function performs
** the printf() style processing, then appends the results to buffer pBuf.







>

|
|
<
|
<
<
<
<
<
|
|
|
|
|
|
|
|
|
|
|
<


>






|














<
<
<
<
<
<












|














|







170108
170109
170110
170111
170112
170113
170114
170115
170116
170117
170118

170119





170120
170121
170122
170123
170124
170125
170126
170127
170128
170129
170130

170131
170132
170133
170134
170135
170136
170137
170138
170139
170140
170141
170142
170143
170144
170145
170146
170147
170148
170149
170150
170151
170152
170153
170154






170155
170156
170157
170158
170159
170160
170161
170162
170163
170164
170165
170166
170167
170168
170169
170170
170171
170172
170173
170174
170175
170176
170177
170178
170179
170180
170181
170182
170183
170184
170185
170186
170187
170188
170189
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/



/* #include "fts5Int.h" */

static int sqlite3Fts5BufferSize(int *pRc, Fts5Buffer *pBuf, int nByte){
  int nNew = pBuf->nSpace ? pBuf->nSpace*2 : 64;

  u8 *pNew;





  while( nNew<nByte ){
    nNew = nNew * 2;
  }
  pNew = sqlite3_realloc(pBuf->p, nNew);
  if( pNew==0 ){
    *pRc = SQLITE_NOMEM;
    return 1;
  }else{
    pBuf->nSpace = nNew;
    pBuf->p = pNew;
  }

  return 0;
}


/*
** Encode value iVal as an SQLite varint and append it to the buffer object
** pBuf. If an OOM error occurs, set the error code in p.
*/
static void sqlite3Fts5BufferAppendVarint(int *pRc, Fts5Buffer *pBuf, i64 iVal){
  if( fts5BufferGrow(pRc, pBuf, 9) ) return;
  pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iVal);
}

static void sqlite3Fts5Put32(u8 *aBuf, int iVal){
  aBuf[0] = (iVal>>24) & 0x00FF;
  aBuf[1] = (iVal>>16) & 0x00FF;
  aBuf[2] = (iVal>> 8) & 0x00FF;
  aBuf[3] = (iVal>> 0) & 0x00FF;
}

static int sqlite3Fts5Get32(const u8 *aBuf){
  return (aBuf[0] << 24) + (aBuf[1] << 16) + (aBuf[2] << 8) + aBuf[3];
}







/*
** Append buffer nData/pData to buffer pBuf. If an OOM error occurs, set 
** the error code in p. If an error has already occurred when this function
** is called, it is a no-op.
*/
static void sqlite3Fts5BufferAppendBlob(
  int *pRc,
  Fts5Buffer *pBuf, 
  int nData, 
  const u8 *pData
){
  assert( *pRc || nData>=0 );
  if( fts5BufferGrow(pRc, pBuf, nData) ) return;
  memcpy(&pBuf->p[pBuf->n], pData, nData);
  pBuf->n += nData;
}

/*
** Append the nul-terminated string zStr to the buffer pBuf. This function
** ensures that the byte following the buffer data is set to 0x00, even 
** though this byte is not included in the pBuf->n count.
*/
static void sqlite3Fts5BufferAppendString(
  int *pRc,
  Fts5Buffer *pBuf, 
  const char *zStr
){
  int nStr = (int)strlen(zStr);
  sqlite3Fts5BufferAppendBlob(pRc, pBuf, nStr+1, (const u8*)zStr);
  pBuf->n--;
}

/*
** Argument zFmt is a printf() style format string. This function performs
** the printf() style processing, then appends the results to buffer pBuf.
168739
168740
168741
168742
168743
168744
168745
168746
168747
168748
168749
168750
168751
168752
168753
168754
168755
168756
168757
168758
168759
168760
168761
168762
168763
168764
168765
168766
168767
168768
168769
168770
168771
168772
168773
168774
168775
168776
168777
168778
168779
168780
168781
168782
168783


/*
** Advance the iterator object passed as the only argument. Return true
** if the iterator reaches EOF, or false otherwise.
*/
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader *pIter){
  if( sqlite3Fts5PoslistNext64(pIter->a, pIter->n, &pIter->i, &pIter->iPos) 
   || (pIter->iCol>=0 && (pIter->iPos >> 32) > pIter->iCol)
  ){
    pIter->bEof = 1;
  }
  return pIter->bEof;
}

static int sqlite3Fts5PoslistReaderInit(
  int iCol,                       /* If (iCol>=0), this column only */
  const u8 *a, int n,             /* Poslist buffer to iterate through */
  Fts5PoslistReader *pIter        /* Iterator object to initialize */
){
  memset(pIter, 0, sizeof(*pIter));
  pIter->a = a;
  pIter->n = n;
  pIter->iCol = iCol;
  do {
    sqlite3Fts5PoslistReaderNext(pIter);
  }while( pIter->bEof==0 && (pIter->iPos >> 32)<iCol );
  return pIter->bEof;
}

static int sqlite3Fts5PoslistWriterAppend(
  Fts5Buffer *pBuf, 
  Fts5PoslistWriter *pWriter,
  i64 iPos
){
  static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
  int rc = SQLITE_OK;
  if( 0==sqlite3Fts5BufferGrow(&rc, pBuf, 5+5+5) ){
    if( (iPos & colmask) != (pWriter->iPrev & colmask) ){
      pBuf->p[pBuf->n++] = 1;
      pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
      pWriter->iPrev = (iPos & colmask);
    }
    pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-pWriter->iPrev)+2);
    pWriter->iPrev = iPos;







|
<
<






<






<
<
|
<










|







170286
170287
170288
170289
170290
170291
170292
170293


170294
170295
170296
170297
170298
170299

170300
170301
170302
170303
170304
170305


170306

170307
170308
170309
170310
170311
170312
170313
170314
170315
170316
170317
170318
170319
170320
170321
170322
170323
170324


/*
** Advance the iterator object passed as the only argument. Return true
** if the iterator reaches EOF, or false otherwise.
*/
static int sqlite3Fts5PoslistReaderNext(Fts5PoslistReader *pIter){
  if( sqlite3Fts5PoslistNext64(pIter->a, pIter->n, &pIter->i, &pIter->iPos) ){


    pIter->bEof = 1;
  }
  return pIter->bEof;
}

static int sqlite3Fts5PoslistReaderInit(

  const u8 *a, int n,             /* Poslist buffer to iterate through */
  Fts5PoslistReader *pIter        /* Iterator object to initialize */
){
  memset(pIter, 0, sizeof(*pIter));
  pIter->a = a;
  pIter->n = n;


  sqlite3Fts5PoslistReaderNext(pIter);

  return pIter->bEof;
}

static int sqlite3Fts5PoslistWriterAppend(
  Fts5Buffer *pBuf, 
  Fts5PoslistWriter *pWriter,
  i64 iPos
){
  static const i64 colmask = ((i64)(0x7FFFFFFF)) << 32;
  int rc = SQLITE_OK;
  if( 0==fts5BufferGrow(&rc, pBuf, 5+5+5) ){
    if( (iPos & colmask) != (pWriter->iPrev & colmask) ){
      pBuf->p[pBuf->n++] = 1;
      pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos>>32));
      pWriter->iPrev = (iPos & colmask);
    }
    pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], (iPos-pWriter->iPrev)+2);
    pWriter->iPrev = iPos;
168806
168807
168808
168809
168810
168811
168812
168813
168814
168815
168816
168817
168818
168819
168820
** It is the responsibility of the caller to eventually free the returned
** buffer using sqlite3_free(). If an OOM error occurs, NULL is returned. 
*/
static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn){
  char *zRet = 0;
  if( *pRc==SQLITE_OK ){
    if( nIn<0 ){
      nIn = strlen(pIn);
    }
    zRet = (char*)sqlite3_malloc(nIn+1);
    if( zRet ){
      memcpy(zRet, pIn, nIn);
      zRet[nIn] = '\0';
    }else{
      *pRc = SQLITE_NOMEM;







|







170347
170348
170349
170350
170351
170352
170353
170354
170355
170356
170357
170358
170359
170360
170361
** It is the responsibility of the caller to eventually free the returned
** buffer using sqlite3_free(). If an OOM error occurs, NULL is returned. 
*/
static char *sqlite3Fts5Strndup(int *pRc, const char *pIn, int nIn){
  char *zRet = 0;
  if( *pRc==SQLITE_OK ){
    if( nIn<0 ){
      nIn = (int)strlen(pIn);
    }
    zRet = (char*)sqlite3_malloc(nIn+1);
    if( zRet ){
      memcpy(zRet, pIn, nIn);
      zRet[nIn] = '\0';
    }else{
      *pRc = SQLITE_NOMEM;
168864
168865
168866
168867
168868
168869
168870

168871
168872
168873
168874

168875
168876
168877
168878
168879
168880
168881
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/





#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16


/* Maximum allowed page size */
#define FTS5_MAX_PAGE_SIZE (128*1024)

static int fts5_iswhitespace(char x){
  return (x==' ');
}







>




>







170405
170406
170407
170408
170409
170410
170411
170412
170413
170414
170415
170416
170417
170418
170419
170420
170421
170422
170423
170424
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/



/* #include "fts5Int.h" */

#define FTS5_DEFAULT_PAGE_SIZE   4050
#define FTS5_DEFAULT_AUTOMERGE      4
#define FTS5_DEFAULT_CRISISMERGE   16
#define FTS5_DEFAULT_HASHSIZE    (1024*1024)

/* Maximum allowed page size */
#define FTS5_MAX_PAGE_SIZE (128*1024)

static int fts5_iswhitespace(char x){
  return (x==' ');
}
169059
169060
169061
169062
169063
169064
169065
169066
169067
169068
169069

169070
169071
169072
169073
169074

169075

169076
169077
169078
169079
169080
169081
169082
169083
169084
169085
169086

169087



169088
169089

169090














169091
169092
169093

169094

169095
169096

169097

169098
169099
169100
169101
169102
169103
169104
169105
169106
169107
169108
169109
169110
  Fts5Global *pGlobal,
  Fts5Config *pConfig,            /* Configuration object to update */
  const char *zCmd,               /* Special command to parse */
  const char *zArg,               /* Argument to parse */
  char **pzErr                    /* OUT: Error message */
){
  int rc = SQLITE_OK;
  int nCmd = strlen(zCmd);
  if( sqlite3_strnicmp("prefix", zCmd, nCmd)==0 ){
    const int nByte = sizeof(int) * FTS5_MAX_PREFIX_INDEXES;
    const char *p;

    if( pConfig->aPrefix ){
      *pzErr = sqlite3_mprintf("multiple prefix=... directives");
      rc = SQLITE_ERROR;
    }else{
      pConfig->aPrefix = sqlite3Fts5MallocZero(&rc, nByte);

    }

    p = zArg;
    while( rc==SQLITE_OK && p[0] ){
      int nPre = 0;
      while( p[0]==' ' ) p++;
      while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
        nPre = nPre*10 + (p[0] - '0');
        p++;
      }
      while( p[0]==' ' ) p++;
      if( p[0]==',' ){
        p++;

      }else if( p[0] ){



        *pzErr = sqlite3_mprintf("malformed prefix=... directive");
        rc = SQLITE_ERROR;

      }














      if( rc==SQLITE_OK && (nPre==0 || nPre>=1000) ){
        *pzErr = sqlite3_mprintf("prefix length out of range: %d", nPre);
        rc = SQLITE_ERROR;

      }

      pConfig->aPrefix[pConfig->nPrefix] = nPre;
      pConfig->nPrefix++;

    }

    return rc;
  }

  if( sqlite3_strnicmp("tokenize", zCmd, nCmd)==0 ){
    const char *p = (const char*)zArg;
    int nArg = strlen(zArg) + 1;
    char **azArg = sqlite3Fts5MallocZero(&rc, sizeof(char*) * nArg);
    char *pDel = sqlite3Fts5MallocZero(&rc, nArg * 2);
    char *pSpace = pDel;

    if( azArg && pSpace ){
      if( pConfig->pTok ){
        *pzErr = sqlite3_mprintf("multiple tokenize=... directives");







|



>
|
<
<
<

>

>

|

<
<
<
<
|

|

>
|
>
>
>


>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|

>

>


>

>





|







170602
170603
170604
170605
170606
170607
170608
170609
170610
170611
170612
170613
170614



170615
170616
170617
170618
170619
170620
170621




170622
170623
170624
170625
170626
170627
170628
170629
170630
170631
170632
170633
170634
170635
170636
170637
170638
170639
170640
170641
170642
170643
170644
170645
170646
170647
170648
170649
170650
170651
170652
170653
170654
170655
170656
170657
170658
170659
170660
170661
170662
170663
170664
170665
170666
170667
170668
170669
170670
170671
170672
  Fts5Global *pGlobal,
  Fts5Config *pConfig,            /* Configuration object to update */
  const char *zCmd,               /* Special command to parse */
  const char *zArg,               /* Argument to parse */
  char **pzErr                    /* OUT: Error message */
){
  int rc = SQLITE_OK;
  int nCmd = (int)strlen(zCmd);
  if( sqlite3_strnicmp("prefix", zCmd, nCmd)==0 ){
    const int nByte = sizeof(int) * FTS5_MAX_PREFIX_INDEXES;
    const char *p;
    int bFirst = 1;
    if( pConfig->aPrefix==0 ){



      pConfig->aPrefix = sqlite3Fts5MallocZero(&rc, nByte);
      if( rc ) return rc;
    }

    p = zArg;
    while( 1 ){
      int nPre = 0;





      while( p[0]==' ' ) p++;
      if( bFirst==0 && p[0]==',' ){
        p++;
        while( p[0]==' ' ) p++;
      }else if( p[0]=='\0' ){
        break;
      }
      if( p[0]<'0' || p[0]>'9' ){
        *pzErr = sqlite3_mprintf("malformed prefix=... directive");
        rc = SQLITE_ERROR;
        break;
      }

      if( pConfig->nPrefix==FTS5_MAX_PREFIX_INDEXES ){
        *pzErr = sqlite3_mprintf(
            "too many prefix indexes (max %d)", FTS5_MAX_PREFIX_INDEXES
        );
        rc = SQLITE_ERROR;
        break;
      }

      while( p[0]>='0' && p[0]<='9' && nPre<1000 ){
        nPre = nPre*10 + (p[0] - '0');
        p++;
      }

      if( rc==SQLITE_OK && (nPre<=0 || nPre>=1000) ){
        *pzErr = sqlite3_mprintf("prefix length out of range (max 999)");
        rc = SQLITE_ERROR;
        break;
      }

      pConfig->aPrefix[pConfig->nPrefix] = nPre;
      pConfig->nPrefix++;
      bFirst = 0;
    }
    assert( pConfig->nPrefix<=FTS5_MAX_PREFIX_INDEXES );
    return rc;
  }

  if( sqlite3_strnicmp("tokenize", zCmd, nCmd)==0 ){
    const char *p = (const char*)zArg;
    int nArg = (int)strlen(zArg) + 1;
    char **azArg = sqlite3Fts5MallocZero(&rc, sizeof(char*) * nArg);
    char *pDel = sqlite3Fts5MallocZero(&rc, nArg * 2);
    char *pSpace = pDel;

    if( azArg && pSpace ){
      if( pConfig->pTok ){
        *pzErr = sqlite3_mprintf("multiple tokenize=... directives");
169212
169213
169214
169215
169216
169217
169218
169219
169220
169221
169222
169223
169224
169225
169226
  int *pRc,                       /* IN/OUT: Error code */
  const char *zIn,                /* Buffer to gobble string/bareword from */
  char **pzOut,                   /* OUT: malloc'd buffer containing str/bw */
  int *pbQuoted                   /* OUT: Set to true if dequoting required */
){
  const char *zRet = 0;

  int nIn = strlen(zIn);
  char *zOut = sqlite3_malloc(nIn+1);

  assert( *pRc==SQLITE_OK );
  *pbQuoted = 0;
  *pzOut = 0;

  if( zOut==0 ){







|







170774
170775
170776
170777
170778
170779
170780
170781
170782
170783
170784
170785
170786
170787
170788
  int *pRc,                       /* IN/OUT: Error code */
  const char *zIn,                /* Buffer to gobble string/bareword from */
  char **pzOut,                   /* OUT: malloc'd buffer containing str/bw */
  int *pbQuoted                   /* OUT: Set to true if dequoting required */
){
  const char *zRet = 0;

  int nIn = (int)strlen(zIn);
  char *zOut = sqlite3_malloc(nIn+1);

  assert( *pRc==SQLITE_OK );
  *pbQuoted = 0;
  *pzOut = 0;

  if( zOut==0 ){
169554
169555
169556
169557
169558
169559
169560



169561
169562
169563
169564
169565
169566
169567
169568
169569
169570
169571
169572
169573
169574
169575
169576
169577
169578
169579
169580
169581
169582
169583
169584
169585
169586
169587

169588
169589
169590
169591
169592
169593
169594
  char *zRank = 0;
  char *zRankArgs = 0;
  int rc = SQLITE_OK;

  *pzRank = 0;
  *pzRankArgs = 0;




  p = fts5ConfigSkipWhitespace(p);
  pRank = p;
  p = fts5ConfigSkipBareword(p);

  if( p ){
    zRank = sqlite3Fts5MallocZero(&rc, 1 + p - pRank);
    if( zRank ) memcpy(zRank, pRank, p-pRank);
  }else{
    rc = SQLITE_ERROR;
  }

  if( rc==SQLITE_OK ){
    p = fts5ConfigSkipWhitespace(p);
    if( *p!='(' ) rc = SQLITE_ERROR;
    p++;
  }
  if( rc==SQLITE_OK ){
    const char *pArgs; 
    p = fts5ConfigSkipWhitespace(p);
    pArgs = p;
    if( *p!=')' ){
      p = fts5ConfigSkipArgs(p);
      if( p==0 ){
        rc = SQLITE_ERROR;
      }else{
        zRankArgs = sqlite3Fts5MallocZero(&rc, 1 + p - pArgs);
        if( zRankArgs ) memcpy(zRankArgs, pArgs, p-pArgs);

      }
    }
  }

  if( rc!=SQLITE_OK ){
    sqlite3_free(zRank);
    assert( zRankArgs==0 );







>
>
>
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
>







171116
171117
171118
171119
171120
171121
171122
171123
171124
171125
171126
171127
171128
171129
171130
171131
171132
171133
171134
171135
171136
171137
171138
171139
171140
171141
171142
171143
171144
171145
171146
171147
171148
171149
171150
171151
171152
171153
171154
171155
171156
171157
171158
171159
171160
  char *zRank = 0;
  char *zRankArgs = 0;
  int rc = SQLITE_OK;

  *pzRank = 0;
  *pzRankArgs = 0;

  if( p==0 ){
    rc = SQLITE_ERROR;
  }else{
    p = fts5ConfigSkipWhitespace(p);
    pRank = p;
    p = fts5ConfigSkipBareword(p);

    if( p ){
      zRank = sqlite3Fts5MallocZero(&rc, 1 + p - pRank);
      if( zRank ) memcpy(zRank, pRank, p-pRank);
    }else{
      rc = SQLITE_ERROR;
    }

    if( rc==SQLITE_OK ){
      p = fts5ConfigSkipWhitespace(p);
      if( *p!='(' ) rc = SQLITE_ERROR;
      p++;
    }
    if( rc==SQLITE_OK ){
      const char *pArgs; 
      p = fts5ConfigSkipWhitespace(p);
      pArgs = p;
      if( *p!=')' ){
        p = fts5ConfigSkipArgs(p);
        if( p==0 ){
          rc = SQLITE_ERROR;
        }else{
          zRankArgs = sqlite3Fts5MallocZero(&rc, 1 + p - pArgs);
          if( zRankArgs ) memcpy(zRankArgs, pArgs, p-pArgs);
        }
      }
    }
  }

  if( rc!=SQLITE_OK ){
    sqlite3_free(zRank);
    assert( zRankArgs==0 );
169614
169615
169616
169617
169618
169619
169620












169621
169622
169623
169624
169625
169626
169627
    }
    if( pgsz<=0 || pgsz>FTS5_MAX_PAGE_SIZE ){
      *pbBadkey = 1;
    }else{
      pConfig->pgsz = pgsz;
    }
  }













  else if( 0==sqlite3_stricmp(zKey, "automerge") ){
    int nAutomerge = -1;
    if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
      nAutomerge = sqlite3_value_int(pVal);
    }
    if( nAutomerge<0 || nAutomerge>64 ){







>
>
>
>
>
>
>
>
>
>
>
>







171180
171181
171182
171183
171184
171185
171186
171187
171188
171189
171190
171191
171192
171193
171194
171195
171196
171197
171198
171199
171200
171201
171202
171203
171204
171205
    }
    if( pgsz<=0 || pgsz>FTS5_MAX_PAGE_SIZE ){
      *pbBadkey = 1;
    }else{
      pConfig->pgsz = pgsz;
    }
  }

  else if( 0==sqlite3_stricmp(zKey, "hashsize") ){
    int nHashSize = -1;
    if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
      nHashSize = sqlite3_value_int(pVal);
    }
    if( nHashSize<=0 ){
      *pbBadkey = 1;
    }else{
      pConfig->nHashSize = nHashSize;
    }
  }

  else if( 0==sqlite3_stricmp(zKey, "automerge") ){
    int nAutomerge = -1;
    if( SQLITE_INTEGER==sqlite3_value_numeric_type(pVal) ){
      nAutomerge = sqlite3_value_int(pVal);
    }
    if( nAutomerge<0 || nAutomerge>64 ){
169675
169676
169677
169678
169679
169680
169681

169682
169683
169684
169685
169686
169687
169688
  int rc = SQLITE_OK;
  int iVersion = 0;

  /* Set default values */
  pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
  pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
  pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;


  zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
  if( zSql ){
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
    sqlite3_free(zSql);
  }








>







171253
171254
171255
171256
171257
171258
171259
171260
171261
171262
171263
171264
171265
171266
171267
  int rc = SQLITE_OK;
  int iVersion = 0;

  /* Set default values */
  pConfig->pgsz = FTS5_DEFAULT_PAGE_SIZE;
  pConfig->nAutomerge = FTS5_DEFAULT_AUTOMERGE;
  pConfig->nCrisisMerge = FTS5_DEFAULT_CRISISMERGE;
  pConfig->nHashSize = FTS5_DEFAULT_HASHSIZE;

  zSql = sqlite3Fts5Mprintf(&rc, zSelect, pConfig->zDb, pConfig->zName);
  if( zSql ){
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &p, 0);
    sqlite3_free(zSql);
  }

169731
169732
169733
169734
169735
169736
169737


169738
169739
169740
169741
169742
169743
169744
**
******************************************************************************
**
*/






/*
** All token types in the generated fts5parse.h file are greater than 0.
*/
#define FTS5_EOF 0

#define FTS5_LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))







>
>







171310
171311
171312
171313
171314
171315
171316
171317
171318
171319
171320
171321
171322
171323
171324
171325
**
******************************************************************************
**
*/



/* #include "fts5Int.h" */
/* #include "fts5parse.h" */

/*
** All token types in the generated fts5parse.h file are greater than 0.
*/
#define FTS5_EOF 0

#define FTS5_LARGEST_INT64  (0xffffffff|(((i64)0x7fffffff)<<32))
169986
169987
169988
169989
169990
169991
169992
169993
169994
169995
169996
169997
169998
169999
170000
170001
170002
170003
170004
170005
170006
170007
  if( p ){
    sqlite3Fts5ParseNodeFree(p->pRoot);
    sqlite3_free(p->apExprPhrase);
    sqlite3_free(p);
  }
}

static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
  int i;
  for(i=0; i<pColset->nCol; i++){
    if( pColset->aiCol[i]==iCol ) return 1;
  }
  return 0;
}

/*
** Argument pTerm must be a synonym iterator. Return the current rowid
** that it points to.
*/
static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
  i64 iRet = 0;
  int bRetValid = 0;







<
<
<
<
<
<
<
<







171567
171568
171569
171570
171571
171572
171573








171574
171575
171576
171577
171578
171579
171580
  if( p ){
    sqlite3Fts5ParseNodeFree(p->pRoot);
    sqlite3_free(p->apExprPhrase);
    sqlite3_free(p);
  }
}









/*
** Argument pTerm must be a synonym iterator. Return the current rowid
** that it points to.
*/
static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
  i64 iRet = 0;
  int bRetValid = 0;
170024
170025
170026
170027
170028
170029
170030

170031
170032
170033
170034
170035
170036
170037
170038
170039
170040
170041
170042
170043
170044
170045
170046
170047
170048
170049
170050
170051
170052
170053
170054
170055
170056
170057
170058
170059
170060
170061
170062
170063
170064
170065
170066
170067
170068
170069
170070
}

/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 

  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  for(p=pTerm; p; p=p->pSynonym){
    Fts5IndexIter *pIter = p->pIter;
    if( sqlite3Fts5IterEof(pIter)==0 && sqlite3Fts5IterRowid(pIter)==iRowid ){
      const u8 *a;
      int n;
      i64 dummy;
      rc = sqlite3Fts5IterPoslist(pIter, &a, &n, &dummy);
      if( rc!=SQLITE_OK ) goto synonym_poslist_out;
      if( nIter==nAlloc ){
        int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
        Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
          goto synonym_poslist_out;
        }
        memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
        nAlloc = nAlloc*2;
        if( aIter!=aStatic ) sqlite3_free(aIter);
        aIter = aNew;
      }
      sqlite3Fts5PoslistReaderInit(-1, a, n, &aIter[nIter]);
      assert( aIter[nIter].bEof==0 );
      nIter++;
    }
  }

  assert( *pbDel==0 );
  if( nIter==1 ){







>


















|













|







171597
171598
171599
171600
171601
171602
171603
171604
171605
171606
171607
171608
171609
171610
171611
171612
171613
171614
171615
171616
171617
171618
171619
171620
171621
171622
171623
171624
171625
171626
171627
171628
171629
171630
171631
171632
171633
171634
171635
171636
171637
171638
171639
171640
171641
171642
171643
171644
}

/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymPoslist(
  Fts5ExprTerm *pTerm, 
  Fts5Colset *pColset,
  i64 iRowid,
  int *pbDel,                     /* OUT: Caller should sqlite3_free(*pa) */
  u8 **pa, int *pn
){
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int nIter = 0;
  int nAlloc = 4;
  int rc = SQLITE_OK;
  Fts5ExprTerm *p;

  assert( pTerm->pSynonym );
  for(p=pTerm; p; p=p->pSynonym){
    Fts5IndexIter *pIter = p->pIter;
    if( sqlite3Fts5IterEof(pIter)==0 && sqlite3Fts5IterRowid(pIter)==iRowid ){
      const u8 *a;
      int n;
      i64 dummy;
      rc = sqlite3Fts5IterPoslist(pIter, pColset, &a, &n, &dummy);
      if( rc!=SQLITE_OK ) goto synonym_poslist_out;
      if( nIter==nAlloc ){
        int nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
        Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc(nByte);
        if( aNew==0 ){
          rc = SQLITE_NOMEM;
          goto synonym_poslist_out;
        }
        memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
        nAlloc = nAlloc*2;
        if( aIter!=aStatic ) sqlite3_free(aIter);
        aIter = aNew;
      }
      sqlite3Fts5PoslistReaderInit(a, n, &aIter[nIter]);
      assert( aIter[nIter].bEof==0 );
      nIter++;
    }
  }

  assert( *pbDel==0 );
  if( nIter==1 ){
170124
170125
170126
170127
170128
170129
170130
170131
170132
170133
170134
170135
170136
170137
170138
170139
170140
170141
170142
170143
170144
170145
170146
170147
170148
170149
170150
170151
170152
170153
170154
170155
170156
170157


170158
170159
170160
170161
170162
170163
170164
170165
170166
170167
170168
170169
170170
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;
  int iCol = -1;
  
  if( pColset && pColset->nCol==1 ){
    iCol = pColset->aiCol[0];
    pColset = 0;
  }

  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>(sizeof(aStatic) / sizeof(aStatic[0])) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
    aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
    if( !aIter ) return SQLITE_NOMEM;
  }
  memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);

  /* Initialize a term iterator for each term in the phrase */
  for(i=0; i<pPhrase->nTerm; i++){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
    i64 dummy;
    int n = 0;
    int bFlag = 0;
    const u8 *a = 0;
    if( pTerm->pSynonym ){
      rc = fts5ExprSynonymPoslist(pTerm, pNode->iRowid, &bFlag, (u8**)&a, &n);


    }else{
      rc = sqlite3Fts5IterPoslist(pTerm->pIter, &a, &n, &dummy);
    }
    if( rc!=SQLITE_OK ) goto ismatch_out;
    sqlite3Fts5PoslistReaderInit(iCol, a, n, &aIter[i]);
    aIter[i].bFlag = bFlag;
    if( aIter[i].bEof ) goto ismatch_out;
  }

  while( 1 ){
    int bMatch;
    i64 iPos = aIter[0].iPos;
    do {







<

<
<
<
<
<




|














|
>
>

|


|
|







171698
171699
171700
171701
171702
171703
171704

171705





171706
171707
171708
171709
171710
171711
171712
171713
171714
171715
171716
171717
171718
171719
171720
171721
171722
171723
171724
171725
171726
171727
171728
171729
171730
171731
171732
171733
171734
171735
171736
171737
171738
171739
171740
  int *pbMatch                    /* OUT: Set to true if really a match */
){
  Fts5PoslistWriter writer = {0};
  Fts5PoslistReader aStatic[4];
  Fts5PoslistReader *aIter = aStatic;
  int i;
  int rc = SQLITE_OK;

  





  fts5BufferZero(&pPhrase->poslist);

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pPhrase->nTerm>(int)ArraySize(aStatic) ){
    int nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
    aIter = (Fts5PoslistReader*)sqlite3_malloc(nByte);
    if( !aIter ) return SQLITE_NOMEM;
  }
  memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);

  /* Initialize a term iterator for each term in the phrase */
  for(i=0; i<pPhrase->nTerm; i++){
    Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
    i64 dummy;
    int n = 0;
    int bFlag = 0;
    const u8 *a = 0;
    if( pTerm->pSynonym ){
      rc = fts5ExprSynonymPoslist(
          pTerm, pColset, pNode->iRowid, &bFlag, (u8**)&a, &n
      );
    }else{
      rc = sqlite3Fts5IterPoslist(pTerm->pIter, pColset, &a, &n, &dummy);
    }
    if( rc!=SQLITE_OK ) goto ismatch_out;
    sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    aIter[i].bFlag = (u8)bFlag;
    if( aIter[i].bEof ) goto ismatch_out;
  }

  while( 1 ){
    int bMatch;
    i64 iPos = aIter[0].iPos;
    do {
170178
170179
170180
170181
170182
170183
170184
170185
170186
170187
170188
170189
170190
170191
170192
170193
170194
170195
170196
            if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
          }
          if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
        }
      }
    }while( bMatch==0 );

    if( pColset==0 || fts5ExprColsetTest(pColset, FTS5_POS2COLUMN(iPos)) ){
      /* Append position iPos to the output */
      rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
      if( rc!=SQLITE_OK ) goto ismatch_out;
    }

    for(i=0; i<pPhrase->nTerm; i++){
      if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
    }
  }

 ismatch_out:







<
|
|
|
<







171748
171749
171750
171751
171752
171753
171754

171755
171756
171757

171758
171759
171760
171761
171762
171763
171764
            if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
          }
          if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
        }
      }
    }while( bMatch==0 );


    /* Append position iPos to the output */
    rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
    if( rc!=SQLITE_OK ) goto ismatch_out;


    for(i=0; i<pPhrase->nTerm; i++){
      if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
    }
  }

 ismatch_out:
170271
170272
170273
170274
170275
170276
170277
170278
170279
170280
170281
170282
170283
170284
170285
  int rc = *pRc;
  int bMatch;

  assert( pNear->nPhrase>1 );

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pNear->nPhrase>(sizeof(aStatic) / sizeof(aStatic[0])) ){
    int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
    a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
  }else{
    memset(aStatic, 0, sizeof(aStatic));
  }
  if( rc!=SQLITE_OK ){
    *pRc = rc;







|







171839
171840
171841
171842
171843
171844
171845
171846
171847
171848
171849
171850
171851
171852
171853
  int rc = *pRc;
  int bMatch;

  assert( pNear->nPhrase>1 );

  /* If the aStatic[] array is not large enough, allocate a large array
  ** using sqlite3_malloc(). This approach could be improved upon. */
  if( pNear->nPhrase>(int)ArraySize(aStatic) ){
    int nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
    a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
  }else{
    memset(aStatic, 0, sizeof(aStatic));
  }
  if( rc!=SQLITE_OK ){
    *pRc = rc;
170477
170478
170479
170480
170481
170482
170483
170484
170485
170486
170487
170488
170489
170490
170491
170492
170493
170494
170495
170496
170497
170498
170499
170500
170501
170502
170503
170504
170505
170506
170507
170508
170509
170510
170511
170512
170513
170514
170515
170516
170517
170518
170519
170520
170521
170522
170523
170524
170525
170526
170527
170528
170529
170530
170531
170532
170533
170534
170535
170536
170537
170538
170539
170540
170541
170542
170543
170544
170545
    bEof = 1;
  }else{
    *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
  }
  return bEof;
}

/*
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
** the position list contains entries for column iCol, then (*pa) is set
** to point to the sub-position-list for that column and the number of
** bytes in it returned. Or, if the argument position list does not
** contain any entries for column iCol, return 0.
*/
static int fts5ExprExtractCol(
  const u8 **pa,                  /* IN/OUT: Pointer to poslist */
  int n,                          /* IN: Size of poslist in bytes */
  int iCol                        /* Column to extract from poslist */
){
  int iCurrent = 0;
  const u8 *p = *pa;
  const u8 *pEnd = &p[n];         /* One byte past end of position list */
  u8 prev = 0;

  while( iCol!=iCurrent ){
    /* Advance pointer p until it points to pEnd or an 0x01 byte that is
    ** not part of a varint */
    while( (prev & 0x80) || *p!=0x01 ){
      prev = *p++;
      if( p==pEnd ) return 0;
    }
    *pa = p++;
    p += fts5GetVarint32(p, iCurrent);
  }

  /* Advance pointer p until it points to pEnd or an 0x01 byte that is
  ** not part of a varint */
  assert( (prev & 0x80)==0 );
  while( p<pEnd && ((prev & 0x80) || *p!=0x01) ){
    prev = *p++;
  }
  return p - (*pa);
}

static int fts5ExprExtractColset (
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5ExprExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;
}

static int fts5ExprNearTest(
  int *pRc,
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_STRING) */
){
  Fts5ExprNearset *pNear = pNode->pNear;







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







172045
172046
172047
172048
172049
172050
172051























































172052
172053
172054
172055
172056
172057
172058
    bEof = 1;
  }else{
    *piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
  }
  return bEof;
}

























































static int fts5ExprNearTest(
  int *pRc,
  Fts5Expr *pExpr,                /* Expression that pNear is a part of */
  Fts5ExprNode *pNode             /* The "NEAR" node (FTS5_STRING) */
){
  Fts5ExprNearset *pNear = pNode->pNear;
170579
170580
170581
170582
170583
170584
170585
170586
170587
170588
170589
170590
170591
170592
170593
170594
170595
170596
170597
170598
170599
170600
170601
170602
170603
170604
170605
170606
170607
170608
170609
170610
170611
170612
170613
170614
170615
170616
170617
170618
170619
170620
  ** fts5_index.c iterator object. This is much faster than synthesizing 
  ** a new poslist the way we have to for more complicated phrase or NEAR
  ** expressions.  */
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
  Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
  Fts5Colset *pColset = pNear->pColset;
  const u8 *pPos;
  int nPos;
  int rc;

  assert( pNode->eType==FTS5_TERM );
  assert( pNear->nPhrase==1 && pPhrase->nTerm==1 );
  assert( pPhrase->aTerm[0].pSynonym==0 );

  rc = sqlite3Fts5IterPoslist(pIter, &pPos, &nPos, &pNode->iRowid);

  /* If the term may match any column, then this must be a match. 
  ** Return immediately in this case. Otherwise, try to find the
  ** part of the poslist that corresponds to the required column.
  ** If it can be found, return. If it cannot, the next iteration
  ** of the loop will test the next rowid in the database for this
  ** term.  */
  if( pColset==0 ){
    assert( pPhrase->poslist.nSpace==0 );
    pPhrase->poslist.p = (u8*)pPos;
    pPhrase->poslist.n = nPos;
  }else if( pColset->nCol==1 ){
    assert( pPhrase->poslist.nSpace==0 );
    pPhrase->poslist.n = fts5ExprExtractCol(&pPos, nPos, pColset->aiCol[0]);
    pPhrase->poslist.p = (u8*)pPos;
  }else if( rc==SQLITE_OK ){
    rc = fts5ExprExtractColset(pColset, pPos, nPos, &pPhrase->poslist);
  }

  pNode->bNomatch = (pPhrase->poslist.n==0);
  return rc;
}

/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators







<
<






|
<
<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
|







172092
172093
172094
172095
172096
172097
172098


172099
172100
172101
172102
172103
172104
172105









172106








172107
172108
172109
172110
172111
172112
172113
172114
  ** fts5_index.c iterator object. This is much faster than synthesizing 
  ** a new poslist the way we have to for more complicated phrase or NEAR
  ** expressions.  */
  Fts5ExprNearset *pNear = pNode->pNear;
  Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
  Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
  Fts5Colset *pColset = pNear->pColset;


  int rc;

  assert( pNode->eType==FTS5_TERM );
  assert( pNear->nPhrase==1 && pPhrase->nTerm==1 );
  assert( pPhrase->aTerm[0].pSynonym==0 );

  rc = sqlite3Fts5IterPoslist(pIter, pColset, 









      (const u8**)&pPhrase->poslist.p, &pPhrase->poslist.n, &pNode->iRowid








  );
  pNode->bNomatch = (pPhrase->poslist.n==0);
  return rc;
}

/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators
170709
170710
170711
170712
170713
170714
170715
170716
170717
170718
170719
170720
170721
170722
170723

      for(p=pTerm; p && rc==SQLITE_OK; p=p->pSynonym){
        if( p->pIter ){
          sqlite3Fts5IterClose(p->pIter);
          p->pIter = 0;
        }
        rc = sqlite3Fts5IndexQuery(
            pExpr->pIndex, p->zTerm, strlen(p->zTerm),
            (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
            (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
            pNear->pColset,
            &p->pIter
        );
        assert( rc==SQLITE_OK || p->pIter==0 );
        if( p->pIter && 0==sqlite3Fts5IterEof(p->pIter) ){







|







172203
172204
172205
172206
172207
172208
172209
172210
172211
172212
172213
172214
172215
172216
172217

      for(p=pTerm; p && rc==SQLITE_OK; p=p->pSynonym){
        if( p->pIter ){
          sqlite3Fts5IterClose(p->pIter);
          p->pIter = 0;
        }
        rc = sqlite3Fts5IndexQuery(
            pExpr->pIndex, p->zTerm, (int)strlen(p->zTerm),
            (pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
            (pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
            pNear->pColset,
            &p->pIter
        );
        assert( rc==SQLITE_OK || p->pIter==0 );
        if( p->pIter && 0==sqlite3Fts5IterEof(p->pIter) ){
171320
171321
171322
171323
171324
171325
171326
171327
171328
171329
171330
171331
171332
171333
171334
  sCtx.pPhrase = pAppend;

  rc = fts5ParseStringFromToken(pToken, &z);
  if( rc==SQLITE_OK ){
    int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_QUERY : 0);
    int n;
    sqlite3Fts5Dequote(z);
    n = strlen(z);
    rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
  }
  sqlite3_free(z);
  if( rc || (rc = sCtx.rc) ){
    pParse->rc = rc;
    fts5ExprPhraseFree(sCtx.pPhrase);
    sCtx.pPhrase = 0;







|







172814
172815
172816
172817
172818
172819
172820
172821
172822
172823
172824
172825
172826
172827
172828
  sCtx.pPhrase = pAppend;

  rc = fts5ParseStringFromToken(pToken, &z);
  if( rc==SQLITE_OK ){
    int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_QUERY : 0);
    int n;
    sqlite3Fts5Dequote(z);
    n = (int)strlen(z);
    rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
  }
  sqlite3_free(z);
  if( rc || (rc = sCtx.rc) ){
    pParse->rc = rc;
    fts5ExprPhraseFree(sCtx.pPhrase);
    sCtx.pPhrase = 0;
171393
171394
171395
171396
171397
171398
171399
171400

171401
171402
171403
171404
171405
171406
171407
  }

  for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
    int tflags = 0;
    Fts5ExprTerm *p;
    for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
      const char *zTerm = p->zTerm;
      rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, strlen(zTerm), 0, 0);

      tflags = FTS5_TOKEN_COLOCATED;
    }
    if( rc==SQLITE_OK ){
      sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
    }
  }








|
>







172887
172888
172889
172890
172891
172892
172893
172894
172895
172896
172897
172898
172899
172900
172901
172902
  }

  for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
    int tflags = 0;
    Fts5ExprTerm *p;
    for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
      const char *zTerm = p->zTerm;
      rc = fts5ParseTokenize((void*)&sCtx, tflags, zTerm, (int)strlen(zTerm),
          0, 0);
      tflags = FTS5_TOKEN_COLOCATED;
    }
    if( rc==SQLITE_OK ){
      sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
    }
  }

171635
171636
171637
171638
171639
171640
171641
171642
171643
171644
171645
171646
171647
171648
171649
static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
  int nByte = 0;
  Fts5ExprTerm *p;
  char *zQuoted;

  /* Determine the maximum amount of space required. */
  for(p=pTerm; p; p=p->pSynonym){
    nByte += strlen(pTerm->zTerm) * 2 + 3 + 2;
  }
  zQuoted = sqlite3_malloc(nByte);

  if( zQuoted ){
    int i = 0;
    for(p=pTerm; p; p=p->pSynonym){
      char *zIn = p->zTerm;







|







173130
173131
173132
173133
173134
173135
173136
173137
173138
173139
173140
173141
173142
173143
173144
static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
  int nByte = 0;
  Fts5ExprTerm *p;
  char *zQuoted;

  /* Determine the maximum amount of space required. */
  for(p=pTerm; p; p=p->pSynonym){
    nByte += (int)strlen(pTerm->zTerm) * 2 + 3 + 2;
  }
  zQuoted = sqlite3_malloc(nByte);

  if( zQuoted ){
    int i = 0;
    for(p=pTerm; p; p=p->pSynonym){
      char *zIn = p->zTerm;
171991
171992
171993
171994
171995
171996
171997
171998
171999
172000
172001
172002
172003
172004
172005
    { "fts5_isalnum",  fts5ExprIsAlnum },
    { "fts5_fold",     fts5ExprFold },
  };
  int i;
  int rc = SQLITE_OK;
  void *pCtx = (void*)pGlobal;

  for(i=0; rc==SQLITE_OK && i<(sizeof(aFunc) / sizeof(aFunc[0])); i++){
    struct Fts5ExprFunc *p = &aFunc[i];
    rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
  }

  /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
#ifndef NDEBUG
  (void)sqlite3Fts5ParserTrace;







|







173486
173487
173488
173489
173490
173491
173492
173493
173494
173495
173496
173497
173498
173499
173500
    { "fts5_isalnum",  fts5ExprIsAlnum },
    { "fts5_fold",     fts5ExprFold },
  };
  int i;
  int rc = SQLITE_OK;
  void *pCtx = (void*)pGlobal;

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aFunc); i++){
    struct Fts5ExprFunc *p = &aFunc[i];
    rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
  }

  /* Avoid a warning indicating that sqlite3Fts5ParserTrace() is unused */
#ifndef NDEBUG
  (void)sqlite3Fts5ParserTrace;
172037
172038
172039
172040
172041
172042
172043
172044
172045
172046
172047
172048
172049
172050
172051
172052
172053
172054
172055
172056
172057
172058
172059
172060

172061
172062
172063
172064
172065
172066
172067
  }else{
    *pa = 0;
    nRet = 0;
  }
  return nRet;
}


/*
** 2014 August 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/





typedef struct Fts5HashEntry Fts5HashEntry;

/*
** This file contains the implementation of an in-memory hash table used
** to accumuluate "term -> doclist" content before it is flused to a level-0
** segment.







<
















>







173532
173533
173534
173535
173536
173537
173538

173539
173540
173541
173542
173543
173544
173545
173546
173547
173548
173549
173550
173551
173552
173553
173554
173555
173556
173557
173558
173559
173560
173561
173562
  }else{
    *pa = 0;
    nRet = 0;
  }
  return nRet;
}


/*
** 2014 August 11
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
**
*/



/* #include "fts5Int.h" */

typedef struct Fts5HashEntry Fts5HashEntry;

/*
** This file contains the implementation of an in-memory hash table used
** to accumuluate "term -> doclist" content before it is flused to a level-0
** segment.
172209
172210
172211
172212
172213
172214
172215
172216
172217
172218
172219
172220
172221
172222
172223
172224
172225
172226
172227
172228
172229
172230
172231
172232
172233
172234
172235
172236
172237
172238
172239
172240
172241
172242
172243
  memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));

  for(i=0; i<pHash->nSlot; i++){
    while( apOld[i] ){
      int iHash;
      Fts5HashEntry *p = apOld[i];
      apOld[i] = p->pHashNext;
      iHash = fts5HashKey(nNew, (u8*)p->zKey, strlen(p->zKey));
      p->pHashNext = apNew[iHash];
      apNew[iHash] = p;
    }
  }

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
  pHash->aSlot = apNew;
  return SQLITE_OK;
}

static void fts5HashAddPoslistSize(Fts5HashEntry *p){
  if( p->iSzPoslist ){
    u8 *pPtr = (u8*)p;
    int nSz = (p->nData - p->iSzPoslist - 1);         /* Size in bytes */
    int nPos = nSz*2 + p->bDel;                       /* Value of nPos field */

    assert( p->bDel==0 || p->bDel==1 );
    if( nPos<=127 ){
      pPtr[p->iSzPoslist] = nPos;
    }else{
      int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
      memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
      sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
      p->nData += (nByte-1);
    }
    p->bDel = 0;







|



















|







173704
173705
173706
173707
173708
173709
173710
173711
173712
173713
173714
173715
173716
173717
173718
173719
173720
173721
173722
173723
173724
173725
173726
173727
173728
173729
173730
173731
173732
173733
173734
173735
173736
173737
173738
  memset(apNew, 0, nNew*sizeof(Fts5HashEntry*));

  for(i=0; i<pHash->nSlot; i++){
    while( apOld[i] ){
      int iHash;
      Fts5HashEntry *p = apOld[i];
      apOld[i] = p->pHashNext;
      iHash = fts5HashKey(nNew, (u8*)p->zKey, (int)strlen(p->zKey));
      p->pHashNext = apNew[iHash];
      apNew[iHash] = p;
    }
  }

  sqlite3_free(apOld);
  pHash->nSlot = nNew;
  pHash->aSlot = apNew;
  return SQLITE_OK;
}

static void fts5HashAddPoslistSize(Fts5HashEntry *p){
  if( p->iSzPoslist ){
    u8 *pPtr = (u8*)p;
    int nSz = (p->nData - p->iSzPoslist - 1);         /* Size in bytes */
    int nPos = nSz*2 + p->bDel;                       /* Value of nPos field */

    assert( p->bDel==0 || p->bDel==1 );
    if( nPos<=127 ){
      pPtr[p->iSzPoslist] = (u8)nPos;
    }else{
      int nByte = sqlite3Fts5GetVarintLen((u32)nPos);
      memmove(&pPtr[p->iSzPoslist + nByte], &pPtr[p->iSzPoslist + 1], nSz);
      sqlite3Fts5PutVarint(&pPtr[p->iSzPoslist], nPos);
      p->nData += (nByte-1);
    }
    p->bDel = 0;
172497
172498
172499
172500
172501
172502
172503
172504
172505
172506
172507
172508
172509
172510
172511
  Fts5Hash *pHash,
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;







|







173992
173993
173994
173995
173996
173997
173998
173999
174000
174001
174002
174003
174004
174005
174006
  Fts5Hash *pHash,
  const char **pzTerm,            /* OUT: term (nul-terminated) */
  const u8 **ppDoclist,           /* OUT: pointer to doclist */
  int *pnDoclist                  /* OUT: size of doclist in bytes */
){
  Fts5HashEntry *p;
  if( (p = pHash->pScan) ){
    int nTerm = (int)strlen(p->zKey);
    fts5HashAddPoslistSize(p);
    *pzTerm = p->zKey;
    *ppDoclist = (const u8*)&p->zKey[nTerm+1];
    *pnDoclist = p->nData - (FTS5_HASHENTRYSIZE + nTerm + 1);
  }else{
    *pzTerm = 0;
    *ppDoclist = 0;
172529
172530
172531
172532
172533
172534
172535

172536
172537
172538
172539
172540
172541
172542
** Low level access to the FTS index stored in the database file. The 
** routines in this file file implement all read and write access to the
** %_data table. Other parts of the system access this functionality via
** the interface defined in fts5Int.h.
*/




/*
** Overview:
**
** The %_data table contains all the FTS indexes for an FTS5 virtual table.
** As well as the main term index, there may be up to 31 prefix indexes.
** The format is similar to FTS3/4, except that:







>







174024
174025
174026
174027
174028
174029
174030
174031
174032
174033
174034
174035
174036
174037
174038
** Low level access to the FTS index stored in the database file. The 
** routines in this file file implement all read and write access to the
** %_data table. Other parts of the system access this functionality via
** the interface defined in fts5Int.h.
*/


/* #include "fts5Int.h" */

/*
** Overview:
**
** The %_data table contains all the FTS indexes for an FTS5 virtual table.
** As well as the main term index, there may be up to 31 prefix indexes.
** The format is similar to FTS3/4, except that:
172799
172800
172801
172802
172803
172804
172805
172806
172807
172808
172809
172810
172811
172812
172813
  int nWorkUnit;                  /* Leaf pages in a "unit" of work */

  /*
  ** Variables related to the accumulation of tokens and doclists within the
  ** in-memory hash tables before they are flushed to disk.
  */
  Fts5Hash *pHash;                /* Hash table for in-memory data */
  int nMaxPendingData;            /* Max pending data before flush to disk */
  int nPendingData;               /* Current bytes of pending data */
  i64 iWriteRowid;                /* Rowid for current doc being written */
  int bDelete;                    /* Current write is a delete */

  /* Error state. */
  int rc;                         /* Current error code */








<







174295
174296
174297
174298
174299
174300
174301

174302
174303
174304
174305
174306
174307
174308
  int nWorkUnit;                  /* Leaf pages in a "unit" of work */

  /*
  ** Variables related to the accumulation of tokens and doclists within the
  ** in-memory hash tables before they are flushed to disk.
  */
  Fts5Hash *pHash;                /* Hash table for in-memory data */

  int nPendingData;               /* Current bytes of pending data */
  i64 iWriteRowid;                /* Rowid for current doc being written */
  int bDelete;                    /* Current write is a delete */

  /* Error state. */
  int rc;                         /* Current error code */

172885
172886
172887
172888
172889
172890
172891
172892
172893
172894
172895
172896
172897
172898
172899
172900
172901
172902
172903
172904
172905
172906
172907
172908
172909
172910
172911
172912
172913
172914
172915
172916
172917
172918
  Fts5DlidxWriter *aDlidx;        /* Array of Fts5DlidxWriter objects */

  /* Values to insert into the %_idx table */
  Fts5Buffer btterm;              /* Next term to insert into %_idx table */
  int iBtPage;                    /* Page number corresponding to btterm */
};

/*
** Object for iterating through the merged results of one or more segments,
** visiting each term/rowid pair in the merged data.
**
** nSeg is always a power of two greater than or equal to the number of
** segments that this object is merging data from. Both the aSeg[] and
** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
** with zeroed objects - these are handled as if they were iterators opened
** on empty segments.
**
** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the 
** comparison in this context is the index of the iterator that currently
** points to the smaller term/rowid combination. Iterators at EOF are
** considered to be greater than all other iterators.
**
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused. 
*/

typedef struct Fts5CResult Fts5CResult;
struct Fts5CResult {
  u16 iFirst;                     /* aSeg[] index of firstest iterator */
  u8 bTermEq;                     /* True if the terms are equal */
};

/*







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







174380
174381
174382
174383
174384
174385
174386




















174387
174388
174389
174390
174391
174392
174393
  Fts5DlidxWriter *aDlidx;        /* Array of Fts5DlidxWriter objects */

  /* Values to insert into the %_idx table */
  Fts5Buffer btterm;              /* Next term to insert into %_idx table */
  int iBtPage;                    /* Page number corresponding to btterm */
};





















typedef struct Fts5CResult Fts5CResult;
struct Fts5CResult {
  u16 iFirst;                     /* aSeg[] index of firstest iterator */
  u8 bTermEq;                     /* True if the terms are equal */
};

/*
173011
173012
173013
173014
173015
173016
173017


















173018
173019
173020
173021
173022
173023
173024
173025
173026
173027
173028
173029
173030

173031
173032
173033
173034
173035
173036
173037
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)

#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))

#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))

/*


















** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5IndexIter {
  Fts5Index *pIndex;              /* Index that owns this iterator */
  Fts5Structure *pStruct;         /* Database structure for this iterator */
  Fts5Buffer poslist;             /* Buffer containing current poslist */

  int nSeg;                       /* Size of aSeg[] array */
  int bRev;                       /* True to iterate in reverse order */
  int bSkipEmpty;                 /* True to skip deleted entries */
  int bEof;                       /* True at EOF */


  i64 iSwitchRowid;               /* Firstest rowid of other than aFirst[1] */
  Fts5CResult *aFirst;            /* Current merge state (see above) */
  Fts5SegIter aSeg[1];            /* Array of segment iterators */
};









>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











|
|
>







174486
174487
174488
174489
174490
174491
174492
174493
174494
174495
174496
174497
174498
174499
174500
174501
174502
174503
174504
174505
174506
174507
174508
174509
174510
174511
174512
174513
174514
174515
174516
174517
174518
174519
174520
174521
174522
174523
174524
174525
174526
174527
174528
174529
174530
174531
#define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)

#define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))

#define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))

/*
** Object for iterating through the merged results of one or more segments,
** visiting each term/rowid pair in the merged data.
**
** nSeg is always a power of two greater than or equal to the number of
** segments that this object is merging data from. Both the aSeg[] and
** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
** with zeroed objects - these are handled as if they were iterators opened
** on empty segments.
**
** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the 
** comparison in this context is the index of the iterator that currently
** points to the smaller term/rowid combination. Iterators at EOF are
** considered to be greater than all other iterators.
**
** aFirst[1] contains the index in aSeg[] of the iterator that points to
** the smallest key overall. aFirst[0] is unused. 
**
** poslist:
**   Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
**   There is no way to tell if this is populated or not.
*/
struct Fts5IndexIter {
  Fts5Index *pIndex;              /* Index that owns this iterator */
  Fts5Structure *pStruct;         /* Database structure for this iterator */
  Fts5Buffer poslist;             /* Buffer containing current poslist */

  int nSeg;                       /* Size of aSeg[] array */
  int bRev;                       /* True to iterate in reverse order */
  u8 bSkipEmpty;                  /* True to skip deleted entries */
  u8 bEof;                        /* True at EOF */
  u8 bFiltered;                   /* True if column-filter already applied */

  i64 iSwitchRowid;               /* Firstest rowid of other than aFirst[1] */
  Fts5CResult *aFirst;            /* Current merge state (see above) */
  Fts5SegIter aSeg[1];            /* Array of segment iterators */
};


173517
173518
173519
173520
173521
173522
173523












173524
173525
173526
173527
173528
173529
173530
173531
173532
173533
173534
173535
173536
173537
173538
173539
173540
173541
173542
173543
173544



173545
173546
173547

173548
173549
173550
173551
173552
173553
173554
      nSegment += pStruct->aLevel[iLvl].nSeg;
    }
  }

  return nSegment;
}
#endif













/*
** Serialize and store the "structure" record.
**
** If an error occurs, leave an error code in the Fts5Index object. If an
** error has already occurred, this function is a no-op.
*/
static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
  if( p->rc==SQLITE_OK ){
    Fts5Buffer buf;               /* Buffer to serialize record into */
    int iLvl;                     /* Used to iterate through levels */
    int iCookie;                  /* Cookie value to store */

    assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
    memset(&buf, 0, sizeof(Fts5Buffer));

    /* Append the current configuration cookie */
    iCookie = p->pConfig->iCookie;
    if( iCookie<0 ) iCookie = 0;
    fts5BufferAppend32(&p->rc, &buf, iCookie);




    fts5BufferAppendVarint(&p->rc, &buf, pStruct->nLevel);
    fts5BufferAppendVarint(&p->rc, &buf, pStruct->nSegment);
    fts5BufferAppendVarint(&p->rc, &buf, (i64)pStruct->nWriteCounter);


    for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
      int iSeg;                     /* Used to iterate through segments */
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
      assert( pLvl->nMerge<=pLvl->nSeg );







>
>
>
>
>
>
>
>
>
>
>
>



















<

>
>
>
|
|
|
>







175011
175012
175013
175014
175015
175016
175017
175018
175019
175020
175021
175022
175023
175024
175025
175026
175027
175028
175029
175030
175031
175032
175033
175034
175035
175036
175037
175038
175039
175040
175041
175042
175043
175044
175045
175046
175047
175048

175049
175050
175051
175052
175053
175054
175055
175056
175057
175058
175059
175060
175061
175062
175063
      nSegment += pStruct->aLevel[iLvl].nSeg;
    }
  }

  return nSegment;
}
#endif

#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) {     \
  assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) );             \
  memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob);             \
  (pBuf)->n += nBlob;                                      \
}

#define fts5BufferSafeAppendVarint(pBuf, iVal) {                \
  (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal));  \
  assert( (pBuf)->nSpace>=(pBuf)->n );                          \
}


/*
** Serialize and store the "structure" record.
**
** If an error occurs, leave an error code in the Fts5Index object. If an
** error has already occurred, this function is a no-op.
*/
static void fts5StructureWrite(Fts5Index *p, Fts5Structure *pStruct){
  if( p->rc==SQLITE_OK ){
    Fts5Buffer buf;               /* Buffer to serialize record into */
    int iLvl;                     /* Used to iterate through levels */
    int iCookie;                  /* Cookie value to store */

    assert( pStruct->nSegment==fts5StructureCountSegments(pStruct) );
    memset(&buf, 0, sizeof(Fts5Buffer));

    /* Append the current configuration cookie */
    iCookie = p->pConfig->iCookie;
    if( iCookie<0 ) iCookie = 0;


    if( 0==sqlite3Fts5BufferSize(&p->rc, &buf, 4+9+9+9) ){
      sqlite3Fts5Put32(buf.p, iCookie);
      buf.n = 4;
      fts5BufferSafeAppendVarint(&buf, pStruct->nLevel);
      fts5BufferSafeAppendVarint(&buf, pStruct->nSegment);
      fts5BufferSafeAppendVarint(&buf, (i64)pStruct->nWriteCounter);
    }

    for(iLvl=0; iLvl<pStruct->nLevel; iLvl++){
      int iSeg;                     /* Used to iterate through segments */
      Fts5StructureLevel *pLvl = &pStruct->aLevel[iLvl];
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nMerge);
      fts5BufferAppendVarint(&p->rc, &buf, pLvl->nSeg);
      assert( pLvl->nMerge<=pLvl->nSeg );
173968
173969
173970
173971
173972
173973
173974
173975

173976
173977
173978
173979
173980
173981
173982
173983
173984
173985
173986
173987
173988
173989
173990
173991
173992
173993
173994
173995

173996
173997
173998
173999
174000
174001
174002

174003
174004
174005
174006
174007
174008
174009
** Argument p points to a buffer containing a varint to be interpreted as a
** position list size field. Read the varint and return the number of bytes
** read. Before returning, set *pnSz to the number of bytes in the position
** list, and *pbDel to true if the delete flag is set, or false otherwise.
*/
static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
  int nSz;
  int n = fts5GetVarint32(p, nSz);

  assert_nc( nSz>=0 );
  *pnSz = nSz/2;
  *pbDel = nSz & 0x0001;
  return n;
}

/*
** Fts5SegIter.iLeafOffset currently points to the first byte of a
** position-list size field. Read the value of the field and store it
** in the following variables:
**
**   Fts5SegIter.nPos
**   Fts5SegIter.bDel
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */

    ASSERT_SZLEAF_OK(pIter->pLeaf);
    if( iOff>=pIter->pLeaf->szLeaf ){
      p->rc = FTS5_CORRUPT;
    }else{
      const u8 *a = &pIter->pLeaf->p[iOff];
      pIter->iLeafOffset += fts5GetPoslistSize(a, &pIter->nPos, &pIter->bDel);
    }

  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;








|
>




















>

|
|
<
|
|
<
>







175477
175478
175479
175480
175481
175482
175483
175484
175485
175486
175487
175488
175489
175490
175491
175492
175493
175494
175495
175496
175497
175498
175499
175500
175501
175502
175503
175504
175505
175506
175507
175508
175509

175510
175511

175512
175513
175514
175515
175516
175517
175518
175519
** Argument p points to a buffer containing a varint to be interpreted as a
** position list size field. Read the varint and return the number of bytes
** read. Before returning, set *pnSz to the number of bytes in the position
** list, and *pbDel to true if the delete flag is set, or false otherwise.
*/
static int fts5GetPoslistSize(const u8 *p, int *pnSz, int *pbDel){
  int nSz;
  int n = 0;
  fts5FastGetVarint32(p, n, nSz);
  assert_nc( nSz>=0 );
  *pnSz = nSz/2;
  *pbDel = nSz & 0x0001;
  return n;
}

/*
** Fts5SegIter.iLeafOffset currently points to the first byte of a
** position-list size field. Read the value of the field and store it
** in the following variables:
**
**   Fts5SegIter.nPos
**   Fts5SegIter.bDel
**
** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the 
** position list content (if any).
*/
static void fts5SegIterLoadNPos(Fts5Index *p, Fts5SegIter *pIter){
  if( p->rc==SQLITE_OK ){
    int iOff = pIter->iLeafOffset;  /* Offset to read at */
    int nSz;
    ASSERT_SZLEAF_OK(pIter->pLeaf);
    fts5FastGetVarint32(pIter->pLeaf->p, iOff, nSz);
    pIter->bDel = (nSz & 0x0001);

    pIter->nPos = nSz>>1;
    pIter->iLeafOffset = iOff;

    assert_nc( pIter->nPos>=0 );
  }
}

static void fts5SegIterLoadRowid(Fts5Index *p, Fts5SegIter *pIter){
  u8 *a = pIter->pLeaf->p;        /* Buffer to read data from */
  int iOff = pIter->iLeafOffset;

174169
174170
174171
174172
174173
174174
174175
174176
174177

174178
174179
174180
174181

174182
174183
174184
174185
174186
174187
174188
    pIter->iLeafPgno--;
    pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
          pIter->pSeg->iSegid, pIter->iLeafPgno
    ));
    if( pNew ){
      /* iTermLeafOffset may be equal to szLeaf if the term is the last
      ** thing on the page - i.e. the first rowid is on the following page.
      ** In this case leaf pIter->pLeaf==0, this iterator is at EOF. */
      if( pIter->iLeafPgno==pIter->iTermLeafPgno 

       && pIter->iTermLeafOffset<pNew->szLeaf 
      ){
        pIter->pLeaf = pNew;
        pIter->iLeafOffset = pIter->iTermLeafOffset;

      }else{
        int iRowidOff;
        iRowidOff = fts5LeafFirstRowidOff(pNew);
        if( iRowidOff ){
          pIter->pLeaf = pNew;
          pIter->iLeafOffset = iRowidOff;
        }







|
|
>
|
<
|
|
>







175679
175680
175681
175682
175683
175684
175685
175686
175687
175688
175689

175690
175691
175692
175693
175694
175695
175696
175697
175698
175699
    pIter->iLeafPgno--;
    pNew = fts5DataRead(p, FTS5_SEGMENT_ROWID(
          pIter->pSeg->iSegid, pIter->iLeafPgno
    ));
    if( pNew ){
      /* iTermLeafOffset may be equal to szLeaf if the term is the last
      ** thing on the page - i.e. the first rowid is on the following page.
      ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
      if( pIter->iLeafPgno==pIter->iTermLeafPgno ){
        assert( pIter->pLeaf==0 );
        if( pIter->iTermLeafOffset<pNew->szLeaf ){

          pIter->pLeaf = pNew;
          pIter->iLeafOffset = pIter->iTermLeafOffset;
        }
      }else{
        int iRowidOff;
        iRowidOff = fts5LeafFirstRowidOff(pNew);
        if( iRowidOff ){
          pIter->pLeaf = pNew;
          pIter->iLeafOffset = iRowidOff;
        }
174276
174277
174278
174279
174280
174281
174282

174283
174284
174285
174286
174287
174288
174289
174290
174291
174292
174293
174294
174295

174296
174297
174298
174299
174300
174301
174302
174303
174304
        }
        pIter->iLeafOffset = iOff;

      }else if( pIter->pSeg==0 ){
        const u8 *pList = 0;
        const char *zTerm = 0;
        int nList = 0;

        if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
          sqlite3Fts5HashScanNext(p->pHash);
          sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
        }
        if( pList==0 ){
          fts5DataRelease(pIter->pLeaf);
          pIter->pLeaf = 0;
        }else{
          pIter->pLeaf->p = (u8*)pList;
          pIter->pLeaf->nn = nList;
          pIter->pLeaf->szLeaf = nList;
          pIter->iEndofDoclist = nList+1;
          sqlite3Fts5BufferSet(&p->rc, &pIter->term, strlen(zTerm), (u8*)zTerm);

          pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
          if( pbNewTerm ) *pbNewTerm = 1;
        }
      }else{
        iOff = 0;
        /* Next entry is not on the current page */
        while( iOff==0 ){
          fts5SegIterNextPage(p, pIter);
          pLeaf = pIter->pLeaf;







>












|
>

|







175787
175788
175789
175790
175791
175792
175793
175794
175795
175796
175797
175798
175799
175800
175801
175802
175803
175804
175805
175806
175807
175808
175809
175810
175811
175812
175813
175814
175815
175816
175817
        }
        pIter->iLeafOffset = iOff;

      }else if( pIter->pSeg==0 ){
        const u8 *pList = 0;
        const char *zTerm = 0;
        int nList = 0;
        assert( (pIter->flags & FTS5_SEGITER_ONETERM) || pbNewTerm );
        if( 0==(pIter->flags & FTS5_SEGITER_ONETERM) ){
          sqlite3Fts5HashScanNext(p->pHash);
          sqlite3Fts5HashScanEntry(p->pHash, &zTerm, &pList, &nList);
        }
        if( pList==0 ){
          fts5DataRelease(pIter->pLeaf);
          pIter->pLeaf = 0;
        }else{
          pIter->pLeaf->p = (u8*)pList;
          pIter->pLeaf->nn = nList;
          pIter->pLeaf->szLeaf = nList;
          pIter->iEndofDoclist = nList+1;
          sqlite3Fts5BufferSet(&p->rc, &pIter->term, (int)strlen(zTerm),
              (u8*)zTerm);
          pIter->iLeafOffset = fts5GetVarint(pList, (u64*)&pIter->iRowid);
          *pbNewTerm = 1;
        }
      }else{
        iOff = 0;
        /* Next entry is not on the current page */
        while( iOff==0 ){
          fts5SegIterNextPage(p, pIter);
          pLeaf = pIter->pLeaf;
174338
174339
174340
174341
174342
174343
174344
174345








174346
174347
174348
174349
174350
174351
174352
            pIter->pLeaf = 0;
          }else{
            fts5SegIterLoadTerm(p, pIter, nKeep);
            fts5SegIterLoadNPos(p, pIter);
            if( pbNewTerm ) *pbNewTerm = 1;
          }
        }else{
          fts5SegIterLoadNPos(p, pIter);








        }
      }
    }
  }
}

#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }







|
>
>
>
>
>
>
>
>







175851
175852
175853
175854
175855
175856
175857
175858
175859
175860
175861
175862
175863
175864
175865
175866
175867
175868
175869
175870
175871
175872
175873
            pIter->pLeaf = 0;
          }else{
            fts5SegIterLoadTerm(p, pIter, nKeep);
            fts5SegIterLoadNPos(p, pIter);
            if( pbNewTerm ) *pbNewTerm = 1;
          }
        }else{
          /* The following could be done by calling fts5SegIterLoadNPos(). But
          ** this block is particularly performance critical, so equivalent
          ** code is inlined. */
          int nSz;
          assert( p->rc==SQLITE_OK );
          fts5FastGetVarint32(pIter->pLeaf->p, pIter->iLeafOffset, nSz);
          pIter->bDel = (nSz & 0x0001);
          pIter->nPos = nSz>>1;
          assert_nc( pIter->nPos>=0 );
        }
      }
    }
  }
}

#define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
174547
174548
174549
174550
174551
174552
174553

174554
174555
174556
174557
174558


174559
174560
174561
174562
174563
174564
174565
    return;
  }else if( bEndOfPage ){
    do {
      fts5SegIterNextPage(p, pIter);
      if( pIter->pLeaf==0 ) return;
      a = pIter->pLeaf->p;
      if( fts5LeafIsTermless(pIter->pLeaf)==0 ){

        fts5GetVarint32(&pIter->pLeaf->p[pIter->pLeaf->szLeaf], iOff);
        if( iOff<4 || iOff>=pIter->pLeaf->szLeaf ){
          p->rc = FTS5_CORRUPT;
        }else{
          nKeep = 0;


          iOff += fts5GetVarint32(&a[iOff], nNew);
          break;
        }
      }
    }while( 1 );
  }








>
|




>
>







176068
176069
176070
176071
176072
176073
176074
176075
176076
176077
176078
176079
176080
176081
176082
176083
176084
176085
176086
176087
176088
176089
    return;
  }else if( bEndOfPage ){
    do {
      fts5SegIterNextPage(p, pIter);
      if( pIter->pLeaf==0 ) return;
      a = pIter->pLeaf->p;
      if( fts5LeafIsTermless(pIter->pLeaf)==0 ){
        iPgidx = pIter->pLeaf->szLeaf;
        iPgidx += fts5GetVarint32(&pIter->pLeaf->p[iPgidx], iOff);
        if( iOff<4 || iOff>=pIter->pLeaf->szLeaf ){
          p->rc = FTS5_CORRUPT;
        }else{
          nKeep = 0;
          iTermOff = iOff;
          n = pIter->pLeaf->nn;
          iOff += fts5GetVarint32(&a[iOff], nNew);
          break;
        }
      }
    }while( 1 );
  }

174695
174696
174697
174698
174699
174700
174701
174702
174703
174704
174705
174706
174707
174708
174709

  assert( p->pHash );
  assert( p->rc==SQLITE_OK );

  if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){
    p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm);
    sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList);
    n = (z ? strlen((const char*)z) : 0);
  }else{
    pIter->flags |= FTS5_SEGITER_ONETERM;
    sqlite3Fts5HashQuery(p->pHash, (const char*)pTerm, nTerm, &pList, &nList);
    z = pTerm;
    n = nTerm;
  }








|







176219
176220
176221
176222
176223
176224
176225
176226
176227
176228
176229
176230
176231
176232
176233

  assert( p->pHash );
  assert( p->rc==SQLITE_OK );

  if( pTerm==0 || (flags & FTS5INDEX_QUERY_SCAN) ){
    p->rc = sqlite3Fts5HashScanInit(p->pHash, (const char*)pTerm, nTerm);
    sqlite3Fts5HashScanEntry(p->pHash, (const char**)&z, &pList, &nList);
    n = (z ? (int)strlen((const char*)z) : 0);
  }else{
    pIter->flags |= FTS5_SEGITER_ONETERM;
    sqlite3Fts5HashQuery(p->pHash, (const char*)pTerm, nTerm, &pList, &nList);
    z = pTerm;
    n = nTerm;
  }

174876
174877
174878
174879
174880
174881
174882
174883
174884
174885
174886
174887
174888
174889
174890
    if( res<0 ){
      iRes = i1;
    }else{
      iRes = i2;
    }
  }

  pRes->iFirst = iRes;
  return 0;
}

/*
** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
** It is an error if leaf iLeafPgno does not exist or contains no rowids.
*/







|







176400
176401
176402
176403
176404
176405
176406
176407
176408
176409
176410
176411
176412
176413
176414
    if( res<0 ){
      iRes = i1;
    }else{
      iRes = i2;
    }
  }

  pRes->iFirst = (u16)iRes;
  return 0;
}

/*
** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
** It is an error if leaf iLeafPgno does not exist or contains no rowids.
*/
175043
175044
175045
175046
175047
175048
175049
175050
175051
175052
175053
175054
175055
175056
175057
        }else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
          pIter->iSwitchRowid = pOther->iRowid;
          pNew = pOther;
        }else if( (pOther->iRowid>pIter->iSwitchRowid)==pIter->bRev ){
          pIter->iSwitchRowid = pOther->iRowid;
        }
      }
      pRes->iFirst = (pNew - pIter->aSeg);
      if( i==1 ) break;

      pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
    }
  }

  return 0;







|







176567
176568
176569
176570
176571
176572
176573
176574
176575
176576
176577
176578
176579
176580
176581
        }else if( (pOther->iRowid>pNew->iRowid)==pIter->bRev ){
          pIter->iSwitchRowid = pOther->iRowid;
          pNew = pOther;
        }else if( (pOther->iRowid>pIter->iSwitchRowid)==pIter->bRev ){
          pIter->iSwitchRowid = pOther->iRowid;
        }
      }
      pRes->iFirst = (u16)(pNew - pIter->aSeg);
      if( i==1 ) break;

      pOther = &pIter->aSeg[ pIter->aFirst[i ^ 0x0001].iFirst ];
    }
  }

  return 0;
175100
175101
175102
175103
175104
175105
175106





























175107
175108
175109
175110
175111
175112
175113
      }
      fts5AssertMultiIterSetup(p, pIter);

      bUseFrom = 0;
    }while( pIter->bSkipEmpty && fts5MultiIterIsEmpty(p, pIter) );
  }
}






























static Fts5IndexIter *fts5MultiIterAlloc(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  int nSeg
){
  Fts5IndexIter *pNew;
  int nSlot;                      /* Power of two >= nSeg */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







176624
176625
176626
176627
176628
176629
176630
176631
176632
176633
176634
176635
176636
176637
176638
176639
176640
176641
176642
176643
176644
176645
176646
176647
176648
176649
176650
176651
176652
176653
176654
176655
176656
176657
176658
176659
176660
176661
176662
176663
176664
176665
176666
      }
      fts5AssertMultiIterSetup(p, pIter);

      bUseFrom = 0;
    }while( pIter->bSkipEmpty && fts5MultiIterIsEmpty(p, pIter) );
  }
}

static void fts5MultiIterNext2(
  Fts5Index *p, 
  Fts5IndexIter *pIter,
  int *pbNewTerm                  /* OUT: True if *might* be new term */
){
  assert( pIter->bSkipEmpty );
  if( p->rc==SQLITE_OK ){
    do {
      int iFirst = pIter->aFirst[1].iFirst;
      Fts5SegIter *pSeg = &pIter->aSeg[iFirst];
      int bNewTerm = 0;

      fts5SegIterNext(p, pSeg, &bNewTerm);
      if( pSeg->pLeaf==0 || bNewTerm 
       || fts5MultiIterAdvanceRowid(p, pIter, iFirst)
      ){
        fts5MultiIterAdvanced(p, pIter, iFirst, 1);
        fts5MultiIterSetEof(pIter);
        *pbNewTerm = 1;
      }else{
        *pbNewTerm = 0;
      }
      fts5AssertMultiIterSetup(p, pIter);

    }while( fts5MultiIterIsEmpty(p, pIter) );
  }
}


static Fts5IndexIter *fts5MultiIterAlloc(
  Fts5Index *p,                   /* FTS5 backend to iterate within */
  int nSeg
){
  Fts5IndexIter *pNew;
  int nSlot;                      /* Power of two >= nSeg */
175165
175166
175167
175168
175169
175170
175171
175172
175173
175174
175175
175176
175177
175178
175179
    }else{
      nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
    }
  }
  *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
  if( pNew==0 ) return;
  pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
  pNew->bSkipEmpty = bSkipEmpty;
  pNew->pStruct = pStruct;
  fts5StructureRef(pStruct);

  /* Initialize each of the component segment iterators. */
  if( iLevel<0 ){
    Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
    if( p->pHash ){







|







176718
176719
176720
176721
176722
176723
176724
176725
176726
176727
176728
176729
176730
176731
176732
    }else{
      nSeg = MIN(pStruct->aLevel[iLevel].nSeg, nSegment);
    }
  }
  *ppOut = pNew = fts5MultiIterAlloc(p, nSeg);
  if( pNew==0 ) return;
  pNew->bRev = (0!=(flags & FTS5INDEX_QUERY_DESC));
  pNew->bSkipEmpty = (u8)bSkipEmpty;
  pNew->pStruct = pStruct;
  fts5StructureRef(pStruct);

  /* Initialize each of the component segment iterators. */
  if( iLevel<0 ){
    Fts5StructureLevel *pEnd = &pStruct->aLevel[pStruct->nLevel];
    if( p->pHash ){
175236
175237
175238
175239
175240
175241
175242

175243
175244
175245
175246
175247
175248
175249
  Fts5IndexIter **ppOut           /* New object */
){
  Fts5IndexIter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){
    Fts5SegIter *pIter = &pNew->aSeg[1];


    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;
      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){







>







176789
176790
176791
176792
176793
176794
176795
176796
176797
176798
176799
176800
176801
176802
176803
  Fts5IndexIter **ppOut           /* New object */
){
  Fts5IndexIter *pNew;
  pNew = fts5MultiIterAlloc(p, 2);
  if( pNew ){
    Fts5SegIter *pIter = &pNew->aSeg[1];

    pNew->bFiltered = 1;
    pIter->flags = FTS5_SEGITER_ONETERM;
    if( pData->szLeaf>0 ){
      pIter->pLeaf = pData;
      pIter->iLeafOffset = fts5GetVarint(pData->p, (u64*)&pIter->iRowid);
      pIter->iEndofDoclist = pData->nn;
      pNew->aFirst[1].iFirst = 1;
      if( bDesc ){
175627
175628
175629
175630
175631
175632
175633
175634
175635
175636
175637
175638
175639
175640
175641
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;

  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], pPage->buf.n);

  if( pWriter->bFirstTermInPage ){
    /* No term was written to this page. */
    assert( pPage->pgidx.n==0 );
    fts5WriteBtreeNoTerm(p, pWriter);
  }else{
    /* Append the pgidx to the page buffer. Set the szLeaf header field. */







|







177181
177182
177183
177184
177185
177186
177187
177188
177189
177190
177191
177192
177193
177194
177195
  Fts5PageWriter *pPage = &pWriter->writer;
  i64 iRowid;

  assert( (pPage->pgidx.n==0)==(pWriter->bFirstTermInPage) );

  /* Set the szLeaf header field. */
  assert( 0==fts5GetU16(&pPage->buf.p[2]) );
  fts5PutU16(&pPage->buf.p[2], (u16)pPage->buf.n);

  if( pWriter->bFirstTermInPage ){
    /* No term was written to this page. */
    assert( pPage->pgidx.n==0 );
    fts5WriteBtreeNoTerm(p, pWriter);
  }else{
    /* Append the pgidx to the page buffer. Set the szLeaf header field. */
175759
175760
175761
175762
175763
175764
175765
175766
175767
175768
175769
175770
175771
175772
175773
      fts5WriteFlushLeaf(p, pWriter);
    }

    /* If this is to be the first rowid written to the page, set the 
    ** rowid-pointer in the page-header. Also append a value to the dlidx
    ** buffer, in case a doclist-index is required.  */
    if( pWriter->bFirstRowidInPage ){
      fts5PutU16(pPage->buf.p, pPage->buf.n);
      fts5WriteDlidxAppend(p, pWriter, iRowid);
    }

    /* Write the rowid. */
    if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
    }else{







|







177313
177314
177315
177316
177317
177318
177319
177320
177321
177322
177323
177324
177325
177326
177327
      fts5WriteFlushLeaf(p, pWriter);
    }

    /* If this is to be the first rowid written to the page, set the 
    ** rowid-pointer in the page-header. Also append a value to the dlidx
    ** buffer, in case a doclist-index is required.  */
    if( pWriter->bFirstRowidInPage ){
      fts5PutU16(pPage->buf.p, (u16)pPage->buf.n);
      fts5WriteDlidxAppend(p, pWriter, iRowid);
    }

    /* Write the rowid. */
    if( pWriter->bFirstRowidInDoclist || pWriter->bFirstRowidInPage ){
      fts5BufferAppendVarint(&p->rc, &pPage->buf, iRowid);
    }else{
175853
175854
175855
175856
175857
175858
175859



175860
175861
175862
175863
175864
175865
175866
175867
175868
175869
  pWriter->iSegid = iSegid;

  fts5WriteDlidxGrow(p, pWriter, 1);
  pWriter->writer.pgno = 1;
  pWriter->bFirstTermInPage = 1;
  pWriter->iBtPage = 1;




  /* Grow the two buffers to pgsz + padding bytes in size. */
  fts5BufferGrow(&p->rc, &pWriter->writer.pgidx, nBuffer);
  fts5BufferGrow(&p->rc, &pWriter->writer.buf, nBuffer);

  if( p->pIdxWriter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
          "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)", 
          pConfig->zDb, pConfig->zName
    ));







>
>
>

|
|







177407
177408
177409
177410
177411
177412
177413
177414
177415
177416
177417
177418
177419
177420
177421
177422
177423
177424
177425
177426
  pWriter->iSegid = iSegid;

  fts5WriteDlidxGrow(p, pWriter, 1);
  pWriter->writer.pgno = 1;
  pWriter->bFirstTermInPage = 1;
  pWriter->iBtPage = 1;

  assert( pWriter->writer.buf.n==0 );
  assert( pWriter->writer.pgidx.n==0 );

  /* Grow the two buffers to pgsz + padding bytes in size. */
  sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.pgidx, nBuffer);
  sqlite3Fts5BufferSize(&p->rc, &pWriter->writer.buf, nBuffer);

  if( p->pIdxWriter==0 ){
    Fts5Config *pConfig = p->pConfig;
    fts5IndexPrepareStmt(p, &p->pIdxWriter, sqlite3_mprintf(
          "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)", 
          pConfig->zDb, pConfig->zName
    ));
175914
175915
175916
175917
175918
175919
175920
175921
175922
175923
175924
175925
175926
175927
175928
        fts5BufferGrow(&p->rc, &buf, pData->nn);
        fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
        fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
        fts5BufferAppendBlob(&p->rc, &buf, pData->szLeaf-iOff, &pData->p[iOff]);
        if( p->rc==SQLITE_OK ){
          /* Set the szLeaf field */
          fts5PutU16(&buf.p[2], buf.n);
        }

        /* Set up the new page-index array */
        fts5BufferAppendVarint(&p->rc, &buf, 4);
        if( pSeg->iLeafPgno==pSeg->iTermLeafPgno 
         && pSeg->iEndofDoclist<pData->szLeaf 
        ){







|







177471
177472
177473
177474
177475
177476
177477
177478
177479
177480
177481
177482
177483
177484
177485
        fts5BufferGrow(&p->rc, &buf, pData->nn);
        fts5BufferAppendBlob(&p->rc, &buf, sizeof(aHdr), aHdr);
        fts5BufferAppendVarint(&p->rc, &buf, pSeg->term.n);
        fts5BufferAppendBlob(&p->rc, &buf, pSeg->term.n, pSeg->term.p);
        fts5BufferAppendBlob(&p->rc, &buf, pData->szLeaf-iOff, &pData->p[iOff]);
        if( p->rc==SQLITE_OK ){
          /* Set the szLeaf field */
          fts5PutU16(&buf.p[2], (u16)buf.n);
        }

        /* Set up the new page-index array */
        fts5BufferAppendVarint(&p->rc, &buf, 4);
        if( pSeg->iLeafPgno==pSeg->iTermLeafPgno 
         && pSeg->iEndofDoclist<pData->szLeaf 
        ){
176208
176209
176210
176211
176212
176213
176214
176215
176216
176217
176218
176219
176220
176221
176222
176223
176224
176225
176226
176227
176228
176229
176230
176231
176232
      if( (ret + i) > nMax ) break;
      ret += i;
    }
  }
  return ret;
}

#define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) {     \
  assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) );             \
  memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob);             \
  (pBuf)->n += nBlob;                                      \
}

#define fts5BufferSafeAppendVarint(pBuf, iVal) {                \
  (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal));  \
  assert( (pBuf)->nSpace>=(pBuf)->n );                          \
}

/*
** Flush the contents of in-memory hash table iHash to a new level-0 
** segment on disk. Also update the corresponding structure record.
**
** If an error occurs, set the Fts5Index.rc error code. If an error has 
** already occurred, this function is a no-op.
*/







<
<
<
<
<
<
<
<
<
<
<







177765
177766
177767
177768
177769
177770
177771











177772
177773
177774
177775
177776
177777
177778
      if( (ret + i) > nMax ) break;
      ret += i;
    }
  }
  return ret;
}












/*
** Flush the contents of in-memory hash table iHash to a new level-0 
** segment on disk. Also update the corresponding structure record.
**
** If an error occurs, set the Fts5Index.rc error code. If an error has 
** already occurred, this function is a no-op.
*/
176267
176268
176269
176270
176271
176272
176273
176274
176275
176276
176277
176278
176279
176280
176281
    while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
      const char *zTerm;          /* Buffer containing term */
      const u8 *pDoclist;         /* Pointer to doclist for this term */
      int nDoclist;               /* Size of doclist in bytes */

      /* Write the term for this entry to disk. */
      sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
      fts5WriteAppendTerm(p, &writer, strlen(zTerm), (const u8*)zTerm);

      assert( writer.bFirstRowidInPage==0 );
      if( pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
        /* The entire doclist will fit on the current leaf. */
        fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
      }else{
        i64 iRowid = 0;







|







177813
177814
177815
177816
177817
177818
177819
177820
177821
177822
177823
177824
177825
177826
177827
    while( p->rc==SQLITE_OK && 0==sqlite3Fts5HashScanEof(pHash) ){
      const char *zTerm;          /* Buffer containing term */
      const u8 *pDoclist;         /* Pointer to doclist for this term */
      int nDoclist;               /* Size of doclist in bytes */

      /* Write the term for this entry to disk. */
      sqlite3Fts5HashScanEntry(pHash, &zTerm, &pDoclist, &nDoclist);
      fts5WriteAppendTerm(p, &writer, (int)strlen(zTerm), (const u8*)zTerm);

      assert( writer.bFirstRowidInPage==0 );
      if( pgsz>=(pBuf->n + pPgidx->n + nDoclist + 1) ){
        /* The entire doclist will fit on the current leaf. */
        fts5BufferSafeAppendBlob(pBuf, pDoclist, nDoclist);
      }else{
        i64 iRowid = 0;
176291
176292
176293
176294
176295
176296
176297
176298
176299
176300
176301
176302
176303
176304
176305
          int bDummy;
          iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);
          nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
          nCopy += nPos;
          iRowid += iDelta;
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );







|







177837
177838
177839
177840
177841
177842
177843
177844
177845
177846
177847
177848
177849
177850
177851
          int bDummy;
          iOff += fts5GetVarint(&pDoclist[iOff], (u64*)&iDelta);
          nCopy = fts5GetPoslistSize(&pDoclist[iOff], &nPos, &bDummy);
          nCopy += nPos;
          iRowid += iDelta;
          
          if( writer.bFirstRowidInPage ){
            fts5PutU16(&pBuf->p[0], (u16)pBuf->n);   /* first rowid on page */
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iRowid);
            writer.bFirstRowidInPage = 0;
            fts5WriteDlidxAppend(p, &writer, iRowid);
          }else{
            pBuf->n += sqlite3Fts5PutVarint(&pBuf->p[pBuf->n], iDelta);
          }
          assert( pBuf->n<=pBuf->nSpace );
176451
176452
176453
176454
176455
176456
176457
176458
176459
176460
176461
176462
176463
176464
176465
static void fts5PoslistCallback(
  Fts5Index *p, 
  void *pContext, 
  const u8 *pChunk, int nChunk
){
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferAppendBlob(&p->rc, (Fts5Buffer*)pContext, nChunk, pChunk);
  }
}

typedef struct PoslistCallbackCtx PoslistCallbackCtx;
struct PoslistCallbackCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */







|







177997
177998
177999
178000
178001
178002
178003
178004
178005
178006
178007
178008
178009
178010
178011
static void fts5PoslistCallback(
  Fts5Index *p, 
  void *pContext, 
  const u8 *pChunk, int nChunk
){
  assert_nc( nChunk>=0 );
  if( nChunk>0 ){
    fts5BufferSafeAppendBlob((Fts5Buffer*)pContext, pChunk, nChunk);
  }
}

typedef struct PoslistCallbackCtx PoslistCallbackCtx;
struct PoslistCallbackCtx {
  Fts5Buffer *pBuf;               /* Append to this buffer */
  Fts5Colset *pColset;            /* Restrict matches to this column */
176491
176492
176493
176494
176495
176496
176497
176498
176499
176500
176501
176502
176503
176504
176505
176506
176507
176508
176509
176510
176511
176512
176513
176514
176515
176516
176517
176518
176519
176520
176521
176522
176523
176524
176525
176526
176527
176528
176529
176530
176531
176532
176533
176534
176535
176536
176537
176538
176539
176540
176541
176542

176543
176544
176545
176546
176547
176548
176549
176550
176551
176552
176553
176554

176555







































176556
176557
176558
176559








176560
176561
176562
176563
176564

176565
176566
176567
176568
176569
176570
176571
176572
176573
176574


176575
























176576
176577
176578
176579
176580
176581
176582
176583
176584
176585
176586
176587

176588
176589
176590
176591
176592
176593
176594



176595
176596
176597
176598
176599
176600
176601
    int iStart = 0;

    if( pCtx->eState==2 ){
      int iCol;
      fts5FastGetVarint32(pChunk, i, iCol);
      if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
        pCtx->eState = 1;
        fts5BufferAppendVarint(&p->rc, pCtx->pBuf, 1);
      }else{
        pCtx->eState = 0;
      }
    }

    do {
      while( i<nChunk && pChunk[i]!=0x01 ){
        while( pChunk[i] & 0x80 ) i++;
        i++;
      }
      if( pCtx->eState ){
        fts5BufferAppendBlob(&p->rc, pCtx->pBuf, i-iStart, &pChunk[iStart]);
      }
      if( i<nChunk ){
        int iCol;
        iStart = i;
        i++;
        if( i>=nChunk ){
          pCtx->eState = 2;
        }else{
          fts5FastGetVarint32(pChunk, i, iCol);
          pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
          if( pCtx->eState ){
            fts5BufferAppendBlob(&p->rc, pCtx->pBuf, i-iStart, &pChunk[iStart]);
            iStart = i;
          }
        }
      }
    }while( i<nChunk );
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
*/
static void fts5SegiterPoslist(
  Fts5Index *p,
  Fts5SegIter *pSeg,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){

  if( pColset==0 ){
    fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
  }else{
    PoslistCallbackCtx sCtx;
    sCtx.pBuf = pBuf;
    sCtx.pColset = pColset;
    sCtx.eState = pColset ? fts5IndexColsetTest(pColset, 0) : 1;
    assert( sCtx.eState==0 || sCtx.eState==1 );
    fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
  }
}


/*







































** Iterator pMulti currently points to a valid entry (not EOF). This
** function appends a copy of the position-list of the entry pMulti 
** currently points to to buffer pBuf.
**








** If an error occurs, an error code is left in p->rc. It is assumed
** no error has already occurred when this function is called.
*/
static int fts5MultiIterPoslist(
  Fts5Index *p,

  Fts5IndexIter *pMulti,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){
  if( p->rc==SQLITE_OK ){
    int iSz;
    int iData;

    Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
    assert( fts5MultiIterEof(p, pMulti)==0 );



























    /* WRITEPOSLISTSIZE */
    iSz = pBuf->n;
    fts5BufferSafeAppendVarint(pBuf, pSeg->nPos*2);
    iData = pBuf->n;

    fts5SegiterPoslist(p, pSeg, pColset, pBuf);

    if( pColset ){
      int nActual = pBuf->n - iData;
      if( nActual!=pSeg->nPos ){
        /* WRITEPOSLISTSIZE */
        if( nActual==0 ){

          return 1;
        }else{
          int nReq = sqlite3Fts5GetVarintLen((u32)(nActual*2));
          while( iSz<(iData-nReq) ){ pBuf->p[iSz++] = 0x80; }
          sqlite3Fts5PutVarint(&pBuf->p[iSz], nActual*2);
        }
      }



    }
  }

  return 0;
}

static void fts5DoclistIterNext(Fts5DoclistIter *pIter){







|











|











|




















>
|
|
|
|
|
|
|
|
|
|
|
|
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

|
<

>
>
>
>
>
>
>
>
|
<

|

>





<
<
<


>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
|
|
|

|

|
|
|
<
|
>
|
|
|
|
|
|
|
>
>
>







178037
178038
178039
178040
178041
178042
178043
178044
178045
178046
178047
178048
178049
178050
178051
178052
178053
178054
178055
178056
178057
178058
178059
178060
178061
178062
178063
178064
178065
178066
178067
178068
178069
178070
178071
178072
178073
178074
178075
178076
178077
178078
178079
178080
178081
178082
178083
178084
178085
178086
178087
178088
178089
178090
178091
178092
178093
178094
178095
178096
178097
178098
178099
178100
178101
178102
178103
178104
178105
178106
178107
178108
178109
178110
178111
178112
178113
178114
178115
178116
178117
178118
178119
178120
178121
178122
178123
178124
178125
178126
178127
178128
178129
178130
178131
178132
178133
178134
178135
178136
178137
178138
178139
178140
178141
178142
178143
178144

178145
178146
178147
178148
178149
178150
178151
178152
178153
178154

178155
178156
178157
178158
178159
178160
178161
178162
178163



178164
178165
178166
178167
178168
178169
178170
178171
178172
178173
178174
178175
178176
178177
178178
178179
178180
178181
178182
178183
178184
178185
178186
178187
178188
178189
178190
178191
178192
178193
178194
178195
178196
178197
178198
178199
178200
178201
178202

178203
178204
178205
178206
178207
178208
178209
178210
178211
178212
178213
178214
178215
178216
178217
178218
178219
178220
178221
    int iStart = 0;

    if( pCtx->eState==2 ){
      int iCol;
      fts5FastGetVarint32(pChunk, i, iCol);
      if( fts5IndexColsetTest(pCtx->pColset, iCol) ){
        pCtx->eState = 1;
        fts5BufferSafeAppendVarint(pCtx->pBuf, 1);
      }else{
        pCtx->eState = 0;
      }
    }

    do {
      while( i<nChunk && pChunk[i]!=0x01 ){
        while( pChunk[i] & 0x80 ) i++;
        i++;
      }
      if( pCtx->eState ){
        fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
      }
      if( i<nChunk ){
        int iCol;
        iStart = i;
        i++;
        if( i>=nChunk ){
          pCtx->eState = 2;
        }else{
          fts5FastGetVarint32(pChunk, i, iCol);
          pCtx->eState = fts5IndexColsetTest(pCtx->pColset, iCol);
          if( pCtx->eState ){
            fts5BufferSafeAppendBlob(pCtx->pBuf, &pChunk[iStart], i-iStart);
            iStart = i;
          }
        }
      }
    }while( i<nChunk );
  }
}

/*
** Iterator pIter currently points to a valid entry (not EOF). This
** function appends the position list data for the current entry to
** buffer pBuf. It does not make a copy of the position-list size
** field.
*/
static void fts5SegiterPoslist(
  Fts5Index *p,
  Fts5SegIter *pSeg,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){
  if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos) ){
    if( pColset==0 ){
      fts5ChunkIterate(p, pSeg, (void*)pBuf, fts5PoslistCallback);
    }else{
      PoslistCallbackCtx sCtx;
      sCtx.pBuf = pBuf;
      sCtx.pColset = pColset;
      sCtx.eState = fts5IndexColsetTest(pColset, 0);
      assert( sCtx.eState==0 || sCtx.eState==1 );
      fts5ChunkIterate(p, pSeg, (void*)&sCtx, fts5PoslistFilterCallback);
    }
  }
}

/*
** IN/OUT parameter (*pa) points to a position list n bytes in size. If
** the position list contains entries for column iCol, then (*pa) is set
** to point to the sub-position-list for that column and the number of
** bytes in it returned. Or, if the argument position list does not
** contain any entries for column iCol, return 0.
*/
static int fts5IndexExtractCol(
  const u8 **pa,                  /* IN/OUT: Pointer to poslist */
  int n,                          /* IN: Size of poslist in bytes */
  int iCol                        /* Column to extract from poslist */
){
  int iCurrent = 0;               /* Anything before the first 0x01 is col 0 */
  const u8 *p = *pa;
  const u8 *pEnd = &p[n];         /* One byte past end of position list */
  u8 prev = 0;

  while( iCol>iCurrent ){
    /* Advance pointer p until it points to pEnd or an 0x01 byte that is
    ** not part of a varint */
    while( (prev & 0x80) || *p!=0x01 ){
      prev = *p++;
      if( p==pEnd ) return 0;
    }
    *pa = p++;
    p += fts5GetVarint32(p, iCurrent);
  }
  if( iCol!=iCurrent ) return 0;

  /* Advance pointer p until it points to pEnd or an 0x01 byte that is
  ** not part of a varint */
  assert( (prev & 0x80)==0 );
  while( p<pEnd && ((prev & 0x80) || *p!=0x01) ){
    prev = *p++;
  }
  return p - (*pa);
}


/*
** Iterator pMulti currently points to a valid entry (not EOF). This
** function appends the following to buffer pBuf:

**
**   * The varint iDelta, and
**   * the position list that currently points to, including the size field.
**
** If argument pColset is NULL, then the position list is filtered according
** to pColset before being appended to the buffer. If this means there are
** no entries in the position list, nothing is appended to the buffer (not
** even iDelta).
**
** If an error occurs, an error code is left in p->rc. 

*/
static int fts5AppendPoslist(
  Fts5Index *p,
  i64 iDelta,
  Fts5IndexIter *pMulti,
  Fts5Colset *pColset,
  Fts5Buffer *pBuf
){
  if( p->rc==SQLITE_OK ){



    Fts5SegIter *pSeg = &pMulti->aSeg[ pMulti->aFirst[1].iFirst ];
    assert( fts5MultiIterEof(p, pMulti)==0 );
    assert( pSeg->nPos>0 );
    if( 0==fts5BufferGrow(&p->rc, pBuf, pSeg->nPos+9+9) ){

      if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf 
       && (pColset==0 || pColset->nCol==1)
      ){
        const u8 *pPos = &pSeg->pLeaf->p[pSeg->iLeafOffset];
        int nPos;
        if( pColset ){
          nPos = fts5IndexExtractCol(&pPos, pSeg->nPos, pColset->aiCol[0]);
          if( nPos==0 ) return 1;
        }else{
          nPos = pSeg->nPos;
        }
        assert( nPos>0 );
        fts5BufferSafeAppendVarint(pBuf, iDelta);
        fts5BufferSafeAppendVarint(pBuf, nPos*2);
        fts5BufferSafeAppendBlob(pBuf, pPos, nPos);
      }else{
        int iSv1;
        int iSv2;
        int iData;

        /* Append iDelta */
        iSv1 = pBuf->n;
        fts5BufferSafeAppendVarint(pBuf, iDelta);

        /* WRITEPOSLISTSIZE */
        iSv2 = pBuf->n;
        fts5BufferSafeAppendVarint(pBuf, pSeg->nPos*2);
        iData = pBuf->n;

        fts5SegiterPoslist(p, pSeg, pColset, pBuf);

        if( pColset ){
          int nActual = pBuf->n - iData;
          if( nActual!=pSeg->nPos ){

            if( nActual==0 ){
              pBuf->n = iSv1;
              return 1;
            }else{
              int nReq = sqlite3Fts5GetVarintLen((u32)(nActual*2));
              while( iSv2<(iData-nReq) ){ pBuf->p[iSv2++] = 0x80; }
              sqlite3Fts5PutVarint(&pBuf->p[iSv2], nActual*2);
            }
          }
        }
      }

    }
  }

  return 0;
}

static void fts5DoclistIterNext(Fts5DoclistIter *pIter){
176676
176677
176678
176679
176680
176681
176682
176683
176684
176685
176686
176687
176688
176689
176690
    Fts5DoclistIter i1;
    Fts5DoclistIter i2;
    Fts5Buffer out;
    Fts5Buffer tmp;
    memset(&out, 0, sizeof(out));
    memset(&tmp, 0, sizeof(tmp));

    sqlite3Fts5BufferGrow(&p->rc, &out, p1->n + p2->n);
    fts5DoclistIterInit(p1, &i1);
    fts5DoclistIterInit(p2, &i2);
    while( p->rc==SQLITE_OK && (i1.aPoslist!=0 || i2.aPoslist!=0) ){
      if( i2.aPoslist==0 || (i1.aPoslist && i1.iRowid<i2.iRowid) ){
        /* Copy entry from i1 */
        fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
        fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);







|







178296
178297
178298
178299
178300
178301
178302
178303
178304
178305
178306
178307
178308
178309
178310
    Fts5DoclistIter i1;
    Fts5DoclistIter i2;
    Fts5Buffer out;
    Fts5Buffer tmp;
    memset(&out, 0, sizeof(out));
    memset(&tmp, 0, sizeof(tmp));

    sqlite3Fts5BufferSize(&p->rc, &out, p1->n + p2->n);
    fts5DoclistIterInit(p1, &i1);
    fts5DoclistIterInit(p2, &i2);
    while( p->rc==SQLITE_OK && (i1.aPoslist!=0 || i2.aPoslist!=0) ){
      if( i2.aPoslist==0 || (i1.aPoslist && i1.iRowid<i2.iRowid) ){
        /* Copy entry from i1 */
        fts5MergeAppendDocid(&out, iLastRowid, i1.iRowid);
        fts5BufferSafeAppendBlob(&out, i1.aPoslist, i1.nPoslist+i1.nSize);
176767
176768
176769
176770
176771
176772
176773

176774
176775
176776
176777
176778
176779
176780
176781
176782
176783

176784

176785
176786
176787
176788
176789
176790
176791
176792
176793
176794
176795
176796
176797
176798
176799
176800
176801
176802
176803
176804
176805
176806
176807
176808
176809
176810
176811
176812
176813
176814
176815
  if( aBuf && pStruct ){
    const int flags = FTS5INDEX_QUERY_SCAN;
    int i;
    i64 iLastRowid = 0;
    Fts5IndexIter *p1 = 0;     /* Iterator used to gather data from index */
    Fts5Data *pData;
    Fts5Buffer doclist;


    memset(&doclist, 0, sizeof(doclist));
    for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);
        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext(p, p1, 0, 0)
    ){
      i64 iRowid = fts5MultiIterRowid(p1);
      int nTerm;
      const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);
      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );

      if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;


      if( doclist.n>0 && iRowid<=iLastRowid ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
            fts5BufferZero(&doclist);
          }else{
            fts5MergePrefixLists(p, &doclist, &aBuf[i]);
            fts5BufferZero(&aBuf[i]);
          }
        }
        iLastRowid = 0;
      }

      if( 0==sqlite3Fts5BufferGrow(&p->rc, &doclist, 9) ){
        int iSave = doclist.n;
        assert( doclist.n!=0 || iLastRowid==0 );
        fts5BufferSafeAppendVarint(&doclist, iRowid - iLastRowid);
        if( fts5MultiIterPoslist(p, p1, pColset, &doclist) ){
          doclist.n = iSave;
        }else{
          iLastRowid = iRowid;
        }
      }
    }

    for(i=0; i<nBuf; i++){
      if( p->rc==SQLITE_OK ){
        fts5MergePrefixLists(p, &doclist, &aBuf[i]);
      }







>




|





>
|
>















<
<
<
<
|
<
<
|
<







178387
178388
178389
178390
178391
178392
178393
178394
178395
178396
178397
178398
178399
178400
178401
178402
178403
178404
178405
178406
178407
178408
178409
178410
178411
178412
178413
178414
178415
178416
178417
178418
178419
178420
178421
178422




178423


178424

178425
178426
178427
178428
178429
178430
178431
  if( aBuf && pStruct ){
    const int flags = FTS5INDEX_QUERY_SCAN;
    int i;
    i64 iLastRowid = 0;
    Fts5IndexIter *p1 = 0;     /* Iterator used to gather data from index */
    Fts5Data *pData;
    Fts5Buffer doclist;
    int bNewTerm = 1;

    memset(&doclist, 0, sizeof(doclist));
    for(fts5MultiIterNew(p, pStruct, 1, flags, pToken, nToken, -1, 0, &p1);
        fts5MultiIterEof(p, p1)==0;
        fts5MultiIterNext2(p, p1, &bNewTerm)
    ){
      i64 iRowid = fts5MultiIterRowid(p1);
      int nTerm;
      const u8 *pTerm = fts5MultiIterTerm(p1, &nTerm);
      assert_nc( memcmp(pToken, pTerm, MIN(nToken, nTerm))<=0 );
      if( bNewTerm ){
        if( nTerm<nToken || memcmp(pToken, pTerm, nToken) ) break;
      }

      if( doclist.n>0 && iRowid<=iLastRowid ){
        for(i=0; p->rc==SQLITE_OK && doclist.n; i++){
          assert( i<nBuf );
          if( aBuf[i].n==0 ){
            fts5BufferSwap(&doclist, &aBuf[i]);
            fts5BufferZero(&doclist);
          }else{
            fts5MergePrefixLists(p, &doclist, &aBuf[i]);
            fts5BufferZero(&aBuf[i]);
          }
        }
        iLastRowid = 0;
      }





      if( !fts5AppendPoslist(p, iRowid-iLastRowid, p1, pColset, &doclist) ){


        iLastRowid = iRowid;

      }
    }

    for(i=0; i<nBuf; i++){
      if( p->rc==SQLITE_OK ){
        fts5MergePrefixLists(p, &doclist, &aBuf[i]);
      }
176843
176844
176845
176846
176847
176848
176849
176850
176851
176852
176853
176854
176855
176856
176857
  if( p->pHash==0 ){
    p->rc = sqlite3Fts5HashNew(&p->pHash, &p->nPendingData);
  }

  /* Flush the hash table to disk if required */
  if( iRowid<p->iWriteRowid 
   || (iRowid==p->iWriteRowid && p->bDelete==0)
   || (p->nPendingData > p->nMaxPendingData) 
  ){
    fts5IndexFlush(p);
  }

  p->iWriteRowid = iRowid;
  p->bDelete = bDelete;
  return fts5IndexReturn(p);







|







178459
178460
178461
178462
178463
178464
178465
178466
178467
178468
178469
178470
178471
178472
178473
  if( p->pHash==0 ){
    p->rc = sqlite3Fts5HashNew(&p->pHash, &p->nPendingData);
  }

  /* Flush the hash table to disk if required */
  if( iRowid<p->iWriteRowid 
   || (iRowid==p->iWriteRowid && p->bDelete==0)
   || (p->nPendingData > p->pConfig->nHashSize) 
  ){
    fts5IndexFlush(p);
  }

  p->iWriteRowid = iRowid;
  p->bDelete = bDelete;
  return fts5IndexReturn(p);
176909
176910
176911
176912
176913
176914
176915
176916
176917
176918
176919
176920
176921
176922
176923
  int rc = SQLITE_OK;
  Fts5Index *p;                   /* New object */

  *pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index));
  if( rc==SQLITE_OK ){
    p->pConfig = pConfig;
    p->nWorkUnit = FTS5_WORK_UNIT;
    p->nMaxPendingData = 1024*1024;
    p->zDataTbl = sqlite3Fts5Mprintf(&rc, "%s_data", pConfig->zName);
    if( p->zDataTbl && bCreate ){
      rc = sqlite3Fts5CreateTable(
          pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
      );
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts5CreateTable(pConfig, "idx", 







<







178525
178526
178527
178528
178529
178530
178531

178532
178533
178534
178535
178536
178537
178538
  int rc = SQLITE_OK;
  Fts5Index *p;                   /* New object */

  *pp = p = (Fts5Index*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Index));
  if( rc==SQLITE_OK ){
    p->pConfig = pConfig;
    p->nWorkUnit = FTS5_WORK_UNIT;

    p->zDataTbl = sqlite3Fts5Mprintf(&rc, "%s_data", pConfig->zName);
    if( p->zDataTbl && bCreate ){
      rc = sqlite3Fts5CreateTable(
          pConfig, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
      );
      if( rc==SQLITE_OK ){
        rc = sqlite3Fts5CreateTable(pConfig, "idx", 
177019
177020
177021
177022
177023
177024
177025
177026

177027
177028
177029
177030
177031
177032
177033
      p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
  );

  for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
    int nByte = fts5IndexCharlenToBytelen(pToken, nToken, pConfig->aPrefix[i]);
    if( nByte ){
      rc = sqlite3Fts5HashWrite(p->pHash, 
          p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX+i+1, pToken, nByte

      );
    }
  }

  return rc;
}








|
>







178634
178635
178636
178637
178638
178639
178640
178641
178642
178643
178644
178645
178646
178647
178648
178649
      p->pHash, p->iWriteRowid, iCol, iPos, FTS5_MAIN_PREFIX, pToken, nToken
  );

  for(i=0; i<pConfig->nPrefix && rc==SQLITE_OK; i++){
    int nByte = fts5IndexCharlenToBytelen(pToken, nToken, pConfig->aPrefix[i]);
    if( nByte ){
      rc = sqlite3Fts5HashWrite(p->pHash, 
          p->iWriteRowid, iCol, iPos, (char)(FTS5_MAIN_PREFIX+i+1), pToken,
          nByte
      );
    }
  }

  return rc;
}

177044
177045
177046
177047
177048
177049
177050
177051
177052
177053
177054
177055
177056
177057
177058
177059
177060
177061
177062
){
  Fts5Config *pConfig = p->pConfig;
  Fts5IndexIter *pRet = 0;
  int iIdx = 0;
  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0
       || (flags & FTS5INDEX_QUERY_SCAN)==FTS5INDEX_QUERY_SCAN
  );

  if( sqlite3Fts5BufferGrow(&p->rc, &buf, nToken+1)==0 ){
    memcpy(&buf.p[1], pToken, nToken);

#ifdef SQLITE_DEBUG
    /* If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 







|
<
<

|







178660
178661
178662
178663
178664
178665
178666
178667


178668
178669
178670
178671
178672
178673
178674
178675
178676
){
  Fts5Config *pConfig = p->pConfig;
  Fts5IndexIter *pRet = 0;
  int iIdx = 0;
  Fts5Buffer buf = {0, 0, 0};

  /* If the QUERY_SCAN flag is set, all other flags must be clear. */
  assert( (flags & FTS5INDEX_QUERY_SCAN)==0 || flags==FTS5INDEX_QUERY_SCAN );



  if( sqlite3Fts5BufferSize(&p->rc, &buf, nToken+1)==0 ){
    memcpy(&buf.p[1], pToken, nToken);

#ifdef SQLITE_DEBUG
    /* If the QUERY_TEST_NOIDX flag was specified, then this must be a
    ** prefix-query. Instead of using a prefix-index (if one exists), 
    ** evaluate the prefix query using the main FTS index. This is used
    ** for internal sanity checking by the integrity-check in debug 
177071
177072
177073
177074
177075
177076
177077
177078
177079
177080
177081
177082
177083
177084
177085
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
        if( pConfig->aPrefix[iIdx-1]==nChar ) break;
      }
    }

    if( iIdx<=pConfig->nPrefix ){
      Fts5Structure *pStruct = fts5StructureRead(p);
      buf.p[0] = FTS5_MAIN_PREFIX + iIdx;
      if( pStruct ){
        fts5MultiIterNew(p, pStruct, 1, flags, buf.p, nToken+1, -1, 0, &pRet);
        fts5StructureRelease(pStruct);
      }
    }else{
      int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
      buf.p[0] = FTS5_MAIN_PREFIX;







|







178685
178686
178687
178688
178689
178690
178691
178692
178693
178694
178695
178696
178697
178698
178699
      for(iIdx=1; iIdx<=pConfig->nPrefix; iIdx++){
        if( pConfig->aPrefix[iIdx-1]==nChar ) break;
      }
    }

    if( iIdx<=pConfig->nPrefix ){
      Fts5Structure *pStruct = fts5StructureRead(p);
      buf.p[0] = (u8)(FTS5_MAIN_PREFIX + iIdx);
      if( pStruct ){
        fts5MultiIterNew(p, pStruct, 1, flags, buf.p, nToken+1, -1, 0, &pRet);
        fts5StructureRelease(pStruct);
      }
    }else{
      int bDesc = (flags & FTS5INDEX_QUERY_DESC)!=0;
      buf.p[0] = FTS5_MAIN_PREFIX;
177158
177159
177160
177161
177162
177163
177164




















177165
177166
177167
177168
177169
177170
177171
177172
177173
177174
177175

177176
177177
177178
177179
177180
177181
177182
177183
177184
177185






177186
177187






177188
177189

177190
177191
177192
177193
177194
177195
177196
static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIter, int *pn){
  int n;
  const char *z = (const char*)fts5MultiIterTerm(pIter, &n);
  *pn = n-1;
  return &z[1];
}






















/*
** Return a pointer to a buffer containing a copy of the position list for
** the current entry. Output variable *pn is set to the size of the buffer 
** in bytes before returning.
**
** The returned position list does not include the "number of bytes" varint
** field that starts the position list on disk.
*/
static int sqlite3Fts5IterPoslist(
  Fts5IndexIter *pIter, 

  const u8 **pp,                  /* OUT: Pointer to position-list data */
  int *pn,                        /* OUT: Size of position-list in bytes */
  i64 *piRowid                    /* OUT: Current rowid */
){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( pIter->pIndex->rc==SQLITE_OK );
  *piRowid = pSeg->iRowid;
  *pn = pSeg->nPos;
  if( pSeg->iLeafOffset+pSeg->nPos <= pSeg->pLeaf->szLeaf ){
    *pp = &pSeg->pLeaf->p[pSeg->iLeafOffset];






  }else{
    fts5BufferZero(&pIter->poslist);






    fts5SegiterPoslist(pIter->pIndex, pSeg, 0, &pIter->poslist);
    *pp = pIter->poslist.p;

  }
  return fts5IndexReturn(pIter->pIndex);
}

/*
** This function is similar to sqlite3Fts5IterPoslist(), except that it
** copies the position list into the buffer supplied as the second 







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>











>







<
|
|
>
>
>
>
>
>
|
|
>
>
>
>
>
>
|

>







178772
178773
178774
178775
178776
178777
178778
178779
178780
178781
178782
178783
178784
178785
178786
178787
178788
178789
178790
178791
178792
178793
178794
178795
178796
178797
178798
178799
178800
178801
178802
178803
178804
178805
178806
178807
178808
178809
178810
178811
178812
178813
178814
178815
178816
178817

178818
178819
178820
178821
178822
178823
178824
178825
178826
178827
178828
178829
178830
178831
178832
178833
178834
178835
178836
178837
178838
178839
178840
178841
178842
178843
static const char *sqlite3Fts5IterTerm(Fts5IndexIter *pIter, int *pn){
  int n;
  const char *z = (const char*)fts5MultiIterTerm(pIter, &n);
  *pn = n-1;
  return &z[1];
}


static int fts5IndexExtractColset (
  Fts5Colset *pColset,            /* Colset to filter on */
  const u8 *pPos, int nPos,       /* Position list */
  Fts5Buffer *pBuf                /* Output buffer */
){
  int rc = SQLITE_OK;
  int i;

  fts5BufferZero(pBuf);
  for(i=0; i<pColset->nCol; i++){
    const u8 *pSub = pPos;
    int nSub = fts5IndexExtractCol(&pSub, nPos, pColset->aiCol[i]);
    if( nSub ){
      fts5BufferAppendBlob(&rc, pBuf, nSub, pSub);
    }
  }
  return rc;
}


/*
** Return a pointer to a buffer containing a copy of the position list for
** the current entry. Output variable *pn is set to the size of the buffer 
** in bytes before returning.
**
** The returned position list does not include the "number of bytes" varint
** field that starts the position list on disk.
*/
static int sqlite3Fts5IterPoslist(
  Fts5IndexIter *pIter, 
  Fts5Colset *pColset,            /* Column filter (or NULL) */
  const u8 **pp,                  /* OUT: Pointer to position-list data */
  int *pn,                        /* OUT: Size of position-list in bytes */
  i64 *piRowid                    /* OUT: Current rowid */
){
  Fts5SegIter *pSeg = &pIter->aSeg[ pIter->aFirst[1].iFirst ];
  assert( pIter->pIndex->rc==SQLITE_OK );
  *piRowid = pSeg->iRowid;

  if( pSeg->iLeafOffset+pSeg->nPos<=pSeg->pLeaf->szLeaf ){
    u8 *pPos = &pSeg->pLeaf->p[pSeg->iLeafOffset];
    if( pColset==0 || pIter->bFiltered ){
      *pn = pSeg->nPos;
      *pp = pPos;
    }else if( pColset->nCol==1 ){
      *pp = pPos;
      *pn = fts5IndexExtractCol(pp, pSeg->nPos, pColset->aiCol[0]);
    }else{
      fts5BufferZero(&pIter->poslist);
      fts5IndexExtractColset(pColset, pPos, pSeg->nPos, &pIter->poslist);
      *pp = pIter->poslist.p;
      *pn = pIter->poslist.n;
    }
  }else{
    fts5BufferZero(&pIter->poslist);
    fts5SegiterPoslist(pIter->pIndex, pSeg, pColset, &pIter->poslist);
    *pp = pIter->poslist.p;
    *pn = pIter->poslist.n;
  }
  return fts5IndexReturn(pIter->pIndex);
}

/*
** This function is similar to sqlite3Fts5IterPoslist(), except that it
** copies the position list into the buffer supplied as the second 
177379
177380
177381
177382
177383
177384
177385
177386
177387
177388
177389
177390
177391
177392
177393
177394
177395
177396
  int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIdxIter);

  while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIdxIter) ){
    i64 dummy;
    const u8 *pPos;
    int nPos;
    i64 rowid = sqlite3Fts5IterRowid(pIdxIter);
    rc = sqlite3Fts5IterPoslist(pIdxIter, &pPos, &nPos, &dummy);
    if( rc==SQLITE_OK ){
      Fts5PoslistReader sReader;
      for(sqlite3Fts5PoslistReaderInit(-1, pPos, nPos, &sReader);
          sReader.bEof==0;
          sqlite3Fts5PoslistReaderNext(&sReader)
      ){
        int iCol = FTS5_POS2COLUMN(sReader.iPos);
        int iOff = FTS5_POS2OFFSET(sReader.iPos);
        cksum ^= fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
      }







|


|







179026
179027
179028
179029
179030
179031
179032
179033
179034
179035
179036
179037
179038
179039
179040
179041
179042
179043
  int rc = sqlite3Fts5IndexQuery(p, z, n, flags, 0, &pIdxIter);

  while( rc==SQLITE_OK && 0==sqlite3Fts5IterEof(pIdxIter) ){
    i64 dummy;
    const u8 *pPos;
    int nPos;
    i64 rowid = sqlite3Fts5IterRowid(pIdxIter);
    rc = sqlite3Fts5IterPoslist(pIdxIter, 0, &pPos, &nPos, &dummy);
    if( rc==SQLITE_OK ){
      Fts5PoslistReader sReader;
      for(sqlite3Fts5PoslistReaderInit(pPos, nPos, &sReader);
          sReader.bEof==0;
          sqlite3Fts5PoslistReaderNext(&sReader)
      ){
        int iCol = FTS5_POS2COLUMN(sReader.iPos);
        int iOff = FTS5_POS2OFFSET(sReader.iPos);
        cksum ^= fts5IndexEntryCksum(rowid, iCol, iOff, iIdx, z, n);
      }
177612
177613
177614
177615
177616
177617
177618
177619
177620
177621
177622
177623
177624
177625
177626
      }

      fts5IntegrityCheckPgidx(p, pLeaf);
    }
    fts5DataRelease(pLeaf);
    if( p->rc ) break;


    /* Now check that the iter.nEmpty leaves following the current leaf
    ** (a) exist and (b) contain no terms. */
    fts5IndexIntegrityCheckEmpty(
        p, pSeg, iIdxPrevLeaf+1, iDlidxPrevLeaf+1, iIdxLeaf-1
    );
    if( p->rc ) break;








<







179259
179260
179261
179262
179263
179264
179265

179266
179267
179268
179269
179270
179271
179272
      }

      fts5IntegrityCheckPgidx(p, pLeaf);
    }
    fts5DataRelease(pLeaf);
    if( p->rc ) break;


    /* Now check that the iter.nEmpty leaves following the current leaf
    ** (a) exist and (b) contain no terms. */
    fts5IndexIntegrityCheckEmpty(
        p, pSeg, iIdxPrevLeaf+1, iDlidxPrevLeaf+1, iIdxLeaf-1
    );
    if( p->rc ) break;

177701
177702
177703
177704
177705
177706
177707

177708
177709
177710

177711
177712
177713
177714
177715
177716
177717
*/
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
  u64 cksum2 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer poslist = {0,0,0};   /* Buffer used to hold a poslist */
  Fts5IndexIter *pIter;           /* Used to iterate through entire index */
  Fts5Structure *pStruct;         /* Index structure */


  /* Used by extra internal tests only run if NDEBUG is not defined */
  u64 cksum3 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer term = {0,0,0};      /* Buffer used to hold most recent term */

  
  /* Load the FTS index structure */
  pStruct = fts5StructureRead(p);

  /* Check that the internal nodes of each segment match the leaves */
  if( pStruct ){
    int iLvl, iSeg;







>



>







179347
179348
179349
179350
179351
179352
179353
179354
179355
179356
179357
179358
179359
179360
179361
179362
179363
179364
179365
*/
static int sqlite3Fts5IndexIntegrityCheck(Fts5Index *p, u64 cksum){
  u64 cksum2 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer poslist = {0,0,0};   /* Buffer used to hold a poslist */
  Fts5IndexIter *pIter;           /* Used to iterate through entire index */
  Fts5Structure *pStruct;         /* Index structure */

#ifdef SQLITE_DEBUG
  /* Used by extra internal tests only run if NDEBUG is not defined */
  u64 cksum3 = 0;                 /* Checksum based on contents of indexes */
  Fts5Buffer term = {0,0,0};      /* Buffer used to hold most recent term */
#endif
  
  /* Load the FTS index structure */
  pStruct = fts5StructureRead(p);

  /* Check that the internal nodes of each segment match the leaves */
  if( pStruct ){
    int iLvl, iSeg;
177759
177760
177761
177762
177763
177764
177765

177766

177767
177768
177769
177770
177771
177772
177773
  }
  fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);

  fts5MultiIterFree(p, pIter);
  if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;

  fts5StructureRelease(pStruct);

  fts5BufferFree(&term);

  fts5BufferFree(&poslist);
  return fts5IndexReturn(p);
}


/*
** Calculate and return a checksum that is the XOR of the index entry







>

>







179407
179408
179409
179410
179411
179412
179413
179414
179415
179416
179417
179418
179419
179420
179421
179422
179423
  }
  fts5TestTerm(p, &term, 0, 0, cksum2, &cksum3);

  fts5MultiIterFree(p, pIter);
  if( p->rc==SQLITE_OK && cksum!=cksum2 ) p->rc = FTS5_CORRUPT;

  fts5StructureRelease(pStruct);
#ifdef SQLITE_DEBUG
  fts5BufferFree(&term);
#endif
  fts5BufferFree(&poslist);
  return fts5IndexReturn(p);
}


/*
** Calculate and return a checksum that is the XOR of the index entry
177944
177945
177946
177947
177948
177949
177950
177951
177952

177953
177954
177955
177956
177957
177958
177959

  if( n>0 ){
    iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
  }
  while( iOff<n ){
    int nPos;
    int bDummy;
    iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDummy);

    iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
    if( iOff<n ){
      i64 iDelta;
      iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }







|
|
>







179594
179595
179596
179597
179598
179599
179600
179601
179602
179603
179604
179605
179606
179607
179608
179609
179610

  if( n>0 ){
    iOff = sqlite3Fts5GetVarint(a, (u64*)&iDocid);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
  }
  while( iOff<n ){
    int nPos;
    int bDel;
    iOff += fts5GetPoslistSize(&a[iOff], &nPos, &bDel);
    sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " nPos=%d%s", nPos, bDel?"*":"");
    iOff += fts5DecodePoslist(pRc, pBuf, &a[iOff], MIN(n-iOff, nPos));
    if( iOff<n ){
      i64 iDelta;
      iOff += sqlite3Fts5GetVarint(&a[iOff], (u64*)&iDelta);
      iDocid += iDelta;
      sqlite3Fts5BufferAppendPrintf(pRc, pBuf, " id=%lld", iDocid);
    }
178166
178167
178168
178169
178170
178171
178172

178173
178174
178175
178176
178177
178178
178179
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/




/*
** This variable is set to false when running tests for which the on disk
** structures should not be corrupt. Otherwise, true. If it is false, extra
** assert() conditions in the fts5 code are activated - conditions that are
** only true if it is guaranteed that the fts5 database is not corrupt.
*/







>







179817
179818
179819
179820
179821
179822
179823
179824
179825
179826
179827
179828
179829
179830
179831
**
******************************************************************************
**
** This is an SQLite module implementing full-text search.
*/


/* #include "fts5Int.h" */

/*
** This variable is set to false when running tests for which the on disk
** structures should not be corrupt. Otherwise, true. If it is false, extra
** assert() conditions in the fts5 code are activated - conditions that are
** only true if it is guaranteed that the fts5 database is not corrupt.
*/
178545
178546
178547
178548
178549
178550
178551









178552
178553
178554
178555
178556
178557
178558
    );
  }

  /* Call sqlite3_declare_vtab() */
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ConfigDeclareVtab(pConfig);
  }










  if( rc!=SQLITE_OK ){
    fts5FreeVtab(pTab);
    pTab = 0;
  }else if( bCreate ){
    fts5CheckTransactionState(pTab, FTS5_BEGIN, 0);
  }







>
>
>
>
>
>
>
>
>







180197
180198
180199
180200
180201
180202
180203
180204
180205
180206
180207
180208
180209
180210
180211
180212
180213
180214
180215
180216
180217
180218
180219
    );
  }

  /* Call sqlite3_declare_vtab() */
  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5ConfigDeclareVtab(pConfig);
  }

  /* Load the initial configuration */
  if( rc==SQLITE_OK ){
    assert( pConfig->pzErrmsg==0 );
    pConfig->pzErrmsg = pzErr;
    rc = sqlite3Fts5IndexLoadConfig(pTab->pIndex);
    sqlite3Fts5IndexRollback(pTab->pIndex);
    pConfig->pzErrmsg = 0;
  }

  if( rc!=SQLITE_OK ){
    fts5FreeVtab(pTab);
    pTab = 0;
  }else if( bCreate ){
    fts5CheckTransactionState(pTab, FTS5_BEGIN, 0);
  }
178598
178599
178600
178601
178602
178603
178604

178605


178606
178607
178608
178609
178610
178611
178612
/*
** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
** extension is currently being used by a version of SQLite too old to
** support index-info flags. In that case this function is a no-op.
*/
static void fts5SetUniqueFlag(sqlite3_index_info *pIdxInfo){
#if SQLITE_VERSION_NUMBER>=3008012

  if( sqlite3_libversion_number()>=3008012 ){


    pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
  }
#endif
}

/*
** Implementation of the xBestIndex method for FTS5 tables. Within the 







>
|
>
>







180259
180260
180261
180262
180263
180264
180265
180266
180267
180268
180269
180270
180271
180272
180273
180274
180275
180276
/*
** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this
** extension is currently being used by a version of SQLite too old to
** support index-info flags. In that case this function is a no-op.
*/
static void fts5SetUniqueFlag(sqlite3_index_info *pIdxInfo){
#if SQLITE_VERSION_NUMBER>=3008012
#ifndef SQLITE_CORE
  if( sqlite3_libversion_number()>=3008012 )
#endif
  {
    pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE;
  }
#endif
}

/*
** Implementation of the xBestIndex method for FTS5 tables. Within the 
178676
178677
178678
178679
178680
178681
178682
178683
178684
178685
178686
178687
178688
178689
178690
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<sizeof(aConstraint)/sizeof(aConstraint[0]); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
        if( p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 







|







180340
180341
180342
180343
180344
180345
180346
180347
180348
180349
180350
180351
180352
180353
180354
  aColMap[1] = pConfig->nCol;
  aColMap[2] = pConfig->nCol+1;

  /* Set idxFlags flags for all WHERE clause terms that will be used. */
  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    int j;
    for(j=0; j<(int)ArraySize(aConstraint); j++){
      struct Constraint *pC = &aConstraint[j];
      if( p->iColumn==aColMap[pC->iCol] && p->op & pC->op ){
        if( p->usable ){
          pC->iConsIndex = i;
          idxFlags |= pC->fts5op;
        }else if( j==0 ){
          /* As there exists an unusable MATCH constraint this is an 
178723
178724
178725
178726
178727
178728
178729
178730
178731
178732
178733
178734
178735
178736
178737
178738
178739
178740
178741
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<sizeof(aConstraint)/sizeof(aConstraint[0]); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = pC->omit;
    }
  }

  pInfo->idxNum = idxFlags;
  return SQLITE_OK;
}








|



|







180387
180388
180389
180390
180391
180392
180393
180394
180395
180396
180397
180398
180399
180400
180401
180402
180403
180404
180405
    pInfo->estimatedCost = bHasMatch ? 750.0 : 750000.0;
  }else{
    pInfo->estimatedCost = bHasMatch ? 1000.0 : 1000000.0;
  }

  /* Assign argvIndex values to each constraint in use. */
  iNext = 1;
  for(i=0; i<(int)ArraySize(aConstraint); i++){
    struct Constraint *pC = &aConstraint[i];
    if( pC->iConsIndex>=0 ){
      pInfo->aConstraintUsage[pC->iConsIndex].argvIndex = iNext++;
      pInfo->aConstraintUsage[pC->iConsIndex].omit = (unsigned char)pC->omit;
    }
  }

  pInfo->idxNum = idxFlags;
  return SQLITE_OK;
}

178977
178978
178979
178980
178981
178982
178983






























178984
178985
178986
178987
178988
178989
178990
178991
178992
178993
178994
178995
178996
178997
178998
178999
179000
179001
179002
179003
179004
179005
179006
179007
179008
179009
179010
179011
179012
179013
179014
179015
179016
179017
179018
179019
179020
179021
179022
179023
179024
179025
        break;
    }
  }
  
  return rc;
}































static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Sorter *pSorter;
  int nPhrase;
  int nByte;
  int rc = SQLITE_OK;
  char *zSql;
  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that
  ** is not possible as SQLite reference counts the virtual table objects.
  ** And since the statement required here reads from this very virtual 
  ** table, saving it creates a circular reference.
  **
  ** If SQLite a built-in statement cache, this wouldn't be a problem. */
  zSql = sqlite3Fts5Mprintf(&rc, 
      "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
      pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
      (zRankArgs ? ", " : ""),
      (zRankArgs ? zRankArgs : ""),
      bDesc ? "DESC" : "ASC"
  );
  if( zSql ){
    rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pSorter->pStmt, 0);
    sqlite3_free(zSql);
  }

  pCsr->pSorter = pSorter;
  if( rc==SQLITE_OK ){
    assert( pTab->pSortCsr==0 );
    pTab->pSortCsr = pCsr;
    rc = fts5SorterNext(pCsr);
    pTab->pSortCsr = 0;







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>






<

















|






<
<
<
<







180641
180642
180643
180644
180645
180646
180647
180648
180649
180650
180651
180652
180653
180654
180655
180656
180657
180658
180659
180660
180661
180662
180663
180664
180665
180666
180667
180668
180669
180670
180671
180672
180673
180674
180675
180676
180677
180678
180679
180680
180681
180682
180683

180684
180685
180686
180687
180688
180689
180690
180691
180692
180693
180694
180695
180696
180697
180698
180699
180700
180701
180702
180703
180704
180705
180706
180707




180708
180709
180710
180711
180712
180713
180714
        break;
    }
  }
  
  return rc;
}


static sqlite3_stmt *fts5PrepareStatement(
  int *pRc,
  Fts5Config *pConfig, 
  const char *zFmt,
  ...
){
  sqlite3_stmt *pRet = 0;
  va_list ap;
  va_start(ap, zFmt);

  if( *pRc==SQLITE_OK ){
    int rc;
    char *zSql = sqlite3_vmprintf(zFmt, ap);
    if( zSql==0 ){
      rc = SQLITE_NOMEM; 
    }else{
      rc = sqlite3_prepare_v2(pConfig->db, zSql, -1, &pRet, 0);
      if( rc!=SQLITE_OK ){
        *pConfig->pzErrmsg = sqlite3_mprintf("%s", sqlite3_errmsg(pConfig->db));
      }
      sqlite3_free(zSql);
    }
    *pRc = rc;
  }

  va_end(ap);
  return pRet;
} 

static int fts5CursorFirstSorted(Fts5Table *pTab, Fts5Cursor *pCsr, int bDesc){
  Fts5Config *pConfig = pTab->pConfig;
  Fts5Sorter *pSorter;
  int nPhrase;
  int nByte;
  int rc = SQLITE_OK;

  const char *zRank = pCsr->zRank;
  const char *zRankArgs = pCsr->zRankArgs;
  
  nPhrase = sqlite3Fts5ExprPhraseCount(pCsr->pExpr);
  nByte = sizeof(Fts5Sorter) + sizeof(int) * (nPhrase-1);
  pSorter = (Fts5Sorter*)sqlite3_malloc(nByte);
  if( pSorter==0 ) return SQLITE_NOMEM;
  memset(pSorter, 0, nByte);
  pSorter->nIdx = nPhrase;

  /* TODO: It would be better to have some system for reusing statement
  ** handles here, rather than preparing a new one for each query. But that
  ** is not possible as SQLite reference counts the virtual table objects.
  ** And since the statement required here reads from this very virtual 
  ** table, saving it creates a circular reference.
  **
  ** If SQLite a built-in statement cache, this wouldn't be a problem. */
  pSorter->pStmt = fts5PrepareStatement(&rc, pConfig,
      "SELECT rowid, rank FROM %Q.%Q ORDER BY %s(%s%s%s) %s",
      pConfig->zDb, pConfig->zName, zRank, pConfig->zName,
      (zRankArgs ? ", " : ""),
      (zRankArgs ? zRankArgs : ""),
      bDesc ? "DESC" : "ASC"
  );





  pCsr->pSorter = pSorter;
  if( rc==SQLITE_OK ){
    assert( pTab->pSortCsr==0 );
    pTab->pSortCsr = pCsr;
    rc = fts5SorterNext(pCsr);
    pTab->pSortCsr = 0;
179599
179600
179601
179602
179603
179604
179605


179606

179607
179608
179609
179610
179611
179612
179613
    **   1) DELETE
    **   2) UPDATE (rowid not modified)
    **   3) UPDATE (rowid modified)
    **   4) INSERT
    **
    ** Cases 3 and 4 may violate the rowid constraint.
    */


    int eConflict = sqlite3_vtab_on_conflict(pConfig->db);


    assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
    assert( nArg!=1 || eType0==SQLITE_INTEGER );

    /* Filter out attempts to run UPDATE or DELETE on contentless tables.
    ** This is not suported.  */
    if( eType0==SQLITE_INTEGER && fts5IsContentless(pTab) ){







>
>
|
>







181288
181289
181290
181291
181292
181293
181294
181295
181296
181297
181298
181299
181300
181301
181302
181303
181304
181305
    **   1) DELETE
    **   2) UPDATE (rowid not modified)
    **   3) UPDATE (rowid modified)
    **   4) INSERT
    **
    ** Cases 3 and 4 may violate the rowid constraint.
    */
    int eConflict = SQLITE_ABORT;
    if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
      eConflict = sqlite3_vtab_on_conflict(pConfig->db);
    }

    assert( eType0==SQLITE_INTEGER || eType0==SQLITE_NULL );
    assert( nArg!=1 || eType0==SQLITE_INTEGER );

    /* Filter out attempts to run UPDATE or DELETE on contentless tables.
    ** This is not suported.  */
    if( eType0==SQLITE_INTEGER && fts5IsContentless(pTab) ){
179794
179795
179796
179797
179798
179799
179800
179801
179802
179803
179804
179805
179806
179807
179808
    int nInst = 0;                /* Number instances seen so far */
    int i;

    /* Initialize all iterators */
    for(i=0; i<nIter; i++){
      const u8 *a;
      int n = fts5CsrPoslist(pCsr, i, &a);
      sqlite3Fts5PoslistReaderInit(-1, a, n, &aIter[i]);
    }

    while( 1 ){
      int *aInst;
      int iBest = -1;
      for(i=0; i<nIter; i++){
        if( (aIter[i].bEof==0) 







|







181486
181487
181488
181489
181490
181491
181492
181493
181494
181495
181496
181497
181498
181499
181500
    int nInst = 0;                /* Number instances seen so far */
    int i;

    /* Initialize all iterators */
    for(i=0; i<nIter; i++){
      const u8 *a;
      int n = fts5CsrPoslist(pCsr, i, &a);
      sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
    }

    while( 1 ){
      int *aInst;
      int iBest = -1;
      for(i=0; i<nIter; i++){
        if( (aIter[i].bEof==0) 
180169
180170
180171
180172
180173
180174
180175
180176
180177
180178
180179
180180
180181
180182
180183
180184
180185
180186
180187
180188
180189
180190
180191
180192
180193
180194
180195
180196
}


/*
** Given cursor id iId, return a pointer to the corresponding Fts5Index 
** object. Or NULL If the cursor id does not exist.
**
** If successful, set *pnCol to the number of indexed columns in the
** table before returning.
*/
static Fts5Index *sqlite3Fts5IndexFromCsrid(
  Fts5Global *pGlobal, 
  i64 iCsrId, 
  int *pnCol
){
  Fts5Cursor *pCsr;
  Fts5Table *pTab;

  pCsr = fts5CursorFromCsrid(pGlobal, iCsrId);
  pTab = (Fts5Table*)pCsr->base.pVtab;
  *pnCol = pTab->pConfig->nCol;

  return pTab->pIndex;
}

/*
** Return a "position-list blob" corresponding to the current position of
** cursor pCsr via sqlite3_result_blob(). A position-list blob contains







|
|


|
|
|






|







181861
181862
181863
181864
181865
181866
181867
181868
181869
181870
181871
181872
181873
181874
181875
181876
181877
181878
181879
181880
181881
181882
181883
181884
181885
181886
181887
181888
}


/*
** Given cursor id iId, return a pointer to the corresponding Fts5Index 
** object. Or NULL If the cursor id does not exist.
**
** If successful, set *ppConfig to point to the associated config object 
** before returning.
*/
static Fts5Index *sqlite3Fts5IndexFromCsrid(
  Fts5Global *pGlobal,            /* FTS5 global context for db handle */
  i64 iCsrId,                     /* Id of cursor to find */
  Fts5Config **ppConfig           /* OUT: Configuration object */
){
  Fts5Cursor *pCsr;
  Fts5Table *pTab;

  pCsr = fts5CursorFromCsrid(pGlobal, iCsrId);
  pTab = (Fts5Table*)pCsr->base.pVtab;
  *ppConfig = pTab->pConfig;

  return pTab->pIndex;
}

/*
** Return a "position-list blob" corresponding to the current position of
** cursor pCsr via sqlite3_result_blob(). A position-list blob contains
180545
180546
180547
180548
180549
180550
180551
180552
180553
180554
180555
180556
180557
180558
180559
*/
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apVal           /* Function arguments */
){
  assert( nArg==0 );
  sqlite3_result_text(pCtx, "fts5: 2015-10-10 16:41:28 fab6f09044d033dd09ed8a22e06bc6a7851bbabf", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,







|







182237
182238
182239
182240
182241
182242
182243
182244
182245
182246
182247
182248
182249
182250
182251
*/
static void fts5SourceIdFunc(
  sqlite3_context *pCtx,          /* Function call context */
  int nArg,                       /* Number of args */
  sqlite3_value **apVal           /* Function arguments */
){
  assert( nArg==0 );
  sqlite3_result_text(pCtx, "fts5: 2016-01-04 13:06:53 b779ca8a7580e2a0bb1176316c4540867b635229", -1, SQLITE_TRANSIENT);
}

static int fts5Init(sqlite3 *db){
  static const sqlite3_module fts5Mod = {
    /* iVersion      */ 2,
    /* xCreate       */ fts5CreateMethod,
    /* xConnect      */ fts5ConnectMethod,
180666
180667
180668
180669
180670
180671
180672

180673
180674
180675
180676
180677
180678
180679
**
******************************************************************************
**
*/





struct Fts5Storage {
  Fts5Config *pConfig;
  Fts5Index *pIndex;
  int bTotalsValid;               /* True if nTotalRow/aTotalSize[] are valid */
  i64 nTotalRow;                  /* Total number of rows in FTS table */
  i64 *aTotalSize;                /* Total sizes of each column */ 







>







182358
182359
182360
182361
182362
182363
182364
182365
182366
182367
182368
182369
182370
182371
182372
**
******************************************************************************
**
*/



/* #include "fts5Int.h" */

struct Fts5Storage {
  Fts5Config *pConfig;
  Fts5Index *pIndex;
  int bTotalsValid;               /* True if nTotalRow/aTotalSize[] are valid */
  i64 nTotalRow;                  /* Total number of rows in FTS table */
  i64 *aTotalSize;                /* Total sizes of each column */ 
180948
180949
180950
180951
180952
180953
180954
180955
180956
180957
180958
180959
180960
180961
180962
180963
180964
180965
      char *zDefn = sqlite3_malloc(32 + pConfig->nCol * 10);
      if( zDefn==0 ){
        rc = SQLITE_NOMEM;
      }else{
        int i;
        int iOff;
        sqlite3_snprintf(nDefn, zDefn, "id INTEGER PRIMARY KEY");
        iOff = strlen(zDefn);
        for(i=0; i<pConfig->nCol; i++){
          sqlite3_snprintf(nDefn-iOff, &zDefn[iOff], ", c%d", i);
          iOff += strlen(&zDefn[iOff]);
        }
        rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
      }
      sqlite3_free(zDefn);
    }

    if( rc==SQLITE_OK && pConfig->bColumnsize ){







|


|







182641
182642
182643
182644
182645
182646
182647
182648
182649
182650
182651
182652
182653
182654
182655
182656
182657
182658
      char *zDefn = sqlite3_malloc(32 + pConfig->nCol * 10);
      if( zDefn==0 ){
        rc = SQLITE_NOMEM;
      }else{
        int i;
        int iOff;
        sqlite3_snprintf(nDefn, zDefn, "id INTEGER PRIMARY KEY");
        iOff = (int)strlen(zDefn);
        for(i=0; i<pConfig->nCol; i++){
          sqlite3_snprintf(nDefn-iOff, &zDefn[iOff], ", c%d", i);
          iOff += (int)strlen(&zDefn[iOff]);
        }
        rc = sqlite3Fts5CreateTable(pConfig, "content", zDefn, 0, pzErr);
      }
      sqlite3_free(zDefn);
    }

    if( rc==SQLITE_OK && pConfig->bColumnsize ){
180989
180990
180991
180992
180993
180994
180995
180996
180997
180998
180999
181000
181001
181002
181003
*/
static int sqlite3Fts5StorageClose(Fts5Storage *p){
  int rc = SQLITE_OK;
  if( p ){
    int i;

    /* Finalize all SQL statements */
    for(i=0; i<ArraySize(p->aStmt); i++){
      sqlite3_finalize(p->aStmt[i]);
    }

    sqlite3_free(p);
  }
  return rc;
}







|







182682
182683
182684
182685
182686
182687
182688
182689
182690
182691
182692
182693
182694
182695
182696
*/
static int sqlite3Fts5StorageClose(Fts5Storage *p){
  int rc = SQLITE_OK;
  if( p ){
    int i;

    /* Finalize all SQL statements */
    for(i=0; i<(int)ArraySize(p->aStmt); i++){
      sqlite3_finalize(p->aStmt[i]);
    }

    sqlite3_free(p);
  }
  return rc;
}
181164
181165
181166
181167
181168
181169
181170

181171
181172
181173
181174
181175
181176
181177

181178
181179
181180
181181
181182
181183
181184
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Delete the %_content record */

  if( rc==SQLITE_OK ){
    rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
  }
  if( rc==SQLITE_OK ){
    sqlite3_bind_int64(pDel, 1, iDel);
    sqlite3_step(pDel);
    rc = sqlite3_reset(pDel);

  }

  /* Write the averages record */
  if( rc==SQLITE_OK ){
    rc = fts5StorageSaveTotals(p);
  }








>
|
|
|
|
|
|
|
>







182857
182858
182859
182860
182861
182862
182863
182864
182865
182866
182867
182868
182869
182870
182871
182872
182873
182874
182875
182876
182877
182878
182879
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Delete the %_content record */
  if( pConfig->eContent==FTS5_CONTENT_NORMAL ){
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_DELETE_CONTENT, &pDel, 0);
    }
    if( rc==SQLITE_OK ){
      sqlite3_bind_int64(pDel, 1, iDel);
      sqlite3_step(pDel);
      rc = sqlite3_reset(pDel);
    }
  }

  /* Write the averages record */
  if( rc==SQLITE_OK ){
    rc = fts5StorageSaveTotals(p);
  }

181376
181377
181378
181379
181380
181381
181382
181383
181384
181385
181386
181387
181388
181389
181390
181391
181392
181393
181394
181395
181396
181397
181398
181399
181400
      *piRowid = sqlite3_value_int64(apVal[1]);
    }else{
      rc = fts5StorageNewRowid(p, piRowid);
    }
  }else{
    sqlite3_stmt *pInsert = 0;    /* Statement to write %_content table */
    int i;                        /* Counter variable */
#if 0
    if( eConflict==SQLITE_REPLACE ){
      eStmt = FTS5_STMT_REPLACE_CONTENT;
      rc = fts5StorageDeleteFromIndex(p, sqlite3_value_int64(apVal[1]));
    }else{
      eStmt = FTS5_STMT_INSERT_CONTENT;
    }
#endif
    if( rc==SQLITE_OK ){
      rc = fts5StorageGetStmt(p, FTS5_STMT_INSERT_CONTENT, &pInsert, 0);
    }
    for(i=1; rc==SQLITE_OK && i<=pConfig->nCol+1; i++){
      rc = sqlite3_bind_value(pInsert, i, apVal[i]);
    }
    if( rc==SQLITE_OK ){
      sqlite3_step(pInsert);
      rc = sqlite3_reset(pInsert);
    }







<
<
<
<
<
<
<
<
<
|
<







183071
183072
183073
183074
183075
183076
183077









183078

183079
183080
183081
183082
183083
183084
183085
      *piRowid = sqlite3_value_int64(apVal[1]);
    }else{
      rc = fts5StorageNewRowid(p, piRowid);
    }
  }else{
    sqlite3_stmt *pInsert = 0;    /* Statement to write %_content table */
    int i;                        /* Counter variable */









    rc = fts5StorageGetStmt(p, FTS5_STMT_INSERT_CONTENT, &pInsert, 0);

    for(i=1; rc==SQLITE_OK && i<=pConfig->nCol+1; i++){
      rc = sqlite3_bind_value(pInsert, i, apVal[i]);
    }
    if( rc==SQLITE_OK ){
      sqlite3_step(pInsert);
      rc = sqlite3_reset(pInsert);
    }
181575
181576
181577
181578
181579
181580
181581
181582
181583
181584
181585
181586
181587
181588
181589
181590
181591
181592
181593
181594
      if( p->aTotalSize[i]!=aTotalSize[i] ) rc = FTS5_CORRUPT;
    }
  }

  /* Check that the %_docsize and %_content tables contain the expected
  ** number of rows.  */
  if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
    i64 nRow;
    rc = fts5StorageCount(p, "content", &nRow);
    if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
  }
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    i64 nRow;
    rc = fts5StorageCount(p, "docsize", &nRow);
    if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
  }

  /* Pass the expected checksum down to the FTS index module. It will
  ** verify, amongst other things, that it matches the checksum generated by
  ** inspecting the index itself.  */







|




|







183260
183261
183262
183263
183264
183265
183266
183267
183268
183269
183270
183271
183272
183273
183274
183275
183276
183277
183278
183279
      if( p->aTotalSize[i]!=aTotalSize[i] ) rc = FTS5_CORRUPT;
    }
  }

  /* Check that the %_docsize and %_content tables contain the expected
  ** number of rows.  */
  if( rc==SQLITE_OK && pConfig->eContent==FTS5_CONTENT_NORMAL ){
    i64 nRow = 0;
    rc = fts5StorageCount(p, "content", &nRow);
    if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
  }
  if( rc==SQLITE_OK && pConfig->bColumnsize ){
    i64 nRow = 0;
    rc = fts5StorageCount(p, "docsize", &nRow);
    if( rc==SQLITE_OK && nRow!=p->nTotalRow ) rc = FTS5_CORRUPT;
  }

  /* Pass the expected checksum down to the FTS index module. It will
  ** verify, amongst other things, that it matches the checksum generated by
  ** inspecting the index itself.  */
181775
181776
181777
181778
181779
181780
181781

181782
181783
181784
181785
181786
181787
181788
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/




/**************************************************************************
** Start of ascii tokenizer implementation.
*/

/*
** For tokenizers with no "unicode" modifier, the set of token characters







>







183460
183461
183462
183463
183464
183465
183466
183467
183468
183469
183470
183471
183472
183473
183474
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
******************************************************************************
*/


/* #include "fts5Int.h" */

/**************************************************************************
** Start of ascii tokenizer implementation.
*/

/*
** For tokenizers with no "unicode" modifier, the set of token characters
182004
182005
182006
182007
182008
182009
182010
182011
182012
182013
182014
182015
182016
182017
182018
182019
182020
182021
182022
182023
182024
182025
182026
182027
182028
182029
182030
182031
182032

static int fts5UnicodeAddExceptions(
  Unicode61Tokenizer *p,          /* Tokenizer object */
  const char *z,                  /* Characters to treat as exceptions */
  int bTokenChars                 /* 1 for 'tokenchars', 0 for 'separators' */
){
  int rc = SQLITE_OK;
  int n = strlen(z);
  int *aNew;

  if( n>0 ){
    aNew = (int*)sqlite3_realloc(p->aiException, (n+p->nException)*sizeof(int));
    if( aNew ){
      int nNew = p->nException;
      const unsigned char *zCsr = (const unsigned char*)z;
      const unsigned char *zTerm = (const unsigned char*)&z[n];
      while( zCsr<zTerm ){
        int iCode;
        int bToken;
        READ_UTF8(zCsr, zTerm, iCode);
        if( iCode<128 ){
          p->aTokenChar[iCode] = bTokenChars;
        }else{
          bToken = sqlite3Fts5UnicodeIsalnum(iCode);
          assert( (bToken==0 || bToken==1) ); 
          assert( (bTokenChars==0 || bTokenChars==1) );
          if( bToken!=bTokenChars && sqlite3Fts5UnicodeIsdiacritic(iCode)==0 ){
            int i;
            for(i=0; i<nNew; i++){







|













|







183690
183691
183692
183693
183694
183695
183696
183697
183698
183699
183700
183701
183702
183703
183704
183705
183706
183707
183708
183709
183710
183711
183712
183713
183714
183715
183716
183717
183718

static int fts5UnicodeAddExceptions(
  Unicode61Tokenizer *p,          /* Tokenizer object */
  const char *z,                  /* Characters to treat as exceptions */
  int bTokenChars                 /* 1 for 'tokenchars', 0 for 'separators' */
){
  int rc = SQLITE_OK;
  int n = (int)strlen(z);
  int *aNew;

  if( n>0 ){
    aNew = (int*)sqlite3_realloc(p->aiException, (n+p->nException)*sizeof(int));
    if( aNew ){
      int nNew = p->nException;
      const unsigned char *zCsr = (const unsigned char*)z;
      const unsigned char *zTerm = (const unsigned char*)&z[n];
      while( zCsr<zTerm ){
        int iCode;
        int bToken;
        READ_UTF8(zCsr, zTerm, iCode);
        if( iCode<128 ){
          p->aTokenChar[iCode] = (unsigned char)bTokenChars;
        }else{
          bToken = sqlite3Fts5UnicodeIsalnum(iCode);
          assert( (bToken==0 || bToken==1) ); 
          assert( (bTokenChars==0 || bTokenChars==1) );
          if( bToken!=bTokenChars && sqlite3Fts5UnicodeIsdiacritic(iCode)==0 ){
            int i;
            for(i=0; i<nNew; i++){
182982
182983
182984
182985
182986
182987
182988
182989
182990
182991
182992
182993
182994
182995
182996
    { "ascii",     {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
    { "porter",    {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
  };
  
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<sizeof(aBuiltin)/sizeof(aBuiltin[0]); i++){
    rc = pApi->xCreateTokenizer(pApi,
        aBuiltin[i].zName,
        (void*)pApi,
        &aBuiltin[i].x,
        0
    );
  }







|







184668
184669
184670
184671
184672
184673
184674
184675
184676
184677
184678
184679
184680
184681
184682
    { "ascii",     {fts5AsciiCreate, fts5AsciiDelete, fts5AsciiTokenize }},
    { "porter",    {fts5PorterCreate, fts5PorterDelete, fts5PorterTokenize }},
  };
  
  int rc = SQLITE_OK;             /* Return code */
  int i;                          /* To iterate through builtin functions */

  for(i=0; rc==SQLITE_OK && i<(int)ArraySize(aBuiltin); i++){
    rc = pApi->xCreateTokenizer(pApi,
        aBuiltin[i].zName,
        (void*)pApi,
        &aBuiltin[i].x,
        0
    );
  }
183373
183374
183375
183376
183377
183378
183379

183380
183381
183382
183383
183384
183385
183386
**
******************************************************************************
**
** Routines for varint serialization and deserialization.
*/




/*
** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
** Except, this version does handle the single byte case that the core
** version depends on being handled before its function is called.
*/
static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){







>







185059
185060
185061
185062
185063
185064
185065
185066
185067
185068
185069
185070
185071
185072
185073
**
******************************************************************************
**
** Routines for varint serialization and deserialization.
*/


/* #include "fts5Int.h" */

/*
** This is a copy of the sqlite3GetVarint32() routine from the SQLite core.
** Except, this version does handle the single byte case that the core
** version depends on being handled before its function is called.
*/
static int sqlite3Fts5GetVarint32(const unsigned char *p, u32 *v){
183733
183734
183735
183736
183737
183738
183739

183740
183741
183742
183743
183744
183745
183746
**   One row for each term in the database. The value of $doc is set to
**   the number of fts5 rows that contain at least one instance of term
**   $term. Field $cnt is set to the total number of instances of term 
**   $term in the database.
*/





typedef struct Fts5VocabTable Fts5VocabTable;
typedef struct Fts5VocabCursor Fts5VocabCursor;

struct Fts5VocabTable {
  sqlite3_vtab base;







>







185420
185421
185422
185423
185424
185425
185426
185427
185428
185429
185430
185431
185432
185433
185434
**   One row for each term in the database. The value of $doc is set to
**   the number of fts5 rows that contain at least one instance of term
**   $term. Field $cnt is set to the total number of instances of term 
**   $term in the database.
*/


/* #include "fts5Int.h" */


typedef struct Fts5VocabTable Fts5VocabTable;
typedef struct Fts5VocabCursor Fts5VocabCursor;

struct Fts5VocabTable {
  sqlite3_vtab base;
183755
183756
183757
183758
183759
183760
183761



183762
183763

183764
183765
183766
183767
183768
183769
183770
183771
183772
183773
183774
183775
183776
183777
183778








183779
183780
183781
183782
183783
183784
183785
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;            /* Statement holding lock on pIndex */
  Fts5Index *pIndex;              /* Associated FTS5 index */

  int bEof;                       /* True if this cursor is at EOF */
  Fts5IndexIter *pIter;           /* Term/rowid iterator object */




  /* These are used by 'col' tables only */
  int nCol;

  int iCol;
  i64 *aCnt;
  i64 *aDoc;

  /* Output values */
  i64 rowid;                      /* This table's current rowid value */
  Fts5Buffer term;                /* Current value of 'term' column */
  i64 aVal[3];                    /* Up to three columns left of 'term' */
};

#define FTS5_VOCAB_COL    0
#define FTS5_VOCAB_ROW    1

#define FTS5_VOCAB_COL_SCHEMA  "term, col, doc, cnt"
#define FTS5_VOCAB_ROW_SCHEMA  "term, doc, cnt"









/*
** Translate a string containing an fts5vocab table type to an 
** FTS5_VOCAB_XXX constant. If successful, set *peType to the output
** value and return SQLITE_OK. Otherwise, set *pzErr to an error message
** and return SQLITE_ERROR.
*/







>
>
>

<
>




|


<







>
>
>
>
>
>
>
>







185443
185444
185445
185446
185447
185448
185449
185450
185451
185452
185453

185454
185455
185456
185457
185458
185459
185460
185461

185462
185463
185464
185465
185466
185467
185468
185469
185470
185471
185472
185473
185474
185475
185476
185477
185478
185479
185480
185481
185482
185483
  sqlite3_vtab_cursor base;
  sqlite3_stmt *pStmt;            /* Statement holding lock on pIndex */
  Fts5Index *pIndex;              /* Associated FTS5 index */

  int bEof;                       /* True if this cursor is at EOF */
  Fts5IndexIter *pIter;           /* Term/rowid iterator object */

  int nLeTerm;                    /* Size of zLeTerm in bytes */
  char *zLeTerm;                  /* (term <= $zLeTerm) paramater, or NULL */

  /* These are used by 'col' tables only */

  Fts5Config *pConfig;            /* Fts5 table configuration */
  int iCol;
  i64 *aCnt;
  i64 *aDoc;

  /* Output values used by 'row' and 'col' tables */
  i64 rowid;                      /* This table's current rowid value */
  Fts5Buffer term;                /* Current value of 'term' column */

};

#define FTS5_VOCAB_COL    0
#define FTS5_VOCAB_ROW    1

#define FTS5_VOCAB_COL_SCHEMA  "term, col, doc, cnt"
#define FTS5_VOCAB_ROW_SCHEMA  "term, doc, cnt"

/*
** Bits for the mask used as the idxNum value by xBestIndex/xFilter.
*/
#define FTS5_VOCAB_TERM_EQ 0x01
#define FTS5_VOCAB_TERM_GE 0x02
#define FTS5_VOCAB_TERM_LE 0x04


/*
** Translate a string containing an fts5vocab table type to an 
** FTS5_VOCAB_XXX constant. If successful, set *peType to the output
** value and return SQLITE_OK. Otherwise, set *pzErr to an error message
** and return SQLITE_ERROR.
*/
183868
183869
183870
183871
183872
183873
183874
183875
183876
183877
183878
183879
183880
183881
183882
183883
183884
    *pzErr = sqlite3_mprintf("wrong number of vtable arguments");
    rc = SQLITE_ERROR;
  }else{
    int nByte;                      /* Bytes of space to allocate */
    const char *zDb = bDb ? argv[3] : argv[1];
    const char *zTab = bDb ? argv[4] : argv[3];
    const char *zType = bDb ? argv[5] : argv[4];
    int nDb = strlen(zDb)+1; 
    int nTab = strlen(zTab)+1;
    int eType;
    
    rc = fts5VocabTableType(zType, pzErr, &eType);
    if( rc==SQLITE_OK ){
      assert( eType>=0 && eType<sizeof(azSchema)/sizeof(azSchema[0]) );
      rc = sqlite3_declare_vtab(db, azSchema[eType]);
    }








|
|
|







185566
185567
185568
185569
185570
185571
185572
185573
185574
185575
185576
185577
185578
185579
185580
185581
185582
    *pzErr = sqlite3_mprintf("wrong number of vtable arguments");
    rc = SQLITE_ERROR;
  }else{
    int nByte;                      /* Bytes of space to allocate */
    const char *zDb = bDb ? argv[3] : argv[1];
    const char *zTab = bDb ? argv[4] : argv[3];
    const char *zType = bDb ? argv[5] : argv[4];
    int nDb = (int)strlen(zDb)+1; 
    int nTab = (int)strlen(zTab)+1;
    int eType = 0;
    
    rc = fts5VocabTableType(zType, pzErr, &eType);
    if( rc==SQLITE_OK ){
      assert( eType>=0 && eType<sizeof(azSchema)/sizeof(azSchema[0]) );
      rc = sqlite3_declare_vtab(db, azSchema[eType]);
    }

183930
183931
183932
183933
183934
183935
183936







































183937
183938
183939
183940
183941
183942
183943
183944
183945
183946
183947
183948
183949
183950
183951
183952
183953
183954
183955
183956
183957
183958
183959
183960
183961
183962
183963
183964
183965
183966
183967
183968
183969
183970
183971
183972
183973
183974
183975
183976
183977
183978
183979
183980
183981
183982

183983
183984


183985
183986
183987
183988
183989
183990
183991
183992
183993
183994
183995
183996
183997
183998
183999
184000
184001
184002



184003
184004
184005
184006
184007
184008
184009
/* 
** Implementation of the xBestIndex method.
*/
static int fts5VocabBestIndexMethod(
  sqlite3_vtab *pVTab, 
  sqlite3_index_info *pInfo
){







































  return SQLITE_OK;
}

/*
** Implementation of xOpen method.
*/
static int fts5VocabOpenMethod(
  sqlite3_vtab *pVTab, 
  sqlite3_vtab_cursor **ppCsr
){
  Fts5VocabTable *pTab = (Fts5VocabTable*)pVTab;
  Fts5Index *pIndex = 0;
  int nCol = 0;
  Fts5VocabCursor *pCsr = 0;
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt = 0;
  char *zSql = 0;
  int nByte;

  zSql = sqlite3Fts5Mprintf(&rc,
      "SELECT t.%Q FROM %Q.%Q AS t WHERE t.%Q MATCH '*id'",
      pTab->zFts5Tbl, pTab->zFts5Db, pTab->zFts5Tbl, pTab->zFts5Tbl
  );
  if( zSql ){
    rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
  }
  sqlite3_free(zSql);
  assert( rc==SQLITE_OK || pStmt==0 );
  if( rc==SQLITE_ERROR ) rc = SQLITE_OK;

  if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
    i64 iId = sqlite3_column_int64(pStmt, 0);
    pIndex = sqlite3Fts5IndexFromCsrid(pTab->pGlobal, iId, &nCol);
  }

  if( rc==SQLITE_OK && pIndex==0 ){
    rc = sqlite3_finalize(pStmt);
    pStmt = 0;
    if( rc==SQLITE_OK ){
      pVTab->zErrMsg = sqlite3_mprintf(
          "no such fts5 table: %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
      );
      rc = SQLITE_ERROR;
    }
  }


  nByte = nCol * sizeof(i64) * 2 + sizeof(Fts5VocabCursor);
  pCsr = (Fts5VocabCursor*)sqlite3Fts5MallocZero(&rc, nByte);


  if( pCsr ){
    pCsr->pIndex = pIndex;
    pCsr->pStmt = pStmt;
    pCsr->nCol = nCol;
    pCsr->aCnt = (i64*)&pCsr[1];
    pCsr->aDoc = &pCsr->aCnt[nCol];
  }else{
    sqlite3_finalize(pStmt);
  }

  *ppCsr = (sqlite3_vtab_cursor*)pCsr;
  return rc;
}

static void fts5VocabResetCursor(Fts5VocabCursor *pCsr){
  pCsr->rowid = 0;
  sqlite3Fts5IterClose(pCsr->pIter);
  pCsr->pIter = 0;



}

/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts5VocabCloseMethod(sqlite3_vtab_cursor *pCursor){







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|




<














|













>
|
|
>
>



|

|












>
>
>







185628
185629
185630
185631
185632
185633
185634
185635
185636
185637
185638
185639
185640
185641
185642
185643
185644
185645
185646
185647
185648
185649
185650
185651
185652
185653
185654
185655
185656
185657
185658
185659
185660
185661
185662
185663
185664
185665
185666
185667
185668
185669
185670
185671
185672
185673
185674
185675
185676
185677
185678
185679
185680
185681
185682
185683
185684
185685
185686
185687
185688
185689
185690

185691
185692
185693
185694
185695
185696
185697
185698
185699
185700
185701
185702
185703
185704
185705
185706
185707
185708
185709
185710
185711
185712
185713
185714
185715
185716
185717
185718
185719
185720
185721
185722
185723
185724
185725
185726
185727
185728
185729
185730
185731
185732
185733
185734
185735
185736
185737
185738
185739
185740
185741
185742
185743
185744
185745
185746
185747
185748
185749
185750
185751
/* 
** Implementation of the xBestIndex method.
*/
static int fts5VocabBestIndexMethod(
  sqlite3_vtab *pVTab, 
  sqlite3_index_info *pInfo
){
  int i;
  int iTermEq = -1;
  int iTermGe = -1;
  int iTermLe = -1;
  int idxNum = 0;
  int nArg = 0;

  for(i=0; i<pInfo->nConstraint; i++){
    struct sqlite3_index_constraint *p = &pInfo->aConstraint[i];
    if( p->usable==0 ) continue;
    if( p->iColumn==0 ){          /* term column */
      if( p->op==SQLITE_INDEX_CONSTRAINT_EQ ) iTermEq = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_LE ) iTermLe = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_LT ) iTermLe = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_GE ) iTermGe = i;
      if( p->op==SQLITE_INDEX_CONSTRAINT_GT ) iTermGe = i;
    }
  }

  if( iTermEq>=0 ){
    idxNum |= FTS5_VOCAB_TERM_EQ;
    pInfo->aConstraintUsage[iTermEq].argvIndex = ++nArg;
    pInfo->estimatedCost = 100;
  }else{
    pInfo->estimatedCost = 1000000;
    if( iTermGe>=0 ){
      idxNum |= FTS5_VOCAB_TERM_GE;
      pInfo->aConstraintUsage[iTermGe].argvIndex = ++nArg;
      pInfo->estimatedCost = pInfo->estimatedCost / 2;
    }
    if( iTermLe>=0 ){
      idxNum |= FTS5_VOCAB_TERM_LE;
      pInfo->aConstraintUsage[iTermLe].argvIndex = ++nArg;
      pInfo->estimatedCost = pInfo->estimatedCost / 2;
    }
  }

  pInfo->idxNum = idxNum;

  return SQLITE_OK;
}

/*
** Implementation of xOpen method.
*/
static int fts5VocabOpenMethod(
  sqlite3_vtab *pVTab, 
  sqlite3_vtab_cursor **ppCsr
){
  Fts5VocabTable *pTab = (Fts5VocabTable*)pVTab;
  Fts5Index *pIndex = 0;
  Fts5Config *pConfig = 0;
  Fts5VocabCursor *pCsr = 0;
  int rc = SQLITE_OK;
  sqlite3_stmt *pStmt = 0;
  char *zSql = 0;


  zSql = sqlite3Fts5Mprintf(&rc,
      "SELECT t.%Q FROM %Q.%Q AS t WHERE t.%Q MATCH '*id'",
      pTab->zFts5Tbl, pTab->zFts5Db, pTab->zFts5Tbl, pTab->zFts5Tbl
  );
  if( zSql ){
    rc = sqlite3_prepare_v2(pTab->db, zSql, -1, &pStmt, 0);
  }
  sqlite3_free(zSql);
  assert( rc==SQLITE_OK || pStmt==0 );
  if( rc==SQLITE_ERROR ) rc = SQLITE_OK;

  if( pStmt && sqlite3_step(pStmt)==SQLITE_ROW ){
    i64 iId = sqlite3_column_int64(pStmt, 0);
    pIndex = sqlite3Fts5IndexFromCsrid(pTab->pGlobal, iId, &pConfig);
  }

  if( rc==SQLITE_OK && pIndex==0 ){
    rc = sqlite3_finalize(pStmt);
    pStmt = 0;
    if( rc==SQLITE_OK ){
      pVTab->zErrMsg = sqlite3_mprintf(
          "no such fts5 table: %s.%s", pTab->zFts5Db, pTab->zFts5Tbl
      );
      rc = SQLITE_ERROR;
    }
  }

  if( rc==SQLITE_OK ){
    int nByte = pConfig->nCol * sizeof(i64) * 2 + sizeof(Fts5VocabCursor);
    pCsr = (Fts5VocabCursor*)sqlite3Fts5MallocZero(&rc, nByte);
  }

  if( pCsr ){
    pCsr->pIndex = pIndex;
    pCsr->pStmt = pStmt;
    pCsr->pConfig = pConfig;
    pCsr->aCnt = (i64*)&pCsr[1];
    pCsr->aDoc = &pCsr->aCnt[pConfig->nCol];
  }else{
    sqlite3_finalize(pStmt);
  }

  *ppCsr = (sqlite3_vtab_cursor*)pCsr;
  return rc;
}

static void fts5VocabResetCursor(Fts5VocabCursor *pCsr){
  pCsr->rowid = 0;
  sqlite3Fts5IterClose(pCsr->pIter);
  pCsr->pIter = 0;
  sqlite3_free(pCsr->zLeTerm);
  pCsr->nLeTerm = -1;
  pCsr->zLeTerm = 0;
}

/*
** Close the cursor.  For additional information see the documentation
** on the xClose method of the virtual table interface.
*/
static int fts5VocabCloseMethod(sqlite3_vtab_cursor *pCursor){
184019
184020
184021
184022
184023
184024
184025

184026
184027
184028
184029
184030
184031
184032
184033
184034
184035
184036
184037
184038
184039
184040
184041
184042









184043
184044
184045
184046
184047
184048
184049
184050
184051
184052
184053
184054
184055
184056
184057
184058
184059
184060
184061
184062
184063
184064
184065
184066
184067
184068
184069
184070
184071
184072
184073
184074
184075

184076
184077
184078


184079
184080
184081
184082
184083
184084
184085
184086
184087
184088
184089
184090
184091
184092
184093
184094
184095
184096
184097
184098
184099
184100
184101
184102
184103
184104
184105


184106


184107




184108



























184109

184110
184111
184112
184113
184114
184115
184116
/*
** Advance the cursor to the next row in the table.
*/
static int fts5VocabNextMethod(sqlite3_vtab_cursor *pCursor){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
  int rc = SQLITE_OK;


  pCsr->rowid++;

  if( pTab->eType==FTS5_VOCAB_COL ){
    for(pCsr->iCol++; pCsr->iCol<pCsr->nCol; pCsr->iCol++){
      if( pCsr->aCnt[pCsr->iCol] ) break;
    }
  }

  if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=pCsr->nCol ){
    if( sqlite3Fts5IterEof(pCsr->pIter) ){
      pCsr->bEof = 1;
    }else{
      const char *zTerm;
      int nTerm;

      zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);









      sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);
      memset(pCsr->aVal, 0, sizeof(pCsr->aVal));
      memset(pCsr->aCnt, 0, pCsr->nCol * sizeof(i64));
      memset(pCsr->aDoc, 0, pCsr->nCol * sizeof(i64));
      pCsr->iCol = 0;

      assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
      while( rc==SQLITE_OK ){
        i64 dummy;
        const u8 *pPos; int nPos;   /* Position list */
        i64 iPos = 0;               /* 64-bit position read from poslist */
        int iOff = 0;               /* Current offset within position list */

        rc = sqlite3Fts5IterPoslist(pCsr->pIter, &pPos, &nPos, &dummy);
        if( rc==SQLITE_OK ){
          if( pTab->eType==FTS5_VOCAB_ROW ){
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              pCsr->aVal[1]++;
            }
            pCsr->aVal[0]++;
          }else{
            int iCol = -1;
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              int ii = FTS5_POS2COLUMN(iPos);
              pCsr->aCnt[ii]++;
              if( iCol!=ii ){
                pCsr->aDoc[ii]++;
                iCol = ii;
              }
            }
          }
          rc = sqlite3Fts5IterNextScan(pCsr->pIter);
        }

        if( rc==SQLITE_OK ){
          zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
          if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ) break;


          if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
        }
      }
    }
  }

  if( pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
    while( pCsr->aCnt[pCsr->iCol]==0 ) pCsr->iCol++;
    pCsr->aVal[0] = pCsr->iCol;
    pCsr->aVal[1] = pCsr->aDoc[pCsr->iCol];
    pCsr->aVal[2] = pCsr->aCnt[pCsr->iCol];
  }
  return rc;
}

/*
** This is the xFilter implementation for the virtual table.
*/
static int fts5VocabFilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int rc;


  const int flags = FTS5INDEX_QUERY_SCAN;







  fts5VocabResetCursor(pCsr);



























  rc = sqlite3Fts5IndexQuery(pCsr->pIndex, 0, 0, flags, 0, &pCsr->pIter);

  if( rc==SQLITE_OK ){
    rc = fts5VocabNextMethod(pCursor);
  }

  return rc;
}








>




|




|







>
>
>
>
>
>
>
>
>

<
|
|









|



|

|













>


|
>
>








|
<
<















|
>
>
|
>
>

>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>







185761
185762
185763
185764
185765
185766
185767
185768
185769
185770
185771
185772
185773
185774
185775
185776
185777
185778
185779
185780
185781
185782
185783
185784
185785
185786
185787
185788
185789
185790
185791
185792
185793
185794
185795

185796
185797
185798
185799
185800
185801
185802
185803
185804
185805
185806
185807
185808
185809
185810
185811
185812
185813
185814
185815
185816
185817
185818
185819
185820
185821
185822
185823
185824
185825
185826
185827
185828
185829
185830
185831
185832
185833
185834
185835
185836
185837
185838
185839
185840
185841


185842
185843
185844
185845
185846
185847
185848
185849
185850
185851
185852
185853
185854
185855
185856
185857
185858
185859
185860
185861
185862
185863
185864
185865
185866
185867
185868
185869
185870
185871
185872
185873
185874
185875
185876
185877
185878
185879
185880
185881
185882
185883
185884
185885
185886
185887
185888
185889
185890
185891
185892
185893
185894
185895
185896
185897
185898
185899
185900
185901
185902
185903
185904
/*
** Advance the cursor to the next row in the table.
*/
static int fts5VocabNextMethod(sqlite3_vtab_cursor *pCursor){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  Fts5VocabTable *pTab = (Fts5VocabTable*)pCursor->pVtab;
  int rc = SQLITE_OK;
  int nCol = pCsr->pConfig->nCol;

  pCsr->rowid++;

  if( pTab->eType==FTS5_VOCAB_COL ){
    for(pCsr->iCol++; pCsr->iCol<nCol; pCsr->iCol++){
      if( pCsr->aCnt[pCsr->iCol] ) break;
    }
  }

  if( pTab->eType==FTS5_VOCAB_ROW || pCsr->iCol>=nCol ){
    if( sqlite3Fts5IterEof(pCsr->pIter) ){
      pCsr->bEof = 1;
    }else{
      const char *zTerm;
      int nTerm;

      zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
      if( pCsr->nLeTerm>=0 ){
        int nCmp = MIN(nTerm, pCsr->nLeTerm);
        int bCmp = memcmp(pCsr->zLeTerm, zTerm, nCmp);
        if( bCmp<0 || (bCmp==0 && pCsr->nLeTerm<nTerm) ){
          pCsr->bEof = 1;
          return SQLITE_OK;
        }
      }

      sqlite3Fts5BufferSet(&rc, &pCsr->term, nTerm, (const u8*)zTerm);

      memset(pCsr->aCnt, 0, nCol * sizeof(i64));
      memset(pCsr->aDoc, 0, nCol * sizeof(i64));
      pCsr->iCol = 0;

      assert( pTab->eType==FTS5_VOCAB_COL || pTab->eType==FTS5_VOCAB_ROW );
      while( rc==SQLITE_OK ){
        i64 dummy;
        const u8 *pPos; int nPos;   /* Position list */
        i64 iPos = 0;               /* 64-bit position read from poslist */
        int iOff = 0;               /* Current offset within position list */

        rc = sqlite3Fts5IterPoslist(pCsr->pIter, 0, &pPos, &nPos, &dummy);
        if( rc==SQLITE_OK ){
          if( pTab->eType==FTS5_VOCAB_ROW ){
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              pCsr->aCnt[0]++;
            }
            pCsr->aDoc[0]++;
          }else{
            int iCol = -1;
            while( 0==sqlite3Fts5PoslistNext64(pPos, nPos, &iOff, &iPos) ){
              int ii = FTS5_POS2COLUMN(iPos);
              pCsr->aCnt[ii]++;
              if( iCol!=ii ){
                pCsr->aDoc[ii]++;
                iCol = ii;
              }
            }
          }
          rc = sqlite3Fts5IterNextScan(pCsr->pIter);
        }

        if( rc==SQLITE_OK ){
          zTerm = sqlite3Fts5IterTerm(pCsr->pIter, &nTerm);
          if( nTerm!=pCsr->term.n || memcmp(zTerm, pCsr->term.p, nTerm) ){
            break;
          }
          if( sqlite3Fts5IterEof(pCsr->pIter) ) break;
        }
      }
    }
  }

  if( pCsr->bEof==0 && pTab->eType==FTS5_VOCAB_COL ){
    while( pCsr->aCnt[pCsr->iCol]==0 ) pCsr->iCol++;
    assert( pCsr->iCol<pCsr->pConfig->nCol );


  }
  return rc;
}

/*
** This is the xFilter implementation for the virtual table.
*/
static int fts5VocabFilterMethod(
  sqlite3_vtab_cursor *pCursor,   /* The cursor used for this query */
  int idxNum,                     /* Strategy index */
  const char *idxStr,             /* Unused */
  int nVal,                       /* Number of elements in apVal */
  sqlite3_value **apVal           /* Arguments for the indexing scheme */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;
  int rc = SQLITE_OK;

  int iVal = 0;
  int f = FTS5INDEX_QUERY_SCAN;
  const char *zTerm = 0;
  int nTerm = 0;

  sqlite3_value *pEq = 0;
  sqlite3_value *pGe = 0;
  sqlite3_value *pLe = 0;

  fts5VocabResetCursor(pCsr);
  if( idxNum & FTS5_VOCAB_TERM_EQ ) pEq = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_GE ) pGe = apVal[iVal++];
  if( idxNum & FTS5_VOCAB_TERM_LE ) pLe = apVal[iVal++];

  if( pEq ){
    zTerm = (const char *)sqlite3_value_text(pEq);
    nTerm = sqlite3_value_bytes(pEq);
    f = 0;
  }else{
    if( pGe ){
      zTerm = (const char *)sqlite3_value_text(pGe);
      nTerm = sqlite3_value_bytes(pGe);
    }
    if( pLe ){
      const char *zCopy = (const char *)sqlite3_value_text(pLe);
      pCsr->nLeTerm = sqlite3_value_bytes(pLe);
      pCsr->zLeTerm = sqlite3_malloc(pCsr->nLeTerm+1);
      if( pCsr->zLeTerm==0 ){
        rc = SQLITE_NOMEM;
      }else{
        memcpy(pCsr->zLeTerm, zCopy, pCsr->nLeTerm+1);
      }
    }
  }


  if( rc==SQLITE_OK ){
    rc = sqlite3Fts5IndexQuery(pCsr->pIndex, zTerm, nTerm, f, 0, &pCsr->pIter);
  }
  if( rc==SQLITE_OK ){
    rc = fts5VocabNextMethod(pCursor);
  }

  return rc;
}

184125
184126
184127
184128
184129
184130
184131

184132
184133
184134
184135
184136








184137

184138
184139
184140

184141
184142


184143
184144
184145
184146
184147
184148
184149

static int fts5VocabColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;

  switch( iCol ){
    case 0: /* term */
      sqlite3_result_text(
          pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
      );








      break;


    default:
      assert( iCol<4 && iCol>0 );

      sqlite3_result_int64(pCtx, pCsr->aVal[iCol-1]);
      break;


  }
  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. The







>
|
<
|
|
|
>
>
>
>
>
>
>
>
|
>
|
|
|
>
|
|
>
>







185913
185914
185915
185916
185917
185918
185919
185920
185921

185922
185923
185924
185925
185926
185927
185928
185929
185930
185931
185932
185933
185934
185935
185936
185937
185938
185939
185940
185941
185942
185943
185944
185945
185946
185947
185948
185949

static int fts5VocabColumnMethod(
  sqlite3_vtab_cursor *pCursor,   /* Cursor to retrieve value from */
  sqlite3_context *pCtx,          /* Context for sqlite3_result_xxx() calls */
  int iCol                        /* Index of column to read value from */
){
  Fts5VocabCursor *pCsr = (Fts5VocabCursor*)pCursor;

  if( iCol==0 ){

    sqlite3_result_text(
        pCtx, (const char*)pCsr->term.p, pCsr->term.n, SQLITE_TRANSIENT
    );
  }
  else if( ((Fts5VocabTable*)(pCursor->pVtab))->eType==FTS5_VOCAB_COL ){
    assert( iCol==1 || iCol==2 || iCol==3 );
    if( iCol==1 ){
      const char *z = pCsr->pConfig->azCol[pCsr->iCol];
      sqlite3_result_text(pCtx, z, -1, SQLITE_STATIC);
    }else if( iCol==2 ){
      sqlite3_result_int64(pCtx, pCsr->aDoc[pCsr->iCol]);
    }else{
      sqlite3_result_int64(pCtx, pCsr->aCnt[pCsr->iCol]);
    }
  }else{
    assert( iCol==1 || iCol==2 );
    if( iCol==1 ){
      sqlite3_result_int64(pCtx, pCsr->aDoc[0]);
    }else{
      sqlite3_result_int64(pCtx, pCsr->aCnt[0]);
    }
  }
  return SQLITE_OK;
}

/* 
** This is the xRowid method. The SQLite core calls this routine to
** retrieve the rowid for the current row of the result set. The
Changes to src/sqlite3.h.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.9.0"
#define SQLITE_VERSION_NUMBER 3009000
#define SQLITE_SOURCE_ID      "2015-10-10 16:41:28 fab6f09044d033dd09ed8a22e06bc6a7851bbabf"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros







|
|
|







107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
** string contains the date and time of the check-in (UTC) and an SHA1
** hash of the entire source tree.
**
** See also: [sqlite3_libversion()],
** [sqlite3_libversion_number()], [sqlite3_sourceid()],
** [sqlite_version()] and [sqlite_source_id()].
*/
#define SQLITE_VERSION        "3.10.0"
#define SQLITE_VERSION_NUMBER 3010000
#define SQLITE_SOURCE_ID      "2016-01-04 13:06:53 b779ca8a7580e2a0bb1176316c4540867b635229"

/*
** CAPI3REF: Run-Time Library Version Numbers
** KEYWORDS: sqlite3_version, sqlite3_sourceid
**
** These interfaces provide the same information as the [SQLITE_VERSION],
** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
474
475
476
477
478
479
480

481
482
483
484
485
486
487
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
#define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))

#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))







>







474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#define SQLITE_IOERR_SHMMAP            (SQLITE_IOERR | (21<<8))
#define SQLITE_IOERR_SEEK              (SQLITE_IOERR | (22<<8))
#define SQLITE_IOERR_DELETE_NOENT      (SQLITE_IOERR | (23<<8))
#define SQLITE_IOERR_MMAP              (SQLITE_IOERR | (24<<8))
#define SQLITE_IOERR_GETTEMPPATH       (SQLITE_IOERR | (25<<8))
#define SQLITE_IOERR_CONVPATH          (SQLITE_IOERR | (26<<8))
#define SQLITE_IOERR_VNODE             (SQLITE_IOERR | (27<<8))
#define SQLITE_IOERR_AUTH              (SQLITE_IOERR | (28<<8))
#define SQLITE_LOCKED_SHAREDCACHE      (SQLITE_LOCKED |  (1<<8))
#define SQLITE_BUSY_RECOVERY           (SQLITE_BUSY   |  (1<<8))
#define SQLITE_BUSY_SNAPSHOT           (SQLITE_BUSY   |  (2<<8))
#define SQLITE_CANTOPEN_NOTEMPDIR      (SQLITE_CANTOPEN | (1<<8))
#define SQLITE_CANTOPEN_ISDIR          (SQLITE_CANTOPEN | (2<<8))
#define SQLITE_CANTOPEN_FULLPATH       (SQLITE_CANTOPEN | (3<<8))
#define SQLITE_CANTOPEN_CONVPATH       (SQLITE_CANTOPEN | (4<<8))
876
877
878
879
880
881
882









883
884
885
886
887
888
889
** [sqlite3_malloc()] and the result is stored in the char* variable
** that the fourth parameter of [sqlite3_file_control()] points to.
** The caller is responsible for freeing the memory when done.  As with
** all file-control actions, there is no guarantee that this will actually
** do anything.  Callers should initialize the char* variable to a NULL
** pointer in case this file-control is not implemented.  This file-control
** is intended for diagnostic use only.









**
** <li>[[SQLITE_FCNTL_PRAGMA]]
** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] 
** file control is sent to the open [sqlite3_file] object corresponding
** to the database file to which the pragma statement refers. ^The argument
** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
** pointers to strings (char**) in which the second element of the array







>
>
>
>
>
>
>
>
>







877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
** [sqlite3_malloc()] and the result is stored in the char* variable
** that the fourth parameter of [sqlite3_file_control()] points to.
** The caller is responsible for freeing the memory when done.  As with
** all file-control actions, there is no guarantee that this will actually
** do anything.  Callers should initialize the char* variable to a NULL
** pointer in case this file-control is not implemented.  This file-control
** is intended for diagnostic use only.
**
** <li>[[SQLITE_FCNTL_VFS_POINTER]]
** ^The [SQLITE_FCNTL_VFS_POINTER] opcode finds a pointer to the top-level
** [VFSes] currently in use.  ^(The argument X in
** sqlite3_file_control(db,SQLITE_FCNTL_VFS_POINTER,X) must be
** of type "[sqlite3_vfs] **".  This opcodes will set *X
** to a pointer to the top-level VFS.)^
** ^When there are multiple VFS shims in the stack, this opcode finds the
** upper-most shim only.
**
** <li>[[SQLITE_FCNTL_PRAGMA]]
** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA] 
** file control is sent to the open [sqlite3_file] object corresponding
** to the database file to which the pragma statement refers. ^The argument
** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
** pointers to strings (char**) in which the second element of the array
995
996
997
998
999
1000
1001

1002
1003
1004
1005
1006
1007
1008
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
#define SQLITE_FCNTL_WAL_BLOCK              24
#define SQLITE_FCNTL_ZIPVFS                 25
#define SQLITE_FCNTL_RBU                    26


/* deprecated names */
#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO









>







1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
#define SQLITE_FCNTL_HAS_MOVED              20
#define SQLITE_FCNTL_SYNC                   21
#define SQLITE_FCNTL_COMMIT_PHASETWO        22
#define SQLITE_FCNTL_WIN32_SET_HANDLE       23
#define SQLITE_FCNTL_WAL_BLOCK              24
#define SQLITE_FCNTL_ZIPVFS                 25
#define SQLITE_FCNTL_RBU                    26
#define SQLITE_FCNTL_VFS_POINTER            27

/* deprecated names */
#define SQLITE_GET_LOCKPROXYFILE      SQLITE_FCNTL_GET_LOCKPROXYFILE
#define SQLITE_SET_LOCKPROXYFILE      SQLITE_FCNTL_SET_LOCKPROXYFILE
#define SQLITE_LAST_ERRNO             SQLITE_FCNTL_LAST_ERRNO


1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

1617
1618



1619

1620

1621
1622
1623

1624
1625
1626
1627
1628
1629
1630
** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
** [sqlite3_malloc|heap allocations].
** This can help [Robson proof|prevent memory allocation failures] due to heap
** fragmentation in low-memory embedded systems.
** </dd>
**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a static memory buffer
** that SQLite can use for the database page cache with the default page
** cache implementation.  
** This configuration should not be used if an application-define page
** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]
** configuration option.
** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
** 8-byte aligned
** memory, the size of each page buffer (sz), and the number of pages (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 65536) plus some extra bytes for each
** page header.  ^The number of extra bytes needed by the page header
** can be determined using the [SQLITE_CONFIG_PCACHE_HDRSZ] option 
** to [sqlite3_config()].
** ^It is harmless, apart from the wasted memory,
** for the sz parameter to be larger than necessary.  The first

** argument should pointer to an 8-byte aligned block of memory that
** is at least sz*N bytes of memory, otherwise subsequent behavior is



** undefined.

** ^SQLite will use the memory provided by the first argument to satisfy its

** memory needs for the first N pages that it adds to cache.  ^If additional
** page cache memory is needed beyond what is provided by this option, then
** SQLite goes to [sqlite3_malloc()] for the additional storage space.</dd>

**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
** that SQLite will use for all of its dynamic memory allocation needs
** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and
** [SQLITE_CONFIG_PAGECACHE].
** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled







|


|
|
<

|
|



|
<

|
>
|
|
>
>
>
|
>
|
>
|
|
|
>







1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616

1617
1618
1619
1620
1621
1622
1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
** [sqlite3_malloc|heap allocations].
** This can help [Robson proof|prevent memory allocation failures] due to heap
** fragmentation in low-memory embedded systems.
** </dd>
**
** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a memory pool
** that SQLite can use for the database page cache with the default page
** cache implementation.  
** This configuration option is a no-op if an application-define page
** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2].

** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
** 8-byte aligned memory (pMem), the size of each page cache line (sz),
** and the number of cache lines (N).
** The sz argument should be the size of the largest database page
** (a power of two between 512 and 65536) plus some extra bytes for each
** page header.  ^The number of extra bytes needed by the page header
** can be determined using [SQLITE_CONFIG_PCACHE_HDRSZ].

** ^It is harmless, apart from the wasted memory,
** for the sz parameter to be larger than necessary.  The pMem
** argument must be either a NULL pointer or a pointer to an 8-byte
** aligned block of memory of at least sz*N bytes, otherwise
** subsequent behavior is undefined.
** ^When pMem is not NULL, SQLite will strive to use the memory provided
** to satisfy page cache needs, falling back to [sqlite3_malloc()] if
** a page cache line is larger than sz bytes or if all of the pMem buffer
** is exhausted.
** ^If pMem is NULL and N is non-zero, then each database connection
** does an initial bulk allocation for page cache memory
** from [sqlite3_malloc()] sufficient for N cache lines if N is positive or
** of -1024*N bytes if N is negative, . ^If additional
** page cache memory is needed beyond what is provided by the initial
** allocation, then SQLite goes to [sqlite3_malloc()] separately for each
** additional cache line. </dd>
**
** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer 
** that SQLite will use for all of its dynamic memory allocation needs
** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and
** [SQLITE_CONFIG_PAGECACHE].
** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
** memory allocation fails.
**
** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
** previously obtained from [sqlite3_value_dup()].  ^If V is a NULL pointer
** then sqlite3_value_free(V) is a harmless no-op.
*/
SQLITE_API SQLITE_EXPERIMENTAL sqlite3_value *SQLITE_STDCALL sqlite3_value_dup(const sqlite3_value*);
SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_value_free(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
** METHOD: sqlite3_context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.







|
|







4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
** memory allocation fails.
**
** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
** previously obtained from [sqlite3_value_dup()].  ^If V is a NULL pointer
** then sqlite3_value_free(V) is a harmless no-op.
*/
SQLITE_API sqlite3_value *SQLITE_STDCALL sqlite3_value_dup(const sqlite3_value*);
SQLITE_API void SQLITE_STDCALL sqlite3_value_free(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
** METHOD: sqlite3_context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
5604
5605
5606
5607
5608
5609
5610











5611
5612
5613
5614
5615
5616
5617
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** ^The aConstraint[] array only reports WHERE clause terms that are
** relevant to the particular virtual table being queried.
**
** ^Information about the ORDER BY clause is stored in aOrderBy[].
** ^Each term of aOrderBy records a column of the ORDER BY clause.











**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  ^If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.)^







>
>
>
>
>
>
>
>
>
>
>







5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
** and makes other simplifications to the WHERE clause in an attempt to
** get as many WHERE clause terms into the form shown above as possible.
** ^The aConstraint[] array only reports WHERE clause terms that are
** relevant to the particular virtual table being queried.
**
** ^Information about the ORDER BY clause is stored in aOrderBy[].
** ^Each term of aOrderBy records a column of the ORDER BY clause.
**
** The colUsed field indicates which columns of the virtual table may be
** required by the current scan. Virtual table columns are numbered from
** zero in the order in which they appear within the CREATE TABLE statement
** passed to sqlite3_declare_vtab(). For the first 63 columns (columns 0-62),
** the corresponding bit is set within the colUsed mask if the column may be
** required by SQLite. If the table has at least 64 columns and any column
** to the right of the first 63 is required, then bit 63 of colUsed is also
** set. In other words, column iCol may be required if the expression
** (colUsed & ((sqlite3_uint64)1 << (iCol>=63 ? 63 : iCol))) evaluates to 
** non-zero.
**
** The [xBestIndex] method must fill aConstraintUsage[] with information
** about what parameters to pass to xFilter.  ^If argvIndex>0 then
** the right-hand side of the corresponding aConstraint[] is evaluated
** and becomes the argvIndex-th entry in argv.  ^(If aConstraintUsage[].omit
** is true, then the constraint is assumed to be fully handled by the
** virtual table and is not checked again by SQLite.)^
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
** structure for SQLite version 3.8.2. If a virtual table extension is
** used with an SQLite version earlier than 3.8.2, the results of attempting 
** to read or write the estimatedRows field are undefined (but are likely 
** to included crashing the application). The estimatedRows field should
** therefore only be used if [sqlite3_libversion_number()] returns a
** value greater than or equal to 3008002. Similarly, the idxFlags field
** was added for version 3.8.12. It may therefore only be used if
** sqlite3_libversion_number() returns a value greater than or equal to
** 3008012.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */







|

|







5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
** structure for SQLite version 3.8.2. If a virtual table extension is
** used with an SQLite version earlier than 3.8.2, the results of attempting 
** to read or write the estimatedRows field are undefined (but are likely 
** to included crashing the application). The estimatedRows field should
** therefore only be used if [sqlite3_libversion_number()] returns a
** value greater than or equal to 3008002. Similarly, the idxFlags field
** was added for version 3.9.0. It may therefore only be used if
** sqlite3_libversion_number() returns a value greater than or equal to
** 3009000.
*/
struct sqlite3_index_info {
  /* Inputs */
  int nConstraint;           /* Number of entries in aConstraint */
  struct sqlite3_index_constraint {
     int iColumn;              /* Column on left-hand side of constraint */
     unsigned char op;         /* Constraint operator */
5682
5683
5684
5685
5686
5687
5688
5689
5690


5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711



5712
5713
5714
5715
5716
5717
5718
  int idxNum;                /* Number used to identify the index */
  char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
  int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
  int orderByConsumed;       /* True if output is already ordered */
  double estimatedCost;           /* Estimated cost of using this index */
  /* Fields below are only available in SQLite 3.8.2 and later */
  sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
  /* Fields below are only available in SQLite 3.8.12 and later */
  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */


};

/*
** CAPI3REF: Virtual Table Scan Flags
*/
#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */

/*
** CAPI3REF: Virtual Table Constraint Operator Codes
**
** These macros defined the allowed values for the
** [sqlite3_index_info].aConstraint[].op field.  Each value represents
** an operator that is part of a constraint term in the wHERE clause of
** a query that uses a [virtual table].
*/
#define SQLITE_INDEX_CONSTRAINT_EQ    2
#define SQLITE_INDEX_CONSTRAINT_GT    4
#define SQLITE_INDEX_CONSTRAINT_LE    8
#define SQLITE_INDEX_CONSTRAINT_LT    16
#define SQLITE_INDEX_CONSTRAINT_GE    32
#define SQLITE_INDEX_CONSTRAINT_MATCH 64




/*
** CAPI3REF: Register A Virtual Table Implementation
** METHOD: sqlite3
**
** ^These routines are used to register a new [virtual table module] name.
** ^Module names must be registered before







|

>
>















|
|
|
|
|
|
>
>
>







5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
  int idxNum;                /* Number used to identify the index */
  char *idxStr;              /* String, possibly obtained from sqlite3_malloc */
  int needToFreeIdxStr;      /* Free idxStr using sqlite3_free() if true */
  int orderByConsumed;       /* True if output is already ordered */
  double estimatedCost;           /* Estimated cost of using this index */
  /* Fields below are only available in SQLite 3.8.2 and later */
  sqlite3_int64 estimatedRows;    /* Estimated number of rows returned */
  /* Fields below are only available in SQLite 3.9.0 and later */
  int idxFlags;              /* Mask of SQLITE_INDEX_SCAN_* flags */
  /* Fields below are only available in SQLite 3.10.0 and later */
  sqlite3_uint64 colUsed;    /* Input: Mask of columns used by statement */
};

/*
** CAPI3REF: Virtual Table Scan Flags
*/
#define SQLITE_INDEX_SCAN_UNIQUE      1     /* Scan visits at most 1 row */

/*
** CAPI3REF: Virtual Table Constraint Operator Codes
**
** These macros defined the allowed values for the
** [sqlite3_index_info].aConstraint[].op field.  Each value represents
** an operator that is part of a constraint term in the wHERE clause of
** a query that uses a [virtual table].
*/
#define SQLITE_INDEX_CONSTRAINT_EQ      2
#define SQLITE_INDEX_CONSTRAINT_GT      4
#define SQLITE_INDEX_CONSTRAINT_LE      8
#define SQLITE_INDEX_CONSTRAINT_LT     16
#define SQLITE_INDEX_CONSTRAINT_GE     32
#define SQLITE_INDEX_CONSTRAINT_MATCH  64
#define SQLITE_INDEX_CONSTRAINT_LIKE   65
#define SQLITE_INDEX_CONSTRAINT_GLOB   66
#define SQLITE_INDEX_CONSTRAINT_REGEXP 67

/*
** CAPI3REF: Register A Virtual Table Implementation
** METHOD: sqlite3
**
** ^These routines are used to register a new [virtual table module] name.
** ^Module names must be registered before
6568
6569
6570
6571
6572
6573
6574
6575

6576
6577
6578
6579
6580
6581
6582
** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [scratch memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
** <dd>This parameter records the deepest parser stack.  It is only

** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
** </dl>
**
** New status parameters may be added from time to time.
*/
#define SQLITE_STATUS_MEMORY_USED          0
#define SQLITE_STATUS_PAGECACHE_USED       1







|
>







6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
** <dd>This parameter records the largest memory allocation request
** handed to [scratch memory allocator].  Only the value returned in the
** *pHighwater parameter to [sqlite3_status()] is of interest.  
** The value written into the *pCurrent parameter is undefined.</dd>)^
**
** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
** <dd>The *pHighwater parameter records the deepest parser stack. 
** The *pCurrent value is undefined.  The *pHighwater value is only
** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
** </dl>
**
** New status parameters may be added from time to time.
*/
#define SQLITE_STATUS_MEMORY_USED          0
#define SQLITE_STATUS_PAGECACHE_USED       1
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369


7370
7371























7372
7373
7374
7375
7376
7377
7378
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
** the glob pattern P, and it returns non-zero if string X does not match
** the glob pattern P.  ^The definition of glob pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect used by SQLite.  ^The sqlite3_strglob(P,X) function is case
** sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].


*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);
























/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are







|
|
|

|
|



>
>


>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
*/
SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);

/*
** CAPI3REF: String Globbing
*
** ^The [sqlite3_strglob(P,X)] interface returns zero if and only if
** string X matches the [GLOB] pattern P.
** ^The definition of [GLOB] pattern matching used in
** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
** SQL dialect understood by SQLite.  ^The [sqlite3_strglob(P,X)] function
** is case sensitive.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
**
** See also: [sqlite3_strlike()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);

/*
** CAPI3REF: String LIKE Matching
*
** ^The [sqlite3_strlike(P,X,E)] interface returns zero if and only if
** string X matches the [LIKE] pattern P with escape character E.
** ^The definition of [LIKE] pattern matching used in
** [sqlite3_strlike(P,X,E)] is the same as for the "X LIKE P ESCAPE E"
** operator in the SQL dialect understood by SQLite.  ^For "X LIKE P" without
** the ESCAPE clause, set the E parameter of [sqlite3_strlike(P,X,E)] to 0.
** ^As with the LIKE operator, the [sqlite3_strlike(P,X,E)] function is case
** insensitive - equivalent upper and lower case ASCII characters match
** one another.
**
** ^The [sqlite3_strlike(P,X,E)] function matches Unicode characters, though
** only ASCII characters are case folded.
**
** Note that this routine returns zero on a match and non-zero if the strings
** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
**
** See also: [sqlite3_strglob()].
*/
SQLITE_API int SQLITE_STDCALL sqlite3_strlike(const char *zGlob, const char *zStr, unsigned int cEsc);

/*
** CAPI3REF: Error Logging Interface
**
** ^The [sqlite3_log()] interface writes a message into the [error log]
** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
** ^If logging is enabled, the zFormat string and subsequent arguments are
7786
7787
7788
7789
7790
7791
7792



























































































































7793
7794
7795
7796
7797
7798
7799
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);





























































































































/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);

/*
** CAPI3REF: Flush caches to disk mid-transaction
**
** ^If a write-transaction is open on [database connection] D when the
** [sqlite3_db_cacheflush(D)] interface invoked, any dirty
** pages in the pager-cache that are not currently in use are written out 
** to disk. A dirty page may be in use if a database cursor created by an
** active SQL statement is reading from it, or if it is page 1 of a database
** file (page 1 is always "in use").  ^The [sqlite3_db_cacheflush(D)]
** interface flushes caches for all schemas - "main", "temp", and
** any [attached] databases.
**
** ^If this function needs to obtain extra database locks before dirty pages 
** can be flushed to disk, it does so. ^If those locks cannot be obtained 
** immediately and there is a busy-handler callback configured, it is invoked
** in the usual manner. ^If the required lock still cannot be obtained, then
** the database is skipped and an attempt made to flush any dirty pages
** belonging to the next (if any) database. ^If any databases are skipped
** because locks cannot be obtained, but no other error occurs, this
** function returns SQLITE_BUSY.
**
** ^If any other error occurs while flushing dirty pages to disk (for
** example an IO error or out-of-memory condition), then processing is
** abandoned and an SQLite [error code] is returned to the caller immediately.
**
** ^Otherwise, if no error occurs, [sqlite3_db_cacheflush()] returns SQLITE_OK.
**
** ^This function does not set the database handle error code or message
** returned by the [sqlite3_errcode()] and [sqlite3_errmsg()] functions.
*/
SQLITE_API int SQLITE_STDCALL sqlite3_db_cacheflush(sqlite3*);

/*
** CAPI3REF: Database Snapshot
** KEYWORDS: {snapshot}
** EXPERIMENTAL
**
** An instance of the snapshot object records the state of a [WAL mode]
** database for some specific point in history.
**
** In [WAL mode], multiple [database connections] that are open on the
** same database file can each be reading a different historical version
** of the database file.  When a [database connection] begins a read
** transaction, that connection sees an unchanging copy of the database
** as it existed for the point in time when the transaction first started.
** Subsequent changes to the database from other connections are not seen
** by the reader until a new read transaction is started.
**
** The sqlite3_snapshot object records state information about an historical
** version of the database file so that it is possible to later open a new read
** transaction that sees that historical version of the database rather than
** the most recent version.
**
** The constructor for this object is [sqlite3_snapshot_get()].  The
** [sqlite3_snapshot_open()] method causes a fresh read transaction to refer
** to an historical snapshot (if possible).  The destructor for 
** sqlite3_snapshot objects is [sqlite3_snapshot_free()].
*/
typedef struct sqlite3_snapshot sqlite3_snapshot;

/*
** CAPI3REF: Record A Database Snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_get(D,S,P)] interface attempts to make a
** new [sqlite3_snapshot] object that records the current state of
** schema S in database connection D.  ^On success, the
** [sqlite3_snapshot_get(D,S,P)] interface writes a pointer to the newly
** created [sqlite3_snapshot] object into *P and returns SQLITE_OK.
** ^If schema S of [database connection] D is not a [WAL mode] database
** that is in a read transaction, then [sqlite3_snapshot_get(D,S,P)]
** leaves the *P value unchanged and returns an appropriate [error code].
**
** The [sqlite3_snapshot] object returned from a successful call to
** [sqlite3_snapshot_get()] must be freed using [sqlite3_snapshot_free()]
** to avoid a memory leak.
**
** The [sqlite3_snapshot_get()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_snapshot_get(
  sqlite3 *db,
  const char *zSchema,
  sqlite3_snapshot **ppSnapshot
);

/*
** CAPI3REF: Start a read transaction on an historical snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_open(D,S,P)] interface attempts to move the
** read transaction that is currently open on schema S of
** [database connection] D so that it refers to historical [snapshot] P.
** ^The [sqlite3_snapshot_open()] interface returns SQLITE_OK on success
** or an appropriate [error code] if it fails.
**
** ^In order to succeed, a call to [sqlite3_snapshot_open(D,S,P)] must be
** the first operation, apart from other sqlite3_snapshot_open() calls,
** following the [BEGIN] that starts a new read transaction.
** ^A [snapshot] will fail to open if it has been overwritten by a 
** [checkpoint].  
**
** The [sqlite3_snapshot_open()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_API SQLITE_EXPERIMENTAL int SQLITE_STDCALL sqlite3_snapshot_open(
  sqlite3 *db,
  const char *zSchema,
  sqlite3_snapshot *pSnapshot
);

/*
** CAPI3REF: Destroy a snapshot
** EXPERIMENTAL
**
** ^The [sqlite3_snapshot_free(P)] interface destroys [sqlite3_snapshot] P.
** The application must eventually free every [sqlite3_snapshot] object
** using this routine to avoid a memory leak.
**
** The [sqlite3_snapshot_free()] interface is only available when the
** SQLITE_ENABLE_SNAPSHOT compile-time option is used.
*/
SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_snapshot_free(sqlite3_snapshot*);

/*
** Undo the hack that converts floating point types to integer for
** builds on processors without floating point support.
*/
#ifdef SQLITE_OMIT_FLOATING_POINT
# undef double
7940
7941
7942
7943
7944
7945
7946
7947



7948
7949
7950
7951
7952
7953
7954
**     * custom auxiliary functions.
*/


#ifndef _FTS5_H
#define _FTS5_H

#include "sqlite3.h"




/*************************************************************************
** CUSTOM AUXILIARY FUNCTIONS
**
** Virtual table implementations may overload SQL functions by implementing
** the sqlite3_module.xFindFunction() method.
*/







|
>
>
>







8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
**     * custom auxiliary functions.
*/


#ifndef _FTS5_H
#define _FTS5_H


#ifdef __cplusplus
extern "C" {
#endif

/*************************************************************************
** CUSTOM AUXILIARY FUNCTIONS
**
** Virtual table implementations may overload SQL functions by implementing
** the sqlite3_module.xFindFunction() method.
*/
8426
8427
8428
8429
8430
8431
8432




8433
8434
8435
8436
    void (*xDestroy)(void*)
  );
};

/*
** END OF REGISTRATION API
*************************************************************************/





#endif /* _FTS5_H */









>
>
>
>




8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
    void (*xDestroy)(void*)
  );
};

/*
** END OF REGISTRATION API
*************************************************************************/

#ifdef __cplusplus
}  /* end of the 'extern "C"' block */
#endif

#endif /* _FTS5_H */