Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Difference From c81107f21003fbc5 To 534b8ec9f041d667
2013-08-22
| ||
12:48 | Update SQLite to the 3.8.0 beta with performance optimizations and deferred automatic indices. check-in: 7c52fd2246 user: drh tags: trunk | |
2013-08-20
| ||
23:18 | Update to the SQLite 3.8.0 beta. check-in: c81107f210 user: drh tags: trunk | |
2013-05-16
| ||
01:04 | Update to the SQLite version that fixes HAVING clause name resolution. check-in: 75cc8dafb2 user: drh tags: trunk | |
2013-05-15
| ||
23:47 | Update SQLite to the 3.7.17 beta. check-in: 534b8ec9f0 user: drh tags: trunk | |
2013-03-13
| ||
01:51 | Update the built-in SQLite to include the fixes to ORDER BY and IN that where discovered by the previous import. check-in: 9d717e74e7 user: drh tags: trunk | |
Changes to src/sqlite3.c.
1 2 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite | | | 1 2 3 4 5 6 7 8 9 10 | /****************************************************************************** ** This file is an amalgamation of many separate C source files from SQLite ** version 3.7.17. By combining all the individual C code files into this ** single large file, the entire code can be compiled as a single translation ** unit. This allows many compilers to do optimizations that would not be ** possible if the files were compiled separately. Performance improvements ** of 5% or more are commonly seen when SQLite is compiled as a single ** translation unit. ** ** This file is all you need to compile SQLite. To use SQLite in other |
︙ | ︙ | |||
350 351 352 353 354 355 356 | # define SQLITE_PTR_TO_INT(X) ((int)(X)) #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. ** 0 means mutexes are permanently disable and the library is never ** threadsafe. 1 means the library is serialized which is the highest | | | 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 | # define SQLITE_PTR_TO_INT(X) ((int)(X)) #endif /* ** The SQLITE_THREADSAFE macro must be defined as 0, 1, or 2. ** 0 means mutexes are permanently disable and the library is never ** threadsafe. 1 means the library is serialized which is the highest ** level of threadsafety. 2 means the libary is multithreaded - multiple ** threads can use SQLite as long as no two threads try to use the same ** database connection at the same time. ** ** Older versions of SQLite used an optional THREADSAFE macro. ** We support that for legacy. */ #if !defined(SQLITE_THREADSAFE) |
︙ | ︙ | |||
396 397 398 399 400 401 402 403 404 405 406 407 408 409 | ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails ** SQLITE_MEMDEBUG // Debugging version of system malloc() ** ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the ** assert() macro is enabled, each call into the Win32 native heap subsystem ** will cause HeapValidate to be called. If heap validation should fail, an ** assertion will be triggered. ** ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as ** the default. */ #if defined(SQLITE_SYSTEM_MALLOC) \ + defined(SQLITE_WIN32_MALLOC) \ + defined(SQLITE_ZERO_MALLOC) \ | > > > | 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 | ** SQLITE_ZERO_MALLOC // Use a stub allocator that always fails ** SQLITE_MEMDEBUG // Debugging version of system malloc() ** ** On Windows, if the SQLITE_WIN32_MALLOC_VALIDATE macro is defined and the ** assert() macro is enabled, each call into the Win32 native heap subsystem ** will cause HeapValidate to be called. If heap validation should fail, an ** assertion will be triggered. ** ** (Historical note: There used to be several other options, but we've ** pared it down to just these three.) ** ** If none of the above are defined, then set SQLITE_SYSTEM_MALLOC as ** the default. */ #if defined(SQLITE_SYSTEM_MALLOC) \ + defined(SQLITE_WIN32_MALLOC) \ + defined(SQLITE_ZERO_MALLOC) \ |
︙ | ︙ | |||
426 427 428 429 430 431 432 | */ #if !defined(SQLITE_MALLOC_SOFT_LIMIT) # define SQLITE_MALLOC_SOFT_LIMIT 1024 #endif /* ** We need to define _XOPEN_SOURCE as follows in order to enable | | | > | > > > > > > | > | > > > > > > > | | | 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 | */ #if !defined(SQLITE_MALLOC_SOFT_LIMIT) # define SQLITE_MALLOC_SOFT_LIMIT 1024 #endif /* ** We need to define _XOPEN_SOURCE as follows in order to enable ** recursive mutexes on most Unix systems. But Mac OS X is different. ** The _XOPEN_SOURCE define causes problems for Mac OS X we are told, ** so it is omitted there. See ticket #2673. ** ** Later we learn that _XOPEN_SOURCE is poorly or incorrectly ** implemented on some systems. So we avoid defining it at all ** if it is already defined or if it is unneeded because we are ** not doing a threadsafe build. Ticket #2681. ** ** See also ticket #2741. */ #if !defined(_XOPEN_SOURCE) && !defined(__DARWIN__) \ && !defined(__APPLE__) && SQLITE_THREADSAFE # define _XOPEN_SOURCE 500 /* Needed to enable pthread recursive mutexes */ #endif /* ** The TCL headers are only needed when compiling the TCL bindings. */ #if defined(SQLITE_TCL) || defined(TCLSH) # include <tcl.h> #endif /* ** NDEBUG and SQLITE_DEBUG are opposites. It should always be true that ** defined(NDEBUG)==!defined(SQLITE_DEBUG). If this is not currently true, ** make it true by defining or undefining NDEBUG. ** ** Setting NDEBUG makes the code smaller and run faster by disabling the ** number assert() statements in the code. So we want the default action ** to be for NDEBUG to be set and NDEBUG to be undefined only if SQLITE_DEBUG ** is set. Thus NDEBUG becomes an opt-in rather than an opt-out ** feature. */ #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif |
︙ | ︙ | |||
510 511 512 513 514 515 516 | ** of SQLite to unexpected behavior - to make the code "self-healing" ** or "ductile" rather than being "brittle" and crashing at the first ** hint of unplanned behavior. ** ** In other words, ALWAYS and NEVER are added for defensive code. ** ** When doing coverage testing ALWAYS and NEVER are hard-coded to | | | 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 | ** of SQLite to unexpected behavior - to make the code "self-healing" ** or "ductile" rather than being "brittle" and crashing at the first ** hint of unplanned behavior. ** ** In other words, ALWAYS and NEVER are added for defensive code. ** ** When doing coverage testing ALWAYS and NEVER are hard-coded to ** be true and false so that the unreachable code then specify will ** not be counted as untested code. */ #if defined(SQLITE_COVERAGE_TEST) # define ALWAYS(X) (1) # define NEVER(X) (0) #elif !defined(NDEBUG) # define ALWAYS(X) ((X)?1:(assert(0),0)) |
︙ | ︙ | |||
534 535 536 537 538 539 540 | ** macros to verify that we have tested SQLite for large-file support. */ #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds | | | < > > > > | | > | 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 | ** macros to verify that we have tested SQLite for large-file support. */ #define IS_BIG_INT(X) (((X)&~(i64)0xffffffff)!=0) /* ** The macro unlikely() is a hint that surrounds a boolean ** expression that is usually false. Macro likely() surrounds ** a boolean expression that is usually true. GCC is able to ** use these hints to generate better code, sometimes. */ #if defined(__GNUC__) && 0 # define likely(X) __builtin_expect((X),1) # define unlikely(X) __builtin_expect((X),0) #else # define likely(X) !!(X) # define unlikely(X) !!(X) #endif /************** Include sqlite3.h in the middle of sqliteInt.h ***************/ /************** Begin file sqlite3.h *****************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of |
︙ | ︙ | |||
652 653 654 655 656 657 658 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.17" #define SQLITE_VERSION_NUMBER 3007017 #define SQLITE_SOURCE_ID "2013-05-15 20:35:13 7e76889d675e4c646158f7f9188d25f155c18876" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
1023 1024 1025 1026 1027 1028 1029 | #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) | < < < | 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 | #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) /* ** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. |
︙ | ︙ | |||
3105 3106 3107 3108 3109 3110 3111 | ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the | | | < | 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 | ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the ** callback function X. ^The parameter N is the number of ** [virtual machine instructions] that are evaluated between successive ** invocations of the callback X. ** ** ^Only a single progress handler may be defined at one time per ** [database connection]; setting a new progress handler cancels the ** old one. ^Setting parameter X to NULL disables the progress handler. ** ^The progress handler is also disabled by setting N to a value less ** than 1. ** |
︙ | ︙ | |||
4728 4729 4730 4731 4732 4733 4734 | ** registered the application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** | | | | | | < | | > | > | | | > | | < | < | | < | < | < < < | < < < | | | | | 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 | ** registered the application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** ** The following two functions may be used by scalar SQL functions to ** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under ** some circumstances the associated metadata may be preserved. This may ** be used, for example, to add a regular-expression matching scalar ** function. The compiled version of the regular expression is stored as ** metadata associated with the SQL value passed as the regular expression ** pattern. The compiled regular expression can be reused on multiple ** invocations of the same function so that the original pattern string ** does not need to be recompiled on each invocation. ** ** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata ** associated by the sqlite3_set_auxdata() function with the Nth argument ** value to the application-defined function. ^If no metadata has been ever ** been set for the Nth argument of the function, or if the corresponding ** function parameter has changed since the meta-data was set, ** then sqlite3_get_auxdata() returns a NULL pointer. ** ** ^The sqlite3_set_auxdata() interface saves the metadata ** pointed to by its 3rd parameter as the metadata for the N-th ** argument of the application-defined function. Subsequent ** calls to sqlite3_get_auxdata() might return this data, if it has ** not been destroyed. ** ^If it is not NULL, SQLite will invoke the destructor ** function given by the 4th parameter to sqlite3_set_auxdata() on ** the metadata when the corresponding function parameter changes ** or when the SQL statement completes, whichever comes first. ** ** SQLite is free to call the destructor and drop metadata on any ** parameter of any function at any time. ^The only guarantee is that ** the destructor will be called before the metadata is dropped. ** ** ^(In practice, metadata is preserved between function calls for ** expressions that are constant at compile time. This includes literal ** values and [parameters].)^ ** ** These routines must be called from the same thread in which ** the SQL function is running. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); |
︙ | ︙ | |||
5075 5076 5077 5078 5079 5080 5081 | ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_key( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The key */ ); | < < < < < < < < < < | 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 | ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_key( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The key */ ); /* ** Change the key on an open database. If the current database is not ** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the ** database is decrypted. ** ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_rekey( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The new key */ ); /* ** Specify the activation key for a SEE database. Unless ** activated, none of the SEE routines will work. */ SQLITE_API void sqlite3_activate_see( const char *zPassPhrase /* Activation phrase */ |
︙ | ︙ | |||
5683 5684 5685 5686 5687 5688 5689 | ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. ** ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already ** on the list of automatic extensions is a harmless no-op. ^No entry point ** will be called more than once for each database connection that is opened. ** | | < < < < < < < < < < < < < | 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 | ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. ** ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already ** on the list of automatic extensions is a harmless no-op. ^No entry point ** will be called more than once for each database connection that is opened. ** ** See also: [sqlite3_reset_auto_extension()]. */ SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void)); /* ** CAPI3REF: Reset Automatic Extension Loading ** ** ^This interface disables all automatic extensions previously ** registered using [sqlite3_auto_extension()]. */ SQLITE_API void sqlite3_reset_auto_extension(void); |
︙ | ︙ | |||
6812 6813 6814 6815 6816 6817 6818 | ** wal file in wal mode databases, or the number of pages written to the ** database file in rollback mode databases. Any pages written as part of ** transaction rollback or database recovery operations are not included. ** If an IO or other error occurs while writing a page to disk, the effect ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. ** </dd> | < < < < < < < | | 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 | ** wal file in wal mode databases, or the number of pages written to the ** database file in rollback mode databases. Any pages written as part of ** transaction rollback or database recovery operations are not included. ** If an IO or other error occurs while writing a page to disk, the effect ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. ** </dd> ** </dl> */ #define SQLITE_DBSTATUS_LOOKASIDE_USED 0 #define SQLITE_DBSTATUS_CACHE_USED 1 #define SQLITE_DBSTATUS_SCHEMA_USED 2 #define SQLITE_DBSTATUS_STMT_USED 3 #define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 #define SQLITE_DBSTATUS_CACHE_HIT 7 #define SQLITE_DBSTATUS_CACHE_MISS 8 #define SQLITE_DBSTATUS_CACHE_WRITE 9 #define SQLITE_DBSTATUS_MAX 9 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number |
︙ | ︙ | |||
6885 6886 6887 6888 6889 6890 6891 | ** ** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt> ** <dd>^This is the number of rows inserted into transient indices that ** were created automatically in order to help joins run faster. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run.</dd> | < < < < < < < < < < | 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 | ** ** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt> ** <dd>^This is the number of rows inserted into transient indices that ** were created automatically in order to help joins run faster. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run.</dd> ** </dl> */ #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 #define SQLITE_STMTSTATUS_SORT 2 #define SQLITE_STMTSTATUS_AUTOINDEX 3 /* ** CAPI3REF: Custom Page Cache Object ** ** The sqlite3_pcache type is opaque. It is implemented by ** the pluggable module. The SQLite core has no knowledge of ** its size or internal structure and never deals with the |
︙ | ︙ | |||
7778 7779 7780 7781 7782 7783 7784 | #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #if 0 } /* End of the 'extern "C"' block */ #endif | | | 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 | #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #if 0 } /* End of the 'extern "C"' block */ #endif #endif /* ** 2010 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** |
︙ | ︙ | |||
8179 8180 8181 8182 8183 8184 8185 | ** GCC does not define the offsetof() macro so we'll have to do it ** ourselves. */ #ifndef offsetof #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) #endif | < < < < < < | 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 | ** GCC does not define the offsetof() macro so we'll have to do it ** ourselves. */ #ifndef offsetof #define offsetof(STRUCTURE,FIELD) ((int)((char*)&((STRUCTURE*)0)->FIELD)) #endif /* ** Check to see if this machine uses EBCDIC. (Yes, believe it or ** not, there are still machines out there that use EBCDIC.) */ #if 'A' == '\301' # define SQLITE_EBCDIC 1 #else |
︙ | ︙ | |||
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 | typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WhereInfo WhereInfo; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque ** pointer types (i.e. FuncDef) defined above. */ /************** Include btree.h in the middle of sqliteInt.h *****************/ | > > | 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 | typedef struct Trigger Trigger; typedef struct TriggerPrg TriggerPrg; typedef struct TriggerStep TriggerStep; typedef struct UnpackedRecord UnpackedRecord; typedef struct VTable VTable; typedef struct VtabCtx VtabCtx; typedef struct Walker Walker; typedef struct WherePlan WherePlan; typedef struct WhereInfo WhereInfo; typedef struct WhereLevel WhereLevel; /* ** Defer sourcing vdbe.h and btree.h until after the "u8" and ** "BusyHandler" typedefs. vdbe.h also requires a few of the opaque ** pointer types (i.e. FuncDef) defined above. */ /************** Include btree.h in the middle of sqliteInt.h *****************/ |
︙ | ︙ | |||
8585 8586 8587 8588 8589 8590 8591 | #define BTREE_MEMORY 2 /* This is an in-memory DB */ #define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ #define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64); | | | 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 | #define BTREE_MEMORY 2 /* This is an in-memory DB */ #define BTREE_SINGLE 4 /* The file contains at most 1 b-tree */ #define BTREE_UNORDERED 8 /* Use of a hash implementation is OK */ SQLITE_PRIVATE int sqlite3BtreeClose(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetCacheSize(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeSetMmapLimit(Btree*,sqlite3_int64); SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel(Btree*,int,int,int); SQLITE_PRIVATE int sqlite3BtreeSyncDisabled(Btree*); SQLITE_PRIVATE int sqlite3BtreeSetPageSize(Btree *p, int nPagesize, int nReserve, int eFix); SQLITE_PRIVATE int sqlite3BtreeGetPageSize(Btree*); SQLITE_PRIVATE int sqlite3BtreeMaxPageCount(Btree*,int); SQLITE_PRIVATE u32 sqlite3BtreeLastPage(Btree*); SQLITE_PRIVATE int sqlite3BtreeSecureDelete(Btree*,int); SQLITE_PRIVATE int sqlite3BtreeGetReserve(Btree*); |
︙ | ︙ | |||
8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 | */ typedef struct Vdbe Vdbe; /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct Mem Mem; typedef struct SubProgram SubProgram; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: | > | 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 | */ typedef struct Vdbe Vdbe; /* ** The names of the following types declared in vdbeInt.h are required ** for the VdbeOp definition. */ typedef struct VdbeFunc VdbeFunc; typedef struct Mem Mem; typedef struct SubProgram SubProgram; /* ** A single instruction of the virtual machine has an opcode ** and as many as three operands. The instruction is recorded ** as an instance of the following structure: |
︙ | ︙ | |||
8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 | union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); | > | 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 | union { /* fourth parameter */ int i; /* Integer value if p4type==P4_INT32 */ void *p; /* Generic pointer */ char *z; /* Pointer to data for string (char array) types */ i64 *pI64; /* Used when p4type is P4_INT64 */ double *pReal; /* Used when p4type is P4_REAL */ FuncDef *pFunc; /* Used when p4type is P4_FUNCDEF */ VdbeFunc *pVdbeFunc; /* Used when p4type is P4_VDBEFUNC */ CollSeq *pColl; /* Used when p4type is P4_COLLSEQ */ Mem *pMem; /* Used when p4type is P4_MEM */ VTable *pVtab; /* Used when p4type is P4_VTAB */ KeyInfo *pKeyInfo; /* Used when p4type is P4_KEYINFO */ int *ai; /* Used when p4type is P4_INTARRAY */ SubProgram *pProgram; /* Used when p4type is P4_SUBPROGRAM */ int (*xAdvance)(BtCursor *, int *); |
︙ | ︙ | |||
8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 | */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ #define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ #define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ #define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ #define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ | > | 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 | */ #define P4_NOTUSED 0 /* The P4 parameter is not used */ #define P4_DYNAMIC (-1) /* Pointer to a string obtained from sqliteMalloc() */ #define P4_STATIC (-2) /* Pointer to a static string */ #define P4_COLLSEQ (-4) /* P4 is a pointer to a CollSeq structure */ #define P4_FUNCDEF (-5) /* P4 is a pointer to a FuncDef structure */ #define P4_KEYINFO (-6) /* P4 is a pointer to a KeyInfo structure */ #define P4_VDBEFUNC (-7) /* P4 is a pointer to a VdbeFunc structure */ #define P4_MEM (-8) /* P4 is a pointer to a Mem* structure */ #define P4_TRANSIENT 0 /* P4 is a pointer to a transient string */ #define P4_VTAB (-10) /* P4 is a pointer to an sqlite3_vtab structure */ #define P4_MPRINTF (-11) /* P4 is a string obtained from sqlite3_mprintf() */ #define P4_REAL (-12) /* P4 is a 64-bit floating point value */ #define P4_INT64 (-13) /* P4 is a 64-bit signed integer */ #define P4_INT32 (-14) /* P4 is a 32-bit signed integer */ |
︙ | ︙ | |||
8941 8942 8943 8944 8945 8946 8947 | ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodeh.awk script for details */ | < < < < < < < < < < < < < | | | | | < | | | < | < < < < | < < < < < < < < < < < < < | | | < | | < < < < < | | | < | < < < < < < < < < < < < < < < < < < < < < < < < < < < | | | < < < < < < < < < < < < < < < | | | | < < < < < < < < < < < < | < < < < < < < < < < | < < < < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < | | | | | | | > | | | < | | | > | | | 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 | ** The makefile scans the vdbe.c source file and creates the "opcodes.h" ** header file that defines a number for each opcode used by the VDBE. */ /************** Include opcodes.h in the middle of vdbe.h ********************/ /************** Begin file opcodes.h *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodeh.awk script for details */ #define OP_Goto 1 #define OP_Gosub 2 #define OP_Return 3 #define OP_Yield 4 #define OP_HaltIfNull 5 #define OP_Halt 6 #define OP_Integer 7 #define OP_Int64 8 #define OP_Real 130 /* same as TK_FLOAT */ #define OP_String8 94 /* same as TK_STRING */ #define OP_String 9 #define OP_Null 10 #define OP_Blob 11 #define OP_Variable 12 #define OP_Move 13 #define OP_Copy 14 #define OP_SCopy 15 #define OP_ResultRow 16 #define OP_Concat 91 /* same as TK_CONCAT */ #define OP_Add 86 /* same as TK_PLUS */ #define OP_Subtract 87 /* same as TK_MINUS */ #define OP_Multiply 88 /* same as TK_STAR */ #define OP_Divide 89 /* same as TK_SLASH */ #define OP_Remainder 90 /* same as TK_REM */ #define OP_CollSeq 17 #define OP_Function 18 #define OP_BitAnd 82 /* same as TK_BITAND */ #define OP_BitOr 83 /* same as TK_BITOR */ #define OP_ShiftLeft 84 /* same as TK_LSHIFT */ #define OP_ShiftRight 85 /* same as TK_RSHIFT */ #define OP_AddImm 20 #define OP_MustBeInt 21 #define OP_RealAffinity 22 #define OP_ToText 141 /* same as TK_TO_TEXT */ #define OP_ToBlob 142 /* same as TK_TO_BLOB */ #define OP_ToNumeric 143 /* same as TK_TO_NUMERIC*/ #define OP_ToInt 144 /* same as TK_TO_INT */ #define OP_ToReal 145 /* same as TK_TO_REAL */ #define OP_Eq 76 /* same as TK_EQ */ #define OP_Ne 75 /* same as TK_NE */ #define OP_Lt 79 /* same as TK_LT */ #define OP_Le 78 /* same as TK_LE */ #define OP_Gt 77 /* same as TK_GT */ #define OP_Ge 80 /* same as TK_GE */ #define OP_Permutation 23 #define OP_Compare 24 #define OP_Jump 25 #define OP_And 69 /* same as TK_AND */ #define OP_Or 68 /* same as TK_OR */ #define OP_Not 19 /* same as TK_NOT */ #define OP_BitNot 93 /* same as TK_BITNOT */ #define OP_Once 26 #define OP_If 27 #define OP_IfNot 28 #define OP_IsNull 73 /* same as TK_ISNULL */ #define OP_NotNull 74 /* same as TK_NOTNULL */ #define OP_Column 29 #define OP_Affinity 30 #define OP_MakeRecord 31 #define OP_Count 32 #define OP_Savepoint 33 #define OP_AutoCommit 34 #define OP_Transaction 35 #define OP_ReadCookie 36 #define OP_SetCookie 37 #define OP_VerifyCookie 38 #define OP_OpenRead 39 #define OP_OpenWrite 40 #define OP_OpenAutoindex 41 #define OP_OpenEphemeral 42 #define OP_SorterOpen 43 #define OP_OpenPseudo 44 #define OP_Close 45 #define OP_SeekLt 46 #define OP_SeekLe 47 #define OP_SeekGe 48 #define OP_SeekGt 49 #define OP_Seek 50 #define OP_NotFound 51 #define OP_Found 52 #define OP_IsUnique 53 #define OP_NotExists 54 #define OP_Sequence 55 #define OP_NewRowid 56 #define OP_Insert 57 #define OP_InsertInt 58 #define OP_Delete 59 #define OP_ResetCount 60 #define OP_SorterCompare 61 #define OP_SorterData 62 #define OP_RowKey 63 #define OP_RowData 64 #define OP_Rowid 65 #define OP_NullRow 66 #define OP_Last 67 #define OP_SorterSort 70 #define OP_Sort 71 #define OP_Rewind 72 #define OP_SorterNext 81 #define OP_Prev 92 #define OP_Next 95 #define OP_SorterInsert 96 #define OP_IdxInsert 97 #define OP_IdxDelete 98 #define OP_IdxRowid 99 #define OP_IdxLT 100 #define OP_IdxGE 101 #define OP_Destroy 102 #define OP_Clear 103 #define OP_CreateIndex 104 #define OP_CreateTable 105 #define OP_ParseSchema 106 #define OP_LoadAnalysis 107 #define OP_DropTable 108 #define OP_DropIndex 109 #define OP_DropTrigger 110 #define OP_IntegrityCk 111 #define OP_RowSetAdd 112 #define OP_RowSetRead 113 #define OP_RowSetTest 114 #define OP_Program 115 #define OP_Param 116 #define OP_FkCounter 117 #define OP_FkIfZero 118 #define OP_MemMax 119 #define OP_IfPos 120 #define OP_IfNeg 121 #define OP_IfZero 122 #define OP_AggStep 123 #define OP_AggFinal 124 #define OP_Checkpoint 125 #define OP_JournalMode 126 #define OP_Vacuum 127 #define OP_IncrVacuum 128 #define OP_Expire 129 #define OP_TableLock 131 #define OP_VBegin 132 #define OP_VCreate 133 #define OP_VDestroy 134 #define OP_VOpen 135 #define OP_VFilter 136 #define OP_VColumn 137 #define OP_VNext 138 #define OP_VRename 139 #define OP_VUpdate 140 #define OP_Pagecount 146 #define OP_MaxPgcnt 147 #define OP_Trace 148 #define OP_Noop 149 #define OP_Explain 150 /* Properties such as "out2" or "jump" that are specified in ** comments following the "case" for each opcode in the vdbe.c ** are encoded into bitvectors as follows: */ #define OPFLG_JUMP 0x0001 /* jump: P2 holds jmp target */ #define OPFLG_OUT2_PRERELEASE 0x0002 /* out2-prerelease: */ #define OPFLG_IN1 0x0004 /* in1: P1 is an input */ #define OPFLG_IN2 0x0008 /* in2: P2 is an input */ #define OPFLG_IN3 0x0010 /* in3: P3 is an input */ #define OPFLG_OUT2 0x0020 /* out2: P2 is an output */ #define OPFLG_OUT3 0x0040 /* out3: P3 is an output */ #define OPFLG_INITIALIZER {\ /* 0 */ 0x00, 0x01, 0x01, 0x04, 0x04, 0x10, 0x00, 0x02,\ /* 8 */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x00, 0x24,\ /* 16 */ 0x00, 0x00, 0x00, 0x24, 0x04, 0x05, 0x04, 0x00,\ /* 24 */ 0x00, 0x01, 0x01, 0x05, 0x05, 0x00, 0x00, 0x00,\ /* 32 */ 0x02, 0x00, 0x00, 0x00, 0x02, 0x10, 0x00, 0x00,\ /* 40 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x11,\ /* 48 */ 0x11, 0x11, 0x08, 0x11, 0x11, 0x11, 0x11, 0x02,\ /* 56 */ 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 64 */ 0x00, 0x02, 0x00, 0x01, 0x4c, 0x4c, 0x01, 0x01,\ /* 72 */ 0x01, 0x05, 0x05, 0x15, 0x15, 0x15, 0x15, 0x15,\ /* 80 */ 0x15, 0x01, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c, 0x4c,\ /* 88 */ 0x4c, 0x4c, 0x4c, 0x4c, 0x01, 0x24, 0x02, 0x01,\ /* 96 */ 0x08, 0x08, 0x00, 0x02, 0x01, 0x01, 0x02, 0x00,\ /* 104 */ 0x02, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 112 */ 0x0c, 0x45, 0x15, 0x01, 0x02, 0x00, 0x01, 0x08,\ /* 120 */ 0x05, 0x05, 0x05, 0x00, 0x00, 0x00, 0x02, 0x00,\ /* 128 */ 0x01, 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00,\ /* 136 */ 0x01, 0x00, 0x01, 0x00, 0x00, 0x04, 0x04, 0x04,\ /* 144 */ 0x04, 0x04, 0x02, 0x02, 0x00, 0x00, 0x00,} /************** End of opcodes.h *********************************************/ /************** Continuing where we left off in vdbe.h ***********************/ /* ** Prototypes for the VDBE interface. See comments on the implementation |
︙ | ︙ | |||
9172 9173 9174 9175 9176 9177 9178 | SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); | | | 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 | SQLITE_PRIVATE void sqlite3VdbeSetNumCols(Vdbe*,int); SQLITE_PRIVATE int sqlite3VdbeSetColName(Vdbe*, int, int, const char *, void(*)(void*)); SQLITE_PRIVATE void sqlite3VdbeCountChanges(Vdbe*); SQLITE_PRIVATE sqlite3 *sqlite3VdbeDb(Vdbe*); SQLITE_PRIVATE void sqlite3VdbeSetSql(Vdbe*, const char *z, int n, int); SQLITE_PRIVATE void sqlite3VdbeSwap(Vdbe*,Vdbe*); SQLITE_PRIVATE VdbeOp *sqlite3VdbeTakeOpArray(Vdbe*, int*, int*); SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe*, int, u8); SQLITE_PRIVATE void sqlite3VdbeSetVarmask(Vdbe*, int); #ifndef SQLITE_OMIT_TRACE SQLITE_PRIVATE char *sqlite3VdbeExpandSql(Vdbe*, const char*); #endif SQLITE_PRIVATE void sqlite3VdbeRecordUnpack(KeyInfo*,int,const void*,UnpackedRecord*); SQLITE_PRIVATE int sqlite3VdbeRecordCompare(int,const void*,UnpackedRecord*); |
︙ | ︙ | |||
9289 9290 9291 9292 9293 9294 9295 | /* ** Flags that make up the mask passed to sqlite3PagerAcquire(). */ #define PAGER_ACQUIRE_NOCONTENT 0x01 /* Do not load data from disk */ #define PAGER_ACQUIRE_READONLY 0x02 /* Read-only page is acceptable */ | < < < < < < < < < < < < | 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 | /* ** Flags that make up the mask passed to sqlite3PagerAcquire(). */ #define PAGER_ACQUIRE_NOCONTENT 0x01 /* Do not load data from disk */ #define PAGER_ACQUIRE_READONLY 0x02 /* Read-only page is acceptable */ /* ** The remainder of this file contains the declarations of the functions ** that make up the Pager sub-system API. See source code comments for ** a detailed description of each routine. */ /* Open and close a Pager connection. */ |
︙ | ︙ | |||
9327 9328 9329 9330 9331 9332 9333 | /* Functions used to configure a Pager object. */ SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int); SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64); SQLITE_PRIVATE void sqlite3PagerShrink(Pager*); | | | 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 | /* Functions used to configure a Pager object. */ SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(Pager*, int(*)(void *), void *); SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager*, u32*, int); SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager*, int); SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager*, int); SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *, sqlite3_int64); SQLITE_PRIVATE void sqlite3PagerShrink(Pager*); SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel(Pager*,int,int,int); SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *, int); SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *, int); SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager*); SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager*); SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *, i64); SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager*); |
︙ | ︙ | |||
9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 | ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zName; /* Name of this database */ Btree *pBt; /* The B*Tree structure for this database file */ u8 safety_level; /* How aggressive at syncing data to disk */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** | > | 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 | ** in the sqlite.aDb[] array. aDb[0] is the main database file and ** aDb[1] is the database file used to hold temporary tables. Additional ** databases may be attached. */ struct Db { char *zName; /* Name of this database */ Btree *pBt; /* The B*Tree structure for this database file */ u8 inTrans; /* 0: not writable. 1: Transaction. 2: Checkpoint */ u8 safety_level; /* How aggressive at syncing data to disk */ Schema *pSchema; /* Pointer to database schema (possibly shared) */ }; /* ** An instance of the following structure stores a database schema. ** |
︙ | ︙ | |||
10101 10102 10103 10104 10105 10106 10107 | int aLimit[SQLITE_N_LIMIT]; /* Limits */ struct sqlite3InitInfo { /* Information used during initialization */ int newTnum; /* Rootpage of table being initialized */ u8 iDb; /* Which db file is being initialized */ u8 busy; /* TRUE if currently initializing */ u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ } init; | | | < | | 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 | int aLimit[SQLITE_N_LIMIT]; /* Limits */ struct sqlite3InitInfo { /* Information used during initialization */ int newTnum; /* Rootpage of table being initialized */ u8 iDb; /* Which db file is being initialized */ u8 busy; /* TRUE if currently initializing */ u8 orphanTrigger; /* Last statement is orphaned TEMP trigger */ } init; int activeVdbeCnt; /* Number of VDBEs currently executing */ int writeVdbeCnt; /* Number of active VDBEs that are writing */ int vdbeExecCnt; /* Number of nested calls to VdbeExec() */ int nExtension; /* Number of loaded extensions */ void **aExtension; /* Array of shared library handles */ void (*xTrace)(void*,const char*); /* Trace function */ void *pTraceArg; /* Argument to the trace function */ void (*xProfile)(void*,const char*,u64); /* Profiling function */ void *pProfileArg; /* Argument to profile function */ void *pCommitArg; /* Argument to xCommitCallback() */ |
︙ | ︙ | |||
10140 10141 10142 10143 10144 10145 10146 | int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); /* Access authorization function */ void *pAuthArg; /* 1st argument to the access auth function */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ | | < | 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 | int (*xAuth)(void*,int,const char*,const char*,const char*,const char*); /* Access authorization function */ void *pAuthArg; /* 1st argument to the access auth function */ #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int (*xProgress)(void *); /* The progress callback */ void *pProgressArg; /* Argument to the progress callback */ int nProgressOps; /* Number of opcodes for progress callback */ #endif #ifndef SQLITE_OMIT_VIRTUALTABLE int nVTrans; /* Allocated size of aVTrans */ Hash aModule; /* populated by sqlite3_create_module() */ VtabCtx *pVtabCtx; /* Context for active vtab connect/create */ VTable **aVTrans; /* Virtual tables with open transactions */ VTable *pDisconnect; /* Disconnect these in next sqlite3_prepare() */ #endif FuncDefHash aFunc; /* Hash table of connection functions */ Hash aCollSeq; /* All collating sequences */ BusyHandler busyHandler; /* Busy callback */ Db aDbStatic[2]; /* Static space for the 2 default backends */ Savepoint *pSavepoint; /* List of active savepoints */ int busyTimeout; /* Busy handler timeout, in msec */ int nSavepoint; /* Number of non-transaction savepoints */ int nStatement; /* Number of nested statement-transactions */ i64 nDeferredCons; /* Net deferred constraints this transaction. */ int *pnBytesFreed; /* If not NULL, increment this in DbFree() */ #ifdef SQLITE_ENABLE_UNLOCK_NOTIFY /* The following variables are all protected by the STATIC_MASTER ** mutex, not by sqlite3.mutex. They are used by code in notify.c. ** ** When X.pUnlockConnection==Y, that means that X is waiting for Y to |
︙ | ︙ | |||
10190 10191 10192 10193 10194 10195 10196 | #define ENC(db) ((db)->aDb[0].pSchema->enc) /* ** Possible values for the sqlite3.flags. */ #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ | < < < | | | | | | | | | | | > > | | | | | | | | < < < < < | 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 | #define ENC(db) ((db)->aDb[0].pSchema->enc) /* ** Possible values for the sqlite3.flags. */ #define SQLITE_VdbeTrace 0x00000001 /* True to trace VDBE execution */ #define SQLITE_InternChanges 0x00000002 /* Uncommitted Hash table changes */ #define SQLITE_FullColNames 0x00000004 /* Show full column names on SELECT */ #define SQLITE_ShortColNames 0x00000008 /* Show short columns names */ #define SQLITE_CountRows 0x00000010 /* Count rows changed by INSERT, */ /* DELETE, or UPDATE and return */ /* the count using a callback. */ #define SQLITE_NullCallback 0x00000020 /* Invoke the callback once if the */ /* result set is empty */ #define SQLITE_SqlTrace 0x00000040 /* Debug print SQL as it executes */ #define SQLITE_VdbeListing 0x00000080 /* Debug listings of VDBE programs */ #define SQLITE_WriteSchema 0x00000100 /* OK to update SQLITE_MASTER */ #define SQLITE_VdbeAddopTrace 0x00000200 /* Trace sqlite3VdbeAddOp() calls */ #define SQLITE_IgnoreChecks 0x00000400 /* Do not enforce check constraints */ #define SQLITE_ReadUncommitted 0x0000800 /* For shared-cache mode */ #define SQLITE_LegacyFileFmt 0x00001000 /* Create new databases in format 1 */ #define SQLITE_FullFSync 0x00002000 /* Use full fsync on the backend */ #define SQLITE_CkptFullFSync 0x00004000 /* Use full fsync for checkpoint */ #define SQLITE_RecoveryMode 0x00008000 /* Ignore schema errors */ #define SQLITE_ReverseOrder 0x00010000 /* Reverse unordered SELECTs */ #define SQLITE_RecTriggers 0x00020000 /* Enable recursive triggers */ #define SQLITE_ForeignKeys 0x00040000 /* Enforce foreign key constraints */ #define SQLITE_AutoIndex 0x00080000 /* Enable automatic indexes */ #define SQLITE_PreferBuiltin 0x00100000 /* Preference to built-in funcs */ #define SQLITE_LoadExtension 0x00200000 /* Enable load_extension */ #define SQLITE_EnableTrigger 0x00400000 /* True to enable triggers */ /* ** Bits of the sqlite3.dbOptFlags field that are used by the ** sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS,...) interface to ** selectively disable various optimizations. */ #define SQLITE_QueryFlattener 0x0001 /* Query flattening */ #define SQLITE_ColumnCache 0x0002 /* Column cache */ #define SQLITE_GroupByOrder 0x0004 /* GROUPBY cover of ORDERBY */ #define SQLITE_FactorOutConst 0x0008 /* Constant factoring */ #define SQLITE_IdxRealAsInt 0x0010 /* Store REAL as INT in indices */ #define SQLITE_DistinctOpt 0x0020 /* DISTINCT using indexes */ #define SQLITE_CoverIdxScan 0x0040 /* Covering index scans */ #define SQLITE_OrderByIdxJoin 0x0080 /* ORDER BY of joins via index */ #define SQLITE_SubqCoroutine 0x0100 /* Evaluate subqueries as coroutines */ #define SQLITE_Transitive 0x0200 /* Transitive constraints */ #define SQLITE_AllOpts 0xffff /* All optimizations */ /* ** Macros for testing whether or not optimizations are enabled or disabled. */ #ifndef SQLITE_OMIT_BUILTIN_TEST #define OptimizationDisabled(db, mask) (((db)->dbOptFlags&(mask))!=0) |
︙ | ︙ | |||
10364 10365 10366 10367 10368 10369 10370 | ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. */ struct Savepoint { char *zName; /* Savepoint name (nul-terminated) */ i64 nDeferredCons; /* Number of deferred fk violations */ | < | 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 | ** sqlite3.pSavepoint. The first element in the list is the most recently ** opened savepoint. Savepoints are added to the list by the vdbe ** OP_Savepoint instruction. */ struct Savepoint { char *zName; /* Savepoint name (nul-terminated) */ i64 nDeferredCons; /* Number of deferred fk violations */ Savepoint *pNext; /* Parent savepoint (if any) */ }; /* ** The following are used as the second parameter to sqlite3Savepoint(), ** and as the P1 argument to the OP_Savepoint instruction. */ |
︙ | ︙ | |||
10683 10684 10685 10686 10687 10688 10689 | #define OE_Default 99 /* Do whatever the default action is */ /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. | < < < < | | | 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 | #define OE_Default 99 /* Do whatever the default action is */ /* ** An instance of the following structure is passed as the first ** argument to sqlite3VdbeKeyCompare and is used to control the ** comparison of the two index keys. */ struct KeyInfo { sqlite3 *db; /* The database connection */ u8 enc; /* Text encoding - one of the SQLITE_UTF* values */ u16 nField; /* Number of entries in aColl[] */ u8 *aSortOrder; /* Sort order for each column. May be NULL */ CollSeq *aColl[1]; /* Collating sequence for each term of the key */ }; /* ** An instance of the following structure holds information about a ** single index record that has already been parsed out into individual ** values. |
︙ | ︙ | |||
10761 10762 10763 10764 10765 10766 10767 | tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ | < < | 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 | tRowcnt *aiRowEst; /* From ANALYZE: Est. rows selected by each column */ Table *pTable; /* The SQL table being indexed */ char *zColAff; /* String defining the affinity of each column */ Index *pNext; /* The next index associated with the same table */ Schema *pSchema; /* Schema containing this index */ u8 *aSortOrder; /* for each column: True==DESC, False==ASC */ char **azColl; /* Array of collation sequence names for index */ int tnum; /* DB Page containing root of this index */ u16 nColumn; /* Number of columns in table used by this index */ u8 onError; /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ unsigned autoIndex:2; /* 1==UNIQUE, 2==PRIMARY KEY, 0==CREATE INDEX */ unsigned bUnordered:1; /* Use this index for == or IN queries only */ #ifdef SQLITE_ENABLE_STAT3 int nSample; /* Number of elements in aSample[] */ tRowcnt avgEq; /* Average nEq value for key values not in aSample */ IndexSample *aSample; /* Samples of the left-most key */ #endif }; |
︙ | ︙ | |||
11113 11114 11115 11116 11117 11118 11119 | typedef u64 Bitmask; /* ** The number of bits in a Bitmask. "BMS" means "BitMask Size". */ #define BMS ((int)(sizeof(Bitmask)*8)) | < < < < < | | | 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 | typedef u64 Bitmask; /* ** The number of bits in a Bitmask. "BMS" means "BitMask Size". */ #define BMS ((int)(sizeof(Bitmask)*8)) /* ** The following structure describes the FROM clause of a SELECT statement. ** Each table or subquery in the FROM clause is a separate element of ** the SrcList.a[] array. ** ** With the addition of multiple database support, the following structure ** can also be used to describe a particular table such as the table that ** is modified by an INSERT, DELETE, or UPDATE statement. In standard SQL, ** such a table must be a simple name: ID. But in SQLite, the table can ** now be identified by a database name, a dot, then the table name: ID.ID. ** ** The jointype starts out showing the join type between the current table ** and the next table on the list. The parser builds the list this way. ** But sqlite3SrcListShiftJoinType() later shifts the jointypes so that each ** jointype expresses the join between the table and the previous table. ** ** In the colUsed field, the high-order bit (bit 63) is set if the table ** contains more than 63 columns and the 64-th or later column is used. */ struct SrcList { i16 nSrc; /* Number of tables or subqueries in the FROM clause */ i16 nAlloc; /* Number of entries allocated in a[] below */ struct SrcList_item { Schema *pSchema; /* Schema to which this item is fixed */ char *zDatabase; /* Name of database holding this table */ char *zName; /* Name of the table */ char *zAlias; /* The "B" part of a "A AS B" phrase. zName is the "A" */ Table *pTab; /* An SQL table corresponding to zName */ Select *pSelect; /* A SELECT statement used in place of a table name */ |
︙ | ︙ | |||
11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 | #define JT_NATURAL 0x0004 /* True for a "natural" join */ #define JT_LEFT 0x0008 /* Left outer join */ #define JT_RIGHT 0x0010 /* Right outer join */ #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ #define JT_ERROR 0x0040 /* unknown or unsupported join type */ /* ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() ** and the WhereInfo.wctrlFlags member. */ #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < > > > | > > > > > > > > > > > > > > > > > > > > > | 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 | #define JT_NATURAL 0x0004 /* True for a "natural" join */ #define JT_LEFT 0x0008 /* Left outer join */ #define JT_RIGHT 0x0010 /* Right outer join */ #define JT_OUTER 0x0020 /* The "OUTER" keyword is present */ #define JT_ERROR 0x0040 /* unknown or unsupported join type */ /* ** A WherePlan object holds information that describes a lookup ** strategy. ** ** This object is intended to be opaque outside of the where.c module. ** It is included here only so that that compiler will know how big it ** is. None of the fields in this object should be used outside of ** the where.c module. ** ** Within the union, pIdx is only used when wsFlags&WHERE_INDEXED is true. ** pTerm is only used when wsFlags&WHERE_MULTI_OR is true. And pVtabIdx ** is only used when wsFlags&WHERE_VIRTUALTABLE is true. It is never the ** case that more than one of these conditions is true. */ struct WherePlan { u32 wsFlags; /* WHERE_* flags that describe the strategy */ u16 nEq; /* Number of == constraints */ u16 nOBSat; /* Number of ORDER BY terms satisfied */ double nRow; /* Estimated number of rows (for EQP) */ union { Index *pIdx; /* Index when WHERE_INDEXED is true */ struct WhereTerm *pTerm; /* WHERE clause term for OR-search */ sqlite3_index_info *pVtabIdx; /* Virtual table index to use */ } u; }; /* ** For each nested loop in a WHERE clause implementation, the WhereInfo ** structure contains a single instance of this structure. This structure ** is intended to be private to the where.c module and should not be ** access or modified by other modules. ** ** The pIdxInfo field is used to help pick the best index on a ** virtual table. The pIdxInfo pointer contains indexing ** information for the i-th table in the FROM clause before reordering. ** All the pIdxInfo pointers are freed by whereInfoFree() in where.c. ** All other information in the i-th WhereLevel object for the i-th table ** after FROM clause ordering. */ struct WhereLevel { WherePlan plan; /* query plan for this element of the FROM clause */ int iLeftJoin; /* Memory cell used to implement LEFT OUTER JOIN */ int iTabCur; /* The VDBE cursor used to access the table */ int iIdxCur; /* The VDBE cursor used to access pIdx */ int addrBrk; /* Jump here to break out of the loop */ int addrNxt; /* Jump here to start the next IN combination */ int addrCont; /* Jump here to continue with the next loop cycle */ int addrFirst; /* First instruction of interior of the loop */ u8 iFrom; /* Which entry in the FROM clause */ u8 op, p5; /* Opcode and P5 of the opcode that ends the loop */ int p1, p2; /* Operands of the opcode used to ends the loop */ union { /* Information that depends on plan.wsFlags */ struct { int nIn; /* Number of entries in aInLoop[] */ struct InLoop { int iCur; /* The VDBE cursor used by this IN operator */ int addrInTop; /* Top of the IN loop */ u8 eEndLoopOp; /* IN Loop terminator. OP_Next or OP_Prev */ } *aInLoop; /* Information about each nested IN operator */ } in; /* Used when plan.wsFlags&WHERE_IN_ABLE */ Index *pCovidx; /* Possible covering index for WHERE_MULTI_OR */ } u; double rOptCost; /* "Optimal" cost for this level */ /* The following field is really not part of the current level. But ** we need a place to cache virtual table index information for each ** virtual table in the FROM clause and the WhereLevel structure is ** a convenient place since there is one WhereLevel for each FROM clause ** element. */ sqlite3_index_info *pIdxInfo; /* Index info for n-th source table */ }; /* ** Flags appropriate for the wctrlFlags parameter of sqlite3WhereBegin() ** and the WhereInfo.wctrlFlags member. */ #define WHERE_ORDERBY_NORMAL 0x0000 /* No-op */ #define WHERE_ORDERBY_MIN 0x0001 /* ORDER BY processing for min() func */ #define WHERE_ORDERBY_MAX 0x0002 /* ORDER BY processing for max() func */ #define WHERE_ONEPASS_DESIRED 0x0004 /* Want to do one-pass UPDATE/DELETE */ #define WHERE_DUPLICATES_OK 0x0008 /* Ok to return a row more than once */ #define WHERE_OMIT_OPEN_CLOSE 0x0010 /* Table cursors are already open */ #define WHERE_FORCE_TABLE 0x0020 /* Do not use an index-only search */ #define WHERE_ONETABLE_ONLY 0x0040 /* Only code the 1st table in pTabList */ #define WHERE_AND_ONLY 0x0080 /* Don't use indices for OR terms */ /* ** The WHERE clause processing routine has two halves. The ** first part does the start of the WHERE loop and the second ** half does the tail of the WHERE loop. An instance of ** this structure is returned by the first half and passed ** into the second half to give some continuity. */ struct WhereInfo { Parse *pParse; /* Parsing and code generating context */ SrcList *pTabList; /* List of tables in the join */ u16 nOBSat; /* Number of ORDER BY terms satisfied by indices */ u16 wctrlFlags; /* Flags originally passed to sqlite3WhereBegin() */ u8 okOnePass; /* Ok to use one-pass algorithm for UPDATE/DELETE */ u8 untestedTerms; /* Not all WHERE terms resolved by outer loop */ u8 eDistinct; /* One of the WHERE_DISTINCT_* values below */ int iTop; /* The very beginning of the WHERE loop */ int iContinue; /* Jump here to continue with next record */ int iBreak; /* Jump here to break out of the loop */ int nLevel; /* Number of nested loop */ struct WhereClause *pWC; /* Decomposition of the WHERE clause */ double savedNQueryLoop; /* pParse->nQueryLoop outside the WHERE loop */ double nRowOut; /* Estimated number of output rows */ WhereLevel a[1]; /* Information about each nest loop in WHERE */ }; /* Allowed values for WhereInfo.eDistinct and DistinctCtx.eTnctType */ #define WHERE_DISTINCT_NOOP 0 /* DISTINCT keyword not used */ #define WHERE_DISTINCT_UNIQUE 1 /* No duplicates */ #define WHERE_DISTINCT_ORDERED 2 /* All duplicates are adjacent */ #define WHERE_DISTINCT_UNORDERED 3 /* Duplicates are scattered */ /* ** A NameContext defines a context in which to resolve table and column |
︙ | ︙ | |||
11225 11226 11227 11228 11229 11230 11231 | ** NameContext in the parent query. Thus the process of scanning the ** NameContext list corresponds to searching through successively outer ** subqueries looking for a match. */ struct NameContext { Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ | | | > | 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 | ** NameContext in the parent query. Thus the process of scanning the ** NameContext list corresponds to searching through successively outer ** subqueries looking for a match. */ struct NameContext { Parse *pParse; /* The parser */ SrcList *pSrcList; /* One or more tables used to resolve names */ ExprList *pEList; /* Optional list of named expressions */ AggInfo *pAggInfo; /* Information about aggregates at this level */ NameContext *pNext; /* Next outer name context. NULL for outermost */ int nRef; /* Number of names resolved by this context */ int nErr; /* Number of errors encountered while resolving names */ u8 ncFlags; /* Zero or more NC_* flags defined below */ }; /* ** Allowed values for the NameContext, ncFlags field. */ #define NC_AllowAgg 0x01 /* Aggregate functions are allowed here */ #define NC_HasAgg 0x02 /* One or more aggregate functions seen */ #define NC_IsCheck 0x04 /* True if resolving names in a CHECK constraint */ #define NC_InAggFunc 0x08 /* True if analyzing arguments to an agg func */ #define NC_AsMaybe 0x10 /* Resolve to AS terms of the result set only ** if no other resolution is available */ /* ** An instance of the following structure contains all information ** needed to generate code for a single SELECT statement. ** ** nLimit is set to -1 if there is no LIMIT clause. nOffset is set to 0. ** If there is a LIMIT clause, the parser sets nLimit to the value of the |
︙ | ︙ | |||
11268 11269 11270 11271 11272 11273 11274 | */ struct Select { ExprList *pEList; /* The fields of the result */ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ u16 selFlags; /* Various SF_* values */ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ | | | 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 | */ struct Select { ExprList *pEList; /* The fields of the result */ u8 op; /* One of: TK_UNION TK_ALL TK_INTERSECT TK_EXCEPT */ u16 selFlags; /* Various SF_* values */ int iLimit, iOffset; /* Memory registers holding LIMIT & OFFSET counters */ int addrOpenEphm[3]; /* OP_OpenEphem opcodes related to this select */ double nSelectRow; /* Estimated number of result rows */ SrcList *pSrc; /* The FROM clause */ Expr *pWhere; /* The WHERE clause */ ExprList *pGroupBy; /* The GROUP BY clause */ Expr *pHaving; /* The HAVING clause */ ExprList *pOrderBy; /* The ORDER BY clause */ Select *pPrior; /* Prior select in a compound select statement */ Select *pNext; /* Next select to the left in a compound */ |
︙ | ︙ | |||
11295 11296 11297 11298 11299 11300 11301 | #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ #define SF_UseSorter 0x0040 /* Sort using a sorter */ #define SF_Values 0x0080 /* Synthesized from VALUES clause */ #define SF_Materialize 0x0100 /* Force materialization of views */ #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ | < | 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 | #define SF_UsesEphemeral 0x0008 /* Uses the OpenEphemeral opcode */ #define SF_Expanded 0x0010 /* sqlite3SelectExpand() called on this */ #define SF_HasTypeInfo 0x0020 /* FROM subqueries have Table metadata */ #define SF_UseSorter 0x0040 /* Sort using a sorter */ #define SF_Values 0x0080 /* Synthesized from VALUES clause */ #define SF_Materialize 0x0100 /* Force materialization of views */ #define SF_NestedFrom 0x0200 /* Part of a parenthesized FROM clause */ /* ** The results of a select can be distributed in several ways. The ** "SRT" prefix means "SELECT Result Type". */ #define SRT_Union 1 /* Store result as keys in an index */ |
︙ | ︙ | |||
11417 11418 11419 11420 11421 11422 11423 | u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ u8 nTempInUse; /* Number of aTempReg[] currently checked out */ u8 nColCache; /* Number of entries in aColCache[] */ u8 iColCache; /* Next entry in aColCache[] to replace */ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ | < < | 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 | u8 nested; /* Number of nested calls to the parser/code generator */ u8 nTempReg; /* Number of temporary registers in aTempReg[] */ u8 nTempInUse; /* Number of aTempReg[] currently checked out */ u8 nColCache; /* Number of entries in aColCache[] */ u8 iColCache; /* Next entry in aColCache[] to replace */ u8 isMultiWrite; /* True if statement may modify/insert multiple rows */ u8 mayAbort; /* True if statement may throw an ABORT exception */ int aTempReg[8]; /* Holding area for temporary registers */ int nRangeReg; /* Size of the temporary register block */ int iRangeReg; /* First register in temporary register block */ int nErr; /* Number of errors seen */ int nTab; /* Number of previously allocated VDBE cursors */ int nMem; /* Number of memory cells used so far */ int nSet; /* Number of sets used so far */ int nOnce; /* Number of OP_Once instructions so far */ int ckBase; /* Base register of data during check constraints */ int iCacheLevel; /* ColCache valid when aColCache[].iLevel<=iCacheLevel */ int iCacheCnt; /* Counter used to generate aColCache[].lru values */ struct yColCache { int iTable; /* Table cursor number */ int iColumn; /* Table column number */ u8 tempReg; /* iReg is a temp register that needs to be freed */ int iLevel; /* Nesting level */ |
︙ | ︙ | |||
11455 11456 11457 11458 11459 11460 11461 | TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ /* Information used while coding trigger programs. */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ | | | 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 | TableLock *aTableLock; /* Required table locks for shared-cache mode */ #endif AutoincInfo *pAinc; /* Information about AUTOINCREMENT counters */ /* Information used while coding trigger programs. */ Parse *pToplevel; /* Parse structure for main program (or NULL) */ Table *pTriggerTab; /* Table triggers are being coded for */ double nQueryLoop; /* Estimated number of iterations of a query */ u32 oldmask; /* Mask of old.* columns referenced */ u32 newmask; /* Mask of new.* columns referenced */ u8 eTriggerOp; /* TK_UPDATE, TK_INSERT or TK_DELETE */ u8 eOrconf; /* Default ON CONFLICT policy for trigger steps */ u8 disableTriggers; /* True to disable triggers */ /* Above is constant between recursions. Below is reset before and after |
︙ | ︙ | |||
12009 12010 12011 12012 12013 12014 12015 | SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*); SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*); SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*); SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*); SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, | | < < < < < < | 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 | SQLITE_PRIVATE void sqlite3SrcListIndexedBy(Parse *, SrcList *, Token *); SQLITE_PRIVATE int sqlite3IndexedByLookup(Parse *, struct SrcList_item *); SQLITE_PRIVATE void sqlite3SrcListShiftJoinType(SrcList*); SQLITE_PRIVATE void sqlite3SrcListAssignCursors(Parse*, SrcList*); SQLITE_PRIVATE void sqlite3IdListDelete(sqlite3*, IdList*); SQLITE_PRIVATE void sqlite3SrcListDelete(sqlite3*, SrcList*); SQLITE_PRIVATE Index *sqlite3CreateIndex(Parse*,Token*,Token*,SrcList*,ExprList*,int,Token*, Token*, int, int); SQLITE_PRIVATE void sqlite3DropIndex(Parse*, SrcList*, int); SQLITE_PRIVATE int sqlite3Select(Parse*, Select*, SelectDest*); SQLITE_PRIVATE Select *sqlite3SelectNew(Parse*,ExprList*,SrcList*,Expr*,ExprList*, Expr*,ExprList*,u16,Expr*,Expr*); SQLITE_PRIVATE void sqlite3SelectDelete(sqlite3*, Select*); SQLITE_PRIVATE Table *sqlite3SrcListLookup(Parse*, SrcList*); SQLITE_PRIVATE int sqlite3IsReadOnly(Parse*, Table*, int); SQLITE_PRIVATE void sqlite3OpenTable(Parse*, int iCur, int iDb, Table*, int); #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) SQLITE_PRIVATE Expr *sqlite3LimitWhere(Parse*,SrcList*,Expr*,ExprList*,Expr*,Expr*,char*); #endif SQLITE_PRIVATE void sqlite3DeleteFrom(Parse*, SrcList*, Expr*); SQLITE_PRIVATE void sqlite3Update(Parse*, SrcList*, ExprList*, Expr*, int); SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin(Parse*,SrcList*,Expr*,ExprList*,ExprList*,u16,int); SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo*); SQLITE_PRIVATE int sqlite3ExprCodeGetColumn(Parse*, Table*, int, int, int, u8); SQLITE_PRIVATE void sqlite3ExprCodeGetColumnOfTable(Vdbe*, Table*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCodeMove(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCacheStore(Parse*, int, int, int); SQLITE_PRIVATE void sqlite3ExprCachePush(Parse*); SQLITE_PRIVATE void sqlite3ExprCachePop(Parse*, int); SQLITE_PRIVATE void sqlite3ExprCacheRemove(Parse*, int, int); |
︙ | ︙ | |||
12057 12058 12059 12060 12061 12062 12063 | SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3Vacuum(Parse*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*); | | | < | 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 | SQLITE_PRIVATE Table *sqlite3LocateTableItem(Parse*,int isView,struct SrcList_item *); SQLITE_PRIVATE Index *sqlite3FindIndex(sqlite3*,const char*, const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteTable(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3UnlinkAndDeleteIndex(sqlite3*,int,const char*); SQLITE_PRIVATE void sqlite3Vacuum(Parse*); SQLITE_PRIVATE int sqlite3RunVacuum(char**, sqlite3*); SQLITE_PRIVATE char *sqlite3NameFromToken(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3ExprCompare(Expr*, Expr*); SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList*, ExprList*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggregates(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ExprAnalyzeAggList(NameContext*,ExprList*); SQLITE_PRIVATE int sqlite3FunctionUsesThisSrc(Expr*, SrcList*); SQLITE_PRIVATE Vdbe *sqlite3GetVdbe(Parse*); SQLITE_PRIVATE void sqlite3PrngSaveState(void); SQLITE_PRIVATE void sqlite3PrngRestoreState(void); SQLITE_PRIVATE void sqlite3PrngResetState(void); |
︙ | ︙ | |||
12086 12087 12088 12089 12090 12091 12092 | SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); | | | 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 | SQLITE_PRIVATE int sqlite3ExprIsInteger(Expr*, int*); SQLITE_PRIVATE int sqlite3ExprCanBeNull(const Expr*); SQLITE_PRIVATE void sqlite3ExprCodeIsNullJump(Vdbe*, const Expr*, int, int); SQLITE_PRIVATE int sqlite3ExprNeedsNoAffinityChange(const Expr*, char); SQLITE_PRIVATE int sqlite3IsRowid(const char*); SQLITE_PRIVATE void sqlite3GenerateRowDelete(Parse*, Table*, int, int, int, Trigger *, int); SQLITE_PRIVATE void sqlite3GenerateRowIndexDelete(Parse*, Table*, int, int*); SQLITE_PRIVATE int sqlite3GenerateIndexKey(Parse*, Index*, int, int, int); SQLITE_PRIVATE void sqlite3GenerateConstraintChecks(Parse*,Table*,int,int, int*,int,int,int,int,int*); SQLITE_PRIVATE void sqlite3CompleteInsertion(Parse*, Table*, int, int, int*, int, int, int); SQLITE_PRIVATE int sqlite3OpenTableAndIndices(Parse*, Table*, int, int); SQLITE_PRIVATE void sqlite3BeginWriteOperation(Parse*, int, int); SQLITE_PRIVATE void sqlite3MultiWrite(Parse*); SQLITE_PRIVATE void sqlite3MayAbort(Parse*); |
︙ | ︙ | |||
12289 12290 12291 12292 12293 12294 12295 | SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); | < < | 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 | SQLITE_PRIVATE void sqlite3NestedParse(Parse*, const char*, ...); SQLITE_PRIVATE void sqlite3ExpirePreparedStatements(sqlite3*); SQLITE_PRIVATE int sqlite3CodeSubselect(Parse *, Expr *, int, int); SQLITE_PRIVATE void sqlite3SelectPrep(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3MatchSpanName(const char*, const char*, const char*, const char*); SQLITE_PRIVATE int sqlite3ResolveExprNames(NameContext*, Expr*); SQLITE_PRIVATE void sqlite3ResolveSelectNames(Parse*, Select*, NameContext*); SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy(Parse*, Select*, ExprList*, const char*); SQLITE_PRIVATE void sqlite3ColumnDefault(Vdbe *, Table *, int, int); SQLITE_PRIVATE void sqlite3AlterFinishAddColumn(Parse *, Token *); SQLITE_PRIVATE void sqlite3AlterBeginAddColumn(Parse *, SrcList *); SQLITE_PRIVATE CollSeq *sqlite3GetCollSeq(Parse*, u8, CollSeq *, const char*); SQLITE_PRIVATE char sqlite3AffinityType(const char*); SQLITE_PRIVATE void sqlite3Analyze(Parse*, Token*, Token*); SQLITE_PRIVATE int sqlite3InvokeBusyHandler(BusyHandler*); SQLITE_PRIVATE int sqlite3FindDb(sqlite3*, Token*); SQLITE_PRIVATE int sqlite3FindDbName(sqlite3 *, const char *); SQLITE_PRIVATE int sqlite3AnalysisLoad(sqlite3*,int iDB); SQLITE_PRIVATE void sqlite3DeleteIndexSamples(sqlite3*,Index*); SQLITE_PRIVATE void sqlite3DefaultRowEst(Index*); SQLITE_PRIVATE void sqlite3RegisterLikeFunctions(sqlite3*, int); SQLITE_PRIVATE int sqlite3IsLikeFunction(sqlite3*,Expr*,int*,char*); SQLITE_PRIVATE void sqlite3MinimumFileFormat(Parse*, int, int); SQLITE_PRIVATE void sqlite3SchemaClear(void *); SQLITE_PRIVATE Schema *sqlite3SchemaGet(sqlite3 *, Btree *); SQLITE_PRIVATE int sqlite3SchemaToIndex(sqlite3 *db, Schema *); SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *, Index *); SQLITE_PRIVATE int sqlite3CreateFunc(sqlite3 *, const char *, int, int, void *, void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*,int,sqlite3_value **), void (*)(sqlite3_context*), FuncDestructor *pDestructor ); SQLITE_PRIVATE int sqlite3ApiExit(sqlite3 *db, int); |
︙ | ︙ | |||
13262 13263 13264 13265 13266 13267 13268 | /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Opaque type used by the explainer */ typedef struct Explain Explain; | < < < | 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 | /* Opaque type used by code in vdbesort.c */ typedef struct VdbeSorter VdbeSorter; /* Opaque type used by the explainer */ typedef struct Explain Explain; /* ** A cursor is a pointer into a single BTree within a database file. ** The cursor can seek to a BTree entry with a particular key, or ** loop over all entries of the Btree. You can also insert new BTree ** entries or retrieve the key or data from the entry that the cursor ** is currently pointing to. ** |
︙ | ︙ | |||
13451 13452 13453 13454 13455 13456 13457 | ** Return true if a memory cell is not marked as invalid. This macro ** is for use inside assert() statements only. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_Invalid)==0 #endif | | > > | | | < > > | > > > | < < | | | > < < | < | 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 | ** Return true if a memory cell is not marked as invalid. This macro ** is for use inside assert() statements only. */ #ifdef SQLITE_DEBUG #define memIsValid(M) ((M)->flags & MEM_Invalid)==0 #endif /* A VdbeFunc is just a FuncDef (defined in sqliteInt.h) that contains ** additional information about auxiliary information bound to arguments ** of the function. This is used to implement the sqlite3_get_auxdata() ** and sqlite3_set_auxdata() APIs. The "auxdata" is some auxiliary data ** that can be associated with a constant argument to a function. This ** allows functions such as "regexp" to compile their constant regular ** expression argument once and reused the compiled code for multiple ** invocations. */ struct VdbeFunc { FuncDef *pFunc; /* The definition of the function */ int nAux; /* Number of entries allocated for apAux[] */ struct AuxData { void *pAux; /* Aux data for the i-th argument */ void (*xDelete)(void *); /* Destructor for the aux data */ } apAux[1]; /* One slot for each function argument */ }; /* ** The "context" argument for a installable function. A pointer to an ** instance of this structure is the first argument to the routines used ** implement the SQL functions. ** ** There is a typedef for this structure in sqlite.h. So all routines, ** even the public interface to SQLite, can use a pointer to this structure. ** But this file is the only place where the internal details of this ** structure are known. ** ** This structure is defined inside of vdbeInt.h because it uses substructures ** (Mem) which are only defined there. */ struct sqlite3_context { FuncDef *pFunc; /* Pointer to function information. MUST BE FIRST */ VdbeFunc *pVdbeFunc; /* Auxilary data, if created. */ Mem s; /* The return value is stored here */ Mem *pMem; /* Memory cell used to store aggregate context */ CollSeq *pColl; /* Collating sequence */ int isError; /* Error code returned by the function. */ int skipFlag; /* Skip skip accumulator loading if true */ }; /* ** An Explain object accumulates indented output which is helpful ** in describing recursive data structures. */ struct Explain { |
︙ | ︙ | |||
13556 13557 13558 13559 13560 13561 13562 | u8 minWriteFileFormat; /* Minimum file format for writable database files */ bft explain:2; /* True if EXPLAIN present on SQL command */ bft inVtabMethod:2; /* See comments above */ bft changeCntOn:1; /* True to update the change-counter */ bft expired:1; /* True if the VM needs to be recompiled */ bft runOnlyOnce:1; /* Automatically expire on reset */ bft usesStmtJournal:1; /* True if uses a statement journal */ | | < | < < | 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 | u8 minWriteFileFormat; /* Minimum file format for writable database files */ bft explain:2; /* True if EXPLAIN present on SQL command */ bft inVtabMethod:2; /* See comments above */ bft changeCntOn:1; /* True to update the change-counter */ bft expired:1; /* True if the VM needs to be recompiled */ bft runOnlyOnce:1; /* Automatically expire on reset */ bft usesStmtJournal:1; /* True if uses a statement journal */ bft readOnly:1; /* True for read-only statements */ bft isPrepareV2:1; /* True if prepared with prepare_v2() */ bft doingRerun:1; /* True if rerunning after an auto-reprepare */ int nChange; /* Number of db changes made since last reset */ yDbMask btreeMask; /* Bitmask of db->aDb[] entries referenced */ yDbMask lockMask; /* Subset of btreeMask that requires a lock */ int iStatement; /* Statement number (or 0 if has not opened stmt) */ int aCounter[3]; /* Counters used by sqlite3_stmt_status() */ #ifndef SQLITE_OMIT_TRACE i64 startTime; /* Time when query started - used for profiling */ #endif i64 nFkConstraint; /* Number of imm. FK constraints this VM */ i64 nStmtDefCons; /* Number of def. constraints when stmt started */ char *zSql; /* Text of the SQL statement that generated this */ void *pFree; /* Free this when deleting the vdbe */ #ifdef SQLITE_DEBUG FILE *trace; /* Write an execution trace here, if not NULL */ #endif #ifdef SQLITE_ENABLE_TREE_EXPLAIN Explain *pExplain; /* The explainer */ char *zExplain; /* Explanation of data structures */ #endif VdbeFrame *pFrame; /* Parent frame */ VdbeFrame *pDelFrame; /* List of frame objects to free on VM reset */ int nFrame; /* Number of frames in pFrame list */ u32 expmask; /* Binding to these vars invalidates VM */ SubProgram *pProgram; /* Linked list of all sub-programs used by VM */ int nOnceFlag; /* Size of array aOnceFlag[] */ u8 *aOnceFlag; /* Flags for OP_Once */ }; /* ** The following are allowed values for Vdbe.magic */ #define VDBE_MAGIC_INIT 0x26bceaa5 /* Building a VDBE program */ #define VDBE_MAGIC_RUN 0xbdf20da3 /* VDBE is ready to execute */ |
︙ | ︙ | |||
13611 13612 13613 13614 13615 13616 13617 | #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*); #endif SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int); SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int); SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); | | | 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 | #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE) SQLITE_PRIVATE void sqlite3VdbePrintOp(FILE*, int, Op*); #endif SQLITE_PRIVATE u32 sqlite3VdbeSerialTypeLen(u32); SQLITE_PRIVATE u32 sqlite3VdbeSerialType(Mem*, int); SQLITE_PRIVATE u32 sqlite3VdbeSerialPut(unsigned char*, int, Mem*, int); SQLITE_PRIVATE u32 sqlite3VdbeSerialGet(const unsigned char*, u32, Mem*); SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc*, int); int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *); SQLITE_PRIVATE int sqlite3VdbeIdxKeyCompare(VdbeCursor*,UnpackedRecord*,int*); SQLITE_PRIVATE int sqlite3VdbeIdxRowid(sqlite3*, BtCursor *, i64 *); SQLITE_PRIVATE int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*); SQLITE_PRIVATE int sqlite3VdbeExec(Vdbe*); SQLITE_PRIVATE int sqlite3VdbeList(Vdbe*); |
︙ | ︙ | |||
13932 13933 13934 13935 13936 13937 13938 | } } *pHighwater = 0; *pCurrent = nRet; break; } | < < < < < < < < < < | 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 | } } *pHighwater = 0; *pCurrent = nRet; break; } default: { rc = SQLITE_ERROR; } } sqlite3_mutex_leave(db->mutex); return rc; } |
︙ | ︙ | |||
17241 17242 17243 17244 17245 17246 17247 | ** of each block. One byte per block. */ u8 *aCtrl; } mem5; /* | | | | 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 | ** of each block. One byte per block. */ u8 *aCtrl; } mem5; /* ** Access the static variable through a macro for SQLITE_OMIT_WSD */ #define mem5 GLOBAL(struct Mem5Global, mem5) /* ** Assuming mem5.zPool is divided up into an array of Mem5Link ** structures, return a pointer to the idx-th such lik. */ #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom])) /* ** Unlink the chunk at mem5.aPool[i] from list it is currently ** on. It should be found on mem5.aiFreelist[iLogsize]. */ |
︙ | ︙ | |||
17343 17344 17345 17346 17347 17348 17349 | return iFirst; } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. Return NULL if nBytes==0. ** | | | 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 | return iFirst; } /* ** Return a block of memory of at least nBytes in size. ** Return NULL if unable. Return NULL if nBytes==0. ** ** The caller guarantees that nByte positive. ** ** The caller has obtained a mutex prior to invoking this ** routine so there is never any chance that two or more ** threads can be in this routine at the same time. */ static void *memsys5MallocUnsafe(int nByte){ int i; /* Index of a mem5.aPool[] slot */ |
︙ | ︙ | |||
17465 17466 17467 17468 17469 17470 17471 | } size *= 2; } memsys5Link(iBlock, iLogsize); } /* | | | 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 | } size *= 2; } memsys5Link(iBlock, iLogsize); } /* ** Allocate nBytes of memory */ static void *memsys5Malloc(int nBytes){ sqlite3_int64 *p = 0; if( nBytes>0 ){ memsys5Enter(); p = memsys5MallocUnsafe(nBytes); memsys5Leave(); |
︙ | ︙ | |||
19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 | prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( xtype==etGENERIC && precision>0 ) precision--; for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} if( xtype==etFLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( sqlite3IsNaN((double)realvalue) ){ bufpt = "NaN"; length = 3; break; | > > > > > > | 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 | prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( xtype==etGENERIC && precision>0 ) precision--; #if 0 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); #else /* It makes more sense to use 0.5 */ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1){} #endif if( xtype==etFLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( sqlite3IsNaN((double)realvalue) ){ bufpt = "NaN"; length = 3; break; |
︙ | ︙ | |||
20006 20007 20008 20009 20010 20011 20012 | flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = exp; } | | | | 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 | flag_rtz = flag_altform2; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = exp; } if( e2+precision+width > etBUFSIZE - 15 ){ bufpt = zExtra = sqlite3Malloc( e2+precision+width+15 ); if( bufpt==0 ){ pAccum->mallocFailed = 1; return; } } zOut = bufpt; nsd = 16 + flag_altform2*10; |
︙ | ︙ | |||
22710 22711 22712 22713 22714 22715 22716 | /************** End of hash.c ************************************************/ /************** Begin file opcodes.c *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodec.awk script for details. */ #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { "?", | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 | /************** End of hash.c ************************************************/ /************** Begin file opcodes.c *****************************************/ /* Automatically generated. Do not edit */ /* See the mkopcodec.awk script for details. */ #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) SQLITE_PRIVATE const char *sqlite3OpcodeName(int i){ static const char *const azName[] = { "?", /* 1 */ "Goto", /* 2 */ "Gosub", /* 3 */ "Return", /* 4 */ "Yield", /* 5 */ "HaltIfNull", /* 6 */ "Halt", /* 7 */ "Integer", /* 8 */ "Int64", /* 9 */ "String", /* 10 */ "Null", /* 11 */ "Blob", /* 12 */ "Variable", /* 13 */ "Move", /* 14 */ "Copy", /* 15 */ "SCopy", /* 16 */ "ResultRow", /* 17 */ "CollSeq", /* 18 */ "Function", /* 19 */ "Not", /* 20 */ "AddImm", /* 21 */ "MustBeInt", /* 22 */ "RealAffinity", /* 23 */ "Permutation", /* 24 */ "Compare", /* 25 */ "Jump", /* 26 */ "Once", /* 27 */ "If", /* 28 */ "IfNot", /* 29 */ "Column", /* 30 */ "Affinity", /* 31 */ "MakeRecord", /* 32 */ "Count", /* 33 */ "Savepoint", /* 34 */ "AutoCommit", /* 35 */ "Transaction", /* 36 */ "ReadCookie", /* 37 */ "SetCookie", /* 38 */ "VerifyCookie", /* 39 */ "OpenRead", /* 40 */ "OpenWrite", /* 41 */ "OpenAutoindex", /* 42 */ "OpenEphemeral", /* 43 */ "SorterOpen", /* 44 */ "OpenPseudo", /* 45 */ "Close", /* 46 */ "SeekLt", /* 47 */ "SeekLe", /* 48 */ "SeekGe", /* 49 */ "SeekGt", /* 50 */ "Seek", /* 51 */ "NotFound", /* 52 */ "Found", /* 53 */ "IsUnique", /* 54 */ "NotExists", /* 55 */ "Sequence", /* 56 */ "NewRowid", /* 57 */ "Insert", /* 58 */ "InsertInt", /* 59 */ "Delete", /* 60 */ "ResetCount", /* 61 */ "SorterCompare", /* 62 */ "SorterData", /* 63 */ "RowKey", /* 64 */ "RowData", /* 65 */ "Rowid", /* 66 */ "NullRow", /* 67 */ "Last", /* 68 */ "Or", /* 69 */ "And", /* 70 */ "SorterSort", /* 71 */ "Sort", /* 72 */ "Rewind", /* 73 */ "IsNull", /* 74 */ "NotNull", /* 75 */ "Ne", /* 76 */ "Eq", /* 77 */ "Gt", /* 78 */ "Le", /* 79 */ "Lt", /* 80 */ "Ge", /* 81 */ "SorterNext", /* 82 */ "BitAnd", /* 83 */ "BitOr", /* 84 */ "ShiftLeft", /* 85 */ "ShiftRight", /* 86 */ "Add", /* 87 */ "Subtract", /* 88 */ "Multiply", /* 89 */ "Divide", /* 90 */ "Remainder", /* 91 */ "Concat", /* 92 */ "Prev", /* 93 */ "BitNot", /* 94 */ "String8", /* 95 */ "Next", /* 96 */ "SorterInsert", /* 97 */ "IdxInsert", /* 98 */ "IdxDelete", /* 99 */ "IdxRowid", /* 100 */ "IdxLT", /* 101 */ "IdxGE", /* 102 */ "Destroy", /* 103 */ "Clear", /* 104 */ "CreateIndex", /* 105 */ "CreateTable", /* 106 */ "ParseSchema", /* 107 */ "LoadAnalysis", /* 108 */ "DropTable", /* 109 */ "DropIndex", /* 110 */ "DropTrigger", /* 111 */ "IntegrityCk", /* 112 */ "RowSetAdd", /* 113 */ "RowSetRead", /* 114 */ "RowSetTest", /* 115 */ "Program", /* 116 */ "Param", /* 117 */ "FkCounter", /* 118 */ "FkIfZero", /* 119 */ "MemMax", /* 120 */ "IfPos", /* 121 */ "IfNeg", /* 122 */ "IfZero", /* 123 */ "AggStep", /* 124 */ "AggFinal", /* 125 */ "Checkpoint", /* 126 */ "JournalMode", /* 127 */ "Vacuum", /* 128 */ "IncrVacuum", /* 129 */ "Expire", /* 130 */ "Real", /* 131 */ "TableLock", /* 132 */ "VBegin", /* 133 */ "VCreate", /* 134 */ "VDestroy", /* 135 */ "VOpen", /* 136 */ "VFilter", /* 137 */ "VColumn", /* 138 */ "VNext", /* 139 */ "VRename", /* 140 */ "VUpdate", /* 141 */ "ToText", /* 142 */ "ToBlob", /* 143 */ "ToNumeric", /* 144 */ "ToInt", /* 145 */ "ToReal", /* 146 */ "Pagecount", /* 147 */ "MaxPgcnt", |
︙ | ︙ | |||
22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 | ** methods plus "finder" functions for each locking method. ** * sqlite3_vfs method implementations. ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) ** * Definitions of sqlite3_vfs objects for all locking methods ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). */ #if SQLITE_OS_UNIX /* This file is used on unix only */ /* ** There are various methods for file locking used for concurrency ** control: ** ** 1. POSIX locking (the default), ** 2. No locking, | > > > > > > > | 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 | ** methods plus "finder" functions for each locking method. ** * sqlite3_vfs method implementations. ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) ** * Definitions of sqlite3_vfs objects for all locking methods ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). */ #if SQLITE_OS_UNIX /* This file is used on unix only */ /* Use posix_fallocate() if it is available */ #if !defined(HAVE_POSIX_FALLOCATE) \ && (_XOPEN_SOURCE >= 600 || _POSIX_C_SOURCE >= 200112L) # define HAVE_POSIX_FALLOCATE 1 #endif /* ** There are various methods for file locking used for concurrency ** control: ** ** 1. POSIX locking (the default), ** 2. No locking, |
︙ | ︙ | |||
26844 26845 26846 26847 26848 26849 26850 | unixGetTempname(pFile->pVfs->mxPathname, zTFile); *(char**)pArg = zTFile; } return SQLITE_OK; } case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; | < | | < < | < | | 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 | unixGetTempname(pFile->pVfs->mxPathname, zTFile); *(char**)pArg = zTFile; } return SQLITE_OK; } case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; if( newLimit>sqlite3GlobalConfig.mxMmap ){ newLimit = sqlite3GlobalConfig.mxMmap; } *(i64*)pArg = pFile->mmapSizeMax; if( newLimit>=0 ){ pFile->mmapSizeMax = newLimit; if( newLimit<pFile->mmapSize ) pFile->mmapSize = newLimit; } return SQLITE_OK; } #ifdef SQLITE_DEBUG /* The pager calls this method to signal that it has done ** a rollback and that the database is therefore unchanged and ** it hence it is OK for the transaction change counter to be ** unchanged. */ |
︙ | ︙ | |||
28226 28227 28228 28229 28230 28231 28232 | assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->pVfs = pVfs; pNew->zPath = zFilename; pNew->ctrlFlags = (u8)ctrlFlags; | | | 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 | assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); OSTRACE(("OPEN %-3d %s\n", h, zFilename)); pNew->h = h; pNew->pVfs = pVfs; pNew->zPath = zFilename; pNew->ctrlFlags = (u8)ctrlFlags; pNew->mmapSizeMax = sqlite3GlobalConfig.mxMmap; if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), "psow", SQLITE_POWERSAFE_OVERWRITE) ){ pNew->ctrlFlags |= UNIXFILE_PSOW; } if( strcmp(pVfs->zName,"unix-excl")==0 ){ pNew->ctrlFlags |= UNIXFILE_EXCL; } |
︙ | ︙ | |||
30506 30507 30508 30509 30510 30511 30512 | ** ** This file contains code that is specific to Windows. */ #if SQLITE_OS_WIN /* This file is used for Windows only */ #ifdef __CYGWIN__ # include <sys/cygwin.h> | < | 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 | ** ** This file contains code that is specific to Windows. */ #if SQLITE_OS_WIN /* This file is used for Windows only */ #ifdef __CYGWIN__ # include <sys/cygwin.h> #endif /* ** Include code that is common to all os_*.c files */ /************** Include os_common.h in the middle of os_win.c ****************/ /************** Begin file os_common.h ***************************************/ |
︙ | ︙ | |||
30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 | /* ** This file mapping API is common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); #endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */ /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_FILE_ATTRIBUTES # define INVALID_FILE_ATTRIBUTES ((DWORD)-1) #endif | > > > > > > > | 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 | /* ** This file mapping API is common to both Win32 and WinRT. */ WINBASEAPI BOOL WINAPI UnmapViewOfFile(LPCVOID); #endif /* SQLITE_WIN32_FILEMAPPING_API && !defined(SQLITE_OMIT_WAL) */ /* ** Macro to find the minimum of two numeric values. */ #ifndef MIN # define MIN(x,y) ((x)<(y)?(x):(y)) #endif /* ** Some Microsoft compilers lack this definition. */ #ifndef INVALID_FILE_ATTRIBUTES # define INVALID_FILE_ATTRIBUTES ((DWORD)-1) #endif |
︙ | ︙ | |||
30927 30928 30929 30930 30931 30932 30933 | /* * The extra flags to use in calls to the Win32 heap APIs. This value may be * zero for the default behavior. */ #ifndef SQLITE_WIN32_HEAP_FLAGS # define SQLITE_WIN32_HEAP_FLAGS (0) #endif | < | 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 | /* * The extra flags to use in calls to the Win32 heap APIs. This value may be * zero for the default behavior. */ #ifndef SQLITE_WIN32_HEAP_FLAGS # define SQLITE_WIN32_HEAP_FLAGS (0) #endif /* ** The winMemData structure stores information required by the Win32-specific ** sqlite3_mem_methods implementation. */ typedef struct winMemData winMemData; struct winMemData { |
︙ | ︙ | |||
33508 33509 33510 33511 33512 33513 33514 | }else{ pFile->ctrlFlags |= mask; } } /* Forward declaration */ static int getTempname(int nBuf, char *zBuf); | < < < | 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 | }else{ pFile->ctrlFlags |= mask; } } /* Forward declaration */ static int getTempname(int nBuf, char *zBuf); /* ** Control and query of the open file handle. */ static int winFileControl(sqlite3_file *id, int op, void *pArg){ winFile *pFile = (winFile*)id; OSTRACE(("FCNTL file=%p, op=%d, pArg=%p\n", pFile->h, op, pArg)); |
︙ | ︙ | |||
33594 33595 33596 33597 33598 33599 33600 | } OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } #if SQLITE_MAX_MMAP_SIZE>0 case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; | < < | < < < < < | | | 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 | } OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } #if SQLITE_MAX_MMAP_SIZE>0 case SQLITE_FCNTL_MMAP_SIZE: { i64 newLimit = *(i64*)pArg; if( newLimit>sqlite3GlobalConfig.mxMmap ){ newLimit = sqlite3GlobalConfig.mxMmap; } *(i64*)pArg = pFile->mmapSizeMax; if( newLimit>=0 ) pFile->mmapSizeMax = newLimit; OSTRACE(("FCNTL file=%p, rc=SQLITE_OK\n", pFile->h)); return SQLITE_OK; } #endif } OSTRACE(("FCNTL file=%p, rc=SQLITE_NOTFOUND\n", pFile->h)); return SQLITE_NOTFOUND; } |
︙ | ︙ | |||
33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 | */ static int winDeviceCharacteristics(sqlite3_file *id){ winFile *p = (winFile*)id; return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN | ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0); } /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. ** During sqlite3_os_init() we do a GetSystemInfo() ** to get the granularity size. */ SYSTEM_INFO winSysInfo; | > > < < | 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 | */ static int winDeviceCharacteristics(sqlite3_file *id){ winFile *p = (winFile*)id; return SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN | ((p->ctrlFlags & WINFILE_PSOW)?SQLITE_IOCAP_POWERSAFE_OVERWRITE:0); } #ifndef SQLITE_OMIT_WAL /* ** Windows will only let you create file view mappings ** on allocation size granularity boundaries. ** During sqlite3_os_init() we do a GetSystemInfo() ** to get the granularity size. */ SYSTEM_INFO winSysInfo; /* ** Helper functions to obtain and relinquish the global mutex. The ** global mutex is used to protect the winLockInfo objects used by ** this file, all of which may be shared by multiple threads. ** ** Function winShmMutexHeld() is used to assert() that the global mutex ** is held when required. This function is only used as part of assert() |
︙ | ︙ | |||
34393 34394 34395 34396 34397 34398 34399 | "winMapfile", pFd->zPath); /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFd)); return SQLITE_OK; } assert( (nMap % winSysInfo.dwPageSize)==0 ); | < | > | 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 | "winMapfile", pFd->zPath); /* Log the error, but continue normal operation using xRead/xWrite */ OSTRACE(("MAP-FILE-CREATE pid=%lu, pFile=%p, rc=SQLITE_IOERR_MMAP\n", osGetCurrentProcessId(), pFd)); return SQLITE_OK; } assert( (nMap % winSysInfo.dwPageSize)==0 ); #if SQLITE_OS_WINRT pNew = osMapViewOfFileFromApp(pFd->hMap, flags, 0, nMap); #else assert( sizeof(SIZE_T)==sizeof(sqlite3_int64) || nMap<=0xffffffff ); pNew = osMapViewOfFile(pFd->hMap, flags, 0, 0, (SIZE_T)nMap); #endif if( pNew==NULL ){ osCloseHandle(pFd->hMap); pFd->hMap = NULL; pFd->lastErrno = osGetLastError(); winLogError(SQLITE_IOERR_MMAP, pFd->lastErrno, |
︙ | ︙ | |||
34565 34566 34567 34568 34569 34570 34571 | zConverted = sqlite3_win32_utf8_to_mbcs(zFilename); } #endif /* caller will handle out of memory */ return zConverted; } | < < < < < < < < < | > > | < | < < < | | | < < < | < < < < < < < < | < < < < < < < < | | 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 | zConverted = sqlite3_win32_utf8_to_mbcs(zFilename); } #endif /* caller will handle out of memory */ return zConverted; } /* ** Create a temporary file name in zBuf. zBuf must be big enough to ** hold at pVfs->mxPathname characters. */ static int getTempname(int nBuf, char *zBuf){ static char zChars[] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "0123456789"; size_t i, j; int nTempPath; char zTempPath[MAX_PATH+2]; /* It's odd to simulate an io-error here, but really this is just ** using the io-error infrastructure to test that SQLite handles this ** function failing. */ SimulateIOError( return SQLITE_IOERR ); memset(zTempPath, 0, MAX_PATH+2); if( sqlite3_temp_directory ){ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", sqlite3_temp_directory); } #if !SQLITE_OS_WINRT else if( isNT() ){ char *zMulti; WCHAR zWidePath[MAX_PATH]; osGetTempPathW(MAX_PATH-30, zWidePath); zMulti = unicodeToUtf8(zWidePath); if( zMulti ){ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zMulti); sqlite3_free(zMulti); }else{ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n")); return SQLITE_IOERR_NOMEM; } } #ifdef SQLITE_WIN32_HAS_ANSI else{ char *zUtf8; char zMbcsPath[MAX_PATH]; osGetTempPathA(MAX_PATH-30, zMbcsPath); zUtf8 = sqlite3_win32_mbcs_to_utf8(zMbcsPath); if( zUtf8 ){ sqlite3_snprintf(MAX_PATH-30, zTempPath, "%s", zUtf8); sqlite3_free(zUtf8); }else{ OSTRACE(("TEMP-FILENAME rc=SQLITE_IOERR_NOMEM\n")); return SQLITE_IOERR_NOMEM; } } #endif #endif /* Check that the output buffer is large enough for the temporary file ** name. If it is not, return SQLITE_ERROR. */ nTempPath = sqlite3Strlen30(zTempPath); if( (nTempPath + sqlite3Strlen30(SQLITE_TEMP_FILE_PREFIX) + 18) >= nBuf ){ |
︙ | ︙ | |||
34734 34735 34736 34737 34738 34739 34740 | void *zConverted; /* Filename in OS encoding */ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */ int cnt = 0; /* If argument zPath is a NULL pointer, this function is required to open ** a temporary file. Use this buffer to store the file name in. */ | | | 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 | void *zConverted; /* Filename in OS encoding */ const char *zUtf8Name = zName; /* Filename in UTF-8 encoding */ int cnt = 0; /* If argument zPath is a NULL pointer, this function is required to open ** a temporary file. Use this buffer to store the file name in. */ char zTmpname[MAX_PATH+2]; /* Buffer used to create temp filename */ int rc = SQLITE_OK; /* Function Return Code */ #if !defined(NDEBUG) || SQLITE_OS_WINCE int eType = flags&0xFFFFFF00; /* Type of file to open */ #endif int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); |
︙ | ︙ | |||
34800 34801 34802 34803 34804 34805 34806 | #endif /* If the second argument to this function is NULL, generate a ** temporary file name to use */ if( !zUtf8Name ){ assert(isDelete && !isOpenJournal); | > | | 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 | #endif /* If the second argument to this function is NULL, generate a ** temporary file name to use */ if( !zUtf8Name ){ assert(isDelete && !isOpenJournal); memset(zTmpname, 0, MAX_PATH+2); rc = getTempname(MAX_PATH+2, zTmpname); if( rc!=SQLITE_OK ){ OSTRACE(("OPEN name=%s, rc=%s", zUtf8Name, sqlite3ErrName(rc))); return rc; } zUtf8Name = zTmpname; } |
︙ | ︙ | |||
34977 34978 34979 34980 34981 34982 34983 | pFile->lastErrno = NO_ERROR; pFile->zPath = zName; #if SQLITE_MAX_MMAP_SIZE>0 pFile->hMap = NULL; pFile->pMapRegion = 0; pFile->mmapSize = 0; pFile->mmapSizeActual = 0; | | | 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 | pFile->lastErrno = NO_ERROR; pFile->zPath = zName; #if SQLITE_MAX_MMAP_SIZE>0 pFile->hMap = NULL; pFile->pMapRegion = 0; pFile->mmapSize = 0; pFile->mmapSizeActual = 0; pFile->mmapSizeMax = sqlite3GlobalConfig.mxMmap; #endif OpenCounter(+1); return rc; } /* |
︙ | ︙ | |||
35231 35232 35233 35234 35235 35236 35237 | int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ #if defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); UNUSED_PARAMETER(nFull); | | | > | | < < < < | < < < < | 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 | int nFull, /* Size of output buffer in bytes */ char *zFull /* Output buffer */ ){ #if defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); UNUSED_PARAMETER(nFull); assert( pVfs->mxPathname>=MAX_PATH ); assert( nFull>=pVfs->mxPathname ); if ( sqlite3_data_directory && !winIsVerbatimPathname(zRelative) ){ /* ** NOTE: We are dealing with a relative path name and the data ** directory has been set. Therefore, use it as the basis ** for converting the relative path name to an absolute ** one by prepending the data directory and a slash. */ char zOut[MAX_PATH+1]; memset(zOut, 0, MAX_PATH+1); cygwin_conv_path(CCP_POSIX_TO_WIN_A|CCP_RELATIVE, zRelative, zOut, MAX_PATH+1); sqlite3_snprintf(MIN(nFull, pVfs->mxPathname), zFull, "%s\\%s", sqlite3_data_directory, zOut); }else{ cygwin_conv_path(CCP_POSIX_TO_WIN_A, zRelative, zFull, nFull); } return SQLITE_OK; #endif #if (SQLITE_OS_WINCE || SQLITE_OS_WINRT) && !defined(__CYGWIN__) SimulateIOError( return SQLITE_ERROR ); /* WinCE has no concept of a relative pathname, or so I am told. */ |
︙ | ︙ | |||
35596 35597 35598 35599 35600 35601 35602 | /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs winVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ | | | 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 | /* ** Initialize and deinitialize the operating system interface. */ SQLITE_API int sqlite3_os_init(void){ static sqlite3_vfs winVfs = { 3, /* iVersion */ sizeof(winFile), /* szOsFile */ MAX_PATH, /* mxPathname */ 0, /* pNext */ "win32", /* zName */ 0, /* pAppData */ winOpen, /* xOpen */ winDelete, /* xDelete */ winAccess, /* xAccess */ winFullPathname, /* xFullPathname */ |
︙ | ︙ | |||
37243 37244 37245 37246 37247 37248 37249 | */ static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ PCache1 *pCache; /* The newly created page cache */ PGroup *pGroup; /* The group the new page cache will belong to */ int sz; /* Bytes of memory required to allocate the new cache */ /* | | | 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 | */ static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ PCache1 *pCache; /* The newly created page cache */ PGroup *pGroup; /* The group the new page cache will belong to */ int sz; /* Bytes of memory required to allocate the new cache */ /* ** The seperateCache variable is true if each PCache has its own private ** PGroup. In other words, separateCache is true for mode (1) where no ** mutexing is required. ** ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT ** ** * Always use a unified cache in single-threaded applications ** |
︙ | ︙ | |||
37446 37447 37448 37449 37450 37451 37452 | )){ goto fetch_out; } if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ goto fetch_out; } | < | 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 | )){ goto fetch_out; } if( pCache->nPage>=pCache->nHash && pcache1ResizeHash(pCache) ){ goto fetch_out; } /* Step 4. Try to recycle a page. */ if( pCache->bPurgeable && pGroup->pLruTail && ( (pCache->nPage+1>=pCache->nMax) || pGroup->nCurrentPage>=pGroup->nMaxPage || pcache1UnderMemoryPressure(pCache) )){ |
︙ | ︙ | |||
38807 38808 38809 38810 38811 38812 38813 | Pgno nOrig; /* Original number of pages in file */ Pgno iSubRec; /* Index of first record in sub-journal */ #ifndef SQLITE_OMIT_WAL u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; | < < < < < < < | 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 | Pgno nOrig; /* Original number of pages in file */ Pgno iSubRec; /* Index of first record in sub-journal */ #ifndef SQLITE_OMIT_WAL u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */ #endif }; /* ** A open page cache is an instance of struct Pager. A description of ** some of the more important member variables follows: ** ** eState ** ** The current 'state' of the pager object. See the comment and state |
︙ | ︙ | |||
38880 38881 38882 38883 38884 38885 38886 | ** subsequently interrupted transaction that reuses the journal file. ** ** The flag is cleared as soon as the journal file is finalized (either ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the ** journal file from being successfully finalized, the setMaster flag ** is cleared anyway (and the pager will move to ERROR state). ** | | | | | < | | | < | | 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 | ** subsequently interrupted transaction that reuses the journal file. ** ** The flag is cleared as soon as the journal file is finalized (either ** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the ** journal file from being successfully finalized, the setMaster flag ** is cleared anyway (and the pager will move to ERROR state). ** ** doNotSpill, doNotSyncSpill ** ** These two boolean variables control the behavior of cache-spills ** (calls made by the pcache module to the pagerStress() routine to ** write cached data to the file-system in order to free up memory). ** ** When doNotSpill is non-zero, writing to the database from pagerStress() ** is disabled altogether. This is done in a very obscure case that ** comes up during savepoint rollback that requires the pcache module ** to allocate a new page to prevent the journal file from being written ** while it is being traversed by code in pager_playback(). ** ** If doNotSyncSpill is non-zero, writing to the database from pagerStress() ** is permitted, but syncing the journal file is not. This flag is set ** by sqlite3PagerWrite() when the file-system sector-size is larger than ** the database page-size in order to prevent a journal sync from happening ** in between the journalling of two pages on the same sector. ** ** subjInMemory ** |
︙ | ︙ | |||
38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 | ** "configuration" of the pager. */ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 subjInMemory; /* True to use in-memory sub-journals */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ | > | 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 | ** "configuration" of the pager. */ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */ u8 eLock; /* Current lock held on database file */ u8 changeCountDone; /* Set after incrementing the change-counter */ u8 setMaster; /* True if a m-j name has been written to jrnl */ u8 doNotSpill; /* Do not spill the cache when non-zero */ u8 doNotSyncSpill; /* Do not do a spill that requires jrnl sync */ u8 subjInMemory; /* True to use in-memory sub-journals */ Pgno dbSize; /* Number of pages in the database */ Pgno dbOrigSize; /* dbSize before the current transaction */ Pgno dbFileSize; /* Number of pages in the database file */ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */ int errCode; /* One of several kinds of errors */ int nRec; /* Pages journalled since last j-header written */ |
︙ | ︙ | |||
40174 40175 40176 40177 40178 40179 40180 | */ if( pPager->errCode ){ assert( !MEMDB ); pager_reset(pPager); pPager->changeCountDone = pPager->tempFile; pPager->eState = PAGER_OPEN; pPager->errCode = SQLITE_OK; | < | 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 | */ if( pPager->errCode ){ assert( !MEMDB ); pager_reset(pPager); pPager->changeCountDone = pPager->tempFile; pPager->eState = PAGER_OPEN; pPager->errCode = SQLITE_OK; } pPager->journalOff = 0; pPager->journalHdr = 0; pPager->setMaster = 0; } |
︙ | ︙ | |||
40657 40658 40659 40660 40661 40662 40663 | ** ** The solution is to add an in-memory page to the cache containing ** the data just read from the sub-journal. Mark the page as dirty ** and if the pager requires a journal-sync, then mark the page as ** requiring a journal-sync before it is written. */ assert( isSavepnt ); | | | | | | 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 | ** ** The solution is to add an in-memory page to the cache containing ** the data just read from the sub-journal. Mark the page as dirty ** and if the pager requires a journal-sync, then mark the page as ** requiring a journal-sync before it is written. */ assert( isSavepnt ); assert( pPager->doNotSpill==0 ); pPager->doNotSpill++; rc = sqlite3PagerAcquire(pPager, pgno, &pPg, 1); assert( pPager->doNotSpill==1 ); pPager->doNotSpill--; if( rc!=SQLITE_OK ) return rc; pPg->flags &= ~PGHDR_NEED_READ; sqlite3PcacheMakeDirty(pPg); } if( pPg ){ /* No page should ever be explicitly rolled back that is in use, except ** for page 1 which is held in use in order to keep the lock on the |
︙ | ︙ | |||
41741 41742 41743 41744 41745 41746 41747 | /* ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. */ static void pagerFixMaplimit(Pager *pPager){ #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_file *fd = pPager->fd; | | > < | 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 | /* ** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap. */ static void pagerFixMaplimit(Pager *pPager){ #if SQLITE_MAX_MMAP_SIZE>0 sqlite3_file *fd = pPager->fd; if( isOpen(fd) ){ sqlite3_int64 sz; pPager->bUseFetch = (fd->pMethods->iVersion>=3) && pPager->szMmap>0; sz = pPager->szMmap; sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz); } #endif } /* ** Change the maximum size of any memory mapping made of the database file. |
︙ | ︙ | |||
41766 41767 41768 41769 41770 41771 41772 | ** Free as much memory as possible from the pager. */ SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){ sqlite3PcacheShrink(pPager->pPCache); } /* | < < < | | | | 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 | ** Free as much memory as possible from the pager. */ SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){ sqlite3PcacheShrink(pPager->pPCache); } /* ** Adjust the robustness of the database to damage due to OS crashes ** or power failures by changing the number of syncs()s when writing ** the rollback journal. There are three levels: ** ** OFF sqlite3OsSync() is never called. This is the default ** for temporary and transient files. ** ** NORMAL The journal is synced once before writes begin on the ** database. This is normally adequate protection, but ** it is theoretically possible, though very unlikely, |
︙ | ︙ | |||
41812 41813 41814 41815 41816 41817 41818 | ** synchronous=FULL versus synchronous=NORMAL setting determines when ** the xSync primitive is called and is relevant to all platforms. ** ** Numeric values associated with these states are OFF==1, NORMAL=2, ** and FULL=3. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS | | > | > < | | < < < < < | 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 | ** synchronous=FULL versus synchronous=NORMAL setting determines when ** the xSync primitive is called and is relevant to all platforms. ** ** Numeric values associated with these states are OFF==1, NORMAL=2, ** and FULL=3. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS SQLITE_PRIVATE void sqlite3PagerSetSafetyLevel( Pager *pPager, /* The pager to set safety level for */ int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ int bFullFsync, /* PRAGMA fullfsync */ int bCkptFullFsync /* PRAGMA checkpoint_fullfsync */ ){ assert( level>=1 && level<=3 ); pPager->noSync = (level==1 || pPager->tempFile) ?1:0; pPager->fullSync = (level==3 && !pPager->tempFile) ?1:0; if( pPager->noSync ){ pPager->syncFlags = 0; pPager->ckptSyncFlags = 0; }else if( bFullFsync ){ pPager->syncFlags = SQLITE_SYNC_FULL; pPager->ckptSyncFlags = SQLITE_SYNC_FULL; }else if( bCkptFullFsync ){ pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = SQLITE_SYNC_FULL; }else{ pPager->syncFlags = SQLITE_SYNC_NORMAL; pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL; } pPager->walSyncFlags = pPager->syncFlags; if( pPager->fullSync ){ pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS; } } #endif /* ** The following global variable is incremented whenever the library ** attempts to open a temporary file. This information is used for ** testing and analysis only. |
︙ | ︙ | |||
42584 42585 42586 42587 42588 42589 42590 | } /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK | | < | 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 | } /* Before the first write, give the VFS a hint of what the final ** file size will be. */ assert( rc!=SQLITE_OK || isOpen(pPager->fd) ); if( rc==SQLITE_OK && (pList->pDirty ? pPager->dbSize : pList->pgno+1)>pPager->dbHintSize ){ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize; sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile); pPager->dbHintSize = pPager->dbSize; } while( rc==SQLITE_OK && pList ){ |
︙ | ︙ | |||
42742 42743 42744 42745 42746 42747 42748 | static int pagerStress(void *p, PgHdr *pPg){ Pager *pPager = (Pager *)p; int rc = SQLITE_OK; assert( pPg->pPager==pPager ); assert( pPg->flags&PGHDR_DIRTY ); | | | | < < < < | < | < | 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 | static int pagerStress(void *p, PgHdr *pPg){ Pager *pPager = (Pager *)p; int rc = SQLITE_OK; assert( pPg->pPager==pPager ); assert( pPg->flags&PGHDR_DIRTY ); /* The doNotSyncSpill flag is set during times when doing a sync of ** journal (and adding a new header) is not allowed. This occurs ** during calls to sqlite3PagerWrite() while trying to journal multiple ** pages belonging to the same sector. ** ** The doNotSpill flag inhibits all cache spilling regardless of whether ** or not a sync is required. This is set during a rollback. ** ** Spilling is also prohibited when in an error state since that could ** lead to database corruption. In the current implementaton it ** is impossible for sqlite3PcacheFetch() to be called with createFlag==1 ** while in the error state, hence it is impossible for this routine to ** be called in the error state. Nevertheless, we include a NEVER() ** test for the error state as a safeguard against future changes. */ if( NEVER(pPager->errCode) ) return SQLITE_OK; if( pPager->doNotSpill ) return SQLITE_OK; if( pPager->doNotSyncSpill && (pPg->flags & PGHDR_NEED_SYNC)!=0 ){ return SQLITE_OK; } pPg->pDirty = 0; if( pagerUseWal(pPager) ){ /* Write a single frame for this page to the log. */ if( subjRequiresPage(pPg) ){ |
︙ | ︙ | |||
43556 43557 43558 43559 43560 43561 43562 | ** If the database image is smaller than the requested page or if a ** non-zero value is passed as the noContent parameter and the ** requested page is not already stored in the cache, then no ** actual disk read occurs. In this case the memory image of the ** page is initialized to all zeros. ** ** If noContent is true, it means that we do not care about the contents | | | 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 | ** If the database image is smaller than the requested page or if a ** non-zero value is passed as the noContent parameter and the ** requested page is not already stored in the cache, then no ** actual disk read occurs. In this case the memory image of the ** page is initialized to all zeros. ** ** If noContent is true, it means that we do not care about the contents ** of the page. This occurs in two seperate scenarios: ** ** a) When reading a free-list leaf page from the database, and ** ** b) When a savepoint is being rolled back and we need to load ** a new page into the cache to be filled with the data read ** from the savepoint journal. ** |
︙ | ︙ | |||
44119 44120 44121 44122 44123 44124 44125 | if( nPagePerSector>1 ){ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ | | | | | 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 | if( nPagePerSector>1 ){ Pgno nPageCount; /* Total number of pages in database file */ Pgno pg1; /* First page of the sector pPg is located on. */ int nPage = 0; /* Number of pages starting at pg1 to journal */ int ii; /* Loop counter */ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */ /* Set the doNotSyncSpill flag to 1. This is because we cannot allow ** a journal header to be written between the pages journaled by ** this function. */ assert( !MEMDB ); assert( pPager->doNotSyncSpill==0 ); pPager->doNotSyncSpill++; /* This trick assumes that both the page-size and sector-size are ** an integer power of 2. It sets variable pg1 to the identifier ** of the first page of the sector pPg is located on. */ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1; |
︙ | ︙ | |||
44184 44185 44186 44187 44188 44189 44190 | if( pPage ){ pPage->flags |= PGHDR_NEED_SYNC; sqlite3PagerUnref(pPage); } } } | | | | 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 | if( pPage ){ pPage->flags |= PGHDR_NEED_SYNC; sqlite3PagerUnref(pPage); } } } assert( pPager->doNotSyncSpill==1 ); pPager->doNotSyncSpill--; }else{ rc = pager_write(pDbPage); } return rc; } /* |
︙ | ︙ | |||
44966 44967 44968 44969 44970 44971 44972 | pPager->xCodecFree = xCodecFree; pPager->pCodec = pCodec; pagerReportSize(pPager); } SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){ return pPager->pCodec; } | < < < < < < < < < < < < < < < < < < < < | | 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 | pPager->xCodecFree = xCodecFree; pPager->pCodec = pCodec; pagerReportSize(pPager); } SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){ return pPager->pCodec; } #endif #ifndef SQLITE_OMIT_AUTOVACUUM /* ** Move the page pPg to location pgno in the file. ** ** There must be no references to the page previously located at ** pgno (which we call pPgOld) though that page is allowed to be |
︙ | ︙ | |||
45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 | */ SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ assert( pPager->eState==PAGER_READER ); return sqlite3WalFramesize(pPager->pWal); } #endif #endif /* SQLITE_OMIT_DISKIO */ /************** End of pager.c ***********************************************/ /************** Begin file wal.c *********************************************/ /* ** 2010 February 1 ** | > > > > > > > > > > > > > > > | 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 | */ SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){ assert( pPager->eState==PAGER_READER ); return sqlite3WalFramesize(pPager->pWal); } #endif #ifdef SQLITE_HAS_CODEC /* ** This function is called by the wal module when writing page content ** into the log file. ** ** This function returns a pointer to a buffer containing the encrypted ** page content. If a malloc fails, this function may return NULL. */ SQLITE_PRIVATE void *sqlite3PagerCodec(PgHdr *pPg){ void *aData = 0; CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData); return aData; } #endif /* SQLITE_HAS_CODEC */ #endif /* SQLITE_OMIT_DISKIO */ /************** End of pager.c ***********************************************/ /************** Begin file wal.c *********************************************/ /* ** 2010 February 1 ** |
︙ | ︙ | |||
48009 48010 48011 48012 48013 48014 48015 | /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; | | | 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 | /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; rc = SQLITE_BUSY; } return rc; } /* ** End a write transaction. The commit has already been done. This |
︙ | ︙ | |||
49181 49182 49183 49184 49185 49186 49187 49188 49189 49190 49191 49192 | u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Potential values for BtCursor.eState. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been ** called. ** | > > > < < < < < < < < < | | | 49127 49128 49129 49130 49131 49132 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 49148 49149 49150 49151 49152 49153 49154 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 | u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */ }; /* ** Potential values for BtCursor.eState. ** ** CURSOR_VALID: ** Cursor points to a valid entry. getPayload() etc. may be called. ** ** CURSOR_INVALID: ** Cursor does not point to a valid entry. This can happen (for example) ** because the table is empty or because BtreeCursorFirst() has not been ** called. ** ** CURSOR_REQUIRESEEK: ** The table that this cursor was opened on still exists, but has been ** modified since the cursor was last used. The cursor position is saved ** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in ** this state, restoreCursorPosition() can be called to attempt to ** seek the cursor to the saved position. ** ** CURSOR_FAULT: ** A unrecoverable error (an I/O error or a malloc failure) has occurred ** on a different connection that shares the BtShared cache with this ** cursor. The error has left the cache in an inconsistent state. ** Do nothing else with this cursor. Any attempt to use the cursor ** should return the error code stored in BtCursor.skip */ #define CURSOR_INVALID 0 #define CURSOR_VALID 1 #define CURSOR_REQUIRESEEK 2 #define CURSOR_FAULT 3 /* ** The database page the PENDING_BYTE occupies. This page is never used. */ # define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt) /* |
︙ | ︙ | |||
50326 50327 50328 50329 50330 50331 50332 | } pCur->eState = CURSOR_INVALID; rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); if( rc==SQLITE_OK ){ sqlite3_free(pCur->pKey); pCur->pKey = 0; assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); | < < < | 50266 50267 50268 50269 50270 50271 50272 50273 50274 50275 50276 50277 50278 50279 | } pCur->eState = CURSOR_INVALID; rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); if( rc==SQLITE_OK ){ sqlite3_free(pCur->pKey); pCur->pKey = 0; assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); } return rc; } #define restoreCursorPosition(p) \ (p->eState>=CURSOR_REQUIRESEEK ? \ btreeRestoreCursorPosition(p) : \ |
︙ | ︙ | |||
50354 50355 50356 50357 50358 50359 50360 | int rc; rc = restoreCursorPosition(pCur); if( rc ){ *pHasMoved = 1; return rc; } | | | 50291 50292 50293 50294 50295 50296 50297 50298 50299 50300 50301 50302 50303 50304 50305 | int rc; rc = restoreCursorPosition(pCur); if( rc ){ *pHasMoved = 1; return rc; } if( pCur->eState!=CURSOR_VALID || pCur->skipNext!=0 ){ *pHasMoved = 1; }else{ *pHasMoved = 0; } return SQLITE_OK; } |
︙ | ︙ | |||
50820 50821 50822 50823 50824 50825 50826 | /* Always defragment highly fragmented pages */ rc = defragmentPage(pPage); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); }else if( gap+2<=top ){ /* Search the freelist looking for a free slot big enough to satisfy ** the request. The allocation is made from the first free slot in | | | 50757 50758 50759 50760 50761 50762 50763 50764 50765 50766 50767 50768 50769 50770 50771 | /* Always defragment highly fragmented pages */ rc = defragmentPage(pPage); if( rc ) return rc; top = get2byteNotZero(&data[hdr+5]); }else if( gap+2<=top ){ /* Search the freelist looking for a free slot big enough to satisfy ** the request. The allocation is made from the first free slot in ** the list that is large enough to accomadate it. */ int pc, addr; for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ int size; /* Size of the free slot */ if( pc>usableSize-4 || pc<addr+4 ){ return SQLITE_CORRUPT_BKPT; } |
︙ | ︙ | |||
51770 51771 51772 51773 51774 51775 51776 | ** how well the database resists damage due to OS crashes and power ** failures. Level 1 is the same as asynchronous (no syncs() occur and ** there is a high probability of damage) Level 2 is the default. There ** is a very low but non-zero probability of damage. Level 3 reduces the ** probability of damage to near zero but with a write performance reduction. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS | | > | > > | | 51707 51708 51709 51710 51711 51712 51713 51714 51715 51716 51717 51718 51719 51720 51721 51722 51723 51724 51725 51726 51727 51728 51729 51730 51731 | ** how well the database resists damage due to OS crashes and power ** failures. Level 1 is the same as asynchronous (no syncs() occur and ** there is a high probability of damage) Level 2 is the default. There ** is a very low but non-zero probability of damage. Level 3 reduces the ** probability of damage to near zero but with a write performance reduction. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS SQLITE_PRIVATE int sqlite3BtreeSetSafetyLevel( Btree *p, /* The btree to set the safety level on */ int level, /* PRAGMA synchronous. 1=OFF, 2=NORMAL, 3=FULL */ int fullSync, /* PRAGMA fullfsync. */ int ckptFullSync /* PRAGMA checkpoint_fullfync */ ){ BtShared *pBt = p->pBt; assert( sqlite3_mutex_held(p->db->mutex) ); assert( level>=1 && level<=3 ); sqlite3BtreeEnter(p); sqlite3PagerSetSafetyLevel(pBt->pPager, level, fullSync, ckptFullSync); sqlite3BtreeLeave(p); return SQLITE_OK; } #endif /* ** Return TRUE if the given btree is set to safety level 1. In other |
︙ | ︙ | |||
52760 52761 52762 52763 52764 52765 52766 | } sqlite3BtreeLeave(p); return rc; } /* ** This routine is called prior to sqlite3PagerCommit when a transaction | | | 52700 52701 52702 52703 52704 52705 52706 52707 52708 52709 52710 52711 52712 52713 52714 | } sqlite3BtreeLeave(p); return rc; } /* ** This routine is called prior to sqlite3PagerCommit when a transaction ** is commited for an auto-vacuum database. ** ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages ** the database file should be truncated to during the commit process. ** i.e. the database has been reorganized so that only the first *pnTrunc ** pages are in use. */ static int autoVacuumCommit(BtShared *pBt){ |
︙ | ︙ | |||
52875 52876 52877 52878 52879 52880 52881 | /* ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() ** at the conclusion of a transaction. */ static void btreeEndTransaction(Btree *p){ BtShared *pBt = p->pBt; | < | | 52815 52816 52817 52818 52819 52820 52821 52822 52823 52824 52825 52826 52827 52828 52829 52830 52831 52832 52833 52834 | /* ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() ** at the conclusion of a transaction. */ static void btreeEndTransaction(Btree *p){ BtShared *pBt = p->pBt; assert( sqlite3BtreeHoldsMutex(p) ); #ifndef SQLITE_OMIT_AUTOVACUUM pBt->bDoTruncate = 0; #endif if( p->inTrans>TRANS_NONE && p->db->activeVdbeCnt>1 ){ /* If there are other active statements that belong to this database ** handle, downgrade to a read-only transaction. The other statements ** may still be reading from the database. */ downgradeAllSharedCacheTableLocks(p); p->inTrans = TRANS_READ; }else{ /* If the handle had any kind of transaction open, decrement the |
︙ | ︙ | |||
54401 54402 54403 54404 54405 54406 54407 | */ SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ int rc; int idx; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); | < < < | | < | | > | | | | < < < | | | | | | < < | < < < | 54340 54341 54342 54343 54344 54345 54346 54347 54348 54349 54350 54351 54352 54353 54354 54355 54356 54357 54358 54359 54360 54361 54362 54363 54364 54365 54366 54367 54368 54369 54370 54371 54372 54373 54374 54375 54376 54377 54378 54379 54380 54381 54382 54383 54384 54385 54386 | */ SQLITE_PRIVATE int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ int rc; int idx; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ return rc; } assert( pRes!=0 ); if( CURSOR_INVALID==pCur->eState ){ *pRes = 1; return SQLITE_OK; } if( pCur->skipNext>0 ){ pCur->skipNext = 0; *pRes = 0; return SQLITE_OK; } pCur->skipNext = 0; pPage = pCur->apPage[pCur->iPage]; idx = ++pCur->aiIdx[pCur->iPage]; assert( pPage->isInit ); /* If the database file is corrupt, it is possible for the value of idx ** to be invalid here. This can only occur if a second cursor modifies ** the page while cursor pCur is holding a reference to it. Which can ** only happen if the database is corrupt in such a way as to link the ** page into more than one b-tree structure. */ testcase( idx>pPage->nCell ); pCur->info.nSize = 0; pCur->validNKey = 0; if( idx>=pPage->nCell ){ if( !pPage->leaf ){ rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); if( rc ) return rc; rc = moveToLeftmost(pCur); *pRes = 0; return rc; } do{ if( pCur->iPage==0 ){ *pRes = 1; |
︙ | ︙ | |||
54486 54487 54488 54489 54490 54491 54492 | ** this routine was called, then set *pRes=1. */ SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); | < < < < < | | < | | < > | | | | < < < | | | | | | < < < | 54414 54415 54416 54417 54418 54419 54420 54421 54422 54423 54424 54425 54426 54427 54428 54429 54430 54431 54432 54433 54434 54435 54436 54437 54438 54439 54440 54441 54442 54443 54444 54445 54446 54447 54448 54449 | ** this routine was called, then set *pRes=1. */ SQLITE_PRIVATE int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ int rc; MemPage *pPage; assert( cursorHoldsMutex(pCur) ); rc = restoreCursorPosition(pCur); if( rc!=SQLITE_OK ){ return rc; } pCur->atLast = 0; if( CURSOR_INVALID==pCur->eState ){ *pRes = 1; return SQLITE_OK; } if( pCur->skipNext<0 ){ pCur->skipNext = 0; *pRes = 0; return SQLITE_OK; } pCur->skipNext = 0; pPage = pCur->apPage[pCur->iPage]; assert( pPage->isInit ); if( !pPage->leaf ){ int idx = pCur->aiIdx[pCur->iPage]; rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); if( rc ){ return rc; } rc = moveToRightmost(pCur); }else{ while( pCur->aiIdx[pCur->iPage]==0 ){ if( pCur->iPage==0 ){ pCur->eState = CURSOR_INVALID; |
︙ | ︙ | |||
58127 58128 58129 58130 58131 58132 58133 58134 58135 58136 58137 58138 58139 58140 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_backup_XXX() ** API functions and the related features. */ /* ** Structure allocated for each backup operation. */ struct sqlite3_backup { sqlite3* pDestDb; /* Destination database handle */ Btree *pDest; /* Destination b-tree file */ u32 iDestSchema; /* Original schema cookie in destination */ | > > > > > > | 58043 58044 58045 58046 58047 58048 58049 58050 58051 58052 58053 58054 58055 58056 58057 58058 58059 58060 58061 58062 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains the implementation of the sqlite3_backup_XXX() ** API functions and the related features. */ /* Macro to find the minimum of two numeric values. */ #ifndef MIN # define MIN(x,y) ((x)<(y)?(x):(y)) #endif /* ** Structure allocated for each backup operation. */ struct sqlite3_backup { sqlite3* pDestDb; /* Destination database handle */ Btree *pDest; /* Destination b-tree file */ u32 iDestSchema; /* Original schema cookie in destination */ |
︙ | ︙ | |||
60272 60273 60274 60275 60276 60277 60278 | ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){ int j = -1-x; assert( p->magic==VDBE_MAGIC_INIT ); | | | | 60194 60195 60196 60197 60198 60199 60200 60201 60202 60203 60204 60205 60206 60207 60208 60209 | ** Resolve label "x" to be the address of the next instruction to ** be inserted. The parameter "x" must have been obtained from ** a prior call to sqlite3VdbeMakeLabel(). */ SQLITE_PRIVATE void sqlite3VdbeResolveLabel(Vdbe *p, int x){ int j = -1-x; assert( p->magic==VDBE_MAGIC_INIT ); assert( j>=0 && j<p->nLabel ); if( p->aLabel ){ p->aLabel[j] = p->nOp; } } /* ** Mark the VDBE as one that can only be run one time. */ |
︙ | ︙ | |||
60425 60426 60427 60428 60429 60430 60431 | */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int i; int nMaxArgs = *pMaxFuncArgs; Op *pOp; int *aLabel = p->aLabel; p->readOnly = 1; | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < > > > > > > > > > > > > > > > > > > > > > > > < | 60347 60348 60349 60350 60351 60352 60353 60354 60355 60356 60357 60358 60359 60360 60361 60362 60363 60364 60365 60366 60367 60368 60369 60370 60371 60372 60373 60374 60375 60376 60377 60378 60379 60380 60381 60382 60383 60384 60385 60386 60387 60388 60389 60390 60391 60392 60393 60394 60395 | */ static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ int i; int nMaxArgs = *pMaxFuncArgs; Op *pOp; int *aLabel = p->aLabel; p->readOnly = 1; for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ u8 opcode = pOp->opcode; pOp->opflags = sqlite3OpcodeProperty[opcode]; if( opcode==OP_Function || opcode==OP_AggStep ){ if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ p->readOnly = 0; #ifndef SQLITE_OMIT_VIRTUALTABLE }else if( opcode==OP_VUpdate ){ if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; }else if( opcode==OP_VFilter ){ int n; assert( p->nOp - i >= 3 ); assert( pOp[-1].opcode==OP_Integer ); n = pOp[-1].p1; if( n>nMaxArgs ) nMaxArgs = n; #endif }else if( opcode==OP_Next || opcode==OP_SorterNext ){ pOp->p4.xAdvance = sqlite3BtreeNext; pOp->p4type = P4_ADVANCE; }else if( opcode==OP_Prev ){ pOp->p4.xAdvance = sqlite3BtreePrevious; pOp->p4type = P4_ADVANCE; } if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ assert( -1-pOp->p2<p->nLabel ); pOp->p2 = aLabel[-1-pOp->p2]; } } sqlite3DbFree(p->db, p->aLabel); p->aLabel = 0; *pMaxFuncArgs = nMaxArgs; } /* ** Return the address of the next instruction to be inserted. */ SQLITE_PRIVATE int sqlite3VdbeCurrentAddr(Vdbe *p){ assert( p->magic==VDBE_MAGIC_INIT ); |
︙ | ︙ | |||
60617 60618 60619 60620 60621 60622 60623 | } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ | > | | 60507 60508 60509 60510 60511 60512 60513 60514 60515 60516 60517 60518 60519 60520 60521 60522 | } /* ** Change the P2 operand of instruction addr so that it points to ** the address of the next instruction to be coded. */ SQLITE_PRIVATE void sqlite3VdbeJumpHere(Vdbe *p, int addr){ assert( addr>=0 || p->db->mallocFailed ); if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp); } /* ** If the input FuncDef structure is ephemeral, then free it. If ** the FuncDef is not ephermal, then do nothing. */ |
︙ | ︙ | |||
60652 60653 60654 60655 60656 60657 60658 60659 60660 60661 60662 60663 60664 60665 | case P4_KEYINFO_HANDOFF: { sqlite3DbFree(db, p4); break; } case P4_MPRINTF: { if( db->pnBytesFreed==0 ) sqlite3_free(p4); break; } case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ | > > > > > > > | 60543 60544 60545 60546 60547 60548 60549 60550 60551 60552 60553 60554 60555 60556 60557 60558 60559 60560 60561 60562 60563 | case P4_KEYINFO_HANDOFF: { sqlite3DbFree(db, p4); break; } case P4_MPRINTF: { if( db->pnBytesFreed==0 ) sqlite3_free(p4); break; } case P4_VDBEFUNC: { VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; freeEphemeralFunction(db, pVdbeFunc->pFunc); if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); sqlite3DbFree(db, pVdbeFunc); break; } case P4_FUNCDEF: { freeEphemeralFunction(db, (FuncDef*)p4); break; } case P4_MEM: { if( db->pnBytesFreed==0 ){ |
︙ | ︙ | |||
60771 60772 60773 60774 60775 60776 60777 | ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; }else if( zP4==0 ){ pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ | | > | > > | | > | | > > > | 60669 60670 60671 60672 60673 60674 60675 60676 60677 60678 60679 60680 60681 60682 60683 60684 60685 60686 60687 60688 60689 60690 60691 60692 60693 60694 60695 60696 | ** that was cast to a (const char *). */ pOp->p4.i = SQLITE_PTR_TO_INT(zP4); pOp->p4type = P4_INT32; }else if( zP4==0 ){ pOp->p4.p = 0; pOp->p4type = P4_NOTUSED; }else if( n==P4_KEYINFO ){ KeyInfo *pKeyInfo; int nField, nByte; nField = ((KeyInfo*)zP4)->nField; nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; pKeyInfo = sqlite3DbMallocRaw(0, nByte); pOp->p4.pKeyInfo = pKeyInfo; if( pKeyInfo ){ u8 *aSortOrder; memcpy((char*)pKeyInfo, zP4, nByte - nField); aSortOrder = pKeyInfo->aSortOrder; assert( aSortOrder!=0 ); pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); pOp->p4type = P4_KEYINFO; }else{ p->db->mallocFailed = 1; pOp->p4type = P4_NOTUSED; } }else if( n==P4_KEYINFO_HANDOFF ){ pOp->p4.p = (void*)zP4; |
︙ | ︙ | |||
61675 61676 61677 61678 61679 61680 61681 | releaseMemArray(&p->aMem[1], p->nMem); } while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } | < < < < | 61580 61581 61582 61583 61584 61585 61586 61587 61588 61589 61590 61591 61592 61593 | releaseMemArray(&p->aMem[1], p->nMem); } while( p->pDelFrame ){ VdbeFrame *pDel = p->pDelFrame; p->pDelFrame = pDel->pParent; sqlite3VdbeFrameDelete(pDel); } } /* ** Clean up the VM after execution. ** ** This routine will automatically close any cursors, lists, and/or ** sorters that were left open. It also deletes the values of |
︙ | ︙ | |||
62006 62007 62008 62009 62010 62011 62012 | } #endif return rc; } /* | | < < | | < | | 61907 61908 61909 61910 61911 61912 61913 61914 61915 61916 61917 61918 61919 61920 61921 61922 61923 61924 61925 61926 61927 61928 61929 61930 61931 61932 61933 61934 61935 61936 61937 61938 61939 61940 61941 61942 61943 61944 61945 61946 61947 61948 61949 61950 61951 61952 61953 61954 | } #endif return rc; } /* ** This routine checks that the sqlite3.activeVdbeCnt count variable ** matches the number of vdbe's in the list sqlite3.pVdbe that are ** currently active. An assertion fails if the two counts do not match. ** This is an internal self-check only - it is not an essential processing ** step. ** ** This is a no-op if NDEBUG is defined. */ #ifndef NDEBUG static void checkActiveVdbeCnt(sqlite3 *db){ Vdbe *p; int cnt = 0; int nWrite = 0; p = db->pVdbe; while( p ){ if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ cnt++; if( p->readOnly==0 ) nWrite++; } p = p->pNext; } assert( cnt==db->activeVdbeCnt ); assert( nWrite==db->writeVdbeCnt ); } #else #define checkActiveVdbeCnt(x) #endif /* ** If the Vdbe passed as the first argument opened a statement-transaction, ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the ** statement transaction is commtted. ** ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. ** Otherwise SQLITE_OK. */ SQLITE_PRIVATE int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ sqlite3 *const db = p->db; int rc = SQLITE_OK; |
︙ | ︙ | |||
62096 62097 62098 62099 62100 62101 62102 | } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; | < < | < | 61994 61995 61996 61997 61998 61999 62000 62001 62002 62003 62004 62005 62006 62007 62008 62009 62010 62011 62012 62013 62014 62015 62016 62017 62018 62019 62020 62021 62022 62023 62024 62025 62026 | } /* If the statement transaction is being rolled back, also restore the ** database handles deferred constraint counter to the value it had when ** the statement transaction was opened. */ if( eOp==SAVEPOINT_ROLLBACK ){ db->nDeferredCons = p->nStmtDefCons; } } return rc; } /* ** This function is called when a transaction opened by the database ** handle associated with the VM passed as an argument is about to be ** committed. If there are outstanding deferred foreign key constraint ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. ** ** If there are outstanding FK violations and this function returns ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY ** and write an error message to it. Then return SQLITE_ERROR. */ #ifndef SQLITE_OMIT_FOREIGN_KEY SQLITE_PRIVATE int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ sqlite3 *db = p->db; if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ p->rc = SQLITE_CONSTRAINT_FOREIGNKEY; p->errorAction = OE_Abort; sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); return SQLITE_ERROR; } return SQLITE_OK; } |
︙ | ︙ | |||
62170 62171 62172 62173 62174 62175 62176 | if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); closeAllCursors(p); if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_OK; } checkActiveVdbeCnt(db); | | < | | 62065 62066 62067 62068 62069 62070 62071 62072 62073 62074 62075 62076 62077 62078 62079 62080 | if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag); closeAllCursors(p); if( p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_OK; } checkActiveVdbeCnt(db); /* No commit or rollback needed if the program never started */ if( p->pc>=0 ){ int mrc; /* Primary error code from p->rc */ int eStatementOp = 0; int isSpecialError; /* Set to true if a 'special' error */ /* Lock all btrees used by the statement */ sqlite3VdbeEnter(p); |
︙ | ︙ | |||
62225 62226 62227 62228 62229 62230 62231 | ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit | | | 62119 62120 62121 62122 62123 62124 62125 62126 62127 62128 62129 62130 62131 62132 62133 | ** VM, then we do either a commit or rollback of the current transaction. ** ** Note: This block also runs if one of the special errors handled ** above has occurred. */ if( !sqlite3VtabInSync(db) && db->autoCommit && db->writeVdbeCnt==(p->readOnly==0) ){ if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ rc = sqlite3VdbeCheckFk(p, 1); if( rc!=SQLITE_OK ){ if( NEVER(p->readOnly) ){ sqlite3VdbeLeave(p); return SQLITE_ERROR; |
︙ | ︙ | |||
62250 62251 62252 62253 62254 62255 62256 | sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); }else{ db->nDeferredCons = 0; | < < | 62144 62145 62146 62147 62148 62149 62150 62151 62152 62153 62154 62155 62156 62157 | sqlite3VdbeLeave(p); return SQLITE_BUSY; }else if( rc!=SQLITE_OK ){ p->rc = rc; sqlite3RollbackAll(db, SQLITE_OK); }else{ db->nDeferredCons = 0; sqlite3CommitInternalChanges(db); } }else{ sqlite3RollbackAll(db, SQLITE_OK); } db->nStatement = 0; }else if( eStatementOp==0 ){ |
︙ | ︙ | |||
62308 62309 62310 62311 62312 62313 62314 | /* Release the locks */ sqlite3VdbeLeave(p); } /* We have successfully halted and closed the VM. Record this fact. */ if( p->pc>=0 ){ | | | | < < > | | | 62200 62201 62202 62203 62204 62205 62206 62207 62208 62209 62210 62211 62212 62213 62214 62215 62216 62217 62218 62219 62220 62221 62222 62223 62224 62225 62226 62227 62228 62229 62230 62231 62232 62233 62234 | /* Release the locks */ sqlite3VdbeLeave(p); } /* We have successfully halted and closed the VM. Record this fact. */ if( p->pc>=0 ){ db->activeVdbeCnt--; if( !p->readOnly ){ db->writeVdbeCnt--; } assert( db->activeVdbeCnt>=db->writeVdbeCnt ); } p->magic = VDBE_MAGIC_HALT; checkActiveVdbeCnt(db); if( p->db->mallocFailed ){ p->rc = SQLITE_NOMEM; } /* If the auto-commit flag is set to true, then any locks that were held ** by connection db have now been released. Call sqlite3ConnectionUnlocked() ** to invoke any required unlock-notify callbacks. */ if( db->autoCommit ){ sqlite3ConnectionUnlocked(db); } assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); } /* ** Each VDBE holds the result of the most recent sqlite3_step() call ** in p->rc. This routine sets that result back to SQLITE_OK. |
︙ | ︙ | |||
62477 62478 62479 62480 62481 62482 62483 | assert( (rc & p->db->errMask)==rc ); } sqlite3VdbeDelete(p); return rc; } /* | | < < < < < < < < < < < | < > > | > | < | | < < | < < < | 62368 62369 62370 62371 62372 62373 62374 62375 62376 62377 62378 62379 62380 62381 62382 62383 62384 62385 62386 62387 62388 62389 62390 62391 62392 62393 62394 62395 | assert( (rc & p->db->errMask)==rc ); } sqlite3VdbeDelete(p); return rc; } /* ** Call the destructor for each auxdata entry in pVdbeFunc for which ** the corresponding bit in mask is clear. Auxdata entries beyond 31 ** are always destroyed. To destroy all auxdata entries, call this ** routine with mask==0. */ SQLITE_PRIVATE void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ int i; for(i=0; i<pVdbeFunc->nAux; i++){ struct AuxData *pAux = &pVdbeFunc->apAux[i]; if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ if( pAux->xDelete ){ pAux->xDelete(pAux->pAux); } pAux->pAux = 0; } } } /* ** Free all memory associated with the Vdbe passed as the second argument, ** except for object itself, which is preserved. |
︙ | ︙ | |||
63024 63025 63026 63027 63028 63029 63030 | ** equal, then the keys are considered to be equal and ** the parts beyond the common prefix are ignored. */ SQLITE_PRIVATE int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ | | > | 62900 62901 62902 62903 62904 62905 62906 62907 62908 62909 62910 62911 62912 62913 62914 62915 62916 62917 62918 | ** equal, then the keys are considered to be equal and ** the parts beyond the common prefix are ignored. */ SQLITE_PRIVATE int sqlite3VdbeRecordCompare( int nKey1, const void *pKey1, /* Left key */ UnpackedRecord *pPKey2 /* Right key */ ){ int d1; /* Offset into aKey[] of next data element */ u32 idx1; /* Offset into aKey[] of next header element */ u32 szHdr1; /* Number of bytes in header */ int i = 0; int nField; int rc = 0; const unsigned char *aKey1 = (const unsigned char *)pKey1; KeyInfo *pKeyInfo; Mem mem1; pKeyInfo = pPKey2->pKeyInfo; mem1.enc = pKeyInfo->enc; |
︙ | ︙ | |||
63050 63051 63052 63053 63054 63055 63056 | ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; | | < < < < < < < < | < < < | > | | 62927 62928 62929 62930 62931 62932 62933 62934 62935 62936 62937 62938 62939 62940 62941 62942 62943 62944 62945 62946 62947 62948 62949 62950 62951 62952 62953 62954 62955 62956 62957 62958 62959 62960 62961 62962 | ** impact, since this routine is a very high runner. And so, we choose ** to ignore the compiler warnings and leave this variable uninitialized. */ /* mem1.u.i = 0; // not needed, here to silence compiler warning */ idx1 = getVarint32(aKey1, szHdr1); d1 = szHdr1; nField = pKeyInfo->nField; assert( pKeyInfo->aSortOrder!=0 ); while( idx1<szHdr1 && i<pPKey2->nField ){ u32 serial_type1; /* Read the serial types for the next element in each key. */ idx1 += getVarint32( aKey1+idx1, serial_type1 ); if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; /* Extract the values to be compared. */ d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); /* Do the comparison */ rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], i<nField ? pKeyInfo->aColl[i] : 0); if( rc!=0 ){ assert( mem1.zMalloc==0 ); /* See comment below */ /* Invert the result if we are using DESC sort order. */ if( i<nField && pKeyInfo->aSortOrder[i] ){ rc = -rc; } /* If the PREFIX_SEARCH flag is set and all fields except the final ** rowid field were equal, then clear the PREFIX_SEARCH flag and set ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). ** This is used by the OP_IsUnique opcode. |
︙ | ︙ | |||
63296 63297 63298 63299 63300 63301 63302 | ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ | | | 63163 63164 63165 63166 63167 63168 63169 63170 63171 63172 63173 63174 63175 63176 63177 | ** Return a pointer to an sqlite3_value structure containing the value bound ** parameter iVar of VM v. Except, if the value is an SQL NULL, return ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* ** constants) to the value before returning it. ** ** The returned value must be freed by the caller using sqlite3ValueFree(). */ SQLITE_PRIVATE sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ assert( iVar>0 ); if( v ){ Mem *pMem = &v->aVar[iVar-1]; if( 0==(pMem->flags & MEM_Null) ){ sqlite3_value *pRet = sqlite3ValueNew(v->db); if( pRet ){ sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
︙ | ︙ | |||
63540 63541 63542 63543 63544 63545 63546 | SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sqlite3VdbeMemSetDouble(&pCtx->s, rVal); } SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pCtx->isError = SQLITE_ERROR; | < < | 63407 63408 63409 63410 63411 63412 63413 63414 63415 63416 63417 63418 63419 63420 63421 63422 63423 63424 63425 63426 | SQLITE_API void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sqlite3VdbeMemSetDouble(&pCtx->s, rVal); } SQLITE_API void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pCtx->isError = SQLITE_ERROR; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } #ifndef SQLITE_OMIT_UTF16 SQLITE_API void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pCtx->isError = SQLITE_ERROR; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } #endif SQLITE_API void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); } |
︙ | ︙ | |||
63611 63612 63613 63614 63615 63616 63617 | } SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); } SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ pCtx->isError = errCode; | < < < | 63476 63477 63478 63479 63480 63481 63482 63483 63484 63485 63486 63487 63488 63489 63490 63491 63492 63493 63494 63495 63496 63497 63498 63499 63500 63501 63502 63503 63504 63505 63506 63507 63508 | } SQLITE_API void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); } SQLITE_API void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ pCtx->isError = errCode; if( pCtx->s.flags & MEM_Null ){ sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, SQLITE_UTF8, SQLITE_STATIC); } } /* Force an SQLITE_TOOBIG error. */ SQLITE_API void sqlite3_result_error_toobig(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pCtx->isError = SQLITE_TOOBIG; sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, SQLITE_UTF8, SQLITE_STATIC); } /* An SQLITE_NOMEM error. */ SQLITE_API void sqlite3_result_error_nomem(sqlite3_context *pCtx){ assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); sqlite3VdbeMemSetNull(&pCtx->s); pCtx->isError = SQLITE_NOMEM; pCtx->s.db->mallocFailed = 1; } /* ** This function is called after a transaction has been committed. It ** invokes callbacks registered with sqlite3_wal_hook() as required. */ |
︙ | ︙ | |||
63716 63717 63718 63719 63720 63721 63722 | goto end_of_step; } if( p->pc<0 ){ /* If there are no other statements currently running, then ** reset the interrupt flag. This prevents a call to sqlite3_interrupt ** from interrupting a statement that has not yet started. */ | | | < < | | < | | | 63578 63579 63580 63581 63582 63583 63584 63585 63586 63587 63588 63589 63590 63591 63592 63593 63594 63595 63596 63597 63598 63599 63600 63601 63602 63603 63604 63605 63606 63607 63608 63609 63610 63611 63612 63613 63614 63615 63616 | goto end_of_step; } if( p->pc<0 ){ /* If there are no other statements currently running, then ** reset the interrupt flag. This prevents a call to sqlite3_interrupt ** from interrupting a statement that has not yet started. */ if( db->activeVdbeCnt==0 ){ db->u1.isInterrupted = 0; } assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); #ifndef SQLITE_OMIT_TRACE if( db->xProfile && !db->init.busy ){ sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); } #endif db->activeVdbeCnt++; if( p->readOnly==0 ) db->writeVdbeCnt++; p->pc = 0; } #ifndef SQLITE_OMIT_EXPLAIN if( p->explain ){ rc = sqlite3VdbeList(p); }else #endif /* SQLITE_OMIT_EXPLAIN */ { db->vdbeExecCnt++; rc = sqlite3VdbeExec(p); db->vdbeExecCnt--; } #ifndef SQLITE_OMIT_TRACE /* Invoke the profile callback if there is one */ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ sqlite3_int64 iNow; |
︙ | ︙ | |||
63918 63919 63920 63921 63922 63923 63924 | } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ | | | | > | < | | > > > > > > > | | | > > | < < < < < < < < < < | > | < | 63777 63778 63779 63780 63781 63782 63783 63784 63785 63786 63787 63788 63789 63790 63791 63792 63793 63794 63795 63796 63797 63798 63799 63800 63801 63802 63803 63804 63805 63806 63807 63808 63809 63810 63811 63812 63813 63814 63815 63816 63817 63818 63819 63820 63821 63822 63823 63824 63825 63826 63827 63828 63829 63830 63831 63832 63833 63834 | } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ VdbeFunc *pVdbeFunc; assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ return 0; } return pVdbeFunc->apAux[iArg].pAux; } /* ** Set the auxilary data pointer and delete function, for the iArg'th ** argument to the user-function defined by pCtx. Any previous value is ** deleted by calling the delete function specified when it was set. */ SQLITE_API void sqlite3_set_auxdata( sqlite3_context *pCtx, int iArg, void *pAux, void (*xDelete)(void*) ){ struct AuxData *pAuxData; VdbeFunc *pVdbeFunc; if( iArg<0 ) goto failed; assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); if( !pVdbeFunc ){ goto failed; } pCtx->pVdbeFunc = pVdbeFunc; memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); pVdbeFunc->nAux = iArg+1; pVdbeFunc->pFunc = pCtx->pFunc; } pAuxData = &pVdbeFunc->apAux[iArg]; if( pAuxData->pAux && pAuxData->xDelete ){ pAuxData->xDelete(pAuxData->pAux); } pAuxData->pAux = pAux; pAuxData->xDelete = xDelete; return; failed: if( xDelete ){ xDelete(pAux); |
︙ | ︙ | |||
64150 64151 64152 64153 64154 64155 64156 64157 64158 64159 64160 64161 64162 64163 | } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ int iType = sqlite3_value_type( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return iType; } /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: | > > > > > > > | 64008 64009 64010 64011 64012 64013 64014 64015 64016 64017 64018 64019 64020 64021 64022 64023 64024 64025 64026 64027 64028 | } #endif /* SQLITE_OMIT_UTF16 */ SQLITE_API int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ int iType = sqlite3_value_type( columnMem(pStmt,i) ); columnMallocFailure(pStmt); return iType; } /* The following function is experimental and subject to change or ** removal */ /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ ** return sqlite3_value_numeric_type( columnMem(pStmt,i) ); **} */ /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: |
︙ | ︙ | |||
64627 64628 64629 64630 64631 64632 64633 | } /* ** Return the value of a status counter for a prepared statement */ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; | | | | | 64492 64493 64494 64495 64496 64497 64498 64499 64500 64501 64502 64503 64504 64505 64506 64507 64508 | } /* ** Return the value of a status counter for a prepared statement */ SQLITE_API int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ Vdbe *pVdbe = (Vdbe*)pStmt; int v = pVdbe->aCounter[op-1]; if( resetFlag ) pVdbe->aCounter[op-1] = 0; return v; } /************** End of vdbeapi.c *********************************************/ /************** Begin file vdbetrace.c ***************************************/ /* ** 2009 November 25 ** |
︙ | ︙ | |||
64681 64682 64683 64684 64685 64686 64687 | zSql += n; } return nTotal; } /* ** This function returns a pointer to a nul-terminated string in memory | | | | 64546 64547 64548 64549 64550 64551 64552 64553 64554 64555 64556 64557 64558 64559 64560 64561 64562 | zSql += n; } return nTotal; } /* ** This function returns a pointer to a nul-terminated string in memory ** obtained from sqlite3DbMalloc(). If sqlite3.vdbeExecCnt is 1, then the ** string contains a copy of zRawSql but with host parameters expanded to ** their current bindings. Or, if sqlite3.vdbeExecCnt is greater than 1, ** then the returned string holds a copy of zRawSql with "-- " prepended ** to each line of text. ** ** If the SQLITE_TRACE_SIZE_LIMIT macro is defined to an integer, then ** then long strings and blobs are truncated to that many bytes. This ** can be used to prevent unreasonably large trace strings when dealing ** with large (multi-megabyte) strings and blobs. |
︙ | ︙ | |||
64721 64722 64723 64724 64725 64726 64727 | StrAccum out; /* Accumulate the output here */ char zBase[100]; /* Initial working space */ db = p->db; sqlite3StrAccumInit(&out, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); out.db = db; | | | 64586 64587 64588 64589 64590 64591 64592 64593 64594 64595 64596 64597 64598 64599 64600 | StrAccum out; /* Accumulate the output here */ char zBase[100]; /* Initial working space */ db = p->db; sqlite3StrAccumInit(&out, zBase, sizeof(zBase), db->aLimit[SQLITE_LIMIT_LENGTH]); out.db = db; if( db->vdbeExecCnt>1 ){ while( *zRawSql ){ const char *zStart = zRawSql; while( *(zRawSql++)!='\n' && *zRawSql ); sqlite3StrAccumAppend(&out, "-- ", 3); sqlite3StrAccumAppend(&out, zStart, (int)(zRawSql-zStart)); } }else{ |
︙ | ︙ | |||
64776 64777 64778 64779 64780 64781 64782 | sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC); sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8); pVar = &utf8; } #endif nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT | | | | | | 64641 64642 64643 64644 64645 64646 64647 64648 64649 64650 64651 64652 64653 64654 64655 64656 64657 64658 64659 64660 64661 64662 64663 64664 64665 64666 64667 64668 64669 64670 64671 64672 64673 64674 64675 64676 64677 64678 64679 64680 64681 64682 | sqlite3VdbeMemSetStr(&utf8, pVar->z, pVar->n, enc, SQLITE_STATIC); sqlite3VdbeChangeEncoding(&utf8, SQLITE_UTF8); pVar = &utf8; } #endif nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( n>SQLITE_TRACE_SIZE_LIMIT ){ nOut = SQLITE_TRACE_SIZE_LIMIT; while( nOut<pVar->n && (pVar->z[n]&0xc0)==0x80 ){ n++; } } #endif sqlite3XPrintf(&out, "'%.*q'", nOut, pVar->z); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut<pVar->n ) sqlite3XPrintf(&out, "/*+%d bytes*/", pVar->n-n); #endif #ifndef SQLITE_OMIT_UTF16 if( enc!=SQLITE_UTF8 ) sqlite3VdbeMemRelease(&utf8); #endif }else if( pVar->flags & MEM_Zero ){ sqlite3XPrintf(&out, "zeroblob(%d)", pVar->u.nZero); }else{ int nOut; /* Number of bytes of the blob to include in output */ assert( pVar->flags & MEM_Blob ); sqlite3StrAccumAppend(&out, "x'", 2); nOut = pVar->n; #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut>SQLITE_TRACE_SIZE_LIMIT ) nOut = SQLITE_TRACE_SIZE_LIMIT; #endif for(i=0; i<nOut; i++){ sqlite3XPrintf(&out, "%02x", pVar->z[i]&0xff); } sqlite3StrAccumAppend(&out, "'", 1); #ifdef SQLITE_TRACE_SIZE_LIMIT if( nOut<pVar->n ) sqlite3XPrintf(&out, "/*+%d bytes*/", pVar->n-n); #endif } } } return sqlite3StrAccumFinish(&out); } |
︙ | ︙ | |||
65571 65572 65573 65574 65575 65576 65577 | int pc=0; /* The program counter */ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ | < < > | > | 65436 65437 65438 65439 65440 65441 65442 65443 65444 65445 65446 65447 65448 65449 65450 65451 65452 65453 65454 65455 65456 65457 65458 65459 | int pc=0; /* The program counter */ Op *aOp = p->aOp; /* Copy of p->aOp */ Op *pOp; /* Current operation */ int rc = SQLITE_OK; /* Value to return */ sqlite3 *db = p->db; /* The database */ u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */ u8 encoding = ENC(db); /* The database encoding */ #ifndef SQLITE_OMIT_PROGRESS_CALLBACK int checkProgress; /* True if progress callbacks are enabled */ int nProgressOps = 0; /* Opcodes executed since progress callback. */ #endif Mem *aMem = p->aMem; /* Copy of p->aMem */ Mem *pIn1 = 0; /* 1st input operand */ Mem *pIn2 = 0; /* 2nd input operand */ Mem *pIn3 = 0; /* 3rd input operand */ Mem *pOut = 0; /* Output operand */ int iCompare = 0; /* Result of last OP_Compare operation */ int *aPermute = 0; /* Permutation of columns for OP_Compare */ i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */ #ifdef VDBE_PROFILE u64 start; /* CPU clock count at start of opcode */ int origPc; /* Program counter at start of opcode */ #endif /******************************************************************** |
︙ | ︙ | |||
66026 66027 66028 66029 66030 66031 66032 | sqlite3VdbeEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); | < | < < < < < < < < < | 65891 65892 65893 65894 65895 65896 65897 65898 65899 65900 65901 65902 65903 65904 65905 65906 65907 65908 65909 65910 65911 65912 65913 65914 65915 65916 65917 65918 65919 65920 65921 65922 65923 65924 65925 65926 65927 65928 65929 65930 65931 65932 | sqlite3VdbeEnter(p); if( p->rc==SQLITE_NOMEM ){ /* This happens if a malloc() inside a call to sqlite3_column_text() or ** sqlite3_column_text16() failed. */ goto no_mem; } assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY ); p->rc = SQLITE_OK; assert( p->explain==0 ); p->pResultSet = 0; db->busyHandler.nBusy = 0; CHECK_FOR_INTERRUPT; sqlite3VdbeIOTraceSql(p); #ifndef SQLITE_OMIT_PROGRESS_CALLBACK checkProgress = db->xProgress!=0; #endif #ifdef SQLITE_DEBUG sqlite3BeginBenignMalloc(); if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){ int i; printf("VDBE Program Listing:\n"); sqlite3VdbePrintSql(p); for(i=0; i<p->nOp; i++){ sqlite3VdbePrintOp(stdout, i, &aOp[i]); } } sqlite3EndBenignMalloc(); #endif for(pc=p->pc; rc==SQLITE_OK; pc++){ assert( pc>=0 && pc<p->nOp ); if( db->mallocFailed ) goto no_mem; #ifdef VDBE_PROFILE origPc = pc; start = sqlite3Hwtime(); #endif pOp = &aOp[pc]; /* Only allow tracing if SQLITE_DEBUG is defined. */ #ifdef SQLITE_DEBUG if( p->trace ){ if( pc==0 ){ |
︙ | ︙ | |||
66090 66091 66092 66093 66094 66095 66096 66097 66098 66099 66100 66101 66102 66103 | if( sqlite3_interrupt_count>0 ){ sqlite3_interrupt_count--; if( sqlite3_interrupt_count==0 ){ sqlite3_interrupt(db); } } #endif /* On any opcode with the "out2-prerelease" tag, free any ** external allocations out of mem[p2] and set mem[p2] to be ** an undefined integer. Opcodes will either fill in the integer ** value or convert mem[p2] to a different type. */ assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); | > > > > > > > > > > > > > > > > > > > > > | 65945 65946 65947 65948 65949 65950 65951 65952 65953 65954 65955 65956 65957 65958 65959 65960 65961 65962 65963 65964 65965 65966 65967 65968 65969 65970 65971 65972 65973 65974 65975 65976 65977 65978 65979 | if( sqlite3_interrupt_count>0 ){ sqlite3_interrupt_count--; if( sqlite3_interrupt_count==0 ){ sqlite3_interrupt(db); } } #endif #ifndef SQLITE_OMIT_PROGRESS_CALLBACK /* Call the progress callback if it is configured and the required number ** of VDBE ops have been executed (either since this invocation of ** sqlite3VdbeExec() or since last time the progress callback was called). ** If the progress callback returns non-zero, exit the virtual machine with ** a return code SQLITE_ABORT. */ if( checkProgress ){ if( db->nProgressOps==nProgressOps ){ int prc; prc = db->xProgress(db->pProgressArg); if( prc!=0 ){ rc = SQLITE_INTERRUPT; goto vdbe_error_halt; } nProgressOps = 0; } nProgressOps++; } #endif /* On any opcode with the "out2-prerelease" tag, free any ** external allocations out of mem[p2] and set mem[p2] to be ** an undefined integer. Opcodes will either fill in the integer ** value or convert mem[p2] to a different type. */ assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] ); |
︙ | ︙ | |||
66183 66184 66185 66186 66187 66188 66189 | ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { /* jump */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | 66059 66060 66061 66062 66063 66064 66065 66066 66067 66068 66069 66070 66071 66072 66073 66074 | ** ** An unconditional jump to address P2. ** The next instruction executed will be ** the one at index P2 from the beginning of ** the program. */ case OP_Goto: { /* jump */ CHECK_FOR_INTERRUPT; pc = pOp->p2 - 1; break; } /* Opcode: Gosub P1 P2 * * * ** ** Write the current address onto register P1 ** and then jump to address P2. |
︙ | ︙ | |||
66337 66338 66339 66340 66341 66342 66343 | } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); if( rc==SQLITE_BUSY ){ p->rc = rc = SQLITE_BUSY; }else{ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); | | | 66181 66182 66183 66184 66185 66186 66187 66188 66189 66190 66191 66192 66193 66194 66195 | } rc = sqlite3VdbeHalt(p); assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR ); if( rc==SQLITE_BUSY ){ p->rc = rc = SQLITE_BUSY; }else{ assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ); assert( rc==SQLITE_OK || db->nDeferredCons>0 ); rc = p->rc ? SQLITE_ERROR : SQLITE_DONE; } goto vdbe_return; } /* Opcode: Integer P1 P2 * * * ** |
︙ | ︙ | |||
66899 66900 66901 66902 66903 66904 66905 | assert( memIsValid(u.ai.pArg) ); u.ai.apVal[u.ai.i] = u.ai.pArg; Deephemeralize(u.ai.pArg); sqlite3VdbeMemStoreType(u.ai.pArg); REGISTER_TRACE(pOp->p2+u.ai.i, u.ai.pArg); } | | > | > > > > > > < < | > > > > > > > > > < | | | < < | 66743 66744 66745 66746 66747 66748 66749 66750 66751 66752 66753 66754 66755 66756 66757 66758 66759 66760 66761 66762 66763 66764 66765 66766 66767 66768 66769 66770 66771 66772 66773 66774 66775 66776 66777 66778 66779 66780 66781 66782 66783 66784 66785 66786 66787 66788 66789 66790 66791 66792 66793 66794 66795 66796 66797 66798 66799 66800 66801 66802 66803 66804 66805 66806 66807 66808 66809 66810 66811 | assert( memIsValid(u.ai.pArg) ); u.ai.apVal[u.ai.i] = u.ai.pArg; Deephemeralize(u.ai.pArg); sqlite3VdbeMemStoreType(u.ai.pArg); REGISTER_TRACE(pOp->p2+u.ai.i, u.ai.pArg); } assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC ); if( pOp->p4type==P4_FUNCDEF ){ u.ai.ctx.pFunc = pOp->p4.pFunc; u.ai.ctx.pVdbeFunc = 0; }else{ u.ai.ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc; u.ai.ctx.pFunc = u.ai.ctx.pVdbeFunc->pFunc; } u.ai.ctx.s.flags = MEM_Null; u.ai.ctx.s.db = db; u.ai.ctx.s.xDel = 0; u.ai.ctx.s.zMalloc = 0; /* The output cell may already have a buffer allocated. Move ** the pointer to u.ai.ctx.s so in case the user-function can use ** the already allocated buffer instead of allocating a new one. */ sqlite3VdbeMemMove(&u.ai.ctx.s, pOut); MemSetTypeFlag(&u.ai.ctx.s, MEM_Null); u.ai.ctx.isError = 0; if( u.ai.ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){ assert( pOp>aOp ); assert( pOp[-1].p4type==P4_COLLSEQ ); assert( pOp[-1].opcode==OP_CollSeq ); u.ai.ctx.pColl = pOp[-1].p4.pColl; } db->lastRowid = lastRowid; (*u.ai.ctx.pFunc->xFunc)(&u.ai.ctx, u.ai.n, u.ai.apVal); /* IMP: R-24505-23230 */ lastRowid = db->lastRowid; /* If any auxiliary data functions have been called by this user function, ** immediately call the destructor for any non-static values. */ if( u.ai.ctx.pVdbeFunc ){ sqlite3VdbeDeleteAuxData(u.ai.ctx.pVdbeFunc, pOp->p1); pOp->p4.pVdbeFunc = u.ai.ctx.pVdbeFunc; pOp->p4type = P4_VDBEFUNC; } if( db->mallocFailed ){ /* Even though a malloc() has failed, the implementation of the ** user function may have called an sqlite3_result_XXX() function ** to return a value. The following call releases any resources ** associated with such a value. */ sqlite3VdbeMemRelease(&u.ai.ctx.s); goto no_mem; } /* If the function returned an error, throw an exception */ if( u.ai.ctx.isError ){ sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&u.ai.ctx.s)); rc = u.ai.ctx.isError; } /* Copy the result of the function into register P3 */ sqlite3VdbeChangeEncoding(&u.ai.ctx.s, encoding); sqlite3VdbeMemMove(pOut, &u.ai.ctx.s); if( sqlite3VdbeMemTooBig(pOut) ){ goto too_big; |
︙ | ︙ | |||
67318 67319 67320 67321 67322 67323 67324 | u.ak.res = 1; /* Results are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ | | < < > > | 67173 67174 67175 67176 67177 67178 67179 67180 67181 67182 67183 67184 67185 67186 67187 67188 67189 67190 67191 67192 | u.ak.res = 1; /* Results are not equal */ } }else{ /* SQLITE_NULLEQ is clear and at least one operand is NULL, ** then the result is always NULL. ** The jump is taken if the SQLITE_JUMPIFNULL bit is set. */ if( pOp->p5 & SQLITE_STOREP2 ){ pOut = &aMem[pOp->p2]; MemSetTypeFlag(pOut, MEM_Null); REGISTER_TRACE(pOp->p2, pOut); }else if( pOp->p5 & SQLITE_JUMPIFNULL ){ pc = pOp->p2-1; } break; } }else{ /* Neither operand is NULL. Do a comparison. */ u.ak.affinity = pOp->p5 & SQLITE_AFF_MASK; if( u.ak.affinity ){ |
︙ | ︙ | |||
68179 68180 68181 68182 68183 68184 68185 | /* Assert that the u.as.p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( u.as.p1==SAVEPOINT_BEGIN||u.as.p1==SAVEPOINT_RELEASE||u.as.p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); | < | | 68034 68035 68036 68037 68038 68039 68040 68041 68042 68043 68044 68045 68046 68047 68048 68049 68050 | /* Assert that the u.as.p1 parameter is valid. Also that if there is no open ** transaction, then there cannot be any savepoints. */ assert( db->pSavepoint==0 || db->autoCommit==0 ); assert( u.as.p1==SAVEPOINT_BEGIN||u.as.p1==SAVEPOINT_RELEASE||u.as.p1==SAVEPOINT_ROLLBACK ); assert( db->pSavepoint || db->isTransactionSavepoint==0 ); assert( checkSavepointCount(db) ); if( u.as.p1==SAVEPOINT_BEGIN ){ if( db->writeVdbeCnt>0 ){ /* A new savepoint cannot be created if there are active write ** statements (i.e. open read/write incremental blob handles). */ sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - " "SQL statements in progress"); rc = SQLITE_BUSY; }else{ |
︙ | ︙ | |||
68222 68223 68224 68225 68226 68227 68228 | db->nSavepoint++; } /* Link the new savepoint into the database handle's list. */ u.as.pNew->pNext = db->pSavepoint; db->pSavepoint = u.as.pNew; u.as.pNew->nDeferredCons = db->nDeferredCons; | < | | 68076 68077 68078 68079 68080 68081 68082 68083 68084 68085 68086 68087 68088 68089 68090 68091 68092 68093 68094 68095 68096 68097 68098 68099 68100 68101 68102 68103 68104 68105 68106 68107 | db->nSavepoint++; } /* Link the new savepoint into the database handle's list. */ u.as.pNew->pNext = db->pSavepoint; db->pSavepoint = u.as.pNew; u.as.pNew->nDeferredCons = db->nDeferredCons; } } }else{ u.as.iSavepoint = 0; /* Find the named savepoint. If there is no such savepoint, then an ** an error is returned to the user. */ for( u.as.pSavepoint = db->pSavepoint; u.as.pSavepoint && sqlite3StrICmp(u.as.pSavepoint->zName, u.as.zName); u.as.pSavepoint = u.as.pSavepoint->pNext ){ u.as.iSavepoint++; } if( !u.as.pSavepoint ){ sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", u.as.zName); rc = SQLITE_ERROR; }else if( db->writeVdbeCnt>0 && u.as.p1==SAVEPOINT_RELEASE ){ /* It is not possible to release (commit) a savepoint if there are ** active write statements. */ sqlite3SetString(&p->zErrMsg, db, "cannot release savepoint - SQL statements in progress" ); rc = SQLITE_BUSY; |
︙ | ︙ | |||
68310 68311 68312 68313 68314 68315 68316 | db->pSavepoint = u.as.pSavepoint->pNext; sqlite3DbFree(db, u.as.pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ db->nDeferredCons = u.as.pSavepoint->nDeferredCons; | < | 68163 68164 68165 68166 68167 68168 68169 68170 68171 68172 68173 68174 68175 68176 | db->pSavepoint = u.as.pSavepoint->pNext; sqlite3DbFree(db, u.as.pSavepoint); if( !isTransaction ){ db->nSavepoint--; } }else{ db->nDeferredCons = u.as.pSavepoint->nDeferredCons; } if( !isTransaction ){ rc = sqlite3VtabSavepoint(db, u.as.p1, u.as.iSavepoint); if( rc!=SQLITE_OK ) goto abort_due_to_error; } } |
︙ | ︙ | |||
68344 68345 68346 68347 68348 68349 68350 | #endif /* local variables moved into u.at */ u.at.desiredAutoCommit = pOp->p1; u.at.iRollback = pOp->p2; u.at.turnOnAC = u.at.desiredAutoCommit && !db->autoCommit; assert( u.at.desiredAutoCommit==1 || u.at.desiredAutoCommit==0 ); assert( u.at.desiredAutoCommit==1 || u.at.iRollback==0 ); | | < | | | 68196 68197 68198 68199 68200 68201 68202 68203 68204 68205 68206 68207 68208 68209 68210 68211 68212 68213 68214 68215 68216 68217 68218 68219 68220 68221 68222 68223 | #endif /* local variables moved into u.at */ u.at.desiredAutoCommit = pOp->p1; u.at.iRollback = pOp->p2; u.at.turnOnAC = u.at.desiredAutoCommit && !db->autoCommit; assert( u.at.desiredAutoCommit==1 || u.at.desiredAutoCommit==0 ); assert( u.at.desiredAutoCommit==1 || u.at.iRollback==0 ); assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */ #if 0 if( u.at.turnOnAC && u.at.iRollback && db->activeVdbeCnt>1 ){ /* If this instruction implements a ROLLBACK and other VMs are ** still running, and a transaction is active, return an error indicating ** that the other VMs must complete first. */ sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; }else #endif if( u.at.turnOnAC && !u.at.iRollback && db->writeVdbeCnt>0 ){ /* If this instruction implements a COMMIT and other VMs are writing ** return an error indicating that the other VMs must complete first. */ sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - " "SQL statements in progress"); rc = SQLITE_BUSY; }else if( u.at.desiredAutoCommit!=db->autoCommit ){ |
︙ | ︙ | |||
68416 68417 68418 68419 68420 68421 68422 | ** attached databases. ** ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is ** obtained on the database file when a write-transaction is started. No ** other process can start another write transaction while this transaction is ** underway. Starting a write transaction also creates a rollback journal. A ** write transaction must be started before any changes can be made to the | | | < < < < < < | < | 68267 68268 68269 68270 68271 68272 68273 68274 68275 68276 68277 68278 68279 68280 68281 68282 68283 68284 68285 68286 68287 68288 68289 68290 68291 68292 68293 68294 68295 68296 68297 68298 68299 68300 68301 68302 68303 68304 68305 68306 68307 68308 68309 68310 68311 68312 68313 68314 68315 68316 68317 68318 68319 68320 68321 68322 68323 68324 68325 68326 68327 68328 68329 68330 68331 68332 68333 68334 | ** attached databases. ** ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is ** obtained on the database file when a write-transaction is started. No ** other process can start another write transaction while this transaction is ** underway. Starting a write transaction also creates a rollback journal. A ** write transaction must be started before any changes can be made to the ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained ** on the file. ** ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is ** true (this flag is set if the Vdbe may modify more than one row and may ** throw an ABORT exception), a statement transaction may also be opened. ** More specifically, a statement transaction is opened iff the database ** connection is currently not in autocommit mode, or if there are other ** active statements. A statement transaction allows the changes made by this ** VDBE to be rolled back after an error without having to roll back the ** entire transaction. If no error is encountered, the statement transaction ** will automatically commit when the VDBE halts. ** ** If P2 is zero, then a read-lock is obtained on the database file. */ case OP_Transaction: { #if 0 /* local variables moved into u.au */ Btree *pBt; #endif /* local variables moved into u.au */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.au.pBt = db->aDb[pOp->p1].pBt; if( u.au.pBt ){ rc = sqlite3BtreeBeginTrans(u.au.pBt, pOp->p2); if( rc==SQLITE_BUSY ){ p->pc = pc; p->rc = rc = SQLITE_BUSY; goto vdbe_return; } if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( pOp->p2 && p->usesStmtJournal && (db->autoCommit==0 || db->activeVdbeCnt>1) ){ assert( sqlite3BtreeIsInTrans(u.au.pBt) ); if( p->iStatement==0 ){ assert( db->nStatement>=0 && db->nSavepoint>=0 ); db->nStatement++; p->iStatement = db->nSavepoint + db->nStatement; } rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1); if( rc==SQLITE_OK ){ rc = sqlite3BtreeBeginStmt(u.au.pBt, p->iStatement); } /* Store the current value of the database handles deferred constraint ** counter. If the statement transaction needs to be rolled back, ** the value of this counter needs to be restored too. */ p->nStmtDefCons = db->nDeferredCons; } } break; } /* Opcode: ReadCookie P1 P2 P3 * * ** |
︙ | ︙ | |||
68501 68502 68503 68504 68505 68506 68507 | case OP_ReadCookie: { /* out2-prerelease */ #if 0 /* local variables moved into u.av */ int iMeta; int iDb; int iCookie; #endif /* local variables moved into u.av */ | < | 68345 68346 68347 68348 68349 68350 68351 68352 68353 68354 68355 68356 68357 68358 | case OP_ReadCookie: { /* out2-prerelease */ #if 0 /* local variables moved into u.av */ int iMeta; int iDb; int iCookie; #endif /* local variables moved into u.av */ u.av.iDb = pOp->p1; u.av.iCookie = pOp->p3; assert( pOp->p3<SQLITE_N_BTREE_META ); assert( u.av.iDb>=0 && u.av.iDb<db->nDb ); assert( db->aDb[u.av.iDb].pBt!=0 ); assert( (p->btreeMask & (((yDbMask)1)<<u.av.iDb))!=0 ); |
︙ | ︙ | |||
68531 68532 68533 68534 68535 68536 68537 | case OP_SetCookie: { /* in3 */ #if 0 /* local variables moved into u.aw */ Db *pDb; #endif /* local variables moved into u.aw */ assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | < | 68374 68375 68376 68377 68378 68379 68380 68381 68382 68383 68384 68385 68386 68387 | case OP_SetCookie: { /* in3 */ #if 0 /* local variables moved into u.aw */ Db *pDb; #endif /* local variables moved into u.aw */ assert( pOp->p2<SQLITE_N_BTREE_META ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.aw.pDb = &db->aDb[pOp->p1]; assert( u.aw.pDb->pBt!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); pIn3 = &aMem[pOp->p3]; sqlite3VdbeMemIntegerify(pIn3); /* See note about index shifting on OP_ReadCookie */ rc = sqlite3BtreeUpdateMeta(u.aw.pDb->pBt, pOp->p2, (int)pIn3->u.i); |
︙ | ︙ | |||
68584 68585 68586 68587 68588 68589 68590 | int iGen; Btree *pBt; #endif /* local variables moved into u.ax */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); | < | 68426 68427 68428 68429 68430 68431 68432 68433 68434 68435 68436 68437 68438 68439 | int iGen; Btree *pBt; #endif /* local variables moved into u.ax */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) ); u.ax.pBt = db->aDb[pOp->p1].pBt; if( u.ax.pBt ){ sqlite3BtreeGetMeta(u.ax.pBt, BTREE_SCHEMA_VERSION, (u32 *)&u.ax.iMeta); u.ax.iGen = db->aDb[pOp->p1].pSchema->iGeneration; }else{ u.ax.iGen = u.ax.iMeta = 0; } |
︙ | ︙ | |||
68682 68683 68684 68685 68686 68687 68688 | Btree *pX; VdbeCursor *pCur; Db *pDb; #endif /* local variables moved into u.ay */ assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); | < < | 68523 68524 68525 68526 68527 68528 68529 68530 68531 68532 68533 68534 68535 68536 | Btree *pX; VdbeCursor *pCur; Db *pDb; #endif /* local variables moved into u.ay */ assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 ); assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 ); if( p->expired ){ rc = SQLITE_ABORT; break; } u.ay.nField = 0; |
︙ | ︙ | |||
69970 69971 69972 69973 69974 69975 69976 | */ case OP_SorterSort: /* jump */ case OP_Sort: { /* jump */ #ifdef SQLITE_TEST sqlite3_sort_count++; sqlite3_search_count--; #endif | | | 69809 69810 69811 69812 69813 69814 69815 69816 69817 69818 69819 69820 69821 69822 69823 | */ case OP_SorterSort: /* jump */ case OP_Sort: { /* jump */ #ifdef SQLITE_TEST sqlite3_sort_count++; sqlite3_search_count--; #endif p->aCounter[SQLITE_STMTSTATUS_SORT-1]++; /* Fall through into OP_Rewind */ } /* Opcode: Rewind P1 P2 * * * ** ** The next use of the Rowid or Column or Next instruction for P1 ** will refer to the first entry in the database table or index. ** If the table or index is empty and P2>0, then jump immediately to P2. |
︙ | ︙ | |||
70052 70053 70054 70055 70056 70057 70058 70059 | case OP_Prev: /* jump */ case OP_Next: { /* jump */ #if 0 /* local variables moved into u.br */ VdbeCursor *pC; int res; #endif /* local variables moved into u.br */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); | > | | | | | 69891 69892 69893 69894 69895 69896 69897 69898 69899 69900 69901 69902 69903 69904 69905 69906 69907 69908 69909 69910 69911 69912 69913 69914 69915 69916 69917 69918 69919 69920 69921 69922 69923 69924 69925 69926 69927 69928 69929 69930 69931 69932 69933 69934 | case OP_Prev: /* jump */ case OP_Next: { /* jump */ #if 0 /* local variables moved into u.br */ VdbeCursor *pC; int res; #endif /* local variables moved into u.br */ CHECK_FOR_INTERRUPT; assert( pOp->p1>=0 && pOp->p1<p->nCursor ); assert( pOp->p5<=ArraySize(p->aCounter) ); u.br.pC = p->apCsr[pOp->p1]; if( u.br.pC==0 ){ break; /* See ticket #2273 */ } assert( u.br.pC->isSorter==(pOp->opcode==OP_SorterNext) ); if( isSorter(u.br.pC) ){ assert( pOp->opcode==OP_SorterNext ); rc = sqlite3VdbeSorterNext(db, u.br.pC, &u.br.res); }else{ u.br.res = 1; assert( u.br.pC->deferredMoveto==0 ); assert( u.br.pC->pCursor ); assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext ); assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious ); rc = pOp->p4.xAdvance(u.br.pC->pCursor, &u.br.res); } u.br.pC->nullRow = (u8)u.br.res; u.br.pC->cacheStatus = CACHE_STALE; if( u.br.res==0 ){ pc = pOp->p2 - 1; if( pOp->p5 ) p->aCounter[pOp->p5-1]++; #ifdef SQLITE_TEST sqlite3_search_count++; #endif } u.br.pC->rowidIsValid = 0; break; } /* Opcode: IdxInsert P1 P2 P3 * P5 ** ** Register P2 holds an SQL index key made using the ** MakeRecord instructions. This opcode writes that key ** into the index P1. Data for the entry is nil. |
︙ | ︙ | |||
70301 70302 70303 70304 70305 70306 70307 | #if 0 /* local variables moved into u.bw */ int iMoved; int iCnt; Vdbe *pVdbe; int iDb; #endif /* local variables moved into u.bw */ | < | < < | | 70141 70142 70143 70144 70145 70146 70147 70148 70149 70150 70151 70152 70153 70154 70155 70156 70157 70158 70159 70160 70161 70162 70163 | #if 0 /* local variables moved into u.bw */ int iMoved; int iCnt; Vdbe *pVdbe; int iDb; #endif /* local variables moved into u.bw */ #ifndef SQLITE_OMIT_VIRTUALTABLE u.bw.iCnt = 0; for(u.bw.pVdbe=db->pVdbe; u.bw.pVdbe; u.bw.pVdbe = u.bw.pVdbe->pNext){ if( u.bw.pVdbe->magic==VDBE_MAGIC_RUN && u.bw.pVdbe->inVtabMethod<2 && u.bw.pVdbe->pc>=0 ){ u.bw.iCnt++; } } #else u.bw.iCnt = db->activeVdbeCnt; #endif pOut->flags = MEM_Null; if( u.bw.iCnt>1 ){ rc = SQLITE_LOCKED; p->errorAction = OE_Abort; }else{ u.bw.iDb = pOp->p3; |
︙ | ︙ | |||
70361 70362 70363 70364 70365 70366 70367 | */ case OP_Clear: { #if 0 /* local variables moved into u.bx */ int nChange; #endif /* local variables moved into u.bx */ u.bx.nChange = 0; | < | 70198 70199 70200 70201 70202 70203 70204 70205 70206 70207 70208 70209 70210 70211 | */ case OP_Clear: { #if 0 /* local variables moved into u.bx */ int nChange; #endif /* local variables moved into u.bx */ u.bx.nChange = 0; assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 ); rc = sqlite3BtreeClearTable( db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &u.bx.nChange : 0) ); if( pOp->p3 ){ p->nChange += u.bx.nChange; if( pOp->p3>0 ){ |
︙ | ︙ | |||
70410 70411 70412 70413 70414 70415 70416 | int flags; Db *pDb; #endif /* local variables moved into u.by */ u.by.pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); | < | 70246 70247 70248 70249 70250 70251 70252 70253 70254 70255 70256 70257 70258 70259 | int flags; Db *pDb; #endif /* local variables moved into u.by */ u.by.pgno = 0; assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.by.pDb = &db->aDb[pOp->p1]; assert( u.by.pDb->pBt!=0 ); if( pOp->opcode==OP_CreateTable ){ /* u.by.flags = BTREE_INTKEY; */ u.by.flags = BTREE_INTKEY; }else{ u.by.flags = BTREE_BLOBKEY; |
︙ | ︙ | |||
70563 70564 70565 70566 70567 70568 70569 | int *aRoot; /* Array of rootpage numbers for tables to be checked */ int j; /* Loop counter */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ #endif /* local variables moved into u.ca */ | < | 70398 70399 70400 70401 70402 70403 70404 70405 70406 70407 70408 70409 70410 70411 | int *aRoot; /* Array of rootpage numbers for tables to be checked */ int j; /* Loop counter */ int nErr; /* Number of errors reported */ char *z; /* Text of the error report */ Mem *pnErr; /* Register keeping track of errors remaining */ #endif /* local variables moved into u.ca */ u.ca.nRoot = pOp->p2; assert( u.ca.nRoot>0 ); u.ca.aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(u.ca.nRoot+1) ); if( u.ca.aRoot==0 ) goto no_mem; assert( pOp->p3>0 && pOp->p3<=p->nMem ); u.ca.pnErr = &aMem[pOp->p3]; assert( (u.ca.pnErr->flags & MEM_Int)!=0 ); |
︙ | ︙ | |||
70626 70627 70628 70629 70630 70631 70632 | ** register P3. Or, if boolean index P1 is initially empty, leave P3 ** unchanged and jump to instruction P2. */ case OP_RowSetRead: { /* jump, in1, out3 */ #if 0 /* local variables moved into u.cb */ i64 val; #endif /* local variables moved into u.cb */ | | | | 70460 70461 70462 70463 70464 70465 70466 70467 70468 70469 70470 70471 70472 70473 70474 70475 70476 70477 70478 70479 70480 70481 70482 70483 70484 70485 70486 | ** register P3. Or, if boolean index P1 is initially empty, leave P3 ** unchanged and jump to instruction P2. */ case OP_RowSetRead: { /* jump, in1, out3 */ #if 0 /* local variables moved into u.cb */ i64 val; #endif /* local variables moved into u.cb */ CHECK_FOR_INTERRUPT; pIn1 = &aMem[pOp->p1]; if( (pIn1->flags & MEM_RowSet)==0 || sqlite3RowSetNext(pIn1->u.pRowSet, &u.cb.val)==0 ){ /* The boolean index is empty */ sqlite3VdbeMemSetNull(pIn1); pc = pOp->p2 - 1; }else{ /* A value was pulled from the index */ sqlite3VdbeMemSetInt64(&aMem[pOp->p3], u.cb.val); } break; } /* Opcode: RowSetTest P1 P2 P3 P4 ** ** Register P3 is assumed to hold a 64-bit integer value. If register P1 ** contains a RowSet object and that RowSet object contains ** the value held in P3, jump to register P2. Otherwise, insert the |
︙ | ︙ | |||
70858 70859 70860 70861 70862 70863 70864 | ** ** Increment a "constraint counter" by P2 (P2 may be negative or positive). ** If P1 is non-zero, the database constraint counter is incremented ** (deferred foreign key constraints). Otherwise, if P1 is zero, the ** statement counter is incremented (immediate foreign key constraints). */ case OP_FkCounter: { | < < | | | | 70692 70693 70694 70695 70696 70697 70698 70699 70700 70701 70702 70703 70704 70705 70706 70707 70708 70709 70710 70711 70712 70713 70714 70715 70716 70717 70718 70719 70720 70721 70722 70723 70724 70725 70726 70727 70728 70729 | ** ** Increment a "constraint counter" by P2 (P2 may be negative or positive). ** If P1 is non-zero, the database constraint counter is incremented ** (deferred foreign key constraints). Otherwise, if P1 is zero, the ** statement counter is incremented (immediate foreign key constraints). */ case OP_FkCounter: { if( pOp->p1 ){ db->nDeferredCons += pOp->p2; }else{ p->nFkConstraint += pOp->p2; } break; } /* Opcode: FkIfZero P1 P2 * * * ** ** This opcode tests if a foreign key constraint-counter is currently zero. ** If so, jump to instruction P2. Otherwise, fall through to the next ** instruction. ** ** If P1 is non-zero, then the jump is taken if the database constraint-counter ** is zero (the one that counts deferred constraint violations). If P1 is ** zero, the jump is taken if the statement constraint-counter is zero ** (immediate foreign key constraint violations). */ case OP_FkIfZero: { /* jump */ if( pOp->p1 ){ if( db->nDeferredCons==0 ) pc = pOp->p2-1; }else{ if( p->nFkConstraint==0 ) pc = pOp->p2-1; } break; } #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */ #ifndef SQLITE_OMIT_AUTOINCREMENT /* Opcode: MemMax P1 P2 * * * |
︙ | ︙ | |||
71087 71088 71089 71090 71091 71092 71093 | case OP_Checkpoint: { #if 0 /* local variables moved into u.ci */ int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ #endif /* local variables moved into u.ci */ | < | 70919 70920 70921 70922 70923 70924 70925 70926 70927 70928 70929 70930 70931 70932 | case OP_Checkpoint: { #if 0 /* local variables moved into u.ci */ int i; /* Loop counter */ int aRes[3]; /* Results */ Mem *pMem; /* Write results here */ #endif /* local variables moved into u.ci */ u.ci.aRes[0] = 0; u.ci.aRes[1] = u.ci.aRes[2] = -1; assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE || pOp->p2==SQLITE_CHECKPOINT_FULL || pOp->p2==SQLITE_CHECKPOINT_RESTART ); rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &u.ci.aRes[1], &u.ci.aRes[2]); |
︙ | ︙ | |||
71139 71140 71141 71142 71143 71144 71145 | || u.cj.eNew==PAGER_JOURNALMODE_PERSIST || u.cj.eNew==PAGER_JOURNALMODE_OFF || u.cj.eNew==PAGER_JOURNALMODE_MEMORY || u.cj.eNew==PAGER_JOURNALMODE_WAL || u.cj.eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); | < | 70970 70971 70972 70973 70974 70975 70976 70977 70978 70979 70980 70981 70982 70983 | || u.cj.eNew==PAGER_JOURNALMODE_PERSIST || u.cj.eNew==PAGER_JOURNALMODE_OFF || u.cj.eNew==PAGER_JOURNALMODE_MEMORY || u.cj.eNew==PAGER_JOURNALMODE_WAL || u.cj.eNew==PAGER_JOURNALMODE_QUERY ); assert( pOp->p1>=0 && pOp->p1<db->nDb ); u.cj.pBt = db->aDb[pOp->p1].pBt; u.cj.pPager = sqlite3BtreePager(u.cj.pBt); u.cj.eOld = sqlite3PagerGetJournalMode(u.cj.pPager); if( u.cj.eNew==PAGER_JOURNALMODE_QUERY ) u.cj.eNew = u.cj.eOld; if( !sqlite3PagerOkToChangeJournalMode(u.cj.pPager) ) u.cj.eNew = u.cj.eOld; |
︙ | ︙ | |||
71163 71164 71165 71166 71167 71168 71169 | ){ u.cj.eNew = u.cj.eOld; } if( (u.cj.eNew!=u.cj.eOld) && (u.cj.eOld==PAGER_JOURNALMODE_WAL || u.cj.eNew==PAGER_JOURNALMODE_WAL) ){ | | | 70993 70994 70995 70996 70997 70998 70999 71000 71001 71002 71003 71004 71005 71006 71007 | ){ u.cj.eNew = u.cj.eOld; } if( (u.cj.eNew!=u.cj.eOld) && (u.cj.eOld==PAGER_JOURNALMODE_WAL || u.cj.eNew==PAGER_JOURNALMODE_WAL) ){ if( !db->autoCommit || db->activeVdbeCnt>1 ){ rc = SQLITE_ERROR; sqlite3SetString(&p->zErrMsg, db, "cannot change %s wal mode from within a transaction", (u.cj.eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of") ); break; }else{ |
︙ | ︙ | |||
71222 71223 71224 71225 71226 71227 71228 | /* Opcode: Vacuum * * * * * ** ** Vacuum the entire database. This opcode will cause other virtual ** machines to be created and run. It may not be called from within ** a transaction. */ case OP_Vacuum: { | < < | 71052 71053 71054 71055 71056 71057 71058 71059 71060 71061 71062 71063 71064 71065 71066 71067 71068 71069 71070 71071 71072 71073 71074 71075 71076 71077 71078 71079 71080 71081 71082 71083 71084 | /* Opcode: Vacuum * * * * * ** ** Vacuum the entire database. This opcode will cause other virtual ** machines to be created and run. It may not be called from within ** a transaction. */ case OP_Vacuum: { rc = sqlite3RunVacuum(&p->zErrMsg, db); break; } #endif #if !defined(SQLITE_OMIT_AUTOVACUUM) /* Opcode: IncrVacuum P1 P2 * * * ** ** Perform a single step of the incremental vacuum procedure on ** the P1 database. If the vacuum has finished, jump to instruction ** P2. Otherwise, fall through to the next instruction. */ case OP_IncrVacuum: { /* jump */ #if 0 /* local variables moved into u.ck */ Btree *pBt; #endif /* local variables moved into u.ck */ assert( pOp->p1>=0 && pOp->p1<db->nDb ); assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 ); u.ck.pBt = db->aDb[pOp->p1].pBt; rc = sqlite3BtreeIncrVacuum(u.ck.pBt); if( rc==SQLITE_DONE ){ pc = pOp->p2 - 1; rc = SQLITE_OK; } break; |
︙ | ︙ | |||
71365 71366 71367 71368 71369 71370 71371 | #if 0 /* local variables moved into u.cm */ VdbeCursor *pCur; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; sqlite3_module *pModule; #endif /* local variables moved into u.cm */ | < | 71193 71194 71195 71196 71197 71198 71199 71200 71201 71202 71203 71204 71205 71206 | #if 0 /* local variables moved into u.cm */ VdbeCursor *pCur; sqlite3_vtab_cursor *pVtabCursor; sqlite3_vtab *pVtab; sqlite3_module *pModule; #endif /* local variables moved into u.cm */ u.cm.pCur = 0; u.cm.pVtabCursor = 0; u.cm.pVtab = pOp->p4.pVtab->pVtab; u.cm.pModule = (sqlite3_module *)u.cm.pVtab->pModule; assert(u.cm.pVtab && u.cm.pModule); rc = u.cm.pModule->xOpen(u.cm.pVtab, &u.cm.pVtabCursor); importVtabErrMsg(p, u.cm.pVtab); |
︙ | ︙ | |||
71569 71570 71571 71572 71573 71574 71575 | u.cp.res = u.cp.pModule->xEof(u.cp.pCur->pVtabCursor); } if( !u.cp.res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; } | | < | 71396 71397 71398 71399 71400 71401 71402 71403 71404 71405 71406 71407 71408 71409 71410 71411 71412 71413 71414 71415 71416 71417 71418 71419 71420 71421 71422 71423 71424 71425 71426 71427 71428 71429 71430 | u.cp.res = u.cp.pModule->xEof(u.cp.pCur->pVtabCursor); } if( !u.cp.res ){ /* If there is data, jump to P2 */ pc = pOp->p2 - 1; } break; } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* Opcode: VRename P1 * * P4 * ** ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure. ** This opcode invokes the corresponding xRename method. The value ** in register P1 is passed as the zName argument to the xRename method. */ case OP_VRename: { #if 0 /* local variables moved into u.cq */ sqlite3_vtab *pVtab; Mem *pName; #endif /* local variables moved into u.cq */ u.cq.pVtab = pOp->p4.pVtab->pVtab; u.cq.pName = &aMem[pOp->p1]; assert( u.cq.pVtab->pModule->xRename ); assert( memIsValid(u.cq.pName) ); REGISTER_TRACE(pOp->p1, u.cq.pName); assert( u.cq.pName->flags & MEM_Str ); testcase( u.cq.pName->enc==SQLITE_UTF8 ); testcase( u.cq.pName->enc==SQLITE_UTF16BE ); testcase( u.cq.pName->enc==SQLITE_UTF16LE ); rc = sqlite3VdbeChangeEncoding(u.cq.pName, SQLITE_UTF8); if( rc==SQLITE_OK ){ |
︙ | ︙ | |||
71644 71645 71646 71647 71648 71649 71650 | Mem **apArg; Mem *pX; #endif /* local variables moved into u.cr */ assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); | < | 71470 71471 71472 71473 71474 71475 71476 71477 71478 71479 71480 71481 71482 71483 | Mem **apArg; Mem *pX; #endif /* local variables moved into u.cr */ assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace ); u.cr.pVtab = pOp->p4.pVtab->pVtab; u.cr.pModule = (sqlite3_module *)u.cr.pVtab->pModule; u.cr.nArg = pOp->p2; assert( pOp->p4type==P4_VTAB ); if( ALWAYS(u.cr.pModule->xUpdate) ){ u8 vtabOnConflict = db->vtabOnConflict; u.cr.apArg = p->apArg; |
︙ | ︙ | |||
71830 71831 71832 71833 71834 71835 71836 | } /* This is the only way out of this procedure. We have to ** release the mutexes on btrees that were acquired at the ** top. */ vdbe_return: db->lastRowid = lastRowid; | < < | 71655 71656 71657 71658 71659 71660 71661 71662 71663 71664 71665 71666 71667 71668 | } /* This is the only way out of this procedure. We have to ** release the mutexes on btrees that were acquired at the ** top. */ vdbe_return: db->lastRowid = lastRowid; sqlite3VdbeLeave(p); return rc; /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH ** is encountered. */ too_big: |
︙ | ︙ | |||
72399 72400 72401 72402 72403 72404 72405 | ** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the ** aTree element is set to the index of it. ** ** For the purposes of this comparison, EOF is considered greater than any ** other key value. If the keys are equal (only possible with two EOF ** values), it doesn't matter which index is stored. ** | | | 72222 72223 72224 72225 72226 72227 72228 72229 72230 72231 72232 72233 72234 72235 72236 | ** comparing aIter[2*i-N] and aIter[2*i-N+1]. Whichever key is smaller, the ** aTree element is set to the index of it. ** ** For the purposes of this comparison, EOF is considered greater than any ** other key value. If the keys are equal (only possible with two EOF ** values), it doesn't matter which index is stored. ** ** The (N/4) elements of aTree[] that preceed the final (N/2) described ** above contains the index of the smallest of each block of 4 iterators. ** And so on. So that aTree[1] contains the index of the iterator that ** currently points to the smallest key value. aTree[0] is unused. ** ** Example: ** ** aIter[0] -> Banana |
︙ | ︙ | |||
73674 73675 73676 73677 73678 73679 73680 73681 73682 73683 73684 73685 73686 73687 | ** The size chosen is a little less than a power of two. That way, ** the FileChunk object will have a size that almost exactly fills ** a power-of-two allocation. This mimimizes wasted space in power-of-two ** memory allocators. */ #define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*))) /* ** The rollback journal is composed of a linked list of these structures. */ struct FileChunk { FileChunk *pNext; /* Next chunk in the journal */ u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */ }; | > > > > > > | 73497 73498 73499 73500 73501 73502 73503 73504 73505 73506 73507 73508 73509 73510 73511 73512 73513 73514 73515 73516 | ** The size chosen is a little less than a power of two. That way, ** the FileChunk object will have a size that almost exactly fills ** a power-of-two allocation. This mimimizes wasted space in power-of-two ** memory allocators. */ #define JOURNAL_CHUNKSIZE ((int)(1024-sizeof(FileChunk*))) /* Macro to find the minimum of two numeric values. */ #ifndef MIN # define MIN(x,y) ((x)<(y)?(x):(y)) #endif /* ** The rollback journal is composed of a linked list of these structures. */ struct FileChunk { FileChunk *pNext; /* Next chunk in the journal */ u8 zChunk[JOURNAL_CHUNKSIZE]; /* Content of this chunk */ }; |
︙ | ︙ | |||
74110 74111 74112 74113 74114 74115 74116 | ** TK_AS operator. The TK_AS operator causes the expression to be ** evaluated just once and then reused for each alias. ** ** The reason for suppressing the TK_AS term when the expression is a simple ** column reference is so that the column reference will be recognized as ** usable by indices within the WHERE clause processing logic. ** | | | | < | 73939 73940 73941 73942 73943 73944 73945 73946 73947 73948 73949 73950 73951 73952 73953 73954 73955 73956 73957 73958 73959 73960 73961 73962 73963 73964 | ** TK_AS operator. The TK_AS operator causes the expression to be ** evaluated just once and then reused for each alias. ** ** The reason for suppressing the TK_AS term when the expression is a simple ** column reference is so that the column reference will be recognized as ** usable by indices within the WHERE clause processing logic. ** ** Hack: The TK_AS operator is inhibited if zType[0]=='G'. This means ** that in a GROUP BY clause, the expression is evaluated twice. Hence: ** ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY x ** ** Is equivalent to: ** ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5 ** ** The result of random()%5 in the GROUP BY clause is probably different ** from the result in the result-set. We might fix this someday. Or ** then again, we might not... ** ** If the reference is followed by a COLLATE operator, then make sure ** the COLLATE operator is preserved. For example: ** ** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; ** ** Should be transformed into: |
︙ | ︙ | |||
74296 74297 74298 74299 74300 74301 74302 | ExprSetIrreducible(pExpr); /* Translate the schema name in zDb into a pointer to the corresponding ** schema. If not found, pSchema will remain NULL and nothing will match ** resulting in an appropriate error message toward the end of this routine */ if( zDb ){ | < < < < < < < < | | | | | < | 74124 74125 74126 74127 74128 74129 74130 74131 74132 74133 74134 74135 74136 74137 74138 74139 74140 74141 74142 | ExprSetIrreducible(pExpr); /* Translate the schema name in zDb into a pointer to the corresponding ** schema. If not found, pSchema will remain NULL and nothing will match ** resulting in an appropriate error message toward the end of this routine */ if( zDb ){ for(i=0; i<db->nDb; i++){ assert( db->aDb[i].zName ); if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){ pSchema = db->aDb[i].pSchema; break; } } } /* Start at the inner-most context and move outward until a match is found */ while( pNC && cnt==0 ){ ExprList *pEList; |
︙ | ︙ | |||
74452 74453 74454 74455 74456 74457 74458 | ** ** SELECT a+b AS x FROM table WHERE x<10; ** ** In cases like this, replace pExpr with a copy of the expression that ** forms the result set entry ("a+b" in the example) and return immediately. ** Note that the expression in the result set should have already been ** resolved by the time the WHERE clause is resolved. | < < < < < < | | 74271 74272 74273 74274 74275 74276 74277 74278 74279 74280 74281 74282 74283 74284 74285 74286 74287 74288 | ** ** SELECT a+b AS x FROM table WHERE x<10; ** ** In cases like this, replace pExpr with a copy of the expression that ** forms the result set entry ("a+b" in the example) and return immediately. ** Note that the expression in the result set should have already been ** resolved by the time the WHERE clause is resolved. */ if( (pEList = pNC->pEList)!=0 && zTab==0 && ((pNC->ncFlags & NC_AsMaybe)==0 || cnt==0) ){ for(j=0; j<pEList->nExpr; j++){ char *zAs = pEList->a[j].zName; if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ Expr *pOrig; assert( pExpr->pLeft==0 && pExpr->pRight==0 ); assert( pExpr->x.pList==0 ); |
︙ | ︙ | |||
74592 74593 74594 74595 74596 74597 74598 | testcase( iCol==BMS-1 ); pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } ExprSetProperty(p, EP_Resolved); } return p; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 74405 74406 74407 74408 74409 74410 74411 74412 74413 74414 74415 74416 74417 74418 | testcase( iCol==BMS-1 ); pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); } ExprSetProperty(p, EP_Resolved); } return p; } /* ** This routine is callback for sqlite3WalkExpr(). ** ** Resolve symbolic names into TK_COLUMN operators for the current ** node in the expression tree. Return 0 to continue the search down ** the tree or 2 to abort the tree walk. |
︙ | ︙ | |||
74725 74726 74727 74728 74729 74730 74731 | int nId; /* Number of characters in function name */ const char *zId; /* The function name. */ FuncDef *pDef; /* Information about the function */ u8 enc = ENC(pParse->db); /* The database encoding */ testcase( pExpr->op==TK_CONST_FUNC ); assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | < | 74505 74506 74507 74508 74509 74510 74511 74512 74513 74514 74515 74516 74517 74518 | int nId; /* Number of characters in function name */ const char *zId; /* The function name. */ FuncDef *pDef; /* Information about the function */ u8 enc = ENC(pParse->db); /* The database encoding */ testcase( pExpr->op==TK_CONST_FUNC ); assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); zId = pExpr->u.zToken; nId = sqlite3Strlen30(zId); pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); if( pDef==0 ){ pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0); if( pDef==0 ){ no_such_func = 1; |
︙ | ︙ | |||
74791 74792 74793 74794 74795 74796 74797 | case TK_SELECT: case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); #endif case TK_IN: { testcase( pExpr->op==TK_IN ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ int nRef = pNC->nRef; | > | | > > > | | > > | 74570 74571 74572 74573 74574 74575 74576 74577 74578 74579 74580 74581 74582 74583 74584 74585 74586 74587 74588 74589 74590 74591 74592 74593 74594 74595 74596 74597 74598 74599 74600 74601 74602 74603 74604 | case TK_SELECT: case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); #endif case TK_IN: { testcase( pExpr->op==TK_IN ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ int nRef = pNC->nRef; #ifndef SQLITE_OMIT_CHECK if( (pNC->ncFlags & NC_IsCheck)!=0 ){ sqlite3ErrorMsg(pParse,"subqueries prohibited in CHECK constraints"); } #endif sqlite3WalkSelect(pWalker, pExpr->x.pSelect); assert( pNC->nRef>=nRef ); if( nRef!=pNC->nRef ){ ExprSetProperty(pExpr, EP_VarSelect); } } break; } #ifndef SQLITE_OMIT_CHECK case TK_VARIABLE: { if( (pNC->ncFlags & NC_IsCheck)!=0 ){ sqlite3ErrorMsg(pParse,"parameters prohibited in CHECK constraints"); } break; } #endif } return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue; } /* ** pEList is a list of expressions which are really the result set of the ** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. |
︙ | ︙ | |||
74896 74897 74898 74899 74900 74901 74902 | if( rc ) return 0; /* Try to match the ORDER BY expression against an expression ** in the result set. Return an 1-based index of the matching ** result-set entry. */ for(i=0; i<pEList->nExpr; i++){ | | | 74681 74682 74683 74684 74685 74686 74687 74688 74689 74690 74691 74692 74693 74694 74695 | if( rc ) return 0; /* Try to match the ORDER BY expression against an expression ** in the result set. Return an 1-based index of the matching ** result-set entry. */ for(i=0; i<pEList->nExpr; i++){ if( sqlite3ExprCompare(pEList->a[i].pExpr, pE)<2 ){ return i+1; } } /* If no match, return 0. */ return 0; } |
︙ | ︙ | |||
75023 75024 75025 75026 75027 75028 75029 | } return 0; } /* ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of ** the SELECT statement pSelect. If any term is reference to a | | | 74808 74809 74810 74811 74812 74813 74814 74815 74816 74817 74818 74819 74820 74821 74822 | } return 0; } /* ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of ** the SELECT statement pSelect. If any term is reference to a ** result set expression (as determined by the ExprList.a.iCol field) ** then convert that term into a copy of the corresponding result set ** column. ** ** If any errors are detected, add an error message to pParse and ** return non-zero. Return zero if no errors are seen. */ SQLITE_PRIVATE int sqlite3ResolveOrderGroupBy( |
︙ | ︙ | |||
75071 75072 75073 75074 75075 75076 75077 | ** The Name context of the SELECT statement is pNC. zType is either ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. ** ** This routine resolves each term of the clause into an expression. ** If the order-by term is an integer I between 1 and N (where N is the ** number of columns in the result set of the SELECT) then the expression ** in the resolution is a copy of the I-th result-set expression. If | | | 74856 74857 74858 74859 74860 74861 74862 74863 74864 74865 74866 74867 74868 74869 74870 | ** The Name context of the SELECT statement is pNC. zType is either ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. ** ** This routine resolves each term of the clause into an expression. ** If the order-by term is an integer I between 1 and N (where N is the ** number of columns in the result set of the SELECT) then the expression ** in the resolution is a copy of the I-th result-set expression. If ** the order-by term is an identify that corresponds to the AS-name of ** a result-set expression, then the term resolves to a copy of the ** result-set expression. Otherwise, the expression is resolved in ** the usual way - using sqlite3ResolveExprNames(). ** ** This routine returns the number of errors. If errors occur, then ** an appropriate error message might be left in pParse. (OOM errors ** excepted.) |
︙ | ︙ | |||
75097 75098 75099 75100 75101 75102 75103 | int nResult; /* Number of terms in the result set */ if( pOrderBy==0 ) return 0; nResult = pSelect->pEList->nExpr; pParse = pNC->pParse; for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ Expr *pE = pItem->pExpr; | < < | | | | | | | | | < | | | 74882 74883 74884 74885 74886 74887 74888 74889 74890 74891 74892 74893 74894 74895 74896 74897 74898 74899 74900 74901 74902 74903 74904 74905 74906 74907 74908 74909 74910 74911 74912 74913 74914 74915 74916 74917 74918 74919 74920 74921 74922 74923 | int nResult; /* Number of terms in the result set */ if( pOrderBy==0 ) return 0; nResult = pSelect->pEList->nExpr; pParse = pNC->pParse; for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ Expr *pE = pItem->pExpr; iCol = resolveAsName(pParse, pSelect->pEList, pE); if( iCol>0 ){ /* If an AS-name match is found, mark this ORDER BY column as being ** a copy of the iCol-th result-set column. The subsequent call to ** sqlite3ResolveOrderGroupBy() will convert the expression to a ** copy of the iCol-th result-set expression. */ pItem->iOrderByCol = (u16)iCol; continue; } if( sqlite3ExprIsInteger(sqlite3ExprSkipCollate(pE), &iCol) ){ /* The ORDER BY term is an integer constant. Again, set the column ** number so that sqlite3ResolveOrderGroupBy() will convert the ** order-by term to a copy of the result-set expression */ if( iCol<1 || iCol>0xffff ){ resolveOutOfRangeError(pParse, zType, i+1, nResult); return 1; } pItem->iOrderByCol = (u16)iCol; continue; } /* Otherwise, treat the ORDER BY term as an ordinary expression */ pItem->iOrderByCol = 0; if( sqlite3ResolveExprNames(pNC, pE) ){ return 1; } for(j=0; j<pSelect->pEList->nExpr; j++){ if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr)==0 ){ pItem->iOrderByCol = j+1; } } } return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); } |
︙ | ︙ | |||
75252 75253 75254 75255 75256 75257 75258 | /* If a HAVING clause is present, then there must be a GROUP BY clause. */ if( p->pHaving && !pGroupBy ){ sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); return WRC_Abort; } | | > > | 75034 75035 75036 75037 75038 75039 75040 75041 75042 75043 75044 75045 75046 75047 75048 75049 75050 75051 75052 75053 75054 75055 75056 75057 75058 75059 75060 | /* If a HAVING clause is present, then there must be a GROUP BY clause. */ if( p->pHaving && !pGroupBy ){ sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); return WRC_Abort; } /* Add the expression list to the name-context before parsing the ** other expressions in the SELECT statement. This is so that ** expressions in the WHERE clause (etc.) can refer to expressions by ** aliases in the result set. ** ** Minor point: If this is the case, then the expression will be ** re-evaluated for each reference to it. */ sNC.pEList = p->pEList; if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort; sNC.ncFlags |= NC_AsMaybe; if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; sNC.ncFlags &= ~NC_AsMaybe; /* The ORDER BY and GROUP BY clauses may not refer to terms in ** outer queries */ sNC.pNext = 0; sNC.ncFlags |= NC_AllowAgg; |
︙ | ︙ | |||
75432 75433 75434 75435 75436 75437 75438 | w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.pParse = pParse; w.u.pNC = pOuterNC; sqlite3WalkSelect(&w, p); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 75216 75217 75218 75219 75220 75221 75222 75223 75224 75225 75226 75227 75228 75229 | w.xExprCallback = resolveExprStep; w.xSelectCallback = resolveSelectStep; w.pParse = pParse; w.u.pNC = pOuterNC; sqlite3WalkSelect(&w, p); } /************** End of resolve.c *********************************************/ /************** Begin file expr.c ********************************************/ /* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: |
︙ | ︙ | |||
76397 76398 76399 76400 76401 76402 76403 | for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; | < | 76139 76140 76141 76142 76143 76144 76145 76146 76147 76148 76149 76150 76151 76152 | for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ Expr *pOldExpr = pOldItem->pExpr; pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); pItem->sortOrder = pOldItem->sortOrder; pItem->done = 0; pItem->iOrderByCol = pOldItem->iOrderByCol; pItem->iAlias = pOldItem->iAlias; } return pNew; } /* |
︙ | ︙ | |||
76756 76757 76758 76759 76760 76761 76762 | case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ | < | 76497 76498 76499 76500 76501 76502 76503 76504 76505 76506 76507 76508 76509 76510 | case TK_UPLUS: { rc = sqlite3ExprIsInteger(p->pLeft, pValue); break; } case TK_UMINUS: { int v; if( sqlite3ExprIsInteger(p->pLeft, &v) ){ *pValue = -v; rc = 1; } break; } default: break; } |
︙ | ︙ | |||
77075 77076 77077 77078 77079 77080 77081 | } } if( eType==0 ){ /* Could not found an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ | | | | | 76815 76816 76817 76818 76819 76820 76821 76822 76823 76824 76825 76826 76827 76828 76829 76830 76831 76832 76833 76834 76835 76836 76837 | } } if( eType==0 ){ /* Could not found an existing table or index to use as the RHS b-tree. ** We will have to generate an ephemeral table to do the job. */ double savedNQueryLoop = pParse->nQueryLoop; int rMayHaveNull = 0; eType = IN_INDEX_EPH; if( prNotFound ){ *prNotFound = rMayHaveNull = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound); }else{ testcase( pParse->nQueryLoop>(double)1 ); pParse->nQueryLoop = (double)1; if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){ eType = IN_INDEX_ROWID; } } sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); pParse->nQueryLoop = savedNQueryLoop; }else{ |
︙ | ︙ | |||
77125 77126 77127 77128 77129 77130 77131 | ** to iterate over the RHS of the IN operator in order to quickly locate ** all corresponding LHS elements. All this routine does is initialize ** the register given by rMayHaveNull to NULL. Calling routines will take ** care of changing this register value to non-NULL if the RHS is NULL-free. ** ** If rMayHaveNull is zero, that means that the subquery is being used ** for membership testing only. There is no need to initialize any | | | 76865 76866 76867 76868 76869 76870 76871 76872 76873 76874 76875 76876 76877 76878 76879 | ** to iterate over the RHS of the IN operator in order to quickly locate ** all corresponding LHS elements. All this routine does is initialize ** the register given by rMayHaveNull to NULL. Calling routines will take ** care of changing this register value to non-NULL if the RHS is NULL-free. ** ** If rMayHaveNull is zero, that means that the subquery is being used ** for membership testing only. There is no need to initialize any ** registers to indicate the presense or absence of NULLs on the RHS. ** ** For a SELECT or EXISTS operator, return the register that holds the ** result. For IN operators or if an error occurs, the return value is 0. */ #ifndef SQLITE_OMIT_SUBQUERY SQLITE_PRIVATE int sqlite3CodeSubselect( Parse *pParse, /* Parsing context */ |
︙ | ︙ | |||
77170 77171 77172 77173 77174 77175 77176 77177 77178 | sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } #endif switch( pExpr->op ){ case TK_IN: { char affinity; /* Affinity of the LHS of the IN */ int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ | > > < | 76910 76911 76912 76913 76914 76915 76916 76917 76918 76919 76920 76921 76922 76923 76924 76925 76926 76927 | sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); } #endif switch( pExpr->op ){ case TK_IN: { char affinity; /* Affinity of the LHS of the IN */ KeyInfo keyInfo; /* Keyinfo for the generated table */ static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */ int addr; /* Address of OP_OpenEphemeral instruction */ Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ if( rMayHaveNull ){ sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull); } affinity = sqlite3ExprAffinity(pLeft); |
︙ | ︙ | |||
77196 77197 77198 77199 77200 77201 77202 | ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | > | > < < < < | | | > < | < > | 76937 76938 76939 76940 76941 76942 76943 76944 76945 76946 76947 76948 76949 76950 76951 76952 76953 76954 76955 76956 76957 76958 76959 76960 76961 76962 76963 76964 76965 76966 76967 76968 76969 76970 76971 76972 76973 76974 76975 76976 76977 76978 76979 76980 76981 76982 76983 76984 76985 76986 76987 76988 76989 76990 76991 76992 76993 76994 | ** if either column has NUMERIC or INTEGER affinity. If neither ** 'x' nor the SELECT... statement are columns, then numeric affinity ** is used. */ pExpr->iTable = pParse->nTab++; addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED); memset(&keyInfo, 0, sizeof(keyInfo)); keyInfo.nField = 1; keyInfo.aSortOrder = &sortOrder; if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* Case 1: expr IN (SELECT ...) ** ** Generate code to write the results of the select into the temporary ** table allocated and opened above. */ SelectDest dest; ExprList *pEList; assert( !isRowid ); sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); dest.affSdst = (u8)affinity; assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); pExpr->x.pSelect->iLimit = 0; if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){ return 0; } pEList = pExpr->x.pSelect->pEList; if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){ keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, pEList->a[0].pExpr); } }else if( ALWAYS(pExpr->x.pList!=0) ){ /* Case 2: expr IN (exprlist) ** ** For each expression, build an index key from the evaluation and ** store it in the temporary table. If <expr> is a column, then use ** that columns affinity when building index keys. If <expr> is not ** a column, use numeric affinity. */ int i; ExprList *pList = pExpr->x.pList; struct ExprList_item *pItem; int r1, r2, r3; if( !affinity ){ affinity = SQLITE_AFF_NONE; } keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); keyInfo.aSortOrder = &sortOrder; /* Loop through each expression in <exprlist>. */ r1 = sqlite3GetTempReg(pParse); r2 = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Null, 0, r2); for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ Expr *pE2 = pItem->pExpr; |
︙ | ︙ | |||
77280 77281 77282 77283 77284 77285 77286 | sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } | | | | 77019 77020 77021 77022 77023 77024 77025 77026 77027 77028 77029 77030 77031 77032 77033 77034 | sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); } } } sqlite3ReleaseTempReg(pParse, r1); sqlite3ReleaseTempReg(pParse, r2); } if( !isRowid ){ sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO); } break; } case TK_EXISTS: case TK_SELECT: default: { |
︙ | ︙ | |||
77841 77842 77843 77844 77845 77846 77847 | sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pCol->iSorterColumn, target); break; } /* Otherwise, fall thru into the TK_COLUMN case */ } case TK_COLUMN: { | | | | < | < | < < < < | | | > | 77580 77581 77582 77583 77584 77585 77586 77587 77588 77589 77590 77591 77592 77593 77594 77595 77596 77597 77598 77599 77600 77601 77602 | sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, pCol->iSorterColumn, target); break; } /* Otherwise, fall thru into the TK_COLUMN case */ } case TK_COLUMN: { if( pExpr->iTable<0 ){ /* This only happens when coding check constraints */ assert( pParse->ckBase>0 ); inReg = pExpr->iColumn + pParse->ckBase; }else{ inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, pExpr->iColumn, pExpr->iTable, target, pExpr->op2); } break; } case TK_INTEGER: { codeInteger(pParse, pExpr, 0, target); break; } #ifndef SQLITE_OMIT_FLOATING_POINT |
︙ | ︙ | |||
79277 79278 79279 79280 79281 79282 79283 | /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** | < < < < < < | | | | | | | < | < < < < < | | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 79011 79012 79013 79014 79015 79016 79017 79018 79019 79020 79021 79022 79023 79024 79025 79026 79027 79028 79029 79030 79031 79032 79033 79034 79035 79036 79037 79038 79039 79040 79041 79042 79043 79044 79045 79046 79047 79048 79049 79050 79051 79052 79053 79054 79055 79056 79057 79058 79059 79060 79061 79062 79063 79064 79065 79066 79067 79068 79069 79070 79071 79072 79073 79074 79075 79076 79077 79078 79079 79080 79081 79082 79083 79084 79085 79086 79087 79088 79089 79090 79091 79092 | /* ** Do a deep comparison of two expression trees. Return 0 if the two ** expressions are completely identical. Return 1 if they differ only ** by a COLLATE operator at the top level. Return 2 if there are differences ** other than the top-level COLLATE operator. ** ** Sometimes this routine will return 2 even if the two expressions ** really are equivalent. If we cannot prove that the expressions are ** identical, we return 2 just to be safe. So if this routine ** returns 2, then you do not really know for certain if the two ** expressions are the same. But if you get a 0 or 1 return, then you ** can be sure the expressions are the same. In the places where ** this routine is used, it does not hurt to get an extra 2 - that ** just might result in some slightly slower code. But returning ** an incorrect 0 or 1 could lead to a malfunction. */ SQLITE_PRIVATE int sqlite3ExprCompare(Expr *pA, Expr *pB){ if( pA==0||pB==0 ){ return pB==pA ? 0 : 2; } assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) ); assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) ); if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){ return 2; } if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; if( pA->op!=pB->op ){ if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){ return 1; } if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){ return 1; } return 2; } if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2; if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2; if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2; if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2; if( ExprHasProperty(pA, EP_IntValue) ){ if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){ return 2; } }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){ if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2; if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ return pA->op==TK_COLLATE ? 1 : 2; } } return 0; } /* ** Compare two ExprList objects. Return 0 if they are identical and ** non-zero if they differ in any way. ** ** This routine might return non-zero for equivalent ExprLists. The ** only consequence will be disabled optimizations. But this routine ** must never return 0 if the two ExprList objects are different, or ** a malfunction will result. ** ** Two NULL pointers are considered to be the same. But a NULL pointer ** always differs from a non-NULL pointer. */ SQLITE_PRIVATE int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){ int i; if( pA==0 && pB==0 ) return 0; if( pA==0 || pB==0 ) return 1; if( pA->nExpr!=pB->nExpr ) return 1; for(i=0; i<pA->nExpr; i++){ Expr *pExprA = pA->a[i].pExpr; Expr *pExprB = pB->a[i].pExpr; if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; if( sqlite3ExprCompare(pExprA, pExprB) ) return 1; } return 0; } /* ** An instance of the following structure is used by the tree walker ** to count references to table columns in the arguments of an |
︙ | ︙ | |||
79580 79581 79582 79583 79584 79585 79586 | && pWalker->walkerDepth==pExpr->op2 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; i<pAggInfo->nFunc; i++, pItem++){ | | | 79263 79264 79265 79266 79267 79268 79269 79270 79271 79272 79273 79274 79275 79276 79277 | && pWalker->walkerDepth==pExpr->op2 ){ /* Check to see if pExpr is a duplicate of another aggregate ** function that is already in the pAggInfo structure */ struct AggInfo_func *pItem = pAggInfo->aFunc; for(i=0; i<pAggInfo->nFunc; i++, pItem++){ if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){ break; } } if( i>=pAggInfo->nFunc ){ /* pExpr is original. Make a new entry in pAggInfo->aFunc[] */ u8 enc = ENC(pParse->db); |
︙ | ︙ | |||
80582 80583 80584 80585 80586 80587 80588 | ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); ** ** Additional tables might be added in future releases of SQLite. ** The sqlite_stat2 table is not created or used unless the SQLite version ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. | | | 80265 80266 80267 80268 80269 80270 80271 80272 80273 80274 80275 80276 80277 80278 80279 | ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); ** ** Additional tables might be added in future releases of SQLite. ** The sqlite_stat2 table is not created or used unless the SQLite version ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. ** The sqlite_stat2 table is superceded by sqlite_stat3, which is only ** created and used by SQLite versions 3.7.9 and later and with ** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3 ** is a superset of sqlite_stat2. ** ** Format of sqlite_stat1: ** ** There is normally one row per index, with the index identified by the |
︙ | ︙ | |||
80997 80998 80999 81000 81001 81002 81003 | int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ | < | 80680 80681 80682 80683 80684 80685 80686 80687 80688 80689 80690 80691 80692 80693 | int iIdxCur; /* Cursor open on index being analyzed */ Vdbe *v; /* The virtual machine being built up */ int i; /* Loop counter */ int topOfLoop; /* The top of the loop */ int endOfLoop; /* The end of the loop */ int jZeroRows = -1; /* Jump from here if number of rows is zero */ int iDb; /* Index of database containing pTab */ int regTabname = iMem++; /* Register containing table name */ int regIdxname = iMem++; /* Register containing index name */ int regStat1 = iMem++; /* The stat column of sqlite_stat1 */ #ifdef SQLITE_ENABLE_STAT3 int regNumEq = regStat1; /* Number of instances. Same as regStat1 */ int regNumLt = iMem++; /* Number of keys less than regSample */ int regNumDLt = iMem++; /* Number of distinct keys less than regSample */ |
︙ | ︙ | |||
81057 81058 81059 81060 81061 81062 81063 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; KeyInfo *pKey; int addrIfNot = 0; /* address of OP_IfNot */ int *aChngAddr; /* Array of jump instruction addresses */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; | < | 80739 80740 80741 80742 80743 80744 80745 80746 80747 80748 80749 80750 80751 80752 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ int nCol; KeyInfo *pKey; int addrIfNot = 0; /* address of OP_IfNot */ int *aChngAddr; /* Array of jump instruction addresses */ if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName)); nCol = pIdx->nColumn; aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol); if( aChngAddr==0 ) continue; pKey = sqlite3IndexKeyinfo(pParse, pIdx); if( iMem+1+(nCol*2)>pParse->nMem ){ pParse->nMem = iMem+1+(nCol*2); |
︙ | ︙ | |||
81217 81218 81219 81220 81221 81222 81223 | ** I = (K+D-1)/D ** ** If K==0 then no entry is made into the sqlite_stat1 table. ** If K>0 then it is always the case the D>0 so division by zero ** is never possible. */ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1); | > | > < < | | | > > > > | | | | | < < > | 80898 80899 80900 80901 80902 80903 80904 80905 80906 80907 80908 80909 80910 80911 80912 80913 80914 80915 80916 80917 80918 80919 80920 80921 80922 80923 80924 80925 80926 80927 80928 80929 80930 80931 80932 80933 80934 80935 80936 80937 80938 80939 80940 80941 80942 80943 80944 80945 80946 80947 80948 80949 | ** I = (K+D-1)/D ** ** If K==0 then no entry is made into the sqlite_stat1 table. ** If K>0 then it is always the case the D>0 so division by zero ** is never possible. */ sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1); if( jZeroRows<0 ){ jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem); } for(i=0; i<nCol; i++){ sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp); sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1); sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp); sqlite3VdbeAddOp1(v, OP_ToInt, regTemp); sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1); } sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); } /* If the table has no indices, create a single sqlite_stat1 entry ** containing NULL as the index name and the row count as the content. */ if( pTab->pIndex==0 ){ sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb); VdbeComment((v, "%s", pTab->zName)); sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1); sqlite3VdbeAddOp1(v, OP_Close, iIdxCur); jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); }else{ sqlite3VdbeJumpHere(v, jZeroRows); jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto); } sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0); sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); if( pParse->nMem<regRec ) pParse->nMem = regRec; sqlite3VdbeJumpHere(v, jZeroRows); } /* ** Generate code that will cause the most recent index analysis to ** be loaded into internal hash tables where is can be used. */ |
︙ | ︙ | |||
81434 81435 81436 81437 81438 81439 81440 | z = argv[2]; for(i=0; *z && i<=n; i++){ v = 0; while( (c=z[0])>='0' && c<='9' ){ v = v*10 + c - '0'; z++; } | < | | < | 81118 81119 81120 81121 81122 81123 81124 81125 81126 81127 81128 81129 81130 81131 81132 81133 | z = argv[2]; for(i=0; *z && i<=n; i++){ v = 0; while( (c=z[0])>='0' && c<='9' ){ v = v*10 + c - '0'; z++; } if( i==0 ) pTable->nRowEst = v; if( pIndex==0 ) break; pIndex->aiRowEst[i] = v; if( *z==' ' ) z++; if( strcmp(z, "unordered")==0 ){ pIndex->bUnordered = 1; break; } } |
︙ | ︙ | |||
81841 81842 81843 81844 81845 81846 81847 | "attached databases must use the same text encoding as main database"); rc = SQLITE_ERROR; } pPager = sqlite3BtreePager(aNew->pBt); sqlite3PagerLockingMode(pPager, db->dfltLockMode); sqlite3BtreeSecureDelete(aNew->pBt, sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) ); | < | 81523 81524 81525 81526 81527 81528 81529 81530 81531 81532 81533 81534 81535 81536 | "attached databases must use the same text encoding as main database"); rc = SQLITE_ERROR; } pPager = sqlite3BtreePager(aNew->pBt); sqlite3PagerLockingMode(pPager, db->dfltLockMode); sqlite3BtreeSecureDelete(aNew->pBt, sqlite3BtreeSecureDelete(db->aDb[0].pBt,-1) ); } aNew->safety_level = 3; aNew->zName = sqlite3DbStrDup(db, zName); if( rc==SQLITE_OK && aNew->zName==0 ){ rc = SQLITE_NOMEM; } |
︙ | ︙ | |||
82878 82879 82880 82881 82882 82883 82884 | /* ** Reclaim the memory used by an index */ static void freeIndex(sqlite3 *db, Index *p){ #ifndef SQLITE_OMIT_ANALYZE sqlite3DeleteIndexSamples(db, p); #endif | < | 82559 82560 82561 82562 82563 82564 82565 82566 82567 82568 82569 82570 82571 82572 | /* ** Reclaim the memory used by an index */ static void freeIndex(sqlite3 *db, Index *p){ #ifndef SQLITE_OMIT_ANALYZE sqlite3DeleteIndexSamples(db, p); #endif sqlite3DbFree(db, p->zColAff); sqlite3DbFree(db, p); } /* ** For the index called zIdxName which is found in the database iDb, ** unlike that index from its Table then remove the index from |
︙ | ︙ | |||
83722 83723 83724 83725 83726 83727 83728 | }else if( autoInc ){ #ifndef SQLITE_OMIT_AUTOINCREMENT sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " "INTEGER PRIMARY KEY"); #endif }else{ Index *p; | | < | 83402 83403 83404 83405 83406 83407 83408 83409 83410 83411 83412 83413 83414 83415 83416 | }else if( autoInc ){ #ifndef SQLITE_OMIT_AUTOINCREMENT sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an " "INTEGER PRIMARY KEY"); #endif }else{ Index *p; p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0); if( p ){ p->autoIndex = 2; } pList = 0; } primary_key_exit: |
︙ | ︙ | |||
83774 83775 83776 83777 83778 83779 83780 | i = p->nCol-1; db = pParse->db; zColl = sqlite3NameFromToken(db, pToken); if( !zColl ) return; if( sqlite3LocateCollSeq(pParse, zColl) ){ Index *pIdx; | < | 83453 83454 83455 83456 83457 83458 83459 83460 83461 83462 83463 83464 83465 83466 | i = p->nCol-1; db = pParse->db; zColl = sqlite3NameFromToken(db, pToken); if( !zColl ) return; if( sqlite3LocateCollSeq(pParse, zColl) ){ Index *pIdx; p->aCol[i].zColl = zColl; /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>", ** then an index may have been created on this column before the ** collation type was added. Correct this if it is the case. */ for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){ |
︙ | ︙ | |||
84018 84019 84020 84021 84022 84023 84024 | iDb = sqlite3SchemaToIndex(db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ | > > > > | > > > > > > > > > > > > > > > | 83696 83697 83698 83699 83700 83701 83702 83703 83704 83705 83706 83707 83708 83709 83710 83711 83712 83713 83714 83715 83716 83717 83718 83719 83720 83721 83722 83723 83724 83725 83726 83727 83728 83729 | iDb = sqlite3SchemaToIndex(db, p->pSchema); #ifndef SQLITE_OMIT_CHECK /* Resolve names in all CHECK constraint expressions. */ if( p->pCheck ){ SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ NameContext sNC; /* Name context for pParse->pNewTable */ ExprList *pList; /* List of all CHECK constraints */ int i; /* Loop counter */ memset(&sNC, 0, sizeof(sNC)); memset(&sSrc, 0, sizeof(sSrc)); sSrc.nSrc = 1; sSrc.a[0].zName = p->zName; sSrc.a[0].pTab = p; sSrc.a[0].iCursor = -1; sNC.pParse = pParse; sNC.pSrcList = &sSrc; sNC.ncFlags = NC_IsCheck; pList = p->pCheck; for(i=0; i<pList->nExpr; i++){ if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ return; } } } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If the db->init.busy is 1 it means we are reading the SQL off the ** "sqlite_master" or "sqlite_temp_master" table on the disk. ** So do not write to the disk again. Extract the root page number ** for the table from the db->init.newTnum field. (The page number |
︙ | ︙ | |||
84870 84871 84872 84873 84874 84875 84876 | Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ int tnum; /* Root page of index */ | < | 84567 84568 84569 84570 84571 84572 84573 84574 84575 84576 84577 84578 84579 84580 | Table *pTab = pIndex->pTable; /* The table that is indexed */ int iTab = pParse->nTab++; /* Btree cursor used for pTab */ int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */ int iSorter; /* Cursor opened by OpenSorter (if in use) */ int addr1; /* Address of top of loop */ int addr2; /* Address to jump to for next iteration */ int tnum; /* Root page of index */ Vdbe *v; /* Generate code into this virtual machine */ KeyInfo *pKey; /* KeyInfo for index */ int regRecord; /* Register holding assemblied index record */ sqlite3 *db = pParse->db; /* The database connection */ int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema); #ifndef SQLITE_OMIT_AUTHORIZATION |
︙ | ︙ | |||
84910 84911 84912 84913 84914 84915 84916 | /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); regRecord = sqlite3GetTempReg(pParse); | | < | 84606 84607 84608 84609 84610 84611 84612 84613 84614 84615 84616 84617 84618 84619 84620 84621 | /* Open the table. Loop through all rows of the table, inserting index ** records into the sorter. */ sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1); sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord); sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); sqlite3VdbeJumpHere(v, addr1); addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); if( pIndex->onError!=OE_None ){ int j2 = sqlite3VdbeCurrentAddr(v) + 3; sqlite3VdbeAddOp2(v, OP_Goto, 0, j2); addr2 = sqlite3VdbeCurrentAddr(v); |
︙ | ︙ | |||
84963 84964 84965 84966 84967 84968 84969 | Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins this statement */ | | | 84658 84659 84660 84661 84662 84663 84664 84665 84666 84667 84668 84669 84670 84671 84672 | Parse *pParse, /* All information about this parse */ Token *pName1, /* First part of index name. May be NULL */ Token *pName2, /* Second part of index name. May be NULL */ SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */ ExprList *pList, /* A list of columns to be indexed */ int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */ Token *pStart, /* The CREATE token that begins this statement */ Token *pEnd, /* The ")" that closes the CREATE INDEX statement */ int sortOrder, /* Sort order of primary key when pList==NULL */ int ifNotExist /* Omit error if index already exists */ ){ Index *pRet = 0; /* Pointer to return */ Table *pTab = 0; /* Table to be indexed */ Index *pIndex = 0; /* The index to be created */ char *zName = 0; /* Name of the index */ |
︙ | ︙ | |||
84985 84986 84987 84988 84989 84990 84991 84992 84993 84994 84995 84996 84997 84998 | int iDb; /* Index of the database that is being written */ Token *pName = 0; /* Unqualified name of the index to create */ struct ExprList_item *pListItem; /* For looping over pList */ int nCol; int nExtra = 0; char *zExtra; assert( pParse->nErr==0 ); /* Never called with prior errors */ if( db->mallocFailed || IN_DECLARE_VTAB ){ goto exit_create_index; } if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_create_index; } | > | 84680 84681 84682 84683 84684 84685 84686 84687 84688 84689 84690 84691 84692 84693 84694 | int iDb; /* Index of the database that is being written */ Token *pName = 0; /* Unqualified name of the index to create */ struct ExprList_item *pListItem; /* For looping over pList */ int nCol; int nExtra = 0; char *zExtra; assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */ assert( pParse->nErr==0 ); /* Never called with prior errors */ if( db->mallocFailed || IN_DECLARE_VTAB ){ goto exit_create_index; } if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ goto exit_create_index; } |
︙ | ︙ | |||
85030 85031 85032 85033 85034 85035 85036 | /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); assert( db->mallocFailed==0 || pTab==0 ); if( pTab==0 ) goto exit_create_index; | | < < < < < | 84726 84727 84728 84729 84730 84731 84732 84733 84734 84735 84736 84737 84738 84739 84740 | /* Because the parser constructs pTblName from a single identifier, ** sqlite3FixSrcList can never fail. */ assert(0); } pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]); assert( db->mallocFailed==0 || pTab==0 ); if( pTab==0 ) goto exit_create_index; assert( db->aDb[iDb].pSchema==pTab->pSchema ); }else{ assert( pName==0 ); assert( pStart==0 ); pTab = pParse->pNewTable; if( !pTab ) goto exit_create_index; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); } |
︙ | ︙ | |||
85181 85182 85183 85184 85185 85186 85187 | pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]); pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); zExtra = (char *)(&pIndex->zName[nName+1]); memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = (u8)onError; | < < < < < < | 84872 84873 84874 84875 84876 84877 84878 84879 84880 84881 84882 84883 84884 84885 84886 84887 | pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]); pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]); zExtra = (char *)(&pIndex->zName[nName+1]); memcpy(pIndex->zName, zName, nName+1); pIndex->pTable = pTab; pIndex->nColumn = pList->nExpr; pIndex->onError = (u8)onError; pIndex->autoIndex = (u8)(pName==0); pIndex->pSchema = db->aDb[iDb].pSchema; assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); /* Check to see if we should honor DESC requests on index columns */ if( pDb->pSchema->file_format>=4 ){ sortOrderMask = -1; /* Honor DESC */ }else{ |
︙ | ︙ | |||
85245 85246 85247 85248 85249 85250 85251 | } if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ goto exit_create_index; } pIndex->azColl[i] = zColl; requestedSortOrder = pListItem->sortOrder & sortOrderMask; pIndex->aSortOrder[i] = (u8)requestedSortOrder; | < | 84930 84931 84932 84933 84934 84935 84936 84937 84938 84939 84940 84941 84942 84943 | } if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){ goto exit_create_index; } pIndex->azColl[i] = zColl; requestedSortOrder = pListItem->sortOrder & sortOrderMask; pIndex->aSortOrder[i] = (u8)requestedSortOrder; } sqlite3DefaultRowEst(pIndex); if( pTab==pParse->pNewTable ){ /* This routine has been called to create an automatic index as a ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or ** a PRIMARY KEY or UNIQUE clause following the column definitions. |
︙ | ︙ | |||
85344 85345 85346 85347 85348 85349 85350 | ** we don't want to recreate it. ** ** If pTblName==0 it means this index is generated as a primary key ** or UNIQUE constraint of a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ | | < | | > > | 85028 85029 85030 85031 85032 85033 85034 85035 85036 85037 85038 85039 85040 85041 85042 85043 85044 85045 85046 85047 85048 85049 85050 85051 85052 85053 85054 85055 85056 85057 85058 85059 85060 85061 85062 85063 85064 85065 | ** we don't want to recreate it. ** ** If pTblName==0 it means this index is generated as a primary key ** or UNIQUE constraint of a CREATE TABLE statement. Since the table ** has just been created, it contains no data and the index initialization ** step can be skipped. */ else{ /* if( db->init.busy==0 ) */ Vdbe *v; char *zStmt; int iMem = ++pParse->nMem; v = sqlite3GetVdbe(pParse); if( v==0 ) goto exit_create_index; /* Create the rootpage for the index */ sqlite3BeginWriteOperation(pParse, 1, iDb); sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem); /* Gather the complete text of the CREATE INDEX statement into ** the zStmt variable */ if( pStart ){ assert( pEnd!=0 ); /* A named index with an explicit CREATE INDEX statement */ zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s", onError==OE_None ? "" : " UNIQUE", (int)(pEnd->z - pName->z) + 1, pName->z); }else{ /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */ /* zStmt = sqlite3MPrintf(""); */ zStmt = 0; } /* Add an entry in sqlite_master for this index |
︙ | ︙ | |||
85422 85423 85424 85425 85426 85427 85428 | } pRet = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: | | > | > | 85107 85108 85109 85110 85111 85112 85113 85114 85115 85116 85117 85118 85119 85120 85121 85122 85123 85124 | } pRet = pIndex; pIndex = 0; } /* Clean up before exiting */ exit_create_index: if( pIndex ){ sqlite3DbFree(db, pIndex->zColAff); sqlite3DbFree(db, pIndex); } sqlite3ExprListDelete(db, pList); sqlite3SrcListDelete(db, pTblName); sqlite3DbFree(db, zName); return pRet; } /* |
︙ | ︙ | |||
85674 85675 85676 85677 85678 85679 85680 | sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); if( pNew==0 ){ assert( db->mallocFailed ); return pSrc; } pSrc = pNew; nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; | | | | 85361 85362 85363 85364 85365 85366 85367 85368 85369 85370 85371 85372 85373 85374 85375 85376 85377 85378 85379 85380 85381 85382 85383 | sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) ); if( pNew==0 ){ assert( db->mallocFailed ); return pSrc; } pSrc = pNew; nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1; pSrc->nAlloc = (u16)nGot; } /* Move existing slots that come after the newly inserted slots ** out of the way */ for(i=pSrc->nSrc-1; i>=iStart; i--){ pSrc->a[i+nExtra] = pSrc->a[i]; } pSrc->nSrc += (i16)nExtra; /* Zero the newly allocated slots */ memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra); for(i=iStart; i<iStart+nExtra; i++){ pSrc->a[i].iCursor = -1; } |
︙ | ︙ | |||
86301 86302 86303 86304 86305 86306 86307 | ** pointer. If an error occurs (out of memory or missing collation ** sequence), NULL is returned and the state of pParse updated to reflect ** the error. */ SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; | > > | < > > > > | | 85988 85989 85990 85991 85992 85993 85994 85995 85996 85997 85998 85999 86000 86001 86002 86003 86004 86005 86006 86007 86008 86009 86010 86011 86012 86013 86014 86015 86016 86017 86018 86019 86020 | ** pointer. If an error occurs (out of memory or missing collation ** sequence), NULL is returned and the state of pParse updated to reflect ** the error. */ SQLITE_PRIVATE KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){ int i; int nCol = pIdx->nColumn; int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol; sqlite3 *db = pParse->db; KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes); if( pKey ){ pKey->db = pParse->db; pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]); assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) ); for(i=0; i<nCol; i++){ char *zColl = pIdx->azColl[i]; assert( zColl ); pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl); pKey->aSortOrder[i] = pIdx->aSortOrder[i]; } pKey->nField = (u16)nCol; } if( pParse->nErr ){ sqlite3DbFree(db, pKey); pKey = 0; } return pKey; } /************** End of build.c ***********************************************/ /************** Begin file callback.c ****************************************/ |
︙ | ︙ | |||
87394 87395 87396 87397 87398 87399 87400 | Table *pTab, /* Table containing the row to be deleted */ int iCur, /* Cursor number for the table */ int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ ){ int i; Index *pIdx; int r1; | < < | | < < < < < < < < | | | | | < < < < < < < < < < < | 87086 87087 87088 87089 87090 87091 87092 87093 87094 87095 87096 87097 87098 87099 87100 87101 87102 87103 87104 87105 87106 87107 87108 87109 87110 87111 87112 87113 87114 87115 87116 87117 87118 87119 87120 87121 87122 87123 87124 87125 87126 87127 87128 87129 87130 87131 | Table *pTab, /* Table containing the row to be deleted */ int iCur, /* Cursor number for the table */ int *aRegIdx /* Only delete if aRegIdx!=0 && aRegIdx[i]>0 */ ){ int i; Index *pIdx; int r1; for(i=1, pIdx=pTab->pIndex; pIdx; i++, pIdx=pIdx->pNext){ if( aRegIdx!=0 && aRegIdx[i-1]==0 ) continue; r1 = sqlite3GenerateIndexKey(pParse, pIdx, iCur, 0, 0); sqlite3VdbeAddOp3(pParse->pVdbe, OP_IdxDelete, iCur+i, r1,pIdx->nColumn+1); } } /* ** Generate code that will assemble an index key and put it in register ** regOut. The key with be for index pIdx which is an index on pTab. ** iCur is the index of a cursor open on the pTab table and pointing to ** the entry that needs indexing. ** ** Return a register number which is the first in a block of ** registers that holds the elements of the index key. The ** block of registers has already been deallocated by the time ** this routine returns. */ SQLITE_PRIVATE int sqlite3GenerateIndexKey( Parse *pParse, /* Parsing context */ Index *pIdx, /* The index for which to generate a key */ int iCur, /* Cursor number for the pIdx->pTable table */ int regOut, /* Write the new index key to this register */ int doMakeRec /* Run the OP_MakeRecord instruction if true */ ){ Vdbe *v = pParse->pVdbe; int j; Table *pTab = pIdx->pTable; int regBase; int nCol; nCol = pIdx->nColumn; regBase = sqlite3GetTempRange(pParse, nCol+1); sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regBase+nCol); for(j=0; j<nCol; j++){ int idx = pIdx->aiColumn[j]; if( idx==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_SCopy, regBase+nCol, regBase+j); |
︙ | ︙ | |||
87705 87706 87707 87708 87709 87710 87711 | ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. ** p1 is 1-indexed. So substr(x,1,1) returns the first character ** of x. If x is text, then we actually count UTF-8 characters. ** If x is a blob, then we count bytes. ** ** If p1 is negative, then we begin abs(p1) from the end of x[]. ** | | | 87376 87377 87378 87379 87380 87381 87382 87383 87384 87385 87386 87387 87388 87389 87390 | ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. ** p1 is 1-indexed. So substr(x,1,1) returns the first character ** of x. If x is text, then we actually count UTF-8 characters. ** If x is a blob, then we count bytes. ** ** If p1 is negative, then we begin abs(p1) from the end of x[]. ** ** If p2 is negative, return the p2 characters preceeding p1. */ static void substrFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const unsigned char *z; |
︙ | ︙ | |||
88364 88365 88366 88367 88368 88369 88370 88371 88372 88373 88374 88375 88376 88377 | ** digits. */ static const char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; /* ** Implementation of the QUOTE() function. This function takes a single ** argument. If the argument is numeric, the return value is the same as ** the argument. If the argument is NULL, the return value is the string ** "NULL". Otherwise, the argument is enclosed in single quotes with ** single-quote escapes. */ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | > > > > | 88035 88036 88037 88038 88039 88040 88041 88042 88043 88044 88045 88046 88047 88048 88049 88050 88051 88052 | ** digits. */ static const char hexdigits[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' }; /* ** EXPERIMENTAL - This is not an official function. The interface may ** change. This function may disappear. Do not write code that depends ** on this function. ** ** Implementation of the QUOTE() function. This function takes a single ** argument. If the argument is numeric, the return value is the same as ** the argument. If the argument is NULL, the return value is the string ** "NULL". Otherwise, the argument is enclosed in single quotes with ** single-quote escapes. */ static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ |
︙ | ︙ | |||
88552 88553 88554 88555 88556 88557 88558 | sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */ } } /* ** The replace() function. Three arguments are all strings: call ** them A, B, and C. The result is also a string which is derived | | | 88227 88228 88229 88230 88231 88232 88233 88234 88235 88236 88237 88238 88239 88240 88241 | sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */ } } /* ** The replace() function. Three arguments are all strings: call ** them A, B, and C. The result is also a string which is derived ** from A by replacing every occurance of B with C. The match ** must be exact. Collating sequences are not used. */ static void replaceFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ |
︙ | ︙ | |||
89619 89620 89621 89622 89623 89624 89625 | sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } | < | < < | 89294 89295 89296 89297 89298 89299 89300 89301 89302 89303 89304 89305 89306 89307 89308 | sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempRange(pParse, regTemp, nCol); } } if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ /* Special case: If this is an INSERT statement that will insert exactly ** one row into the table, raise a constraint immediately instead of ** incrementing a counter. This is necessary as the VM code is being ** generated for will not open a statement transaction. */ assert( nIncr==1 ); sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, OE_Abort, "foreign key constraint failed", P4_STATIC |
︙ | ︙ | |||
90013 90014 90015 90016 90017 90018 90019 | /* Loop through all the foreign key constraints that refer to this table */ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ Index *pIdx = 0; /* Foreign key index for pFKey */ SrcList *pSrc; int *aiCol = 0; | < | < | 89685 89686 89687 89688 89689 89690 89691 89692 89693 89694 89695 89696 89697 89698 89699 | /* Loop through all the foreign key constraints that refer to this table */ for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ Index *pIdx = 0; /* Foreign key index for pFKey */ SrcList *pSrc; int *aiCol = 0; if( !pFKey->isDeferred && !pParse->pToplevel && !pParse->isMultiWrite ){ assert( regOld==0 && regNew!=0 ); /* Inserting a single row into a parent table cannot cause an immediate ** foreign key violation. So do nothing in this case. */ continue; } if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ |
︙ | ︙ | |||
91810 91811 91812 91813 91814 91815 91816 | /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Add the new records to the indices as we go. */ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ int regIdx; int regR; | < < < < < < < < < < < | 91480 91481 91482 91483 91484 91485 91486 91487 91488 91489 91490 91491 91492 91493 91494 91495 91496 91497 91498 91499 91500 91501 91502 91503 91504 91505 91506 91507 91508 91509 91510 91511 91512 91513 91514 91515 | /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Add the new records to the indices as we go. */ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ int regIdx; int regR; if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ /* Create a key for accessing the index entry */ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); for(i=0; i<pIdx->nColumn; i++){ int idx = pIdx->aiColumn[i]; if( idx==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } |
︙ | ︙ | |||
91912 91913 91914 91915 91916 91917 91918 | pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace ); seenReplace = 1; break; } } sqlite3VdbeJumpHere(v, j3); | < | 91571 91572 91573 91574 91575 91576 91577 91578 91579 91580 91581 91582 91583 91584 | pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace ); seenReplace = 1; break; } } sqlite3VdbeJumpHere(v, j3); sqlite3ReleaseTempReg(pParse, regR); } if( pbMayReplace ){ *pbMayReplace = seenReplace; } } |
︙ | ︙ | |||
91942 91943 91944 91945 91946 91947 91948 91949 91950 91951 91952 91953 91954 91955 91956 | int *aRegIdx, /* Register used by each index. 0 for unused indices */ int isUpdate, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ int i; Vdbe *v; Index *pIdx; u8 pik_flags; int regData; int regRec; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ | > | > < < < | 91600 91601 91602 91603 91604 91605 91606 91607 91608 91609 91610 91611 91612 91613 91614 91615 91616 91617 91618 91619 91620 91621 91622 91623 91624 91625 | int *aRegIdx, /* Register used by each index. 0 for unused indices */ int isUpdate, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ int i; Vdbe *v; int nIdx; Index *pIdx; u8 pik_flags; int regData; int regRec; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} for(i=nIdx-1; i>=0; i--){ if( aRegIdx[i]==0 ) continue; sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); if( useSeekResult ){ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } } regData = regRowid + 1; regRec = sqlite3GetTempReg(pParse); |
︙ | ︙ | |||
92056 92057 92058 92059 92060 92061 92062 | ** for index pDest in an insert transfer optimization. The rules ** for a compatible index: ** ** * The index is over the same set of columns ** * The same DESC and ASC markings occurs on all columns ** * The same onError processing (OE_Abort, OE_Ignore, etc) ** * The same collating sequence on each column | < | 91713 91714 91715 91716 91717 91718 91719 91720 91721 91722 91723 91724 91725 91726 | ** for index pDest in an insert transfer optimization. The rules ** for a compatible index: ** ** * The index is over the same set of columns ** * The same DESC and ASC markings occurs on all columns ** * The same onError processing (OE_Abort, OE_Ignore, etc) ** * The same collating sequence on each column */ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ int i; assert( pDest && pSrc ); assert( pDest->pTable!=pSrc->pTable ); if( pDest->nColumn!=pSrc->nColumn ){ return 0; /* Different number of columns */ |
︙ | ︙ | |||
92079 92080 92081 92082 92083 92084 92085 | if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ return 0; /* Different sort orders */ } if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ return 0; /* Different collating sequences */ } } | < < < | 91735 91736 91737 91738 91739 91740 91741 91742 91743 91744 91745 91746 91747 91748 | if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ return 0; /* Different sort orders */ } if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ return 0; /* Different collating sequences */ } } /* If no test above fails then the indices must be compatible */ return 1; } /* ** Attempt the transfer optimization on INSERTs of the form |
︙ | ︙ | |||
92237 92238 92239 92240 92241 92242 92243 | if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ } } #ifndef SQLITE_OMIT_CHECK | | | 91890 91891 91892 91893 91894 91895 91896 91897 91898 91899 91900 91901 91902 91903 91904 | if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck, pDest->pCheck) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif #ifndef SQLITE_OMIT_FOREIGN_KEY /* Disallow the transfer optimization if the destination table constains ** any foreign key constraints. This is more restrictive than necessary. ** But the main beneficiary of the transfer optimization is the VACUUM |
︙ | ︙ | |||
92994 92995 92996 92997 92998 92999 93000 | #endif /* SQLITE_CORE */ #ifndef SQLITE_CORE /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; | < < < | 92647 92648 92649 92650 92651 92652 92653 92654 92655 92656 92657 92658 92659 92660 92661 92662 92663 92664 92665 | #endif /* SQLITE_CORE */ #ifndef SQLITE_CORE /* This case when the file really is being compiled as a loadable ** extension */ # define SQLITE_EXTENSION_INIT1 const sqlite3_api_routines *sqlite3_api=0; # define SQLITE_EXTENSION_INIT2(v) sqlite3_api=v; #else /* This case when the file is being statically linked into the ** application */ # define SQLITE_EXTENSION_INIT1 /*no-op*/ # define SQLITE_EXTENSION_INIT2(v) (void)v; /* unused parameter */ #endif #endif /* _SQLITE3EXT_H_ */ /************** End of sqlite3ext.h ******************************************/ /************** Continuing where we left off in loadext.c ********************/ /* #include <string.h> */ |
︙ | ︙ | |||
93658 93659 93660 93661 93662 93663 93664 | } sqlite3_mutex_leave(mutex); assert( (rc&0xff)==rc ); return rc; } } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 93308 93309 93310 93311 93312 93313 93314 93315 93316 93317 93318 93319 93320 93321 | } sqlite3_mutex_leave(mutex); assert( (rc&0xff)==rc ); return rc; } } /* ** Reset the automatic extension loading mechanism. */ SQLITE_API void sqlite3_reset_auto_extension(void){ #ifndef SQLITE_OMIT_AUTOINIT if( sqlite3_initialize()==SQLITE_OK ) #endif |
︙ | ︙ | |||
93908 93909 93910 93911 93912 93913 93914 | } sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC); sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | | < | 93529 93530 93531 93532 93533 93534 93535 93536 93537 93538 93539 93540 93541 93542 93543 93544 93545 93546 93547 93548 93549 93550 93551 93552 93553 93554 93555 93556 93557 93558 93559 93560 93561 93562 93563 93564 93565 93566 93567 93568 93569 93570 93571 93572 93573 93574 93575 93576 93577 93578 93579 93580 93581 93582 93583 93584 93585 93586 93587 | } sqlite3VdbeAddOp4(v, OP_Int64, 0, mem, 0, (char*)pI64, P4_INT64); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, zLabel, SQLITE_STATIC); sqlite3VdbeAddOp2(v, OP_ResultRow, mem, 1); } #ifndef SQLITE_OMIT_FLAG_PRAGMAS /* ** Check to see if zRight and zLeft refer to a pragma that queries ** or changes one of the flags in db->flags. Return 1 if so and 0 if not. ** Also, implement the pragma. */ static int flagPragma(Parse *pParse, const char *zLeft, const char *zRight){ static const struct sPragmaType { const char *zName; /* Name of the pragma */ int mask; /* Mask for the db->flags value */ } aPragma[] = { { "full_column_names", SQLITE_FullColNames }, { "short_column_names", SQLITE_ShortColNames }, { "count_changes", SQLITE_CountRows }, { "empty_result_callbacks", SQLITE_NullCallback }, { "legacy_file_format", SQLITE_LegacyFileFmt }, { "fullfsync", SQLITE_FullFSync }, { "checkpoint_fullfsync", SQLITE_CkptFullFSync }, { "reverse_unordered_selects", SQLITE_ReverseOrder }, #ifndef SQLITE_OMIT_AUTOMATIC_INDEX { "automatic_index", SQLITE_AutoIndex }, #endif #ifdef SQLITE_DEBUG { "sql_trace", SQLITE_SqlTrace }, { "vdbe_listing", SQLITE_VdbeListing }, { "vdbe_trace", SQLITE_VdbeTrace }, { "vdbe_addoptrace", SQLITE_VdbeAddopTrace}, { "vdbe_debug", SQLITE_SqlTrace | SQLITE_VdbeListing | SQLITE_VdbeTrace }, #endif #ifndef SQLITE_OMIT_CHECK { "ignore_check_constraints", SQLITE_IgnoreChecks }, #endif /* The following is VERY experimental */ { "writable_schema", SQLITE_WriteSchema|SQLITE_RecoveryMode }, /* TODO: Maybe it shouldn't be possible to change the ReadUncommitted ** flag if there are any active statements. */ { "read_uncommitted", SQLITE_ReadUncommitted }, { "recursive_triggers", SQLITE_RecTriggers }, /* This flag may only be set if both foreign-key and trigger support ** are present in the build. */ #if !defined(SQLITE_OMIT_FOREIGN_KEY) && !defined(SQLITE_OMIT_TRIGGER) { "foreign_keys", SQLITE_ForeignKeys }, #endif }; int i; const struct sPragmaType *p; for(i=0, p=aPragma; i<ArraySize(aPragma); i++, p++){ if( sqlite3StrICmp(zLeft, p->zName)==0 ){ sqlite3 *db = pParse->db; |
︙ | ︙ | |||
94009 94010 94011 94012 94013 94014 94015 | mask &= ~(SQLITE_ForeignKeys); } if( sqlite3GetBoolean(zRight, 0) ){ db->flags |= mask; }else{ db->flags &= ~mask; | < | 93599 93600 93601 93602 93603 93604 93605 93606 93607 93608 93609 93610 93611 93612 | mask &= ~(SQLITE_ForeignKeys); } if( sqlite3GetBoolean(zRight, 0) ){ db->flags |= mask; }else{ db->flags &= ~mask; } /* Many of the flag-pragmas modify the code generated by the SQL ** compiler (eg. count_changes). So add an opcode to expire all ** compiled SQL statements after modifying a pragma value. */ sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); |
︙ | ︙ | |||
94556 94557 94558 94559 94560 94561 94562 | for(ii=db->nDb-1; ii>=0; ii--){ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); } } } sz = -1; | | | < < < < | 94145 94146 94147 94148 94149 94150 94151 94152 94153 94154 94155 94156 94157 94158 94159 94160 94161 94162 94163 | for(ii=db->nDb-1; ii>=0; ii--){ if( db->aDb[ii].pBt && (ii==iDb || pId2->n==0) ){ sqlite3BtreeSetMmapLimit(db->aDb[ii].pBt, sz); } } } sz = -1; if( sqlite3_file_control(db,zDb,SQLITE_FCNTL_MMAP_SIZE,&sz)==SQLITE_OK ){ #if SQLITE_MAX_MMAP_SIZE==0 sz = 0; #endif returnSingleInt(pParse, "mmap_size", sz); } }else /* ** PRAGMA temp_store ** PRAGMA temp_store = "default"|"memory"|"file" ** |
︙ | ︙ | |||
94745 94746 94747 94748 94749 94750 94751 | returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ pDb->safety_level = getSafetyLevel(zRight,0,1)+1; | < | > | 94330 94331 94332 94333 94334 94335 94336 94337 94338 94339 94340 94341 94342 94343 94344 94345 94346 94347 94348 94349 94350 94351 94352 | returnSingleInt(pParse, "synchronous", pDb->safety_level-1); }else{ if( !db->autoCommit ){ sqlite3ErrorMsg(pParse, "Safety level may not be changed inside a transaction"); }else{ pDb->safety_level = getSafetyLevel(zRight,0,1)+1; } } }else #endif /* SQLITE_OMIT_PAGER_PRAGMAS */ #ifndef SQLITE_OMIT_FLAG_PRAGMAS if( flagPragma(pParse, zLeft, zRight) ){ /* The flagPragma() subroutine also generates any necessary code ** there is nothing more to do here */ }else #endif /* SQLITE_OMIT_FLAG_PRAGMAS */ #ifndef SQLITE_OMIT_SCHEMA_PRAGMAS /* ** PRAGMA table_info(<table>) ** |
︙ | ︙ | |||
95095 95096 95097 95098 95099 95100 95101 | }else #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 #endif #ifndef SQLITE_OMIT_INTEGRITY_CHECK | | | 94680 94681 94682 94683 94684 94685 94686 94687 94688 94689 94690 94691 94692 94693 94694 | }else #ifndef SQLITE_INTEGRITY_CHECK_ERROR_MAX # define SQLITE_INTEGRITY_CHECK_ERROR_MAX 100 #endif #ifndef SQLITE_OMIT_INTEGRITY_CHECK /* Pragma "quick_check" is an experimental reduced version of ** integrity_check designed to detect most database corruption ** without most of the overhead of a full integrity-check. */ if( sqlite3StrICmp(zLeft, "integrity_check")==0 || sqlite3StrICmp(zLeft, "quick_check")==0 ){ int i, j, addr, mxErr; |
︙ | ︙ | |||
95179 95180 95181 95182 95183 95184 95185 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); cnt++; } } /* Make sure sufficient number of registers have been allocated */ | > | > | 94764 94765 94766 94767 94768 94769 94770 94771 94772 94773 94774 94775 94776 94777 94778 94779 94780 | for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ sqlite3VdbeAddOp2(v, OP_Integer, pIdx->tnum, 2+cnt); cnt++; } } /* Make sure sufficient number of registers have been allocated */ if( pParse->nMem < cnt+4 ){ pParse->nMem = cnt+4; } /* Do the b-tree integrity checks */ sqlite3VdbeAddOp3(v, OP_IntegrityCk, 2, cnt, 1); sqlite3VdbeChangeP5(v, (u8)i); addr = sqlite3VdbeAddOp1(v, OP_IsNull, 2); sqlite3VdbeAddOp4(v, OP_String8, 0, 3, 0, sqlite3MPrintf(db, "*** in database %s ***\n", db->aDb[i].zName), |
︙ | ︙ | |||
95204 95205 95206 95207 95208 95209 95210 | Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); | < < | < < | > | | < < | | < < < > > > > > > > > > > > > | | | | | > | | | | > > < | 94791 94792 94793 94794 94795 94796 94797 94798 94799 94800 94801 94802 94803 94804 94805 94806 94807 94808 94809 94810 94811 94812 94813 94814 94815 94816 94817 94818 94819 94820 94821 94822 94823 94824 94825 94826 94827 94828 94829 94830 94831 94832 94833 94834 94835 94836 94837 94838 94839 94840 94841 94842 94843 94844 94845 94846 94847 94848 94849 94850 94851 94852 94853 94854 94855 94856 94857 94858 94859 94860 94861 | Index *pIdx; int loopTop; if( pTab->pIndex==0 ) continue; addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); /* Stop if out of errors */ sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); sqlite3OpenTableAndIndices(pParse, pTab, 1, OP_OpenRead); sqlite3VdbeAddOp2(v, OP_Integer, 0, 2); /* reg(2) will count entries */ loopTop = sqlite3VdbeAddOp2(v, OP_Rewind, 1, 0); sqlite3VdbeAddOp2(v, OP_AddImm, 2, 1); /* increment entry count */ for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int jmp2; int r1; static const VdbeOpList idxErr[] = { { OP_AddImm, 1, -1, 0}, { OP_String8, 0, 3, 0}, /* 1 */ { OP_Rowid, 1, 4, 0}, { OP_String8, 0, 5, 0}, /* 3 */ { OP_String8, 0, 6, 0}, /* 4 */ { OP_Concat, 4, 3, 3}, { OP_Concat, 5, 3, 3}, { OP_Concat, 6, 3, 3}, { OP_ResultRow, 3, 1, 0}, { OP_IfPos, 1, 0, 0}, /* 9 */ { OP_Halt, 0, 0, 0}, }; r1 = sqlite3GenerateIndexKey(pParse, pIdx, 1, 3, 0); jmp2 = sqlite3VdbeAddOp4Int(v, OP_Found, j+2, 0, r1, pIdx->nColumn+1); addr = sqlite3VdbeAddOpList(v, ArraySize(idxErr), idxErr); sqlite3VdbeChangeP4(v, addr+1, "rowid ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+3, " missing from index ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+4, pIdx->zName, P4_TRANSIENT); sqlite3VdbeJumpHere(v, addr+9); sqlite3VdbeJumpHere(v, jmp2); } sqlite3VdbeAddOp2(v, OP_Next, 1, loopTop+1); sqlite3VdbeJumpHere(v, loopTop); for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ static const VdbeOpList cntIdx[] = { { OP_Integer, 0, 3, 0}, { OP_Rewind, 0, 0, 0}, /* 1 */ { OP_AddImm, 3, 1, 0}, { OP_Next, 0, 0, 0}, /* 3 */ { OP_Eq, 2, 0, 3}, /* 4 */ { OP_AddImm, 1, -1, 0}, { OP_String8, 0, 2, 0}, /* 6 */ { OP_String8, 0, 3, 0}, /* 7 */ { OP_Concat, 3, 2, 2}, { OP_ResultRow, 2, 1, 0}, }; addr = sqlite3VdbeAddOp1(v, OP_IfPos, 1); sqlite3VdbeAddOp2(v, OP_Halt, 0, 0); sqlite3VdbeJumpHere(v, addr); addr = sqlite3VdbeAddOpList(v, ArraySize(cntIdx), cntIdx); sqlite3VdbeChangeP1(v, addr+1, j+2); sqlite3VdbeChangeP2(v, addr+1, addr+4); sqlite3VdbeChangeP1(v, addr+3, j+2); sqlite3VdbeChangeP2(v, addr+3, addr+2); sqlite3VdbeJumpHere(v, addr+4); sqlite3VdbeChangeP4(v, addr+6, "wrong # of entries in index ", P4_STATIC); sqlite3VdbeChangeP4(v, addr+7, pIdx->zName, P4_TRANSIENT); } } } addr = sqlite3VdbeAddOpList(v, ArraySize(endCode), endCode); sqlite3VdbeChangeP2(v, addr, -mxErr); sqlite3VdbeJumpHere(v, addr+1); sqlite3VdbeChangeP4(v, addr+2, "ok", P4_STATIC); }else |
︙ | ︙ | |||
95545 95546 95547 95548 95549 95550 95551 | } }else #endif #ifdef SQLITE_HAS_CODEC if( sqlite3StrICmp(zLeft, "key")==0 && zRight ){ | | | | | | 95138 95139 95140 95141 95142 95143 95144 95145 95146 95147 95148 95149 95150 95151 95152 95153 95154 95155 95156 95157 95158 95159 95160 95161 95162 95163 95164 95165 95166 95167 95168 95169 | } }else #endif #ifdef SQLITE_HAS_CODEC if( sqlite3StrICmp(zLeft, "key")==0 && zRight ){ sqlite3_key(db, zRight, sqlite3Strlen30(zRight)); }else if( sqlite3StrICmp(zLeft, "rekey")==0 && zRight ){ sqlite3_rekey(db, zRight, sqlite3Strlen30(zRight)); }else if( zRight && (sqlite3StrICmp(zLeft, "hexkey")==0 || sqlite3StrICmp(zLeft, "hexrekey")==0) ){ int i, h1, h2; char zKey[40]; for(i=0; (h1 = zRight[i])!=0 && (h2 = zRight[i+1])!=0; i+=2){ h1 += 9*(1&(h1>>6)); h2 += 9*(1&(h2>>6)); zKey[i/2] = (h2 & 0x0f) | ((h1 & 0xf)<<4); } if( (zLeft[3] & 0xf)==0xb ){ sqlite3_key(db, zKey, i/2); }else{ sqlite3_rekey(db, zKey, i/2); } }else #endif #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_ENABLE_CEROD) if( sqlite3StrICmp(zLeft, "activate_extensions")==0 && zRight ){ #ifdef SQLITE_HAS_CODEC if( sqlite3StrNICmp(zRight, "see-", 4)==0 ){ |
︙ | ︙ | |||
95584 95585 95586 95587 95588 95589 95590 95591 95592 95593 95594 95595 95596 95597 | #endif }else #endif {/* Empty ELSE clause */} pragma_out: sqlite3DbFree(db, zLeft); sqlite3DbFree(db, zRight); } #endif /* SQLITE_OMIT_PRAGMA */ | > > > > > > > > > > > | 95177 95178 95179 95180 95181 95182 95183 95184 95185 95186 95187 95188 95189 95190 95191 95192 95193 95194 95195 95196 95197 95198 95199 95200 95201 | #endif }else #endif {/* Empty ELSE clause */} /* ** Reset the safety level, in case the fullfsync flag or synchronous ** setting changed. */ #ifndef SQLITE_OMIT_PAGER_PRAGMAS if( db->autoCommit ){ sqlite3BtreeSetSafetyLevel(pDb->pBt, pDb->safety_level, (db->flags&SQLITE_FullFSync)!=0, (db->flags&SQLITE_CkptFullFSync)!=0); } #endif pragma_out: sqlite3DbFree(db, zLeft); sqlite3DbFree(db, zRight); } #endif /* SQLITE_OMIT_PRAGMA */ |
︙ | ︙ | |||
96186 96187 96188 96189 96190 96191 96192 | } } } sqlite3VtabUnlockList(db); pParse->db = db; | | | 95790 95791 95792 95793 95794 95795 95796 95797 95798 95799 95800 95801 95802 95803 95804 | } } } sqlite3VtabUnlockList(db); pParse->db = db; pParse->nQueryLoop = (double)1; if( nBytes>=0 && (nBytes==0 || zSql[nBytes-1]!=0) ){ char *zSqlCopy; int mxLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; testcase( nBytes==mxLen ); testcase( nBytes==mxLen+1 ); if( nBytes>mxLen ){ sqlite3Error(db, SQLITE_TOOBIG, "statement too long"); |
︙ | ︙ | |||
96208 96209 96210 96211 96212 96213 96214 | pParse->zTail = &zSql[pParse->zTail-zSqlCopy]; }else{ pParse->zTail = &zSql[nBytes]; } }else{ sqlite3RunParser(pParse, zSql, &zErrMsg); } | | | 95812 95813 95814 95815 95816 95817 95818 95819 95820 95821 95822 95823 95824 95825 95826 | pParse->zTail = &zSql[pParse->zTail-zSqlCopy]; }else{ pParse->zTail = &zSql[nBytes]; } }else{ sqlite3RunParser(pParse, zSql, &zErrMsg); } assert( 1==(int)pParse->nQueryLoop ); if( db->mallocFailed ){ pParse->rc = SQLITE_NOMEM; } if( pParse->rc==SQLITE_DONE ) pParse->rc = SQLITE_OK; if( pParse->checkSchema ){ schemaIsValid(pParse); |
︙ | ︙ | |||
96404 96405 96406 96407 96408 96409 96410 | int rc = SQLITE_OK; assert( ppStmt ); *ppStmt = 0; if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } | < < < < < < | 96008 96009 96010 96011 96012 96013 96014 96015 96016 96017 96018 96019 96020 96021 | int rc = SQLITE_OK; assert( ppStmt ); *ppStmt = 0; if( !sqlite3SafetyCheckOk(db) ){ return SQLITE_MISUSE_BKPT; } sqlite3_mutex_enter(db->mutex); zSql8 = sqlite3Utf16to8(db, zSql, nBytes, SQLITE_UTF16NATIVE); if( zSql8 ){ rc = sqlite3LockAndPrepare(db, zSql8, -1, saveSqlFlag, 0, ppStmt, &zTail8); } if( zTail8 && pzTail ){ |
︙ | ︙ | |||
96578 96579 96580 96581 96582 96583 96584 | if( p ){ clearSelect(db, p); sqlite3DbFree(db, p); } } /* | | | 96176 96177 96178 96179 96180 96181 96182 96183 96184 96185 96186 96187 96188 96189 96190 | if( p ){ clearSelect(db, p); sqlite3DbFree(db, p); } } /* ** Given 1 to 3 identifiers preceeding the JOIN keyword, determine the ** type of join. Return an integer constant that expresses that type ** in terms of the following bit values: ** ** JT_INNER ** JT_CROSS ** JT_OUTER ** JT_NATURAL |
︙ | ︙ | |||
97271 97272 97273 97274 97275 97276 97277 | ** the output for us. */ if( pOrderBy==0 && p->iLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); } } | < < < < < < < < < < < < < < < < < < < > < | > > > > > | > | 96869 96870 96871 96872 96873 96874 96875 96876 96877 96878 96879 96880 96881 96882 96883 96884 96885 96886 96887 96888 96889 96890 96891 96892 96893 96894 96895 96896 96897 96898 96899 96900 96901 96902 96903 96904 96905 96906 96907 96908 96909 96910 96911 96912 96913 96914 96915 96916 96917 | ** the output for us. */ if( pOrderBy==0 && p->iLimit ){ sqlite3VdbeAddOp3(v, OP_IfZero, p->iLimit, iBreak, -1); } } /* ** Given an expression list, generate a KeyInfo structure that records ** the collating sequence for each expression in that expression list. ** ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting ** KeyInfo structure is appropriate for initializing a virtual index to ** implement that clause. If the ExprList is the result set of a SELECT ** then the KeyInfo structure is appropriate for initializing a virtual ** index to implement a DISTINCT test. ** ** Space to hold the KeyInfo structure is obtain from malloc. The calling ** function is responsible for seeing that this structure is eventually ** freed. Add the KeyInfo structure to the P4 field of an opcode using ** P4_KEYINFO_HANDOFF is the usual way of dealing with this. */ static KeyInfo *keyInfoFromExprList(Parse *pParse, ExprList *pList){ sqlite3 *db = pParse->db; int nExpr; KeyInfo *pInfo; struct ExprList_item *pItem; int i; nExpr = pList->nExpr; pInfo = sqlite3DbMallocZero(db, sizeof(*pInfo) + nExpr*(sizeof(CollSeq*)+1) ); if( pInfo ){ pInfo->aSortOrder = (u8*)&pInfo->aColl[nExpr]; pInfo->nField = (u16)nExpr; pInfo->enc = ENC(db); pInfo->db = db; for(i=0, pItem=pList->a; i<nExpr; i++, pItem++){ CollSeq *pColl; pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); if( !pColl ){ pColl = db->pDfltColl; } pInfo->aColl[i] = pColl; pInfo->aSortOrder[i] = pItem->sortOrder; } } return pInfo; } |
︙ | ︙ | |||
98005 98006 98007 98008 98009 98010 98011 | int iLimit = 0; int iOffset; int addr1, n; if( p->iLimit ) return; /* ** "LIMIT -1" always shows all rows. There is some | | | | | 97590 97591 97592 97593 97594 97595 97596 97597 97598 97599 97600 97601 97602 97603 97604 97605 97606 97607 97608 97609 97610 97611 97612 97613 97614 97615 97616 97617 97618 97619 97620 | int iLimit = 0; int iOffset; int addr1, n; if( p->iLimit ) return; /* ** "LIMIT -1" always shows all rows. There is some ** contraversy about what the correct behavior should be. ** The current implementation interprets "LIMIT 0" to mean ** no rows. */ sqlite3ExprCacheClear(pParse); assert( p->pOffset==0 || p->pLimit!=0 ); if( p->pLimit ){ p->iLimit = iLimit = ++pParse->nMem; v = sqlite3GetVdbe(pParse); if( NEVER(v==0) ) return; /* VDBE should have already been allocated */ if( sqlite3ExprIsInteger(p->pLimit, &n) ){ sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); VdbeComment((v, "LIMIT counter")); if( n==0 ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak); }else{ if( p->nSelectRow > (double)n ) p->nSelectRow = (double)n; } }else{ sqlite3ExprCode(pParse, p->pLimit, iLimit); sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeComment((v, "LIMIT counter")); sqlite3VdbeAddOp2(v, OP_IfZero, iLimit, iBreak); } |
︙ | ︙ | |||
98215 98216 98217 98218 98219 98220 98221 | rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow += pPrior->nSelectRow; if( pPrior->pLimit && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) | | | | 97800 97801 97802 97803 97804 97805 97806 97807 97808 97809 97810 97811 97812 97813 97814 97815 97816 | rc = sqlite3Select(pParse, p, &dest); testcase( rc!=SQLITE_OK ); pDelete = p->pPrior; p->pPrior = pPrior; p->nSelectRow += pPrior->nSelectRow; if( pPrior->pLimit && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) && p->nSelectRow > (double)nLimit ){ p->nSelectRow = (double)nLimit; } if( addr ){ sqlite3VdbeJumpHere(v, addr); } break; } case TK_EXCEPT: |
︙ | ︙ | |||
98424 98425 98426 98427 98428 98429 98430 | KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ assert( p->pRightmost==p ); nCol = p->pEList->nExpr; | | > > > > > > | 98009 98010 98011 98012 98013 98014 98015 98016 98017 98018 98019 98020 98021 98022 98023 98024 98025 98026 98027 98028 98029 98030 98031 98032 98033 98034 98035 98036 98037 98038 98039 | KeyInfo *pKeyInfo; /* Collating sequence for the result set */ Select *pLoop; /* For looping through SELECT statements */ CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ int nCol; /* Number of columns in result set */ assert( p->pRightmost==p ); nCol = p->pEList->nExpr; pKeyInfo = sqlite3DbMallocZero(db, sizeof(*pKeyInfo)+nCol*(sizeof(CollSeq*) + 1)); if( !pKeyInfo ){ rc = SQLITE_NOMEM; goto multi_select_end; } pKeyInfo->enc = ENC(db); pKeyInfo->nField = (u16)nCol; for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ *apColl = multiSelectCollSeq(pParse, p, i); if( 0==*apColl ){ *apColl = db->pDfltColl; } } pKeyInfo->aSortOrder = (u8*)apColl; for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ for(i=0; i<2; i++){ int addr = pLoop->addrOpenEphm[i]; if( addr<0 ){ /* If [0] is unused then [1] is also unused. So we can ** always safely abort as soon as the first unused slot is found */ |
︙ | ︙ | |||
98803 98804 98805 98806 98807 98808 98809 | aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->iOrderByCol - 1; } | | > > > > | 98394 98395 98396 98397 98398 98399 98400 98401 98402 98403 98404 98405 98406 98407 98408 98409 98410 98411 98412 98413 | aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->iOrderByCol>0 && pItem->iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->iOrderByCol - 1; } pKeyMerge = sqlite3DbMallocRaw(db, sizeof(*pKeyMerge)+nOrderBy*(sizeof(CollSeq*)+1)); if( pKeyMerge ){ pKeyMerge->aSortOrder = (u8*)&pKeyMerge->aColl[nOrderBy]; pKeyMerge->nField = (u16)nOrderBy; pKeyMerge->enc = ENC(db); for(i=0; i<nOrderBy; i++){ CollSeq *pColl; Expr *pTerm = pOrderBy->a[i].pExpr; if( pTerm->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pTerm); }else{ pColl = multiSelectCollSeq(pParse, p, aPermute[i]); |
︙ | ︙ | |||
98841 98842 98843 98844 98845 98846 98847 | regPrev = 0; }else{ int nExpr = p->pEList->nExpr; assert( nOrderBy>=nExpr || db->mallocFailed ); regPrev = pParse->nMem+1; pParse->nMem += nExpr+1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); | | > > > > | 98436 98437 98438 98439 98440 98441 98442 98443 98444 98445 98446 98447 98448 98449 98450 98451 98452 98453 98454 98455 | regPrev = 0; }else{ int nExpr = p->pEList->nExpr; assert( nOrderBy>=nExpr || db->mallocFailed ); regPrev = pParse->nMem+1; pParse->nMem += nExpr+1; sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); pKeyDup = sqlite3DbMallocZero(db, sizeof(*pKeyDup) + nExpr*(sizeof(CollSeq*)+1) ); if( pKeyDup ){ pKeyDup->aSortOrder = (u8*)&pKeyDup->aColl[nExpr]; pKeyDup->nField = (u16)nExpr; pKeyDup->enc = ENC(db); for(i=0; i<nExpr; i++){ pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); pKeyDup->aSortOrder[i] = 0; } } } |
︙ | ︙ | |||
100108 100109 100110 100111 100112 100113 100114 100115 100116 | ** If anything goes wrong, an error message is written into pParse. ** The calling function can detect the problem by looking at pParse->nErr ** and/or pParse->db->mallocFailed. */ static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ Walker w; memset(&w, 0, sizeof(w)); w.xExprCallback = exprWalkNoop; w.pParse = pParse; | > < < | < | 99707 99708 99709 99710 99711 99712 99713 99714 99715 99716 99717 99718 99719 99720 99721 99722 99723 99724 | ** If anything goes wrong, an error message is written into pParse. ** The calling function can detect the problem by looking at pParse->nErr ** and/or pParse->db->mallocFailed. */ static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ Walker w; memset(&w, 0, sizeof(w)); w.xSelectCallback = convertCompoundSelectToSubquery; w.xExprCallback = exprWalkNoop; w.pParse = pParse; sqlite3WalkSelect(&w, pSelect); w.xSelectCallback = selectExpander; sqlite3WalkSelect(&w, pSelect); } #ifndef SQLITE_OMIT_SUBQUERY /* |
︙ | ︙ | |||
100354 100355 100356 100357 100358 100359 100360 | #ifndef SQLITE_OMIT_EXPLAIN static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ | | | | > | 99951 99952 99953 99954 99955 99956 99957 99958 99959 99960 99961 99962 99963 99964 99965 99966 99967 99968 99969 | #ifndef SQLITE_OMIT_EXPLAIN static void explainSimpleCount( Parse *pParse, /* Parse context */ Table *pTab, /* Table being queried */ Index *pIdx /* Index used to optimize scan, or NULL */ ){ if( pParse->explain==2 ){ char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s %s%s(~%d rows)", pTab->zName, pIdx ? "USING COVERING INDEX " : "", pIdx ? pIdx->zName : "", pTab->nRowEst ); sqlite3VdbeAddOp4( pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC ); } } #else |
︙ | ︙ | |||
100515 100516 100517 100518 100519 100520 100521 | if( pItem->viaCoroutine==0 ){ sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); } continue; } /* Increment Parse.nHeight by the height of the largest expression | | | 100113 100114 100115 100116 100117 100118 100119 100120 100121 100122 100123 100124 100125 100126 100127 | if( pItem->viaCoroutine==0 ){ sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); } continue; } /* Increment Parse.nHeight by the height of the largest expression ** tree refered to by this, the parent select. The child select ** may contain expression trees of at most ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit ** more conservative than necessary, but much easier than enforcing ** an exact limit. */ pParse->nHeight += sqlite3SelectExprHeight(p); |
︙ | ︙ | |||
100647 100648 100649 100650 100651 100652 100653 | /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then disable the ORDER BY clause since the GROUP BY ** will cause elements to come out in the correct order. This is ** an optimization - the correct answer should result regardless. ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER ** to disable this optimization for testing purposes. */ | | | | 100245 100246 100247 100248 100249 100250 100251 100252 100253 100254 100255 100256 100257 100258 100259 100260 100261 100262 100263 100264 100265 100266 100267 100268 100269 100270 100271 100272 100273 100274 100275 100276 100277 100278 100279 100280 | /* If there is both a GROUP BY and an ORDER BY clause and they are ** identical, then disable the ORDER BY clause since the GROUP BY ** will cause elements to come out in the correct order. This is ** an optimization - the correct answer should result regardless. ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER ** to disable this optimization for testing purposes. */ if( sqlite3ExprListCompare(p->pGroupBy, pOrderBy)==0 && OptimizationEnabled(db, SQLITE_GroupByOrder) ){ pOrderBy = 0; } /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and ** if the select-list is the same as the ORDER BY list, then this query ** can be rewritten as a GROUP BY. In other words, this: ** ** SELECT DISTINCT xyz FROM ... ORDER BY xyz ** ** is transformed to: ** ** SELECT xyz FROM ... GROUP BY xyz ** ** The second form is preferred as a single index (or temp-table) may be ** used for both the ORDER BY and DISTINCT processing. As originally ** written the query must use a temp-table for at least one of the ORDER ** BY and DISTINCT, and an index or separate temp-table for the other. */ if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct && sqlite3ExprListCompare(pOrderBy, p->pEList)==0 ){ p->selFlags &= ~SF_Distinct; p->pGroupBy = sqlite3ExprListDup(db, p->pEList, 0); pGroupBy = p->pGroupBy; pOrderBy = 0; /* Notice that even thought SF_Distinct has been cleared from p->selFlags, ** the sDistinct.isTnct is still set. Hence, isTnct represents the |
︙ | ︙ | |||
100708 100709 100710 100711 100712 100713 100714 | if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(v); | | | 100306 100307 100308 100309 100310 100311 100312 100313 100314 100315 100316 100317 100318 100319 100320 | if( pDest->eDest==SRT_EphemTab ){ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); } /* Set the limiter. */ iEnd = sqlite3VdbeMakeLabel(v); p->nSelectRow = (double)LARGEST_INT64; computeLimitRegisters(pParse, p, iEnd); if( p->iLimit==0 && addrSortIndex>=0 ){ sqlite3VdbeGetOp(v, addrSortIndex)->opcode = OP_SorterOpen; p->selFlags |= SF_UseSorter; } /* Open a virtual index to use for the distinct set. |
︙ | ︙ | |||
100731 100732 100733 100734 100735 100736 100737 | sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ /* No aggregate functions and no GROUP BY clause */ | | | < | < < < | < | | < | 100329 100330 100331 100332 100333 100334 100335 100336 100337 100338 100339 100340 100341 100342 100343 100344 100345 100346 100347 100348 100349 100350 100351 100352 100353 100354 100355 100356 100357 100358 100359 100360 100361 100362 100363 | sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; }else{ sDistinct.eTnctType = WHERE_DISTINCT_NOOP; } if( !isAgg && pGroupBy==0 ){ /* No aggregate functions and no GROUP BY clause */ ExprList *pDist = (sDistinct.isTnct ? p->pEList : 0); /* Begin the database scan. */ pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pOrderBy, pDist, 0,0); if( pWInfo==0 ) goto select_end; if( pWInfo->nRowOut < p->nSelectRow ) p->nSelectRow = pWInfo->nRowOut; if( pWInfo->eDistinct ) sDistinct.eTnctType = pWInfo->eDistinct; if( pOrderBy && pWInfo->nOBSat==pOrderBy->nExpr ) pOrderBy = 0; /* If sorting index that was created by a prior OP_OpenEphemeral ** instruction ended up not being needed, then change the OP_OpenEphemeral ** into an OP_Noop. */ if( addrSortIndex>=0 && pOrderBy==0 ){ sqlite3VdbeChangeToNoop(v, addrSortIndex); p->addrOpenEphm[2] = -1; } /* Use the standard inner loop. */ selectInnerLoop(pParse, p, pEList, 0, 0, pOrderBy, &sDistinct, pDest, pWInfo->iContinue, pWInfo->iBreak); /* End the database scan loop. */ sqlite3WhereEnd(pWInfo); }else{ /* This case when there exist aggregate functions or a GROUP BY clause ** or both */ |
︙ | ︙ | |||
100790 100791 100792 100793 100794 100795 100796 | for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ pItem->iAlias = 0; } for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ pItem->iAlias = 0; } | | | | 100382 100383 100384 100385 100386 100387 100388 100389 100390 100391 100392 100393 100394 100395 100396 100397 100398 | for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ pItem->iAlias = 0; } for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ pItem->iAlias = 0; } if( p->nSelectRow>(double)100 ) p->nSelectRow = (double)100; }else{ p->nSelectRow = (double)1; } /* Create a label to jump to when we want to abort the query */ addrEnd = sqlite3VdbeMakeLabel(v); /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in |
︙ | ︙ | |||
100872 100873 100874 100875 100876 100877 100878 | /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | | < | | 100464 100465 100466 100467 100468 100469 100470 100471 100472 100473 100474 100475 100476 100477 100478 100479 100480 | /* Begin a loop that will extract all source rows in GROUP BY order. ** This might involve two separate loops with an OP_Sort in between, or ** it might be a single loop that uses an index to extract information ** in the right order to begin with. */ sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, 0, 0); if( pWInfo==0 ) goto select_end; if( pWInfo->nOBSat==pGroupBy->nExpr ){ /* The optimizer is able to deliver rows in group by order so ** we do not have to sort. The OP_OpenEphemeral table will be ** cancelled later because we still need to use the pKeyInfo */ groupBySort = 0; }else{ /* Rows are coming out in undetermined order. We have to push |
︙ | ︙ | |||
101156 101157 101158 101159 101160 101161 101162 | pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); if( pWInfo==0 ){ sqlite3ExprListDelete(db, pDel); goto select_end; } updateAccumulator(pParse, &sAggInfo); assert( pMinMax==0 || pMinMax->nExpr==1 ); | | | | 100747 100748 100749 100750 100751 100752 100753 100754 100755 100756 100757 100758 100759 100760 100761 100762 | pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); if( pWInfo==0 ){ sqlite3ExprListDelete(db, pDel); goto select_end; } updateAccumulator(pParse, &sAggInfo); assert( pMinMax==0 || pMinMax->nExpr==1 ); if( pWInfo->nOBSat>0 ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, pWInfo->iBreak); VdbeComment((v, "%s() by index", (flag==WHERE_ORDERBY_MIN?"min":"max"))); } sqlite3WhereEnd(pWInfo); finalizeAggFunctions(pParse, &sAggInfo); } |
︙ | ︙ | |||
102516 102517 102518 102519 102520 102521 102522 | sqlite3VdbeChangeP5(v, (u8)bRecursive); } } /* ** This is called to code the required FOR EACH ROW triggers for an operation ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE) | | | 102107 102108 102109 102110 102111 102112 102113 102114 102115 102116 102117 102118 102119 102120 102121 | sqlite3VdbeChangeP5(v, (u8)bRecursive); } } /* ** This is called to code the required FOR EACH ROW triggers for an operation ** on table pTab. The operation to code triggers for (INSERT, UPDATE or DELETE) ** is given by the op paramater. The tr_tm parameter determines whether the ** BEFORE or AFTER triggers are coded. If the operation is an UPDATE, then ** parameter pChanges is passed the list of columns being modified. ** ** If there are no triggers that fire at the specified time for the specified ** operation on pTab, this function is a no-op. ** ** The reg argument is the address of the first in an array of registers |
︙ | ︙ | |||
102895 102896 102897 102898 102899 102900 102901 | for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} if( nIdx>0 ){ aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx ); if( aRegIdx==0 ) goto update_cleanup; } for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int reg; | | | 102486 102487 102488 102489 102490 102491 102492 102493 102494 102495 102496 102497 102498 102499 102500 | for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} if( nIdx>0 ){ aRegIdx = sqlite3DbMallocRaw(db, sizeof(Index*) * nIdx ); if( aRegIdx==0 ) goto update_cleanup; } for(j=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, j++){ int reg; if( hasFK || chngRowid ){ reg = ++pParse->nMem; }else{ reg = 0; for(i=0; i<pIdx->nColumn; i++){ if( aXRef[pIdx->aiColumn[i]]>=0 ){ reg = ++pParse->nMem; break; |
︙ | ︙ | |||
102967 102968 102969 102970 102971 102972 102973 | /* Begin the database scan */ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0 ); if( pWInfo==0 ) goto update_cleanup; | | | 102558 102559 102560 102561 102562 102563 102564 102565 102566 102567 102568 102569 102570 102571 102572 | /* Begin the database scan */ sqlite3VdbeAddOp3(v, OP_Null, 0, regRowSet, regOldRowid); pWInfo = sqlite3WhereBegin( pParse, pTabList, pWhere, 0, 0, WHERE_ONEPASS_DESIRED, 0 ); if( pWInfo==0 ) goto update_cleanup; okOnePass = pWInfo->okOnePass; /* Remember the rowid of every item to be updated. */ sqlite3VdbeAddOp2(v, OP_Rowid, iCur, regOldRowid); if( !okOnePass ){ sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, regOldRowid); } |
︙ | ︙ | |||
103436 103437 103438 103439 103440 103441 103442 | int nRes; /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; } | | | 103027 103028 103029 103030 103031 103032 103033 103034 103035 103036 103037 103038 103039 103040 103041 | int nRes; /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; } if( db->activeVdbeCnt>1 ){ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress"); return SQLITE_ERROR; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ |
︙ | ︙ | |||
104501 104502 104503 104504 104505 104506 104507 | db->aVTrans = 0; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3DbFree(db, *pzErrmsg); | | | | 104092 104093 104094 104095 104096 104097 104098 104099 104100 104101 104102 104103 104104 104105 104106 104107 | db->aVTrans = 0; for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ int (*x)(sqlite3_vtab *); sqlite3_vtab *pVtab = aVTrans[i]->pVtab; if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ rc = x(pVtab); sqlite3DbFree(db, *pzErrmsg); *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg); sqlite3_free(pVtab->zErrMsg); } } db->aVTrans = aVTrans; return rc; } /* |
︙ | ︙ | |||
104804 104805 104806 104807 104808 104809 104810 | ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace = 0; #endif #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) | < | | | < | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 104395 104396 104397 104398 104399 104400 104401 104402 104403 104404 104405 104406 104407 104408 104409 104410 104411 104412 104413 104414 104415 104416 104417 104418 104419 104420 | ** Trace output macros */ #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /***/ int sqlite3WhereTrace = 0; #endif #if defined(SQLITE_DEBUG) \ && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE)) # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X #else # define WHERETRACE(X) #endif /* Forward reference */ typedef struct WhereClause WhereClause; typedef struct WhereMaskSet WhereMaskSet; typedef struct WhereOrInfo WhereOrInfo; typedef struct WhereAndInfo WhereAndInfo; typedef struct WhereCost WhereCost; /* ** The query generator uses an array of instances of this structure to ** help it analyze the subexpressions of the WHERE clause. Each WHERE ** clause subexpression is separated from the others by AND operators, ** usually, or sometimes subexpressions separated by OR. ** |
︙ | ︙ | |||
105010 105011 105012 105013 105014 105015 105016 | ** use of a bitmask encoding for the operator allows us to search ** quickly for terms that match any of several different operators. ** ** A WhereTerm might also be two or more subterms connected by OR: ** ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... ** | | | | 104434 104435 104436 104437 104438 104439 104440 104441 104442 104443 104444 104445 104446 104447 104448 104449 104450 | ** use of a bitmask encoding for the operator allows us to search ** quickly for terms that match any of several different operators. ** ** A WhereTerm might also be two or more subterms connected by OR: ** ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... ** ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR ** and the WhereTerm.u.pOrInfo field points to auxiliary information that ** is collected about the ** ** If a term in the WHERE clause does not match either of the two previous ** categories, then eOperator==0. The WhereTerm.pExpr field is still set ** to the original subexpression content and wtFlags is set up appropriately ** but no other fields in the WhereTerm object are meaningful. ** ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, |
︙ | ︙ | |||
105035 105036 105037 105038 105039 105040 105041 105042 105043 105044 105045 105046 105047 105048 | ** bits in the Bitmask. So, in the example above, the cursor numbers ** would be mapped into integers 0 through 7. ** ** The number of terms in a join is limited by the number of bits ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite ** is only able to process joins with 64 or fewer tables. */ struct WhereTerm { Expr *pExpr; /* Pointer to the subexpression that is this term */ int iParent; /* Disable pWC->a[iParent] when this term disabled */ int leftCursor; /* Cursor number of X in "X <op> <expr>" */ union { int leftColumn; /* Column number of X in "X <op> <expr>" */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ | > | 104459 104460 104461 104462 104463 104464 104465 104466 104467 104468 104469 104470 104471 104472 104473 | ** bits in the Bitmask. So, in the example above, the cursor numbers ** would be mapped into integers 0 through 7. ** ** The number of terms in a join is limited by the number of bits ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite ** is only able to process joins with 64 or fewer tables. */ typedef struct WhereTerm WhereTerm; struct WhereTerm { Expr *pExpr; /* Pointer to the subexpression that is this term */ int iParent; /* Disable pWC->a[iParent] when this term disabled */ int leftCursor; /* Cursor number of X in "X <op> <expr>" */ union { int leftColumn; /* Column number of X in "X <op> <expr>" */ WhereOrInfo *pOrInfo; /* Extra information if (eOperator & WO_OR)!=0 */ |
︙ | ︙ | |||
105068 105069 105070 105071 105072 105073 105074 | #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ #ifdef SQLITE_ENABLE_STAT3 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ #else # define TERM_VNULL 0x00 /* Disabled if not using stat3 */ #endif | < < < < < < < < < < < < < < < < | > > | 104493 104494 104495 104496 104497 104498 104499 104500 104501 104502 104503 104504 104505 104506 104507 104508 104509 104510 104511 104512 104513 104514 104515 104516 104517 104518 104519 104520 104521 104522 104523 104524 | #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ #ifdef SQLITE_ENABLE_STAT3 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */ #else # define TERM_VNULL 0x00 /* Disabled if not using stat3 */ #endif /* ** An instance of the following structure holds all information about a ** WHERE clause. Mostly this is a container for one or more WhereTerms. ** ** Explanation of pOuter: For a WHERE clause of the form ** ** a AND ((b AND c) OR (d AND e)) AND f ** ** There are separate WhereClause objects for the whole clause and for ** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the ** subclauses points to the WhereClause object for the whole clause. */ struct WhereClause { Parse *pParse; /* The parser context */ WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ WhereClause *pOuter; /* Outer conjunction */ u8 op; /* Split operator. TK_AND or TK_OR */ u16 wctrlFlags; /* Might include WHERE_AND_ONLY */ int nTerm; /* Number of terms */ int nSlot; /* Number of entries in a[] */ WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ #if defined(SQLITE_SMALL_STACK) WhereTerm aStatic[1]; /* Initial static space for a[] */ #else WhereTerm aStatic[8]; /* Initial static space for a[] */ |
︙ | ︙ | |||
105159 105160 105161 105162 105163 105164 105165 | */ struct WhereMaskSet { int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* | < < < < < < < < < < | < < < < < < < < | | < < | < < < | < < < < < < < < < | < < < | < | | | > > > | > > > > > > > | | | | < < < < < < < < < < < < < < < < < < < < < < < < | | < | > | | | | < < | < | < < < < < | < | | < < < < | < < | < < < > > > | < > | > > | | | < | < < | > > > | < > | < < | | | < < < < | < < < < < < | > > | < < < < < < | < < < < < | < < | < < < < < < < | < < < < < | | > > | > > | 104570 104571 104572 104573 104574 104575 104576 104577 104578 104579 104580 104581 104582 104583 104584 104585 104586 104587 104588 104589 104590 104591 104592 104593 104594 104595 104596 104597 104598 104599 104600 104601 104602 104603 104604 104605 104606 104607 104608 104609 104610 104611 104612 104613 104614 104615 104616 104617 104618 104619 104620 104621 104622 104623 104624 104625 104626 104627 104628 104629 104630 104631 104632 104633 104634 104635 104636 104637 104638 104639 104640 104641 104642 104643 104644 104645 104646 104647 104648 104649 104650 104651 104652 104653 104654 104655 104656 104657 104658 104659 104660 104661 104662 104663 104664 104665 104666 104667 104668 104669 104670 104671 104672 104673 104674 104675 104676 104677 104678 104679 104680 104681 104682 104683 104684 104685 104686 104687 104688 104689 104690 104691 104692 104693 104694 104695 104696 104697 104698 104699 104700 | */ struct WhereMaskSet { int n; /* Number of assigned cursor values */ int ix[BMS]; /* Cursor assigned to each bit */ }; /* ** A WhereCost object records a lookup strategy and the estimated ** cost of pursuing that strategy. */ struct WhereCost { WherePlan plan; /* The lookup strategy */ double rCost; /* Overall cost of pursuing this search strategy */ Bitmask used; /* Bitmask of cursors used by this plan */ }; /* ** Bitmasks for the operators that indices are able to exploit. An ** OR-ed combination of these values can be used when searching for ** terms in the where clause. */ #define WO_IN 0x001 #define WO_EQ 0x002 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) #define WO_MATCH 0x040 #define WO_ISNULL 0x080 #define WO_OR 0x100 /* Two or more OR-connected terms */ #define WO_AND 0x200 /* Two or more AND-connected terms */ #define WO_EQUIV 0x400 /* Of the form A==B, both columns */ #define WO_NOOP 0x800 /* This term does not restrict search space */ #define WO_ALL 0xfff /* Mask of all possible WO_* values */ #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ /* ** Value for wsFlags returned by bestIndex() and stored in ** WhereLevel.wsFlags. These flags determine which search ** strategies are appropriate. ** ** The least significant 12 bits is reserved as a mask for WO_ values above. ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. ** But if the table is the right table of a left join, WhereLevel.wsFlags ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as ** the "op" parameter to findTerm when we are resolving equality constraints. ** ISNULL constraints will then not be used on the right table of a left ** join. Tickets #2177 and #2189. */ #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */ #define WHERE_IN_ABLE 0x080f1000 /* Able to support an IN operator */ #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */ #define WHERE_IDX_ONLY 0x00400000 /* Use index only - omit table */ #define WHERE_ORDERED 0x00800000 /* Output will appear in correct order */ #define WHERE_REVERSE 0x01000000 /* Scan in reverse order */ #define WHERE_UNIQUE 0x02000000 /* Selects no more than one row */ #define WHERE_ALL_UNIQUE 0x04000000 /* This and all prior have one row */ #define WHERE_OB_UNIQUE 0x00004000 /* Values in ORDER BY columns are ** different for every output row */ #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ #define WHERE_DISTINCT 0x40000000 /* Correct order for DISTINCT */ #define WHERE_COVER_SCAN 0x80000000 /* Full scan of a covering index */ /* ** This module contains many separate subroutines that work together to ** find the best indices to use for accessing a particular table in a query. ** An instance of the following structure holds context information about the ** index search so that it can be more easily passed between the various ** routines. */ typedef struct WhereBestIdx WhereBestIdx; struct WhereBestIdx { Parse *pParse; /* Parser context */ WhereClause *pWC; /* The WHERE clause */ struct SrcList_item *pSrc; /* The FROM clause term to search */ Bitmask notReady; /* Mask of cursors not available */ Bitmask notValid; /* Cursors not available for any purpose */ ExprList *pOrderBy; /* The ORDER BY clause */ ExprList *pDistinct; /* The select-list if query is DISTINCT */ sqlite3_index_info **ppIdxInfo; /* Index information passed to xBestIndex */ int i, n; /* Which loop is being coded; # of loops */ WhereLevel *aLevel; /* Info about outer loops */ WhereCost cost; /* Lowest cost query plan */ }; /* ** Return TRUE if the probe cost is less than the baseline cost */ static int compareCost(const WhereCost *pProbe, const WhereCost *pBaseline){ if( pProbe->rCost<pBaseline->rCost ) return 1; if( pProbe->rCost>pBaseline->rCost ) return 0; if( pProbe->plan.nOBSat>pBaseline->plan.nOBSat ) return 1; if( pProbe->plan.nRow<pBaseline->plan.nRow ) return 1; return 0; } /* ** Initialize a preallocated WhereClause structure. */ static void whereClauseInit( WhereClause *pWC, /* The WhereClause to be initialized */ Parse *pParse, /* The parsing context */ WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmasks */ u16 wctrlFlags /* Might include WHERE_AND_ONLY */ ){ pWC->pParse = pParse; pWC->pMaskSet = pMaskSet; pWC->pOuter = 0; pWC->nTerm = 0; pWC->nSlot = ArraySize(pWC->aStatic); pWC->a = pWC->aStatic; pWC->wctrlFlags = wctrlFlags; } /* Forward reference */ static void whereClauseClear(WhereClause*); /* ** Deallocate all memory associated with a WhereOrInfo object. |
︙ | ︙ | |||
105398 105399 105400 105401 105402 105403 105404 | /* ** Deallocate a WhereClause structure. The WhereClause structure ** itself is not freed. This routine is the inverse of whereClauseInit(). */ static void whereClauseClear(WhereClause *pWC){ int i; WhereTerm *a; | | | 104715 104716 104717 104718 104719 104720 104721 104722 104723 104724 104725 104726 104727 104728 104729 | /* ** Deallocate a WhereClause structure. The WhereClause structure ** itself is not freed. This routine is the inverse of whereClauseInit(). */ static void whereClauseClear(WhereClause *pWC){ int i; WhereTerm *a; sqlite3 *db = pWC->pParse->db; for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ if( a->wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, a->pExpr); } if( a->wtFlags & TERM_ORINFO ){ whereOrInfoDelete(db, a->u.pOrInfo); }else if( a->wtFlags & TERM_ANDINFO ){ |
︙ | ︙ | |||
105436 105437 105438 105439 105440 105441 105442 | ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ WhereTerm *pTerm; int idx; | | | | 104753 104754 104755 104756 104757 104758 104759 104760 104761 104762 104763 104764 104765 104766 104767 104768 104769 104770 | ** WhereTerms. All pointers to WhereTerms should be invalidated after ** calling this routine. Such pointers may be reinitialized by referencing ** the pWC->a[] array. */ static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ WhereTerm *pTerm; int idx; testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ if( pWC->nTerm>=pWC->nSlot ){ WhereTerm *pOld = pWC->a; sqlite3 *db = pWC->pParse->db; pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); if( pWC->a==0 ){ if( wtFlags & TERM_DYNAMIC ){ sqlite3ExprDelete(db, p); } pWC->a = pOld; return 0; |
︙ | ︙ | |||
105479 105480 105481 105482 105483 105484 105485 | ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ | | | | | | | > > > > > > > > > | 104796 104797 104798 104799 104800 104801 104802 104803 104804 104805 104806 104807 104808 104809 104810 104811 104812 104813 104814 104815 104816 104817 104818 104819 104820 104821 104822 104823 104824 104825 104826 104827 104828 104829 104830 104831 104832 104833 104834 104835 104836 104837 104838 104839 104840 104841 104842 104843 104844 104845 104846 104847 104848 104849 104850 104851 104852 104853 104854 104855 104856 104857 104858 104859 104860 104861 104862 104863 104864 104865 104866 | ** The original WHERE clause in pExpr is unaltered. All this routine ** does is make slot[] entries point to substructure within pExpr. ** ** In the previous sentence and in the diagram, "slot[]" refers to ** the WhereClause.a[] array. The slot[] array grows as needed to contain ** all terms of the WHERE clause. */ static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ pWC->op = (u8)op; if( pExpr==0 ) return; if( pExpr->op!=op ){ whereClauseInsert(pWC, pExpr, 0); }else{ whereSplit(pWC, pExpr->pLeft, op); whereSplit(pWC, pExpr->pRight, op); } } /* ** Initialize an expression mask set (a WhereMaskSet object) */ #define initMaskSet(P) memset(P, 0, sizeof(*P)) /* ** Return the bitmask for the given cursor number. Return 0 if ** iCursor is not in the set. */ static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ int i; assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); for(i=0; i<pMaskSet->n; i++){ if( pMaskSet->ix[i]==iCursor ){ return ((Bitmask)1)<<i; } } return 0; } /* ** Create a new mask for cursor iCursor. ** ** There is one cursor per table in the FROM clause. The number of ** tables in the FROM clause is limited by a test early in the ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] ** array will never overflow. */ static void createMask(WhereMaskSet *pMaskSet, int iCursor){ assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); pMaskSet->ix[pMaskSet->n++] = iCursor; } /* ** This routine walks (recursively) an expression tree and generates ** a bitmask indicating which tables are used in that expression ** tree. ** ** In order for this routine to work, the calling function must have ** previously invoked sqlite3ResolveExprNames() on the expression. See ** the header comment on that routine for additional information. ** The sqlite3ResolveExprNames() routines looks for column names and ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to ** the VDBE cursor number of the table. This routine just has to ** translate the cursor numbers into bitmask values and OR all ** the bitmasks together. */ static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ Bitmask mask = 0; if( p==0 ) return 0; if( p->op==TK_COLUMN ){ |
︙ | ︙ | |||
105580 105581 105582 105583 105584 105585 105586 | } return mask; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are | | > > > > > > > | > | | | 104906 104907 104908 104909 104910 104911 104912 104913 104914 104915 104916 104917 104918 104919 104920 104921 104922 104923 104924 104925 104926 104927 104928 104929 104930 104931 104932 104933 104934 104935 104936 104937 104938 104939 104940 104941 104942 104943 104944 104945 104946 104947 104948 104949 104950 | } return mask; } /* ** Return TRUE if the given operator is one of the operators that is ** allowed for an indexable WHERE clause term. The allowed operators are ** "=", "<", ">", "<=", ">=", and "IN". ** ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be ** of one of the following forms: column = expression column > expression ** column >= expression column < expression column <= expression ** expression = column expression > column expression >= column ** expression < column expression <= column column IN ** (expression-list) column IN (subquery) column IS NULL */ static int allowedOp(int op){ assert( TK_GT>TK_EQ && TK_GT<TK_GE ); assert( TK_LT>TK_EQ && TK_LT<TK_GE ); assert( TK_LE>TK_EQ && TK_LE<TK_GE ); assert( TK_GE==TK_EQ+4 ); return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; } /* ** Swap two objects of type TYPE. */ #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} /* ** Commute a comparison operator. Expressions of the form "X op Y" ** are converted into "Y op X". ** ** If left/right precedence rules come into play when determining the ** collating ** side of the comparison, it remains associated with the same side after ** the commutation. So "Y collate NOCASE op X" becomes ** "X op Y". This is because any collation sequence on ** the left hand side of a comparison overrides any collation sequence ** attached to the right. For the same reason the EP_Collate flag ** is not commuted. */ static void exprCommute(Parse *pParse, Expr *pExpr){ u16 expRight = (pExpr->pRight->flags & EP_Collate); u16 expLeft = (pExpr->pLeft->flags & EP_Collate); |
︙ | ︙ | |||
105659 105660 105661 105662 105663 105664 105665 | assert( op!=TK_LT || c==WO_LT ); assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); return c; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 104993 104994 104995 104996 104997 104998 104999 105000 105001 105002 105003 105004 105005 105006 | assert( op!=TK_LT || c==WO_LT ); assert( op!=TK_LE || c==WO_LE ); assert( op!=TK_GT || c==WO_GT ); assert( op!=TK_GE || c==WO_GE ); return c; } /* ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" ** where X is a reference to the iColumn of table iCur and <op> is one of ** the WO_xx operator codes specified by the op parameter. ** Return a pointer to the term. Return 0 if not found. ** ** The term returned might by Y=<expr> if there is another constraint in |
︙ | ︙ | |||
105814 105815 105816 105817 105818 105819 105820 | WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ | | | | > > > > > > > > > | > > > > > | | > > > > > | > > > > > > | > > > > > > > | > > > > > > > > > > | > | > > > > > > > > > > | > > | > > > > > > > > > > > | 105024 105025 105026 105027 105028 105029 105030 105031 105032 105033 105034 105035 105036 105037 105038 105039 105040 105041 105042 105043 105044 105045 105046 105047 105048 105049 105050 105051 105052 105053 105054 105055 105056 105057 105058 105059 105060 105061 105062 105063 105064 105065 105066 105067 105068 105069 105070 105071 105072 105073 105074 105075 105076 105077 105078 105079 105080 105081 105082 105083 105084 105085 105086 105087 105088 105089 105090 105091 105092 105093 105094 105095 105096 105097 105098 105099 105100 105101 105102 105103 105104 105105 105106 105107 105108 105109 105110 105111 105112 105113 105114 105115 105116 105117 105118 105119 105120 105121 105122 105123 105124 105125 | WhereClause *pWC, /* The WHERE clause to be searched */ int iCur, /* Cursor number of LHS */ int iColumn, /* Column number of LHS */ Bitmask notReady, /* RHS must not overlap with this mask */ u32 op, /* Mask of WO_xx values describing operator */ Index *pIdx /* Must be compatible with this index, if not NULL */ ){ WhereTerm *pTerm; /* Term being examined as possible result */ WhereTerm *pResult = 0; /* The answer to return */ WhereClause *pWCOrig = pWC; /* Original pWC value */ int j, k; /* Loop counters */ Expr *pX; /* Pointer to an expression */ Parse *pParse; /* Parsing context */ int iOrigCol = iColumn; /* Original value of iColumn */ int nEquiv = 2; /* Number of entires in aEquiv[] */ int iEquiv = 2; /* Number of entries of aEquiv[] processed so far */ int aEquiv[22]; /* iCur,iColumn and up to 10 other equivalents */ assert( iCur>=0 ); aEquiv[0] = iCur; aEquiv[1] = iColumn; for(;;){ for(pWC=pWCOrig; pWC; pWC=pWC->pOuter){ for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ if( pTerm->leftCursor==iCur && pTerm->u.leftColumn==iColumn ){ if( (pTerm->prereqRight & notReady)==0 && (pTerm->eOperator & op & WO_ALL)!=0 ){ if( iOrigCol>=0 && pIdx && (pTerm->eOperator & WO_ISNULL)==0 ){ CollSeq *pColl; char idxaff; pX = pTerm->pExpr; pParse = pWC->pParse; idxaff = pIdx->pTable->aCol[iOrigCol].affinity; if( !sqlite3IndexAffinityOk(pX, idxaff) ){ continue; } /* Figure out the collation sequence required from an index for ** it to be useful for optimising expression pX. Store this ** value in variable pColl. */ assert(pX->pLeft); pColl = sqlite3BinaryCompareCollSeq(pParse,pX->pLeft,pX->pRight); if( pColl==0 ) pColl = pParse->db->pDfltColl; for(j=0; pIdx->aiColumn[j]!=iOrigCol; j++){ if( NEVER(j>=pIdx->nColumn) ) return 0; } if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ){ continue; } } if( pTerm->prereqRight==0 && (pTerm->eOperator&WO_EQ)!=0 ){ pResult = pTerm; goto findTerm_success; }else if( pResult==0 ){ pResult = pTerm; } } if( (pTerm->eOperator & WO_EQUIV)!=0 && nEquiv<ArraySize(aEquiv) ){ pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); assert( pX->op==TK_COLUMN ); for(j=0; j<nEquiv; j+=2){ if( aEquiv[j]==pX->iTable && aEquiv[j+1]==pX->iColumn ) break; } if( j==nEquiv ){ aEquiv[j] = pX->iTable; aEquiv[j+1] = pX->iColumn; nEquiv += 2; } } } } } if( iEquiv>=nEquiv ) break; iCur = aEquiv[iEquiv++]; iColumn = aEquiv[iEquiv++]; } findTerm_success: return pResult; } /* Forward reference */ static void exprAnalyze(SrcList*, WhereClause*, int); /* ** Call exprAnalyze on all terms in a WHERE clause. ** ** */ static void exprAnalyzeAll( SrcList *pTabList, /* the FROM clause */ WhereClause *pWC /* the WHERE clause to be analyzed */ ){ int i; for(i=pWC->nTerm-1; i>=0; i--){ |
︙ | ︙ | |||
105899 105900 105901 105902 105903 105904 105905 | op = pRight->op; if( op==TK_REGISTER ){ op = pRight->op2; } if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; | | | 105175 105176 105177 105178 105179 105180 105181 105182 105183 105184 105185 105186 105187 105188 105189 | op = pRight->op; if( op==TK_REGISTER ){ op = pRight->op2; } if( op==TK_VARIABLE ){ Vdbe *pReprepare = pParse->pReprepare; int iCol = pRight->iColumn; pVal = sqlite3VdbeGetValue(pReprepare, iCol, SQLITE_AFF_NONE); if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ z = (char *)sqlite3_value_text(pVal); } sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); }else if( op==TK_STRING ){ z = pRight->u.zToken; |
︙ | ︙ | |||
106041 106042 106043 106044 106045 106046 106047 | ** subsubterms at least one of which is indexable. Indexable AND ** subterms have their eOperator set to WO_AND and they have ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that | | | | | 105317 105318 105319 105320 105321 105322 105323 105324 105325 105326 105327 105328 105329 105330 105331 105332 105333 105334 | ** subsubterms at least one of which is indexable. Indexable AND ** subterms have their eOperator set to WO_AND and they have ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. ** ** From another point of view, "indexable" means that the subterm could ** potentially be used with an index if an appropriate index exists. ** This analysis does not consider whether or not the index exists; that ** is something the bestIndex() routine will determine. This analysis ** only looks at whether subterms appropriate for indexing exist. ** ** All examples A through E above all satisfy case 2. But if a term ** also statisfies case 1 (such as B) we know that the optimizer will ** always prefer case 1, so in that case we pretend that case 2 is not ** satisfied. ** ** It might be the case that multiple tables are indexable. For example, ** (E) above is indexable on tables P, Q, and R. ** |
︙ | ︙ | |||
106067 106068 106069 106070 106071 106072 106073 | ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ){ | < | > | | 105343 105344 105345 105346 105347 105348 105349 105350 105351 105352 105353 105354 105355 105356 105357 105358 105359 105360 105361 105362 105363 105364 105365 105366 105367 105368 105369 105370 105371 105372 105373 105374 105375 105376 105377 105378 105379 105380 | ** zero. This term is not useful for search. */ static void exprAnalyzeOrTerm( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the complete WHERE clause */ int idxTerm /* Index of the OR-term to be analyzed */ ){ Parse *pParse = pWC->pParse; /* Parser context */ sqlite3 *db = pParse->db; /* Database connection */ WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ Expr *pExpr = pTerm->pExpr; /* The expression of the term */ WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ int i; /* Loop counters */ WhereClause *pOrWc; /* Breakup of pTerm into subterms */ WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ Bitmask chngToIN; /* Tables that might satisfy case 1 */ Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ /* ** Break the OR clause into its separate subterms. The subterms are ** stored in a WhereClause structure containing within the WhereOrInfo ** object that is attached to the original OR clause term. */ assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); assert( pExpr->op==TK_OR ); pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); if( pOrInfo==0 ) return; pTerm->wtFlags |= TERM_ORINFO; pOrWc = &pOrInfo->wc; whereClauseInit(pOrWc, pWC->pParse, pMaskSet, pWC->wctrlFlags); whereSplit(pOrWc, pExpr, TK_OR); exprAnalyzeAll(pSrc, pOrWc); if( db->mallocFailed ) return; assert( pOrWc->nTerm>=2 ); /* ** Compute the set of tables that might satisfy cases 1 or 2. |
︙ | ︙ | |||
106116 106117 106118 106119 106120 106121 106122 | WhereTerm *pAndTerm; int j; Bitmask b = 0; pOrTerm->u.pAndInfo = pAndInfo; pOrTerm->wtFlags |= TERM_ANDINFO; pOrTerm->eOperator = WO_AND; pAndWC = &pAndInfo->wc; | | | | | | 105392 105393 105394 105395 105396 105397 105398 105399 105400 105401 105402 105403 105404 105405 105406 105407 105408 105409 105410 105411 105412 105413 105414 105415 105416 105417 105418 105419 105420 105421 105422 105423 105424 105425 105426 105427 105428 105429 | WhereTerm *pAndTerm; int j; Bitmask b = 0; pOrTerm->u.pAndInfo = pAndInfo; pOrTerm->wtFlags |= TERM_ANDINFO; pOrTerm->eOperator = WO_AND; pAndWC = &pAndInfo->wc; whereClauseInit(pAndWC, pWC->pParse, pMaskSet, pWC->wctrlFlags); whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); exprAnalyzeAll(pSrc, pAndWC); pAndWC->pOuter = pWC; testcase( db->mallocFailed ); if( !db->mallocFailed ){ for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ assert( pAndTerm->pExpr ); if( allowedOp(pAndTerm->pExpr->op) ){ b |= getMask(pMaskSet, pAndTerm->leftCursor); } } } indexable &= b; } }else if( pOrTerm->wtFlags & TERM_COPIED ){ /* Skip this term for now. We revisit it when we process the ** corresponding TERM_VIRTUAL term */ }else{ Bitmask b; b = getMask(pMaskSet, pOrTerm->leftCursor); if( pOrTerm->wtFlags & TERM_VIRTUAL ){ WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; b |= getMask(pMaskSet, pOther->leftCursor); } indexable &= b; if( (pOrTerm->eOperator & WO_EQ)==0 ){ chngToIN = 0; }else{ chngToIN &= b; } |
︙ | ︙ | |||
106201 106202 106203 106204 106205 106206 106207 | pOrTerm->wtFlags &= ~TERM_OR_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } | | | | 105477 105478 105479 105480 105481 105482 105483 105484 105485 105486 105487 105488 105489 105490 105491 105492 105493 105494 105495 105496 105497 105498 105499 105500 105501 105502 105503 105504 105505 105506 105507 105508 105509 105510 | pOrTerm->wtFlags &= ~TERM_OR_OK; if( pOrTerm->leftCursor==iCursor ){ /* This is the 2-bit case and we are on the second iteration and ** current term is from the first iteration. So skip this term. */ assert( j==1 ); continue; } if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ /* This term must be of the form t1.a==t2.b where t2 is in the ** chngToIN set but t1 is not. This term will be either preceeded ** or follwed by an inverted copy (t2.b==t1.a). Skip this term ** and use its inversion. */ testcase( pOrTerm->wtFlags & TERM_COPIED ); testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); continue; } iColumn = pOrTerm->u.leftColumn; iCursor = pOrTerm->leftCursor; break; } if( i<0 ){ /* No candidate table+column was found. This can only occur ** on the second iteration */ assert( j==1 ); assert( IsPowerOfTwo(chngToIN) ); assert( chngToIN==getMask(pMaskSet, iCursor) ); break; } testcase( j==1 ); /* We have found a candidate table and column. Check to see if that ** table and column is common to every term in the OR clause */ okToChngToIN = 1; |
︙ | ︙ | |||
106254 106255 106256 106257 106258 106259 106260 106261 106262 106263 106264 106265 106266 106267 106268 106269 106270 106271 106272 106273 | } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; assert( pOrTerm->eOperator & WO_EQ ); assert( pOrTerm->leftCursor==iCursor ); assert( pOrTerm->u.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); | > > | | 105530 105531 105532 105533 105534 105535 105536 105537 105538 105539 105540 105541 105542 105543 105544 105545 105546 105547 105548 105549 105550 105551 105552 105553 105554 105555 105556 105557 105558 105559 | } } } /* At this point, okToChngToIN is true if original pTerm satisfies ** case 1. In that case, construct a new virtual term that is ** pTerm converted into an IN operator. ** ** EV: R-00211-15100 */ if( okToChngToIN ){ Expr *pDup; /* A transient duplicate expression */ ExprList *pList = 0; /* The RHS of the IN operator */ Expr *pLeft = 0; /* The LHS of the IN operator */ Expr *pNew; /* The complete IN operator */ for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; assert( pOrTerm->eOperator & WO_EQ ); assert( pOrTerm->leftCursor==iCursor ); assert( pOrTerm->u.leftColumn==iColumn ); pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); pLeft = pOrTerm->pExpr->pLeft; } assert( pLeft!=0 ); pDup = sqlite3ExprDup(db, pLeft, 0); pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); if( pNew ){ int idxNew; |
︙ | ︙ | |||
106316 106317 106318 106319 106320 106321 106322 | ** and the copy has idxParent set to the index of the original term. */ static void exprAnalyze( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ | < | | | 105594 105595 105596 105597 105598 105599 105600 105601 105602 105603 105604 105605 105606 105607 105608 105609 105610 105611 105612 105613 105614 105615 105616 105617 105618 105619 105620 105621 105622 105623 105624 105625 | ** and the copy has idxParent set to the index of the original term. */ static void exprAnalyze( SrcList *pSrc, /* the FROM clause */ WhereClause *pWC, /* the WHERE clause */ int idxTerm /* Index of the term to be analyzed */ ){ WhereTerm *pTerm; /* The term to be analyzed */ WhereMaskSet *pMaskSet; /* Set of table index masks */ Expr *pExpr; /* The expression to be analyzed */ Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ Bitmask prereqAll; /* Prerequesites of pExpr */ Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ int noCase = 0; /* LIKE/GLOB distinguishes case */ int op; /* Top-level operator. pExpr->op */ Parse *pParse = pWC->pParse; /* Parsing context */ sqlite3 *db = pParse->db; /* Database connection */ if( db->mallocFailed ){ return; } pTerm = &pWC->a[idxTerm]; pMaskSet = pWC->pMaskSet; pExpr = pTerm->pExpr; assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); op = pExpr->op; if( op==TK_IN ){ assert( pExpr->pRight==0 ); if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
︙ | ︙ | |||
106495 106496 106497 106498 106499 106500 106501 | if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ | | > > | 105772 105773 105774 105775 105776 105777 105778 105779 105780 105781 105782 105783 105784 105785 105786 105787 105788 | if( noCase ){ /* The point is to increment the last character before the first ** wildcard. But if we increment '@', that will push it into the ** alphabetic range where case conversions will mess up the ** inequality. To avoid this, make sure to also run the full ** LIKE on all candidate expressions by clearing the isComplete flag */ if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ c = sqlite3UpperToLower[c]; } *pC = c + 1; } sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; sCollSeqName.n = 6; pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); |
︙ | ︙ | |||
106576 106577 106578 106579 106580 106581 106582 | ** TERM_VNULL tag will suppress the not-null check at the beginning ** of the loop. Without the TERM_VNULL flag, the not-null check at ** the start of the loop will prevent any results from being returned. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 | < | 105855 105856 105857 105858 105859 105860 105861 105862 105863 105864 105865 105866 105867 105868 | ** TERM_VNULL tag will suppress the not-null check at the beginning ** of the loop. Without the TERM_VNULL flag, the not-null check at ** the start of the loop will prevent any results from being returned. */ if( pExpr->op==TK_NOTNULL && pExpr->pLeft->op==TK_COLUMN && pExpr->pLeft->iColumn>=0 ){ Expr *pNewExpr; Expr *pLeft = pExpr->pLeft; int idxNew; WhereTerm *pNewTerm; pNewExpr = sqlite3PExpr(pParse, TK_GT, |
︙ | ︙ | |||
106611 106612 106613 106614 106615 106616 106617 | /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* | | > | > > | 105889 105890 105891 105892 105893 105894 105895 105896 105897 105898 105899 105900 105901 105902 105903 105904 105905 105906 105907 | /* Prevent ON clause terms of a LEFT JOIN from being used to drive ** an index for tables to the left of the join. */ pTerm->prereqRight |= extraRight; } /* ** This function searches the expression list passed as the second argument ** for an expression of type TK_COLUMN that refers to the same column and ** uses the same collation sequence as the iCol'th column of index pIdx. ** Argument iBase is the cursor number used for the table that pIdx refers ** to. ** ** If such an expression is found, its index in pList->a[] is returned. If ** no expression is found, -1 is returned. */ static int findIndexCol( Parse *pParse, /* Parse context */ ExprList *pList, /* Expression list to search */ |
︙ | ︙ | |||
106642 106643 106644 106645 106646 106647 106648 106649 106650 | return i; } } } return -1; } /* | > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | > | | | | | 105923 105924 105925 105926 105927 105928 105929 105930 105931 105932 105933 105934 105935 105936 105937 105938 105939 105940 105941 105942 105943 105944 105945 105946 105947 105948 105949 105950 105951 105952 105953 105954 105955 105956 105957 105958 105959 105960 105961 105962 105963 105964 105965 105966 105967 105968 105969 105970 105971 105972 105973 105974 105975 105976 105977 105978 105979 105980 105981 105982 105983 105984 105985 105986 105987 105988 105989 105990 105991 105992 105993 105994 105995 105996 105997 105998 105999 106000 106001 106002 106003 106004 106005 106006 106007 106008 | return i; } } } return -1; } /* ** This routine determines if pIdx can be used to assist in processing a ** DISTINCT qualifier. In other words, it tests whether or not using this ** index for the outer loop guarantees that rows with equal values for ** all expressions in the pDistinct list are delivered grouped together. ** ** For example, the query ** ** SELECT DISTINCT a, b, c FROM tbl WHERE a = ? ** ** can benefit from any index on columns "b" and "c". */ static int isDistinctIndex( Parse *pParse, /* Parsing context */ WhereClause *pWC, /* The WHERE clause */ Index *pIdx, /* The index being considered */ int base, /* Cursor number for the table pIdx is on */ ExprList *pDistinct, /* The DISTINCT expressions */ int nEqCol /* Number of index columns with == */ ){ Bitmask mask = 0; /* Mask of unaccounted for pDistinct exprs */ int i; /* Iterator variable */ assert( pDistinct!=0 ); if( pIdx->zName==0 || pDistinct->nExpr>=BMS ) return 0; testcase( pDistinct->nExpr==BMS-1 ); /* Loop through all the expressions in the distinct list. If any of them ** are not simple column references, return early. Otherwise, test if the ** WHERE clause contains a "col=X" clause. If it does, the expression ** can be ignored. If it does not, and the column does not belong to the ** same table as index pIdx, return early. Finally, if there is no ** matching "col=X" expression and the column is on the same table as pIdx, ** set the corresponding bit in variable mask. */ for(i=0; i<pDistinct->nExpr; i++){ WhereTerm *pTerm; Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); if( p->op!=TK_COLUMN ) return 0; pTerm = findTerm(pWC, p->iTable, p->iColumn, ~(Bitmask)0, WO_EQ, 0); if( pTerm ){ Expr *pX = pTerm->pExpr; CollSeq *p1 = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); CollSeq *p2 = sqlite3ExprCollSeq(pParse, p); if( p1==p2 ) continue; } if( p->iTable!=base ) return 0; mask |= (((Bitmask)1) << i); } for(i=nEqCol; mask && i<pIdx->nColumn; i++){ int iExpr = findIndexCol(pParse, pDistinct, base, pIdx, i); if( iExpr<0 ) break; mask &= ~(((Bitmask)1) << iExpr); } return (mask==0); } /* ** Return true if the DISTINCT expression-list passed as the third argument ** is redundant. A DISTINCT list is redundant if the database contains a ** UNIQUE index that guarantees that the result of the query will be distinct ** anyway. */ static int isDistinctRedundant( Parse *pParse, SrcList *pTabList, WhereClause *pWC, ExprList *pDistinct ){ Table *pTab; Index *pIdx; int i; int iBase; /* If there is more than one table or sub-select in the FROM clause of |
︙ | ︙ | |||
106710 106711 106712 106713 106714 106715 106716 | return 1; } } return 0; } | | < | > | < < < < < < < < < < < < < < < < < < < < < < < < | < < | | < | < < | < | | < | | < < < < < < < < < < < < < < < | < < < < < < < < < | | 106050 106051 106052 106053 106054 106055 106056 106057 106058 106059 106060 106061 106062 106063 106064 106065 106066 106067 106068 106069 106070 106071 106072 106073 106074 106075 106076 106077 106078 106079 106080 106081 106082 106083 106084 106085 106086 106087 | return 1; } } return 0; } /* ** Prepare a crude estimate of the logarithm of the input value. ** The results need not be exact. This is only used for estimating ** the total cost of performing operations with O(logN) or O(NlogN) ** complexity. Because N is just a guess, it is no great tragedy if ** logN is a little off. */ static double estLog(double N){ double logN = 1; double x = 10; while( N>x ){ logN += 1; x *= 10; } return logN; } /* ** Two routines for printing the content of an sqlite3_index_info ** structure. Used for testing and debugging only. If neither ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines ** are no-ops. */ #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ int i; if( !sqlite3WhereTrace ) return; for(i=0; i<p->nConstraint; i++){ sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", i, p->aConstraint[i].iColumn, |
︙ | ︙ | |||
106825 106826 106827 106828 106829 106830 106831 106832 106833 106834 106835 106836 106837 106838 106839 106840 106841 106842 106843 106844 106845 106846 106847 | sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); } #else #define TRACE_IDX_INPUTS(A) #define TRACE_IDX_OUTPUTS(A) #endif #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it ** could be used with an index to access pSrc, assuming an appropriate ** index existed. */ static int termCanDriveIndex( WhereTerm *pTerm, /* WHERE clause term to check */ struct SrcList_item *pSrc, /* Table we are trying to access */ Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if( pTerm->leftCursor!=pSrc->iCursor ) return 0; if( (pTerm->eOperator & WO_EQ)==0 ) return 0; if( (pTerm->prereqRight & notReady)!=0 ) return 0; | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 106110 106111 106112 106113 106114 106115 106116 106117 106118 106119 106120 106121 106122 106123 106124 106125 106126 106127 106128 106129 106130 106131 106132 106133 106134 106135 106136 106137 106138 106139 106140 106141 106142 106143 106144 106145 106146 106147 106148 106149 106150 106151 106152 106153 106154 106155 106156 106157 106158 106159 106160 106161 106162 106163 106164 106165 106166 106167 106168 106169 106170 106171 106172 106173 106174 106175 106176 106177 106178 106179 106180 106181 106182 106183 106184 106185 106186 106187 106188 106189 106190 106191 106192 106193 106194 106195 106196 106197 106198 106199 106200 106201 106202 106203 106204 106205 106206 106207 106208 106209 106210 106211 106212 106213 106214 106215 106216 106217 106218 106219 106220 106221 106222 106223 106224 106225 106226 106227 106228 106229 106230 106231 106232 106233 106234 106235 106236 106237 106238 106239 106240 106241 106242 106243 106244 106245 106246 106247 106248 106249 106250 106251 106252 106253 106254 106255 106256 106257 106258 106259 106260 106261 106262 106263 106264 106265 106266 106267 106268 106269 106270 106271 106272 106273 106274 106275 106276 106277 106278 106279 106280 106281 106282 106283 106284 106285 106286 106287 106288 106289 106290 106291 106292 106293 106294 106295 106296 106297 106298 106299 106300 106301 106302 106303 106304 106305 106306 106307 106308 106309 106310 106311 106312 106313 106314 106315 106316 106317 106318 106319 106320 106321 106322 | sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); } #else #define TRACE_IDX_INPUTS(A) #define TRACE_IDX_OUTPUTS(A) #endif /* ** Required because bestIndex() is called by bestOrClauseIndex() */ static void bestIndex(WhereBestIdx*); /* ** This routine attempts to find an scanning strategy that can be used ** to optimize an 'OR' expression that is part of a WHERE clause. ** ** The table associated with FROM clause term pSrc may be either a ** regular B-Tree table or a virtual table. */ static void bestOrClauseIndex(WhereBestIdx *p){ #ifndef SQLITE_OMIT_OR_OPTIMIZATION WhereClause *pWC = p->pWC; /* The WHERE clause */ struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ const int iCur = pSrc->iCursor; /* The cursor of the table */ const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ WhereTerm *pTerm; /* A single term of the WHERE clause */ /* The OR-clause optimization is disallowed if the INDEXED BY or ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */ if( pSrc->notIndexed || pSrc->pIndex!=0 ){ return; } if( pWC->wctrlFlags & WHERE_AND_ONLY ){ return; } /* Search the WHERE clause terms for a usable WO_OR term. */ for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( (pTerm->eOperator & WO_OR)!=0 && ((pTerm->prereqAll & ~maskSrc) & p->notReady)==0 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 ){ WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; WhereTerm *pOrTerm; int flags = WHERE_MULTI_OR; double rTotal = 0; double nRow = 0; Bitmask used = 0; WhereBestIdx sBOI; sBOI = *p; sBOI.pOrderBy = 0; sBOI.pDistinct = 0; sBOI.ppIdxInfo = 0; for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", (pOrTerm - pOrWC->a), (pTerm - pWC->a) )); if( (pOrTerm->eOperator& WO_AND)!=0 ){ sBOI.pWC = &pOrTerm->u.pAndInfo->wc; bestIndex(&sBOI); }else if( pOrTerm->leftCursor==iCur ){ WhereClause tempWC; tempWC.pParse = pWC->pParse; tempWC.pMaskSet = pWC->pMaskSet; tempWC.pOuter = pWC; tempWC.op = TK_AND; tempWC.a = pOrTerm; tempWC.wctrlFlags = 0; tempWC.nTerm = 1; sBOI.pWC = &tempWC; bestIndex(&sBOI); }else{ continue; } rTotal += sBOI.cost.rCost; nRow += sBOI.cost.plan.nRow; used |= sBOI.cost.used; if( rTotal>=p->cost.rCost ) break; } /* If there is an ORDER BY clause, increase the scan cost to account ** for the cost of the sort. */ if( p->pOrderBy!=0 ){ WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", rTotal, rTotal+nRow*estLog(nRow))); rTotal += nRow*estLog(nRow); } /* If the cost of scanning using this OR term for optimization is ** less than the current cost stored in pCost, replace the contents ** of pCost. */ WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); if( rTotal<p->cost.rCost ){ p->cost.rCost = rTotal; p->cost.used = used; p->cost.plan.nRow = nRow; p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0; p->cost.plan.wsFlags = flags; p->cost.plan.u.pTerm = pTerm; } } } #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ } #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Return TRUE if the WHERE clause term pTerm is of a form where it ** could be used with an index to access pSrc, assuming an appropriate ** index existed. */ static int termCanDriveIndex( WhereTerm *pTerm, /* WHERE clause term to check */ struct SrcList_item *pSrc, /* Table we are trying to access */ Bitmask notReady /* Tables in outer loops of the join */ ){ char aff; if( pTerm->leftCursor!=pSrc->iCursor ) return 0; if( (pTerm->eOperator & WO_EQ)==0 ) return 0; if( (pTerm->prereqRight & notReady)!=0 ) return 0; aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; return 1; } #endif #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** If the query plan for pSrc specified in pCost is a full table scan ** and indexing is allows (if there is no NOT INDEXED clause) and it ** possible to construct a transient index that would perform better ** than a full table scan even when the cost of constructing the index ** is taken into account, then alter the query plan to use the ** transient index. */ static void bestAutomaticIndex(WhereBestIdx *p){ Parse *pParse = p->pParse; /* The parsing context */ WhereClause *pWC = p->pWC; /* The WHERE clause */ struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ double nTableRow; /* Rows in the input table */ double logN; /* log(nTableRow) */ double costTempIdx; /* per-query cost of the transient index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ WhereTerm *pWCEnd; /* End of pWC->a[] */ Table *pTable; /* Table tht might be indexed */ if( pParse->nQueryLoop<=(double)1 ){ /* There is no point in building an automatic index for a single scan */ return; } if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ /* Automatic indices are disabled at run-time */ return; } if( (p->cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 && (p->cost.plan.wsFlags & WHERE_COVER_SCAN)==0 ){ /* We already have some kind of index in use for this query. */ return; } if( pSrc->viaCoroutine ){ /* Cannot index a co-routine */ return; } if( pSrc->notIndexed ){ /* The NOT INDEXED clause appears in the SQL. */ return; } if( pSrc->isCorrelated ){ /* The source is a correlated sub-query. No point in indexing it. */ return; } assert( pParse->nQueryLoop >= (double)1 ); pTable = pSrc->pTab; nTableRow = pTable->nRowEst; logN = estLog(nTableRow); costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); if( costTempIdx>=p->cost.rCost ){ /* The cost of creating the transient table would be greater than ** doing the full table scan */ return; } /* Search for any equality comparison term */ pWCEnd = &pWC->a[pWC->nTerm]; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, p->notReady) ){ WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n", p->cost.rCost, costTempIdx)); p->cost.rCost = costTempIdx; p->cost.plan.nRow = logN + 1; p->cost.plan.wsFlags = WHERE_TEMP_INDEX; p->cost.used = pTerm->prereqRight; break; } } } #else # define bestAutomaticIndex(A) /* no-op */ #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ #ifndef SQLITE_OMIT_AUTOMATIC_INDEX /* ** Generate code to construct the Index object for an automatic index ** and to set up the WhereLevel object pLevel so that the code generator ** makes use of the automatic index. */ |
︙ | ︙ | |||
106877 106878 106879 106880 106881 106882 106883 | KeyInfo *pKeyinfo; /* Key information for the index */ int addrTop; /* Top of the index fill loop */ int regRecord; /* Register holding an index record */ int n; /* Column counter */ int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ | < < < | < < < < < < < | | < < | | | | | | < < | | | < | | | | | | < > > | 106338 106339 106340 106341 106342 106343 106344 106345 106346 106347 106348 106349 106350 106351 106352 106353 106354 106355 106356 106357 106358 106359 106360 106361 106362 106363 106364 106365 106366 106367 106368 106369 106370 106371 106372 106373 106374 106375 106376 106377 106378 106379 106380 106381 106382 106383 106384 106385 106386 106387 106388 106389 106390 106391 106392 106393 106394 106395 106396 106397 106398 106399 106400 106401 106402 106403 106404 106405 106406 106407 106408 106409 106410 106411 106412 106413 106414 106415 106416 106417 106418 106419 106420 106421 106422 106423 106424 106425 106426 106427 106428 106429 106430 106431 106432 106433 106434 106435 106436 106437 106438 106439 106440 106441 106442 106443 106444 106445 106446 106447 106448 106449 106450 106451 106452 106453 106454 106455 106456 106457 106458 106459 106460 106461 106462 106463 106464 106465 106466 106467 106468 106469 106470 106471 106472 106473 106474 106475 106476 106477 106478 106479 106480 106481 106482 106483 106484 106485 106486 106487 106488 106489 106490 106491 106492 106493 106494 106495 | KeyInfo *pKeyinfo; /* Key information for the index */ int addrTop; /* Top of the index fill loop */ int regRecord; /* Register holding an index record */ int n; /* Column counter */ int i; /* Loop counter */ int mxBitCol; /* Maximum column in pSrc->colUsed */ CollSeq *pColl; /* Collating sequence to on a column */ Bitmask idxCols; /* Bitmap of columns used for indexing */ Bitmask extraCols; /* Bitmap of additional columns */ /* Generate code to skip over the creation and initialization of the ** transient index on 2nd and subsequent iterations of the loop. */ v = pParse->pVdbe; assert( v!=0 ); addrInit = sqlite3CodeOnce(pParse); /* Count the number of columns that will be added to the index ** and used to match WHERE clause constraints */ nColumn = 0; pTable = pSrc->pTab; pWCEnd = &pWC->a[pWC->nTerm]; idxCols = 0; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; testcase( iCol==BMS ); testcase( iCol==BMS-1 ); if( (idxCols & cMask)==0 ){ nColumn++; idxCols |= cMask; } } } assert( nColumn>0 ); pLevel->plan.nEq = nColumn; /* Count the number of additional columns needed to create a ** covering index. A "covering index" is an index that contains all ** columns that are needed by the query. With a covering index, the ** original table never needs to be accessed. Automatic indices must ** be a covering index because the index will not be updated if the ** original table changes and the index and table cannot both be used ** if they go out of sync. */ extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; testcase( pTable->nCol==BMS-1 ); testcase( pTable->nCol==BMS-2 ); for(i=0; i<mxBitCol; i++){ if( extraCols & (((Bitmask)1)<<i) ) nColumn++; } if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ nColumn += pTable->nCol - BMS + 1; } pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; /* Construct the Index object to describe this index */ nByte = sizeof(Index); nByte += nColumn*sizeof(int); /* Index.aiColumn */ nByte += nColumn*sizeof(char*); /* Index.azColl */ nByte += nColumn; /* Index.aSortOrder */ pIdx = sqlite3DbMallocZero(pParse->db, nByte); if( pIdx==0 ) return; pLevel->plan.u.pIdx = pIdx; pIdx->azColl = (char**)&pIdx[1]; pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; pIdx->zName = "auto-index"; pIdx->nColumn = nColumn; pIdx->pTable = pTable; n = 0; idxCols = 0; for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ if( termCanDriveIndex(pTerm, pSrc, notReady) ){ int iCol = pTerm->u.leftColumn; Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; if( (idxCols & cMask)==0 ){ Expr *pX = pTerm->pExpr; idxCols |= cMask; pIdx->aiColumn[n] = pTerm->u.leftColumn; pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; n++; } } } assert( (u32)n==pLevel->plan.nEq ); /* Add additional columns needed to make the automatic index into ** a covering index */ for(i=0; i<mxBitCol; i++){ if( extraCols & (((Bitmask)1)<<i) ){ pIdx->aiColumn[n] = i; pIdx->azColl[n] = "BINARY"; n++; } } if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ for(i=BMS-1; i<pTable->nCol; i++){ pIdx->aiColumn[n] = i; pIdx->azColl[n] = "BINARY"; n++; } } assert( n==nColumn ); /* Create the automatic index */ pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); assert( pLevel->iIdxCur>=0 ); sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, (char*)pKeyinfo, P4_KEYINFO_HANDOFF); VdbeComment((v, "for %s", pTable->zName)); /* Fill the automatic index with content */ addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); regRecord = sqlite3GetTempReg(pParse); sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); sqlite3VdbeJumpHere(v, addrTop); sqlite3ReleaseTempReg(pParse, regRecord); /* Jump here when skipping the initialization */ sqlite3VdbeJumpHere(v, addrInit); } #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ #ifndef SQLITE_OMIT_VIRTUALTABLE /* ** Allocate and populate an sqlite3_index_info structure. It is the ** responsibility of the caller to eventually release the structure ** by passing the pointer returned by this function to sqlite3_free(). */ static sqlite3_index_info *allocateIndexInfo(WhereBestIdx *p){ Parse *pParse = p->pParse; WhereClause *pWC = p->pWC; struct SrcList_item *pSrc = p->pSrc; ExprList *pOrderBy = p->pOrderBy; int i, j; int nTerm; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_orderby *pIdxOrderBy; struct sqlite3_index_constraint_usage *pUsage; WhereTerm *pTerm; int nOrderBy; sqlite3_index_info *pIdxInfo; WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); /* Count the number of possible WHERE clause constraints referring ** to this virtual table */ for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ if( pTerm->leftCursor != pSrc->iCursor ) continue; assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); testcase( pTerm->eOperator & WO_IN ); |
︙ | ︙ | |||
107071 107072 107073 107074 107075 107076 107077 107078 107079 107080 107081 107082 107083 107084 | /* Allocate the sqlite3_index_info structure */ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm + sizeof(*pIdxOrderBy)*nOrderBy ); if( pIdxInfo==0 ){ sqlite3ErrorMsg(pParse, "out of memory"); return 0; } /* Initialize the structure. The sqlite3_index_info structure contains ** many fields that are declared "const" to prevent xBestIndex from ** changing them. We have to do some funky casting in order to ** initialize those fields. | > | 106518 106519 106520 106521 106522 106523 106524 106525 106526 106527 106528 106529 106530 106531 106532 | /* Allocate the sqlite3_index_info structure */ pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm + sizeof(*pIdxOrderBy)*nOrderBy ); if( pIdxInfo==0 ){ sqlite3ErrorMsg(pParse, "out of memory"); /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return 0; } /* Initialize the structure. The sqlite3_index_info structure contains ** many fields that are declared "const" to prevent xBestIndex from ** changing them. We have to do some funky casting in order to ** initialize those fields. |
︙ | ︙ | |||
107126 107127 107128 107129 107130 107131 107132 | return pIdxInfo; } /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() | | | > | 106574 106575 106576 106577 106578 106579 106580 106581 106582 106583 106584 106585 106586 106587 106588 106589 106590 106591 106592 106593 106594 106595 106596 106597 106598 106599 106600 106601 106602 106603 106604 | return pIdxInfo; } /* ** The table object reference passed as the second argument to this function ** must represent a virtual table. This function invokes the xBestIndex() ** method of the virtual table with the sqlite3_index_info pointer passed ** as the argument. ** ** If an error occurs, pParse is populated with an error message and a ** non-zero value is returned. Otherwise, 0 is returned and the output ** part of the sqlite3_index_info structure is left populated. ** ** Whether or not an error is returned, it is the responsibility of the ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates ** that this is required. */ static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; int i; int rc; WHERETRACE(("xBestIndex for %s\n", pTab->zName)); TRACE_IDX_INPUTS(p); rc = pVtab->pModule->xBestIndex(pVtab, p); TRACE_IDX_OUTPUTS(p); if( rc!=SQLITE_OK ){ if( rc==SQLITE_NOMEM ){ pParse->db->mallocFailed = 1; |
︙ | ︙ | |||
107167 107168 107169 107170 107171 107172 107173 | sqlite3ErrorMsg(pParse, "table %s: xBestIndex returned an invalid plan", pTab->zName); } } return pParse->nErr; } | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 106616 106617 106618 106619 106620 106621 106622 106623 106624 106625 106626 106627 106628 106629 106630 106631 106632 106633 106634 106635 106636 106637 106638 106639 106640 106641 106642 106643 106644 106645 106646 106647 106648 106649 106650 106651 106652 106653 106654 106655 106656 106657 106658 106659 106660 106661 106662 106663 106664 106665 106666 106667 106668 106669 106670 106671 106672 106673 106674 106675 106676 106677 106678 106679 106680 106681 106682 106683 106684 106685 106686 106687 106688 106689 106690 106691 106692 106693 106694 106695 106696 106697 106698 106699 106700 106701 106702 106703 106704 106705 106706 106707 106708 106709 106710 106711 106712 106713 106714 106715 106716 106717 106718 106719 106720 106721 106722 106723 106724 106725 106726 106727 106728 106729 106730 106731 106732 106733 106734 106735 106736 106737 106738 106739 106740 106741 106742 106743 106744 106745 106746 106747 106748 106749 106750 106751 106752 106753 106754 106755 106756 106757 106758 106759 106760 106761 106762 106763 106764 106765 106766 106767 106768 106769 106770 106771 106772 106773 106774 106775 106776 106777 106778 106779 106780 106781 106782 106783 106784 106785 106786 106787 106788 106789 106790 106791 106792 106793 106794 106795 106796 106797 106798 106799 106800 106801 106802 106803 106804 106805 106806 106807 106808 106809 106810 106811 106812 106813 106814 106815 106816 106817 106818 106819 106820 106821 106822 106823 106824 106825 106826 106827 106828 106829 106830 106831 | sqlite3ErrorMsg(pParse, "table %s: xBestIndex returned an invalid plan", pTab->zName); } } return pParse->nErr; } /* ** Compute the best index for a virtual table. ** ** The best index is computed by the xBestIndex method of the virtual ** table module. This routine is really just a wrapper that sets up ** the sqlite3_index_info structure that is used to communicate with ** xBestIndex. ** ** In a join, this routine might be called multiple times for the ** same virtual table. The sqlite3_index_info structure is created ** and initialized on the first invocation and reused on all subsequent ** invocations. The sqlite3_index_info structure is also used when ** code is generated to access the virtual table. The whereInfoDelete() ** routine takes care of freeing the sqlite3_index_info structure after ** everybody has finished with it. */ static void bestVirtualIndex(WhereBestIdx *p){ Parse *pParse = p->pParse; /* The parsing context */ WhereClause *pWC = p->pWC; /* The WHERE clause */ struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ Table *pTab = pSrc->pTab; sqlite3_index_info *pIdxInfo; struct sqlite3_index_constraint *pIdxCons; struct sqlite3_index_constraint_usage *pUsage; WhereTerm *pTerm; int i, j; int nOrderBy; int bAllowIN; /* Allow IN optimizations */ double rCost; /* Make sure wsFlags is initialized to some sane value. Otherwise, if the ** malloc in allocateIndexInfo() fails and this function returns leaving ** wsFlags in an uninitialized state, the caller may behave unpredictably. */ memset(&p->cost, 0, sizeof(p->cost)); p->cost.plan.wsFlags = WHERE_VIRTUALTABLE; /* If the sqlite3_index_info structure has not been previously ** allocated and initialized, then allocate and initialize it now. */ pIdxInfo = *p->ppIdxInfo; if( pIdxInfo==0 ){ *p->ppIdxInfo = pIdxInfo = allocateIndexInfo(p); } if( pIdxInfo==0 ){ return; } /* At this point, the sqlite3_index_info structure that pIdxInfo points ** to will have been initialized, either during the current invocation or ** during some prior invocation. Now we just have to customize the ** details of pIdxInfo for the current invocation and pass it to ** xBestIndex. */ /* The module name must be defined. Also, by this point there must ** be a pointer to an sqlite3_vtab structure. Otherwise ** sqlite3ViewGetColumnNames() would have picked up the error. */ assert( pTab->azModuleArg && pTab->azModuleArg[0] ); assert( sqlite3GetVTable(pParse->db, pTab) ); /* Try once or twice. On the first attempt, allow IN optimizations. ** If an IN optimization is accepted by the virtual table xBestIndex ** method, but the pInfo->aConstrainUsage.omit flag is not set, then ** the query will not work because it might allow duplicate rows in ** output. In that case, run the xBestIndex method a second time ** without the IN constraints. Usually this loop only runs once. ** The loop will exit using a "break" statement. */ for(bAllowIN=1; 1; bAllowIN--){ assert( bAllowIN==0 || bAllowIN==1 ); /* Set the aConstraint[].usable fields and initialize all ** output variables to zero. ** ** aConstraint[].usable is true for constraints where the right-hand ** side contains only references to tables to the left of the current ** table. In other words, if the constraint is of the form: ** ** column = expr ** ** and we are evaluating a join, then the constraint on column is ** only valid if all tables referenced in expr occur to the left ** of the table containing column. ** ** The aConstraints[] array contains entries for all constraints ** on the current table. That way we only have to compute it once ** even though we might try to pick the best index multiple times. ** For each attempt at picking an index, the order of tables in the ** join might be different so we have to recompute the usable flag ** each time. */ pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; pUsage = pIdxInfo->aConstraintUsage; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; if( (pTerm->prereqRight&p->notReady)==0 && (bAllowIN || (pTerm->eOperator & WO_IN)==0) ){ pIdxCons->usable = 1; }else{ pIdxCons->usable = 0; } } memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); if( pIdxInfo->needToFreeIdxStr ){ sqlite3_free(pIdxInfo->idxStr); } pIdxInfo->idxStr = 0; pIdxInfo->idxNum = 0; pIdxInfo->needToFreeIdxStr = 0; pIdxInfo->orderByConsumed = 0; /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); nOrderBy = pIdxInfo->nOrderBy; if( !p->pOrderBy ){ pIdxInfo->nOrderBy = 0; } if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ return; } pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ if( pUsage[i].argvIndex>0 ){ j = pIdxCons->iTermOffset; pTerm = &pWC->a[j]; p->cost.used |= pTerm->prereqRight; if( (pTerm->eOperator & WO_IN)!=0 ){ if( pUsage[i].omit==0 ){ /* Do not attempt to use an IN constraint if the virtual table ** says that the equivalent EQ constraint cannot be safely omitted. ** If we do attempt to use such a constraint, some rows might be ** repeated in the output. */ break; } /* A virtual table that is constrained by an IN clause may not ** consume the ORDER BY clause because (1) the order of IN terms ** is not necessarily related to the order of output terms and ** (2) Multiple outputs from a single IN value will not merge ** together. */ pIdxInfo->orderByConsumed = 0; } } } if( i>=pIdxInfo->nConstraint ) break; } /* The orderByConsumed signal is only valid if all outer loops collectively ** generate just a single row of output. */ if( pIdxInfo->orderByConsumed ){ for(i=0; i<p->i; i++){ if( (p->aLevel[i].plan.wsFlags & WHERE_UNIQUE)==0 ){ pIdxInfo->orderByConsumed = 0; } } } /* If there is an ORDER BY clause, and the selected virtual table index ** does not satisfy it, increase the cost of the scan accordingly. This ** matches the processing for non-virtual tables in bestBtreeIndex(). */ rCost = pIdxInfo->estimatedCost; if( p->pOrderBy && pIdxInfo->orderByConsumed==0 ){ rCost += estLog(rCost)*rCost; } /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the ** inital value of lowestCost in this loop. If it is, then the ** (cost<lowestCost) test below will never be true. ** ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT ** is defined. */ if( (SQLITE_BIG_DBL/((double)2))<rCost ){ p->cost.rCost = (SQLITE_BIG_DBL/((double)2)); }else{ p->cost.rCost = rCost; } p->cost.plan.u.pVtabIdx = pIdxInfo; if( pIdxInfo->orderByConsumed ){ p->cost.plan.wsFlags |= WHERE_ORDERED; p->cost.plan.nOBSat = nOrderBy; }else{ p->cost.plan.nOBSat = p->i ? p->aLevel[p->i-1].plan.nOBSat : 0; } p->cost.plan.nEq = 0; pIdxInfo->nOrderBy = nOrderBy; /* Try to find a more efficient access pattern by using multiple indexes ** to optimize an OR expression within the WHERE clause. */ bestOrClauseIndex(p); } #endif /* SQLITE_OMIT_VIRTUALTABLE */ #ifdef SQLITE_ENABLE_STAT3 /* ** Estimate the location of a particular key among all keys in an ** index. Store the results in aStat as follows: ** ** aStat[0] Est. number of rows less than pVal ** aStat[1] Est. number of rows equal to pVal |
︙ | ︙ | |||
107255 107256 107257 107258 107259 107260 107261 | const u8 *z; if( eType==SQLITE_BLOB ){ z = (const u8 *)sqlite3_value_blob(pVal); pColl = db->pDfltColl; assert( pColl->enc==SQLITE_UTF8 ); }else{ pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl); | | < < | > | 106903 106904 106905 106906 106907 106908 106909 106910 106911 106912 106913 106914 106915 106916 106917 106918 106919 | const u8 *z; if( eType==SQLITE_BLOB ){ z = (const u8 *)sqlite3_value_blob(pVal); pColl = db->pDfltColl; assert( pColl->enc==SQLITE_UTF8 ); }else{ pColl = sqlite3GetCollSeq(pParse, SQLITE_UTF8, 0, *pIdx->azColl); if( pColl==0 ){ return SQLITE_ERROR; } z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); if( !z ){ return SQLITE_NOMEM; } assert( z && pColl && pColl->xCmp ); } n = sqlite3ValueBytes(pVal, pColl->enc); |
︙ | ︙ | |||
107359 107360 107361 107362 107363 107364 107365 | sqlite3_value **pp ){ if( pExpr->op==TK_VARIABLE || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) ){ int iVar = pExpr->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); | | | 107006 107007 107008 107009 107010 107011 107012 107013 107014 107015 107016 107017 107018 107019 107020 | sqlite3_value **pp ){ if( pExpr->op==TK_VARIABLE || (pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) ){ int iVar = pExpr->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); return SQLITE_OK; } return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); } #endif /* |
︙ | ︙ | |||
107411 107412 107413 107414 107415 107416 107417 | */ static int whereRangeScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index containing the range-compared column; "x" */ int nEq, /* index into p->aCol[] of the range-compared column */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ | | | | 107058 107059 107060 107061 107062 107063 107064 107065 107066 107067 107068 107069 107070 107071 107072 107073 107074 107075 107076 107077 107078 | */ static int whereRangeScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index containing the range-compared column; "x" */ int nEq, /* index into p->aCol[] of the range-compared column */ WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ double *pRangeDiv /* OUT: Reduce search space by this divisor */ ){ int rc = SQLITE_OK; #ifdef SQLITE_ENABLE_STAT3 if( nEq==0 && p->nSample ){ sqlite3_value *pRangeVal; tRowcnt iLower = 0; tRowcnt iUpper = p->aiRowEst[0]; tRowcnt a[2]; u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pLower ){ |
︙ | ︙ | |||
107449 107450 107451 107452 107453 107454 107455 | ){ iUpper = a[0]; if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1]; } sqlite3ValueFree(pRangeVal); } if( rc==SQLITE_OK ){ | < | > > | < | | | < < | < < | < < | 107096 107097 107098 107099 107100 107101 107102 107103 107104 107105 107106 107107 107108 107109 107110 107111 107112 107113 107114 107115 107116 107117 107118 107119 107120 107121 107122 107123 107124 107125 107126 107127 107128 | ){ iUpper = a[0]; if( (pUpper->eOperator & WO_LE)!=0 ) iUpper += a[1]; } sqlite3ValueFree(pRangeVal); } if( rc==SQLITE_OK ){ if( iUpper<=iLower ){ *pRangeDiv = (double)p->aiRowEst[0]; }else{ *pRangeDiv = (double)p->aiRowEst[0]/(double)(iUpper - iLower); } WHERETRACE(("range scan regions: %u..%u div=%g\n", (u32)iLower, (u32)iUpper, *pRangeDiv)); return SQLITE_OK; } } #else UNUSED_PARAMETER(pParse); UNUSED_PARAMETER(p); UNUSED_PARAMETER(nEq); #endif assert( pLower || pUpper ); *pRangeDiv = (double)1; if( pLower && (pLower->wtFlags & TERM_VNULL)==0 ) *pRangeDiv *= (double)4; if( pUpper ) *pRangeDiv *= (double)4; return rc; } #ifdef SQLITE_ENABLE_STAT3 /* ** Estimate the number of rows that will be returned based on ** an equality constraint x=VALUE and where that VALUE occurs in |
︙ | ︙ | |||
107499 107500 107501 107502 107503 107504 107505 | ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index whose left-most column is pTerm */ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ | | | | 107140 107141 107142 107143 107144 107145 107146 107147 107148 107149 107150 107151 107152 107153 107154 107155 107156 107157 107158 107159 107160 107161 107162 107163 107164 107165 107166 107167 107168 107169 107170 107171 107172 107173 | ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereEqualScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index whose left-most column is pTerm */ Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ double *pnRow /* Write the revised row estimate here */ ){ sqlite3_value *pRhs = 0; /* VALUE on right-hand side of pTerm */ u8 aff; /* Column affinity */ int rc; /* Subfunction return code */ tRowcnt a[2]; /* Statistics */ assert( p->aSample!=0 ); assert( p->nSample>0 ); aff = p->pTable->aCol[p->aiColumn[0]].affinity; if( pExpr ){ rc = valueFromExpr(pParse, pExpr, aff, &pRhs); if( rc ) goto whereEqualScanEst_cancel; }else{ pRhs = sqlite3ValueNew(pParse->db); } if( pRhs==0 ) return SQLITE_NOTFOUND; rc = whereKeyStats(pParse, p, pRhs, 0, a); if( rc==SQLITE_OK ){ WHERETRACE(("equality scan regions: %d\n", (int)a[1])); *pnRow = a[1]; } whereEqualScanEst_cancel: sqlite3ValueFree(pRhs); return rc; } #endif /* defined(SQLITE_ENABLE_STAT3) */ |
︙ | ︙ | |||
107548 107549 107550 107551 107552 107553 107554 | ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index whose left-most column is pTerm */ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ | | | | | | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 107189 107190 107191 107192 107193 107194 107195 107196 107197 107198 107199 107200 107201 107202 107203 107204 107205 107206 107207 107208 107209 107210 107211 107212 107213 107214 107215 107216 107217 107218 107219 107220 107221 107222 107223 107224 107225 107226 107227 107228 107229 107230 107231 107232 107233 107234 107235 107236 107237 107238 107239 107240 107241 107242 107243 107244 107245 107246 107247 107248 107249 107250 107251 107252 107253 107254 107255 107256 107257 107258 107259 107260 107261 107262 107263 107264 107265 107266 107267 107268 107269 107270 107271 107272 107273 107274 107275 107276 107277 107278 107279 107280 107281 107282 107283 107284 107285 107286 107287 107288 107289 107290 107291 107292 107293 107294 107295 107296 107297 107298 107299 107300 107301 107302 107303 107304 107305 107306 107307 107308 107309 107310 107311 107312 107313 107314 107315 107316 107317 107318 107319 107320 107321 107322 107323 107324 107325 107326 107327 107328 107329 107330 107331 107332 107333 107334 107335 107336 107337 107338 107339 107340 107341 107342 107343 107344 107345 107346 107347 107348 107349 107350 107351 107352 107353 107354 107355 107356 107357 107358 107359 107360 107361 107362 107363 107364 107365 107366 107367 107368 107369 107370 107371 107372 107373 107374 107375 107376 107377 107378 107379 107380 107381 107382 107383 107384 107385 107386 107387 107388 107389 107390 107391 107392 107393 107394 107395 107396 107397 107398 107399 107400 107401 107402 107403 107404 107405 107406 107407 107408 107409 107410 107411 107412 107413 107414 107415 107416 107417 107418 107419 107420 107421 107422 107423 107424 107425 107426 107427 107428 107429 107430 107431 107432 107433 107434 107435 107436 107437 107438 107439 107440 107441 107442 107443 107444 107445 107446 107447 107448 107449 107450 107451 107452 107453 107454 107455 107456 107457 107458 107459 107460 107461 107462 107463 107464 107465 107466 107467 107468 107469 107470 107471 107472 107473 107474 107475 107476 107477 107478 107479 107480 107481 107482 107483 107484 107485 107486 107487 107488 107489 107490 107491 107492 107493 107494 107495 107496 107497 107498 107499 107500 107501 107502 107503 107504 107505 107506 107507 107508 107509 107510 107511 107512 107513 107514 107515 107516 107517 107518 107519 107520 107521 107522 107523 107524 107525 107526 107527 107528 107529 107530 107531 107532 107533 107534 107535 107536 107537 107538 107539 107540 107541 107542 107543 107544 107545 107546 107547 107548 107549 107550 107551 107552 107553 107554 107555 107556 107557 107558 107559 107560 107561 107562 107563 107564 107565 107566 107567 107568 107569 107570 107571 107572 107573 107574 107575 107576 107577 107578 107579 107580 107581 107582 107583 107584 107585 107586 107587 107588 107589 107590 107591 107592 107593 107594 107595 107596 107597 107598 107599 107600 107601 107602 107603 107604 107605 107606 107607 107608 107609 107610 107611 107612 107613 107614 107615 107616 107617 107618 107619 107620 107621 107622 107623 107624 107625 107626 107627 107628 107629 107630 107631 107632 107633 107634 107635 107636 107637 107638 107639 107640 107641 107642 107643 107644 107645 107646 107647 107648 107649 107650 107651 107652 107653 107654 107655 107656 107657 107658 107659 107660 107661 107662 107663 107664 107665 107666 107667 107668 107669 107670 107671 107672 107673 107674 107675 107676 107677 107678 107679 107680 107681 107682 107683 107684 107685 107686 107687 107688 107689 107690 107691 107692 107693 107694 107695 107696 107697 107698 107699 107700 107701 107702 107703 107704 107705 107706 107707 107708 107709 107710 107711 107712 107713 107714 107715 107716 107717 107718 107719 107720 107721 107722 107723 107724 107725 107726 107727 107728 107729 107730 107731 107732 107733 107734 107735 107736 107737 107738 107739 107740 107741 107742 107743 107744 107745 107746 107747 107748 107749 107750 107751 107752 107753 107754 107755 107756 107757 107758 107759 107760 107761 107762 107763 107764 107765 107766 107767 107768 107769 107770 107771 107772 107773 107774 107775 107776 107777 107778 107779 107780 107781 107782 107783 107784 107785 107786 107787 107788 107789 107790 107791 107792 107793 107794 107795 107796 107797 107798 107799 107800 107801 107802 107803 107804 107805 107806 107807 107808 107809 107810 107811 107812 107813 107814 107815 107816 107817 107818 107819 107820 107821 107822 107823 107824 107825 107826 107827 107828 107829 107830 107831 107832 107833 107834 107835 107836 107837 107838 107839 107840 107841 107842 107843 107844 107845 107846 107847 107848 107849 107850 107851 107852 107853 107854 107855 107856 107857 107858 107859 107860 107861 107862 107863 107864 107865 107866 107867 107868 107869 107870 107871 107872 107873 107874 107875 107876 107877 107878 107879 107880 107881 107882 107883 107884 107885 107886 107887 107888 107889 107890 107891 107892 107893 107894 107895 107896 107897 107898 107899 107900 107901 107902 107903 107904 107905 107906 107907 107908 107909 107910 107911 107912 107913 107914 107915 107916 107917 107918 107919 107920 107921 107922 107923 107924 107925 107926 107927 107928 107929 107930 107931 107932 107933 107934 107935 107936 107937 107938 107939 107940 107941 107942 107943 107944 107945 107946 107947 107948 107949 107950 107951 107952 107953 107954 107955 107956 107957 107958 107959 107960 107961 107962 107963 107964 107965 107966 107967 107968 107969 107970 107971 107972 107973 107974 107975 107976 107977 107978 107979 107980 107981 107982 107983 107984 107985 107986 107987 107988 107989 107990 107991 107992 107993 107994 107995 107996 107997 107998 107999 108000 108001 108002 108003 108004 108005 108006 108007 108008 108009 108010 108011 108012 108013 108014 108015 108016 108017 108018 108019 108020 108021 108022 108023 108024 108025 108026 108027 108028 108029 108030 108031 108032 108033 108034 108035 108036 108037 108038 108039 108040 108041 108042 108043 108044 108045 108046 108047 108048 108049 108050 108051 108052 108053 108054 108055 108056 108057 108058 108059 108060 108061 108062 108063 108064 108065 108066 108067 108068 108069 108070 108071 108072 108073 108074 108075 108076 108077 108078 108079 108080 108081 108082 108083 108084 108085 108086 108087 108088 108089 108090 108091 108092 108093 108094 108095 108096 108097 108098 108099 108100 108101 108102 108103 108104 108105 108106 108107 108108 108109 108110 108111 108112 108113 108114 | ** for a UTF conversion required for comparison. The error is stored ** in the pParse structure. */ static int whereInScanEst( Parse *pParse, /* Parsing & code generating context */ Index *p, /* The index whose left-most column is pTerm */ ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ double *pnRow /* Write the revised row estimate here */ ){ int rc = SQLITE_OK; /* Subfunction return code */ double nEst; /* Number of rows for a single term */ double nRowEst = (double)0; /* New estimate of the number of rows */ int i; /* Loop counter */ assert( p->aSample!=0 ); for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ nEst = p->aiRowEst[0]; rc = whereEqualScanEst(pParse, p, pList->a[i].pExpr, &nEst); nRowEst += nEst; } if( rc==SQLITE_OK ){ if( nRowEst > p->aiRowEst[0] ) nRowEst = p->aiRowEst[0]; *pnRow = nRowEst; WHERETRACE(("IN row estimate: est=%g\n", nRowEst)); } return rc; } #endif /* defined(SQLITE_ENABLE_STAT3) */ /* ** Check to see if column iCol of the table with cursor iTab will appear ** in sorted order according to the current query plan. ** ** Return values: ** ** 0 iCol is not ordered ** 1 iCol has only a single value ** 2 iCol is in ASC order ** 3 iCol is in DESC order */ static int isOrderedColumn( WhereBestIdx *p, int iTab, int iCol ){ int i, j; WhereLevel *pLevel = &p->aLevel[p->i-1]; Index *pIdx; u8 sortOrder; for(i=p->i-1; i>=0; i--, pLevel--){ if( pLevel->iTabCur!=iTab ) continue; if( (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ return 1; } assert( (pLevel->plan.wsFlags & WHERE_ORDERED)!=0 ); if( (pIdx = pLevel->plan.u.pIdx)!=0 ){ if( iCol<0 ){ sortOrder = 0; testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); }else{ int n = pIdx->nColumn; for(j=0; j<n; j++){ if( iCol==pIdx->aiColumn[j] ) break; } if( j>=n ) return 0; sortOrder = pIdx->aSortOrder[j]; testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); } }else{ if( iCol!=(-1) ) return 0; sortOrder = 0; testcase( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ); } if( (pLevel->plan.wsFlags & WHERE_REVERSE)!=0 ){ assert( sortOrder==0 || sortOrder==1 ); testcase( sortOrder==1 ); sortOrder = 1 - sortOrder; } return sortOrder+2; } return 0; } /* ** This routine decides if pIdx can be used to satisfy the ORDER BY ** clause, either in whole or in part. The return value is the ** cumulative number of terms in the ORDER BY clause that are satisfied ** by the index pIdx and other indices in outer loops. ** ** The table being queried has a cursor number of "base". pIdx is the ** index that is postulated for use to access the table. ** ** The *pbRev value is set to 0 order 1 depending on whether or not ** pIdx should be run in the forward order or in reverse order. */ static int isSortingIndex( WhereBestIdx *p, /* Best index search context */ Index *pIdx, /* The index we are testing */ int base, /* Cursor number for the table to be sorted */ int *pbRev, /* Set to 1 for reverse-order scan of pIdx */ int *pbObUnique /* ORDER BY column values will different in every row */ ){ int i; /* Number of pIdx terms used */ int j; /* Number of ORDER BY terms satisfied */ int sortOrder = 2; /* 0: forward. 1: backward. 2: unknown */ int nTerm; /* Number of ORDER BY terms */ struct ExprList_item *pOBItem;/* A term of the ORDER BY clause */ Table *pTab = pIdx->pTable; /* Table that owns index pIdx */ ExprList *pOrderBy; /* The ORDER BY clause */ Parse *pParse = p->pParse; /* Parser context */ sqlite3 *db = pParse->db; /* Database connection */ int nPriorSat; /* ORDER BY terms satisfied by outer loops */ int seenRowid = 0; /* True if an ORDER BY rowid term is seen */ int uniqueNotNull; /* pIdx is UNIQUE with all terms are NOT NULL */ int outerObUnique; /* Outer loops generate different values in ** every row for the ORDER BY columns */ if( p->i==0 ){ nPriorSat = 0; outerObUnique = 1; }else{ u32 wsFlags = p->aLevel[p->i-1].plan.wsFlags; nPriorSat = p->aLevel[p->i-1].plan.nOBSat; if( (wsFlags & WHERE_ORDERED)==0 ){ /* This loop cannot be ordered unless the next outer loop is ** also ordered */ return nPriorSat; } if( OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ){ /* Only look at the outer-most loop if the OrderByIdxJoin ** optimization is disabled */ return nPriorSat; } testcase( wsFlags & WHERE_OB_UNIQUE ); testcase( wsFlags & WHERE_ALL_UNIQUE ); outerObUnique = (wsFlags & (WHERE_OB_UNIQUE|WHERE_ALL_UNIQUE))!=0; } pOrderBy = p->pOrderBy; assert( pOrderBy!=0 ); if( pIdx->bUnordered ){ /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot ** be used for sorting */ return nPriorSat; } nTerm = pOrderBy->nExpr; uniqueNotNull = pIdx->onError!=OE_None; assert( nTerm>0 ); /* Argument pIdx must either point to a 'real' named index structure, ** or an index structure allocated on the stack by bestBtreeIndex() to ** represent the rowid index that is part of every table. */ assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); /* Match terms of the ORDER BY clause against columns of ** the index. ** ** Note that indices have pIdx->nColumn regular columns plus ** one additional column containing the rowid. The rowid column ** of the index is also allowed to match against the ORDER BY ** clause. */ j = nPriorSat; for(i=0,pOBItem=&pOrderBy->a[j]; j<nTerm && i<=pIdx->nColumn; i++){ Expr *pOBExpr; /* The expression of the ORDER BY pOBItem */ CollSeq *pColl; /* The collating sequence of pOBExpr */ int termSortOrder; /* Sort order for this term */ int iColumn; /* The i-th column of the index. -1 for rowid */ int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ int isEq; /* Subject to an == or IS NULL constraint */ int isMatch; /* ORDER BY term matches the index term */ const char *zColl; /* Name of collating sequence for i-th index term */ WhereTerm *pConstraint; /* A constraint in the WHERE clause */ /* If the next term of the ORDER BY clause refers to anything other than ** a column in the "base" table, then this index will not be of any ** further use in handling the ORDER BY. */ pOBExpr = sqlite3ExprSkipCollate(pOBItem->pExpr); if( pOBExpr->op!=TK_COLUMN || pOBExpr->iTable!=base ){ break; } /* Find column number and collating sequence for the next entry ** in the index */ if( pIdx->zName && i<pIdx->nColumn ){ iColumn = pIdx->aiColumn[i]; if( iColumn==pIdx->pTable->iPKey ){ iColumn = -1; } iSortOrder = pIdx->aSortOrder[i]; zColl = pIdx->azColl[i]; assert( zColl!=0 ); }else{ iColumn = -1; iSortOrder = 0; zColl = 0; } /* Check to see if the column number and collating sequence of the ** index match the column number and collating sequence of the ORDER BY ** clause entry. Set isMatch to 1 if they both match. */ if( pOBExpr->iColumn==iColumn ){ if( zColl ){ pColl = sqlite3ExprCollSeq(pParse, pOBItem->pExpr); if( !pColl ) pColl = db->pDfltColl; isMatch = sqlite3StrICmp(pColl->zName, zColl)==0; }else{ isMatch = 1; } }else{ isMatch = 0; } /* termSortOrder is 0 or 1 for whether or not the access loop should ** run forward or backwards (respectively) in order to satisfy this ** term of the ORDER BY clause. */ assert( pOBItem->sortOrder==0 || pOBItem->sortOrder==1 ); assert( iSortOrder==0 || iSortOrder==1 ); termSortOrder = iSortOrder ^ pOBItem->sortOrder; /* If X is the column in the index and ORDER BY clause, check to see ** if there are any X= or X IS NULL constraints in the WHERE clause. */ pConstraint = findTerm(p->pWC, base, iColumn, p->notReady, WO_EQ|WO_ISNULL|WO_IN, pIdx); if( pConstraint==0 ){ isEq = 0; }else if( (pConstraint->eOperator & WO_IN)!=0 ){ isEq = 0; }else if( (pConstraint->eOperator & WO_ISNULL)!=0 ){ uniqueNotNull = 0; isEq = 1; /* "X IS NULL" means X has only a single value */ }else if( pConstraint->prereqRight==0 ){ isEq = 1; /* Constraint "X=constant" means X has only a single value */ }else{ Expr *pRight = pConstraint->pExpr->pRight; if( pRight->op==TK_COLUMN ){ WHERETRACE((" .. isOrderedColumn(tab=%d,col=%d)", pRight->iTable, pRight->iColumn)); isEq = isOrderedColumn(p, pRight->iTable, pRight->iColumn); WHERETRACE((" -> isEq=%d\n", isEq)); /* If the constraint is of the form X=Y where Y is an ordered value ** in an outer loop, then make sure the sort order of Y matches the ** sort order required for X. */ if( isMatch && isEq>=2 && isEq!=pOBItem->sortOrder+2 ){ testcase( isEq==2 ); testcase( isEq==3 ); break; } }else{ isEq = 0; /* "X=expr" places no ordering constraints on X */ } } if( !isMatch ){ if( isEq==0 ){ break; }else{ continue; } }else if( isEq!=1 ){ if( sortOrder==2 ){ sortOrder = termSortOrder; }else if( termSortOrder!=sortOrder ){ break; } } j++; pOBItem++; if( iColumn<0 ){ seenRowid = 1; break; }else if( pTab->aCol[iColumn].notNull==0 && isEq!=1 ){ testcase( isEq==0 ); testcase( isEq==2 ); testcase( isEq==3 ); uniqueNotNull = 0; } } if( seenRowid ){ uniqueNotNull = 1; }else if( uniqueNotNull==0 || i<pIdx->nColumn ){ uniqueNotNull = 0; } /* If we have not found at least one ORDER BY term that matches the ** index, then show no progress. */ if( pOBItem==&pOrderBy->a[nPriorSat] ) return nPriorSat; /* Either the outer queries must generate rows where there are no two ** rows with the same values in all ORDER BY columns, or else this ** loop must generate just a single row of output. Example: Suppose ** the outer loops generate A=1 and A=1, and this loop generates B=3 ** and B=4. Then without the following test, ORDER BY A,B would ** generate the wrong order output: 1,3 1,4 1,3 1,4 */ if( outerObUnique==0 && uniqueNotNull==0 ) return nPriorSat; *pbObUnique = uniqueNotNull; /* Return the necessary scan order back to the caller */ *pbRev = sortOrder & 1; /* If there was an "ORDER BY rowid" term that matched, or it is only ** possible for a single row from this table to match, then skip over ** any additional ORDER BY terms dealing with this table. */ if( uniqueNotNull ){ /* Advance j over additional ORDER BY terms associated with base */ WhereMaskSet *pMS = p->pWC->pMaskSet; Bitmask m = ~getMask(pMS, base); while( j<nTerm && (exprTableUsage(pMS, pOrderBy->a[j].pExpr)&m)==0 ){ j++; } } return j; } /* ** Find the best query plan for accessing a particular table. Write the ** best query plan and its cost into the p->cost. ** ** The lowest cost plan wins. The cost is an estimate of the amount of ** CPU and disk I/O needed to process the requested result. ** Factors that influence cost include: ** ** * The estimated number of rows that will be retrieved. (The ** fewer the better.) ** ** * Whether or not sorting must occur. ** ** * Whether or not there must be separate lookups in the ** index and in the main table. ** ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in ** the SQL statement, then this function only considers plans using the ** named index. If no such plan is found, then the returned cost is ** SQLITE_BIG_DBL. If a plan is found that uses the named index, ** then the cost is calculated in the usual way. ** ** If a NOT INDEXED clause was attached to the table ** in the SELECT statement, then no indexes are considered. However, the ** selected plan may still take advantage of the built-in rowid primary key ** index. */ static void bestBtreeIndex(WhereBestIdx *p){ Parse *pParse = p->pParse; /* The parsing context */ WhereClause *pWC = p->pWC; /* The WHERE clause */ struct SrcList_item *pSrc = p->pSrc; /* The FROM clause term to search */ int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ Index *pProbe; /* An index we are evaluating */ Index *pIdx; /* Copy of pProbe, or zero for IPK index */ int eqTermMask; /* Current mask of valid equality operators */ int idxEqTermMask; /* Index mask of valid equality operators */ Index sPk; /* A fake index object for the primary key */ tRowcnt aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ int wsFlagMask; /* Allowed flags in p->cost.plan.wsFlag */ int nPriorSat; /* ORDER BY terms satisfied by outer loops */ int nOrderBy; /* Number of ORDER BY terms */ char bSortInit; /* Initializer for bSort in inner loop */ char bDistInit; /* Initializer for bDist in inner loop */ /* Initialize the cost to a worst-case value */ memset(&p->cost, 0, sizeof(p->cost)); p->cost.rCost = SQLITE_BIG_DBL; /* If the pSrc table is the right table of a LEFT JOIN then we may not ** use an index to satisfy IS NULL constraints on that table. This is ** because columns might end up being NULL if the table does not match - ** a circumstance which the index cannot help us discover. Ticket #2177. */ if( pSrc->jointype & JT_LEFT ){ idxEqTermMask = WO_EQ|WO_IN; }else{ idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; } if( pSrc->pIndex ){ /* An INDEXED BY clause specifies a particular index to use */ pIdx = pProbe = pSrc->pIndex; wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); eqTermMask = idxEqTermMask; }else{ /* There is no INDEXED BY clause. Create a fake Index object in local ** variable sPk to represent the rowid primary key index. Make this ** fake index the first in a chain of Index objects with all of the real ** indices to follow */ Index *pFirst; /* First of real indices on the table */ memset(&sPk, 0, sizeof(Index)); sPk.nColumn = 1; sPk.aiColumn = &aiColumnPk; sPk.aiRowEst = aiRowEstPk; sPk.onError = OE_Replace; sPk.pTable = pSrc->pTab; aiRowEstPk[0] = pSrc->pTab->nRowEst; aiRowEstPk[1] = 1; pFirst = pSrc->pTab->pIndex; if( pSrc->notIndexed==0 ){ /* The real indices of the table are only considered if the ** NOT INDEXED qualifier is omitted from the FROM clause */ sPk.pNext = pFirst; } pProbe = &sPk; wsFlagMask = ~( WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE ); eqTermMask = WO_EQ|WO_IN; pIdx = 0; } nOrderBy = p->pOrderBy ? p->pOrderBy->nExpr : 0; if( p->i ){ nPriorSat = p->aLevel[p->i-1].plan.nOBSat; bSortInit = nPriorSat<nOrderBy; bDistInit = 0; }else{ nPriorSat = 0; bSortInit = nOrderBy>0; bDistInit = p->pDistinct!=0; } /* Loop over all indices looking for the best one to use */ for(; pProbe; pIdx=pProbe=pProbe->pNext){ const tRowcnt * const aiRowEst = pProbe->aiRowEst; WhereCost pc; /* Cost of using pProbe */ double log10N = (double)1; /* base-10 logarithm of nRow (inexact) */ /* The following variables are populated based on the properties of ** index being evaluated. They are then used to determine the expected ** cost and number of rows returned. ** ** pc.plan.nEq: ** Number of equality terms that can be implemented using the index. ** In other words, the number of initial fields in the index that ** are used in == or IN or NOT NULL constraints of the WHERE clause. ** ** nInMul: ** The "in-multiplier". This is an estimate of how many seek operations ** SQLite must perform on the index in question. For example, if the ** WHERE clause is: ** ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) ** ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is ** set to 9. Given the same schema and either of the following WHERE ** clauses: ** ** WHERE a = 1 ** WHERE a >= 2 ** ** nInMul is set to 1. ** ** If there exists a WHERE term of the form "x IN (SELECT ...)", then ** the sub-select is assumed to return 25 rows for the purposes of ** determining nInMul. ** ** bInEst: ** Set to true if there was at least one "x IN (SELECT ...)" term used ** in determining the value of nInMul. Note that the RHS of the ** IN operator must be a SELECT, not a value list, for this variable ** to be true. ** ** rangeDiv: ** An estimate of a divisor by which to reduce the search space due ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE ** data, a single inequality reduces the search space to 1/4rd its ** original size (rangeDiv==4). Two inequalities reduce the search ** space to 1/16th of its original size (rangeDiv==16). ** ** bSort: ** Boolean. True if there is an ORDER BY clause that will require an ** external sort (i.e. scanning the index being evaluated will not ** correctly order records). ** ** bDist: ** Boolean. True if there is a DISTINCT clause that will require an ** external btree. ** ** bLookup: ** Boolean. True if a table lookup is required for each index entry ** visited. In other words, true if this is not a covering index. ** This is always false for the rowid primary key index of a table. ** For other indexes, it is true unless all the columns of the table ** used by the SELECT statement are present in the index (such an ** index is sometimes described as a covering index). ** For example, given the index on (a, b), the second of the following ** two queries requires table b-tree lookups in order to find the value ** of column c, but the first does not because columns a and b are ** both available in the index. ** ** SELECT a, b FROM tbl WHERE a = 1; ** SELECT a, b, c FROM tbl WHERE a = 1; */ int bInEst = 0; /* True if "x IN (SELECT...)" seen */ int nInMul = 1; /* Number of distinct equalities to lookup */ double rangeDiv = (double)1; /* Estimated reduction in search space */ int nBound = 0; /* Number of range constraints seen */ char bSort = bSortInit; /* True if external sort required */ char bDist = bDistInit; /* True if index cannot help with DISTINCT */ char bLookup = 0; /* True if not a covering index */ WhereTerm *pTerm; /* A single term of the WHERE clause */ #ifdef SQLITE_ENABLE_STAT3 WhereTerm *pFirstTerm = 0; /* First term matching the index */ #endif WHERETRACE(( " %s(%s):\n", pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk") )); memset(&pc, 0, sizeof(pc)); pc.plan.nOBSat = nPriorSat; /* Determine the values of pc.plan.nEq and nInMul */ for(pc.plan.nEq=0; pc.plan.nEq<pProbe->nColumn; pc.plan.nEq++){ int j = pProbe->aiColumn[pc.plan.nEq]; pTerm = findTerm(pWC, iCur, j, p->notReady, eqTermMask, pIdx); if( pTerm==0 ) break; pc.plan.wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); testcase( pTerm->pWC!=pWC ); if( pTerm->eOperator & WO_IN ){ Expr *pExpr = pTerm->pExpr; pc.plan.wsFlags |= WHERE_COLUMN_IN; if( ExprHasProperty(pExpr, EP_xIsSelect) ){ /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */ nInMul *= 25; bInEst = 1; }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ /* "x IN (value, value, ...)" */ nInMul *= pExpr->x.pList->nExpr; } }else if( pTerm->eOperator & WO_ISNULL ){ pc.plan.wsFlags |= WHERE_COLUMN_NULL; } #ifdef SQLITE_ENABLE_STAT3 if( pc.plan.nEq==0 && pProbe->aSample ) pFirstTerm = pTerm; #endif pc.used |= pTerm->prereqRight; } /* If the index being considered is UNIQUE, and there is an equality ** constraint for all columns in the index, then this search will find ** at most a single row. In this case set the WHERE_UNIQUE flag to ** indicate this to the caller. ** ** Otherwise, if the search may find more than one row, test to see if ** there is a range constraint on indexed column (pc.plan.nEq+1) that ** can be optimized using the index. */ if( pc.plan.nEq==pProbe->nColumn && pProbe->onError!=OE_None ){ testcase( pc.plan.wsFlags & WHERE_COLUMN_IN ); testcase( pc.plan.wsFlags & WHERE_COLUMN_NULL ); if( (pc.plan.wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ pc.plan.wsFlags |= WHERE_UNIQUE; if( p->i==0 || (p->aLevel[p->i-1].plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ pc.plan.wsFlags |= WHERE_ALL_UNIQUE; } } }else if( pProbe->bUnordered==0 ){ int j; j = (pc.plan.nEq==pProbe->nColumn ? -1 : pProbe->aiColumn[pc.plan.nEq]); if( findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ WhereTerm *pTop, *pBtm; pTop = findTerm(pWC, iCur, j, p->notReady, WO_LT|WO_LE, pIdx); pBtm = findTerm(pWC, iCur, j, p->notReady, WO_GT|WO_GE, pIdx); whereRangeScanEst(pParse, pProbe, pc.plan.nEq, pBtm, pTop, &rangeDiv); if( pTop ){ nBound = 1; pc.plan.wsFlags |= WHERE_TOP_LIMIT; pc.used |= pTop->prereqRight; testcase( pTop->pWC!=pWC ); } if( pBtm ){ nBound++; pc.plan.wsFlags |= WHERE_BTM_LIMIT; pc.used |= pBtm->prereqRight; testcase( pBtm->pWC!=pWC ); } pc.plan.wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); } } /* If there is an ORDER BY clause and the index being considered will ** naturally scan rows in the required order, set the appropriate flags ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but ** the index will scan rows in a different order, set the bSort ** variable. */ if( bSort && (pSrc->jointype & JT_LEFT)==0 ){ int bRev = 2; int bObUnique = 0; WHERETRACE((" --> before isSortIndex: nPriorSat=%d\n",nPriorSat)); pc.plan.nOBSat = isSortingIndex(p, pProbe, iCur, &bRev, &bObUnique); WHERETRACE((" --> after isSortIndex: bRev=%d bObU=%d nOBSat=%d\n", bRev, bObUnique, pc.plan.nOBSat)); if( nPriorSat<pc.plan.nOBSat || (pc.plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ){ pc.plan.wsFlags |= WHERE_ORDERED; if( bObUnique ) pc.plan.wsFlags |= WHERE_OB_UNIQUE; } if( nOrderBy==pc.plan.nOBSat ){ bSort = 0; pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE; } if( bRev & 1 ) pc.plan.wsFlags |= WHERE_REVERSE; } /* If there is a DISTINCT qualifier and this index will scan rows in ** order of the DISTINCT expressions, clear bDist and set the appropriate ** flags in pc.plan.wsFlags. */ if( bDist && isDistinctIndex(pParse, pWC, pProbe, iCur, p->pDistinct, pc.plan.nEq) && (pc.plan.wsFlags & WHERE_COLUMN_IN)==0 ){ bDist = 0; pc.plan.wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_DISTINCT; } /* If currently calculating the cost of using an index (not the IPK ** index), determine if all required column data may be obtained without ** using the main table (i.e. if the index is a covering ** index for this query). If it is, set the WHERE_IDX_ONLY flag in ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true. */ if( pIdx ){ Bitmask m = pSrc->colUsed; int j; for(j=0; j<pIdx->nColumn; j++){ int x = pIdx->aiColumn[j]; if( x<BMS-1 ){ m &= ~(((Bitmask)1)<<x); } } if( m==0 ){ pc.plan.wsFlags |= WHERE_IDX_ONLY; }else{ bLookup = 1; } } /* ** Estimate the number of rows of output. For an "x IN (SELECT...)" ** constraint, do not let the estimate exceed half the rows in the table. */ pc.plan.nRow = (double)(aiRowEst[pc.plan.nEq] * nInMul); if( bInEst && pc.plan.nRow*2>aiRowEst[0] ){ pc.plan.nRow = aiRowEst[0]/2; nInMul = (int)(pc.plan.nRow / aiRowEst[pc.plan.nEq]); } #ifdef SQLITE_ENABLE_STAT3 /* If the constraint is of the form x=VALUE or x IN (E1,E2,...) ** and we do not think that values of x are unique and if histogram ** data is available for column x, then it might be possible ** to get a better estimate on the number of rows based on ** VALUE and how common that value is according to the histogram. */ if( pc.plan.nRow>(double)1 && pc.plan.nEq==1 && pFirstTerm!=0 && aiRowEst[1]>1 ){ assert( (pFirstTerm->eOperator & (WO_EQ|WO_ISNULL|WO_IN))!=0 ); if( pFirstTerm->eOperator & (WO_EQ|WO_ISNULL) ){ testcase( pFirstTerm->eOperator & WO_EQ ); testcase( pFirstTerm->eOperator & WO_EQUIV ); testcase( pFirstTerm->eOperator & WO_ISNULL ); whereEqualScanEst(pParse, pProbe, pFirstTerm->pExpr->pRight, &pc.plan.nRow); }else if( bInEst==0 ){ assert( pFirstTerm->eOperator & WO_IN ); whereInScanEst(pParse, pProbe, pFirstTerm->pExpr->x.pList, &pc.plan.nRow); } } #endif /* SQLITE_ENABLE_STAT3 */ /* Adjust the number of output rows and downward to reflect rows ** that are excluded by range constraints. */ pc.plan.nRow = pc.plan.nRow/rangeDiv; if( pc.plan.nRow<1 ) pc.plan.nRow = 1; /* Experiments run on real SQLite databases show that the time needed ** to do a binary search to locate a row in a table or index is roughly ** log10(N) times the time to move from one row to the next row within ** a table or index. The actual times can vary, with the size of ** records being an important factor. Both moves and searches are ** slower with larger records, presumably because fewer records fit ** on one page and hence more pages have to be fetched. ** ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do ** not give us data on the relative sizes of table and index records. ** So this computation assumes table records are about twice as big ** as index records */ if( (pc.plan.wsFlags&~(WHERE_REVERSE|WHERE_ORDERED|WHERE_OB_UNIQUE)) ==WHERE_IDX_ONLY && (pWC->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 && sqlite3GlobalConfig.bUseCis && OptimizationEnabled(pParse->db, SQLITE_CoverIdxScan) ){ /* This index is not useful for indexing, but it is a covering index. ** A full-scan of the index might be a little faster than a full-scan ** of the table, so give this case a cost slightly less than a table ** scan. */ pc.rCost = aiRowEst[0]*3 + pProbe->nColumn; pc.plan.wsFlags |= WHERE_COVER_SCAN|WHERE_COLUMN_RANGE; }else if( (pc.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ /* The cost of a full table scan is a number of move operations equal ** to the number of rows in the table. ** ** We add an additional 4x penalty to full table scans. This causes ** the cost function to err on the side of choosing an index over ** choosing a full scan. This 4x full-scan penalty is an arguable ** decision and one which we expect to revisit in the future. But ** it seems to be working well enough at the moment. */ pc.rCost = aiRowEst[0]*4; pc.plan.wsFlags &= ~WHERE_IDX_ONLY; if( pIdx ){ pc.plan.wsFlags &= ~WHERE_ORDERED; pc.plan.nOBSat = nPriorSat; } }else{ log10N = estLog(aiRowEst[0]); pc.rCost = pc.plan.nRow; if( pIdx ){ if( bLookup ){ /* For an index lookup followed by a table lookup: ** nInMul index searches to find the start of each index range ** + nRow steps through the index ** + nRow table searches to lookup the table entry using the rowid */ pc.rCost += (nInMul + pc.plan.nRow)*log10N; }else{ /* For a covering index: ** nInMul index searches to find the initial entry ** + nRow steps through the index */ pc.rCost += nInMul*log10N; } }else{ /* For a rowid primary key lookup: ** nInMult table searches to find the initial entry for each range ** + nRow steps through the table */ pc.rCost += nInMul*log10N; } } /* Add in the estimated cost of sorting the result. Actual experimental ** measurements of sorting performance in SQLite show that sorting time ** adds C*N*log10(N) to the cost, where N is the number of rows to be ** sorted and C is a factor between 1.95 and 4.3. We will split the ** difference and select C of 3.0. */ if( bSort ){ double m = estLog(pc.plan.nRow*(nOrderBy - pc.plan.nOBSat)/nOrderBy); m *= (double)(pc.plan.nOBSat ? 2 : 3); pc.rCost += pc.plan.nRow*m; } if( bDist ){ pc.rCost += pc.plan.nRow*estLog(pc.plan.nRow)*3; } /**** Cost of using this index has now been computed ****/ /* If there are additional constraints on this table that cannot ** be used with the current index, but which might lower the number ** of output rows, adjust the nRow value accordingly. This only ** matters if the current index is the least costly, so do not bother ** with this step if we already know this index will not be chosen. ** Also, never reduce the output row count below 2 using this step. ** ** It is critical that the notValid mask be used here instead of ** the notReady mask. When computing an "optimal" index, the notReady ** mask will only have one bit set - the bit for the current table. ** The notValid mask, on the other hand, always has all bits set for ** tables that are not in outer loops. If notReady is used here instead ** of notValid, then a optimal index that depends on inner joins loops ** might be selected even when there exists an optimal index that has ** no such dependency. */ if( pc.plan.nRow>2 && pc.rCost<=p->cost.rCost ){ int k; /* Loop counter */ int nSkipEq = pc.plan.nEq; /* Number of == constraints to skip */ int nSkipRange = nBound; /* Number of < constraints to skip */ Bitmask thisTab; /* Bitmap for pSrc */ thisTab = getMask(pWC->pMaskSet, iCur); for(pTerm=pWC->a, k=pWC->nTerm; pc.plan.nRow>2 && k; k--, pTerm++){ if( pTerm->wtFlags & TERM_VIRTUAL ) continue; if( (pTerm->prereqAll & p->notValid)!=thisTab ) continue; if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ if( nSkipEq ){ /* Ignore the first pc.plan.nEq equality matches since the index ** has already accounted for these */ nSkipEq--; }else{ /* Assume each additional equality match reduces the result ** set size by a factor of 10 */ pc.plan.nRow /= 10; } }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ if( nSkipRange ){ /* Ignore the first nSkipRange range constraints since the index ** has already accounted for these */ nSkipRange--; }else{ /* Assume each additional range constraint reduces the result ** set size by a factor of 3. Indexed range constraints reduce ** the search space by a larger factor: 4. We make indexed range ** more selective intentionally because of the subjective ** observation that indexed range constraints really are more ** selective in practice, on average. */ pc.plan.nRow /= 3; } }else if( (pTerm->eOperator & WO_NOOP)==0 ){ /* Any other expression lowers the output row count by half */ pc.plan.nRow /= 2; } } if( pc.plan.nRow<2 ) pc.plan.nRow = 2; } WHERETRACE(( " nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n" " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n" " used=0x%llx nOBSat=%d\n", pc.plan.nEq, nInMul, (int)rangeDiv, bSort, bLookup, pc.plan.wsFlags, p->notReady, log10N, pc.plan.nRow, pc.rCost, pc.used, pc.plan.nOBSat )); /* If this index is the best we have seen so far, then record this ** index and its cost in the p->cost structure. */ if( (!pIdx || pc.plan.wsFlags) && compareCost(&pc, &p->cost) ){ p->cost = pc; p->cost.plan.wsFlags &= wsFlagMask; p->cost.plan.u.pIdx = pIdx; } /* If there was an INDEXED BY clause, then only that one index is ** considered. */ if( pSrc->pIndex ) break; /* Reset masks for the next index in the loop */ wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); eqTermMask = idxEqTermMask; } /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag ** is set, then reverse the order that the index will be scanned ** in. This is used for application testing, to help find cases ** where application behavior depends on the (undefined) order that ** SQLite outputs rows in in the absence of an ORDER BY clause. */ if( !p->pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ p->cost.plan.wsFlags |= WHERE_REVERSE; } assert( p->pOrderBy || (p->cost.plan.wsFlags&WHERE_ORDERED)==0 ); assert( p->cost.plan.u.pIdx==0 || (p->cost.plan.wsFlags&WHERE_ROWID_EQ)==0 ); assert( pSrc->pIndex==0 || p->cost.plan.u.pIdx==0 || p->cost.plan.u.pIdx==pSrc->pIndex ); WHERETRACE((" best index is %s cost=%.1f\n", p->cost.plan.u.pIdx ? p->cost.plan.u.pIdx->zName : "ipk", p->cost.rCost)); bestOrClauseIndex(p); bestAutomaticIndex(p); p->cost.plan.wsFlags |= eqTermMask; } /* ** Find the query plan for accessing table pSrc->pTab. Write the ** best query plan and its cost into the WhereCost object supplied ** as the last parameter. This function may calculate the cost of ** both real and virtual table scans. ** ** This function does not take ORDER BY or DISTINCT into account. Nor ** does it remember the virtual table query plan. All it does is compute ** the cost while determining if an OR optimization is applicable. The ** details will be reconsidered later if the optimization is found to be ** applicable. */ static void bestIndex(WhereBestIdx *p){ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(p->pSrc->pTab) ){ sqlite3_index_info *pIdxInfo = 0; p->ppIdxInfo = &pIdxInfo; bestVirtualIndex(p); assert( pIdxInfo!=0 || p->pParse->db->mallocFailed ); if( pIdxInfo && pIdxInfo->needToFreeIdxStr ){ sqlite3_free(pIdxInfo->idxStr); } sqlite3DbFree(p->pParse->db, pIdxInfo); }else #endif { bestBtreeIndex(p); } } /* ** Disable a term in the WHERE clause. Except, do not disable the term ** if it controls a LEFT OUTER JOIN and it did not originate in the ON ** or USING clause of that join. ** ** Consider the term t2.z='ok' in the following queries: ** ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' ** ** The t2.z='ok' is disabled in the in (2) because it originates ** in the ON clause. The term is disabled in (3) because it is not part ** of a LEFT OUTER JOIN. In (1), the term is not disabled. ** ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are ** completely satisfied by indices. ** ** Disabling a term causes that term to not be tested in the inner loop ** of the join. Disabling is an optimization. When terms are satisfied ** by indices, we disable them to prevent redundant tests in the inner ** loop. We would get the correct results if nothing were ever disabled, ** but joins might run a little slower. The trick is to disable as much ** as we can without disabling too much. If we disabled in (1), we'd get |
︙ | ︙ | |||
107664 107665 107666 107667 107668 107669 107670 | ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ | < | | < | > > | < | 108181 108182 108183 108184 108185 108186 108187 108188 108189 108190 108191 108192 108193 108194 108195 108196 108197 108198 108199 108200 108201 108202 108203 108204 108205 108206 108207 108208 108209 108210 108211 108212 108213 108214 108215 108216 108217 108218 108219 108220 108221 108222 108223 108224 108225 108226 108227 108228 108229 108230 108231 108232 | ** this routine sets up a loop that will iterate over all values of X. */ static int codeEqualityTerm( Parse *pParse, /* The parsing context */ WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ WhereLevel *pLevel, /* The level of the FROM clause we are working on */ int iEq, /* Index of the equality term within this level */ int iTarget /* Attempt to leave results in this register */ ){ Expr *pX = pTerm->pExpr; Vdbe *v = pParse->pVdbe; int iReg; /* Register holding results */ assert( iTarget>0 ); if( pX->op==TK_EQ ){ iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); }else if( pX->op==TK_ISNULL ){ iReg = iTarget; sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); #ifndef SQLITE_OMIT_SUBQUERY }else{ int eType; int iTab; struct InLoop *pIn; u8 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && pLevel->plan.u.pIdx->aSortOrder[iEq] ){ testcase( iEq==0 ); testcase( iEq==pLevel->plan.u.pIdx->nColumn-1 ); testcase( iEq>0 && iEq+1<pLevel->plan.u.pIdx->nColumn ); testcase( bRev ); bRev = !bRev; } assert( pX->op==TK_IN ); iReg = iTarget; eType = sqlite3FindInIndex(pParse, pX, 0); if( eType==IN_INDEX_INDEX_DESC ){ testcase( bRev ); bRev = !bRev; } iTab = pX->iTable; sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); if( pLevel->u.in.nIn==0 ){ pLevel->addrNxt = sqlite3VdbeMakeLabel(v); } pLevel->u.in.nIn++; pLevel->u.in.aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); |
︙ | ︙ | |||
107772 107773 107774 107775 107776 107777 107778 | ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_NONE. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ | | > | > < < | < | < | | > | | | | | 108288 108289 108290 108291 108292 108293 108294 108295 108296 108297 108298 108299 108300 108301 108302 108303 108304 108305 108306 108307 108308 108309 108310 108311 108312 108313 108314 108315 108316 108317 108318 108319 108320 108321 108322 108323 108324 108325 108326 108327 108328 108329 108330 108331 108332 108333 108334 108335 108336 108337 108338 108339 108340 108341 108342 108343 108344 | ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_NONE. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ int iCur = pLevel->iTabCur; /* The cursor of the table */ WhereTerm *pTerm; /* A single constraint term */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ assert( pLevel->plan.wsFlags & WHERE_INDEXED ); pIdx = pLevel->plan.u.pIdx; /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLevel->plan.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); if( !zAff ){ pParse->db->mallocFailed = 1; } /* Evaluate the equality constraints */ assert( pIdx->nColumn>=nEq ); for(j=0; j<nEq; j++){ int r1; int k = pIdx->aiColumn[j]; pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); if( pTerm==0 ) break; /* The following true for indices with redundant columns. ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, regBase+j); if( r1!=regBase+j ){ if( nReg==1 ){ sqlite3ReleaseTempReg(pParse, regBase); regBase = r1; }else{ sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } |
︙ | ︙ | |||
107883 107884 107885 107886 107887 107888 107889 | ** ** "a=? AND b>?" ** ** The returned pointer points to memory obtained from sqlite3DbMalloc(). ** It is the responsibility of the caller to free the buffer when it is ** no longer required. */ | | > | | | < | | | | 108398 108399 108400 108401 108402 108403 108404 108405 108406 108407 108408 108409 108410 108411 108412 108413 108414 108415 108416 108417 108418 108419 108420 108421 108422 108423 108424 108425 108426 108427 108428 108429 108430 108431 108432 108433 108434 108435 108436 | ** ** "a=? AND b>?" ** ** The returned pointer points to memory obtained from sqlite3DbMalloc(). ** It is the responsibility of the caller to free the buffer when it is ** no longer required. */ static char *explainIndexRange(sqlite3 *db, WhereLevel *pLevel, Table *pTab){ WherePlan *pPlan = &pLevel->plan; Index *pIndex = pPlan->u.pIdx; int nEq = pPlan->nEq; int i, j; Column *aCol = pTab->aCol; int *aiColumn = pIndex->aiColumn; StrAccum txt; if( nEq==0 && (pPlan->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){ return 0; } sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH); txt.db = db; sqlite3StrAccumAppend(&txt, " (", 2); for(i=0; i<nEq; i++){ explainAppendTerm(&txt, i, aCol[aiColumn[i]].zName, "="); } j = i; if( pPlan->wsFlags&WHERE_BTM_LIMIT ){ char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(&txt, i++, z, ">"); } if( pPlan->wsFlags&WHERE_TOP_LIMIT ){ char *z = (j==pIndex->nColumn ) ? "rowid" : aCol[aiColumn[j]].zName; explainAppendTerm(&txt, i, z, "<"); } sqlite3StrAccumAppend(&txt, ")", 1); return sqlite3StrAccumFinish(&txt); } |
︙ | ︙ | |||
107930 107931 107932 107933 107934 107935 107936 107937 107938 107939 107940 107941 107942 | SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ if( pParse->explain==2 ){ struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ char *zMsg; /* Text to add to EQP output */ int iId = pParse->iSelectId; /* Select id (left-most output column) */ int isSearch; /* True for a SEARCH. False for SCAN. */ | > > < < < < > | < | | < < | | | < < | > > | > | | | > | > > > > > > | > < < | < < | | | | 108445 108446 108447 108448 108449 108450 108451 108452 108453 108454 108455 108456 108457 108458 108459 108460 108461 108462 108463 108464 108465 108466 108467 108468 108469 108470 108471 108472 108473 108474 108475 108476 108477 108478 108479 108480 108481 108482 108483 108484 108485 108486 108487 108488 108489 108490 108491 108492 108493 108494 108495 108496 108497 108498 108499 108500 108501 108502 108503 108504 108505 108506 108507 108508 108509 108510 108511 108512 108513 108514 108515 108516 108517 108518 108519 108520 108521 108522 108523 108524 108525 108526 108527 108528 108529 108530 108531 108532 108533 108534 108535 108536 108537 108538 108539 108540 108541 108542 108543 108544 108545 108546 108547 108548 108549 108550 108551 108552 108553 108554 108555 108556 108557 108558 108559 108560 108561 108562 108563 108564 | SrcList *pTabList, /* Table list this loop refers to */ WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ int iLevel, /* Value for "level" column of output */ int iFrom, /* Value for "from" column of output */ u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ ){ if( pParse->explain==2 ){ u32 flags = pLevel->plan.wsFlags; struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; Vdbe *v = pParse->pVdbe; /* VM being constructed */ sqlite3 *db = pParse->db; /* Database handle */ char *zMsg; /* Text to add to EQP output */ sqlite3_int64 nRow; /* Expected number of rows visited by scan */ int iId = pParse->iSelectId; /* Select id (left-most output column) */ int isSearch; /* True for a SEARCH. False for SCAN. */ if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return; isSearch = (pLevel->plan.nEq>0) || (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN"); if( pItem->pSelect ){ zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId); }else{ zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName); } if( pItem->zAlias ){ zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); } if( (flags & WHERE_INDEXED)!=0 ){ char *zWhere = explainIndexRange(db, pLevel, pItem->pTab); zMsg = sqlite3MAppendf(db, zMsg, "%s USING %s%sINDEX%s%s%s", zMsg, ((flags & WHERE_TEMP_INDEX)?"AUTOMATIC ":""), ((flags & WHERE_IDX_ONLY)?"COVERING ":""), ((flags & WHERE_TEMP_INDEX)?"":" "), ((flags & WHERE_TEMP_INDEX)?"": pLevel->plan.u.pIdx->zName), zWhere ); sqlite3DbFree(db, zWhere); }else if( flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg); if( flags&WHERE_ROWID_EQ ){ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg); }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg); }else if( flags&WHERE_BTM_LIMIT ){ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg); }else if( flags&WHERE_TOP_LIMIT ){ zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg); } } #ifndef SQLITE_OMIT_VIRTUALTABLE else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, pVtabIdx->idxNum, pVtabIdx->idxStr); } #endif if( wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ){ testcase( wctrlFlags & WHERE_ORDERBY_MIN ); nRow = 1; }else{ nRow = (sqlite3_int64)pLevel->plan.nRow; } zMsg = sqlite3MAppendf(db, zMsg, "%s (~%lld rows)", zMsg, nRow); sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC); } } #else # define explainOneScan(u,v,w,x,y,z) #endif /* SQLITE_OMIT_EXPLAIN */ /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ static Bitmask codeOneLoopStart( WhereInfo *pWInfo, /* Complete information about the WHERE clause */ int iLevel, /* Which level of pWInfo->a[] should be coded */ u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ Bitmask notReady /* Which tables are currently available */ ){ int j, k; /* Loop counters */ int iCur; /* The VDBE cursor for the table */ int addrNxt; /* Where to jump to continue with the next IN case */ int omitTable; /* True if we use the index only */ int bRev; /* True if we need to scan in reverse order */ WhereLevel *pLevel; /* The where level to be coded */ WhereClause *pWC; /* Decomposition of the entire WHERE clause */ WhereTerm *pTerm; /* A WHERE clause term */ Parse *pParse; /* Parsing context */ Vdbe *v; /* The prepared stmt under constructions */ struct SrcList_item *pTabItem; /* FROM clause term being coded */ int addrBrk; /* Jump here to break out of the loop */ int addrCont; /* Jump here to continue with next cycle */ int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ int iReleaseReg = 0; /* Temp register to free before returning */ Bitmask newNotReady; /* Return value */ pParse = pWInfo->pParse; v = pParse->pVdbe; pWC = pWInfo->pWC; pLevel = &pWInfo->a[iLevel]; pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; iCur = pTabItem->iCursor; bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 && (wctrlFlags & WHERE_FORCE_TABLE)==0; VdbeNoopComment((v, "Begin Join Loop %d", iLevel)); /* Create labels for the "break" and "continue" instructions ** for the current loop. Jump to addrBrk to break out of a loop. ** Jump to cont to go immediately to the next iteration of the ** loop. ** |
︙ | ︙ | |||
108071 108072 108073 108074 108075 108076 108077 | pLevel->p2 = sqlite3VdbeAddOp1(v, OP_Yield, regYield); VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName)); sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE | | | > | > > > > | > > | | < | | | | | | > | > > > | | | < | | | | > | | < < | < | | | | < < | < | < | < | 108587 108588 108589 108590 108591 108592 108593 108594 108595 108596 108597 108598 108599 108600 108601 108602 108603 108604 108605 108606 108607 108608 108609 108610 108611 108612 108613 108614 108615 108616 108617 108618 108619 108620 108621 108622 108623 108624 108625 108626 108627 108628 108629 108630 108631 108632 108633 108634 108635 108636 108637 108638 108639 108640 108641 108642 108643 108644 108645 108646 108647 108648 108649 108650 108651 108652 108653 108654 108655 108656 108657 108658 108659 108660 108661 108662 108663 108664 108665 108666 108667 108668 108669 108670 108671 108672 108673 108674 108675 108676 108677 108678 108679 108680 108681 108682 | pLevel->p2 = sqlite3VdbeAddOp1(v, OP_Yield, regYield); VdbeComment((v, "next row of co-routine %s", pTabItem->pTab->zName)); sqlite3VdbeAddOp2(v, OP_If, regYield+1, addrBrk); pLevel->op = OP_Goto; }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ /* Case 0: The table is a virtual-table. Use the VFilter and VNext ** to access the data. */ int iReg; /* P3 Value for OP_VFilter */ int addrNotFound; sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; int nConstraint = pVtabIdx->nConstraint; struct sqlite3_index_constraint_usage *aUsage = pVtabIdx->aConstraintUsage; const struct sqlite3_index_constraint *aConstraint = pVtabIdx->aConstraint; sqlite3ExprCachePush(pParse); iReg = sqlite3GetTempRange(pParse, nConstraint+2); addrNotFound = pLevel->addrBrk; for(j=1; j<=nConstraint; j++){ for(k=0; k<nConstraint; k++){ if( aUsage[k].argvIndex==j ){ int iTarget = iReg+j+1; pTerm = &pWC->a[aConstraint[k].iTermOffset]; if( pTerm->eOperator & WO_IN ){ codeEqualityTerm(pParse, pTerm, pLevel, k, iTarget); addrNotFound = pLevel->addrNxt; }else{ sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); } break; } } if( k==nConstraint ) break; } sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, pVtabIdx->idxStr, pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); pVtabIdx->needToFreeIdxStr = 0; for(j=0; j<nConstraint; j++){ if( aUsage[j].omit ){ int iTerm = aConstraint[j].iTermOffset; disableTerm(pLevel, &pWC->a[iTerm]); } } pLevel->op = OP_VNext; pLevel->p1 = iCur; pLevel->p2 = sqlite3VdbeCurrentAddr(v); sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); sqlite3ExprCachePop(pParse, 1); }else #endif /* SQLITE_OMIT_VIRTUALTABLE */ if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ /* Case 1: We can directly reference a single row using an ** equality comparison against the ROWID field. Or ** we reference multiple rows using a "rowid IN (...)" ** construct. */ iReleaseReg = sqlite3GetTempReg(pParse); pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); assert( pTerm!=0 ); assert( pTerm->pExpr!=0 ); assert( omitTable==0 ); testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, iReleaseReg); addrNxt = pLevel->addrNxt; sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); VdbeComment((v, "pk")); pLevel->op = OP_Noop; }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ /* Case 2: We have an inequality comparison against the ROWID field. */ int testOp = OP_Noop; int start; int memEndValue = 0; WhereTerm *pStart, *pEnd; assert( omitTable==0 ); pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); if( bRev ){ pTerm = pStart; pStart = pEnd; pEnd = pTerm; } if( pStart ){ Expr *pX; /* The expression that defines the start bound */ |
︙ | ︙ | |||
108173 108174 108175 108176 108177 108178 108179 | /* TK_LT */ OP_SeekLt, /* TK_GE */ OP_SeekGe }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ | < | | < | | > > > | > | | | 108691 108692 108693 108694 108695 108696 108697 108698 108699 108700 108701 108702 108703 108704 108705 108706 108707 108708 108709 108710 108711 108712 108713 108714 108715 108716 108717 108718 108719 108720 108721 108722 108723 108724 108725 108726 108727 108728 108729 108730 108731 108732 108733 108734 108735 108736 108737 108738 108739 108740 108741 108742 108743 108744 108745 108746 108747 108748 108749 108750 | /* TK_LT */ OP_SeekLt, /* TK_GE */ OP_SeekGe }; assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ pX = pStart->pExpr; assert( pX!=0 ); assert( pStart->leftCursor==iCur ); r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); VdbeComment((v, "pk")); sqlite3ExprCacheAffinityChange(pParse, r1, 1); sqlite3ReleaseTempReg(pParse, rTemp); disableTerm(pLevel, pStart); }else{ sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); } if( pEnd ){ Expr *pX; pX = pEnd->pExpr; assert( pX!=0 ); assert( pEnd->leftCursor==iCur ); testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ memEndValue = ++pParse->nMem; sqlite3ExprCode(pParse, pX->pRight, memEndValue); if( pX->op==TK_LT || pX->op==TK_GT ){ testOp = bRev ? OP_Le : OP_Ge; }else{ testOp = bRev ? OP_Lt : OP_Gt; } disableTerm(pLevel, pEnd); } start = sqlite3VdbeCurrentAddr(v); pLevel->op = bRev ? OP_Prev : OP_Next; pLevel->p1 = iCur; pLevel->p2 = start; if( pStart==0 && pEnd==0 ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } if( testOp!=OP_Noop ){ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); } }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ /* Case 3: A scan using an index. ** ** The WHERE clause may contain zero or more equality ** terms ("==" or "IN" operators) that refer to the N ** left-most columns of the index. It may also contain ** inequality constraints (>, <, >= or <=) on the indexed ** column that immediately follows the N equalities. Only ** the right-most column can be an inequality - the rest must |
︙ | ︙ | |||
108262 108263 108264 108265 108266 108267 108268 | OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; | | | | > | | < | | | | | > > | | | | | | 108782 108783 108784 108785 108786 108787 108788 108789 108790 108791 108792 108793 108794 108795 108796 108797 108798 108799 108800 108801 108802 108803 108804 108805 108806 108807 108808 108809 108810 108811 108812 108813 108814 108815 108816 108817 108818 108819 108820 108821 108822 108823 108824 108825 108826 108827 108828 108829 108830 108831 108832 108833 108834 108835 108836 108837 108838 108839 108840 108841 108842 108843 108844 108845 108846 108847 108848 108849 108850 108851 108852 108853 108854 108855 108856 108857 108858 108859 108860 108861 108862 108863 108864 108865 108866 108867 108868 108869 108870 | OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ }; static const u8 aEndOp[] = { OP_Noop, /* 0: (!end_constraints) */ OP_IdxGE, /* 1: (end_constraints && !bRev) */ OP_IdxLT /* 2: (end_constraints && bRev) */ }; int nEq = pLevel->plan.nEq; /* Number of == or IN terms */ int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ int regBase; /* Base register holding constraint values */ int r1; /* Temp register */ WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ int startEq; /* True if range start uses ==, >= or <= */ int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zStartAff; /* Affinity for start of range constraint */ char *zEndAff; /* Affinity for end of range constraint */ pIdx = pLevel->plan.u.pIdx; iIdxCur = pLevel->iIdxCur; k = (nEq==pIdx->nColumn ? -1 : pIdx->aiColumn[nEq]); /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." ** query, then the caller will only allow the loop to run for ** a single iteration. This means that the first row returned ** should not have a NULL value stored in 'x'. If column 'x' is ** the first one after the nEq equality constraints in the index, ** this requires some special handling. */ if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 && (pLevel->plan.wsFlags&WHERE_ORDERED) && (pIdx->nColumn>nEq) ){ /* assert( pOrderBy->nExpr==1 ); */ /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ isMinQuery = 1; nExtraReg = 1; } /* Find any inequality constraint terms for the start and end ** of the range. */ if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); nExtraReg = 1; } if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); nExtraReg = 1; } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms( pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff ); zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) || (bRev && pIdx->nColumn==nEq) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); } testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ |
︙ | ︙ | |||
108359 108360 108361 108362 108363 108364 108365 | zStartAff[nEq] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; | | | 108881 108882 108883 108884 108885 108886 108887 108888 108889 108890 108891 108892 108893 108894 108895 | zStartAff[nEq] = SQLITE_AFF_NONE; } if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ zStartAff[nEq] = SQLITE_AFF_NONE; } } nConstraint++; testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ }else if( isMinQuery ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); |
︙ | ︙ | |||
108401 108402 108403 108404 108405 108406 108407 | } if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ zEndAff[nEq] = SQLITE_AFF_NONE; } } codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); nConstraint++; | | | | | | | | | | | | 108923 108924 108925 108926 108927 108928 108929 108930 108931 108932 108933 108934 108935 108936 108937 108938 108939 108940 108941 108942 108943 108944 108945 108946 108947 108948 108949 108950 108951 108952 108953 108954 108955 108956 108957 108958 108959 108960 108961 108962 108963 108964 108965 108966 108967 108968 108969 108970 108971 108972 108973 108974 108975 108976 108977 108978 108979 108980 108981 108982 108983 108984 108985 108986 108987 108988 108989 108990 108991 108992 108993 108994 108995 108996 108997 108998 | } if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ zEndAff[nEq] = SQLITE_AFF_NONE; } } codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); nConstraint++; testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ } sqlite3DbFree(pParse->db, zStartAff); sqlite3DbFree(pParse->db, zEndAff); /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; testcase( op==OP_Noop ); testcase( op==OP_IdxGE ); testcase( op==OP_IdxLT ); if( op!=OP_Noop ){ sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); } /* If there are inequality constraints, check that the value ** of the table column that the inequality contrains is not NULL. ** If it is, jump to the next iteration of the loop. */ r1 = sqlite3GetTempReg(pParse); testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); if( (pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 ){ sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); } sqlite3ReleaseTempReg(pParse, r1); /* Seek the table cursor, if required */ disableTerm(pLevel, pRangeStart); disableTerm(pLevel, pRangeEnd); if( !omitTable ){ iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ } /* Record the instruction used to terminate the loop. Disable ** WHERE clause terms made redundant by the index range scan. */ if( pLevel->plan.wsFlags & WHERE_UNIQUE ){ pLevel->op = OP_Noop; }else if( bRev ){ pLevel->op = OP_Prev; }else{ pLevel->op = OP_Next; } pLevel->p1 = iIdxCur; if( pLevel->plan.wsFlags & WHERE_COVER_SCAN ){ pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; }else{ assert( pLevel->p5==0 ); } }else #ifndef SQLITE_OMIT_OR_OPTIMIZATION if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ /* Case 4: Two or more separately indexed terms connected by OR ** ** Example: ** ** CREATE TABLE t1(a,b,c,d); ** CREATE INDEX i1 ON t1(a); ** CREATE INDEX i2 ON t1(b); ** CREATE INDEX i3 ON t1(c); |
︙ | ︙ | |||
108515 108516 108517 108518 108519 108520 108521 | int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ | | | | | 109037 109038 109039 109040 109041 109042 109043 109044 109045 109046 109047 109048 109049 109050 109051 109052 109053 109054 109055 109056 109057 109058 109059 109060 109061 109062 109063 109064 109065 109066 109067 109068 109069 109070 | int regRowid = 0; /* Register holding rowid */ int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ int iRetInit; /* Address of regReturn init */ int untestedTerms = 0; /* Some terms not completely tested */ int ii; /* Loop counter */ Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ pTerm = pLevel->plan.u.pTerm; assert( pTerm!=0 ); assert( pTerm->eOperator & WO_OR ); assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); pOrWc = &pTerm->u.pOrInfo->wc; pLevel->op = OP_Return; pLevel->p1 = regReturn; /* Set up a new SrcList in pOrTab containing the table being scanned ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). */ if( pWInfo->nLevel>1 ){ int nNotReady; /* The number of notReady tables */ struct SrcList_item *origSrc; /* Original list of tables */ nNotReady = pWInfo->nLevel - iLevel - 1; pOrTab = sqlite3StackAllocRaw(pParse->db, sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); if( pOrTab==0 ) return notReady; pOrTab->nAlloc = (i16)(nNotReady + 1); pOrTab->nSrc = pOrTab->nAlloc; memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); origSrc = pWInfo->pTabList->a; for(k=1; k<=nNotReady; k++){ memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); } }else{ |
︙ | ︙ | |||
108556 108557 108558 108559 108560 108561 108562 | ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ | | | 109078 109079 109080 109081 109082 109083 109084 109085 109086 109087 109088 109089 109090 109091 109092 | ** immediately following the OP_Return at the bottom of the loop. This ** is required in a few obscure LEFT JOIN cases where control jumps ** over the top of the loop into the body of it. In this case the ** correct response for the end-of-loop code (the OP_Return) is to ** fall through to the next instruction, just as an OP_Next does if ** called on an uninitialized cursor. */ if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ regRowset = ++pParse->nMem; regRowid = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); } iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y |
︙ | ︙ | |||
108581 108582 108583 108584 108585 108586 108587 | ** is not contained in the ON clause of a LEFT JOIN. ** See ticket http://www.sqlite.org/src/info/f2369304e4 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; | < | | | | | | | 109103 109104 109105 109106 109107 109108 109109 109110 109111 109112 109113 109114 109115 109116 109117 109118 109119 109120 109121 109122 109123 109124 109125 109126 109127 109128 109129 109130 109131 109132 109133 109134 109135 109136 109137 109138 109139 109140 109141 109142 109143 109144 109145 109146 109147 | ** is not contained in the ON clause of a LEFT JOIN. ** See ticket http://www.sqlite.org/src/info/f2369304e4 */ if( pWC->nTerm>1 ){ int iTerm; for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ Expr *pExpr = pWC->a[iTerm].pExpr; if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; if( pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_ORINFO) ) continue; if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); pAndExpr = sqlite3ExprAnd(pParse->db, pAndExpr, pExpr); } if( pAndExpr ){ pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); } } for(ii=0; ii<pOrWc->nTerm; ii++){ WhereTerm *pOrTerm = &pOrWc->a[ii]; if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ WhereInfo *pSubWInfo; /* Info for single OR-term scan */ Expr *pOrExpr = pOrTerm->pExpr; if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ pAndExpr->pLeft = pOrExpr; pOrExpr = pAndExpr; } /* Loop through table entries that match term pOrTerm. */ pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY | WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur); assert( pSubWInfo || pParse->nErr || pParse->db->mallocFailed ); if( pSubWInfo ){ WhereLevel *pLvl; explainOneScan( pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 ); if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); int r; r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, regRowid, 0); sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, sqlite3VdbeCurrentAddr(v)+2, r, iSet); } |
︙ | ︙ | |||
108641 108642 108643 108644 108645 108646 108647 | ** If the call to sqlite3WhereBegin() above resulted in a scan that ** uses an index, and this is either the first OR-connected term ** processed or the index is the same as that used by all previous ** terms, set pCov to the candidate covering index. Otherwise, set ** pCov to NULL to indicate that no candidate covering index will ** be available. */ | | | | | | | | | | > | > > > > | | 109162 109163 109164 109165 109166 109167 109168 109169 109170 109171 109172 109173 109174 109175 109176 109177 109178 109179 109180 109181 109182 109183 109184 109185 109186 109187 109188 109189 109190 109191 109192 109193 109194 109195 109196 109197 109198 109199 109200 109201 109202 109203 109204 109205 109206 109207 109208 109209 109210 109211 109212 109213 109214 109215 109216 109217 109218 109219 109220 109221 109222 109223 109224 109225 109226 109227 109228 109229 109230 109231 | ** If the call to sqlite3WhereBegin() above resulted in a scan that ** uses an index, and this is either the first OR-connected term ** processed or the index is the same as that used by all previous ** terms, set pCov to the candidate covering index. Otherwise, set ** pCov to NULL to indicate that no candidate covering index will ** be available. */ pLvl = &pSubWInfo->a[0]; if( (pLvl->plan.wsFlags & WHERE_INDEXED)!=0 && (pLvl->plan.wsFlags & WHERE_TEMP_INDEX)==0 && (ii==0 || pLvl->plan.u.pIdx==pCov) ){ assert( pLvl->iIdxCur==iCovCur ); pCov = pLvl->plan.u.pIdx; }else{ pCov = 0; } /* Finish the loop through table entries that match term pOrTerm. */ sqlite3WhereEnd(pSubWInfo); } } } pLevel->u.pCovidx = pCov; if( pCov ) pLevel->iIdxCur = iCovCur; if( pAndExpr ){ pAndExpr->pLeft = 0; sqlite3ExprDelete(pParse->db, pAndExpr); } sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); sqlite3VdbeResolveLabel(v, iLoopBody); if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); if( !untestedTerms ) disableTerm(pLevel, pTerm); }else #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ { /* Case 5: There is no usable index. We must do a complete ** scan of the entire table. */ static const u8 aStep[] = { OP_Next, OP_Prev }; static const u8 aStart[] = { OP_Rewind, OP_Last }; assert( bRev==0 || bRev==1 ); assert( omitTable==0 ); pLevel->op = aStep[bRev]; pLevel->p1 = iCur; pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; } newNotReady = notReady & ~getMask(pWC->pMaskSet, iCur); /* Insert code to test every subexpression that can be completely ** computed using the current set of tables. ** ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through ** the use of indices become tests that are evaluated against each row of ** the relevant input tables. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & newNotReady)!=0 ){ testcase( pWInfo->untestedTerms==0 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); pWInfo->untestedTerms = 1; continue; |
︙ | ︙ | |||
108718 108719 108720 108721 108722 108723 108724 | ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" ** and we are coding the t1 loop and the t2 loop has not yet coded, ** then we cannot use the "t1.a=t2.b" constraint, but we can code ** the implied "t1.a=123" constraint. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ | | > < < < < < | | | < < | | < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < < | < < < < < | < < | < < < < < < | < < < | < < < < < < < < < | < < < < < < < < < < < < < < < < < < < < < < < < < | | < < < < < < < < < < < < < < < < < < < < < < < < > | | > > > > > > > | | > > | | > > > < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 109244 109245 109246 109247 109248 109249 109250 109251 109252 109253 109254 109255 109256 109257 109258 109259 109260 109261 109262 109263 109264 109265 109266 109267 109268 109269 109270 109271 109272 109273 109274 109275 109276 109277 109278 109279 109280 109281 109282 109283 109284 109285 109286 109287 109288 109289 109290 109291 109292 109293 109294 109295 109296 109297 109298 109299 109300 109301 109302 109303 109304 109305 109306 109307 109308 109309 109310 109311 109312 109313 109314 109315 109316 109317 109318 109319 109320 109321 109322 109323 109324 109325 109326 109327 109328 109329 109330 109331 109332 109333 109334 109335 109336 109337 109338 109339 109340 109341 109342 | ** ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" ** and we are coding the t1 loop and the t2 loop has not yet coded, ** then we cannot use the "t1.a=t2.b" constraint, but we can code ** the implied "t1.a=123" constraint. */ for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ Expr *pE; WhereTerm *pAlt; Expr sEq; if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; if( pTerm->leftCursor!=iCur ) continue; pE = pTerm->pExpr; assert( !ExprHasProperty(pE, EP_FromJoin) ); assert( (pTerm->prereqRight & newNotReady)!=0 ); pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); if( pAlt==0 ) continue; if( pAlt->wtFlags & (TERM_CODED) ) continue; VdbeNoopComment((v, "begin transitive constraint")); sEq = *pAlt->pExpr; sEq.pLeft = pE->pLeft; sqlite3ExprIfFalse(pParse, &sEq, addrCont, SQLITE_JUMPIFNULL); } /* For a LEFT OUTER JOIN, generate code that will record the fact that ** at least one row of the right table has matched the left table. */ if( pLevel->iLeftJoin ){ pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); VdbeComment((v, "record LEFT JOIN hit")); sqlite3ExprCacheClear(pParse); for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ testcase( pTerm->wtFlags & TERM_CODED ); if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; if( (pTerm->prereqAll & newNotReady)!=0 ){ assert( pWInfo->untestedTerms ); continue; } assert( pTerm->pExpr ); sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); pTerm->wtFlags |= TERM_CODED; } } sqlite3ReleaseTempReg(pParse, iReleaseReg); return newNotReady; } #if defined(SQLITE_TEST) /* ** The following variable holds a text description of query plan generated ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin ** overwrites the previous. This information is used for testing and ** analysis only. */ SQLITE_API char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ static int nQPlan = 0; /* Next free slow in _query_plan[] */ #endif /* SQLITE_TEST */ /* ** Free a WhereInfo structure */ static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ if( ALWAYS(pWInfo) ){ int i; for(i=0; i<pWInfo->nLevel; i++){ sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; if( pInfo ){ /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ if( pInfo->needToFreeIdxStr ){ sqlite3_free(pInfo->idxStr); } sqlite3DbFree(db, pInfo); } if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ Index *pIdx = pWInfo->a[i].plan.u.pIdx; if( pIdx ){ sqlite3DbFree(db, pIdx->zColAff); sqlite3DbFree(db, pIdx); } } } whereClauseClear(pWInfo->pWC); sqlite3DbFree(db, pWInfo); } } /* ** Generate the beginning of the loop used for WHERE clause processing. ** The return value is a pointer to an opaque structure that contains ** information needed to terminate the loop. Later, the calling routine ** should invoke sqlite3WhereEnd() with the return value of this function ** in order to complete the WHERE clause processing. |
︙ | ︙ | |||
110433 110434 110435 110436 110437 110438 110439 | ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** | | < > > > > > > > > > | | | | > < < | < | < < < < < | 109405 109406 109407 109408 109409 109410 109411 109412 109413 109414 109415 109416 109417 109418 109419 109420 109421 109422 109423 109424 109425 109426 109427 109428 109429 109430 109431 109432 109433 109434 109435 109436 109437 109438 109439 109440 109441 109442 109443 109444 109445 109446 109447 109448 109449 109450 109451 109452 109453 109454 109455 109456 109457 | ** move the row2 cursor to a null row ** goto start ** fi ** end ** ** ORDER BY CLAUSE PROCESSING ** ** pOrderBy is a pointer to the ORDER BY clause of a SELECT statement, ** if there is one. If there is no ORDER BY clause or if this routine ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. ** ** If an index can be used so that the natural output order of the table ** scan is correct for the ORDER BY clause, then that index is used and ** the returned WhereInfo.nOBSat field is set to pOrderBy->nExpr. This ** is an optimization that prevents an unnecessary sort of the result set ** if an index appropriate for the ORDER BY clause already exists. ** ** If the where clause loops cannot be arranged to provide the correct ** output order, then WhereInfo.nOBSat is 0. */ SQLITE_PRIVATE WhereInfo *sqlite3WhereBegin( Parse *pParse, /* The parser context */ SrcList *pTabList, /* A list of all tables to be scanned */ Expr *pWhere, /* The WHERE clause */ ExprList *pOrderBy, /* An ORDER BY clause, or NULL */ ExprList *pDistinct, /* The select-list for DISTINCT queries - or NULL */ u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ ){ int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ int nTabList; /* Number of elements in pTabList */ WhereInfo *pWInfo; /* Will become the return value of this function */ Vdbe *v = pParse->pVdbe; /* The virtual database engine */ Bitmask notReady; /* Cursors that are not yet positioned */ WhereBestIdx sWBI; /* Best index search context */ WhereMaskSet *pMaskSet; /* The expression mask set */ WhereLevel *pLevel; /* A single level in pWInfo->a[] */ int iFrom; /* First unused FROM clause element */ int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ int ii; /* Loop counter */ sqlite3 *db; /* Database connection */ /* Variable initialization */ memset(&sWBI, 0, sizeof(sWBI)); sWBI.pParse = pParse; /* The number of tables in the FROM clause is limited by the number of ** bits in a Bitmask */ testcase( pTabList->nSrc==BMS ); if( pTabList->nSrc>BMS ){ sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); |
︙ | ︙ | |||
110495 110496 110497 110498 110499 110500 110501 110502 | /* Allocate and initialize the WhereInfo structure that will become the ** return value. A single allocation is used to store the WhereInfo ** struct, the contents of WhereInfo.a[], the WhereClause structure ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte ** field (type Bitmask) it must be aligned on an 8-byte boundary on ** some architectures. Hence the ROUND8() below. */ nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); | > | > > > > < < > | | | > | < < | < < | | < < < < < < < < < < | 109468 109469 109470 109471 109472 109473 109474 109475 109476 109477 109478 109479 109480 109481 109482 109483 109484 109485 109486 109487 109488 109489 109490 109491 109492 109493 109494 109495 109496 109497 109498 109499 109500 109501 109502 109503 109504 109505 109506 109507 109508 109509 109510 109511 109512 109513 109514 109515 109516 109517 109518 109519 109520 109521 109522 109523 | /* Allocate and initialize the WhereInfo structure that will become the ** return value. A single allocation is used to store the WhereInfo ** struct, the contents of WhereInfo.a[], the WhereClause structure ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte ** field (type Bitmask) it must be aligned on an 8-byte boundary on ** some architectures. Hence the ROUND8() below. */ db = pParse->db; nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereClause) + sizeof(WhereMaskSet) ); if( db->mallocFailed ){ sqlite3DbFree(db, pWInfo); pWInfo = 0; goto whereBeginError; } pWInfo->nLevel = nTabList; pWInfo->pParse = pParse; pWInfo->pTabList = pTabList; pWInfo->iBreak = sqlite3VdbeMakeLabel(v); pWInfo->pWC = sWBI.pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; pWInfo->wctrlFlags = wctrlFlags; pWInfo->savedNQueryLoop = pParse->nQueryLoop; pMaskSet = (WhereMaskSet*)&sWBI.pWC[1]; sWBI.aLevel = pWInfo->a; /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ if( OptimizationDisabled(db, SQLITE_DistinctOpt) ) pDistinct = 0; /* Split the WHERE clause into separate subexpressions where each ** subexpression is separated by an AND operator. */ initMaskSet(pMaskSet); whereClauseInit(sWBI.pWC, pParse, pMaskSet, wctrlFlags); sqlite3ExprCodeConstants(pParse, pWhere); whereSplit(sWBI.pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ /* Special case: a WHERE clause that is constant. Evaluate the ** expression and either jump over all of the code or fall thru. */ if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); pWhere = 0; } /* Assign a bit from the bitmask to every term in the FROM clause. ** ** When assigning bitmask values to FROM clause cursors, it must be ** the case that if X is the bitmask for the N-th FROM clause term then ** the bitmask for all FROM clause terms to the left of the N-th term ** is (X-1). An expression from the ON clause of a LEFT JOIN can use ** its Expr.iRightJoinTable value to find the bitmask of the right table |
︙ | ︙ | |||
110581 110582 110583 110584 110585 110586 110587 | #endif /* Analyze all of the subexpressions. Note that exprAnalyze() might ** add new virtual terms onto the end of the WHERE clause. We do not ** want to analyze these virtual terms, so start analyzing at the end ** and work forward so that the added virtual terms are never processed. */ | | | | | | | < < | < < < | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > | < > > > | > > | > > > > | < > > > > > > > | > | > > > > | > > > > > > > > > > > > | > > > | > > > > > | | < > > | > > > > > > > > > > > > | | < > | | | < > | | < > > > > > > > > > > | < < < > > > > > > > > > > > > > > | | < > > > > > > > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > | > > > > > > > > > | > > > > > | | < < > | < | < < > | < | | < < < | < < < | | < | < < < < < < < < < < < < < < < < < < < > | | < < < < < < < < < < < < < < | < | < < < | < | > > > < | | | | | | | | < | | | > > > > > > > > > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < | | | | | | < | | | | < | > > > | | | | > | | 109545 109546 109547 109548 109549 109550 109551 109552 109553 109554 109555 109556 109557 109558 109559 109560 109561 109562 109563 109564 109565 109566 109567 109568 109569 109570 109571 109572 109573 109574 109575 109576 109577 109578 109579 109580 109581 109582 109583 109584 109585 109586 109587 109588 109589 109590 109591 109592 109593 109594 109595 109596 109597 109598 109599 109600 109601 109602 109603 109604 109605 109606 109607 109608 109609 109610 109611 109612 109613 109614 109615 109616 109617 109618 109619 109620 109621 109622 109623 109624 109625 109626 109627 109628 109629 109630 109631 109632 109633 109634 109635 109636 109637 109638 109639 109640 109641 109642 109643 109644 109645 109646 109647 109648 109649 109650 109651 109652 109653 109654 109655 109656 109657 109658 109659 109660 109661 109662 109663 109664 109665 109666 109667 109668 109669 109670 109671 109672 109673 109674 109675 109676 109677 109678 109679 109680 109681 109682 109683 109684 109685 109686 109687 109688 109689 109690 109691 109692 109693 109694 109695 109696 109697 109698 109699 109700 109701 109702 109703 109704 109705 109706 109707 109708 109709 109710 109711 109712 109713 109714 109715 109716 109717 109718 109719 109720 109721 109722 109723 109724 109725 109726 109727 109728 109729 109730 109731 109732 109733 109734 109735 109736 109737 109738 109739 109740 109741 109742 109743 109744 109745 109746 109747 109748 109749 109750 109751 109752 109753 109754 109755 109756 109757 109758 109759 109760 109761 109762 109763 109764 109765 109766 109767 109768 109769 109770 109771 109772 109773 109774 109775 109776 109777 109778 109779 109780 109781 109782 109783 109784 109785 109786 109787 109788 109789 109790 109791 109792 109793 109794 109795 109796 109797 109798 109799 109800 109801 109802 109803 109804 109805 109806 109807 109808 109809 109810 109811 109812 109813 109814 109815 109816 109817 109818 109819 109820 109821 109822 109823 109824 109825 109826 109827 109828 109829 109830 109831 109832 109833 109834 109835 109836 109837 109838 109839 109840 109841 109842 109843 109844 109845 109846 109847 109848 109849 109850 109851 109852 109853 109854 109855 109856 109857 109858 109859 109860 109861 109862 109863 109864 109865 109866 109867 109868 109869 109870 109871 109872 109873 109874 109875 109876 109877 109878 109879 109880 109881 109882 109883 109884 109885 109886 109887 109888 109889 109890 109891 109892 109893 109894 109895 109896 109897 109898 109899 109900 109901 109902 109903 109904 109905 109906 109907 109908 109909 109910 109911 109912 109913 109914 109915 109916 109917 109918 109919 109920 109921 109922 109923 109924 109925 109926 109927 109928 109929 109930 109931 109932 109933 109934 109935 109936 109937 109938 109939 109940 109941 109942 109943 109944 109945 109946 109947 109948 109949 109950 109951 109952 109953 109954 109955 109956 109957 109958 109959 109960 109961 109962 109963 109964 109965 109966 109967 109968 109969 109970 109971 109972 109973 109974 109975 109976 109977 109978 109979 109980 109981 109982 109983 109984 109985 109986 109987 109988 109989 109990 109991 109992 109993 109994 109995 109996 109997 109998 109999 110000 110001 110002 110003 110004 110005 110006 110007 110008 110009 110010 110011 110012 110013 110014 110015 110016 110017 110018 110019 110020 110021 110022 110023 110024 110025 110026 110027 110028 110029 110030 110031 110032 110033 110034 110035 110036 110037 110038 110039 110040 110041 110042 110043 110044 110045 110046 110047 110048 110049 110050 110051 110052 110053 110054 110055 110056 110057 110058 110059 110060 110061 110062 110063 110064 110065 110066 110067 110068 110069 110070 110071 110072 110073 110074 110075 110076 110077 110078 110079 110080 110081 110082 110083 110084 110085 110086 110087 110088 110089 110090 110091 110092 110093 110094 110095 110096 110097 110098 110099 110100 110101 110102 110103 110104 110105 110106 110107 110108 110109 110110 110111 110112 | #endif /* Analyze all of the subexpressions. Note that exprAnalyze() might ** add new virtual terms onto the end of the WHERE clause. We do not ** want to analyze these virtual terms, so start analyzing at the end ** and work forward so that the added virtual terms are never processed. */ exprAnalyzeAll(pTabList, sWBI.pWC); if( db->mallocFailed ){ goto whereBeginError; } /* Check if the DISTINCT qualifier, if there is one, is redundant. ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT. */ if( pDistinct && isDistinctRedundant(pParse, pTabList, sWBI.pWC, pDistinct) ){ pDistinct = 0; pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; } /* Chose the best index to use for each table in the FROM clause. ** ** This loop fills in the following fields: ** ** pWInfo->a[].pIdx The index to use for this level of the loop. ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx ** pWInfo->a[].nEq The number of == and IN constraints ** pWInfo->a[].iFrom Which term of the FROM clause is being coded ** pWInfo->a[].iTabCur The VDBE cursor for the database table ** pWInfo->a[].iIdxCur The VDBE cursor for the index ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term ** ** This loop also figures out the nesting order of tables in the FROM ** clause. */ sWBI.notValid = ~(Bitmask)0; sWBI.pOrderBy = pOrderBy; sWBI.n = nTabList; sWBI.pDistinct = pDistinct; andFlags = ~0; WHERETRACE(("*** Optimizer Start ***\n")); for(sWBI.i=iFrom=0, pLevel=pWInfo->a; sWBI.i<nTabList; sWBI.i++, pLevel++){ WhereCost bestPlan; /* Most efficient plan seen so far */ Index *pIdx; /* Index for FROM table at pTabItem */ int j; /* For looping over FROM tables */ int bestJ = -1; /* The value of j */ Bitmask m; /* Bitmask value for j or bestJ */ int isOptimal; /* Iterator for optimal/non-optimal search */ int ckOptimal; /* Do the optimal scan check */ int nUnconstrained; /* Number tables without INDEXED BY */ Bitmask notIndexed; /* Mask of tables that cannot use an index */ memset(&bestPlan, 0, sizeof(bestPlan)); bestPlan.rCost = SQLITE_BIG_DBL; WHERETRACE(("*** Begin search for loop %d ***\n", sWBI.i)); /* Loop through the remaining entries in the FROM clause to find the ** next nested loop. The loop tests all FROM clause entries ** either once or twice. ** ** The first test is always performed if there are two or more entries ** remaining and never performed if there is only one FROM clause entry ** to choose from. The first test looks for an "optimal" scan. In ** this context an optimal scan is one that uses the same strategy ** for the given FROM clause entry as would be selected if the entry ** were used as the innermost nested loop. In other words, a table ** is chosen such that the cost of running that table cannot be reduced ** by waiting for other tables to run first. This "optimal" test works ** by first assuming that the FROM clause is on the inner loop and finding ** its query plan, then checking to see if that query plan uses any ** other FROM clause terms that are sWBI.notValid. If no notValid terms ** are used then the "optimal" query plan works. ** ** Note that the WhereCost.nRow parameter for an optimal scan might ** not be as small as it would be if the table really were the innermost ** join. The nRow value can be reduced by WHERE clause constraints ** that do not use indices. But this nRow reduction only happens if the ** table really is the innermost join. ** ** The second loop iteration is only performed if no optimal scan ** strategies were found by the first iteration. This second iteration ** is used to search for the lowest cost scan overall. ** ** Without the optimal scan step (the first iteration) a suboptimal ** plan might be chosen for queries like this: ** ** CREATE TABLE t1(a, b); ** CREATE TABLE t2(c, d); ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; ** ** The best strategy is to iterate through table t1 first. However it ** is not possible to determine this with a simple greedy algorithm. ** Since the cost of a linear scan through table t2 is the same ** as the cost of a linear scan through table t1, a simple greedy ** algorithm may choose to use t2 for the outer loop, which is a much ** costlier approach. */ nUnconstrained = 0; notIndexed = 0; /* The optimal scan check only occurs if there are two or more tables ** available to be reordered */ if( iFrom==nTabList-1 ){ ckOptimal = 0; /* Common case of just one table in the FROM clause */ }else{ ckOptimal = -1; for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){ m = getMask(pMaskSet, sWBI.pSrc->iCursor); if( (m & sWBI.notValid)==0 ){ if( j==iFrom ) iFrom++; continue; } if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ) break; if( ++ckOptimal ) break; if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; } } assert( ckOptimal==0 || ckOptimal==1 ); for(isOptimal=ckOptimal; isOptimal>=0 && bestJ<0; isOptimal--){ for(j=iFrom, sWBI.pSrc=&pTabList->a[j]; j<nTabList; j++, sWBI.pSrc++){ if( j>iFrom && (sWBI.pSrc->jointype & (JT_LEFT|JT_CROSS))!=0 ){ /* This break and one like it in the ckOptimal computation loop ** above prevent table reordering across LEFT and CROSS JOINs. ** The LEFT JOIN case is necessary for correctness. The prohibition ** against reordering across a CROSS JOIN is an SQLite feature that ** allows the developer to control table reordering */ break; } m = getMask(pMaskSet, sWBI.pSrc->iCursor); if( (m & sWBI.notValid)==0 ){ assert( j>iFrom ); continue; } sWBI.notReady = (isOptimal ? m : sWBI.notValid); if( sWBI.pSrc->pIndex==0 ) nUnconstrained++; WHERETRACE((" === trying table %d (%s) with isOptimal=%d ===\n", j, sWBI.pSrc->pTab->zName, isOptimal)); assert( sWBI.pSrc->pTab ); #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(sWBI.pSrc->pTab) ){ sWBI.ppIdxInfo = &pWInfo->a[j].pIdxInfo; bestVirtualIndex(&sWBI); }else #endif { bestBtreeIndex(&sWBI); } assert( isOptimal || (sWBI.cost.used&sWBI.notValid)==0 ); /* If an INDEXED BY clause is present, then the plan must use that ** index if it uses any index at all */ assert( sWBI.pSrc->pIndex==0 || (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 || sWBI.cost.plan.u.pIdx==sWBI.pSrc->pIndex ); if( isOptimal && (sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ){ notIndexed |= m; } if( isOptimal ){ pWInfo->a[j].rOptCost = sWBI.cost.rCost; }else if( ckOptimal ){ /* If two or more tables have nearly the same outer loop cost, but ** very different inner loop (optimal) cost, we want to choose ** for the outer loop that table which benefits the least from ** being in the inner loop. The following code scales the ** outer loop cost estimate to accomplish that. */ WHERETRACE((" scaling cost from %.1f to %.1f\n", sWBI.cost.rCost, sWBI.cost.rCost/pWInfo->a[j].rOptCost)); sWBI.cost.rCost /= pWInfo->a[j].rOptCost; } /* Conditions under which this table becomes the best so far: ** ** (1) The table must not depend on other tables that have not ** yet run. (In other words, it must not depend on tables ** in inner loops.) ** ** (2) (This rule was removed on 2012-11-09. The scaling of the ** cost using the optimal scan cost made this rule obsolete.) ** ** (3) All tables have an INDEXED BY clause or this table lacks an ** INDEXED BY clause or this table uses the specific ** index specified by its INDEXED BY clause. This rule ensures ** that a best-so-far is always selected even if an impossible ** combination of INDEXED BY clauses are given. The error ** will be detected and relayed back to the application later. ** The NEVER() comes about because rule (2) above prevents ** An indexable full-table-scan from reaching rule (3). ** ** (4) The plan cost must be lower than prior plans, where "cost" ** is defined by the compareCost() function above. */ if( (sWBI.cost.used&sWBI.notValid)==0 /* (1) */ && (nUnconstrained==0 || sWBI.pSrc->pIndex==0 /* (3) */ || NEVER((sWBI.cost.plan.wsFlags & WHERE_NOT_FULLSCAN)!=0)) && (bestJ<0 || compareCost(&sWBI.cost, &bestPlan)) /* (4) */ ){ WHERETRACE((" === table %d (%s) is best so far\n" " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n", j, sWBI.pSrc->pTab->zName, sWBI.cost.rCost, sWBI.cost.plan.nRow, sWBI.cost.plan.nOBSat, sWBI.cost.plan.wsFlags)); bestPlan = sWBI.cost; bestJ = j; } /* In a join like "w JOIN x LEFT JOIN y JOIN z" make sure that ** table y (and not table z) is always the next inner loop inside ** of table x. */ if( (sWBI.pSrc->jointype & JT_LEFT)!=0 ) break; } } assert( bestJ>=0 ); assert( sWBI.notValid & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); assert( bestJ==iFrom || (pTabList->a[iFrom].jointype & JT_LEFT)==0 ); testcase( bestJ>iFrom && (pTabList->a[iFrom].jointype & JT_CROSS)!=0 ); testcase( bestJ>iFrom && bestJ<nTabList-1 && (pTabList->a[bestJ+1].jointype & JT_LEFT)!=0 ); WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n" " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n", bestJ, pTabList->a[bestJ].pTab->zName, pLevel-pWInfo->a, bestPlan.rCost, bestPlan.plan.nRow, bestPlan.plan.nOBSat, bestPlan.plan.wsFlags)); if( (bestPlan.plan.wsFlags & WHERE_DISTINCT)!=0 ){ assert( pWInfo->eDistinct==0 ); pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; } andFlags &= bestPlan.plan.wsFlags; pLevel->plan = bestPlan.plan; pLevel->iTabCur = pTabList->a[bestJ].iCursor; testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ if( (wctrlFlags & WHERE_ONETABLE_ONLY) && (bestPlan.plan.wsFlags & WHERE_TEMP_INDEX)==0 ){ pLevel->iIdxCur = iIdxCur; }else{ pLevel->iIdxCur = pParse->nTab++; } }else{ pLevel->iIdxCur = -1; } sWBI.notValid &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); pLevel->iFrom = (u8)bestJ; if( bestPlan.plan.nRow>=(double)1 ){ pParse->nQueryLoop *= bestPlan.plan.nRow; } /* Check that if the table scanned by this loop iteration had an ** INDEXED BY clause attached to it, that the named index is being ** used for the scan. If not, then query compilation has failed. ** Return an error. */ pIdx = pTabList->a[bestJ].pIndex; if( pIdx ){ if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); goto whereBeginError; }else{ /* If an INDEXED BY clause is used, the bestIndex() function is ** guaranteed to find the index specified in the INDEXED BY clause ** if it find an index at all. */ assert( bestPlan.plan.u.pIdx==pIdx ); } } } WHERETRACE(("*** Optimizer Finished ***\n")); if( pParse->nErr || db->mallocFailed ){ goto whereBeginError; } if( nTabList ){ pLevel--; pWInfo->nOBSat = pLevel->plan.nOBSat; }else{ pWInfo->nOBSat = 0; } /* If the total query only selects a single row, then the ORDER BY ** clause is irrelevant. */ if( (andFlags & WHERE_UNIQUE)!=0 && pOrderBy ){ assert( nTabList==0 || (pLevel->plan.wsFlags & WHERE_ALL_UNIQUE)!=0 ); pWInfo->nOBSat = pOrderBy->nExpr; } /* If the caller is an UPDATE or DELETE statement that is requesting ** to use a one-pass algorithm, determine if this is appropriate. ** The one-pass algorithm only works if the WHERE clause constraints ** the statement to update a single row. */ assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ pWInfo->okOnePass = 1; pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; } /* Open all tables in the pTabList and any indices selected for ** searching those tables. */ sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ notReady = ~(Bitmask)0; pWInfo->nRowOut = (double)1; for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ Table *pTab; /* Table to open */ int iDb; /* Index of database containing table/index */ struct SrcList_item *pTabItem; pTabItem = &pTabList->a[pLevel->iFrom]; pTab = pTabItem->pTab; pWInfo->nRowOut *= pLevel->plan.nRow; iDb = sqlite3SchemaToIndex(db, pTab->pSchema); if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ /* Do nothing */ }else #ifndef SQLITE_OMIT_VIRTUALTABLE if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); int iCur = pTabItem->iCursor; sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); }else if( IsVirtual(pTab) ){ /* noop */ }else #endif if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); testcase( pTab->nCol==BMS-1 ); testcase( pTab->nCol==BMS ); if( !pWInfo->okOnePass && pTab->nCol<BMS ){ Bitmask b = pTabItem->colUsed; int n = 0; for(; b; b=b>>1, n++){} sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32); assert( n<=pTab->nCol ); } }else{ sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); } #ifndef SQLITE_OMIT_AUTOMATIC_INDEX if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ constructAutomaticIndex(pParse, sWBI.pWC, pTabItem, notReady, pLevel); }else #endif if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ Index *pIx = pLevel->plan.u.pIdx; KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); int iIndexCur = pLevel->iIdxCur; assert( pIx->pSchema==pTab->pSchema ); assert( iIndexCur>=0 ); sqlite3VdbeAddOp4(v, OP_OpenRead, iIndexCur, pIx->tnum, iDb, (char*)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIx->zName)); } sqlite3CodeVerifySchema(pParse, iDb); notReady &= ~getMask(sWBI.pWC->pMaskSet, pTabItem->iCursor); } pWInfo->iTop = sqlite3VdbeCurrentAddr(v); if( db->mallocFailed ) goto whereBeginError; /* Generate the code to do the search. Each iteration of the for ** loop below generates code for a single nested loop of the VM ** program. */ notReady = ~(Bitmask)0; for(ii=0; ii<nTabList; ii++){ pLevel = &pWInfo->a[ii]; explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags); notReady = codeOneLoopStart(pWInfo, ii, wctrlFlags, notReady); pWInfo->iContinue = pLevel->addrCont; } #ifdef SQLITE_TEST /* For testing and debugging use only */ /* Record in the query plan information about the current table ** and the index used to access it (if any). If the table itself ** is not used, its name is just '{}'. If no index is used ** the index is listed as "{}". If the primary key is used the ** index name is '*'. */ for(ii=0; ii<nTabList; ii++){ char *z; int n; int w; struct SrcList_item *pTabItem; pLevel = &pWInfo->a[ii]; w = pLevel->plan.wsFlags; pTabItem = &pTabList->a[pLevel->iFrom]; z = pTabItem->zAlias; if( z==0 ) z = pTabItem->pTab->zName; n = sqlite3Strlen30(z); if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ if( (w & WHERE_IDX_ONLY)!=0 && (w & WHERE_COVER_SCAN)==0 ){ memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); nQPlan += 2; }else{ memcpy(&sqlite3_query_plan[nQPlan], z, n); nQPlan += n; } sqlite3_query_plan[nQPlan++] = ' '; } testcase( w & WHERE_ROWID_EQ ); testcase( w & WHERE_ROWID_RANGE ); if( w & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); nQPlan += 2; }else if( (w & WHERE_INDEXED)!=0 && (w & WHERE_COVER_SCAN)==0 ){ n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); nQPlan += n; sqlite3_query_plan[nQPlan++] = ' '; } }else{ memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); nQPlan += 3; } } while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ sqlite3_query_plan[--nQPlan] = 0; } sqlite3_query_plan[nQPlan] = 0; nQPlan = 0; #endif /* SQLITE_TEST // Testing and debugging use only */ /* Record the continuation address in the WhereInfo structure. Then ** clean up and return. */ return pWInfo; /* Jump here if malloc fails */ whereBeginError: if( pWInfo ){ pParse->nQueryLoop = pWInfo->savedNQueryLoop; whereInfoFree(db, pWInfo); } return 0; } /* ** Generate the end of the WHERE loop. See comments on ** sqlite3WhereBegin() for additional information. */ SQLITE_PRIVATE void sqlite3WhereEnd(WhereInfo *pWInfo){ Parse *pParse = pWInfo->pParse; Vdbe *v = pParse->pVdbe; int i; WhereLevel *pLevel; SrcList *pTabList = pWInfo->pTabList; sqlite3 *db = pParse->db; /* Generate loop termination code. */ sqlite3ExprCacheClear(pParse); for(i=pWInfo->nLevel-1; i>=0; i--){ pLevel = &pWInfo->a[i]; sqlite3VdbeResolveLabel(v, pLevel->addrCont); if( pLevel->op!=OP_Noop ){ sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); sqlite3VdbeChangeP5(v, pLevel->p5); } if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ struct InLoop *pIn; int j; sqlite3VdbeResolveLabel(v, pLevel->addrNxt); for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ sqlite3VdbeJumpHere(v, pIn->addrInTop+1); sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); sqlite3VdbeJumpHere(v, pIn->addrInTop-1); } sqlite3DbFree(db, pLevel->u.in.aInLoop); } sqlite3VdbeResolveLabel(v, pLevel->addrBrk); if( pLevel->iLeftJoin ){ int addr; addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); } if( pLevel->iIdxCur>=0 ){ sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); } if( pLevel->op==OP_Return ){ sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); }else{ sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); } sqlite3VdbeJumpHere(v, addr); } } /* The "break" point is here, just past the end of the outer loop. ** Set it. */ sqlite3VdbeResolveLabel(v, pWInfo->iBreak); /* Close all of the cursors that were opened by sqlite3WhereBegin. */ assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ Index *pIdx = 0; struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; Table *pTab = pTabItem->pTab; assert( pTab!=0 ); if( (pTab->tabFlags & TF_Ephemeral)==0 && pTab->pSelect==0 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ int ws = pLevel->plan.wsFlags; if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); } if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); } } /* If this scan uses an index, make code substitutions to read data ** from the index in preference to the table. Sometimes, this means ** the table need never be read from. This is a performance boost, ** as the vdbe level waits until the table is read before actually ** seeking the table cursor to the record corresponding to the current ** position in the index. ** ** Calls to the code generator in between sqlite3WhereBegin and ** sqlite3WhereEnd will have created code that references the table ** directly. This loop scans all that code looking for opcodes ** that reference the table and converts them into opcodes that ** reference the index. */ if( pLevel->plan.wsFlags & WHERE_INDEXED ){ pIdx = pLevel->plan.u.pIdx; }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ pIdx = pLevel->u.pCovidx; } if( pIdx && !db->mallocFailed){ int k, j, last; VdbeOp *pOp; pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); last = sqlite3VdbeCurrentAddr(v); for(k=pWInfo->iTop; k<last; k++, pOp++){ if( pOp->p1!=pLevel->iTabCur ) continue; if( pOp->opcode==OP_Column ){ for(j=0; j<pIdx->nColumn; j++){ if( pOp->p2==pIdx->aiColumn[j] ){ pOp->p2 = j; pOp->p1 = pLevel->iIdxCur; break; } } assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 || j<pIdx->nColumn ); }else if( pOp->opcode==OP_Rowid ){ pOp->p1 = pLevel->iIdxCur; pOp->opcode = OP_IdxRowid; } } } } |
︙ | ︙ | |||
111160 111161 111162 111163 111164 111165 111166 | #ifndef YYSTACKDEPTH #define YYSTACKDEPTH 100 #endif #define sqlite3ParserARG_SDECL Parse *pParse; #define sqlite3ParserARG_PDECL ,Parse *pParse #define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse #define sqlite3ParserARG_STORE yypParser->pParse = pParse | | | 110336 110337 110338 110339 110340 110341 110342 110343 110344 110345 110346 110347 110348 110349 110350 | #ifndef YYSTACKDEPTH #define YYSTACKDEPTH 100 #endif #define sqlite3ParserARG_SDECL Parse *pParse; #define sqlite3ParserARG_PDECL ,Parse *pParse #define sqlite3ParserARG_FETCH Parse *pParse = yypParser->pParse #define sqlite3ParserARG_STORE yypParser->pParse = pParse #define YYNSTATE 627 #define YYNRULE 327 #define YYFALLBACK 1 #define YY_NO_ACTION (YYNSTATE+YYNRULE+2) #define YY_ACCEPT_ACTION (YYNSTATE+YYNRULE+1) #define YY_ERROR_ACTION (YYNSTATE+YYNRULE) /* The yyzerominor constant is used to initialize instances of |
︙ | ︙ | |||
111233 111234 111235 111236 111237 111238 111239 | ** shifting terminals. ** yy_reduce_ofst[] For each state, the offset into yy_action for ** shifting non-terminals after a reduce. ** yy_default[] Default action for each state. */ #define YY_ACTTAB_COUNT (1564) static const YYACTIONTYPE yy_action[] = { | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 110409 110410 110411 110412 110413 110414 110415 110416 110417 110418 110419 110420 110421 110422 110423 110424 110425 110426 110427 110428 110429 110430 110431 110432 110433 110434 110435 110436 110437 110438 110439 110440 110441 110442 110443 110444 110445 110446 110447 110448 110449 110450 110451 110452 110453 110454 110455 110456 110457 110458 110459 110460 110461 110462 110463 110464 110465 110466 110467 110468 110469 110470 110471 110472 110473 110474 110475 110476 110477 110478 110479 110480 110481 110482 110483 110484 110485 110486 110487 110488 110489 110490 110491 110492 110493 110494 110495 110496 110497 110498 110499 110500 110501 110502 110503 110504 110505 110506 110507 110508 110509 110510 110511 110512 110513 110514 110515 110516 110517 110518 110519 110520 110521 110522 110523 110524 110525 110526 110527 110528 110529 110530 110531 110532 110533 110534 110535 110536 110537 110538 110539 110540 110541 110542 110543 110544 110545 110546 110547 110548 110549 110550 110551 110552 110553 110554 110555 110556 110557 110558 110559 110560 110561 110562 110563 110564 110565 110566 110567 110568 110569 110570 110571 110572 110573 110574 110575 110576 110577 110578 110579 | ** shifting terminals. ** yy_reduce_ofst[] For each state, the offset into yy_action for ** shifting non-terminals after a reduce. ** yy_default[] Default action for each state. */ #define YY_ACTTAB_COUNT (1564) static const YYACTIONTYPE yy_action[] = { /* 0 */ 309, 955, 184, 417, 2, 171, 624, 594, 56, 56, /* 10 */ 56, 56, 49, 54, 54, 54, 54, 53, 53, 52, /* 20 */ 52, 52, 51, 233, 620, 619, 298, 620, 619, 234, /* 30 */ 587, 581, 56, 56, 56, 56, 19, 54, 54, 54, /* 40 */ 54, 53, 53, 52, 52, 52, 51, 233, 605, 57, /* 50 */ 58, 48, 579, 578, 580, 580, 55, 55, 56, 56, /* 60 */ 56, 56, 541, 54, 54, 54, 54, 53, 53, 52, /* 70 */ 52, 52, 51, 233, 309, 594, 325, 196, 195, 194, /* 80 */ 33, 54, 54, 54, 54, 53, 53, 52, 52, 52, /* 90 */ 51, 233, 617, 616, 165, 617, 616, 380, 377, 376, /* 100 */ 407, 532, 576, 576, 587, 581, 303, 422, 375, 59, /* 110 */ 53, 53, 52, 52, 52, 51, 233, 50, 47, 146, /* 120 */ 574, 545, 65, 57, 58, 48, 579, 578, 580, 580, /* 130 */ 55, 55, 56, 56, 56, 56, 213, 54, 54, 54, /* 140 */ 54, 53, 53, 52, 52, 52, 51, 233, 309, 223, /* 150 */ 539, 420, 170, 176, 138, 280, 383, 275, 382, 168, /* 160 */ 489, 551, 409, 668, 620, 619, 271, 438, 409, 438, /* 170 */ 550, 604, 67, 482, 507, 618, 599, 412, 587, 581, /* 180 */ 600, 483, 618, 412, 618, 598, 91, 439, 440, 439, /* 190 */ 335, 598, 73, 669, 222, 266, 480, 57, 58, 48, /* 200 */ 579, 578, 580, 580, 55, 55, 56, 56, 56, 56, /* 210 */ 670, 54, 54, 54, 54, 53, 53, 52, 52, 52, /* 220 */ 51, 233, 309, 279, 232, 231, 1, 132, 200, 385, /* 230 */ 620, 619, 617, 616, 278, 435, 289, 563, 175, 262, /* 240 */ 409, 264, 437, 497, 436, 166, 441, 568, 336, 568, /* 250 */ 201, 537, 587, 581, 599, 412, 165, 594, 600, 380, /* 260 */ 377, 376, 597, 598, 92, 523, 618, 569, 569, 592, /* 270 */ 375, 57, 58, 48, 579, 578, 580, 580, 55, 55, /* 280 */ 56, 56, 56, 56, 597, 54, 54, 54, 54, 53, /* 290 */ 53, 52, 52, 52, 51, 233, 309, 463, 617, 616, /* 300 */ 590, 590, 590, 174, 272, 396, 409, 272, 409, 548, /* 310 */ 397, 620, 619, 68, 326, 620, 619, 620, 619, 618, /* 320 */ 546, 412, 618, 412, 471, 594, 587, 581, 472, 598, /* 330 */ 92, 598, 92, 52, 52, 52, 51, 233, 513, 512, /* 340 */ 206, 322, 363, 464, 221, 57, 58, 48, 579, 578, /* 350 */ 580, 580, 55, 55, 56, 56, 56, 56, 529, 54, /* 360 */ 54, 54, 54, 53, 53, 52, 52, 52, 51, 233, /* 370 */ 309, 396, 409, 396, 597, 372, 386, 530, 347, 617, /* 380 */ 616, 575, 202, 617, 616, 617, 616, 412, 620, 619, /* 390 */ 145, 255, 346, 254, 577, 598, 74, 351, 45, 489, /* 400 */ 587, 581, 235, 189, 464, 544, 167, 296, 187, 469, /* 410 */ 479, 67, 62, 39, 618, 546, 597, 345, 573, 57, /* 420 */ 58, 48, 579, 578, 580, 580, 55, 55, 56, 56, /* 430 */ 56, 56, 6, 54, 54, 54, 54, 53, 53, 52, /* 440 */ 52, 52, 51, 233, 309, 562, 558, 407, 528, 576, /* 450 */ 576, 344, 255, 346, 254, 182, 617, 616, 503, 504, /* 460 */ 314, 409, 557, 235, 166, 271, 409, 352, 564, 181, /* 470 */ 407, 546, 576, 576, 587, 581, 412, 537, 556, 561, /* 480 */ 517, 412, 618, 249, 598, 16, 7, 36, 467, 598, /* 490 */ 92, 516, 618, 57, 58, 48, 579, 578, 580, 580, /* 500 */ 55, 55, 56, 56, 56, 56, 541, 54, 54, 54, /* 510 */ 54, 53, 53, 52, 52, 52, 51, 233, 309, 327, /* 520 */ 572, 571, 525, 558, 560, 394, 871, 246, 409, 248, /* 530 */ 171, 392, 594, 219, 407, 409, 576, 576, 502, 557, /* 540 */ 364, 145, 510, 412, 407, 229, 576, 576, 587, 581, /* 550 */ 412, 598, 92, 381, 269, 556, 166, 400, 598, 69, /* 560 */ 501, 419, 945, 199, 945, 198, 546, 57, 58, 48, /* 570 */ 579, 578, 580, 580, 55, 55, 56, 56, 56, 56, /* 580 */ 568, 54, 54, 54, 54, 53, 53, 52, 52, 52, /* 590 */ 51, 233, 309, 317, 419, 944, 508, 944, 308, 597, /* 600 */ 594, 565, 490, 212, 173, 247, 423, 615, 614, 613, /* 610 */ 323, 197, 143, 405, 572, 571, 489, 66, 50, 47, /* 620 */ 146, 594, 587, 581, 232, 231, 559, 427, 67, 555, /* 630 */ 15, 618, 186, 543, 303, 421, 35, 206, 432, 423, /* 640 */ 552, 57, 58, 48, 579, 578, 580, 580, 55, 55, /* 650 */ 56, 56, 56, 56, 205, 54, 54, 54, 54, 53, /* 660 */ 53, 52, 52, 52, 51, 233, 309, 569, 569, 260, /* 670 */ 268, 597, 12, 373, 568, 166, 409, 313, 409, 420, /* 680 */ 409, 473, 473, 365, 618, 50, 47, 146, 597, 594, /* 690 */ 468, 412, 166, 412, 351, 412, 587, 581, 32, 598, /* 700 */ 94, 598, 97, 598, 95, 627, 625, 329, 142, 50, /* 710 */ 47, 146, 333, 349, 358, 57, 58, 48, 579, 578, /* 720 */ 580, 580, 55, 55, 56, 56, 56, 56, 409, 54, /* 730 */ 54, 54, 54, 53, 53, 52, 52, 52, 51, 233, /* 740 */ 309, 409, 388, 412, 409, 22, 565, 404, 212, 362, /* 750 */ 389, 598, 104, 359, 409, 156, 412, 409, 603, 412, /* 760 */ 537, 331, 569, 569, 598, 103, 493, 598, 105, 412, /* 770 */ 587, 581, 412, 260, 549, 618, 11, 598, 106, 521, /* 780 */ 598, 133, 169, 457, 456, 170, 35, 601, 618, 57, /* 790 */ 58, 48, 579, 578, 580, 580, 55, 55, 56, 56, /* 800 */ 56, 56, 409, 54, 54, 54, 54, 53, 53, 52, /* 810 */ 52, 52, 51, 233, 309, 409, 259, 412, 409, 50, /* 820 */ 47, 146, 357, 318, 355, 598, 134, 527, 352, 337, /* 830 */ 412, 409, 356, 412, 357, 409, 357, 618, 598, 98, /* 840 */ 129, 598, 102, 618, 587, 581, 412, 21, 235, 618, /* 850 */ 412, 618, 211, 143, 598, 101, 30, 167, 598, 93, /* 860 */ 350, 535, 203, 57, 58, 48, 579, 578, 580, 580, /* 870 */ 55, 55, 56, 56, 56, 56, 409, 54, 54, 54, /* 880 */ 54, 53, 53, 52, 52, 52, 51, 233, 309, 409, /* 890 */ 526, 412, 409, 425, 215, 305, 597, 551, 141, 598, /* 900 */ 100, 40, 409, 38, 412, 409, 550, 412, 409, 228, /* 910 */ 220, 314, 598, 77, 500, 598, 96, 412, 587, 581, /* 920 */ 412, 338, 253, 412, 218, 598, 137, 379, 598, 136, /* 930 */ 28, 598, 135, 270, 715, 210, 481, 57, 58, 48, /* 940 */ 579, 578, 580, 580, 55, 55, 56, 56, 56, 56, /* 950 */ 409, 54, 54, 54, 54, 53, 53, 52, 52, 52, /* 960 */ 51, 233, 309, 409, 272, 412, 409, 315, 147, 597, /* 970 */ 272, 626, 2, 598, 76, 209, 409, 127, 412, 618, /* 980 */ 126, 412, 409, 621, 235, 618, 598, 90, 374, 598, /* 990 */ 89, 412, 587, 581, 27, 260, 350, 412, 618, 598, /* 1000 */ 75, 321, 541, 541, 125, 598, 88, 320, 278, 597, /* 1010 */ 618, 57, 46, 48, 579, 578, 580, 580, 55, 55, /* 1020 */ 56, 56, 56, 56, 409, 54, 54, 54, 54, 53, /* 1030 */ 53, 52, 52, 52, 51, 233, 309, 409, 450, 412, /* 1040 */ 164, 284, 282, 272, 609, 424, 304, 598, 87, 370, /* 1050 */ 409, 477, 412, 409, 608, 409, 607, 602, 618, 618, /* 1060 */ 598, 99, 586, 585, 122, 412, 587, 581, 412, 618, /* 1070 */ 412, 618, 618, 598, 86, 366, 598, 17, 598, 85, /* 1080 */ 319, 185, 519, 518, 583, 582, 58, 48, 579, 578, /* 1090 */ 580, 580, 55, 55, 56, 56, 56, 56, 409, 54, /* 1100 */ 54, 54, 54, 53, 53, 52, 52, 52, 51, 233, /* 1110 */ 309, 584, 409, 412, 409, 260, 260, 260, 408, 591, /* 1120 */ 474, 598, 84, 170, 409, 466, 518, 412, 121, 412, /* 1130 */ 618, 618, 618, 618, 618, 598, 83, 598, 72, 412, /* 1140 */ 587, 581, 51, 233, 625, 329, 470, 598, 71, 257, /* 1150 */ 159, 120, 14, 462, 157, 158, 117, 260, 448, 447, /* 1160 */ 446, 48, 579, 578, 580, 580, 55, 55, 56, 56, /* 1170 */ 56, 56, 618, 54, 54, 54, 54, 53, 53, 52, /* 1180 */ 52, 52, 51, 233, 44, 403, 260, 3, 409, 459, /* 1190 */ 260, 413, 619, 118, 398, 10, 25, 24, 554, 348, /* 1200 */ 217, 618, 406, 412, 409, 618, 4, 44, 403, 618, /* 1210 */ 3, 598, 82, 618, 413, 619, 455, 542, 115, 412, /* 1220 */ 538, 401, 536, 274, 506, 406, 251, 598, 81, 216, /* 1230 */ 273, 563, 618, 243, 453, 618, 154, 618, 618, 618, /* 1240 */ 449, 416, 623, 110, 401, 618, 409, 236, 64, 123, /* 1250 */ 487, 41, 42, 531, 563, 204, 409, 267, 43, 411, /* 1260 */ 410, 412, 265, 592, 108, 618, 107, 434, 332, 598, /* 1270 */ 80, 412, 618, 263, 41, 42, 443, 618, 409, 598, /* 1280 */ 70, 43, 411, 410, 433, 261, 592, 149, 618, 597, /* 1290 */ 256, 237, 188, 412, 590, 590, 590, 589, 588, 13, /* 1300 */ 618, 598, 18, 328, 235, 618, 44, 403, 360, 3, /* 1310 */ 418, 461, 339, 413, 619, 227, 124, 590, 590, 590, /* 1320 */ 589, 588, 13, 618, 406, 409, 618, 409, 139, 34, /* 1330 */ 403, 387, 3, 148, 622, 312, 413, 619, 311, 330, /* 1340 */ 412, 460, 412, 401, 180, 353, 412, 406, 598, 79, /* 1350 */ 598, 78, 250, 563, 598, 9, 618, 612, 611, 610, /* 1360 */ 618, 8, 452, 442, 242, 415, 401, 618, 239, 235, /* 1370 */ 179, 238, 428, 41, 42, 288, 563, 618, 618, 618, /* 1380 */ 43, 411, 410, 618, 144, 592, 618, 618, 177, 61, /* 1390 */ 618, 596, 391, 620, 619, 287, 41, 42, 414, 618, /* 1400 */ 293, 30, 393, 43, 411, 410, 292, 618, 592, 31, /* 1410 */ 618, 395, 291, 60, 230, 37, 590, 590, 590, 589, /* 1420 */ 588, 13, 214, 553, 183, 290, 172, 301, 300, 299, /* 1430 */ 178, 297, 595, 563, 451, 29, 285, 390, 540, 590, /* 1440 */ 590, 590, 589, 588, 13, 283, 520, 534, 150, 533, /* 1450 */ 241, 281, 384, 192, 191, 324, 515, 514, 276, 240, /* 1460 */ 510, 523, 307, 511, 128, 592, 509, 225, 226, 486, /* 1470 */ 485, 224, 152, 491, 464, 306, 484, 163, 153, 371, /* 1480 */ 478, 151, 162, 258, 369, 161, 367, 208, 475, 476, /* 1490 */ 26, 160, 465, 140, 361, 131, 590, 590, 590, 116, /* 1500 */ 119, 454, 343, 155, 114, 342, 113, 112, 445, 111, /* 1510 */ 130, 109, 431, 316, 426, 430, 23, 429, 20, 606, /* 1520 */ 190, 507, 255, 341, 244, 63, 294, 593, 310, 570, /* 1530 */ 277, 402, 354, 235, 567, 496, 495, 492, 494, 302, /* 1540 */ 458, 378, 286, 245, 566, 5, 252, 547, 193, 444, /* 1550 */ 233, 340, 207, 524, 368, 505, 334, 522, 499, 399, /* 1560 */ 295, 498, 956, 488, }; static const YYCODETYPE yy_lookahead[] = { /* 0 */ 19, 142, 143, 144, 145, 24, 1, 26, 77, 78, /* 10 */ 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, /* 20 */ 89, 90, 91, 92, 26, 27, 15, 26, 27, 197, /* 30 */ 49, 50, 77, 78, 79, 80, 204, 82, 83, 84, /* 40 */ 85, 86, 87, 88, 89, 90, 91, 92, 23, 68, |
︙ | ︙ | |||
111541 111542 111543 111544 111545 111546 111547 | /* 1420 */ 133, 134, 5, 157, 157, 202, 118, 10, 11, 12, /* 1430 */ 13, 14, 203, 66, 17, 104, 210, 121, 211, 129, /* 1440 */ 130, 131, 132, 133, 134, 210, 175, 211, 31, 211, /* 1450 */ 33, 210, 104, 86, 87, 47, 175, 183, 175, 42, /* 1460 */ 103, 94, 178, 177, 22, 98, 175, 92, 228, 175, /* 1470 */ 175, 228, 55, 183, 57, 178, 175, 156, 61, 18, /* 1480 */ 157, 64, 156, 235, 157, 156, 45, 157, 236, 157, | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 110717 110718 110719 110720 110721 110722 110723 110724 110725 110726 110727 110728 110729 110730 110731 110732 110733 110734 110735 110736 110737 110738 110739 110740 110741 110742 110743 110744 110745 110746 110747 110748 110749 110750 110751 110752 110753 110754 110755 110756 110757 110758 110759 110760 110761 110762 110763 110764 110765 110766 110767 110768 110769 110770 110771 110772 110773 110774 110775 110776 110777 110778 110779 110780 110781 110782 110783 110784 110785 110786 110787 110788 110789 110790 110791 110792 110793 110794 110795 110796 110797 110798 110799 110800 110801 110802 110803 110804 110805 110806 110807 110808 110809 110810 110811 110812 110813 110814 110815 110816 110817 110818 110819 110820 110821 110822 110823 110824 110825 110826 110827 110828 110829 110830 110831 110832 110833 110834 110835 110836 110837 110838 110839 110840 110841 110842 110843 110844 110845 110846 110847 110848 110849 110850 110851 110852 110853 110854 110855 110856 110857 110858 110859 110860 110861 110862 110863 110864 110865 110866 110867 110868 110869 110870 110871 110872 110873 110874 110875 110876 110877 110878 110879 110880 110881 110882 110883 110884 110885 110886 110887 110888 | /* 1420 */ 133, 134, 5, 157, 157, 202, 118, 10, 11, 12, /* 1430 */ 13, 14, 203, 66, 17, 104, 210, 121, 211, 129, /* 1440 */ 130, 131, 132, 133, 134, 210, 175, 211, 31, 211, /* 1450 */ 33, 210, 104, 86, 87, 47, 175, 183, 175, 42, /* 1460 */ 103, 94, 178, 177, 22, 98, 175, 92, 228, 175, /* 1470 */ 175, 228, 55, 183, 57, 178, 175, 156, 61, 18, /* 1480 */ 157, 64, 156, 235, 157, 156, 45, 157, 236, 157, /* 1490 */ 135, 156, 189, 68, 157, 218, 129, 130, 131, 22, /* 1500 */ 189, 199, 157, 156, 192, 18, 192, 192, 199, 192, /* 1510 */ 218, 189, 40, 157, 38, 157, 240, 157, 240, 153, /* 1520 */ 196, 181, 105, 106, 107, 243, 198, 166, 111, 230, /* 1530 */ 176, 226, 239, 116, 230, 176, 166, 166, 176, 148, /* 1540 */ 199, 177, 209, 209, 166, 196, 239, 208, 185, 199, /* 1550 */ 92, 209, 233, 173, 234, 182, 139, 173, 182, 191, /* 1560 */ 195, 182, 250, 186, }; #define YY_SHIFT_USE_DFLT (-70) #define YY_SHIFT_COUNT (416) #define YY_SHIFT_MIN (-69) #define YY_SHIFT_MAX (1487) static const short yy_shift_ofst[] = { /* 0 */ 1143, 1188, 1417, 1188, 1287, 1287, 138, 138, -2, -19, /* 10 */ 1287, 1287, 1287, 1287, 347, 362, 129, 129, 795, 1165, /* 20 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, /* 30 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, /* 40 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1310, 1287, /* 50 */ 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, 1287, /* 60 */ 1287, 1287, 286, 362, 362, 538, 538, 231, 1253, 55, /* 70 */ 721, 647, 573, 499, 425, 351, 277, 203, 869, 869, /* 80 */ 869, 869, 869, 869, 869, 869, 869, 869, 869, 869, /* 90 */ 869, 869, 869, 943, 869, 1017, 1091, 1091, -69, -45, /* 100 */ -45, -45, -45, -45, -1, 24, 245, 362, 362, 362, /* 110 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, /* 120 */ 362, 362, 362, 388, 356, 362, 362, 362, 362, 362, /* 130 */ 732, 868, 231, 1051, 1458, -70, -70, -70, 1367, 57, /* 140 */ 434, 434, 289, 291, 285, 1, 204, 572, 539, 362, /* 150 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, /* 160 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, /* 170 */ 362, 362, 362, 362, 362, 362, 362, 362, 362, 362, /* 180 */ 362, 506, 506, 506, 705, 1253, 1253, 1253, -70, -70, /* 190 */ -70, 171, 171, 160, 502, 502, 502, 446, 432, 511, /* 200 */ 422, 358, 335, -12, -12, -12, -12, 576, 294, -12, /* 210 */ -12, 295, 595, 141, 600, 730, 723, 723, 805, 730, /* 220 */ 805, 439, 911, 231, 865, 231, 865, 807, 865, 723, /* 230 */ 766, 633, 633, 231, 284, 63, 608, 1476, 1308, 1308, /* 240 */ 1472, 1472, 1308, 1477, 1425, 1275, 1487, 1487, 1487, 1487, /* 250 */ 1308, 1461, 1275, 1477, 1425, 1425, 1308, 1461, 1355, 1441, /* 260 */ 1308, 1308, 1461, 1308, 1461, 1308, 1461, 1442, 1348, 1348, /* 270 */ 1348, 1408, 1375, 1375, 1442, 1348, 1357, 1348, 1408, 1348, /* 280 */ 1348, 1316, 1331, 1316, 1331, 1316, 1331, 1308, 1308, 1280, /* 290 */ 1288, 1289, 1285, 1279, 1275, 1253, 1336, 1346, 1346, 1338, /* 300 */ 1338, 1338, 1338, -70, -70, -70, -70, -70, -70, 1013, /* 310 */ 467, 612, 84, 179, -28, 870, 410, 761, 760, 667, /* 320 */ 650, 531, 220, 361, 331, 125, 127, 97, 1306, 1300, /* 330 */ 1270, 1151, 1272, 1203, 1232, 1261, 1244, 1148, 1174, 1139, /* 340 */ 1156, 1124, 1220, 1115, 1210, 1233, 1099, 1193, 1184, 1174, /* 350 */ 1173, 1029, 1121, 1120, 1085, 1162, 1119, 1037, 1152, 1147, /* 360 */ 1129, 1046, 1011, 1093, 1098, 1075, 1061, 1032, 960, 1057, /* 370 */ 1031, 1030, 899, 938, 982, 936, 972, 958, 910, 955, /* 380 */ 875, 885, 908, 857, 859, 867, 804, 590, 834, 747, /* 390 */ 818, 513, 611, 741, 673, 637, 611, 606, 603, 579, /* 400 */ 501, 541, 468, 386, 445, 395, 376, 281, 185, 120, /* 410 */ 92, 75, 45, 114, 25, 11, 5, }; #define YY_REDUCE_USE_DFLT (-169) #define YY_REDUCE_COUNT (308) #define YY_REDUCE_MIN (-168) #define YY_REDUCE_MAX (1391) static const short yy_reduce_ofst[] = { /* 0 */ -141, 90, 1095, 222, 158, 156, 19, 17, 10, -104, /* 10 */ 378, 316, 311, 12, 180, 249, 598, 464, 397, 1181, /* 20 */ 1177, 1175, 1128, 1106, 1096, 1054, 1038, 974, 964, 962, /* 30 */ 948, 905, 903, 900, 887, 874, 832, 826, 816, 813, /* 40 */ 800, 758, 755, 752, 742, 739, 726, 685, 681, 668, /* 50 */ 665, 652, 607, 604, 594, 591, 578, 530, 528, 526, /* 60 */ 385, 18, 477, 466, 519, 444, 350, 435, 405, 488, /* 70 */ 488, 488, 488, 488, 488, 488, 488, 488, 488, 488, /* 80 */ 488, 488, 488, 488, 488, 488, 488, 488, 488, 488, /* 90 */ 488, 488, 488, 488, 488, 488, 488, 488, 488, 488, /* 100 */ 488, 488, 488, 488, 488, 488, 488, 1040, 678, 1036, /* 110 */ 1007, 967, 966, 965, 845, 686, 610, 684, 317, 672, /* 120 */ 893, 327, 623, 522, -7, 820, 814, 157, 154, 101, /* 130 */ 702, 494, 580, 488, 488, 488, 488, 488, 614, 586, /* 140 */ 935, 892, 968, 1245, 1242, 1234, 1225, 798, 798, 1222, /* 150 */ 1221, 1218, 1214, 1213, 1212, 1202, 1195, 1191, 1161, 1158, /* 160 */ 1140, 1135, 1123, 1112, 1107, 1100, 1080, 1074, 1073, 1072, /* 170 */ 1070, 1067, 1048, 1044, 969, 968, 907, 906, 904, 894, /* 180 */ 833, 837, 836, 340, 827, 815, 775, 68, 722, 646, /* 190 */ -168, 1384, 1380, 1377, 1379, 1376, 1373, 1339, 1365, 1368, /* 200 */ 1365, 1365, 1365, 1365, 1365, 1365, 1365, 1320, 1319, 1365, /* 210 */ 1365, 1339, 1378, 1349, 1391, 1350, 1342, 1334, 1307, 1341, /* 220 */ 1293, 1364, 1363, 1371, 1362, 1370, 1359, 1340, 1354, 1333, /* 230 */ 1305, 1304, 1299, 1361, 1328, 1324, 1366, 1282, 1360, 1358, /* 240 */ 1278, 1276, 1356, 1292, 1322, 1309, 1317, 1315, 1314, 1312, /* 250 */ 1345, 1347, 1302, 1277, 1311, 1303, 1337, 1335, 1252, 1248, /* 260 */ 1332, 1330, 1329, 1327, 1326, 1323, 1321, 1297, 1301, 1295, /* 270 */ 1294, 1290, 1243, 1240, 1284, 1291, 1286, 1283, 1274, 1281, /* 280 */ 1271, 1238, 1241, 1236, 1235, 1227, 1226, 1267, 1266, 1189, /* 290 */ 1229, 1223, 1211, 1206, 1201, 1197, 1239, 1237, 1219, 1216, /* 300 */ 1209, 1208, 1185, 1089, 1086, 1087, 1137, 1136, 1164, }; static const YYACTIONTYPE yy_default[] = { /* 0 */ 632, 866, 954, 954, 866, 866, 954, 954, 954, 756, /* 10 */ 954, 954, 954, 864, 954, 954, 784, 784, 928, 954, /* 20 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 30 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 40 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 50 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 60 */ 954, 954, 954, 954, 954, 954, 954, 671, 760, 790, /* 70 */ 954, 954, 954, 954, 954, 954, 954, 954, 927, 929, /* 80 */ 798, 797, 907, 771, 795, 788, 792, 867, 860, 861, /* 90 */ 859, 863, 868, 954, 791, 827, 844, 826, 838, 843, /* 100 */ 850, 842, 839, 829, 828, 830, 831, 954, 954, 954, /* 110 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 120 */ 954, 954, 954, 658, 725, 954, 954, 954, 954, 954, /* 130 */ 954, 954, 954, 832, 833, 847, 846, 845, 954, 663, /* 140 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 150 */ 934, 932, 954, 879, 954, 954, 954, 954, 954, 954, /* 160 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 170 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 180 */ 638, 756, 756, 756, 632, 954, 954, 954, 946, 760, /* 190 */ 750, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 200 */ 954, 954, 954, 800, 739, 917, 919, 954, 900, 737, /* 210 */ 660, 758, 673, 748, 640, 794, 773, 773, 912, 794, /* 220 */ 912, 696, 719, 954, 784, 954, 784, 693, 784, 773, /* 230 */ 862, 954, 954, 954, 757, 748, 954, 939, 764, 764, /* 240 */ 931, 931, 764, 806, 729, 794, 736, 736, 736, 736, /* 250 */ 764, 655, 794, 806, 729, 729, 764, 655, 906, 904, /* 260 */ 764, 764, 655, 764, 655, 764, 655, 872, 727, 727, /* 270 */ 727, 711, 876, 876, 872, 727, 696, 727, 711, 727, /* 280 */ 727, 777, 772, 777, 772, 777, 772, 764, 764, 954, /* 290 */ 789, 778, 787, 785, 794, 954, 714, 648, 648, 637, /* 300 */ 637, 637, 637, 951, 951, 946, 698, 698, 681, 954, /* 310 */ 954, 954, 954, 954, 954, 954, 881, 954, 954, 954, /* 320 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 633, /* 330 */ 941, 954, 954, 938, 954, 954, 954, 954, 799, 954, /* 340 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 916, /* 350 */ 954, 954, 954, 954, 954, 954, 954, 910, 954, 954, /* 360 */ 954, 954, 954, 954, 903, 902, 954, 954, 954, 954, /* 370 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 380 */ 954, 954, 954, 954, 954, 954, 954, 954, 954, 954, /* 390 */ 954, 954, 786, 954, 779, 954, 865, 954, 954, 954, /* 400 */ 954, 954, 954, 954, 954, 954, 954, 742, 815, 954, /* 410 */ 814, 818, 813, 665, 954, 646, 954, 629, 634, 950, /* 420 */ 953, 952, 949, 948, 947, 942, 940, 937, 936, 935, /* 430 */ 933, 930, 926, 885, 883, 890, 889, 888, 887, 886, /* 440 */ 884, 882, 880, 801, 796, 793, 925, 878, 738, 735, /* 450 */ 734, 654, 943, 909, 918, 805, 804, 807, 915, 914, /* 460 */ 913, 911, 908, 895, 803, 802, 730, 870, 869, 657, /* 470 */ 899, 898, 897, 901, 905, 896, 766, 656, 653, 662, /* 480 */ 717, 718, 726, 724, 723, 722, 721, 720, 716, 664, /* 490 */ 672, 710, 695, 694, 875, 877, 874, 873, 703, 702, /* 500 */ 708, 707, 706, 705, 704, 701, 700, 699, 692, 691, /* 510 */ 697, 690, 713, 712, 709, 689, 733, 732, 731, 728, /* 520 */ 688, 687, 686, 818, 685, 684, 824, 823, 811, 854, /* 530 */ 753, 752, 751, 763, 762, 775, 774, 809, 808, 776, /* 540 */ 761, 755, 754, 770, 769, 768, 767, 759, 749, 781, /* 550 */ 783, 782, 780, 856, 765, 853, 924, 923, 922, 921, /* 560 */ 920, 858, 857, 825, 822, 676, 677, 893, 892, 894, /* 570 */ 891, 679, 678, 675, 674, 855, 744, 743, 851, 848, /* 580 */ 840, 836, 852, 849, 841, 837, 835, 834, 820, 819, /* 590 */ 817, 816, 812, 821, 667, 745, 741, 740, 810, 747, /* 600 */ 746, 683, 682, 680, 661, 659, 652, 650, 649, 651, /* 610 */ 647, 645, 644, 643, 642, 641, 670, 669, 668, 666, /* 620 */ 665, 639, 636, 635, 631, 630, 628, }; /* The next table maps tokens into fallback tokens. If a construct ** like the following: ** ** %fallback ID X Y Z. ** |
︙ | ︙ | |||
112170 112171 112172 112173 112174 112175 112176 | /* 235 */ "case_else ::=", /* 236 */ "case_operand ::= expr", /* 237 */ "case_operand ::=", /* 238 */ "exprlist ::= nexprlist", /* 239 */ "exprlist ::=", /* 240 */ "nexprlist ::= nexprlist COMMA expr", /* 241 */ "nexprlist ::= expr", | | | 111346 111347 111348 111349 111350 111351 111352 111353 111354 111355 111356 111357 111358 111359 111360 | /* 235 */ "case_else ::=", /* 236 */ "case_operand ::= expr", /* 237 */ "case_operand ::=", /* 238 */ "exprlist ::= nexprlist", /* 239 */ "exprlist ::=", /* 240 */ "nexprlist ::= nexprlist COMMA expr", /* 241 */ "nexprlist ::= expr", /* 242 */ "cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP", /* 243 */ "uniqueflag ::= UNIQUE", /* 244 */ "uniqueflag ::=", /* 245 */ "idxlist_opt ::=", /* 246 */ "idxlist_opt ::= LP idxlist RP", /* 247 */ "idxlist ::= idxlist COMMA nm collate sortorder", /* 248 */ "idxlist ::= nm collate sortorder", /* 249 */ "collate ::=", |
︙ | ︙ | |||
112889 112890 112891 112892 112893 112894 112895 | { 226, 0 }, { 224, 1 }, { 224, 0 }, { 220, 1 }, { 220, 0 }, { 215, 3 }, { 215, 1 }, | | | 112065 112066 112067 112068 112069 112070 112071 112072 112073 112074 112075 112076 112077 112078 112079 | { 226, 0 }, { 224, 1 }, { 224, 0 }, { 220, 1 }, { 220, 0 }, { 215, 3 }, { 215, 1 }, { 147, 11 }, { 227, 1 }, { 227, 0 }, { 178, 0 }, { 178, 3 }, { 187, 5 }, { 187, 3 }, { 228, 0 }, |
︙ | ︙ | |||
113331 113332 113333 113334 113335 113336 113337 | {yygotominor.yy159 = yymsp[0].minor.yy159;} break; case 114: /* select ::= select multiselect_op oneselect */ { if( yymsp[0].minor.yy159 ){ yymsp[0].minor.yy159->op = (u8)yymsp[-1].minor.yy392; yymsp[0].minor.yy159->pPrior = yymsp[-2].minor.yy159; | < | 112507 112508 112509 112510 112511 112512 112513 112514 112515 112516 112517 112518 112519 112520 | {yygotominor.yy159 = yymsp[0].minor.yy159;} break; case 114: /* select ::= select multiselect_op oneselect */ { if( yymsp[0].minor.yy159 ){ yymsp[0].minor.yy159->op = (u8)yymsp[-1].minor.yy392; yymsp[0].minor.yy159->pPrior = yymsp[-2].minor.yy159; }else{ sqlite3SelectDelete(pParse->db, yymsp[-2].minor.yy159); } yygotominor.yy159 = yymsp[0].minor.yy159; } break; case 116: /* multiselect_op ::= UNION ALL */ |
︙ | ︙ | |||
113894 113895 113896 113897 113898 113899 113900 | break; case 240: /* nexprlist ::= nexprlist COMMA expr */ {yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy442,yymsp[0].minor.yy342.pExpr);} break; case 241: /* nexprlist ::= expr */ {yygotominor.yy442 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy342.pExpr);} break; | | | | | | 113069 113070 113071 113072 113073 113074 113075 113076 113077 113078 113079 113080 113081 113082 113083 113084 113085 113086 113087 | break; case 240: /* nexprlist ::= nexprlist COMMA expr */ {yygotominor.yy442 = sqlite3ExprListAppend(pParse,yymsp[-2].minor.yy442,yymsp[0].minor.yy342.pExpr);} break; case 241: /* nexprlist ::= expr */ {yygotominor.yy442 = sqlite3ExprListAppend(pParse,0,yymsp[0].minor.yy342.pExpr);} break; case 242: /* cmd ::= createkw uniqueflag INDEX ifnotexists nm dbnm ON nm LP idxlist RP */ { sqlite3CreateIndex(pParse, &yymsp[-6].minor.yy0, &yymsp[-5].minor.yy0, sqlite3SrcListAppend(pParse->db,0,&yymsp[-3].minor.yy0,0), yymsp[-1].minor.yy442, yymsp[-9].minor.yy392, &yymsp[-10].minor.yy0, &yymsp[0].minor.yy0, SQLITE_SO_ASC, yymsp[-7].minor.yy392); } break; case 243: /* uniqueflag ::= UNIQUE */ case 296: /* raisetype ::= ABORT */ yytestcase(yyruleno==296); {yygotominor.yy392 = OE_Abort;} break; case 244: /* uniqueflag ::= */ |
︙ | ︙ | |||
114824 114825 114826 114827 114828 114829 114830 114831 114832 114833 114834 114835 114836 114837 | testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case '-': { if( z[1]=='-' ){ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } *tokenType = TK_MINUS; return 1; } | > | 113999 114000 114001 114002 114003 114004 114005 114006 114007 114008 114009 114010 114011 114012 114013 | testcase( z[0]=='\r' ); for(i=1; sqlite3Isspace(z[i]); i++){} *tokenType = TK_SPACE; return i; } case '-': { if( z[1]=='-' ){ /* IMP: R-50417-27976 -- syntax diagram for comments */ for(i=2; (c=z[i])!=0 && c!='\n'; i++){} *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } *tokenType = TK_MINUS; return 1; } |
︙ | ︙ | |||
114856 114857 114858 114859 114860 114861 114862 114863 114864 114865 114866 114867 114868 114869 | return 1; } case '/': { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case '%': { *tokenType = TK_REM; | > | 114032 114033 114034 114035 114036 114037 114038 114039 114040 114041 114042 114043 114044 114045 114046 | return 1; } case '/': { if( z[1]!='*' || z[2]==0 ){ *tokenType = TK_SLASH; return 1; } /* IMP: R-50417-27976 -- syntax diagram for comments */ for(i=3, c=z[2]; (c!='*' || z[i]!='/') && (c=z[i])!=0; i++){} if( c ) i++; *tokenType = TK_SPACE; /* IMP: R-22934-25134 */ return i; } case '%': { *tokenType = TK_REM; |
︙ | ︙ | |||
115095 115096 115097 115098 115099 115100 115101 | int lastTokenParsed = -1; /* type of the previous token */ u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */ sqlite3 *db = pParse->db; /* The database connection */ int mxSqlLen; /* Max length of an SQL string */ mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; | | | 114272 114273 114274 114275 114276 114277 114278 114279 114280 114281 114282 114283 114284 114285 114286 | int lastTokenParsed = -1; /* type of the previous token */ u8 enableLookaside; /* Saved value of db->lookaside.bEnabled */ sqlite3 *db = pParse->db; /* The database connection */ int mxSqlLen; /* Max length of an SQL string */ mxSqlLen = db->aLimit[SQLITE_LIMIT_SQL_LENGTH]; if( db->activeVdbeCnt==0 ){ db->u1.isInterrupted = 0; } pParse->rc = SQLITE_OK; pParse->zTail = zSql; i = 0; assert( pzErrMsg!=0 ); pEngine = sqlite3ParserAlloc((void*(*)(size_t))sqlite3Malloc); |
︙ | ︙ | |||
115717 115718 115719 115720 115721 115722 115723 | ** ** * Recursive calls to this routine from thread X return immediately ** without blocking. */ SQLITE_API int sqlite3_initialize(void){ MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ int rc; /* Result code */ | < < < | 114894 114895 114896 114897 114898 114899 114900 114901 114902 114903 114904 114905 114906 114907 | ** ** * Recursive calls to this routine from thread X return immediately ** without blocking. */ SQLITE_API int sqlite3_initialize(void){ MUTEX_LOGIC( sqlite3_mutex *pMaster; ) /* The main static mutex */ int rc; /* Result code */ #ifdef SQLITE_OMIT_WSD rc = sqlite3_wsd_init(4096, 24); if( rc!=SQLITE_OK ){ return rc; } #endif |
︙ | ︙ | |||
115817 115818 115819 115820 115821 115822 115823 | sqlite3GlobalConfig.isPCacheInit = 1; rc = sqlite3OsInit(); } if( rc==SQLITE_OK ){ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); sqlite3GlobalConfig.isInit = 1; | < < < | 114991 114992 114993 114994 114995 114996 114997 114998 114999 115000 115001 115002 115003 115004 | sqlite3GlobalConfig.isPCacheInit = 1; rc = sqlite3OsInit(); } if( rc==SQLITE_OK ){ sqlite3PCacheBufferSetup( sqlite3GlobalConfig.pPage, sqlite3GlobalConfig.szPage, sqlite3GlobalConfig.nPage); sqlite3GlobalConfig.isInit = 1; } sqlite3GlobalConfig.inProgress = 0; } sqlite3_mutex_leave(sqlite3GlobalConfig.pInitMutex); /* Go back under the static mutex and clean up the recursive ** mutex to prevent a resource leak. |
︙ | ︙ | |||
115860 115861 115862 115863 115864 115865 115866 | #endif #endif /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT ** compile-time option. */ #ifdef SQLITE_EXTRA_INIT | | | 115031 115032 115033 115034 115035 115036 115037 115038 115039 115040 115041 115042 115043 115044 115045 | #endif #endif /* Do extra initialization steps requested by the SQLITE_EXTRA_INIT ** compile-time option. */ #ifdef SQLITE_EXTRA_INIT if( rc==SQLITE_OK && sqlite3GlobalConfig.isInit ){ int SQLITE_EXTRA_INIT(const char*); rc = SQLITE_EXTRA_INIT(0); } #endif return rc; } |
︙ | ︙ | |||
116048 116049 116050 116051 116052 116053 116054 | ** back to NULL pointers too. This will cause the malloc to go ** back to its default implementation when sqlite3_initialize() is ** run. */ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); }else{ /* The heap pointer is not NULL, then install one of the | | | | | 115219 115220 115221 115222 115223 115224 115225 115226 115227 115228 115229 115230 115231 115232 115233 115234 115235 115236 115237 115238 115239 115240 115241 115242 115243 115244 115245 115246 115247 115248 115249 115250 115251 115252 115253 | ** back to NULL pointers too. This will cause the malloc to go ** back to its default implementation when sqlite3_initialize() is ** run. */ memset(&sqlite3GlobalConfig.m, 0, sizeof(sqlite3GlobalConfig.m)); }else{ /* The heap pointer is not NULL, then install one of the ** mem5.c/mem3.c methods. If neither ENABLE_MEMSYS3 nor ** ENABLE_MEMSYS5 is defined, return an error. */ #ifdef SQLITE_ENABLE_MEMSYS3 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys3(); #endif #ifdef SQLITE_ENABLE_MEMSYS5 sqlite3GlobalConfig.m = *sqlite3MemGetMemsys5(); #endif } break; } #endif case SQLITE_CONFIG_LOOKASIDE: { sqlite3GlobalConfig.szLookaside = va_arg(ap, int); sqlite3GlobalConfig.nLookaside = va_arg(ap, int); break; } /* Record a pointer to the logger funcction and its first argument. ** The default is NULL. Logging is disabled if the function pointer is ** NULL. */ case SQLITE_CONFIG_LOG: { /* MSVC is picky about pulling func ptrs from va lists. ** http://support.microsoft.com/kb/47961 ** sqlite3GlobalConfig.xLog = va_arg(ap, void(*)(void*,int,const char*)); |
︙ | ︙ | |||
116307 116308 116309 116310 116311 116312 116313 | } return rc; } /* ** Another built-in collating sequence: NOCASE. ** | | | 115478 115479 115480 115481 115482 115483 115484 115485 115486 115487 115488 115489 115490 115491 115492 | } return rc; } /* ** Another built-in collating sequence: NOCASE. ** ** This collating sequence is intended to be used for "case independant ** comparison". SQLite's knowledge of upper and lower case equivalents ** extends only to the 26 characters used in the English language. ** ** At the moment there is only a UTF-8 implementation. */ static int nocaseCollatingFunc( void *NotUsed, |
︙ | ︙ | |||
116454 116455 116456 116457 116458 116459 116460 116461 116462 116463 116464 116465 116466 116467 | if( !forceZombie && connectionIsBusy(db) ){ sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized " "statements or unfinished backups"); sqlite3_mutex_leave(db->mutex); return SQLITE_BUSY; } #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Closing the handle. Fourth parameter is passed the value 2. */ sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); } #endif | > > > > > > | 115625 115626 115627 115628 115629 115630 115631 115632 115633 115634 115635 115636 115637 115638 115639 115640 115641 115642 115643 115644 | if( !forceZombie && connectionIsBusy(db) ){ sqlite3Error(db, SQLITE_BUSY, "unable to close due to unfinalized " "statements or unfinished backups"); sqlite3_mutex_leave(db->mutex); return SQLITE_BUSY; } /* If a transaction is open, roll it back. This also ensures that if ** any database schemas have been modified by the current transaction ** they are reset. And that the required b-tree mutex is held to make ** the the pager rollback and schema reset an atomic operation. */ sqlite3RollbackAll(db, SQLITE_OK); #ifdef SQLITE_ENABLE_SQLLOG if( sqlite3GlobalConfig.xSqllog ){ /* Closing the handle. Fourth parameter is passed the value 2. */ sqlite3GlobalConfig.xSqllog(sqlite3GlobalConfig.pSqllogArg, db, 0, 2); } #endif |
︙ | ︙ | |||
116508 116509 116510 116511 116512 116513 116514 | /* If we reach this point, it means that the database connection has ** closed all sqlite3_stmt and sqlite3_backup objects and has been ** passed to sqlite3_close (meaning that it is a zombie). Therefore, ** go ahead and free all resources. */ | < < < < < < | 115685 115686 115687 115688 115689 115690 115691 115692 115693 115694 115695 115696 115697 115698 | /* If we reach this point, it means that the database connection has ** closed all sqlite3_stmt and sqlite3_backup objects and has been ** passed to sqlite3_close (meaning that it is a zombie). Therefore, ** go ahead and free all resources. */ /* Free any outstanding Savepoint structures. */ sqlite3CloseSavepoints(db); /* Close all database connections */ for(j=0; j<db->nDb; j++){ struct Db *pDb = &db->aDb[j]; if( pDb->pBt ){ |
︙ | ︙ | |||
116614 116615 116616 116617 116618 116619 116620 | ** attempts to use that cursor. */ SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){ int i; int inTrans = 0; assert( sqlite3_mutex_held(db->mutex) ); sqlite3BeginBenignMalloc(); | < < < < < < < < > < < | 115785 115786 115787 115788 115789 115790 115791 115792 115793 115794 115795 115796 115797 115798 115799 115800 115801 115802 115803 115804 115805 115806 115807 115808 115809 115810 115811 115812 115813 115814 115815 115816 115817 115818 115819 115820 | ** attempts to use that cursor. */ SQLITE_PRIVATE void sqlite3RollbackAll(sqlite3 *db, int tripCode){ int i; int inTrans = 0; assert( sqlite3_mutex_held(db->mutex) ); sqlite3BeginBenignMalloc(); sqlite3BtreeEnterAll(db); for(i=0; i<db->nDb; i++){ Btree *p = db->aDb[i].pBt; if( p ){ if( sqlite3BtreeIsInTrans(p) ){ inTrans = 1; } sqlite3BtreeRollback(p, tripCode); db->aDb[i].inTrans = 0; } } sqlite3VtabRollback(db); sqlite3EndBenignMalloc(); if( (db->flags&SQLITE_InternChanges)!=0 && db->init.busy==0 ){ sqlite3ExpirePreparedStatements(db); sqlite3ResetAllSchemasOfConnection(db); } sqlite3BtreeLeaveAll(db); /* Any deferred constraint violations have now been resolved. */ db->nDeferredCons = 0; /* If one has been configured, invoke the rollback-hook callback */ if( db->xRollbackCallback && (inTrans || !db->autoCommit) ){ db->xRollbackCallback(db->pRollbackArg); } } |
︙ | ︙ | |||
116671 116672 116673 116674 116675 116676 116677 | case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; case SQLITE_PERM: zName = "SQLITE_PERM"; break; case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; | < | 115833 115834 115835 115836 115837 115838 115839 115840 115841 115842 115843 115844 115845 115846 | case SQLITE_ERROR: zName = "SQLITE_ERROR"; break; case SQLITE_INTERNAL: zName = "SQLITE_INTERNAL"; break; case SQLITE_PERM: zName = "SQLITE_PERM"; break; case SQLITE_ABORT: zName = "SQLITE_ABORT"; break; case SQLITE_ABORT_ROLLBACK: zName = "SQLITE_ABORT_ROLLBACK"; break; case SQLITE_BUSY: zName = "SQLITE_BUSY"; break; case SQLITE_BUSY_RECOVERY: zName = "SQLITE_BUSY_RECOVERY"; break; case SQLITE_LOCKED: zName = "SQLITE_LOCKED"; break; case SQLITE_LOCKED_SHAREDCACHE: zName = "SQLITE_LOCKED_SHAREDCACHE";break; case SQLITE_NOMEM: zName = "SQLITE_NOMEM"; break; case SQLITE_READONLY: zName = "SQLITE_READONLY"; break; case SQLITE_READONLY_RECOVERY: zName = "SQLITE_READONLY_RECOVERY"; break; case SQLITE_READONLY_CANTLOCK: zName = "SQLITE_READONLY_CANTLOCK"; break; case SQLITE_READONLY_ROLLBACK: zName = "SQLITE_READONLY_ROLLBACK"; break; |
︙ | ︙ | |||
116706 116707 116708 116709 116710 116711 116712 | case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; | < | 115867 115868 115869 115870 115871 115872 115873 115874 115875 115876 115877 115878 115879 115880 | case SQLITE_IOERR_SHMOPEN: zName = "SQLITE_IOERR_SHMOPEN"; break; case SQLITE_IOERR_SHMSIZE: zName = "SQLITE_IOERR_SHMSIZE"; break; case SQLITE_IOERR_SHMLOCK: zName = "SQLITE_IOERR_SHMLOCK"; break; case SQLITE_IOERR_SHMMAP: zName = "SQLITE_IOERR_SHMMAP"; break; case SQLITE_IOERR_SEEK: zName = "SQLITE_IOERR_SEEK"; break; case SQLITE_IOERR_DELETE_NOENT: zName = "SQLITE_IOERR_DELETE_NOENT";break; case SQLITE_IOERR_MMAP: zName = "SQLITE_IOERR_MMAP"; break; case SQLITE_CORRUPT: zName = "SQLITE_CORRUPT"; break; case SQLITE_CORRUPT_VTAB: zName = "SQLITE_CORRUPT_VTAB"; break; case SQLITE_NOTFOUND: zName = "SQLITE_NOTFOUND"; break; case SQLITE_FULL: zName = "SQLITE_FULL"; break; case SQLITE_CANTOPEN: zName = "SQLITE_CANTOPEN"; break; case SQLITE_CANTOPEN_NOTEMPDIR: zName = "SQLITE_CANTOPEN_NOTEMPDIR";break; case SQLITE_CANTOPEN_ISDIR: zName = "SQLITE_CANTOPEN_ISDIR"; break; |
︙ | ︙ | |||
116746 116747 116748 116749 116750 116751 116752 | case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; case SQLITE_ROW: zName = "SQLITE_ROW"; break; case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; case SQLITE_NOTICE_RECOVER_ROLLBACK: zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; | < | 115906 115907 115908 115909 115910 115911 115912 115913 115914 115915 115916 115917 115918 115919 | case SQLITE_NOTADB: zName = "SQLITE_NOTADB"; break; case SQLITE_ROW: zName = "SQLITE_ROW"; break; case SQLITE_NOTICE: zName = "SQLITE_NOTICE"; break; case SQLITE_NOTICE_RECOVER_WAL: zName = "SQLITE_NOTICE_RECOVER_WAL";break; case SQLITE_NOTICE_RECOVER_ROLLBACK: zName = "SQLITE_NOTICE_RECOVER_ROLLBACK"; break; case SQLITE_WARNING: zName = "SQLITE_WARNING"; break; case SQLITE_DONE: zName = "SQLITE_DONE"; break; } } if( zName==0 ){ static char zBuf[50]; sqlite3_snprintf(sizeof(zBuf), zBuf, "SQLITE_UNKNOWN(%d)", origRc); zName = zBuf; |
︙ | ︙ | |||
116907 116908 116909 116910 116911 116912 116913 | int nOps, int (*xProgress)(void*), void *pArg ){ sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; | | | 116066 116067 116068 116069 116070 116071 116072 116073 116074 116075 116076 116077 116078 116079 116080 | int nOps, int (*xProgress)(void*), void *pArg ){ sqlite3_mutex_enter(db->mutex); if( nOps>0 ){ db->xProgress = xProgress; db->nProgressOps = nOps; db->pProgressArg = pArg; }else{ db->xProgress = 0; db->nProgressOps = 0; db->pProgressArg = 0; } sqlite3_mutex_leave(db->mutex); |
︙ | ︙ | |||
117005 117006 117007 117008 117009 117010 117011 | /* Check if an existing function is being overridden or deleted. If so, ** and there are active VMs, then return SQLITE_BUSY. If a function ** is being overridden/deleted but there are no active VMs, allow the ** operation to continue but invalidate all precompiled statements. */ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); if( p && p->iPrefEnc==enc && p->nArg==nArg ){ | | | 116164 116165 116166 116167 116168 116169 116170 116171 116172 116173 116174 116175 116176 116177 116178 | /* Check if an existing function is being overridden or deleted. If so, ** and there are active VMs, then return SQLITE_BUSY. If a function ** is being overridden/deleted but there are no active VMs, allow the ** operation to continue but invalidate all precompiled statements. */ p = sqlite3FindFunction(db, zFunctionName, nName, nArg, (u8)enc, 0); if( p && p->iPrefEnc==enc && p->nArg==nArg ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "unable to delete/modify user-function due to active statements"); assert( !db->mallocFailed ); return SQLITE_BUSY; }else{ sqlite3ExpirePreparedStatements(db); } |
︙ | ︙ | |||
117586 117587 117588 117589 117590 117591 117592 | /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); if( pColl && pColl->xCmp ){ | | | 116745 116746 116747 116748 116749 116750 116751 116752 116753 116754 116755 116756 116757 116758 116759 | /* Check if this call is removing or replacing an existing collation ** sequence. If so, and there are active VMs, return busy. If there ** are no active VMs, invalidate any pre-compiled statements. */ pColl = sqlite3FindCollSeq(db, (u8)enc2, zName, 0); if( pColl && pColl->xCmp ){ if( db->activeVdbeCnt ){ sqlite3Error(db, SQLITE_BUSY, "unable to delete/modify collation sequence due to active statements"); return SQLITE_BUSY; } sqlite3ExpirePreparedStatements(db); /* If collation sequence pColl was created directly by a call to |
︙ | ︙ | |||
117784 117785 117786 117787 117788 117789 117790 | ** method that there may be extra parameters following the file-name. */ flags |= SQLITE_OPEN_URI; for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); zFile = sqlite3_malloc(nByte); if( !zFile ) return SQLITE_NOMEM; | < < > > > < | 116943 116944 116945 116946 116947 116948 116949 116950 116951 116952 116953 116954 116955 116956 116957 116958 116959 116960 116961 116962 116963 116964 116965 116966 116967 116968 116969 116970 | ** method that there may be extra parameters following the file-name. */ flags |= SQLITE_OPEN_URI; for(iIn=0; iIn<nUri; iIn++) nByte += (zUri[iIn]=='&'); zFile = sqlite3_malloc(nByte); if( !zFile ) return SQLITE_NOMEM; /* Discard the scheme and authority segments of the URI. */ if( zUri[5]=='/' && zUri[6]=='/' ){ iIn = 7; while( zUri[iIn] && zUri[iIn]!='/' ) iIn++; if( iIn!=7 && (iIn!=16 || memcmp("localhost", &zUri[7], 9)) ){ *pzErrMsg = sqlite3_mprintf("invalid uri authority: %.*s", iIn-7, &zUri[7]); rc = SQLITE_ERROR; goto parse_uri_out; } }else{ iIn = 5; } /* Copy the filename and any query parameters into the zFile buffer. ** Decode %HH escape codes along the way. ** ** Within this loop, variable eState may be set to 0, 1 or 2, depending ** on the parsing context. As follows: ** |
︙ | ︙ | |||
118061 118062 118063 118064 118065 118066 118067 | assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->autoCommit = 1; db->nextAutovac = -1; db->szMmap = sqlite3GlobalConfig.szMmap; db->nextPagesize = 0; | | < < < | 117220 117221 117222 117223 117224 117225 117226 117227 117228 117229 117230 117231 117232 117233 117234 | assert( sizeof(db->aLimit)==sizeof(aHardLimit) ); memcpy(db->aLimit, aHardLimit, sizeof(db->aLimit)); db->autoCommit = 1; db->nextAutovac = -1; db->szMmap = sqlite3GlobalConfig.szMmap; db->nextPagesize = 0; db->flags |= SQLITE_ShortColNames | SQLITE_AutoIndex | SQLITE_EnableTrigger #if SQLITE_DEFAULT_FILE_FORMAT<4 | SQLITE_LegacyFileFmt #endif #ifdef SQLITE_ENABLE_LOAD_EXTENSION | SQLITE_LoadExtension #endif #if SQLITE_DEFAULT_RECURSIVE_TRIGGERS |
︙ | ︙ | |||
118404 118405 118406 118407 118408 118409 118410 118411 118412 118413 118414 118415 118416 118417 | #endif /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. */ SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){ return db->autoCommit; } /* ** The following routines are subtitutes for constants SQLITE_CORRUPT, | > > | 117560 117561 117562 117563 117564 117565 117566 117567 117568 117569 117570 117571 117572 117573 117574 117575 | #endif /* ** Test to see whether or not the database connection is in autocommit ** mode. Return TRUE if it is and FALSE if not. Autocommit mode is on ** by default. Autocommit is disabled by a BEGIN statement and reenabled ** by the next COMMIT or ROLLBACK. ** ******* THIS IS AN EXPERIMENTAL API AND IS SUBJECT TO CHANGE ****** */ SQLITE_API int sqlite3_get_autocommit(sqlite3 *db){ return db->autoCommit; } /* ** The following routines are subtitutes for constants SQLITE_CORRUPT, |
︙ | ︙ | |||
119606 119607 119608 119609 119610 119611 119612 | # define SQLITE_ENABLE_FTS3 #endif #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* If not building as part of the core, include sqlite3ext.h. */ #ifndef SQLITE_CORE | | | 118764 118765 118766 118767 118768 118769 118770 118771 118772 118773 118774 118775 118776 118777 118778 | # define SQLITE_ENABLE_FTS3 #endif #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* If not building as part of the core, include sqlite3ext.h. */ #ifndef SQLITE_CORE SQLITE_API extern const sqlite3_api_routines *sqlite3_api; #endif /************** Include fts3_tokenizer.h in the middle of fts3Int.h **********/ /************** Begin file fts3_tokenizer.h **********************************/ /* ** 2006 July 10 ** |
︙ | ︙ | |||
119891 119892 119893 119894 119895 119896 119897 | */ #define fts3HashCount(H) ((H)->count) #endif /* _FTS3_HASH_H_ */ /************** End of fts3_hash.h *******************************************/ /************** Continuing where we left off in fts3Int.h ********************/ | < < < < < < < < < < < < | 119049 119050 119051 119052 119053 119054 119055 119056 119057 119058 119059 119060 119061 119062 | */ #define fts3HashCount(H) ((H)->count) #endif /* _FTS3_HASH_H_ */ /************** End of fts3_hash.h *******************************************/ /************** Continuing where we left off in fts3Int.h ********************/ /* ** This constant controls how often segments are merged. Once there are ** FTS3_MERGE_COUNT segments of level N, they are merged into a single ** segment of level N+1. */ #define FTS3_MERGE_COUNT 16 |
︙ | ︙ | |||
120059 120060 120061 120062 120063 120064 120065 | struct Fts3Table { sqlite3_vtab base; /* Base class used by SQLite core */ sqlite3 *db; /* The database connection */ const char *zDb; /* logical database name */ const char *zName; /* virtual table name */ int nColumn; /* number of named columns in virtual table */ char **azColumn; /* column names. malloced */ | < | 119205 119206 119207 119208 119209 119210 119211 119212 119213 119214 119215 119216 119217 119218 | struct Fts3Table { sqlite3_vtab base; /* Base class used by SQLite core */ sqlite3 *db; /* The database connection */ const char *zDb; /* logical database name */ const char *zName; /* virtual table name */ int nColumn; /* number of named columns in virtual table */ char **azColumn; /* column names. malloced */ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ char *zContentTbl; /* content=xxx option, or NULL */ char *zLanguageid; /* languageid=xxx option, or NULL */ u8 bAutoincrmerge; /* True if automerge=1 */ u32 nLeafAdd; /* Number of leaf blocks added this trans */ /* Precompiled statements used by the implementation. Each of these |
︙ | ︙ | |||
120287 120288 120289 120290 120291 120292 120293 120294 120295 120296 120297 120298 120299 120300 | SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); SQLITE_PRIVATE int sqlite3Fts3SegReaderPending( Fts3Table*,int,const char*,int,int,Fts3SegReader**); SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*); SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); #ifndef SQLITE_DISABLE_FTS4_DEFERRED SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); | > | 119432 119433 119434 119435 119436 119437 119438 119439 119440 119441 119442 119443 119444 119445 119446 | SQLITE_PRIVATE int sqlite3Fts3Optimize(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); SQLITE_PRIVATE int sqlite3Fts3SegReaderPending( Fts3Table*,int,const char*,int,int,Fts3SegReader**); SQLITE_PRIVATE void sqlite3Fts3SegReaderFree(Fts3SegReader *); SQLITE_PRIVATE int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *); SQLITE_PRIVATE int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*); SQLITE_PRIVATE int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); SQLITE_PRIVATE int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); #ifndef SQLITE_DISABLE_FTS4_DEFERRED SQLITE_PRIVATE void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); |
︙ | ︙ | |||
121219 121220 121221 121222 121223 121224 121225 | int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ char *zContent = 0; /* content=? parameter (or NULL) */ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ | < < < | | | < < < < < < < < < | 120365 120366 120367 120368 120369 120370 120371 120372 120373 120374 120375 120376 120377 120378 120379 120380 120381 120382 120383 120384 120385 120386 120387 120388 120389 120390 | int bNoDocsize = 0; /* True to omit %_docsize table */ int bDescIdx = 0; /* True to store descending indexes */ char *zPrefix = 0; /* Prefix parameter value (or NULL) */ char *zCompress = 0; /* compress=? parameter (or NULL) */ char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ char *zContent = 0; /* content=? parameter (or NULL) */ char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ assert( strlen(argv[0])==4 ); assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) ); nDb = (int)strlen(argv[1]) + 1; nName = (int)strlen(argv[2]) + 1; aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) ); if( !aCol ) return SQLITE_NOMEM; memset((void *)aCol, 0, sizeof(const char *) * (argc-2)); /* Loop through all of the arguments passed by the user to the FTS3/4 ** module (i.e. all the column names and special arguments). This loop ** does the following: ** ** + Figures out the number of columns the FTSX table will have, and ** the number of bytes of space that must be allocated to store copies |
︙ | ︙ | |||
121281 121282 121283 121284 121285 121286 121287 | } aFts4Opt[] = { { "matchinfo", 9 }, /* 0 -> MATCHINFO */ { "prefix", 6 }, /* 1 -> PREFIX */ { "compress", 8 }, /* 2 -> COMPRESS */ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ { "order", 5 }, /* 4 -> ORDER */ { "content", 7 }, /* 5 -> CONTENT */ | | < | 120415 120416 120417 120418 120419 120420 120421 120422 120423 120424 120425 120426 120427 120428 120429 | } aFts4Opt[] = { { "matchinfo", 9 }, /* 0 -> MATCHINFO */ { "prefix", 6 }, /* 1 -> PREFIX */ { "compress", 8 }, /* 2 -> COMPRESS */ { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ { "order", 5 }, /* 4 -> ORDER */ { "content", 7 }, /* 5 -> CONTENT */ { "languageid", 10 } /* 6 -> LANGUAGEID */ }; int iOpt; if( !zVal ){ rc = SQLITE_NOMEM; }else{ for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){ |
︙ | ︙ | |||
121348 121349 121350 121351 121352 121353 121354 | case 6: /* LANGUAGEID */ assert( iOpt==6 ); sqlite3_free(zLanguageid); zLanguageid = zVal; zVal = 0; break; | < < < < < | 120481 120482 120483 120484 120485 120486 120487 120488 120489 120490 120491 120492 120493 120494 | case 6: /* LANGUAGEID */ assert( iOpt==6 ); sqlite3_free(zLanguageid); zLanguageid = zVal; zVal = 0; break; } } sqlite3_free(zVal); } } /* Otherwise, the argument is a column name. */ |
︙ | ︙ | |||
121424 121425 121426 121427 121428 121429 121430 | } if( rc!=SQLITE_OK ) goto fts3_init_out; /* Allocate and populate the Fts3Table structure. */ nByte = sizeof(Fts3Table) + /* Fts3Table */ nCol * sizeof(char *) + /* azColumn */ nIndex * sizeof(struct Fts3Index) + /* aIndex */ | < | 120552 120553 120554 120555 120556 120557 120558 120559 120560 120561 120562 120563 120564 120565 | } if( rc!=SQLITE_OK ) goto fts3_init_out; /* Allocate and populate the Fts3Table structure. */ nByte = sizeof(Fts3Table) + /* Fts3Table */ nCol * sizeof(char *) + /* azColumn */ nIndex * sizeof(struct Fts3Index) + /* aIndex */ nName + /* zName */ nDb + /* zDb */ nString; /* Space for azColumn strings */ p = (Fts3Table*)sqlite3_malloc(nByte); if( p==0 ){ rc = SQLITE_NOMEM; goto fts3_init_out; |
︙ | ︙ | |||
121458 121459 121460 121461 121462 121463 121464 | p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); p->nIndex = nIndex; for(i=0; i<nIndex; i++){ fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1); } | < | < < < < < < < < < < < < < < < < < < < | | 120585 120586 120587 120588 120589 120590 120591 120592 120593 120594 120595 120596 120597 120598 120599 120600 120601 120602 120603 120604 120605 120606 120607 120608 120609 120610 120611 120612 120613 120614 120615 120616 120617 120618 120619 120620 120621 120622 | p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); p->nIndex = nIndex; for(i=0; i<nIndex; i++){ fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1); } /* Fill in the zName and zDb fields of the vtab structure. */ zCsr = (char *)&p->aIndex[nIndex]; p->zName = zCsr; memcpy(zCsr, argv[2], nName); zCsr += nName; p->zDb = zCsr; memcpy(zCsr, argv[1], nDb); zCsr += nDb; /* Fill in the azColumn array */ for(iCol=0; iCol<nCol; iCol++){ char *z; int n = 0; z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n); memcpy(zCsr, z, n); zCsr[n] = '\0'; sqlite3Fts3Dequote(zCsr); p->azColumn[iCol] = zCsr; zCsr += n+1; assert( zCsr <= &((char *)p)[nByte] ); } if( (zCompress==0)!=(zUncompress==0) ){ char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); rc = SQLITE_ERROR; *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss); } p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); if( rc!=SQLITE_OK ) goto fts3_init_out; |
︙ | ︙ | |||
121542 121543 121544 121545 121546 121547 121548 | fts3_init_out: sqlite3_free(zPrefix); sqlite3_free(aIndex); sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free(zContent); sqlite3_free(zLanguageid); | < < | 120649 120650 120651 120652 120653 120654 120655 120656 120657 120658 120659 120660 120661 120662 120663 | fts3_init_out: sqlite3_free(zPrefix); sqlite3_free(aIndex); sqlite3_free(zCompress); sqlite3_free(zUncompress); sqlite3_free(zContent); sqlite3_free(zLanguageid); sqlite3_free((void *)aCol); if( rc!=SQLITE_OK ){ if( p ){ fts3DisconnectMethod((sqlite3_vtab *)p); }else if( pTokenizer ){ pTokenizer->pModule->xDestroy(pTokenizer); } }else{ |
︙ | ︙ | |||
121602 121603 121604 121605 121606 121607 121608 | int iLangidCons = -1; /* Index of langid=x constraint, if present */ /* By default use a full table scan. This is an expensive option, ** so search through the constraints to see if a more efficient ** strategy is possible. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; | | | 120707 120708 120709 120710 120711 120712 120713 120714 120715 120716 120717 120718 120719 120720 120721 | int iLangidCons = -1; /* Index of langid=x constraint, if present */ /* By default use a full table scan. This is an expensive option, ** so search through the constraints to see if a more efficient ** strategy is possible. */ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; pInfo->estimatedCost = 500000; for(i=0; i<pInfo->nConstraint; i++){ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; if( pCons->usable==0 ) continue; /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ |
︙ | ︙ | |||
123163 123164 123165 123166 123167 123168 123169 123170 123171 123172 123173 123174 123175 123176 123177 | p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, &p->base.zErrMsg ); if( rc!=SQLITE_OK ){ return rc; } rc = fts3EvalStart(pCsr); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } /* Compile a SELECT statement for this cursor. For a full-table-scan, the | > > > > | 122268 122269 122270 122271 122272 122273 122274 122275 122276 122277 122278 122279 122280 122281 122282 122283 122284 122285 122286 | p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, &p->base.zErrMsg ); if( rc!=SQLITE_OK ){ return rc; } rc = sqlite3Fts3ReadLock(p); if( rc!=SQLITE_OK ) return rc; rc = fts3EvalStart(pCsr); sqlite3Fts3SegmentsClose(p); if( rc!=SQLITE_OK ) return rc; pCsr->pNextId = pCsr->aDoclist; pCsr->iPrevId = 0; } /* Compile a SELECT statement for this cursor. For a full-table-scan, the |
︙ | ︙ | |||
125514 125515 125516 125517 125518 125519 125520 | } #endif #if !SQLITE_CORE /* ** Initialize API pointer table, if required. */ | < < < | | 124623 124624 124625 124626 124627 124628 124629 124630 124631 124632 124633 124634 124635 124636 124637 | } #endif #if !SQLITE_CORE /* ** Initialize API pointer table, if required. */ SQLITE_API int sqlite3_extension_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3Fts3Init(db); } |
︙ | ︙ | |||
127021 127022 127023 127024 127025 127026 127027 127028 127029 127030 127031 127032 | int bFts4, /* True to allow FTS4-only syntax */ int nCol, /* Number of entries in azCol[] */ int iDefaultCol, /* Default column to query */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ int rc = fts3ExprParseUnbalanced( pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr ); /* Rebalance the expression. And check that its depth does not exceed | > | | | | < | 126127 126128 126129 126130 126131 126132 126133 126134 126135 126136 126137 126138 126139 126140 126141 126142 126143 126144 126145 126146 126147 126148 126149 126150 126151 126152 126153 126154 126155 126156 126157 126158 126159 126160 | int bFts4, /* True to allow FTS4-only syntax */ int nCol, /* Number of entries in azCol[] */ int iDefaultCol, /* Default column to query */ const char *z, int n, /* Text of MATCH query */ Fts3Expr **ppExpr, /* OUT: Parsed query structure */ char **pzErr /* OUT: Error message (sqlite3_malloc) */ ){ static const int MAX_EXPR_DEPTH = 12; int rc = fts3ExprParseUnbalanced( pTokenizer, iLangid, azCol, bFts4, nCol, iDefaultCol, z, n, ppExpr ); /* Rebalance the expression. And check that its depth does not exceed ** MAX_EXPR_DEPTH. */ if( rc==SQLITE_OK && *ppExpr ){ rc = fts3ExprBalance(ppExpr, MAX_EXPR_DEPTH); if( rc==SQLITE_OK ){ rc = fts3ExprCheckDepth(*ppExpr, MAX_EXPR_DEPTH); } } if( rc!=SQLITE_OK ){ sqlite3Fts3ExprFree(*ppExpr); *ppExpr = 0; if( rc==SQLITE_TOOBIG ){ *pzErr = sqlite3_mprintf( "FTS expression tree is too large (maximum depth %d)", MAX_EXPR_DEPTH ); rc = SQLITE_ERROR; }else if( rc==SQLITE_ERROR ){ *pzErr = sqlite3_mprintf("malformed MATCH expression: [%s]", z); } } |
︙ | ︙ | |||
128535 128536 128537 128538 128539 128540 128541 | sqlite3_free(zCopy); return rc; } #ifdef SQLITE_TEST | | | 127641 127642 127643 127644 127645 127646 127647 127648 127649 127650 127651 127652 127653 127654 127655 | sqlite3_free(zCopy); return rc; } #ifdef SQLITE_TEST /* #include <tcl.h> */ /* #include <string.h> */ /* ** Implementation of a special SQL scalar function for testing tokenizers ** designed to be used in concert with the Tcl testing framework. This ** function must be called with two or more arguments: ** |
︙ | ︙ | |||
130002 130003 130004 130005 130006 130007 130008 | rc = sqlite3_reset(pStmt); } *pRC = rc; } /* | | | | | > > | | > | | | | | > > | | > | | < | > > | 129108 129109 129110 129111 129112 129113 129114 129115 129116 129117 129118 129119 129120 129121 129122 129123 129124 129125 129126 129127 129128 129129 129130 129131 129132 129133 129134 129135 129136 129137 129138 129139 129140 129141 129142 129143 129144 129145 129146 129147 129148 129149 129150 129151 129152 | rc = sqlite3_reset(pStmt); } *pRC = rc; } /* ** This function ensures that the caller has obtained a shared-cache ** table-lock on the %_content table. This is required before reading ** data from the fts3 table. If this lock is not acquired first, then ** the caller may end up holding read-locks on the %_segments and %_segdir ** tables, but no read-lock on the %_content table. If this happens ** a second connection will be able to write to the fts3 table, but ** attempting to commit those writes might return SQLITE_LOCKED or ** SQLITE_LOCKED_SHAREDCACHE (because the commit attempts to obtain ** write-locks on the %_segments and %_segdir ** tables). ** ** We try to avoid this because if FTS3 returns any error when committing ** a transaction, the whole transaction will be rolled back. And this is ** not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. It can ** still happen if the user reads data directly from the %_segments or ** %_segdir tables instead of going through FTS3 though. ** ** This reasoning does not apply to a content=xxx table. */ SQLITE_PRIVATE int sqlite3Fts3ReadLock(Fts3Table *p){ int rc; /* Return code */ sqlite3_stmt *pStmt; /* Statement used to obtain lock */ if( p->zContentTbl==0 ){ rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pStmt, 0); if( rc==SQLITE_OK ){ sqlite3_bind_null(pStmt, 1); sqlite3_step(pStmt); rc = sqlite3_reset(pStmt); } }else{ rc = SQLITE_OK; } return rc; } /* ** FTS maintains a separate indexes for each language-id (a 32-bit integer). |
︙ | ︙ | |||
130413 130414 130415 130416 130417 130418 130419 | Fts3Table *p, int iLangid, sqlite3_value **apVal, u32 *aSz ){ int i; /* Iterator variable */ for(i=2; i<p->nColumn+2; i++){ | < < | | | | | | < | 129526 129527 129528 129529 129530 129531 129532 129533 129534 129535 129536 129537 129538 129539 129540 129541 129542 129543 129544 129545 | Fts3Table *p, int iLangid, sqlite3_value **apVal, u32 *aSz ){ int i; /* Iterator variable */ for(i=2; i<p->nColumn+2; i++){ const char *zText = (const char *)sqlite3_value_text(apVal[i]); int rc = fts3PendingTermsAdd(p, iLangid, zText, i-2, &aSz[i-2]); if( rc!=SQLITE_OK ){ return rc; } aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); } return SQLITE_OK; } /* ** This function is called by the xUpdate() method for an INSERT operation. ** The apVal parameter is passed a copy of the apVal argument passed by |
︙ | ︙ | |||
130568 130569 130570 130571 130572 130573 130574 | rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0)); for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ | < < | | | < | 129678 129679 129680 129681 129682 129683 129684 129685 129686 129687 129688 129689 129690 129691 129692 129693 129694 | rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); if( rc==SQLITE_OK ){ if( SQLITE_ROW==sqlite3_step(pSelect) ){ int i; int iLangid = langidFromSelect(p, pSelect); rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0)); for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ const char *zText = (const char *)sqlite3_column_text(pSelect, i); rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[i-1]); aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); } if( rc!=SQLITE_OK ){ sqlite3_reset(pSelect); *pRC = rc; return; } *pbFound = 1; |
︙ | ︙ | |||
130974 130975 130976 130977 130978 130979 130980 | ** following block advances it to point one byte past the end of ** the same offset list. */ while( 1 ){ /* The following line of code (and the "p++" below the while() loop) is ** normally all that is required to move pointer p to the desired ** position. The exception is if this node is being loaded from disk | | | 130081 130082 130083 130084 130085 130086 130087 130088 130089 130090 130091 130092 130093 130094 130095 | ** following block advances it to point one byte past the end of ** the same offset list. */ while( 1 ){ /* The following line of code (and the "p++" below the while() loop) is ** normally all that is required to move pointer p to the desired ** position. The exception is if this node is being loaded from disk ** incrementally and pointer "p" now points to the first byte passed ** the populated part of pReader->aNode[]. */ while( *p | c ) c = *p++ & 0x80; assert( *p==0 ); if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; rc = fts3SegReaderIncrRead(pReader); |
︙ | ︙ | |||
132361 132362 132363 132364 132365 132366 132367 | */ for(i=0; i<nMerge; i++){ fts3SegReaderFirstDocid(p, apSegment[i]); } fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); while( apSegment[0]->pOffsetList ){ int j; /* Number of segments that share a docid */ | | | | 131468 131469 131470 131471 131472 131473 131474 131475 131476 131477 131478 131479 131480 131481 131482 131483 | */ for(i=0; i<nMerge; i++){ fts3SegReaderFirstDocid(p, apSegment[i]); } fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); while( apSegment[0]->pOffsetList ){ int j; /* Number of segments that share a docid */ char *pList; int nList; int nByte; sqlite3_int64 iDocid = apSegment[0]->iDocid; fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); j = 1; while( j<nMerge && apSegment[j]->pOffsetList && apSegment[j]->iDocid==iDocid |
︙ | ︙ | |||
132815 132816 132817 132818 132819 132820 132821 | while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0)); memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ | < | | | < | 131922 131923 131924 131925 131926 131927 131928 131929 131930 131931 131932 131933 131934 131935 131936 131937 131938 | while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ int iCol; int iLangid = langidFromSelect(p, pStmt); rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0)); memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); } if( p->bHasDocsize ){ fts3InsertDocsize(&rc, p, aSz); } if( rc!=SQLITE_OK ){ sqlite3_finalize(pStmt); pStmt = 0; |
︙ | ︙ | |||
134622 134623 134624 134625 134626 134627 134628 | sqlite3_tokenizer *pT = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pT->pModule; assert( pCsr->isRequireSeek==0 ); iDocid = sqlite3_column_int64(pCsr->pStmt, 0); for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ | < | | | | | | | | | | | | | | | | | | | | | | | | | | | | | < | 133727 133728 133729 133730 133731 133732 133733 133734 133735 133736 133737 133738 133739 133740 133741 133742 133743 133744 133745 133746 133747 133748 133749 133750 133751 133752 133753 133754 133755 133756 133757 133758 133759 133760 133761 133762 133763 133764 133765 133766 133767 133768 133769 | sqlite3_tokenizer *pT = p->pTokenizer; sqlite3_tokenizer_module const *pModule = pT->pModule; assert( pCsr->isRequireSeek==0 ); iDocid = sqlite3_column_int64(pCsr->pStmt, 0); for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); sqlite3_tokenizer_cursor *pTC = 0; rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); while( rc==SQLITE_OK ){ char const *zToken; /* Buffer containing token */ int nToken = 0; /* Number of bytes in token */ int iDum1 = 0, iDum2 = 0; /* Dummy variables */ int iPos = 0; /* Position of token in zText */ rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ Fts3PhraseToken *pPT = pDef->pToken; if( (pDef->iCol>=p->nColumn || pDef->iCol==i) && (pPT->bFirst==0 || iPos==0) && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) && (0==memcmp(zToken, pPT->z, pPT->n)) ){ fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); } } } if( pTC ) pModule->xClose(pTC); if( rc==SQLITE_DONE ) rc = SQLITE_OK; } for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ if( pDef->pList ){ rc = fts3PendingListAppendVarint(&pDef->pList, 0); } } } return rc; } |
︙ | ︙ | |||
134813 134814 134815 134816 134817 134818 134819 | if( aSzDel==0 ){ rc = SQLITE_NOMEM; goto update_out; } aSzIns = &aSzDel[p->nColumn+1]; memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); | < < < | 133916 133917 133918 133919 133920 133921 133922 133923 133924 133925 133926 133927 133928 133929 | if( aSzDel==0 ){ rc = SQLITE_NOMEM; goto update_out; } aSzIns = &aSzDel[p->nColumn+1]; memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); /* If this is an INSERT operation, or an UPDATE that modifies the rowid ** value, then this operation requires constraint handling. ** ** If the on-conflict mode is REPLACE, this means that the existing row ** should be deleted from the database before inserting the new row. Or, ** if the on-conflict mode is other than REPLACE, then this method must ** detect the conflict and return SQLITE_CONSTRAINT before beginning to |
︙ | ︙ | |||
135435 135436 135437 135438 135439 135440 135441 | char *zNew = sqlite3_realloc(pStr->z, nAlloc); if( !zNew ){ return SQLITE_NOMEM; } pStr->z = zNew; pStr->nAlloc = nAlloc; } | < | 134535 134536 134537 134538 134539 134540 134541 134542 134543 134544 134545 134546 134547 134548 | char *zNew = sqlite3_realloc(pStr->z, nAlloc); if( !zNew ){ return SQLITE_NOMEM; } pStr->z = zNew; pStr->nAlloc = nAlloc; } /* Append the data to the string buffer. */ memcpy(&pStr->z[pStr->n], zAppend, nAppend); pStr->n += nAppend; pStr->z[pStr->n] = '\0'; return SQLITE_OK; |
︙ | ︙ | |||
136950 136951 136952 136953 136954 136955 136956 | 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804, 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012, 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004, 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002, 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803, 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07, 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02, | | | | | | | | | | | | | | | | | | | | | > | | 136049 136050 136051 136052 136053 136054 136055 136056 136057 136058 136059 136060 136061 136062 136063 136064 136065 136066 136067 136068 136069 136070 136071 136072 136073 136074 136075 136076 136077 136078 136079 136080 136081 136082 136083 136084 | 0x02A00801, 0x02A01801, 0x02A02C01, 0x02A08C09, 0x02A0D804, 0x02A1D004, 0x02A20002, 0x02A2D011, 0x02A33802, 0x02A38012, 0x02A3E003, 0x02A4980A, 0x02A51C0D, 0x02A57C01, 0x02A60004, 0x02A6CC1B, 0x02A77802, 0x02A8A40E, 0x02A90C01, 0x02A93002, 0x02A97004, 0x02A9DC03, 0x02A9EC01, 0x02AAC001, 0x02AAC803, 0x02AADC02, 0x02AAF802, 0x02AB0401, 0x02AB7802, 0x02ABAC07, 0x02ABD402, 0x02AF8C0B, 0x03600001, 0x036DFC02, 0x036FFC02, 0x037FFC02, 0x03E3FC01, 0x03EC7801, 0x03ECA401, 0x03EEC810, 0x03F4F802, 0x03F7F002, 0x03F8001A, 0x03F88007, 0x03F8C023, 0x03F95013, 0x03F9A004, 0x03FBFC01, 0x03FC040F, 0x03FC6807, 0x03FCEC06, 0x03FD6C0B, 0x03FF8007, 0x03FFA007, 0x03FFE405, 0x04040003, 0x0404DC09, 0x0405E411, 0x0406400C, 0x0407402E, 0x040E7C01, 0x040F4001, 0x04215C01, 0x04247C01, 0x0424FC01, 0x04280403, 0x04281402, 0x04283004, 0x0428E003, 0x0428FC01, 0x04294009, 0x0429FC01, 0x042CE407, 0x04400003, 0x0440E016, 0x04420003, 0x0442C012, 0x04440003, 0x04449C0E, 0x04450004, 0x04460003, 0x0446CC0E, 0x04471404, 0x045AAC0D, 0x0491C004, 0x05BD442E, 0x05BE3C04, 0x074000F6, 0x07440027, 0x0744A4B5, 0x07480046, 0x074C0057, 0x075B0401, 0x075B6C01, 0x075BEC01, 0x075C5401, 0x075CD401, 0x075D3C01, 0x075DBC01, 0x075E2401, 0x075EA401, 0x075F0C01, 0x07BBC002, 0x07C0002C, 0x07C0C064, 0x07C2800F, 0x07C2C40E, 0x07C3040F, 0x07C3440F, 0x07C4401F, 0x07C4C03C, 0x07C5C02B, 0x07C7981D, 0x07C8402B, 0x07C90009, 0x07C94002, 0x07CC0021, 0x07CCC006, 0x07CCDC46, 0x07CE0014, 0x07CE8025, 0x07CF1805, 0x07CF8011, 0x07D0003F, 0x07D10001, 0x07D108B6, 0x07D3E404, 0x07D4003E, 0x07D50004, 0x07D54018, 0x07D7EC46, 0x07D9140B, 0x07DA0046, 0x07DC0074, 0x38000401, 0x38008060, 0x380400F0, 0x3C000001, 0x3FFFF401, 0x40000001, 0x43FFF401, }; static const unsigned int aAscii[4] = { 0xFFFFFFFF, 0xFC00FFFF, 0xF8000001, 0xF8000001, }; if( c<128 ){ return ( (aAscii[c >> 5] & (1 << (c & 0x001F)))==0 ); |
︙ | ︙ | |||
140565 140566 140567 140568 140569 140570 140571 | ** the context object when it is no longer required. */ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free ); } #if !SQLITE_CORE | < < < | | 139665 139666 139667 139668 139669 139670 139671 139672 139673 139674 139675 139676 139677 139678 139679 | ** the context object when it is no longer required. */ return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free ); } #if !SQLITE_CORE SQLITE_API int sqlite3_extension_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3RtreeInit(db); } |
︙ | ︙ | |||
140606 140607 140608 140609 140610 140611 140612 | ** ** * An implementation of the SQL regexp() function (and hence REGEXP ** operator) using the ICU uregex_XX() APIs. ** ** * Implementations of the SQL scalar upper() and lower() functions ** for case mapping. ** | | | 139703 139704 139705 139706 139707 139708 139709 139710 139711 139712 139713 139714 139715 139716 139717 | ** ** * An implementation of the SQL regexp() function (and hence REGEXP ** operator) using the ICU uregex_XX() APIs. ** ** * Implementations of the SQL scalar upper() and lower() functions ** for case mapping. ** ** * Integration of ICU and SQLite collation seqences. ** ** * An implementation of the LIKE operator that uses ICU to ** provide case-independent matching. */ #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ICU) |
︙ | ︙ | |||
141070 141071 141072 141073 141074 141075 141076 | ); } return rc; } #if !SQLITE_CORE | < < < | | 140167 140168 140169 140170 140171 140172 140173 140174 140175 140176 140177 140178 140179 140180 140181 | ); } return rc; } #if !SQLITE_CORE SQLITE_API int sqlite3_extension_init( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ SQLITE_EXTENSION_INIT2(pApi) return sqlite3IcuInit(db); } |
︙ | ︙ |
Changes to src/sqlite3.h.
︙ | ︙ | |||
103 104 105 106 107 108 109 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ | | | | | 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | ** string contains the date and time of the check-in (UTC) and an SHA1 ** hash of the entire source tree. ** ** See also: [sqlite3_libversion()], ** [sqlite3_libversion_number()], [sqlite3_sourceid()], ** [sqlite_version()] and [sqlite_source_id()]. */ #define SQLITE_VERSION "3.7.17" #define SQLITE_VERSION_NUMBER 3007017 #define SQLITE_SOURCE_ID "2013-05-15 20:35:13 7e76889d675e4c646158f7f9188d25f155c18876" /* ** CAPI3REF: Run-Time Library Version Numbers ** KEYWORDS: sqlite3_version, sqlite3_sourceid ** ** These interfaces provide the same information as the [SQLITE_VERSION], ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros |
︙ | ︙ | |||
474 475 476 477 478 479 480 | #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) | < < < | 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8)) #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8)) #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8)) #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8)) #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8)) #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8)) #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8)) #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8)) #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8)) #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8)) #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8)) #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8)) #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8)) #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8)) #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8)) #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8)) #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8)) #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8)) #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8)) #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8)) #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8)) #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8)) #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8)) #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8)) #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8)) #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8)) #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8)) #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8)) /* ** CAPI3REF: Flags For File Open Operations ** ** These bit values are intended for use in the ** 3rd parameter to the [sqlite3_open_v2()] interface and ** in the 4th parameter to the [sqlite3_vfs.xOpen] method. |
︙ | ︙ | |||
2556 2557 2558 2559 2560 2561 2562 | ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the | | | < | 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 | ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback ** function X to be invoked periodically during long running calls to ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for ** database connection D. An example use for this ** interface is to keep a GUI updated during a large query. ** ** ^The parameter P is passed through as the only parameter to the ** callback function X. ^The parameter N is the number of ** [virtual machine instructions] that are evaluated between successive ** invocations of the callback X. ** ** ^Only a single progress handler may be defined at one time per ** [database connection]; setting a new progress handler cancels the ** old one. ^Setting parameter X to NULL disables the progress handler. ** ^The progress handler is also disabled by setting N to a value less ** than 1. ** |
︙ | ︙ | |||
4179 4180 4181 4182 4183 4184 4185 | ** registered the application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** | | | | | | < | | > | > | | | > | | < | < | | < | < | < < < | < < < | | | | | 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 | ** registered the application defined function. */ SQLITE_API sqlite3 *sqlite3_context_db_handle(sqlite3_context*); /* ** CAPI3REF: Function Auxiliary Data ** ** The following two functions may be used by scalar SQL functions to ** associate metadata with argument values. If the same value is passed to ** multiple invocations of the same SQL function during query execution, under ** some circumstances the associated metadata may be preserved. This may ** be used, for example, to add a regular-expression matching scalar ** function. The compiled version of the regular expression is stored as ** metadata associated with the SQL value passed as the regular expression ** pattern. The compiled regular expression can be reused on multiple ** invocations of the same function so that the original pattern string ** does not need to be recompiled on each invocation. ** ** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata ** associated by the sqlite3_set_auxdata() function with the Nth argument ** value to the application-defined function. ^If no metadata has been ever ** been set for the Nth argument of the function, or if the corresponding ** function parameter has changed since the meta-data was set, ** then sqlite3_get_auxdata() returns a NULL pointer. ** ** ^The sqlite3_set_auxdata() interface saves the metadata ** pointed to by its 3rd parameter as the metadata for the N-th ** argument of the application-defined function. Subsequent ** calls to sqlite3_get_auxdata() might return this data, if it has ** not been destroyed. ** ^If it is not NULL, SQLite will invoke the destructor ** function given by the 4th parameter to sqlite3_set_auxdata() on ** the metadata when the corresponding function parameter changes ** or when the SQL statement completes, whichever comes first. ** ** SQLite is free to call the destructor and drop metadata on any ** parameter of any function at any time. ^The only guarantee is that ** the destructor will be called before the metadata is dropped. ** ** ^(In practice, metadata is preserved between function calls for ** expressions that are constant at compile time. This includes literal ** values and [parameters].)^ ** ** These routines must be called from the same thread in which ** the SQL function is running. */ SQLITE_API void *sqlite3_get_auxdata(sqlite3_context*, int N); SQLITE_API void sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*)); |
︙ | ︙ | |||
4526 4527 4528 4529 4530 4531 4532 | ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_key( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The key */ ); | < < < < < < < < < < | 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 | ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_key( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The key */ ); /* ** Change the key on an open database. If the current database is not ** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the ** database is decrypted. ** ** The code to implement this API is not available in the public release ** of SQLite. */ SQLITE_API int sqlite3_rekey( sqlite3 *db, /* Database to be rekeyed */ const void *pKey, int nKey /* The new key */ ); /* ** Specify the activation key for a SEE database. Unless ** activated, none of the SEE routines will work. */ SQLITE_API void sqlite3_activate_see( const char *zPassPhrase /* Activation phrase */ |
︙ | ︙ | |||
5134 5135 5136 5137 5138 5139 5140 | ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. ** ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already ** on the list of automatic extensions is a harmless no-op. ^No entry point ** will be called more than once for each database connection that is opened. ** | | < < < < < < < < < < < < < | 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 | ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()], ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail. ** ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already ** on the list of automatic extensions is a harmless no-op. ^No entry point ** will be called more than once for each database connection that is opened. ** ** See also: [sqlite3_reset_auto_extension()]. */ SQLITE_API int sqlite3_auto_extension(void (*xEntryPoint)(void)); /* ** CAPI3REF: Reset Automatic Extension Loading ** ** ^This interface disables all automatic extensions previously ** registered using [sqlite3_auto_extension()]. */ SQLITE_API void sqlite3_reset_auto_extension(void); |
︙ | ︙ | |||
6263 6264 6265 6266 6267 6268 6269 | ** wal file in wal mode databases, or the number of pages written to the ** database file in rollback mode databases. Any pages written as part of ** transaction rollback or database recovery operations are not included. ** If an IO or other error occurs while writing a page to disk, the effect ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. ** </dd> | < < < < < < < | | 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 | ** wal file in wal mode databases, or the number of pages written to the ** database file in rollback mode databases. Any pages written as part of ** transaction rollback or database recovery operations are not included. ** If an IO or other error occurs while writing a page to disk, the effect ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0. ** </dd> ** </dl> */ #define SQLITE_DBSTATUS_LOOKASIDE_USED 0 #define SQLITE_DBSTATUS_CACHE_USED 1 #define SQLITE_DBSTATUS_SCHEMA_USED 2 #define SQLITE_DBSTATUS_STMT_USED 3 #define SQLITE_DBSTATUS_LOOKASIDE_HIT 4 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5 #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6 #define SQLITE_DBSTATUS_CACHE_HIT 7 #define SQLITE_DBSTATUS_CACHE_MISS 8 #define SQLITE_DBSTATUS_CACHE_WRITE 9 #define SQLITE_DBSTATUS_MAX 9 /* Largest defined DBSTATUS */ /* ** CAPI3REF: Prepared Statement Status ** ** ^(Each prepared statement maintains various ** [SQLITE_STMTSTATUS counters] that measure the number |
︙ | ︙ | |||
6336 6337 6338 6339 6340 6341 6342 | ** ** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt> ** <dd>^This is the number of rows inserted into transient indices that ** were created automatically in order to help joins run faster. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run.</dd> | < < < < < < < < < < | 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 | ** ** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt> ** <dd>^This is the number of rows inserted into transient indices that ** were created automatically in order to help joins run faster. ** A non-zero value in this counter may indicate an opportunity to ** improvement performance by adding permanent indices that do not ** need to be reinitialized each time the statement is run.</dd> ** </dl> */ #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1 #define SQLITE_STMTSTATUS_SORT 2 #define SQLITE_STMTSTATUS_AUTOINDEX 3 /* ** CAPI3REF: Custom Page Cache Object ** ** The sqlite3_pcache type is opaque. It is implemented by ** the pluggable module. The SQLite core has no knowledge of ** its size or internal structure and never deals with the |
︙ | ︙ | |||
7229 7230 7231 7232 7233 7234 7235 | #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif | | | 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 | #ifdef SQLITE_OMIT_FLOATING_POINT # undef double #endif #ifdef __cplusplus } /* End of the 'extern "C"' block */ #endif #endif /* ** 2010 August 30 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** |
︙ | ︙ |