000001  /*
000002  ** 2001 September 15
000003  **
000004  ** The author disclaims copyright to this source code.  In place of
000005  ** a legal notice, here is a blessing:
000006  **
000007  **    May you do good and not evil.
000008  **    May you find forgiveness for yourself and forgive others.
000009  **    May you share freely, never taking more than you give.
000010  **
000011  *************************************************************************
000012  ** This file contains C code routines that are called by the SQLite parser
000013  ** when syntax rules are reduced.  The routines in this file handle the
000014  ** following kinds of SQL syntax:
000015  **
000016  **     CREATE TABLE
000017  **     DROP TABLE
000018  **     CREATE INDEX
000019  **     DROP INDEX
000020  **     creating ID lists
000021  **     BEGIN TRANSACTION
000022  **     COMMIT
000023  **     ROLLBACK
000024  */
000025  #include "sqliteInt.h"
000026  
000027  #ifndef SQLITE_OMIT_SHARED_CACHE
000028  /*
000029  ** The TableLock structure is only used by the sqlite3TableLock() and
000030  ** codeTableLocks() functions.
000031  */
000032  struct TableLock {
000033    int iDb;               /* The database containing the table to be locked */
000034    Pgno iTab;             /* The root page of the table to be locked */
000035    u8 isWriteLock;        /* True for write lock.  False for a read lock */
000036    const char *zLockName; /* Name of the table */
000037  };
000038  
000039  /*
000040  ** Record the fact that we want to lock a table at run-time. 
000041  **
000042  ** The table to be locked has root page iTab and is found in database iDb.
000043  ** A read or a write lock can be taken depending on isWritelock.
000044  **
000045  ** This routine just records the fact that the lock is desired.  The
000046  ** code to make the lock occur is generated by a later call to
000047  ** codeTableLocks() which occurs during sqlite3FinishCoding().
000048  */
000049  static SQLITE_NOINLINE void lockTable(
000050    Parse *pParse,     /* Parsing context */
000051    int iDb,           /* Index of the database containing the table to lock */
000052    Pgno iTab,         /* Root page number of the table to be locked */
000053    u8 isWriteLock,    /* True for a write lock */
000054    const char *zName  /* Name of the table to be locked */
000055  ){
000056    Parse *pToplevel;
000057    int i;
000058    int nBytes;
000059    TableLock *p;
000060    assert( iDb>=0 );
000061  
000062    pToplevel = sqlite3ParseToplevel(pParse);
000063    for(i=0; i<pToplevel->nTableLock; i++){
000064      p = &pToplevel->aTableLock[i];
000065      if( p->iDb==iDb && p->iTab==iTab ){
000066        p->isWriteLock = (p->isWriteLock || isWriteLock);
000067        return;
000068      }
000069    }
000070  
000071    nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
000072    pToplevel->aTableLock =
000073        sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
000074    if( pToplevel->aTableLock ){
000075      p = &pToplevel->aTableLock[pToplevel->nTableLock++];
000076      p->iDb = iDb;
000077      p->iTab = iTab;
000078      p->isWriteLock = isWriteLock;
000079      p->zLockName = zName;
000080    }else{
000081      pToplevel->nTableLock = 0;
000082      sqlite3OomFault(pToplevel->db);
000083    }
000084  }
000085  void sqlite3TableLock(
000086    Parse *pParse,     /* Parsing context */
000087    int iDb,           /* Index of the database containing the table to lock */
000088    Pgno iTab,         /* Root page number of the table to be locked */
000089    u8 isWriteLock,    /* True for a write lock */
000090    const char *zName  /* Name of the table to be locked */
000091  ){
000092    if( iDb==1 ) return;
000093    if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
000094    lockTable(pParse, iDb, iTab, isWriteLock, zName);
000095  }
000096  
000097  /*
000098  ** Code an OP_TableLock instruction for each table locked by the
000099  ** statement (configured by calls to sqlite3TableLock()).
000100  */
000101  static void codeTableLocks(Parse *pParse){
000102    int i;
000103    Vdbe *pVdbe = pParse->pVdbe;
000104    assert( pVdbe!=0 );
000105  
000106    for(i=0; i<pParse->nTableLock; i++){
000107      TableLock *p = &pParse->aTableLock[i];
000108      int p1 = p->iDb;
000109      sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
000110                        p->zLockName, P4_STATIC);
000111    }
000112  }
000113  #else
000114    #define codeTableLocks(x)
000115  #endif
000116  
000117  /*
000118  ** Return TRUE if the given yDbMask object is empty - if it contains no
000119  ** 1 bits.  This routine is used by the DbMaskAllZero() and DbMaskNotZero()
000120  ** macros when SQLITE_MAX_ATTACHED is greater than 30.
000121  */
000122  #if SQLITE_MAX_ATTACHED>30
000123  int sqlite3DbMaskAllZero(yDbMask m){
000124    int i;
000125    for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
000126    return 1;
000127  }
000128  #endif
000129  
000130  /*
000131  ** This routine is called after a single SQL statement has been
000132  ** parsed and a VDBE program to execute that statement has been
000133  ** prepared.  This routine puts the finishing touches on the
000134  ** VDBE program and resets the pParse structure for the next
000135  ** parse.
000136  **
000137  ** Note that if an error occurred, it might be the case that
000138  ** no VDBE code was generated.
000139  */
000140  void sqlite3FinishCoding(Parse *pParse){
000141    sqlite3 *db;
000142    Vdbe *v;
000143    int iDb, i;
000144  
000145    assert( pParse->pToplevel==0 );
000146    db = pParse->db;
000147    assert( db->pParse==pParse );
000148    if( pParse->nested ) return;
000149    if( pParse->nErr ){
000150      if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
000151      return;
000152    }
000153    assert( db->mallocFailed==0 );
000154  
000155    /* Begin by generating some termination code at the end of the
000156    ** vdbe program
000157    */
000158    v = pParse->pVdbe;
000159    if( v==0 ){
000160      if( db->init.busy ){
000161        pParse->rc = SQLITE_DONE;
000162        return;
000163      }
000164      v = sqlite3GetVdbe(pParse);
000165      if( v==0 ) pParse->rc = SQLITE_ERROR;
000166    }
000167    assert( !pParse->isMultiWrite
000168         || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
000169    if( v ){
000170      if( pParse->bReturning ){
000171        Returning *pReturning = pParse->u1.pReturning;
000172        int addrRewind;
000173        int reg;
000174  
000175        if( pReturning->nRetCol ){
000176          sqlite3VdbeAddOp0(v, OP_FkCheck);
000177          addrRewind =
000178             sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
000179          VdbeCoverage(v);
000180          reg = pReturning->iRetReg;
000181          for(i=0; i<pReturning->nRetCol; i++){
000182            sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
000183          }
000184          sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
000185          sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
000186          VdbeCoverage(v);
000187          sqlite3VdbeJumpHere(v, addrRewind);
000188        }
000189      }
000190      sqlite3VdbeAddOp0(v, OP_Halt);
000191  
000192  #if SQLITE_USER_AUTHENTICATION
000193      if( pParse->nTableLock>0 && db->init.busy==0 ){
000194        sqlite3UserAuthInit(db);
000195        if( db->auth.authLevel<UAUTH_User ){
000196          sqlite3ErrorMsg(pParse, "user not authenticated");
000197          pParse->rc = SQLITE_AUTH_USER;
000198          return;
000199        }
000200      }
000201  #endif
000202  
000203      /* The cookie mask contains one bit for each database file open.
000204      ** (Bit 0 is for main, bit 1 is for temp, and so forth.)  Bits are
000205      ** set for each database that is used.  Generate code to start a
000206      ** transaction on each used database and to verify the schema cookie
000207      ** on each used database.
000208      */
000209      assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
000210      sqlite3VdbeJumpHere(v, 0);
000211      assert( db->nDb>0 );
000212      iDb = 0;
000213      do{
000214        Schema *pSchema;
000215        if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
000216        sqlite3VdbeUsesBtree(v, iDb);
000217        pSchema = db->aDb[iDb].pSchema;
000218        sqlite3VdbeAddOp4Int(v,
000219          OP_Transaction,                    /* Opcode */
000220          iDb,                               /* P1 */
000221          DbMaskTest(pParse->writeMask,iDb), /* P2 */
000222          pSchema->schema_cookie,            /* P3 */
000223          pSchema->iGeneration               /* P4 */
000224        );
000225        if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
000226        VdbeComment((v,
000227              "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
000228      }while( ++iDb<db->nDb );
000229  #ifndef SQLITE_OMIT_VIRTUALTABLE
000230      for(i=0; i<pParse->nVtabLock; i++){
000231        char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
000232        sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
000233      }
000234      pParse->nVtabLock = 0;
000235  #endif
000236  
000237  #ifndef SQLITE_OMIT_SHARED_CACHE
000238      /* Once all the cookies have been verified and transactions opened,
000239      ** obtain the required table-locks. This is a no-op unless the
000240      ** shared-cache feature is enabled.
000241      */
000242      if( pParse->nTableLock ) codeTableLocks(pParse);
000243  #endif
000244  
000245      /* Initialize any AUTOINCREMENT data structures required.
000246      */
000247      if( pParse->pAinc ) sqlite3AutoincrementBegin(pParse);
000248  
000249      /* Code constant expressions that where factored out of inner loops.
000250      **
000251      ** The pConstExpr list might also contain expressions that we simply
000252      ** want to keep around until the Parse object is deleted.  Such
000253      ** expressions have iConstExprReg==0.  Do not generate code for
000254      ** those expressions, of course.
000255      */
000256      if( pParse->pConstExpr ){
000257        ExprList *pEL = pParse->pConstExpr;
000258        pParse->okConstFactor = 0;
000259        for(i=0; i<pEL->nExpr; i++){
000260          int iReg = pEL->a[i].u.iConstExprReg;
000261          sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
000262        }
000263      }
000264  
000265      if( pParse->bReturning ){
000266        Returning *pRet = pParse->u1.pReturning;
000267        if( pRet->nRetCol ){
000268          sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
000269        }
000270      }
000271  
000272      /* Finally, jump back to the beginning of the executable code. */
000273      sqlite3VdbeGoto(v, 1);
000274    }
000275  
000276    /* Get the VDBE program ready for execution
000277    */
000278    assert( v!=0 || pParse->nErr );
000279    assert( db->mallocFailed==0 || pParse->nErr );
000280    if( pParse->nErr==0 ){
000281      /* A minimum of one cursor is required if autoincrement is used
000282      *  See ticket [a696379c1f08866] */
000283      assert( pParse->pAinc==0 || pParse->nTab>0 );
000284      sqlite3VdbeMakeReady(v, pParse);
000285      pParse->rc = SQLITE_DONE;
000286    }else{
000287      pParse->rc = SQLITE_ERROR;
000288    }
000289  }
000290  
000291  /*
000292  ** Run the parser and code generator recursively in order to generate
000293  ** code for the SQL statement given onto the end of the pParse context
000294  ** currently under construction.  Notes:
000295  **
000296  **   *  The final OP_Halt is not appended and other initialization
000297  **      and finalization steps are omitted because those are handling by the
000298  **      outermost parser.
000299  **
000300  **   *  Built-in SQL functions always take precedence over application-defined
000301  **      SQL functions.  In other words, it is not possible to override a
000302  **      built-in function.
000303  */
000304  void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
000305    va_list ap;
000306    char *zSql;
000307    sqlite3 *db = pParse->db;
000308    u32 savedDbFlags = db->mDbFlags;
000309    char saveBuf[PARSE_TAIL_SZ];
000310  
000311    if( pParse->nErr ) return;
000312    if( pParse->eParseMode ) return;
000313    assert( pParse->nested<10 );  /* Nesting should only be of limited depth */
000314    va_start(ap, zFormat);
000315    zSql = sqlite3VMPrintf(db, zFormat, ap);
000316    va_end(ap);
000317    if( zSql==0 ){
000318      /* This can result either from an OOM or because the formatted string
000319      ** exceeds SQLITE_LIMIT_LENGTH.  In the latter case, we need to set
000320      ** an error */
000321      if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
000322      pParse->nErr++;
000323      return;
000324    }
000325    pParse->nested++;
000326    memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
000327    memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
000328    db->mDbFlags |= DBFLAG_PreferBuiltin;
000329    sqlite3RunParser(pParse, zSql);
000330    db->mDbFlags = savedDbFlags;
000331    sqlite3DbFree(db, zSql);
000332    memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
000333    pParse->nested--;
000334  }
000335  
000336  #if SQLITE_USER_AUTHENTICATION
000337  /*
000338  ** Return TRUE if zTable is the name of the system table that stores the
000339  ** list of users and their access credentials.
000340  */
000341  int sqlite3UserAuthTable(const char *zTable){
000342    return sqlite3_stricmp(zTable, "sqlite_user")==0;
000343  }
000344  #endif
000345  
000346  /*
000347  ** Locate the in-memory structure that describes a particular database
000348  ** table given the name of that table and (optionally) the name of the
000349  ** database containing the table.  Return NULL if not found.
000350  **
000351  ** If zDatabase is 0, all databases are searched for the table and the
000352  ** first matching table is returned.  (No checking for duplicate table
000353  ** names is done.)  The search order is TEMP first, then MAIN, then any
000354  ** auxiliary databases added using the ATTACH command.
000355  **
000356  ** See also sqlite3LocateTable().
000357  */
000358  Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
000359    Table *p = 0;
000360    int i;
000361  
000362    /* All mutexes are required for schema access.  Make sure we hold them. */
000363    assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
000364  #if SQLITE_USER_AUTHENTICATION
000365    /* Only the admin user is allowed to know that the sqlite_user table
000366    ** exists */
000367    if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
000368      return 0;
000369    }
000370  #endif
000371    if( zDatabase ){
000372      for(i=0; i<db->nDb; i++){
000373        if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
000374      }
000375      if( i>=db->nDb ){
000376        /* No match against the official names.  But always match "main"
000377        ** to schema 0 as a legacy fallback. */
000378        if( sqlite3StrICmp(zDatabase,"main")==0 ){
000379          i = 0;
000380        }else{
000381          return 0;
000382        }
000383      }
000384      p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
000385      if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
000386        if( i==1 ){
000387          if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
000388           || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
000389           || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
000390          ){
000391            p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
000392                                LEGACY_TEMP_SCHEMA_TABLE);
000393          }
000394        }else{
000395          if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
000396            p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
000397                                LEGACY_SCHEMA_TABLE);
000398          }
000399        }
000400      }
000401    }else{
000402      /* Match against TEMP first */
000403      p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
000404      if( p ) return p;
000405      /* The main database is second */
000406      p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
000407      if( p ) return p;
000408      /* Attached databases are in order of attachment */
000409      for(i=2; i<db->nDb; i++){
000410        assert( sqlite3SchemaMutexHeld(db, i, 0) );
000411        p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
000412        if( p ) break;
000413      }
000414      if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
000415        if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
000416          p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
000417        }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
000418          p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
000419                              LEGACY_TEMP_SCHEMA_TABLE);
000420        }
000421      }
000422    }
000423    return p;
000424  }
000425  
000426  /*
000427  ** Locate the in-memory structure that describes a particular database
000428  ** table given the name of that table and (optionally) the name of the
000429  ** database containing the table.  Return NULL if not found.  Also leave an
000430  ** error message in pParse->zErrMsg.
000431  **
000432  ** The difference between this routine and sqlite3FindTable() is that this
000433  ** routine leaves an error message in pParse->zErrMsg where
000434  ** sqlite3FindTable() does not.
000435  */
000436  Table *sqlite3LocateTable(
000437    Parse *pParse,         /* context in which to report errors */
000438    u32 flags,             /* LOCATE_VIEW or LOCATE_NOERR */
000439    const char *zName,     /* Name of the table we are looking for */
000440    const char *zDbase     /* Name of the database.  Might be NULL */
000441  ){
000442    Table *p;
000443    sqlite3 *db = pParse->db;
000444  
000445    /* Read the database schema. If an error occurs, leave an error message
000446    ** and code in pParse and return NULL. */
000447    if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
000448     && SQLITE_OK!=sqlite3ReadSchema(pParse)
000449    ){
000450      return 0;
000451    }
000452  
000453    p = sqlite3FindTable(db, zName, zDbase);
000454    if( p==0 ){
000455  #ifndef SQLITE_OMIT_VIRTUALTABLE
000456      /* If zName is the not the name of a table in the schema created using
000457      ** CREATE, then check to see if it is the name of an virtual table that
000458      ** can be an eponymous virtual table. */
000459      if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){
000460        Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
000461        if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
000462          pMod = sqlite3PragmaVtabRegister(db, zName);
000463        }
000464        if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
000465          testcase( pMod->pEpoTab==0 );
000466          return pMod->pEpoTab;
000467        }
000468      }
000469  #endif
000470      if( flags & LOCATE_NOERR ) return 0;
000471      pParse->checkSchema = 1;
000472    }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){
000473      p = 0;
000474    }
000475  
000476    if( p==0 ){
000477      const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
000478      if( zDbase ){
000479        sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
000480      }else{
000481        sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
000482      }
000483    }else{
000484      assert( HasRowid(p) || p->iPKey<0 );
000485    }
000486  
000487    return p;
000488  }
000489  
000490  /*
000491  ** Locate the table identified by *p.
000492  **
000493  ** This is a wrapper around sqlite3LocateTable(). The difference between
000494  ** sqlite3LocateTable() and this function is that this function restricts
000495  ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
000496  ** non-NULL if it is part of a view or trigger program definition. See
000497  ** sqlite3FixSrcList() for details.
000498  */
000499  Table *sqlite3LocateTableItem(
000500    Parse *pParse,
000501    u32 flags,
000502    SrcItem *p
000503  ){
000504    const char *zDb;
000505    assert( p->pSchema==0 || p->zDatabase==0 );
000506    if( p->pSchema ){
000507      int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
000508      zDb = pParse->db->aDb[iDb].zDbSName;
000509    }else{
000510      zDb = p->zDatabase;
000511    }
000512    return sqlite3LocateTable(pParse, flags, p->zName, zDb);
000513  }
000514  
000515  /*
000516  ** Return the preferred table name for system tables.  Translate legacy
000517  ** names into the new preferred names, as appropriate.
000518  */
000519  const char *sqlite3PreferredTableName(const char *zName){
000520    if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
000521      if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
000522        return PREFERRED_SCHEMA_TABLE;
000523      }
000524      if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
000525        return PREFERRED_TEMP_SCHEMA_TABLE;
000526      }
000527    }
000528    return zName;
000529  }
000530  
000531  /*
000532  ** Locate the in-memory structure that describes
000533  ** a particular index given the name of that index
000534  ** and the name of the database that contains the index.
000535  ** Return NULL if not found.
000536  **
000537  ** If zDatabase is 0, all databases are searched for the
000538  ** table and the first matching index is returned.  (No checking
000539  ** for duplicate index names is done.)  The search order is
000540  ** TEMP first, then MAIN, then any auxiliary databases added
000541  ** using the ATTACH command.
000542  */
000543  Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
000544    Index *p = 0;
000545    int i;
000546    /* All mutexes are required for schema access.  Make sure we hold them. */
000547    assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
000548    for(i=OMIT_TEMPDB; i<db->nDb; i++){
000549      int j = (i<2) ? i^1 : i;  /* Search TEMP before MAIN */
000550      Schema *pSchema = db->aDb[j].pSchema;
000551      assert( pSchema );
000552      if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
000553      assert( sqlite3SchemaMutexHeld(db, j, 0) );
000554      p = sqlite3HashFind(&pSchema->idxHash, zName);
000555      if( p ) break;
000556    }
000557    return p;
000558  }
000559  
000560  /*
000561  ** Reclaim the memory used by an index
000562  */
000563  void sqlite3FreeIndex(sqlite3 *db, Index *p){
000564  #ifndef SQLITE_OMIT_ANALYZE
000565    sqlite3DeleteIndexSamples(db, p);
000566  #endif
000567    sqlite3ExprDelete(db, p->pPartIdxWhere);
000568    sqlite3ExprListDelete(db, p->aColExpr);
000569    sqlite3DbFree(db, p->zColAff);
000570    if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
000571  #ifdef SQLITE_ENABLE_STAT4
000572    sqlite3_free(p->aiRowEst);
000573  #endif
000574    sqlite3DbFree(db, p);
000575  }
000576  
000577  /*
000578  ** For the index called zIdxName which is found in the database iDb,
000579  ** unlike that index from its Table then remove the index from
000580  ** the index hash table and free all memory structures associated
000581  ** with the index.
000582  */
000583  void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
000584    Index *pIndex;
000585    Hash *pHash;
000586  
000587    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
000588    pHash = &db->aDb[iDb].pSchema->idxHash;
000589    pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
000590    if( ALWAYS(pIndex) ){
000591      if( pIndex->pTable->pIndex==pIndex ){
000592        pIndex->pTable->pIndex = pIndex->pNext;
000593      }else{
000594        Index *p;
000595        /* Justification of ALWAYS();  The index must be on the list of
000596        ** indices. */
000597        p = pIndex->pTable->pIndex;
000598        while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
000599        if( ALWAYS(p && p->pNext==pIndex) ){
000600          p->pNext = pIndex->pNext;
000601        }
000602      }
000603      sqlite3FreeIndex(db, pIndex);
000604    }
000605    db->mDbFlags |= DBFLAG_SchemaChange;
000606  }
000607  
000608  /*
000609  ** Look through the list of open database files in db->aDb[] and if
000610  ** any have been closed, remove them from the list.  Reallocate the
000611  ** db->aDb[] structure to a smaller size, if possible.
000612  **
000613  ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
000614  ** are never candidates for being collapsed.
000615  */
000616  void sqlite3CollapseDatabaseArray(sqlite3 *db){
000617    int i, j;
000618    for(i=j=2; i<db->nDb; i++){
000619      struct Db *pDb = &db->aDb[i];
000620      if( pDb->pBt==0 ){
000621        sqlite3DbFree(db, pDb->zDbSName);
000622        pDb->zDbSName = 0;
000623        continue;
000624      }
000625      if( j<i ){
000626        db->aDb[j] = db->aDb[i];
000627      }
000628      j++;
000629    }
000630    db->nDb = j;
000631    if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
000632      memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
000633      sqlite3DbFree(db, db->aDb);
000634      db->aDb = db->aDbStatic;
000635    }
000636  }
000637  
000638  /*
000639  ** Reset the schema for the database at index iDb.  Also reset the
000640  ** TEMP schema.  The reset is deferred if db->nSchemaLock is not zero.
000641  ** Deferred resets may be run by calling with iDb<0.
000642  */
000643  void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
000644    int i;
000645    assert( iDb<db->nDb );
000646  
000647    if( iDb>=0 ){
000648      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
000649      DbSetProperty(db, iDb, DB_ResetWanted);
000650      DbSetProperty(db, 1, DB_ResetWanted);
000651      db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
000652    }
000653  
000654    if( db->nSchemaLock==0 ){
000655      for(i=0; i<db->nDb; i++){
000656        if( DbHasProperty(db, i, DB_ResetWanted) ){
000657          sqlite3SchemaClear(db->aDb[i].pSchema);
000658        }
000659      }
000660    }
000661  }
000662  
000663  /*
000664  ** Erase all schema information from all attached databases (including
000665  ** "main" and "temp") for a single database connection.
000666  */
000667  void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
000668    int i;
000669    sqlite3BtreeEnterAll(db);
000670    for(i=0; i<db->nDb; i++){
000671      Db *pDb = &db->aDb[i];
000672      if( pDb->pSchema ){
000673        if( db->nSchemaLock==0 ){
000674          sqlite3SchemaClear(pDb->pSchema);
000675        }else{
000676          DbSetProperty(db, i, DB_ResetWanted);
000677        }
000678      }
000679    }
000680    db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
000681    sqlite3VtabUnlockList(db);
000682    sqlite3BtreeLeaveAll(db);
000683    if( db->nSchemaLock==0 ){
000684      sqlite3CollapseDatabaseArray(db);
000685    }
000686  }
000687  
000688  /*
000689  ** This routine is called when a commit occurs.
000690  */
000691  void sqlite3CommitInternalChanges(sqlite3 *db){
000692    db->mDbFlags &= ~DBFLAG_SchemaChange;
000693  }
000694  
000695  /*
000696  ** Set the expression associated with a column.  This is usually
000697  ** the DEFAULT value, but might also be the expression that computes
000698  ** the value for a generated column.
000699  */
000700  void sqlite3ColumnSetExpr(
000701    Parse *pParse,    /* Parsing context */
000702    Table *pTab,      /* The table containing the column */
000703    Column *pCol,     /* The column to receive the new DEFAULT expression */
000704    Expr *pExpr       /* The new default expression */
000705  ){
000706    ExprList *pList;
000707    assert( IsOrdinaryTable(pTab) );
000708    pList = pTab->u.tab.pDfltList;
000709    if( pCol->iDflt==0
000710     || NEVER(pList==0)
000711     || NEVER(pList->nExpr<pCol->iDflt)
000712    ){
000713      pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
000714      pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
000715    }else{
000716      sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
000717      pList->a[pCol->iDflt-1].pExpr = pExpr;
000718    }
000719  }
000720  
000721  /*
000722  ** Return the expression associated with a column.  The expression might be
000723  ** the DEFAULT clause or the AS clause of a generated column.
000724  ** Return NULL if the column has no associated expression.
000725  */
000726  Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
000727    if( pCol->iDflt==0 ) return 0;
000728    if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
000729    if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
000730    if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
000731    return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
000732  }
000733  
000734  /*
000735  ** Set the collating sequence name for a column.
000736  */
000737  void sqlite3ColumnSetColl(
000738    sqlite3 *db,
000739    Column *pCol,
000740    const char *zColl
000741  ){
000742    i64 nColl;
000743    i64 n;
000744    char *zNew;
000745    assert( zColl!=0 );
000746    n = sqlite3Strlen30(pCol->zCnName) + 1;
000747    if( pCol->colFlags & COLFLAG_HASTYPE ){
000748      n += sqlite3Strlen30(pCol->zCnName+n) + 1;
000749    }
000750    nColl = sqlite3Strlen30(zColl) + 1;
000751    zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
000752    if( zNew ){
000753      pCol->zCnName = zNew;
000754      memcpy(pCol->zCnName + n, zColl, nColl);
000755      pCol->colFlags |= COLFLAG_HASCOLL;
000756    }
000757  }
000758  
000759  /*
000760  ** Return the collating sequence name for a column
000761  */
000762  const char *sqlite3ColumnColl(Column *pCol){
000763    const char *z;
000764    if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
000765    z = pCol->zCnName;
000766    while( *z ){ z++; }
000767    if( pCol->colFlags & COLFLAG_HASTYPE ){
000768      do{ z++; }while( *z );
000769    }
000770    return z+1;
000771  }
000772  
000773  /*
000774  ** Delete memory allocated for the column names of a table or view (the
000775  ** Table.aCol[] array).
000776  */
000777  void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
000778    int i;
000779    Column *pCol;
000780    assert( pTable!=0 );
000781    assert( db!=0 );
000782    if( (pCol = pTable->aCol)!=0 ){
000783      for(i=0; i<pTable->nCol; i++, pCol++){
000784        assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
000785        sqlite3DbFree(db, pCol->zCnName);
000786      }
000787      sqlite3DbNNFreeNN(db, pTable->aCol);
000788      if( IsOrdinaryTable(pTable) ){
000789        sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
000790      }
000791      if( db->pnBytesFreed==0 ){
000792        pTable->aCol = 0;
000793        pTable->nCol = 0;
000794        if( IsOrdinaryTable(pTable) ){
000795          pTable->u.tab.pDfltList = 0;
000796        }
000797      }
000798    }
000799  }
000800  
000801  /*
000802  ** Remove the memory data structures associated with the given
000803  ** Table.  No changes are made to disk by this routine.
000804  **
000805  ** This routine just deletes the data structure.  It does not unlink
000806  ** the table data structure from the hash table.  But it does destroy
000807  ** memory structures of the indices and foreign keys associated with
000808  ** the table.
000809  **
000810  ** The db parameter is optional.  It is needed if the Table object
000811  ** contains lookaside memory.  (Table objects in the schema do not use
000812  ** lookaside memory, but some ephemeral Table objects do.)  Or the
000813  ** db parameter can be used with db->pnBytesFreed to measure the memory
000814  ** used by the Table object.
000815  */
000816  static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
000817    Index *pIndex, *pNext;
000818  
000819  #ifdef SQLITE_DEBUG
000820    /* Record the number of outstanding lookaside allocations in schema Tables
000821    ** prior to doing any free() operations. Since schema Tables do not use
000822    ** lookaside, this number should not change.
000823    **
000824    ** If malloc has already failed, it may be that it failed while allocating
000825    ** a Table object that was going to be marked ephemeral. So do not check
000826    ** that no lookaside memory is used in this case either. */
000827    int nLookaside = 0;
000828    assert( db!=0 );
000829    if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
000830      nLookaside = sqlite3LookasideUsed(db, 0);
000831    }
000832  #endif
000833  
000834    /* Delete all indices associated with this table. */
000835    for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
000836      pNext = pIndex->pNext;
000837      assert( pIndex->pSchema==pTable->pSchema
000838           || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
000839      if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){
000840        char *zName = pIndex->zName;
000841        TESTONLY ( Index *pOld = ) sqlite3HashInsert(
000842           &pIndex->pSchema->idxHash, zName, 0
000843        );
000844        assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
000845        assert( pOld==pIndex || pOld==0 );
000846      }
000847      sqlite3FreeIndex(db, pIndex);
000848    }
000849  
000850    if( IsOrdinaryTable(pTable) ){
000851      sqlite3FkDelete(db, pTable);
000852    }
000853  #ifndef SQLITE_OMIT_VIRTUALTABLE
000854    else if( IsVirtual(pTable) ){
000855      sqlite3VtabClear(db, pTable);
000856    }
000857  #endif
000858    else{
000859      assert( IsView(pTable) );
000860      sqlite3SelectDelete(db, pTable->u.view.pSelect);
000861    }
000862  
000863    /* Delete the Table structure itself.
000864    */
000865    sqlite3DeleteColumnNames(db, pTable);
000866    sqlite3DbFree(db, pTable->zName);
000867    sqlite3DbFree(db, pTable->zColAff);
000868    sqlite3ExprListDelete(db, pTable->pCheck);
000869    sqlite3DbFree(db, pTable);
000870  
000871    /* Verify that no lookaside memory was used by schema tables */
000872    assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
000873  }
000874  void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
000875    /* Do not delete the table until the reference count reaches zero. */
000876    assert( db!=0 );
000877    if( !pTable ) return;
000878    if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return;
000879    deleteTable(db, pTable);
000880  }
000881  
000882  
000883  /*
000884  ** Unlink the given table from the hash tables and the delete the
000885  ** table structure with all its indices and foreign keys.
000886  */
000887  void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
000888    Table *p;
000889    Db *pDb;
000890  
000891    assert( db!=0 );
000892    assert( iDb>=0 && iDb<db->nDb );
000893    assert( zTabName );
000894    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
000895    testcase( zTabName[0]==0 );  /* Zero-length table names are allowed */
000896    pDb = &db->aDb[iDb];
000897    p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
000898    sqlite3DeleteTable(db, p);
000899    db->mDbFlags |= DBFLAG_SchemaChange;
000900  }
000901  
000902  /*
000903  ** Given a token, return a string that consists of the text of that
000904  ** token.  Space to hold the returned string
000905  ** is obtained from sqliteMalloc() and must be freed by the calling
000906  ** function.
000907  **
000908  ** Any quotation marks (ex:  "name", 'name', [name], or `name`) that
000909  ** surround the body of the token are removed.
000910  **
000911  ** Tokens are often just pointers into the original SQL text and so
000912  ** are not \000 terminated and are not persistent.  The returned string
000913  ** is \000 terminated and is persistent.
000914  */
000915  char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
000916    char *zName;
000917    if( pName ){
000918      zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
000919      sqlite3Dequote(zName);
000920    }else{
000921      zName = 0;
000922    }
000923    return zName;
000924  }
000925  
000926  /*
000927  ** Open the sqlite_schema table stored in database number iDb for
000928  ** writing. The table is opened using cursor 0.
000929  */
000930  void sqlite3OpenSchemaTable(Parse *p, int iDb){
000931    Vdbe *v = sqlite3GetVdbe(p);
000932    sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
000933    sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
000934    if( p->nTab==0 ){
000935      p->nTab = 1;
000936    }
000937  }
000938  
000939  /*
000940  ** Parameter zName points to a nul-terminated buffer containing the name
000941  ** of a database ("main", "temp" or the name of an attached db). This
000942  ** function returns the index of the named database in db->aDb[], or
000943  ** -1 if the named db cannot be found.
000944  */
000945  int sqlite3FindDbName(sqlite3 *db, const char *zName){
000946    int i = -1;         /* Database number */
000947    if( zName ){
000948      Db *pDb;
000949      for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
000950        if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
000951        /* "main" is always an acceptable alias for the primary database
000952        ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
000953        if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
000954      }
000955    }
000956    return i;
000957  }
000958  
000959  /*
000960  ** The token *pName contains the name of a database (either "main" or
000961  ** "temp" or the name of an attached db). This routine returns the
000962  ** index of the named database in db->aDb[], or -1 if the named db
000963  ** does not exist.
000964  */
000965  int sqlite3FindDb(sqlite3 *db, Token *pName){
000966    int i;                               /* Database number */
000967    char *zName;                         /* Name we are searching for */
000968    zName = sqlite3NameFromToken(db, pName);
000969    i = sqlite3FindDbName(db, zName);
000970    sqlite3DbFree(db, zName);
000971    return i;
000972  }
000973  
000974  /* The table or view or trigger name is passed to this routine via tokens
000975  ** pName1 and pName2. If the table name was fully qualified, for example:
000976  **
000977  ** CREATE TABLE xxx.yyy (...);
000978  **
000979  ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
000980  ** the table name is not fully qualified, i.e.:
000981  **
000982  ** CREATE TABLE yyy(...);
000983  **
000984  ** Then pName1 is set to "yyy" and pName2 is "".
000985  **
000986  ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
000987  ** pName2) that stores the unqualified table name.  The index of the
000988  ** database "xxx" is returned.
000989  */
000990  int sqlite3TwoPartName(
000991    Parse *pParse,      /* Parsing and code generating context */
000992    Token *pName1,      /* The "xxx" in the name "xxx.yyy" or "xxx" */
000993    Token *pName2,      /* The "yyy" in the name "xxx.yyy" */
000994    Token **pUnqual     /* Write the unqualified object name here */
000995  ){
000996    int iDb;                    /* Database holding the object */
000997    sqlite3 *db = pParse->db;
000998  
000999    assert( pName2!=0 );
001000    if( pName2->n>0 ){
001001      if( db->init.busy ) {
001002        sqlite3ErrorMsg(pParse, "corrupt database");
001003        return -1;
001004      }
001005      *pUnqual = pName2;
001006      iDb = sqlite3FindDb(db, pName1);
001007      if( iDb<0 ){
001008        sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
001009        return -1;
001010      }
001011    }else{
001012      assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
001013               || (db->mDbFlags & DBFLAG_Vacuum)!=0);
001014      iDb = db->init.iDb;
001015      *pUnqual = pName1;
001016    }
001017    return iDb;
001018  }
001019  
001020  /*
001021  ** True if PRAGMA writable_schema is ON
001022  */
001023  int sqlite3WritableSchema(sqlite3 *db){
001024    testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
001025    testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
001026                 SQLITE_WriteSchema );
001027    testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
001028                 SQLITE_Defensive );
001029    testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
001030                 (SQLITE_WriteSchema|SQLITE_Defensive) );
001031    return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
001032  }
001033  
001034  /*
001035  ** This routine is used to check if the UTF-8 string zName is a legal
001036  ** unqualified name for a new schema object (table, index, view or
001037  ** trigger). All names are legal except those that begin with the string
001038  ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
001039  ** is reserved for internal use.
001040  **
001041  ** When parsing the sqlite_schema table, this routine also checks to
001042  ** make sure the "type", "name", and "tbl_name" columns are consistent
001043  ** with the SQL.
001044  */
001045  int sqlite3CheckObjectName(
001046    Parse *pParse,            /* Parsing context */
001047    const char *zName,        /* Name of the object to check */
001048    const char *zType,        /* Type of this object */
001049    const char *zTblName      /* Parent table name for triggers and indexes */
001050  ){
001051    sqlite3 *db = pParse->db;
001052    if( sqlite3WritableSchema(db)
001053     || db->init.imposterTable
001054     || !sqlite3Config.bExtraSchemaChecks
001055    ){
001056      /* Skip these error checks for writable_schema=ON */
001057      return SQLITE_OK;
001058    }
001059    if( db->init.busy ){
001060      if( sqlite3_stricmp(zType, db->init.azInit[0])
001061       || sqlite3_stricmp(zName, db->init.azInit[1])
001062       || sqlite3_stricmp(zTblName, db->init.azInit[2])
001063      ){
001064        sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
001065        return SQLITE_ERROR;
001066      }
001067    }else{
001068      if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
001069       || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
001070      ){
001071        sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
001072                        zName);
001073        return SQLITE_ERROR;
001074      }
001075  
001076    }
001077    return SQLITE_OK;
001078  }
001079  
001080  /*
001081  ** Return the PRIMARY KEY index of a table
001082  */
001083  Index *sqlite3PrimaryKeyIndex(Table *pTab){
001084    Index *p;
001085    for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
001086    return p;
001087  }
001088  
001089  /*
001090  ** Convert an table column number into a index column number.  That is,
001091  ** for the column iCol in the table (as defined by the CREATE TABLE statement)
001092  ** find the (first) offset of that column in index pIdx.  Or return -1
001093  ** if column iCol is not used in index pIdx.
001094  */
001095  i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
001096    int i;
001097    for(i=0; i<pIdx->nColumn; i++){
001098      if( iCol==pIdx->aiColumn[i] ) return i;
001099    }
001100    return -1;
001101  }
001102  
001103  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
001104  /* Convert a storage column number into a table column number.
001105  **
001106  ** The storage column number (0,1,2,....) is the index of the value
001107  ** as it appears in the record on disk.  The true column number
001108  ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
001109  **
001110  ** The storage column number is less than the table column number if
001111  ** and only there are VIRTUAL columns to the left.
001112  **
001113  ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
001114  */
001115  i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
001116    if( pTab->tabFlags & TF_HasVirtual ){
001117      int i;
001118      for(i=0; i<=iCol; i++){
001119        if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
001120      }
001121    }
001122    return iCol;
001123  }
001124  #endif
001125  
001126  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
001127  /* Convert a table column number into a storage column number.
001128  **
001129  ** The storage column number (0,1,2,....) is the index of the value
001130  ** as it appears in the record on disk.  Or, if the input column is
001131  ** the N-th virtual column (zero-based) then the storage number is
001132  ** the number of non-virtual columns in the table plus N. 
001133  **
001134  ** The true column number is the index (0,1,2,...) of the column in
001135  ** the CREATE TABLE statement.
001136  **
001137  ** If the input column is a VIRTUAL column, then it should not appear
001138  ** in storage.  But the value sometimes is cached in registers that
001139  ** follow the range of registers used to construct storage.  This
001140  ** avoids computing the same VIRTUAL column multiple times, and provides
001141  ** values for use by OP_Param opcodes in triggers.  Hence, if the
001142  ** input column is a VIRTUAL table, put it after all the other columns.
001143  **
001144  ** In the following, N means "normal column", S means STORED, and
001145  ** V means VIRTUAL.  Suppose the CREATE TABLE has columns like this:
001146  **
001147  **        CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
001148  **                     -- 0 1 2 3 4 5 6 7 8
001149  **
001150  ** Then the mapping from this function is as follows:
001151  **
001152  **    INPUTS:     0 1 2 3 4 5 6 7 8
001153  **    OUTPUTS:    0 1 6 2 3 7 4 5 8
001154  **
001155  ** So, in other words, this routine shifts all the virtual columns to
001156  ** the end.
001157  **
001158  ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
001159  ** this routine is a no-op macro.  If the pTab does not have any virtual
001160  ** columns, then this routine is no-op that always return iCol.  If iCol
001161  ** is negative (indicating the ROWID column) then this routine return iCol.
001162  */
001163  i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
001164    int i;
001165    i16 n;
001166    assert( iCol<pTab->nCol );
001167    if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
001168    for(i=0, n=0; i<iCol; i++){
001169      if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
001170    }
001171    if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
001172      /* iCol is a virtual column itself */
001173      return pTab->nNVCol + i - n;
001174    }else{
001175      /* iCol is a normal or stored column */
001176      return n;
001177    }
001178  }
001179  #endif
001180  
001181  /*
001182  ** Insert a single OP_JournalMode query opcode in order to force the
001183  ** prepared statement to return false for sqlite3_stmt_readonly().  This
001184  ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
001185  ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
001186  ** will return false for sqlite3_stmt_readonly() even if that statement
001187  ** is a read-only no-op.
001188  */
001189  static void sqlite3ForceNotReadOnly(Parse *pParse){
001190    int iReg = ++pParse->nMem;
001191    Vdbe *v = sqlite3GetVdbe(pParse);
001192    if( v ){
001193      sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
001194      sqlite3VdbeUsesBtree(v, 0);
001195    }
001196  }
001197  
001198  /*
001199  ** Begin constructing a new table representation in memory.  This is
001200  ** the first of several action routines that get called in response
001201  ** to a CREATE TABLE statement.  In particular, this routine is called
001202  ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
001203  ** flag is true if the table should be stored in the auxiliary database
001204  ** file instead of in the main database file.  This is normally the case
001205  ** when the "TEMP" or "TEMPORARY" keyword occurs in between
001206  ** CREATE and TABLE.
001207  **
001208  ** The new table record is initialized and put in pParse->pNewTable.
001209  ** As more of the CREATE TABLE statement is parsed, additional action
001210  ** routines will be called to add more information to this record.
001211  ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
001212  ** is called to complete the construction of the new table record.
001213  */
001214  void sqlite3StartTable(
001215    Parse *pParse,   /* Parser context */
001216    Token *pName1,   /* First part of the name of the table or view */
001217    Token *pName2,   /* Second part of the name of the table or view */
001218    int isTemp,      /* True if this is a TEMP table */
001219    int isView,      /* True if this is a VIEW */
001220    int isVirtual,   /* True if this is a VIRTUAL table */
001221    int noErr        /* Do nothing if table already exists */
001222  ){
001223    Table *pTable;
001224    char *zName = 0; /* The name of the new table */
001225    sqlite3 *db = pParse->db;
001226    Vdbe *v;
001227    int iDb;         /* Database number to create the table in */
001228    Token *pName;    /* Unqualified name of the table to create */
001229  
001230    if( db->init.busy && db->init.newTnum==1 ){
001231      /* Special case:  Parsing the sqlite_schema or sqlite_temp_schema schema */
001232      iDb = db->init.iDb;
001233      zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
001234      pName = pName1;
001235    }else{
001236      /* The common case */
001237      iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
001238      if( iDb<0 ) return;
001239      if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
001240        /* If creating a temp table, the name may not be qualified. Unless
001241        ** the database name is "temp" anyway.  */
001242        sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
001243        return;
001244      }
001245      if( !OMIT_TEMPDB && isTemp ) iDb = 1;
001246      zName = sqlite3NameFromToken(db, pName);
001247      if( IN_RENAME_OBJECT ){
001248        sqlite3RenameTokenMap(pParse, (void*)zName, pName);
001249      }
001250    }
001251    pParse->sNameToken = *pName;
001252    if( zName==0 ) return;
001253    if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
001254      goto begin_table_error;
001255    }
001256    if( db->init.iDb==1 ) isTemp = 1;
001257  #ifndef SQLITE_OMIT_AUTHORIZATION
001258    assert( isTemp==0 || isTemp==1 );
001259    assert( isView==0 || isView==1 );
001260    {
001261      static const u8 aCode[] = {
001262         SQLITE_CREATE_TABLE,
001263         SQLITE_CREATE_TEMP_TABLE,
001264         SQLITE_CREATE_VIEW,
001265         SQLITE_CREATE_TEMP_VIEW
001266      };
001267      char *zDb = db->aDb[iDb].zDbSName;
001268      if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
001269        goto begin_table_error;
001270      }
001271      if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
001272                                         zName, 0, zDb) ){
001273        goto begin_table_error;
001274      }
001275    }
001276  #endif
001277  
001278    /* Make sure the new table name does not collide with an existing
001279    ** index or table name in the same database.  Issue an error message if
001280    ** it does. The exception is if the statement being parsed was passed
001281    ** to an sqlite3_declare_vtab() call. In that case only the column names
001282    ** and types will be used, so there is no need to test for namespace
001283    ** collisions.
001284    */
001285    if( !IN_SPECIAL_PARSE ){
001286      char *zDb = db->aDb[iDb].zDbSName;
001287      if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
001288        goto begin_table_error;
001289      }
001290      pTable = sqlite3FindTable(db, zName, zDb);
001291      if( pTable ){
001292        if( !noErr ){
001293          sqlite3ErrorMsg(pParse, "%s %T already exists",
001294                          (IsView(pTable)? "view" : "table"), pName);
001295        }else{
001296          assert( !db->init.busy || CORRUPT_DB );
001297          sqlite3CodeVerifySchema(pParse, iDb);
001298          sqlite3ForceNotReadOnly(pParse);
001299        }
001300        goto begin_table_error;
001301      }
001302      if( sqlite3FindIndex(db, zName, zDb)!=0 ){
001303        sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
001304        goto begin_table_error;
001305      }
001306    }
001307  
001308    pTable = sqlite3DbMallocZero(db, sizeof(Table));
001309    if( pTable==0 ){
001310      assert( db->mallocFailed );
001311      pParse->rc = SQLITE_NOMEM_BKPT;
001312      pParse->nErr++;
001313      goto begin_table_error;
001314    }
001315    pTable->zName = zName;
001316    pTable->iPKey = -1;
001317    pTable->pSchema = db->aDb[iDb].pSchema;
001318    pTable->nTabRef = 1;
001319  #ifdef SQLITE_DEFAULT_ROWEST
001320    pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
001321  #else
001322    pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
001323  #endif
001324    assert( pParse->pNewTable==0 );
001325    pParse->pNewTable = pTable;
001326  
001327    /* Begin generating the code that will insert the table record into
001328    ** the schema table.  Note in particular that we must go ahead
001329    ** and allocate the record number for the table entry now.  Before any
001330    ** PRIMARY KEY or UNIQUE keywords are parsed.  Those keywords will cause
001331    ** indices to be created and the table record must come before the
001332    ** indices.  Hence, the record number for the table must be allocated
001333    ** now.
001334    */
001335    if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
001336      int addr1;
001337      int fileFormat;
001338      int reg1, reg2, reg3;
001339      /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
001340      static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
001341      sqlite3BeginWriteOperation(pParse, 1, iDb);
001342  
001343  #ifndef SQLITE_OMIT_VIRTUALTABLE
001344      if( isVirtual ){
001345        sqlite3VdbeAddOp0(v, OP_VBegin);
001346      }
001347  #endif
001348  
001349      /* If the file format and encoding in the database have not been set,
001350      ** set them now.
001351      */
001352      reg1 = pParse->regRowid = ++pParse->nMem;
001353      reg2 = pParse->regRoot = ++pParse->nMem;
001354      reg3 = ++pParse->nMem;
001355      sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
001356      sqlite3VdbeUsesBtree(v, iDb);
001357      addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
001358      fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
001359                    1 : SQLITE_MAX_FILE_FORMAT;
001360      sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
001361      sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
001362      sqlite3VdbeJumpHere(v, addr1);
001363  
001364      /* This just creates a place-holder record in the sqlite_schema table.
001365      ** The record created does not contain anything yet.  It will be replaced
001366      ** by the real entry in code generated at sqlite3EndTable().
001367      **
001368      ** The rowid for the new entry is left in register pParse->regRowid.
001369      ** The root page number of the new table is left in reg pParse->regRoot.
001370      ** The rowid and root page number values are needed by the code that
001371      ** sqlite3EndTable will generate.
001372      */
001373  #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
001374      if( isView || isVirtual ){
001375        sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
001376      }else
001377  #endif
001378      {
001379        assert( !pParse->bReturning );
001380        pParse->u1.addrCrTab =
001381           sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
001382      }
001383      sqlite3OpenSchemaTable(pParse, iDb);
001384      sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
001385      sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
001386      sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
001387      sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
001388      sqlite3VdbeAddOp0(v, OP_Close);
001389    }
001390  
001391    /* Normal (non-error) return. */
001392    return;
001393  
001394    /* If an error occurs, we jump here */
001395  begin_table_error:
001396    pParse->checkSchema = 1;
001397    sqlite3DbFree(db, zName);
001398    return;
001399  }
001400  
001401  /* Set properties of a table column based on the (magical)
001402  ** name of the column.
001403  */
001404  #if SQLITE_ENABLE_HIDDEN_COLUMNS
001405  void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
001406    if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
001407      pCol->colFlags |= COLFLAG_HIDDEN;
001408      if( pTab ) pTab->tabFlags |= TF_HasHidden;
001409    }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
001410      pTab->tabFlags |= TF_OOOHidden;
001411    }
001412  }
001413  #endif
001414  
001415  /*
001416  ** Name of the special TEMP trigger used to implement RETURNING.  The
001417  ** name begins with "sqlite_" so that it is guaranteed not to collide
001418  ** with any application-generated triggers.
001419  */
001420  #define RETURNING_TRIGGER_NAME  "sqlite_returning"
001421  
001422  /*
001423  ** Clean up the data structures associated with the RETURNING clause.
001424  */
001425  static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
001426    Hash *pHash;
001427    pHash = &(db->aDb[1].pSchema->trigHash);
001428    sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
001429    sqlite3ExprListDelete(db, pRet->pReturnEL);
001430    sqlite3DbFree(db, pRet);
001431  }
001432  
001433  /*
001434  ** Add the RETURNING clause to the parse currently underway.
001435  **
001436  ** This routine creates a special TEMP trigger that will fire for each row
001437  ** of the DML statement.  That TEMP trigger contains a single SELECT
001438  ** statement with a result set that is the argument of the RETURNING clause.
001439  ** The trigger has the Trigger.bReturning flag and an opcode of
001440  ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
001441  ** knows to handle it specially.  The TEMP trigger is automatically
001442  ** removed at the end of the parse.
001443  **
001444  ** When this routine is called, we do not yet know if the RETURNING clause
001445  ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
001446  ** RETURNING trigger instead.  It will then be converted into the appropriate
001447  ** type on the first call to sqlite3TriggersExist().
001448  */
001449  void sqlite3AddReturning(Parse *pParse, ExprList *pList){
001450    Returning *pRet;
001451    Hash *pHash;
001452    sqlite3 *db = pParse->db;
001453    if( pParse->pNewTrigger ){
001454      sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
001455    }else{
001456      assert( pParse->bReturning==0 || pParse->ifNotExists );
001457    }
001458    pParse->bReturning = 1;
001459    pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
001460    if( pRet==0 ){
001461      sqlite3ExprListDelete(db, pList);
001462      return;
001463    }
001464    pParse->u1.pReturning = pRet;
001465    pRet->pParse = pParse;
001466    pRet->pReturnEL = pList;
001467    sqlite3ParserAddCleanup(pParse,
001468       (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
001469    testcase( pParse->earlyCleanup );
001470    if( db->mallocFailed ) return;
001471    pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
001472    pRet->retTrig.op = TK_RETURNING;
001473    pRet->retTrig.tr_tm = TRIGGER_AFTER;
001474    pRet->retTrig.bReturning = 1;
001475    pRet->retTrig.pSchema = db->aDb[1].pSchema;
001476    pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
001477    pRet->retTrig.step_list = &pRet->retTStep;
001478    pRet->retTStep.op = TK_RETURNING;
001479    pRet->retTStep.pTrig = &pRet->retTrig;
001480    pRet->retTStep.pExprList = pList;
001481    pHash = &(db->aDb[1].pSchema->trigHash);
001482    assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0
001483            || pParse->nErr  || pParse->ifNotExists );
001484    if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
001485            ==&pRet->retTrig ){
001486      sqlite3OomFault(db);
001487    }
001488  }
001489  
001490  /*
001491  ** Add a new column to the table currently being constructed.
001492  **
001493  ** The parser calls this routine once for each column declaration
001494  ** in a CREATE TABLE statement.  sqlite3StartTable() gets called
001495  ** first to get things going.  Then this routine is called for each
001496  ** column.
001497  */
001498  void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
001499    Table *p;
001500    int i;
001501    char *z;
001502    char *zType;
001503    Column *pCol;
001504    sqlite3 *db = pParse->db;
001505    u8 hName;
001506    Column *aNew;
001507    u8 eType = COLTYPE_CUSTOM;
001508    u8 szEst = 1;
001509    char affinity = SQLITE_AFF_BLOB;
001510  
001511    if( (p = pParse->pNewTable)==0 ) return;
001512    if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
001513      sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
001514      return;
001515    }
001516    if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
001517  
001518    /* Because keywords GENERATE ALWAYS can be converted into identifiers
001519    ** by the parser, we can sometimes end up with a typename that ends
001520    ** with "generated always".  Check for this case and omit the surplus
001521    ** text. */
001522    if( sType.n>=16
001523     && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
001524    ){
001525      sType.n -= 6;
001526      while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
001527      if( sType.n>=9
001528       && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
001529      ){
001530        sType.n -= 9;
001531        while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
001532      }
001533    }
001534  
001535    /* Check for standard typenames.  For standard typenames we will
001536    ** set the Column.eType field rather than storing the typename after
001537    ** the column name, in order to save space. */
001538    if( sType.n>=3 ){
001539      sqlite3DequoteToken(&sType);
001540      for(i=0; i<SQLITE_N_STDTYPE; i++){
001541         if( sType.n==sqlite3StdTypeLen[i]
001542          && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
001543         ){
001544           sType.n = 0;
001545           eType = i+1;
001546           affinity = sqlite3StdTypeAffinity[i];
001547           if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
001548           break;
001549         }
001550      }
001551    }
001552  
001553    z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
001554    if( z==0 ) return;
001555    if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
001556    memcpy(z, sName.z, sName.n);
001557    z[sName.n] = 0;
001558    sqlite3Dequote(z);
001559    hName = sqlite3StrIHash(z);
001560    for(i=0; i<p->nCol; i++){
001561      if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
001562        sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
001563        sqlite3DbFree(db, z);
001564        return;
001565      }
001566    }
001567    aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
001568    if( aNew==0 ){
001569      sqlite3DbFree(db, z);
001570      return;
001571    }
001572    p->aCol = aNew;
001573    pCol = &p->aCol[p->nCol];
001574    memset(pCol, 0, sizeof(p->aCol[0]));
001575    pCol->zCnName = z;
001576    pCol->hName = hName;
001577    sqlite3ColumnPropertiesFromName(p, pCol);
001578  
001579    if( sType.n==0 ){
001580      /* If there is no type specified, columns have the default affinity
001581      ** 'BLOB' with a default size of 4 bytes. */
001582      pCol->affinity = affinity;
001583      pCol->eCType = eType;
001584      pCol->szEst = szEst;
001585  #ifdef SQLITE_ENABLE_SORTER_REFERENCES
001586      if( affinity==SQLITE_AFF_BLOB ){
001587        if( 4>=sqlite3GlobalConfig.szSorterRef ){
001588          pCol->colFlags |= COLFLAG_SORTERREF;
001589        }
001590      }
001591  #endif
001592    }else{
001593      zType = z + sqlite3Strlen30(z) + 1;
001594      memcpy(zType, sType.z, sType.n);
001595      zType[sType.n] = 0;
001596      sqlite3Dequote(zType);
001597      pCol->affinity = sqlite3AffinityType(zType, pCol);
001598      pCol->colFlags |= COLFLAG_HASTYPE;
001599    }
001600    p->nCol++;
001601    p->nNVCol++;
001602    pParse->constraintName.n = 0;
001603  }
001604  
001605  /*
001606  ** This routine is called by the parser while in the middle of
001607  ** parsing a CREATE TABLE statement.  A "NOT NULL" constraint has
001608  ** been seen on a column.  This routine sets the notNull flag on
001609  ** the column currently under construction.
001610  */
001611  void sqlite3AddNotNull(Parse *pParse, int onError){
001612    Table *p;
001613    Column *pCol;
001614    p = pParse->pNewTable;
001615    if( p==0 || NEVER(p->nCol<1) ) return;
001616    pCol = &p->aCol[p->nCol-1];
001617    pCol->notNull = (u8)onError;
001618    p->tabFlags |= TF_HasNotNull;
001619  
001620    /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
001621    ** on this column.  */
001622    if( pCol->colFlags & COLFLAG_UNIQUE ){
001623      Index *pIdx;
001624      for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
001625        assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
001626        if( pIdx->aiColumn[0]==p->nCol-1 ){
001627          pIdx->uniqNotNull = 1;
001628        }
001629      }
001630    }
001631  }
001632  
001633  /*
001634  ** Scan the column type name zType (length nType) and return the
001635  ** associated affinity type.
001636  **
001637  ** This routine does a case-independent search of zType for the
001638  ** substrings in the following table. If one of the substrings is
001639  ** found, the corresponding affinity is returned. If zType contains
001640  ** more than one of the substrings, entries toward the top of
001641  ** the table take priority. For example, if zType is 'BLOBINT',
001642  ** SQLITE_AFF_INTEGER is returned.
001643  **
001644  ** Substring     | Affinity
001645  ** --------------------------------
001646  ** 'INT'         | SQLITE_AFF_INTEGER
001647  ** 'CHAR'        | SQLITE_AFF_TEXT
001648  ** 'CLOB'        | SQLITE_AFF_TEXT
001649  ** 'TEXT'        | SQLITE_AFF_TEXT
001650  ** 'BLOB'        | SQLITE_AFF_BLOB
001651  ** 'REAL'        | SQLITE_AFF_REAL
001652  ** 'FLOA'        | SQLITE_AFF_REAL
001653  ** 'DOUB'        | SQLITE_AFF_REAL
001654  **
001655  ** If none of the substrings in the above table are found,
001656  ** SQLITE_AFF_NUMERIC is returned.
001657  */
001658  char sqlite3AffinityType(const char *zIn, Column *pCol){
001659    u32 h = 0;
001660    char aff = SQLITE_AFF_NUMERIC;
001661    const char *zChar = 0;
001662  
001663    assert( zIn!=0 );
001664    while( zIn[0] ){
001665      h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
001666      zIn++;
001667      if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){             /* CHAR */
001668        aff = SQLITE_AFF_TEXT;
001669        zChar = zIn;
001670      }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){       /* CLOB */
001671        aff = SQLITE_AFF_TEXT;
001672      }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){       /* TEXT */
001673        aff = SQLITE_AFF_TEXT;
001674      }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b')          /* BLOB */
001675          && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
001676        aff = SQLITE_AFF_BLOB;
001677        if( zIn[0]=='(' ) zChar = zIn;
001678  #ifndef SQLITE_OMIT_FLOATING_POINT
001679      }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l')          /* REAL */
001680          && aff==SQLITE_AFF_NUMERIC ){
001681        aff = SQLITE_AFF_REAL;
001682      }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a')          /* FLOA */
001683          && aff==SQLITE_AFF_NUMERIC ){
001684        aff = SQLITE_AFF_REAL;
001685      }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b')          /* DOUB */
001686          && aff==SQLITE_AFF_NUMERIC ){
001687        aff = SQLITE_AFF_REAL;
001688  #endif
001689      }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){    /* INT */
001690        aff = SQLITE_AFF_INTEGER;
001691        break;
001692      }
001693    }
001694  
001695    /* If pCol is not NULL, store an estimate of the field size.  The
001696    ** estimate is scaled so that the size of an integer is 1.  */
001697    if( pCol ){
001698      int v = 0;   /* default size is approx 4 bytes */
001699      if( aff<SQLITE_AFF_NUMERIC ){
001700        if( zChar ){
001701          while( zChar[0] ){
001702            if( sqlite3Isdigit(zChar[0]) ){
001703              /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
001704              sqlite3GetInt32(zChar, &v);
001705              break;
001706            }
001707            zChar++;
001708          }
001709        }else{
001710          v = 16;   /* BLOB, TEXT, CLOB -> r=5  (approx 20 bytes)*/
001711        }
001712      }
001713  #ifdef SQLITE_ENABLE_SORTER_REFERENCES
001714      if( v>=sqlite3GlobalConfig.szSorterRef ){
001715        pCol->colFlags |= COLFLAG_SORTERREF;
001716      }
001717  #endif
001718      v = v/4 + 1;
001719      if( v>255 ) v = 255;
001720      pCol->szEst = v;
001721    }
001722    return aff;
001723  }
001724  
001725  /*
001726  ** The expression is the default value for the most recently added column
001727  ** of the table currently under construction.
001728  **
001729  ** Default value expressions must be constant.  Raise an exception if this
001730  ** is not the case.
001731  **
001732  ** This routine is called by the parser while in the middle of
001733  ** parsing a CREATE TABLE statement.
001734  */
001735  void sqlite3AddDefaultValue(
001736    Parse *pParse,           /* Parsing context */
001737    Expr *pExpr,             /* The parsed expression of the default value */
001738    const char *zStart,      /* Start of the default value text */
001739    const char *zEnd         /* First character past end of default value text */
001740  ){
001741    Table *p;
001742    Column *pCol;
001743    sqlite3 *db = pParse->db;
001744    p = pParse->pNewTable;
001745    if( p!=0 ){
001746      int isInit = db->init.busy && db->init.iDb!=1;
001747      pCol = &(p->aCol[p->nCol-1]);
001748      if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
001749        sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
001750            pCol->zCnName);
001751  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
001752      }else if( pCol->colFlags & COLFLAG_GENERATED ){
001753        testcase( pCol->colFlags & COLFLAG_VIRTUAL );
001754        testcase( pCol->colFlags & COLFLAG_STORED );
001755        sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
001756  #endif
001757      }else{
001758        /* A copy of pExpr is used instead of the original, as pExpr contains
001759        ** tokens that point to volatile memory.
001760        */
001761        Expr x, *pDfltExpr;
001762        memset(&x, 0, sizeof(x));
001763        x.op = TK_SPAN;
001764        x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
001765        x.pLeft = pExpr;
001766        x.flags = EP_Skip;
001767        pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
001768        sqlite3DbFree(db, x.u.zToken);
001769        sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
001770      }
001771    }
001772    if( IN_RENAME_OBJECT ){
001773      sqlite3RenameExprUnmap(pParse, pExpr);
001774    }
001775    sqlite3ExprDelete(db, pExpr);
001776  }
001777  
001778  /*
001779  ** Backwards Compatibility Hack:
001780  **
001781  ** Historical versions of SQLite accepted strings as column names in
001782  ** indexes and PRIMARY KEY constraints and in UNIQUE constraints.  Example:
001783  **
001784  **     CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
001785  **     CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
001786  **
001787  ** This is goofy.  But to preserve backwards compatibility we continue to
001788  ** accept it.  This routine does the necessary conversion.  It converts
001789  ** the expression given in its argument from a TK_STRING into a TK_ID
001790  ** if the expression is just a TK_STRING with an optional COLLATE clause.
001791  ** If the expression is anything other than TK_STRING, the expression is
001792  ** unchanged.
001793  */
001794  static void sqlite3StringToId(Expr *p){
001795    if( p->op==TK_STRING ){
001796      p->op = TK_ID;
001797    }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
001798      p->pLeft->op = TK_ID;
001799    }
001800  }
001801  
001802  /*
001803  ** Tag the given column as being part of the PRIMARY KEY
001804  */
001805  static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
001806    pCol->colFlags |= COLFLAG_PRIMKEY;
001807  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
001808    if( pCol->colFlags & COLFLAG_GENERATED ){
001809      testcase( pCol->colFlags & COLFLAG_VIRTUAL );
001810      testcase( pCol->colFlags & COLFLAG_STORED );
001811      sqlite3ErrorMsg(pParse,
001812        "generated columns cannot be part of the PRIMARY KEY");
001813    }
001814  #endif         
001815  }
001816  
001817  /*
001818  ** Designate the PRIMARY KEY for the table.  pList is a list of names
001819  ** of columns that form the primary key.  If pList is NULL, then the
001820  ** most recently added column of the table is the primary key.
001821  **
001822  ** A table can have at most one primary key.  If the table already has
001823  ** a primary key (and this is the second primary key) then create an
001824  ** error.
001825  **
001826  ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
001827  ** then we will try to use that column as the rowid.  Set the Table.iPKey
001828  ** field of the table under construction to be the index of the
001829  ** INTEGER PRIMARY KEY column.  Table.iPKey is set to -1 if there is
001830  ** no INTEGER PRIMARY KEY.
001831  **
001832  ** If the key is not an INTEGER PRIMARY KEY, then create a unique
001833  ** index for the key.  No index is created for INTEGER PRIMARY KEYs.
001834  */
001835  void sqlite3AddPrimaryKey(
001836    Parse *pParse,    /* Parsing context */
001837    ExprList *pList,  /* List of field names to be indexed */
001838    int onError,      /* What to do with a uniqueness conflict */
001839    int autoInc,      /* True if the AUTOINCREMENT keyword is present */
001840    int sortOrder     /* SQLITE_SO_ASC or SQLITE_SO_DESC */
001841  ){
001842    Table *pTab = pParse->pNewTable;
001843    Column *pCol = 0;
001844    int iCol = -1, i;
001845    int nTerm;
001846    if( pTab==0 ) goto primary_key_exit;
001847    if( pTab->tabFlags & TF_HasPrimaryKey ){
001848      sqlite3ErrorMsg(pParse,
001849        "table \"%s\" has more than one primary key", pTab->zName);
001850      goto primary_key_exit;
001851    }
001852    pTab->tabFlags |= TF_HasPrimaryKey;
001853    if( pList==0 ){
001854      iCol = pTab->nCol - 1;
001855      pCol = &pTab->aCol[iCol];
001856      makeColumnPartOfPrimaryKey(pParse, pCol);
001857      nTerm = 1;
001858    }else{
001859      nTerm = pList->nExpr;
001860      for(i=0; i<nTerm; i++){
001861        Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
001862        assert( pCExpr!=0 );
001863        sqlite3StringToId(pCExpr);
001864        if( pCExpr->op==TK_ID ){
001865          const char *zCName;
001866          assert( !ExprHasProperty(pCExpr, EP_IntValue) );
001867          zCName = pCExpr->u.zToken;
001868          for(iCol=0; iCol<pTab->nCol; iCol++){
001869            if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
001870              pCol = &pTab->aCol[iCol];
001871              makeColumnPartOfPrimaryKey(pParse, pCol);
001872              break;
001873            }
001874          }
001875        }
001876      }
001877    }
001878    if( nTerm==1
001879     && pCol
001880     && pCol->eCType==COLTYPE_INTEGER
001881     && sortOrder!=SQLITE_SO_DESC
001882    ){
001883      if( IN_RENAME_OBJECT && pList ){
001884        Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
001885        sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
001886      }
001887      pTab->iPKey = iCol;
001888      pTab->keyConf = (u8)onError;
001889      assert( autoInc==0 || autoInc==1 );
001890      pTab->tabFlags |= autoInc*TF_Autoincrement;
001891      if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
001892      (void)sqlite3HasExplicitNulls(pParse, pList);
001893    }else if( autoInc ){
001894  #ifndef SQLITE_OMIT_AUTOINCREMENT
001895      sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
001896         "INTEGER PRIMARY KEY");
001897  #endif
001898    }else{
001899      sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
001900                             0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
001901      pList = 0;
001902    }
001903  
001904  primary_key_exit:
001905    sqlite3ExprListDelete(pParse->db, pList);
001906    return;
001907  }
001908  
001909  /*
001910  ** Add a new CHECK constraint to the table currently under construction.
001911  */
001912  void sqlite3AddCheckConstraint(
001913    Parse *pParse,      /* Parsing context */
001914    Expr *pCheckExpr,   /* The check expression */
001915    const char *zStart, /* Opening "(" */
001916    const char *zEnd    /* Closing ")" */
001917  ){
001918  #ifndef SQLITE_OMIT_CHECK
001919    Table *pTab = pParse->pNewTable;
001920    sqlite3 *db = pParse->db;
001921    if( pTab && !IN_DECLARE_VTAB
001922     && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
001923    ){
001924      pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
001925      if( pParse->constraintName.n ){
001926        sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
001927      }else{
001928        Token t;
001929        for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
001930        while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
001931        t.z = zStart;
001932        t.n = (int)(zEnd - t.z);
001933        sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);   
001934      }
001935    }else
001936  #endif
001937    {
001938      sqlite3ExprDelete(pParse->db, pCheckExpr);
001939    }
001940  }
001941  
001942  /*
001943  ** Set the collation function of the most recently parsed table column
001944  ** to the CollSeq given.
001945  */
001946  void sqlite3AddCollateType(Parse *pParse, Token *pToken){
001947    Table *p;
001948    int i;
001949    char *zColl;              /* Dequoted name of collation sequence */
001950    sqlite3 *db;
001951  
001952    if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
001953    i = p->nCol-1;
001954    db = pParse->db;
001955    zColl = sqlite3NameFromToken(db, pToken);
001956    if( !zColl ) return;
001957  
001958    if( sqlite3LocateCollSeq(pParse, zColl) ){
001959      Index *pIdx;
001960      sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
001961   
001962      /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
001963      ** then an index may have been created on this column before the
001964      ** collation type was added. Correct this if it is the case.
001965      */
001966      for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
001967        assert( pIdx->nKeyCol==1 );
001968        if( pIdx->aiColumn[0]==i ){
001969          pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
001970        }
001971      }
001972    }
001973    sqlite3DbFree(db, zColl);
001974  }
001975  
001976  /* Change the most recently parsed column to be a GENERATED ALWAYS AS
001977  ** column.
001978  */
001979  void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
001980  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
001981    u8 eType = COLFLAG_VIRTUAL;
001982    Table *pTab = pParse->pNewTable;
001983    Column *pCol;
001984    if( pTab==0 ){
001985      /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
001986      goto generated_done;
001987    }
001988    pCol = &(pTab->aCol[pTab->nCol-1]);
001989    if( IN_DECLARE_VTAB ){
001990      sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
001991      goto generated_done;
001992    }
001993    if( pCol->iDflt>0 ) goto generated_error;
001994    if( pType ){
001995      if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
001996        /* no-op */
001997      }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
001998        eType = COLFLAG_STORED;
001999      }else{
002000        goto generated_error;
002001      }
002002    }
002003    if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
002004    pCol->colFlags |= eType;
002005    assert( TF_HasVirtual==COLFLAG_VIRTUAL );
002006    assert( TF_HasStored==COLFLAG_STORED );
002007    pTab->tabFlags |= eType;
002008    if( pCol->colFlags & COLFLAG_PRIMKEY ){
002009      makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
002010    }
002011    if( ALWAYS(pExpr) && pExpr->op==TK_ID ){
002012      /* The value of a generated column needs to be a real expression, not
002013      ** just a reference to another column, in order for covering index
002014      ** optimizations to work correctly.  So if the value is not an expression,
002015      ** turn it into one by adding a unary "+" operator. */
002016      pExpr = sqlite3PExpr(pParse, TK_UPLUS, pExpr, 0);
002017    }
002018    if( pExpr && pExpr->op!=TK_RAISE ) pExpr->affExpr = pCol->affinity;
002019    sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
002020    pExpr = 0;
002021    goto generated_done;
002022  
002023  generated_error:
002024    sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
002025                    pCol->zCnName);
002026  generated_done:
002027    sqlite3ExprDelete(pParse->db, pExpr);
002028  #else
002029    /* Throw and error for the GENERATED ALWAYS AS clause if the
002030    ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
002031    sqlite3ErrorMsg(pParse, "generated columns not supported");
002032    sqlite3ExprDelete(pParse->db, pExpr);
002033  #endif
002034  }
002035  
002036  /*
002037  ** Generate code that will increment the schema cookie.
002038  **
002039  ** The schema cookie is used to determine when the schema for the
002040  ** database changes.  After each schema change, the cookie value
002041  ** changes.  When a process first reads the schema it records the
002042  ** cookie.  Thereafter, whenever it goes to access the database,
002043  ** it checks the cookie to make sure the schema has not changed
002044  ** since it was last read.
002045  **
002046  ** This plan is not completely bullet-proof.  It is possible for
002047  ** the schema to change multiple times and for the cookie to be
002048  ** set back to prior value.  But schema changes are infrequent
002049  ** and the probability of hitting the same cookie value is only
002050  ** 1 chance in 2^32.  So we're safe enough.
002051  **
002052  ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
002053  ** the schema-version whenever the schema changes.
002054  */
002055  void sqlite3ChangeCookie(Parse *pParse, int iDb){
002056    sqlite3 *db = pParse->db;
002057    Vdbe *v = pParse->pVdbe;
002058    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
002059    sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
002060                     (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
002061  }
002062  
002063  /*
002064  ** Measure the number of characters needed to output the given
002065  ** identifier.  The number returned includes any quotes used
002066  ** but does not include the null terminator.
002067  **
002068  ** The estimate is conservative.  It might be larger that what is
002069  ** really needed.
002070  */
002071  static int identLength(const char *z){
002072    int n;
002073    for(n=0; *z; n++, z++){
002074      if( *z=='"' ){ n++; }
002075    }
002076    return n + 2;
002077  }
002078  
002079  /*
002080  ** The first parameter is a pointer to an output buffer. The second
002081  ** parameter is a pointer to an integer that contains the offset at
002082  ** which to write into the output buffer. This function copies the
002083  ** nul-terminated string pointed to by the third parameter, zSignedIdent,
002084  ** to the specified offset in the buffer and updates *pIdx to refer
002085  ** to the first byte after the last byte written before returning.
002086  **
002087  ** If the string zSignedIdent consists entirely of alphanumeric
002088  ** characters, does not begin with a digit and is not an SQL keyword,
002089  ** then it is copied to the output buffer exactly as it is. Otherwise,
002090  ** it is quoted using double-quotes.
002091  */
002092  static void identPut(char *z, int *pIdx, char *zSignedIdent){
002093    unsigned char *zIdent = (unsigned char*)zSignedIdent;
002094    int i, j, needQuote;
002095    i = *pIdx;
002096  
002097    for(j=0; zIdent[j]; j++){
002098      if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
002099    }
002100    needQuote = sqlite3Isdigit(zIdent[0])
002101              || sqlite3KeywordCode(zIdent, j)!=TK_ID
002102              || zIdent[j]!=0
002103              || j==0;
002104  
002105    if( needQuote ) z[i++] = '"';
002106    for(j=0; zIdent[j]; j++){
002107      z[i++] = zIdent[j];
002108      if( zIdent[j]=='"' ) z[i++] = '"';
002109    }
002110    if( needQuote ) z[i++] = '"';
002111    z[i] = 0;
002112    *pIdx = i;
002113  }
002114  
002115  /*
002116  ** Generate a CREATE TABLE statement appropriate for the given
002117  ** table.  Memory to hold the text of the statement is obtained
002118  ** from sqliteMalloc() and must be freed by the calling function.
002119  */
002120  static char *createTableStmt(sqlite3 *db, Table *p){
002121    int i, k, n;
002122    char *zStmt;
002123    char *zSep, *zSep2, *zEnd;
002124    Column *pCol;
002125    n = 0;
002126    for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
002127      n += identLength(pCol->zCnName) + 5;
002128    }
002129    n += identLength(p->zName);
002130    if( n<50 ){
002131      zSep = "";
002132      zSep2 = ",";
002133      zEnd = ")";
002134    }else{
002135      zSep = "\n  ";
002136      zSep2 = ",\n  ";
002137      zEnd = "\n)";
002138    }
002139    n += 35 + 6*p->nCol;
002140    zStmt = sqlite3DbMallocRaw(0, n);
002141    if( zStmt==0 ){
002142      sqlite3OomFault(db);
002143      return 0;
002144    }
002145    sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
002146    k = sqlite3Strlen30(zStmt);
002147    identPut(zStmt, &k, p->zName);
002148    zStmt[k++] = '(';
002149    for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
002150      static const char * const azType[] = {
002151          /* SQLITE_AFF_BLOB    */ "",
002152          /* SQLITE_AFF_TEXT    */ " TEXT",
002153          /* SQLITE_AFF_NUMERIC */ " NUM",
002154          /* SQLITE_AFF_INTEGER */ " INT",
002155          /* SQLITE_AFF_REAL    */ " REAL",
002156          /* SQLITE_AFF_FLEXNUM */ " NUM",
002157      };
002158      int len;
002159      const char *zType;
002160  
002161      sqlite3_snprintf(n-k, &zStmt[k], zSep);
002162      k += sqlite3Strlen30(&zStmt[k]);
002163      zSep = zSep2;
002164      identPut(zStmt, &k, pCol->zCnName);
002165      assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
002166      assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
002167      testcase( pCol->affinity==SQLITE_AFF_BLOB );
002168      testcase( pCol->affinity==SQLITE_AFF_TEXT );
002169      testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
002170      testcase( pCol->affinity==SQLITE_AFF_INTEGER );
002171      testcase( pCol->affinity==SQLITE_AFF_REAL );
002172      testcase( pCol->affinity==SQLITE_AFF_FLEXNUM );
002173     
002174      zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
002175      len = sqlite3Strlen30(zType);
002176      assert( pCol->affinity==SQLITE_AFF_BLOB
002177              || pCol->affinity==SQLITE_AFF_FLEXNUM
002178              || pCol->affinity==sqlite3AffinityType(zType, 0) );
002179      memcpy(&zStmt[k], zType, len);
002180      k += len;
002181      assert( k<=n );
002182    }
002183    sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
002184    return zStmt;
002185  }
002186  
002187  /*
002188  ** Resize an Index object to hold N columns total.  Return SQLITE_OK
002189  ** on success and SQLITE_NOMEM on an OOM error.
002190  */
002191  static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
002192    char *zExtra;
002193    int nByte;
002194    if( pIdx->nColumn>=N ) return SQLITE_OK;
002195    assert( pIdx->isResized==0 );
002196    nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
002197    zExtra = sqlite3DbMallocZero(db, nByte);
002198    if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
002199    memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
002200    pIdx->azColl = (const char**)zExtra;
002201    zExtra += sizeof(char*)*N;
002202    memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
002203    pIdx->aiRowLogEst = (LogEst*)zExtra;
002204    zExtra += sizeof(LogEst)*N;
002205    memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
002206    pIdx->aiColumn = (i16*)zExtra;
002207    zExtra += sizeof(i16)*N;
002208    memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
002209    pIdx->aSortOrder = (u8*)zExtra;
002210    pIdx->nColumn = N;
002211    pIdx->isResized = 1;
002212    return SQLITE_OK;
002213  }
002214  
002215  /*
002216  ** Estimate the total row width for a table.
002217  */
002218  static void estimateTableWidth(Table *pTab){
002219    unsigned wTable = 0;
002220    const Column *pTabCol;
002221    int i;
002222    for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
002223      wTable += pTabCol->szEst;
002224    }
002225    if( pTab->iPKey<0 ) wTable++;
002226    pTab->szTabRow = sqlite3LogEst(wTable*4);
002227  }
002228  
002229  /*
002230  ** Estimate the average size of a row for an index.
002231  */
002232  static void estimateIndexWidth(Index *pIdx){
002233    unsigned wIndex = 0;
002234    int i;
002235    const Column *aCol = pIdx->pTable->aCol;
002236    for(i=0; i<pIdx->nColumn; i++){
002237      i16 x = pIdx->aiColumn[i];
002238      assert( x<pIdx->pTable->nCol );
002239      wIndex += x<0 ? 1 : aCol[x].szEst;
002240    }
002241    pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
002242  }
002243  
002244  /* Return true if column number x is any of the first nCol entries of aiCol[].
002245  ** This is used to determine if the column number x appears in any of the
002246  ** first nCol entries of an index.
002247  */
002248  static int hasColumn(const i16 *aiCol, int nCol, int x){
002249    while( nCol-- > 0 ){
002250      if( x==*(aiCol++) ){
002251        return 1;
002252      }
002253    }
002254    return 0;
002255  }
002256  
002257  /*
002258  ** Return true if any of the first nKey entries of index pIdx exactly
002259  ** match the iCol-th entry of pPk.  pPk is always a WITHOUT ROWID
002260  ** PRIMARY KEY index.  pIdx is an index on the same table.  pIdx may
002261  ** or may not be the same index as pPk.
002262  **
002263  ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
002264  ** not a rowid or expression.
002265  **
002266  ** This routine differs from hasColumn() in that both the column and the
002267  ** collating sequence must match for this routine, but for hasColumn() only
002268  ** the column name must match.
002269  */
002270  static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
002271    int i, j;
002272    assert( nKey<=pIdx->nColumn );
002273    assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
002274    assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
002275    assert( pPk->pTable->tabFlags & TF_WithoutRowid );
002276    assert( pPk->pTable==pIdx->pTable );
002277    testcase( pPk==pIdx );
002278    j = pPk->aiColumn[iCol];
002279    assert( j!=XN_ROWID && j!=XN_EXPR );
002280    for(i=0; i<nKey; i++){
002281      assert( pIdx->aiColumn[i]>=0 || j>=0 );
002282      if( pIdx->aiColumn[i]==j
002283       && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
002284      ){
002285        return 1;
002286      }
002287    }
002288    return 0;
002289  }
002290  
002291  /* Recompute the colNotIdxed field of the Index.
002292  **
002293  ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
002294  ** columns that are within the first 63 columns of the table and a 1 for
002295  ** all other bits (all columns that are not in the index).  The
002296  ** high-order bit of colNotIdxed is always 1.  All unindexed columns
002297  ** of the table have a 1.
002298  **
002299  ** 2019-10-24:  For the purpose of this computation, virtual columns are
002300  ** not considered to be covered by the index, even if they are in the
002301  ** index, because we do not trust the logic in whereIndexExprTrans() to be
002302  ** able to find all instances of a reference to the indexed table column
002303  ** and convert them into references to the index.  Hence we always want
002304  ** the actual table at hand in order to recompute the virtual column, if
002305  ** necessary.
002306  **
002307  ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
002308  ** to determine if the index is covering index.
002309  */
002310  static void recomputeColumnsNotIndexed(Index *pIdx){
002311    Bitmask m = 0;
002312    int j;
002313    Table *pTab = pIdx->pTable;
002314    for(j=pIdx->nColumn-1; j>=0; j--){
002315      int x = pIdx->aiColumn[j];
002316      if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
002317        testcase( x==BMS-1 );
002318        testcase( x==BMS-2 );
002319        if( x<BMS-1 ) m |= MASKBIT(x);
002320      }
002321    }
002322    pIdx->colNotIdxed = ~m;
002323    assert( (pIdx->colNotIdxed>>63)==1 );  /* See note-20221022-a */
002324  }
002325  
002326  /*
002327  ** This routine runs at the end of parsing a CREATE TABLE statement that
002328  ** has a WITHOUT ROWID clause.  The job of this routine is to convert both
002329  ** internal schema data structures and the generated VDBE code so that they
002330  ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
002331  ** Changes include:
002332  **
002333  **     (1)  Set all columns of the PRIMARY KEY schema object to be NOT NULL.
002334  **     (2)  Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
002335  **          into BTREE_BLOBKEY.
002336  **     (3)  Bypass the creation of the sqlite_schema table entry
002337  **          for the PRIMARY KEY as the primary key index is now
002338  **          identified by the sqlite_schema table entry of the table itself.
002339  **     (4)  Set the Index.tnum of the PRIMARY KEY Index object in the
002340  **          schema to the rootpage from the main table.
002341  **     (5)  Add all table columns to the PRIMARY KEY Index object
002342  **          so that the PRIMARY KEY is a covering index.  The surplus
002343  **          columns are part of KeyInfo.nAllField and are not used for
002344  **          sorting or lookup or uniqueness checks.
002345  **     (6)  Replace the rowid tail on all automatically generated UNIQUE
002346  **          indices with the PRIMARY KEY columns.
002347  **
002348  ** For virtual tables, only (1) is performed.
002349  */
002350  static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
002351    Index *pIdx;
002352    Index *pPk;
002353    int nPk;
002354    int nExtra;
002355    int i, j;
002356    sqlite3 *db = pParse->db;
002357    Vdbe *v = pParse->pVdbe;
002358  
002359    /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
002360    */
002361    if( !db->init.imposterTable ){
002362      for(i=0; i<pTab->nCol; i++){
002363        if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
002364         && (pTab->aCol[i].notNull==OE_None)
002365        ){
002366          pTab->aCol[i].notNull = OE_Abort;
002367        }
002368      }
002369      pTab->tabFlags |= TF_HasNotNull;
002370    }
002371  
002372    /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
002373    ** into BTREE_BLOBKEY.
002374    */
002375    assert( !pParse->bReturning );
002376    if( pParse->u1.addrCrTab ){
002377      assert( v );
002378      sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
002379    }
002380  
002381    /* Locate the PRIMARY KEY index.  Or, if this table was originally
002382    ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
002383    */
002384    if( pTab->iPKey>=0 ){
002385      ExprList *pList;
002386      Token ipkToken;
002387      sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
002388      pList = sqlite3ExprListAppend(pParse, 0,
002389                    sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
002390      if( pList==0 ){
002391        pTab->tabFlags &= ~TF_WithoutRowid;
002392        return;
002393      }
002394      if( IN_RENAME_OBJECT ){
002395        sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
002396      }
002397      pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
002398      assert( pParse->pNewTable==pTab );
002399      pTab->iPKey = -1;
002400      sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
002401                         SQLITE_IDXTYPE_PRIMARYKEY);
002402      if( pParse->nErr ){
002403        pTab->tabFlags &= ~TF_WithoutRowid;
002404        return;
002405      }
002406      assert( db->mallocFailed==0 );
002407      pPk = sqlite3PrimaryKeyIndex(pTab);
002408      assert( pPk->nKeyCol==1 );
002409    }else{
002410      pPk = sqlite3PrimaryKeyIndex(pTab);
002411      assert( pPk!=0 );
002412  
002413      /*
002414      ** Remove all redundant columns from the PRIMARY KEY.  For example, change
002415      ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)".  Later
002416      ** code assumes the PRIMARY KEY contains no repeated columns.
002417      */
002418      for(i=j=1; i<pPk->nKeyCol; i++){
002419        if( isDupColumn(pPk, j, pPk, i) ){
002420          pPk->nColumn--;
002421        }else{
002422          testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
002423          pPk->azColl[j] = pPk->azColl[i];
002424          pPk->aSortOrder[j] = pPk->aSortOrder[i];
002425          pPk->aiColumn[j++] = pPk->aiColumn[i];
002426        }
002427      }
002428      pPk->nKeyCol = j;
002429    }
002430    assert( pPk!=0 );
002431    pPk->isCovering = 1;
002432    if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
002433    nPk = pPk->nColumn = pPk->nKeyCol;
002434  
002435    /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
002436    ** table entry. This is only required if currently generating VDBE
002437    ** code for a CREATE TABLE (not when parsing one as part of reading
002438    ** a database schema).  */
002439    if( v && pPk->tnum>0 ){
002440      assert( db->init.busy==0 );
002441      sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
002442    }
002443  
002444    /* The root page of the PRIMARY KEY is the table root page */
002445    pPk->tnum = pTab->tnum;
002446  
002447    /* Update the in-memory representation of all UNIQUE indices by converting
002448    ** the final rowid column into one or more columns of the PRIMARY KEY.
002449    */
002450    for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
002451      int n;
002452      if( IsPrimaryKeyIndex(pIdx) ) continue;
002453      for(i=n=0; i<nPk; i++){
002454        if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
002455          testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
002456          n++;
002457        }
002458      }
002459      if( n==0 ){
002460        /* This index is a superset of the primary key */
002461        pIdx->nColumn = pIdx->nKeyCol;
002462        continue;
002463      }
002464      if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
002465      for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
002466        if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
002467          testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
002468          pIdx->aiColumn[j] = pPk->aiColumn[i];
002469          pIdx->azColl[j] = pPk->azColl[i];
002470          if( pPk->aSortOrder[i] ){
002471            /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
002472            pIdx->bAscKeyBug = 1;
002473          }
002474          j++;
002475        }
002476      }
002477      assert( pIdx->nColumn>=pIdx->nKeyCol+n );
002478      assert( pIdx->nColumn>=j );
002479    }
002480  
002481    /* Add all table columns to the PRIMARY KEY index
002482    */
002483    nExtra = 0;
002484    for(i=0; i<pTab->nCol; i++){
002485      if( !hasColumn(pPk->aiColumn, nPk, i)
002486       && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
002487    }
002488    if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
002489    for(i=0, j=nPk; i<pTab->nCol; i++){
002490      if( !hasColumn(pPk->aiColumn, j, i)
002491       && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
002492      ){
002493        assert( j<pPk->nColumn );
002494        pPk->aiColumn[j] = i;
002495        pPk->azColl[j] = sqlite3StrBINARY;
002496        j++;
002497      }
002498    }
002499    assert( pPk->nColumn==j );
002500    assert( pTab->nNVCol<=j );
002501    recomputeColumnsNotIndexed(pPk);
002502  }
002503  
002504  
002505  #ifndef SQLITE_OMIT_VIRTUALTABLE
002506  /*
002507  ** Return true if pTab is a virtual table and zName is a shadow table name
002508  ** for that virtual table.
002509  */
002510  int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
002511    int nName;                    /* Length of zName */
002512    Module *pMod;                 /* Module for the virtual table */
002513  
002514    if( !IsVirtual(pTab) ) return 0;
002515    nName = sqlite3Strlen30(pTab->zName);
002516    if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
002517    if( zName[nName]!='_' ) return 0;
002518    pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
002519    if( pMod==0 ) return 0;
002520    if( pMod->pModule->iVersion<3 ) return 0;
002521    if( pMod->pModule->xShadowName==0 ) return 0;
002522    return pMod->pModule->xShadowName(zName+nName+1);
002523  }
002524  #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
002525  
002526  #ifndef SQLITE_OMIT_VIRTUALTABLE
002527  /*
002528  ** Table pTab is a virtual table.  If it the virtual table implementation
002529  ** exists and has an xShadowName method, then loop over all other ordinary
002530  ** tables within the same schema looking for shadow tables of pTab, and mark
002531  ** any shadow tables seen using the TF_Shadow flag.
002532  */
002533  void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
002534    int nName;                    /* Length of pTab->zName */
002535    Module *pMod;                 /* Module for the virtual table */
002536    HashElem *k;                  /* For looping through the symbol table */
002537  
002538    assert( IsVirtual(pTab) );
002539    pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
002540    if( pMod==0 ) return;
002541    if( NEVER(pMod->pModule==0) ) return;
002542    if( pMod->pModule->iVersion<3 ) return;
002543    if( pMod->pModule->xShadowName==0 ) return;
002544    assert( pTab->zName!=0 );
002545    nName = sqlite3Strlen30(pTab->zName);
002546    for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
002547      Table *pOther = sqliteHashData(k);
002548      assert( pOther->zName!=0 );
002549      if( !IsOrdinaryTable(pOther) ) continue;
002550      if( pOther->tabFlags & TF_Shadow ) continue;
002551      if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
002552       && pOther->zName[nName]=='_'
002553       && pMod->pModule->xShadowName(pOther->zName+nName+1)
002554      ){
002555        pOther->tabFlags |= TF_Shadow;
002556      }
002557    }
002558  }
002559  #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
002560  
002561  #ifndef SQLITE_OMIT_VIRTUALTABLE
002562  /*
002563  ** Return true if zName is a shadow table name in the current database
002564  ** connection.
002565  **
002566  ** zName is temporarily modified while this routine is running, but is
002567  ** restored to its original value prior to this routine returning.
002568  */
002569  int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
002570    char *zTail;                  /* Pointer to the last "_" in zName */
002571    Table *pTab;                  /* Table that zName is a shadow of */
002572    zTail = strrchr(zName, '_');
002573    if( zTail==0 ) return 0;
002574    *zTail = 0;
002575    pTab = sqlite3FindTable(db, zName, 0);
002576    *zTail = '_';
002577    if( pTab==0 ) return 0;
002578    if( !IsVirtual(pTab) ) return 0;
002579    return sqlite3IsShadowTableOf(db, pTab, zName);
002580  }
002581  #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
002582  
002583  
002584  #ifdef SQLITE_DEBUG
002585  /*
002586  ** Mark all nodes of an expression as EP_Immutable, indicating that
002587  ** they should not be changed.  Expressions attached to a table or
002588  ** index definition are tagged this way to help ensure that we do
002589  ** not pass them into code generator routines by mistake.
002590  */
002591  static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
002592    (void)pWalker;
002593    ExprSetVVAProperty(pExpr, EP_Immutable);
002594    return WRC_Continue;
002595  }
002596  static void markExprListImmutable(ExprList *pList){
002597    if( pList ){
002598      Walker w;
002599      memset(&w, 0, sizeof(w));
002600      w.xExprCallback = markImmutableExprStep;
002601      w.xSelectCallback = sqlite3SelectWalkNoop;
002602      w.xSelectCallback2 = 0;
002603      sqlite3WalkExprList(&w, pList);
002604    }
002605  }
002606  #else
002607  #define markExprListImmutable(X)  /* no-op */
002608  #endif /* SQLITE_DEBUG */
002609  
002610  
002611  /*
002612  ** This routine is called to report the final ")" that terminates
002613  ** a CREATE TABLE statement.
002614  **
002615  ** The table structure that other action routines have been building
002616  ** is added to the internal hash tables, assuming no errors have
002617  ** occurred.
002618  **
002619  ** An entry for the table is made in the schema table on disk, unless
002620  ** this is a temporary table or db->init.busy==1.  When db->init.busy==1
002621  ** it means we are reading the sqlite_schema table because we just
002622  ** connected to the database or because the sqlite_schema table has
002623  ** recently changed, so the entry for this table already exists in
002624  ** the sqlite_schema table.  We do not want to create it again.
002625  **
002626  ** If the pSelect argument is not NULL, it means that this routine
002627  ** was called to create a table generated from a
002628  ** "CREATE TABLE ... AS SELECT ..." statement.  The column names of
002629  ** the new table will match the result set of the SELECT.
002630  */
002631  void sqlite3EndTable(
002632    Parse *pParse,          /* Parse context */
002633    Token *pCons,           /* The ',' token after the last column defn. */
002634    Token *pEnd,            /* The ')' before options in the CREATE TABLE */
002635    u32 tabOpts,            /* Extra table options. Usually 0. */
002636    Select *pSelect         /* Select from a "CREATE ... AS SELECT" */
002637  ){
002638    Table *p;                 /* The new table */
002639    sqlite3 *db = pParse->db; /* The database connection */
002640    int iDb;                  /* Database in which the table lives */
002641    Index *pIdx;              /* An implied index of the table */
002642  
002643    if( pEnd==0 && pSelect==0 ){
002644      return;
002645    }
002646    p = pParse->pNewTable;
002647    if( p==0 ) return;
002648  
002649    if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
002650      p->tabFlags |= TF_Shadow;
002651    }
002652  
002653    /* If the db->init.busy is 1 it means we are reading the SQL off the
002654    ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
002655    ** So do not write to the disk again.  Extract the root page number
002656    ** for the table from the db->init.newTnum field.  (The page number
002657    ** should have been put there by the sqliteOpenCb routine.)
002658    **
002659    ** If the root page number is 1, that means this is the sqlite_schema
002660    ** table itself.  So mark it read-only.
002661    */
002662    if( db->init.busy ){
002663      if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
002664        sqlite3ErrorMsg(pParse, "");
002665        return;
002666      }
002667      p->tnum = db->init.newTnum;
002668      if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
002669    }
002670  
002671    /* Special processing for tables that include the STRICT keyword:
002672    **
002673    **   *  Do not allow custom column datatypes.  Every column must have
002674    **      a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
002675    **
002676    **   *  If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
002677    **      then all columns of the PRIMARY KEY must have a NOT NULL
002678    **      constraint.
002679    */
002680    if( tabOpts & TF_Strict ){
002681      int ii;
002682      p->tabFlags |= TF_Strict;
002683      for(ii=0; ii<p->nCol; ii++){
002684        Column *pCol = &p->aCol[ii];
002685        if( pCol->eCType==COLTYPE_CUSTOM ){
002686          if( pCol->colFlags & COLFLAG_HASTYPE ){
002687            sqlite3ErrorMsg(pParse,
002688              "unknown datatype for %s.%s: \"%s\"",
002689              p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
002690            );
002691          }else{
002692            sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
002693                            p->zName, pCol->zCnName);
002694          }
002695          return;
002696        }else if( pCol->eCType==COLTYPE_ANY ){
002697          pCol->affinity = SQLITE_AFF_BLOB;
002698        }
002699        if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
002700         && p->iPKey!=ii
002701         && pCol->notNull == OE_None
002702        ){
002703          pCol->notNull = OE_Abort;
002704          p->tabFlags |= TF_HasNotNull;
002705        }
002706      }   
002707    }
002708  
002709    assert( (p->tabFlags & TF_HasPrimaryKey)==0
002710         || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
002711    assert( (p->tabFlags & TF_HasPrimaryKey)!=0
002712         || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
002713  
002714    /* Special processing for WITHOUT ROWID Tables */
002715    if( tabOpts & TF_WithoutRowid ){
002716      if( (p->tabFlags & TF_Autoincrement) ){
002717        sqlite3ErrorMsg(pParse,
002718            "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
002719        return;
002720      }
002721      if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
002722        sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
002723        return;
002724      }
002725      p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
002726      convertToWithoutRowidTable(pParse, p);
002727    }
002728    iDb = sqlite3SchemaToIndex(db, p->pSchema);
002729  
002730  #ifndef SQLITE_OMIT_CHECK
002731    /* Resolve names in all CHECK constraint expressions.
002732    */
002733    if( p->pCheck ){
002734      sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
002735      if( pParse->nErr ){
002736        /* If errors are seen, delete the CHECK constraints now, else they might
002737        ** actually be used if PRAGMA writable_schema=ON is set. */
002738        sqlite3ExprListDelete(db, p->pCheck);
002739        p->pCheck = 0;
002740      }else{
002741        markExprListImmutable(p->pCheck);
002742      }
002743    }
002744  #endif /* !defined(SQLITE_OMIT_CHECK) */
002745  #ifndef SQLITE_OMIT_GENERATED_COLUMNS
002746    if( p->tabFlags & TF_HasGenerated ){
002747      int ii, nNG = 0;
002748      testcase( p->tabFlags & TF_HasVirtual );
002749      testcase( p->tabFlags & TF_HasStored );
002750      for(ii=0; ii<p->nCol; ii++){
002751        u32 colFlags = p->aCol[ii].colFlags;
002752        if( (colFlags & COLFLAG_GENERATED)!=0 ){
002753          Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
002754          testcase( colFlags & COLFLAG_VIRTUAL );
002755          testcase( colFlags & COLFLAG_STORED );
002756          if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
002757            /* If there are errors in resolving the expression, change the
002758            ** expression to a NULL.  This prevents code generators that operate
002759            ** on the expression from inserting extra parts into the expression
002760            ** tree that have been allocated from lookaside memory, which is
002761            ** illegal in a schema and will lead to errors or heap corruption
002762            ** when the database connection closes. */
002763            sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
002764                 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
002765          }
002766        }else{
002767          nNG++;
002768        }
002769      }
002770      if( nNG==0 ){
002771        sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
002772        return;
002773      }
002774    }
002775  #endif
002776  
002777    /* Estimate the average row size for the table and for all implied indices */
002778    estimateTableWidth(p);
002779    for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
002780      estimateIndexWidth(pIdx);
002781    }
002782  
002783    /* If not initializing, then create a record for the new table
002784    ** in the schema table of the database.
002785    **
002786    ** If this is a TEMPORARY table, write the entry into the auxiliary
002787    ** file instead of into the main database file.
002788    */
002789    if( !db->init.busy ){
002790      int n;
002791      Vdbe *v;
002792      char *zType;    /* "view" or "table" */
002793      char *zType2;   /* "VIEW" or "TABLE" */
002794      char *zStmt;    /* Text of the CREATE TABLE or CREATE VIEW statement */
002795  
002796      v = sqlite3GetVdbe(pParse);
002797      if( NEVER(v==0) ) return;
002798  
002799      sqlite3VdbeAddOp1(v, OP_Close, 0);
002800  
002801      /*
002802      ** Initialize zType for the new view or table.
002803      */
002804      if( IsOrdinaryTable(p) ){
002805        /* A regular table */
002806        zType = "table";
002807        zType2 = "TABLE";
002808  #ifndef SQLITE_OMIT_VIEW
002809      }else{
002810        /* A view */
002811        zType = "view";
002812        zType2 = "VIEW";
002813  #endif
002814      }
002815  
002816      /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
002817      ** statement to populate the new table. The root-page number for the
002818      ** new table is in register pParse->regRoot.
002819      **
002820      ** Once the SELECT has been coded by sqlite3Select(), it is in a
002821      ** suitable state to query for the column names and types to be used
002822      ** by the new table.
002823      **
002824      ** A shared-cache write-lock is not required to write to the new table,
002825      ** as a schema-lock must have already been obtained to create it. Since
002826      ** a schema-lock excludes all other database users, the write-lock would
002827      ** be redundant.
002828      */
002829      if( pSelect ){
002830        SelectDest dest;    /* Where the SELECT should store results */
002831        int regYield;       /* Register holding co-routine entry-point */
002832        int addrTop;        /* Top of the co-routine */
002833        int regRec;         /* A record to be insert into the new table */
002834        int regRowid;       /* Rowid of the next row to insert */
002835        int addrInsLoop;    /* Top of the loop for inserting rows */
002836        Table *pSelTab;     /* A table that describes the SELECT results */
002837  
002838        if( IN_SPECIAL_PARSE ){
002839          pParse->rc = SQLITE_ERROR;
002840          pParse->nErr++;
002841          return;
002842        }
002843        regYield = ++pParse->nMem;
002844        regRec = ++pParse->nMem;
002845        regRowid = ++pParse->nMem;
002846        assert(pParse->nTab==1);
002847        sqlite3MayAbort(pParse);
002848        sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
002849        sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
002850        pParse->nTab = 2;
002851        addrTop = sqlite3VdbeCurrentAddr(v) + 1;
002852        sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
002853        if( pParse->nErr ) return;
002854        pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
002855        if( pSelTab==0 ) return;
002856        assert( p->aCol==0 );
002857        p->nCol = p->nNVCol = pSelTab->nCol;
002858        p->aCol = pSelTab->aCol;
002859        pSelTab->nCol = 0;
002860        pSelTab->aCol = 0;
002861        sqlite3DeleteTable(db, pSelTab);
002862        sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
002863        sqlite3Select(pParse, pSelect, &dest);
002864        if( pParse->nErr ) return;
002865        sqlite3VdbeEndCoroutine(v, regYield);
002866        sqlite3VdbeJumpHere(v, addrTop - 1);
002867        addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
002868        VdbeCoverage(v);
002869        sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
002870        sqlite3TableAffinity(v, p, 0);
002871        sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
002872        sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
002873        sqlite3VdbeGoto(v, addrInsLoop);
002874        sqlite3VdbeJumpHere(v, addrInsLoop);
002875        sqlite3VdbeAddOp1(v, OP_Close, 1);
002876      }
002877  
002878      /* Compute the complete text of the CREATE statement */
002879      if( pSelect ){
002880        zStmt = createTableStmt(db, p);
002881      }else{
002882        Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
002883        n = (int)(pEnd2->z - pParse->sNameToken.z);
002884        if( pEnd2->z[0]!=';' ) n += pEnd2->n;
002885        zStmt = sqlite3MPrintf(db,
002886            "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
002887        );
002888      }
002889  
002890      /* A slot for the record has already been allocated in the
002891      ** schema table.  We just need to update that slot with all
002892      ** the information we've collected.
002893      */
002894      sqlite3NestedParse(pParse,
002895        "UPDATE %Q." LEGACY_SCHEMA_TABLE
002896        " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
002897        " WHERE rowid=#%d",
002898        db->aDb[iDb].zDbSName,
002899        zType,
002900        p->zName,
002901        p->zName,
002902        pParse->regRoot,
002903        zStmt,
002904        pParse->regRowid
002905      );
002906      sqlite3DbFree(db, zStmt);
002907      sqlite3ChangeCookie(pParse, iDb);
002908  
002909  #ifndef SQLITE_OMIT_AUTOINCREMENT
002910      /* Check to see if we need to create an sqlite_sequence table for
002911      ** keeping track of autoincrement keys.
002912      */
002913      if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
002914        Db *pDb = &db->aDb[iDb];
002915        assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
002916        if( pDb->pSchema->pSeqTab==0 ){
002917          sqlite3NestedParse(pParse,
002918            "CREATE TABLE %Q.sqlite_sequence(name,seq)",
002919            pDb->zDbSName
002920          );
002921        }
002922      }
002923  #endif
002924  
002925      /* Reparse everything to update our internal data structures */
002926      sqlite3VdbeAddParseSchemaOp(v, iDb,
002927             sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
002928    }
002929  
002930    /* Add the table to the in-memory representation of the database.
002931    */
002932    if( db->init.busy ){
002933      Table *pOld;
002934      Schema *pSchema = p->pSchema;
002935      assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
002936      assert( HasRowid(p) || p->iPKey<0 );
002937      pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
002938      if( pOld ){
002939        assert( p==pOld );  /* Malloc must have failed inside HashInsert() */
002940        sqlite3OomFault(db);
002941        return;
002942      }
002943      pParse->pNewTable = 0;
002944      db->mDbFlags |= DBFLAG_SchemaChange;
002945  
002946      /* If this is the magic sqlite_sequence table used by autoincrement,
002947      ** then record a pointer to this table in the main database structure
002948      ** so that INSERT can find the table easily.  */
002949      assert( !pParse->nested );
002950  #ifndef SQLITE_OMIT_AUTOINCREMENT
002951      if( strcmp(p->zName, "sqlite_sequence")==0 ){
002952        assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
002953        p->pSchema->pSeqTab = p;
002954      }
002955  #endif
002956    }
002957  
002958  #ifndef SQLITE_OMIT_ALTERTABLE
002959    if( !pSelect && IsOrdinaryTable(p) ){
002960      assert( pCons && pEnd );
002961      if( pCons->z==0 ){
002962        pCons = pEnd;
002963      }
002964      p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
002965    }
002966  #endif
002967  }
002968  
002969  #ifndef SQLITE_OMIT_VIEW
002970  /*
002971  ** The parser calls this routine in order to create a new VIEW
002972  */
002973  void sqlite3CreateView(
002974    Parse *pParse,     /* The parsing context */
002975    Token *pBegin,     /* The CREATE token that begins the statement */
002976    Token *pName1,     /* The token that holds the name of the view */
002977    Token *pName2,     /* The token that holds the name of the view */
002978    ExprList *pCNames, /* Optional list of view column names */
002979    Select *pSelect,   /* A SELECT statement that will become the new view */
002980    int isTemp,        /* TRUE for a TEMPORARY view */
002981    int noErr          /* Suppress error messages if VIEW already exists */
002982  ){
002983    Table *p;
002984    int n;
002985    const char *z;
002986    Token sEnd;
002987    DbFixer sFix;
002988    Token *pName = 0;
002989    int iDb;
002990    sqlite3 *db = pParse->db;
002991  
002992    if( pParse->nVar>0 ){
002993      sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
002994      goto create_view_fail;
002995    }
002996    sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
002997    p = pParse->pNewTable;
002998    if( p==0 || pParse->nErr ) goto create_view_fail;
002999  
003000    /* Legacy versions of SQLite allowed the use of the magic "rowid" column
003001    ** on a view, even though views do not have rowids.  The following flag
003002    ** setting fixes this problem.  But the fix can be disabled by compiling
003003    ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
003004    ** depend upon the old buggy behavior. */
003005  #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
003006    p->tabFlags |= TF_NoVisibleRowid;
003007  #endif
003008  
003009    sqlite3TwoPartName(pParse, pName1, pName2, &pName);
003010    iDb = sqlite3SchemaToIndex(db, p->pSchema);
003011    sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
003012    if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
003013  
003014    /* Make a copy of the entire SELECT statement that defines the view.
003015    ** This will force all the Expr.token.z values to be dynamically
003016    ** allocated rather than point to the input string - which means that
003017    ** they will persist after the current sqlite3_exec() call returns.
003018    */
003019    pSelect->selFlags |= SF_View;
003020    if( IN_RENAME_OBJECT ){
003021      p->u.view.pSelect = pSelect;
003022      pSelect = 0;
003023    }else{
003024      p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
003025    }
003026    p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
003027    p->eTabType = TABTYP_VIEW;
003028    if( db->mallocFailed ) goto create_view_fail;
003029  
003030    /* Locate the end of the CREATE VIEW statement.  Make sEnd point to
003031    ** the end.
003032    */
003033    sEnd = pParse->sLastToken;
003034    assert( sEnd.z[0]!=0 || sEnd.n==0 );
003035    if( sEnd.z[0]!=';' ){
003036      sEnd.z += sEnd.n;
003037    }
003038    sEnd.n = 0;
003039    n = (int)(sEnd.z - pBegin->z);
003040    assert( n>0 );
003041    z = pBegin->z;
003042    while( sqlite3Isspace(z[n-1]) ){ n--; }
003043    sEnd.z = &z[n-1];
003044    sEnd.n = 1;
003045  
003046    /* Use sqlite3EndTable() to add the view to the schema table */
003047    sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
003048  
003049  create_view_fail:
003050    sqlite3SelectDelete(db, pSelect);
003051    if( IN_RENAME_OBJECT ){
003052      sqlite3RenameExprlistUnmap(pParse, pCNames);
003053    }
003054    sqlite3ExprListDelete(db, pCNames);
003055    return;
003056  }
003057  #endif /* SQLITE_OMIT_VIEW */
003058  
003059  #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
003060  /*
003061  ** The Table structure pTable is really a VIEW.  Fill in the names of
003062  ** the columns of the view in the pTable structure.  Return the number
003063  ** of errors.  If an error is seen leave an error message in pParse->zErrMsg.
003064  */
003065  static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){
003066    Table *pSelTab;   /* A fake table from which we get the result set */
003067    Select *pSel;     /* Copy of the SELECT that implements the view */
003068    int nErr = 0;     /* Number of errors encountered */
003069    sqlite3 *db = pParse->db;  /* Database connection for malloc errors */
003070  #ifndef SQLITE_OMIT_VIRTUALTABLE
003071    int rc;
003072  #endif
003073  #ifndef SQLITE_OMIT_AUTHORIZATION
003074    sqlite3_xauth xAuth;       /* Saved xAuth pointer */
003075  #endif
003076  
003077    assert( pTable );
003078  
003079  #ifndef SQLITE_OMIT_VIRTUALTABLE
003080    if( IsVirtual(pTable) ){
003081      db->nSchemaLock++;
003082      rc = sqlite3VtabCallConnect(pParse, pTable);
003083      db->nSchemaLock--;
003084      return rc;
003085    }
003086  #endif
003087  
003088  #ifndef SQLITE_OMIT_VIEW
003089    /* A positive nCol means the columns names for this view are
003090    ** already known.  This routine is not called unless either the
003091    ** table is virtual or nCol is zero.
003092    */
003093    assert( pTable->nCol<=0 );
003094  
003095    /* A negative nCol is a special marker meaning that we are currently
003096    ** trying to compute the column names.  If we enter this routine with
003097    ** a negative nCol, it means two or more views form a loop, like this:
003098    **
003099    **     CREATE VIEW one AS SELECT * FROM two;
003100    **     CREATE VIEW two AS SELECT * FROM one;
003101    **
003102    ** Actually, the error above is now caught prior to reaching this point.
003103    ** But the following test is still important as it does come up
003104    ** in the following:
003105    **
003106    **     CREATE TABLE main.ex1(a);
003107    **     CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
003108    **     SELECT * FROM temp.ex1;
003109    */
003110    if( pTable->nCol<0 ){
003111      sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
003112      return 1;
003113    }
003114    assert( pTable->nCol>=0 );
003115  
003116    /* If we get this far, it means we need to compute the table names.
003117    ** Note that the call to sqlite3ResultSetOfSelect() will expand any
003118    ** "*" elements in the results set of the view and will assign cursors
003119    ** to the elements of the FROM clause.  But we do not want these changes
003120    ** to be permanent.  So the computation is done on a copy of the SELECT
003121    ** statement that defines the view.
003122    */
003123    assert( IsView(pTable) );
003124    pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
003125    if( pSel ){
003126      u8 eParseMode = pParse->eParseMode;
003127      int nTab = pParse->nTab;
003128      int nSelect = pParse->nSelect;
003129      pParse->eParseMode = PARSE_MODE_NORMAL;
003130      sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
003131      pTable->nCol = -1;
003132      DisableLookaside;
003133  #ifndef SQLITE_OMIT_AUTHORIZATION
003134      xAuth = db->xAuth;
003135      db->xAuth = 0;
003136      pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
003137      db->xAuth = xAuth;
003138  #else
003139      pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
003140  #endif
003141      pParse->nTab = nTab;
003142      pParse->nSelect = nSelect;
003143      if( pSelTab==0 ){
003144        pTable->nCol = 0;
003145        nErr++;
003146      }else if( pTable->pCheck ){
003147        /* CREATE VIEW name(arglist) AS ...
003148        ** The names of the columns in the table are taken from
003149        ** arglist which is stored in pTable->pCheck.  The pCheck field
003150        ** normally holds CHECK constraints on an ordinary table, but for
003151        ** a VIEW it holds the list of column names.
003152        */
003153        sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
003154                                   &pTable->nCol, &pTable->aCol);
003155        if( pParse->nErr==0
003156         && pTable->nCol==pSel->pEList->nExpr
003157        ){
003158          assert( db->mallocFailed==0 );
003159          sqlite3SubqueryColumnTypes(pParse, pTable, pSel, SQLITE_AFF_NONE);
003160        }
003161      }else{
003162        /* CREATE VIEW name AS...  without an argument list.  Construct
003163        ** the column names from the SELECT statement that defines the view.
003164        */
003165        assert( pTable->aCol==0 );
003166        pTable->nCol = pSelTab->nCol;
003167        pTable->aCol = pSelTab->aCol;
003168        pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
003169        pSelTab->nCol = 0;
003170        pSelTab->aCol = 0;
003171        assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
003172      }
003173      pTable->nNVCol = pTable->nCol;
003174      sqlite3DeleteTable(db, pSelTab);
003175      sqlite3SelectDelete(db, pSel);
003176      EnableLookaside;
003177      pParse->eParseMode = eParseMode;
003178    } else {
003179      nErr++;
003180    }
003181    pTable->pSchema->schemaFlags |= DB_UnresetViews;
003182    if( db->mallocFailed ){
003183      sqlite3DeleteColumnNames(db, pTable);
003184    }
003185  #endif /* SQLITE_OMIT_VIEW */
003186    return nErr; 
003187  }
003188  int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
003189    assert( pTable!=0 );
003190    if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0;
003191    return viewGetColumnNames(pParse, pTable);
003192  }
003193  #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
003194  
003195  #ifndef SQLITE_OMIT_VIEW
003196  /*
003197  ** Clear the column names from every VIEW in database idx.
003198  */
003199  static void sqliteViewResetAll(sqlite3 *db, int idx){
003200    HashElem *i;
003201    assert( sqlite3SchemaMutexHeld(db, idx, 0) );
003202    if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
003203    for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
003204      Table *pTab = sqliteHashData(i);
003205      if( IsView(pTab) ){
003206        sqlite3DeleteColumnNames(db, pTab);
003207      }
003208    }
003209    DbClearProperty(db, idx, DB_UnresetViews);
003210  }
003211  #else
003212  # define sqliteViewResetAll(A,B)
003213  #endif /* SQLITE_OMIT_VIEW */
003214  
003215  /*
003216  ** This function is called by the VDBE to adjust the internal schema
003217  ** used by SQLite when the btree layer moves a table root page. The
003218  ** root-page of a table or index in database iDb has changed from iFrom
003219  ** to iTo.
003220  **
003221  ** Ticket #1728:  The symbol table might still contain information
003222  ** on tables and/or indices that are the process of being deleted.
003223  ** If you are unlucky, one of those deleted indices or tables might
003224  ** have the same rootpage number as the real table or index that is
003225  ** being moved.  So we cannot stop searching after the first match
003226  ** because the first match might be for one of the deleted indices
003227  ** or tables and not the table/index that is actually being moved.
003228  ** We must continue looping until all tables and indices with
003229  ** rootpage==iFrom have been converted to have a rootpage of iTo
003230  ** in order to be certain that we got the right one.
003231  */
003232  #ifndef SQLITE_OMIT_AUTOVACUUM
003233  void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
003234    HashElem *pElem;
003235    Hash *pHash;
003236    Db *pDb;
003237  
003238    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
003239    pDb = &db->aDb[iDb];
003240    pHash = &pDb->pSchema->tblHash;
003241    for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
003242      Table *pTab = sqliteHashData(pElem);
003243      if( pTab->tnum==iFrom ){
003244        pTab->tnum = iTo;
003245      }
003246    }
003247    pHash = &pDb->pSchema->idxHash;
003248    for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
003249      Index *pIdx = sqliteHashData(pElem);
003250      if( pIdx->tnum==iFrom ){
003251        pIdx->tnum = iTo;
003252      }
003253    }
003254  }
003255  #endif
003256  
003257  /*
003258  ** Write code to erase the table with root-page iTable from database iDb.
003259  ** Also write code to modify the sqlite_schema table and internal schema
003260  ** if a root-page of another table is moved by the btree-layer whilst
003261  ** erasing iTable (this can happen with an auto-vacuum database).
003262  */
003263  static void destroyRootPage(Parse *pParse, int iTable, int iDb){
003264    Vdbe *v = sqlite3GetVdbe(pParse);
003265    int r1 = sqlite3GetTempReg(pParse);
003266    if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
003267    sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
003268    sqlite3MayAbort(pParse);
003269  #ifndef SQLITE_OMIT_AUTOVACUUM
003270    /* OP_Destroy stores an in integer r1. If this integer
003271    ** is non-zero, then it is the root page number of a table moved to
003272    ** location iTable. The following code modifies the sqlite_schema table to
003273    ** reflect this.
003274    **
003275    ** The "#NNN" in the SQL is a special constant that means whatever value
003276    ** is in register NNN.  See grammar rules associated with the TK_REGISTER
003277    ** token for additional information.
003278    */
003279    sqlite3NestedParse(pParse,
003280       "UPDATE %Q." LEGACY_SCHEMA_TABLE
003281       " SET rootpage=%d WHERE #%d AND rootpage=#%d",
003282       pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
003283  #endif
003284    sqlite3ReleaseTempReg(pParse, r1);
003285  }
003286  
003287  /*
003288  ** Write VDBE code to erase table pTab and all associated indices on disk.
003289  ** Code to update the sqlite_schema tables and internal schema definitions
003290  ** in case a root-page belonging to another table is moved by the btree layer
003291  ** is also added (this can happen with an auto-vacuum database).
003292  */
003293  static void destroyTable(Parse *pParse, Table *pTab){
003294    /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
003295    ** is not defined), then it is important to call OP_Destroy on the
003296    ** table and index root-pages in order, starting with the numerically
003297    ** largest root-page number. This guarantees that none of the root-pages
003298    ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
003299    ** following were coded:
003300    **
003301    ** OP_Destroy 4 0
003302    ** ...
003303    ** OP_Destroy 5 0
003304    **
003305    ** and root page 5 happened to be the largest root-page number in the
003306    ** database, then root page 5 would be moved to page 4 by the
003307    ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
003308    ** a free-list page.
003309    */
003310    Pgno iTab = pTab->tnum;
003311    Pgno iDestroyed = 0;
003312  
003313    while( 1 ){
003314      Index *pIdx;
003315      Pgno iLargest = 0;
003316  
003317      if( iDestroyed==0 || iTab<iDestroyed ){
003318        iLargest = iTab;
003319      }
003320      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
003321        Pgno iIdx = pIdx->tnum;
003322        assert( pIdx->pSchema==pTab->pSchema );
003323        if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
003324          iLargest = iIdx;
003325        }
003326      }
003327      if( iLargest==0 ){
003328        return;
003329      }else{
003330        int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
003331        assert( iDb>=0 && iDb<pParse->db->nDb );
003332        destroyRootPage(pParse, iLargest, iDb);
003333        iDestroyed = iLargest;
003334      }
003335    }
003336  }
003337  
003338  /*
003339  ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
003340  ** after a DROP INDEX or DROP TABLE command.
003341  */
003342  static void sqlite3ClearStatTables(
003343    Parse *pParse,         /* The parsing context */
003344    int iDb,               /* The database number */
003345    const char *zType,     /* "idx" or "tbl" */
003346    const char *zName      /* Name of index or table */
003347  ){
003348    int i;
003349    const char *zDbName = pParse->db->aDb[iDb].zDbSName;
003350    for(i=1; i<=4; i++){
003351      char zTab[24];
003352      sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
003353      if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
003354        sqlite3NestedParse(pParse,
003355          "DELETE FROM %Q.%s WHERE %s=%Q",
003356          zDbName, zTab, zType, zName
003357        );
003358      }
003359    }
003360  }
003361  
003362  /*
003363  ** Generate code to drop a table.
003364  */
003365  void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
003366    Vdbe *v;
003367    sqlite3 *db = pParse->db;
003368    Trigger *pTrigger;
003369    Db *pDb = &db->aDb[iDb];
003370  
003371    v = sqlite3GetVdbe(pParse);
003372    assert( v!=0 );
003373    sqlite3BeginWriteOperation(pParse, 1, iDb);
003374  
003375  #ifndef SQLITE_OMIT_VIRTUALTABLE
003376    if( IsVirtual(pTab) ){
003377      sqlite3VdbeAddOp0(v, OP_VBegin);
003378    }
003379  #endif
003380  
003381    /* Drop all triggers associated with the table being dropped. Code
003382    ** is generated to remove entries from sqlite_schema and/or
003383    ** sqlite_temp_schema if required.
003384    */
003385    pTrigger = sqlite3TriggerList(pParse, pTab);
003386    while( pTrigger ){
003387      assert( pTrigger->pSchema==pTab->pSchema ||
003388          pTrigger->pSchema==db->aDb[1].pSchema );
003389      sqlite3DropTriggerPtr(pParse, pTrigger);
003390      pTrigger = pTrigger->pNext;
003391    }
003392  
003393  #ifndef SQLITE_OMIT_AUTOINCREMENT
003394    /* Remove any entries of the sqlite_sequence table associated with
003395    ** the table being dropped. This is done before the table is dropped
003396    ** at the btree level, in case the sqlite_sequence table needs to
003397    ** move as a result of the drop (can happen in auto-vacuum mode).
003398    */
003399    if( pTab->tabFlags & TF_Autoincrement ){
003400      sqlite3NestedParse(pParse,
003401        "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
003402        pDb->zDbSName, pTab->zName
003403      );
003404    }
003405  #endif
003406  
003407    /* Drop all entries in the schema table that refer to the
003408    ** table. The program name loops through the schema table and deletes
003409    ** every row that refers to a table of the same name as the one being
003410    ** dropped. Triggers are handled separately because a trigger can be
003411    ** created in the temp database that refers to a table in another
003412    ** database.
003413    */
003414    sqlite3NestedParse(pParse,
003415        "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
003416        " WHERE tbl_name=%Q and type!='trigger'",
003417        pDb->zDbSName, pTab->zName);
003418    if( !isView && !IsVirtual(pTab) ){
003419      destroyTable(pParse, pTab);
003420    }
003421  
003422    /* Remove the table entry from SQLite's internal schema and modify
003423    ** the schema cookie.
003424    */
003425    if( IsVirtual(pTab) ){
003426      sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
003427      sqlite3MayAbort(pParse);
003428    }
003429    sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
003430    sqlite3ChangeCookie(pParse, iDb);
003431    sqliteViewResetAll(db, iDb);
003432  }
003433  
003434  /*
003435  ** Return TRUE if shadow tables should be read-only in the current
003436  ** context.
003437  */
003438  int sqlite3ReadOnlyShadowTables(sqlite3 *db){
003439  #ifndef SQLITE_OMIT_VIRTUALTABLE
003440    if( (db->flags & SQLITE_Defensive)!=0
003441     && db->pVtabCtx==0
003442     && db->nVdbeExec==0
003443     && !sqlite3VtabInSync(db)
003444    ){
003445      return 1;
003446    }
003447  #endif
003448    return 0;
003449  }
003450  
003451  /*
003452  ** Return true if it is not allowed to drop the given table
003453  */
003454  static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
003455    if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
003456      if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
003457      if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
003458      return 1;
003459    }
003460    if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
003461      return 1;
003462    }
003463    if( pTab->tabFlags & TF_Eponymous ){
003464      return 1;
003465    }
003466    return 0;
003467  }
003468  
003469  /*
003470  ** This routine is called to do the work of a DROP TABLE statement.
003471  ** pName is the name of the table to be dropped.
003472  */
003473  void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
003474    Table *pTab;
003475    Vdbe *v;
003476    sqlite3 *db = pParse->db;
003477    int iDb;
003478  
003479    if( db->mallocFailed ){
003480      goto exit_drop_table;
003481    }
003482    assert( pParse->nErr==0 );
003483    assert( pName->nSrc==1 );
003484    if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
003485    if( noErr ) db->suppressErr++;
003486    assert( isView==0 || isView==LOCATE_VIEW );
003487    pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
003488    if( noErr ) db->suppressErr--;
003489  
003490    if( pTab==0 ){
003491      if( noErr ){
003492        sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
003493        sqlite3ForceNotReadOnly(pParse);
003494      }
003495      goto exit_drop_table;
003496    }
003497    iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
003498    assert( iDb>=0 && iDb<db->nDb );
003499  
003500    /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
003501    ** it is initialized.
003502    */
003503    if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
003504      goto exit_drop_table;
003505    }
003506  #ifndef SQLITE_OMIT_AUTHORIZATION
003507    {
003508      int code;
003509      const char *zTab = SCHEMA_TABLE(iDb);
003510      const char *zDb = db->aDb[iDb].zDbSName;
003511      const char *zArg2 = 0;
003512      if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
003513        goto exit_drop_table;
003514      }
003515      if( isView ){
003516        if( !OMIT_TEMPDB && iDb==1 ){
003517          code = SQLITE_DROP_TEMP_VIEW;
003518        }else{
003519          code = SQLITE_DROP_VIEW;
003520        }
003521  #ifndef SQLITE_OMIT_VIRTUALTABLE
003522      }else if( IsVirtual(pTab) ){
003523        code = SQLITE_DROP_VTABLE;
003524        zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
003525  #endif
003526      }else{
003527        if( !OMIT_TEMPDB && iDb==1 ){
003528          code = SQLITE_DROP_TEMP_TABLE;
003529        }else{
003530          code = SQLITE_DROP_TABLE;
003531        }
003532      }
003533      if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
003534        goto exit_drop_table;
003535      }
003536      if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
003537        goto exit_drop_table;
003538      }
003539    }
003540  #endif
003541    if( tableMayNotBeDropped(db, pTab) ){
003542      sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
003543      goto exit_drop_table;
003544    }
003545  
003546  #ifndef SQLITE_OMIT_VIEW
003547    /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
003548    ** on a table.
003549    */
003550    if( isView && !IsView(pTab) ){
003551      sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
003552      goto exit_drop_table;
003553    }
003554    if( !isView && IsView(pTab) ){
003555      sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
003556      goto exit_drop_table;
003557    }
003558  #endif
003559  
003560    /* Generate code to remove the table from the schema table
003561    ** on disk.
003562    */
003563    v = sqlite3GetVdbe(pParse);
003564    if( v ){
003565      sqlite3BeginWriteOperation(pParse, 1, iDb);
003566      if( !isView ){
003567        sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
003568        sqlite3FkDropTable(pParse, pName, pTab);
003569      }
003570      sqlite3CodeDropTable(pParse, pTab, iDb, isView);
003571    }
003572  
003573  exit_drop_table:
003574    sqlite3SrcListDelete(db, pName);
003575  }
003576  
003577  /*
003578  ** This routine is called to create a new foreign key on the table
003579  ** currently under construction.  pFromCol determines which columns
003580  ** in the current table point to the foreign key.  If pFromCol==0 then
003581  ** connect the key to the last column inserted.  pTo is the name of
003582  ** the table referred to (a.k.a the "parent" table).  pToCol is a list
003583  ** of tables in the parent pTo table.  flags contains all
003584  ** information about the conflict resolution algorithms specified
003585  ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
003586  **
003587  ** An FKey structure is created and added to the table currently
003588  ** under construction in the pParse->pNewTable field.
003589  **
003590  ** The foreign key is set for IMMEDIATE processing.  A subsequent call
003591  ** to sqlite3DeferForeignKey() might change this to DEFERRED.
003592  */
003593  void sqlite3CreateForeignKey(
003594    Parse *pParse,       /* Parsing context */
003595    ExprList *pFromCol,  /* Columns in this table that point to other table */
003596    Token *pTo,          /* Name of the other table */
003597    ExprList *pToCol,    /* Columns in the other table */
003598    int flags            /* Conflict resolution algorithms. */
003599  ){
003600    sqlite3 *db = pParse->db;
003601  #ifndef SQLITE_OMIT_FOREIGN_KEY
003602    FKey *pFKey = 0;
003603    FKey *pNextTo;
003604    Table *p = pParse->pNewTable;
003605    i64 nByte;
003606    int i;
003607    int nCol;
003608    char *z;
003609  
003610    assert( pTo!=0 );
003611    if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
003612    if( pFromCol==0 ){
003613      int iCol = p->nCol-1;
003614      if( NEVER(iCol<0) ) goto fk_end;
003615      if( pToCol && pToCol->nExpr!=1 ){
003616        sqlite3ErrorMsg(pParse, "foreign key on %s"
003617           " should reference only one column of table %T",
003618           p->aCol[iCol].zCnName, pTo);
003619        goto fk_end;
003620      }
003621      nCol = 1;
003622    }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
003623      sqlite3ErrorMsg(pParse,
003624          "number of columns in foreign key does not match the number of "
003625          "columns in the referenced table");
003626      goto fk_end;
003627    }else{
003628      nCol = pFromCol->nExpr;
003629    }
003630    nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
003631    if( pToCol ){
003632      for(i=0; i<pToCol->nExpr; i++){
003633        nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
003634      }
003635    }
003636    pFKey = sqlite3DbMallocZero(db, nByte );
003637    if( pFKey==0 ){
003638      goto fk_end;
003639    }
003640    pFKey->pFrom = p;
003641    assert( IsOrdinaryTable(p) );
003642    pFKey->pNextFrom = p->u.tab.pFKey;
003643    z = (char*)&pFKey->aCol[nCol];
003644    pFKey->zTo = z;
003645    if( IN_RENAME_OBJECT ){
003646      sqlite3RenameTokenMap(pParse, (void*)z, pTo);
003647    }
003648    memcpy(z, pTo->z, pTo->n);
003649    z[pTo->n] = 0;
003650    sqlite3Dequote(z);
003651    z += pTo->n+1;
003652    pFKey->nCol = nCol;
003653    if( pFromCol==0 ){
003654      pFKey->aCol[0].iFrom = p->nCol-1;
003655    }else{
003656      for(i=0; i<nCol; i++){
003657        int j;
003658        for(j=0; j<p->nCol; j++){
003659          if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
003660            pFKey->aCol[i].iFrom = j;
003661            break;
003662          }
003663        }
003664        if( j>=p->nCol ){
003665          sqlite3ErrorMsg(pParse,
003666            "unknown column \"%s\" in foreign key definition",
003667            pFromCol->a[i].zEName);
003668          goto fk_end;
003669        }
003670        if( IN_RENAME_OBJECT ){
003671          sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
003672        }
003673      }
003674    }
003675    if( pToCol ){
003676      for(i=0; i<nCol; i++){
003677        int n = sqlite3Strlen30(pToCol->a[i].zEName);
003678        pFKey->aCol[i].zCol = z;
003679        if( IN_RENAME_OBJECT ){
003680          sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
003681        }
003682        memcpy(z, pToCol->a[i].zEName, n);
003683        z[n] = 0;
003684        z += n+1;
003685      }
003686    }
003687    pFKey->isDeferred = 0;
003688    pFKey->aAction[0] = (u8)(flags & 0xff);            /* ON DELETE action */
003689    pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff);    /* ON UPDATE action */
003690  
003691    assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
003692    pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
003693        pFKey->zTo, (void *)pFKey
003694    );
003695    if( pNextTo==pFKey ){
003696      sqlite3OomFault(db);
003697      goto fk_end;
003698    }
003699    if( pNextTo ){
003700      assert( pNextTo->pPrevTo==0 );
003701      pFKey->pNextTo = pNextTo;
003702      pNextTo->pPrevTo = pFKey;
003703    }
003704  
003705    /* Link the foreign key to the table as the last step.
003706    */
003707    assert( IsOrdinaryTable(p) );
003708    p->u.tab.pFKey = pFKey;
003709    pFKey = 0;
003710  
003711  fk_end:
003712    sqlite3DbFree(db, pFKey);
003713  #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
003714    sqlite3ExprListDelete(db, pFromCol);
003715    sqlite3ExprListDelete(db, pToCol);
003716  }
003717  
003718  /*
003719  ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
003720  ** clause is seen as part of a foreign key definition.  The isDeferred
003721  ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
003722  ** The behavior of the most recently created foreign key is adjusted
003723  ** accordingly.
003724  */
003725  void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
003726  #ifndef SQLITE_OMIT_FOREIGN_KEY
003727    Table *pTab;
003728    FKey *pFKey;
003729    if( (pTab = pParse->pNewTable)==0 ) return;
003730    if( NEVER(!IsOrdinaryTable(pTab)) ) return;
003731    if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
003732    assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
003733    pFKey->isDeferred = (u8)isDeferred;
003734  #endif
003735  }
003736  
003737  /*
003738  ** Generate code that will erase and refill index *pIdx.  This is
003739  ** used to initialize a newly created index or to recompute the
003740  ** content of an index in response to a REINDEX command.
003741  **
003742  ** if memRootPage is not negative, it means that the index is newly
003743  ** created.  The register specified by memRootPage contains the
003744  ** root page number of the index.  If memRootPage is negative, then
003745  ** the index already exists and must be cleared before being refilled and
003746  ** the root page number of the index is taken from pIndex->tnum.
003747  */
003748  static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
003749    Table *pTab = pIndex->pTable;  /* The table that is indexed */
003750    int iTab = pParse->nTab++;     /* Btree cursor used for pTab */
003751    int iIdx = pParse->nTab++;     /* Btree cursor used for pIndex */
003752    int iSorter;                   /* Cursor opened by OpenSorter (if in use) */
003753    int addr1;                     /* Address of top of loop */
003754    int addr2;                     /* Address to jump to for next iteration */
003755    Pgno tnum;                     /* Root page of index */
003756    int iPartIdxLabel;             /* Jump to this label to skip a row */
003757    Vdbe *v;                       /* Generate code into this virtual machine */
003758    KeyInfo *pKey;                 /* KeyInfo for index */
003759    int regRecord;                 /* Register holding assembled index record */
003760    sqlite3 *db = pParse->db;      /* The database connection */
003761    int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
003762  
003763  #ifndef SQLITE_OMIT_AUTHORIZATION
003764    if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
003765        db->aDb[iDb].zDbSName ) ){
003766      return;
003767    }
003768  #endif
003769  
003770    /* Require a write-lock on the table to perform this operation */
003771    sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
003772  
003773    v = sqlite3GetVdbe(pParse);
003774    if( v==0 ) return;
003775    if( memRootPage>=0 ){
003776      tnum = (Pgno)memRootPage;
003777    }else{
003778      tnum = pIndex->tnum;
003779    }
003780    pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
003781    assert( pKey!=0 || pParse->nErr );
003782  
003783    /* Open the sorter cursor if we are to use one. */
003784    iSorter = pParse->nTab++;
003785    sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
003786                      sqlite3KeyInfoRef(pKey), P4_KEYINFO);
003787  
003788    /* Open the table. Loop through all rows of the table, inserting index
003789    ** records into the sorter. */
003790    sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
003791    addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
003792    regRecord = sqlite3GetTempReg(pParse);
003793    sqlite3MultiWrite(pParse);
003794  
003795    sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
003796    sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
003797    sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
003798    sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
003799    sqlite3VdbeJumpHere(v, addr1);
003800    if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
003801    sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
003802                      (char *)pKey, P4_KEYINFO);
003803    sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
003804  
003805    addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
003806    if( IsUniqueIndex(pIndex) ){
003807      int j2 = sqlite3VdbeGoto(v, 1);
003808      addr2 = sqlite3VdbeCurrentAddr(v);
003809      sqlite3VdbeVerifyAbortable(v, OE_Abort);
003810      sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
003811                           pIndex->nKeyCol); VdbeCoverage(v);
003812      sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
003813      sqlite3VdbeJumpHere(v, j2);
003814    }else{
003815      /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
003816      ** abort. The exception is if one of the indexed expressions contains a
003817      ** user function that throws an exception when it is evaluated. But the
003818      ** overhead of adding a statement journal to a CREATE INDEX statement is
003819      ** very small (since most of the pages written do not contain content that
003820      ** needs to be restored if the statement aborts), so we call
003821      ** sqlite3MayAbort() for all CREATE INDEX statements.  */
003822      sqlite3MayAbort(pParse);
003823      addr2 = sqlite3VdbeCurrentAddr(v);
003824    }
003825    sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
003826    if( !pIndex->bAscKeyBug ){
003827      /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
003828      ** faster by avoiding unnecessary seeks.  But the optimization does
003829      ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
003830      ** with DESC primary keys, since those indexes have there keys in
003831      ** a different order from the main table.
003832      ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
003833      */
003834      sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
003835    }
003836    sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
003837    sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
003838    sqlite3ReleaseTempReg(pParse, regRecord);
003839    sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
003840    sqlite3VdbeJumpHere(v, addr1);
003841  
003842    sqlite3VdbeAddOp1(v, OP_Close, iTab);
003843    sqlite3VdbeAddOp1(v, OP_Close, iIdx);
003844    sqlite3VdbeAddOp1(v, OP_Close, iSorter);
003845  }
003846  
003847  /*
003848  ** Allocate heap space to hold an Index object with nCol columns.
003849  **
003850  ** Increase the allocation size to provide an extra nExtra bytes
003851  ** of 8-byte aligned space after the Index object and return a
003852  ** pointer to this extra space in *ppExtra.
003853  */
003854  Index *sqlite3AllocateIndexObject(
003855    sqlite3 *db,         /* Database connection */
003856    i16 nCol,            /* Total number of columns in the index */
003857    int nExtra,          /* Number of bytes of extra space to alloc */
003858    char **ppExtra       /* Pointer to the "extra" space */
003859  ){
003860    Index *p;            /* Allocated index object */
003861    int nByte;           /* Bytes of space for Index object + arrays */
003862  
003863    nByte = ROUND8(sizeof(Index)) +              /* Index structure  */
003864            ROUND8(sizeof(char*)*nCol) +         /* Index.azColl     */
003865            ROUND8(sizeof(LogEst)*(nCol+1) +     /* Index.aiRowLogEst   */
003866                   sizeof(i16)*nCol +            /* Index.aiColumn   */
003867                   sizeof(u8)*nCol);             /* Index.aSortOrder */
003868    p = sqlite3DbMallocZero(db, nByte + nExtra);
003869    if( p ){
003870      char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
003871      p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
003872      p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
003873      p->aiColumn = (i16*)pExtra;       pExtra += sizeof(i16)*nCol;
003874      p->aSortOrder = (u8*)pExtra;
003875      p->nColumn = nCol;
003876      p->nKeyCol = nCol - 1;
003877      *ppExtra = ((char*)p) + nByte;
003878    }
003879    return p;
003880  }
003881  
003882  /*
003883  ** If expression list pList contains an expression that was parsed with
003884  ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
003885  ** pParse and return non-zero. Otherwise, return zero.
003886  */
003887  int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
003888    if( pList ){
003889      int i;
003890      for(i=0; i<pList->nExpr; i++){
003891        if( pList->a[i].fg.bNulls ){
003892          u8 sf = pList->a[i].fg.sortFlags;
003893          sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
003894              (sf==0 || sf==3) ? "FIRST" : "LAST"
003895          );
003896          return 1;
003897        }
003898      }
003899    }
003900    return 0;
003901  }
003902  
003903  /*
003904  ** Create a new index for an SQL table.  pName1.pName2 is the name of the index
003905  ** and pTblList is the name of the table that is to be indexed.  Both will
003906  ** be NULL for a primary key or an index that is created to satisfy a
003907  ** UNIQUE constraint.  If pTable and pIndex are NULL, use pParse->pNewTable
003908  ** as the table to be indexed.  pParse->pNewTable is a table that is
003909  ** currently being constructed by a CREATE TABLE statement.
003910  **
003911  ** pList is a list of columns to be indexed.  pList will be NULL if this
003912  ** is a primary key or unique-constraint on the most recent column added
003913  ** to the table currently under construction. 
003914  */
003915  void sqlite3CreateIndex(
003916    Parse *pParse,     /* All information about this parse */
003917    Token *pName1,     /* First part of index name. May be NULL */
003918    Token *pName2,     /* Second part of index name. May be NULL */
003919    SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
003920    ExprList *pList,   /* A list of columns to be indexed */
003921    int onError,       /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
003922    Token *pStart,     /* The CREATE token that begins this statement */
003923    Expr *pPIWhere,    /* WHERE clause for partial indices */
003924    int sortOrder,     /* Sort order of primary key when pList==NULL */
003925    int ifNotExist,    /* Omit error if index already exists */
003926    u8 idxType         /* The index type */
003927  ){
003928    Table *pTab = 0;     /* Table to be indexed */
003929    Index *pIndex = 0;   /* The index to be created */
003930    char *zName = 0;     /* Name of the index */
003931    int nName;           /* Number of characters in zName */
003932    int i, j;
003933    DbFixer sFix;        /* For assigning database names to pTable */
003934    int sortOrderMask;   /* 1 to honor DESC in index.  0 to ignore. */
003935    sqlite3 *db = pParse->db;
003936    Db *pDb;             /* The specific table containing the indexed database */
003937    int iDb;             /* Index of the database that is being written */
003938    Token *pName = 0;    /* Unqualified name of the index to create */
003939    struct ExprList_item *pListItem; /* For looping over pList */
003940    int nExtra = 0;                  /* Space allocated for zExtra[] */
003941    int nExtraCol;                   /* Number of extra columns needed */
003942    char *zExtra = 0;                /* Extra space after the Index object */
003943    Index *pPk = 0;      /* PRIMARY KEY index for WITHOUT ROWID tables */
003944  
003945    assert( db->pParse==pParse );
003946    if( pParse->nErr ){
003947      goto exit_create_index;
003948    }
003949    assert( db->mallocFailed==0 );
003950    if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
003951      goto exit_create_index;
003952    }
003953    if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
003954      goto exit_create_index;
003955    }
003956    if( sqlite3HasExplicitNulls(pParse, pList) ){
003957      goto exit_create_index;
003958    }
003959  
003960    /*
003961    ** Find the table that is to be indexed.  Return early if not found.
003962    */
003963    if( pTblName!=0 ){
003964  
003965      /* Use the two-part index name to determine the database
003966      ** to search for the table. 'Fix' the table name to this db
003967      ** before looking up the table.
003968      */
003969      assert( pName1 && pName2 );
003970      iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
003971      if( iDb<0 ) goto exit_create_index;
003972      assert( pName && pName->z );
003973  
003974  #ifndef SQLITE_OMIT_TEMPDB
003975      /* If the index name was unqualified, check if the table
003976      ** is a temp table. If so, set the database to 1. Do not do this
003977      ** if initializing a database schema.
003978      */
003979      if( !db->init.busy ){
003980        pTab = sqlite3SrcListLookup(pParse, pTblName);
003981        if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
003982          iDb = 1;
003983        }
003984      }
003985  #endif
003986  
003987      sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
003988      if( sqlite3FixSrcList(&sFix, pTblName) ){
003989        /* Because the parser constructs pTblName from a single identifier,
003990        ** sqlite3FixSrcList can never fail. */
003991        assert(0);
003992      }
003993      pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
003994      assert( db->mallocFailed==0 || pTab==0 );
003995      if( pTab==0 ) goto exit_create_index;
003996      if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
003997        sqlite3ErrorMsg(pParse,
003998             "cannot create a TEMP index on non-TEMP table \"%s\"",
003999             pTab->zName);
004000        goto exit_create_index;
004001      }
004002      if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
004003    }else{
004004      assert( pName==0 );
004005      assert( pStart==0 );
004006      pTab = pParse->pNewTable;
004007      if( !pTab ) goto exit_create_index;
004008      iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
004009    }
004010    pDb = &db->aDb[iDb];
004011  
004012    assert( pTab!=0 );
004013    if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
004014         && db->init.busy==0
004015         && pTblName!=0
004016  #if SQLITE_USER_AUTHENTICATION
004017         && sqlite3UserAuthTable(pTab->zName)==0
004018  #endif
004019    ){
004020      sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
004021      goto exit_create_index;
004022    }
004023  #ifndef SQLITE_OMIT_VIEW
004024    if( IsView(pTab) ){
004025      sqlite3ErrorMsg(pParse, "views may not be indexed");
004026      goto exit_create_index;
004027    }
004028  #endif
004029  #ifndef SQLITE_OMIT_VIRTUALTABLE
004030    if( IsVirtual(pTab) ){
004031      sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
004032      goto exit_create_index;
004033    }
004034  #endif
004035  
004036    /*
004037    ** Find the name of the index.  Make sure there is not already another
004038    ** index or table with the same name. 
004039    **
004040    ** Exception:  If we are reading the names of permanent indices from the
004041    ** sqlite_schema table (because some other process changed the schema) and
004042    ** one of the index names collides with the name of a temporary table or
004043    ** index, then we will continue to process this index.
004044    **
004045    ** If pName==0 it means that we are
004046    ** dealing with a primary key or UNIQUE constraint.  We have to invent our
004047    ** own name.
004048    */
004049    if( pName ){
004050      zName = sqlite3NameFromToken(db, pName);
004051      if( zName==0 ) goto exit_create_index;
004052      assert( pName->z!=0 );
004053      if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
004054        goto exit_create_index;
004055      }
004056      if( !IN_RENAME_OBJECT ){
004057        if( !db->init.busy ){
004058          if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){
004059            sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
004060            goto exit_create_index;
004061          }
004062        }
004063        if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
004064          if( !ifNotExist ){
004065            sqlite3ErrorMsg(pParse, "index %s already exists", zName);
004066          }else{
004067            assert( !db->init.busy );
004068            sqlite3CodeVerifySchema(pParse, iDb);
004069            sqlite3ForceNotReadOnly(pParse);
004070          }
004071          goto exit_create_index;
004072        }
004073      }
004074    }else{
004075      int n;
004076      Index *pLoop;
004077      for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
004078      zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
004079      if( zName==0 ){
004080        goto exit_create_index;
004081      }
004082  
004083      /* Automatic index names generated from within sqlite3_declare_vtab()
004084      ** must have names that are distinct from normal automatic index names.
004085      ** The following statement converts "sqlite3_autoindex..." into
004086      ** "sqlite3_butoindex..." in order to make the names distinct.
004087      ** The "vtab_err.test" test demonstrates the need of this statement. */
004088      if( IN_SPECIAL_PARSE ) zName[7]++;
004089    }
004090  
004091    /* Check for authorization to create an index.
004092    */
004093  #ifndef SQLITE_OMIT_AUTHORIZATION
004094    if( !IN_RENAME_OBJECT ){
004095      const char *zDb = pDb->zDbSName;
004096      if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
004097        goto exit_create_index;
004098      }
004099      i = SQLITE_CREATE_INDEX;
004100      if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
004101      if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
004102        goto exit_create_index;
004103      }
004104    }
004105  #endif
004106  
004107    /* If pList==0, it means this routine was called to make a primary
004108    ** key out of the last column added to the table under construction.
004109    ** So create a fake list to simulate this.
004110    */
004111    if( pList==0 ){
004112      Token prevCol;
004113      Column *pCol = &pTab->aCol[pTab->nCol-1];
004114      pCol->colFlags |= COLFLAG_UNIQUE;
004115      sqlite3TokenInit(&prevCol, pCol->zCnName);
004116      pList = sqlite3ExprListAppend(pParse, 0,
004117                sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
004118      if( pList==0 ) goto exit_create_index;
004119      assert( pList->nExpr==1 );
004120      sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
004121    }else{
004122      sqlite3ExprListCheckLength(pParse, pList, "index");
004123      if( pParse->nErr ) goto exit_create_index;
004124    }
004125  
004126    /* Figure out how many bytes of space are required to store explicitly
004127    ** specified collation sequence names.
004128    */
004129    for(i=0; i<pList->nExpr; i++){
004130      Expr *pExpr = pList->a[i].pExpr;
004131      assert( pExpr!=0 );
004132      if( pExpr->op==TK_COLLATE ){
004133        assert( !ExprHasProperty(pExpr, EP_IntValue) );
004134        nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
004135      }
004136    }
004137  
004138    /*
004139    ** Allocate the index structure.
004140    */
004141    nName = sqlite3Strlen30(zName);
004142    nExtraCol = pPk ? pPk->nKeyCol : 1;
004143    assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
004144    pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
004145                                        nName + nExtra + 1, &zExtra);
004146    if( db->mallocFailed ){
004147      goto exit_create_index;
004148    }
004149    assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
004150    assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
004151    pIndex->zName = zExtra;
004152    zExtra += nName + 1;
004153    memcpy(pIndex->zName, zName, nName+1);
004154    pIndex->pTable = pTab;
004155    pIndex->onError = (u8)onError;
004156    pIndex->uniqNotNull = onError!=OE_None;
004157    pIndex->idxType = idxType;
004158    pIndex->pSchema = db->aDb[iDb].pSchema;
004159    pIndex->nKeyCol = pList->nExpr;
004160    if( pPIWhere ){
004161      sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
004162      pIndex->pPartIdxWhere = pPIWhere;
004163      pPIWhere = 0;
004164    }
004165    assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
004166  
004167    /* Check to see if we should honor DESC requests on index columns
004168    */
004169    if( pDb->pSchema->file_format>=4 ){
004170      sortOrderMask = -1;   /* Honor DESC */
004171    }else{
004172      sortOrderMask = 0;    /* Ignore DESC */
004173    }
004174  
004175    /* Analyze the list of expressions that form the terms of the index and
004176    ** report any errors.  In the common case where the expression is exactly
004177    ** a table column, store that column in aiColumn[].  For general expressions,
004178    ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
004179    **
004180    ** TODO: Issue a warning if two or more columns of the index are identical.
004181    ** TODO: Issue a warning if the table primary key is used as part of the
004182    ** index key.
004183    */
004184    pListItem = pList->a;
004185    if( IN_RENAME_OBJECT ){
004186      pIndex->aColExpr = pList;
004187      pList = 0;
004188    }
004189    for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
004190      Expr *pCExpr;                  /* The i-th index expression */
004191      int requestedSortOrder;        /* ASC or DESC on the i-th expression */
004192      const char *zColl;             /* Collation sequence name */
004193  
004194      sqlite3StringToId(pListItem->pExpr);
004195      sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
004196      if( pParse->nErr ) goto exit_create_index;
004197      pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
004198      if( pCExpr->op!=TK_COLUMN ){
004199        if( pTab==pParse->pNewTable ){
004200          sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
004201                                  "UNIQUE constraints");
004202          goto exit_create_index;
004203        }
004204        if( pIndex->aColExpr==0 ){
004205          pIndex->aColExpr = pList;
004206          pList = 0;
004207        }
004208        j = XN_EXPR;
004209        pIndex->aiColumn[i] = XN_EXPR;
004210        pIndex->uniqNotNull = 0;
004211        pIndex->bHasExpr = 1;
004212      }else{
004213        j = pCExpr->iColumn;
004214        assert( j<=0x7fff );
004215        if( j<0 ){
004216          j = pTab->iPKey;
004217        }else{
004218          if( pTab->aCol[j].notNull==0 ){
004219            pIndex->uniqNotNull = 0;
004220          }
004221          if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
004222            pIndex->bHasVCol = 1;
004223            pIndex->bHasExpr = 1;
004224          }
004225        }
004226        pIndex->aiColumn[i] = (i16)j;
004227      }
004228      zColl = 0;
004229      if( pListItem->pExpr->op==TK_COLLATE ){
004230        int nColl;
004231        assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
004232        zColl = pListItem->pExpr->u.zToken;
004233        nColl = sqlite3Strlen30(zColl) + 1;
004234        assert( nExtra>=nColl );
004235        memcpy(zExtra, zColl, nColl);
004236        zColl = zExtra;
004237        zExtra += nColl;
004238        nExtra -= nColl;
004239      }else if( j>=0 ){
004240        zColl = sqlite3ColumnColl(&pTab->aCol[j]);
004241      }
004242      if( !zColl ) zColl = sqlite3StrBINARY;
004243      if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
004244        goto exit_create_index;
004245      }
004246      pIndex->azColl[i] = zColl;
004247      requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
004248      pIndex->aSortOrder[i] = (u8)requestedSortOrder;
004249    }
004250  
004251    /* Append the table key to the end of the index.  For WITHOUT ROWID
004252    ** tables (when pPk!=0) this will be the declared PRIMARY KEY.  For
004253    ** normal tables (when pPk==0) this will be the rowid.
004254    */
004255    if( pPk ){
004256      for(j=0; j<pPk->nKeyCol; j++){
004257        int x = pPk->aiColumn[j];
004258        assert( x>=0 );
004259        if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
004260          pIndex->nColumn--;
004261        }else{
004262          testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
004263          pIndex->aiColumn[i] = x;
004264          pIndex->azColl[i] = pPk->azColl[j];
004265          pIndex->aSortOrder[i] = pPk->aSortOrder[j];
004266          i++;
004267        }
004268      }
004269      assert( i==pIndex->nColumn );
004270    }else{
004271      pIndex->aiColumn[i] = XN_ROWID;
004272      pIndex->azColl[i] = sqlite3StrBINARY;
004273    }
004274    sqlite3DefaultRowEst(pIndex);
004275    if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
004276  
004277    /* If this index contains every column of its table, then mark
004278    ** it as a covering index */
004279    assert( HasRowid(pTab)
004280        || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
004281    recomputeColumnsNotIndexed(pIndex);
004282    if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
004283      pIndex->isCovering = 1;
004284      for(j=0; j<pTab->nCol; j++){
004285        if( j==pTab->iPKey ) continue;
004286        if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
004287        pIndex->isCovering = 0;
004288        break;
004289      }
004290    }
004291  
004292    if( pTab==pParse->pNewTable ){
004293      /* This routine has been called to create an automatic index as a
004294      ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
004295      ** a PRIMARY KEY or UNIQUE clause following the column definitions.
004296      ** i.e. one of:
004297      **
004298      ** CREATE TABLE t(x PRIMARY KEY, y);
004299      ** CREATE TABLE t(x, y, UNIQUE(x, y));
004300      **
004301      ** Either way, check to see if the table already has such an index. If
004302      ** so, don't bother creating this one. This only applies to
004303      ** automatically created indices. Users can do as they wish with
004304      ** explicit indices.
004305      **
004306      ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
004307      ** (and thus suppressing the second one) even if they have different
004308      ** sort orders.
004309      **
004310      ** If there are different collating sequences or if the columns of
004311      ** the constraint occur in different orders, then the constraints are
004312      ** considered distinct and both result in separate indices.
004313      */
004314      Index *pIdx;
004315      for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
004316        int k;
004317        assert( IsUniqueIndex(pIdx) );
004318        assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
004319        assert( IsUniqueIndex(pIndex) );
004320  
004321        if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
004322        for(k=0; k<pIdx->nKeyCol; k++){
004323          const char *z1;
004324          const char *z2;
004325          assert( pIdx->aiColumn[k]>=0 );
004326          if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
004327          z1 = pIdx->azColl[k];
004328          z2 = pIndex->azColl[k];
004329          if( sqlite3StrICmp(z1, z2) ) break;
004330        }
004331        if( k==pIdx->nKeyCol ){
004332          if( pIdx->onError!=pIndex->onError ){
004333            /* This constraint creates the same index as a previous
004334            ** constraint specified somewhere in the CREATE TABLE statement.
004335            ** However the ON CONFLICT clauses are different. If both this
004336            ** constraint and the previous equivalent constraint have explicit
004337            ** ON CONFLICT clauses this is an error. Otherwise, use the
004338            ** explicitly specified behavior for the index.
004339            */
004340            if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
004341              sqlite3ErrorMsg(pParse,
004342                  "conflicting ON CONFLICT clauses specified", 0);
004343            }
004344            if( pIdx->onError==OE_Default ){
004345              pIdx->onError = pIndex->onError;
004346            }
004347          }
004348          if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
004349          if( IN_RENAME_OBJECT ){
004350            pIndex->pNext = pParse->pNewIndex;
004351            pParse->pNewIndex = pIndex;
004352            pIndex = 0;
004353          }
004354          goto exit_create_index;
004355        }
004356      }
004357    }
004358  
004359    if( !IN_RENAME_OBJECT ){
004360  
004361      /* Link the new Index structure to its table and to the other
004362      ** in-memory database structures.
004363      */
004364      assert( pParse->nErr==0 );
004365      if( db->init.busy ){
004366        Index *p;
004367        assert( !IN_SPECIAL_PARSE );
004368        assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
004369        if( pTblName!=0 ){
004370          pIndex->tnum = db->init.newTnum;
004371          if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
004372            sqlite3ErrorMsg(pParse, "invalid rootpage");
004373            pParse->rc = SQLITE_CORRUPT_BKPT;
004374            goto exit_create_index;
004375          }
004376        }
004377        p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
004378            pIndex->zName, pIndex);
004379        if( p ){
004380          assert( p==pIndex );  /* Malloc must have failed */
004381          sqlite3OomFault(db);
004382          goto exit_create_index;
004383        }
004384        db->mDbFlags |= DBFLAG_SchemaChange;
004385      }
004386  
004387      /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
004388      ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
004389      ** emit code to allocate the index rootpage on disk and make an entry for
004390      ** the index in the sqlite_schema table and populate the index with
004391      ** content.  But, do not do this if we are simply reading the sqlite_schema
004392      ** table to parse the schema, or if this index is the PRIMARY KEY index
004393      ** of a WITHOUT ROWID table.
004394      **
004395      ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
004396      ** or UNIQUE index in a CREATE TABLE statement.  Since the table
004397      ** has just been created, it contains no data and the index initialization
004398      ** step can be skipped.
004399      */
004400      else if( HasRowid(pTab) || pTblName!=0 ){
004401        Vdbe *v;
004402        char *zStmt;
004403        int iMem = ++pParse->nMem;
004404  
004405        v = sqlite3GetVdbe(pParse);
004406        if( v==0 ) goto exit_create_index;
004407  
004408        sqlite3BeginWriteOperation(pParse, 1, iDb);
004409  
004410        /* Create the rootpage for the index using CreateIndex. But before
004411        ** doing so, code a Noop instruction and store its address in
004412        ** Index.tnum. This is required in case this index is actually a
004413        ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
004414        ** that case the convertToWithoutRowidTable() routine will replace
004415        ** the Noop with a Goto to jump over the VDBE code generated below. */
004416        pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
004417        sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
004418  
004419        /* Gather the complete text of the CREATE INDEX statement into
004420        ** the zStmt variable
004421        */
004422        assert( pName!=0 || pStart==0 );
004423        if( pStart ){
004424          int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
004425          if( pName->z[n-1]==';' ) n--;
004426          /* A named index with an explicit CREATE INDEX statement */
004427          zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
004428              onError==OE_None ? "" : " UNIQUE", n, pName->z);
004429        }else{
004430          /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
004431          /* zStmt = sqlite3MPrintf(""); */
004432          zStmt = 0;
004433        }
004434  
004435        /* Add an entry in sqlite_schema for this index
004436        */
004437        sqlite3NestedParse(pParse,
004438           "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
004439           db->aDb[iDb].zDbSName,
004440           pIndex->zName,
004441           pTab->zName,
004442           iMem,
004443           zStmt
004444        );
004445        sqlite3DbFree(db, zStmt);
004446  
004447        /* Fill the index with data and reparse the schema. Code an OP_Expire
004448        ** to invalidate all pre-compiled statements.
004449        */
004450        if( pTblName ){
004451          sqlite3RefillIndex(pParse, pIndex, iMem);
004452          sqlite3ChangeCookie(pParse, iDb);
004453          sqlite3VdbeAddParseSchemaOp(v, iDb,
004454              sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
004455          sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
004456        }
004457  
004458        sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
004459      }
004460    }
004461    if( db->init.busy || pTblName==0 ){
004462      pIndex->pNext = pTab->pIndex;
004463      pTab->pIndex = pIndex;
004464      pIndex = 0;
004465    }
004466    else if( IN_RENAME_OBJECT ){
004467      assert( pParse->pNewIndex==0 );
004468      pParse->pNewIndex = pIndex;
004469      pIndex = 0;
004470    }
004471  
004472    /* Clean up before exiting */
004473  exit_create_index:
004474    if( pIndex ) sqlite3FreeIndex(db, pIndex);
004475    if( pTab ){
004476      /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
004477      ** The list was already ordered when this routine was entered, so at this
004478      ** point at most a single index (the newly added index) will be out of
004479      ** order.  So we have to reorder at most one index. */
004480      Index **ppFrom;
004481      Index *pThis;
004482      for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
004483        Index *pNext;
004484        if( pThis->onError!=OE_Replace ) continue;
004485        while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
004486          *ppFrom = pNext;
004487          pThis->pNext = pNext->pNext;
004488          pNext->pNext = pThis;
004489          ppFrom = &pNext->pNext;
004490        }
004491        break;
004492      }
004493  #ifdef SQLITE_DEBUG
004494      /* Verify that all REPLACE indexes really are now at the end
004495      ** of the index list.  In other words, no other index type ever
004496      ** comes after a REPLACE index on the list. */
004497      for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
004498        assert( pThis->onError!=OE_Replace
004499             || pThis->pNext==0
004500             || pThis->pNext->onError==OE_Replace );
004501      }
004502  #endif
004503    }
004504    sqlite3ExprDelete(db, pPIWhere);
004505    sqlite3ExprListDelete(db, pList);
004506    sqlite3SrcListDelete(db, pTblName);
004507    sqlite3DbFree(db, zName);
004508  }
004509  
004510  /*
004511  ** Fill the Index.aiRowEst[] array with default information - information
004512  ** to be used when we have not run the ANALYZE command.
004513  **
004514  ** aiRowEst[0] is supposed to contain the number of elements in the index.
004515  ** Since we do not know, guess 1 million.  aiRowEst[1] is an estimate of the
004516  ** number of rows in the table that match any particular value of the
004517  ** first column of the index.  aiRowEst[2] is an estimate of the number
004518  ** of rows that match any particular combination of the first 2 columns
004519  ** of the index.  And so forth.  It must always be the case that
004520  *
004521  **           aiRowEst[N]<=aiRowEst[N-1]
004522  **           aiRowEst[N]>=1
004523  **
004524  ** Apart from that, we have little to go on besides intuition as to
004525  ** how aiRowEst[] should be initialized.  The numbers generated here
004526  ** are based on typical values found in actual indices.
004527  */
004528  void sqlite3DefaultRowEst(Index *pIdx){
004529                 /*                10,  9,  8,  7,  6 */
004530    static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
004531    LogEst *a = pIdx->aiRowLogEst;
004532    LogEst x;
004533    int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
004534    int i;
004535  
004536    /* Indexes with default row estimates should not have stat1 data */
004537    assert( !pIdx->hasStat1 );
004538  
004539    /* Set the first entry (number of rows in the index) to the estimated
004540    ** number of rows in the table, or half the number of rows in the table
004541    ** for a partial index.
004542    **
004543    ** 2020-05-27:  If some of the stat data is coming from the sqlite_stat1
004544    ** table but other parts we are having to guess at, then do not let the
004545    ** estimated number of rows in the table be less than 1000 (LogEst 99).
004546    ** Failure to do this can cause the indexes for which we do not have
004547    ** stat1 data to be ignored by the query planner.
004548    */
004549    x = pIdx->pTable->nRowLogEst;
004550    assert( 99==sqlite3LogEst(1000) );
004551    if( x<99 ){
004552      pIdx->pTable->nRowLogEst = x = 99;
004553    }
004554    if( pIdx->pPartIdxWhere!=0 ){ x -= 10;  assert( 10==sqlite3LogEst(2) ); }
004555    a[0] = x;
004556  
004557    /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
004558    ** 6 and each subsequent value (if any) is 5.  */
004559    memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
004560    for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
004561      a[i] = 23;                    assert( 23==sqlite3LogEst(5) );
004562    }
004563  
004564    assert( 0==sqlite3LogEst(1) );
004565    if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
004566  }
004567  
004568  /*
004569  ** This routine will drop an existing named index.  This routine
004570  ** implements the DROP INDEX statement.
004571  */
004572  void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
004573    Index *pIndex;
004574    Vdbe *v;
004575    sqlite3 *db = pParse->db;
004576    int iDb;
004577  
004578    if( db->mallocFailed ){
004579      goto exit_drop_index;
004580    }
004581    assert( pParse->nErr==0 );   /* Never called with prior non-OOM errors */
004582    assert( pName->nSrc==1 );
004583    if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
004584      goto exit_drop_index;
004585    }
004586    pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
004587    if( pIndex==0 ){
004588      if( !ifExists ){
004589        sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
004590      }else{
004591        sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
004592        sqlite3ForceNotReadOnly(pParse);
004593      }
004594      pParse->checkSchema = 1;
004595      goto exit_drop_index;
004596    }
004597    if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
004598      sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
004599        "or PRIMARY KEY constraint cannot be dropped", 0);
004600      goto exit_drop_index;
004601    }
004602    iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
004603  #ifndef SQLITE_OMIT_AUTHORIZATION
004604    {
004605      int code = SQLITE_DROP_INDEX;
004606      Table *pTab = pIndex->pTable;
004607      const char *zDb = db->aDb[iDb].zDbSName;
004608      const char *zTab = SCHEMA_TABLE(iDb);
004609      if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
004610        goto exit_drop_index;
004611      }
004612      if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
004613      if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
004614        goto exit_drop_index;
004615      }
004616    }
004617  #endif
004618  
004619    /* Generate code to remove the index and from the schema table */
004620    v = sqlite3GetVdbe(pParse);
004621    if( v ){
004622      sqlite3BeginWriteOperation(pParse, 1, iDb);
004623      sqlite3NestedParse(pParse,
004624         "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
004625         db->aDb[iDb].zDbSName, pIndex->zName
004626      );
004627      sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
004628      sqlite3ChangeCookie(pParse, iDb);
004629      destroyRootPage(pParse, pIndex->tnum, iDb);
004630      sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
004631    }
004632  
004633  exit_drop_index:
004634    sqlite3SrcListDelete(db, pName);
004635  }
004636  
004637  /*
004638  ** pArray is a pointer to an array of objects. Each object in the
004639  ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
004640  ** to extend the array so that there is space for a new object at the end.
004641  **
004642  ** When this function is called, *pnEntry contains the current size of
004643  ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
004644  ** in total).
004645  **
004646  ** If the realloc() is successful (i.e. if no OOM condition occurs), the
004647  ** space allocated for the new object is zeroed, *pnEntry updated to
004648  ** reflect the new size of the array and a pointer to the new allocation
004649  ** returned. *pIdx is set to the index of the new array entry in this case.
004650  **
004651  ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
004652  ** unchanged and a copy of pArray returned.
004653  */
004654  void *sqlite3ArrayAllocate(
004655    sqlite3 *db,      /* Connection to notify of malloc failures */
004656    void *pArray,     /* Array of objects.  Might be reallocated */
004657    int szEntry,      /* Size of each object in the array */
004658    int *pnEntry,     /* Number of objects currently in use */
004659    int *pIdx         /* Write the index of a new slot here */
004660  ){
004661    char *z;
004662    sqlite3_int64 n = *pIdx = *pnEntry;
004663    if( (n & (n-1))==0 ){
004664      sqlite3_int64 sz = (n==0) ? 1 : 2*n;
004665      void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
004666      if( pNew==0 ){
004667        *pIdx = -1;
004668        return pArray;
004669      }
004670      pArray = pNew;
004671    }
004672    z = (char*)pArray;
004673    memset(&z[n * szEntry], 0, szEntry);
004674    ++*pnEntry;
004675    return pArray;
004676  }
004677  
004678  /*
004679  ** Append a new element to the given IdList.  Create a new IdList if
004680  ** need be.
004681  **
004682  ** A new IdList is returned, or NULL if malloc() fails.
004683  */
004684  IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
004685    sqlite3 *db = pParse->db;
004686    int i;
004687    if( pList==0 ){
004688      pList = sqlite3DbMallocZero(db, sizeof(IdList) );
004689      if( pList==0 ) return 0;
004690    }else{
004691      IdList *pNew;
004692      pNew = sqlite3DbRealloc(db, pList,
004693                   sizeof(IdList) + pList->nId*sizeof(pList->a));
004694      if( pNew==0 ){
004695        sqlite3IdListDelete(db, pList);
004696        return 0;
004697      }
004698      pList = pNew;
004699    }
004700    i = pList->nId++;
004701    pList->a[i].zName = sqlite3NameFromToken(db, pToken);
004702    if( IN_RENAME_OBJECT && pList->a[i].zName ){
004703      sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
004704    }
004705    return pList;
004706  }
004707  
004708  /*
004709  ** Delete an IdList.
004710  */
004711  void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
004712    int i;
004713    assert( db!=0 );
004714    if( pList==0 ) return;
004715    assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
004716    for(i=0; i<pList->nId; i++){
004717      sqlite3DbFree(db, pList->a[i].zName);
004718    }
004719    sqlite3DbNNFreeNN(db, pList);
004720  }
004721  
004722  /*
004723  ** Return the index in pList of the identifier named zId.  Return -1
004724  ** if not found.
004725  */
004726  int sqlite3IdListIndex(IdList *pList, const char *zName){
004727    int i;
004728    assert( pList!=0 );
004729    for(i=0; i<pList->nId; i++){
004730      if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
004731    }
004732    return -1;
004733  }
004734  
004735  /*
004736  ** Maximum size of a SrcList object.
004737  ** The SrcList object is used to represent the FROM clause of a
004738  ** SELECT statement, and the query planner cannot deal with more
004739  ** than 64 tables in a join.  So any value larger than 64 here
004740  ** is sufficient for most uses.  Smaller values, like say 10, are
004741  ** appropriate for small and memory-limited applications.
004742  */
004743  #ifndef SQLITE_MAX_SRCLIST
004744  # define SQLITE_MAX_SRCLIST 200
004745  #endif
004746  
004747  /*
004748  ** Expand the space allocated for the given SrcList object by
004749  ** creating nExtra new slots beginning at iStart.  iStart is zero based.
004750  ** New slots are zeroed.
004751  **
004752  ** For example, suppose a SrcList initially contains two entries: A,B.
004753  ** To append 3 new entries onto the end, do this:
004754  **
004755  **    sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
004756  **
004757  ** After the call above it would contain:  A, B, nil, nil, nil.
004758  ** If the iStart argument had been 1 instead of 2, then the result
004759  ** would have been:  A, nil, nil, nil, B.  To prepend the new slots,
004760  ** the iStart value would be 0.  The result then would
004761  ** be: nil, nil, nil, A, B.
004762  **
004763  ** If a memory allocation fails or the SrcList becomes too large, leave
004764  ** the original SrcList unchanged, return NULL, and leave an error message
004765  ** in pParse.
004766  */
004767  SrcList *sqlite3SrcListEnlarge(
004768    Parse *pParse,     /* Parsing context into which errors are reported */
004769    SrcList *pSrc,     /* The SrcList to be enlarged */
004770    int nExtra,        /* Number of new slots to add to pSrc->a[] */
004771    int iStart         /* Index in pSrc->a[] of first new slot */
004772  ){
004773    int i;
004774  
004775    /* Sanity checking on calling parameters */
004776    assert( iStart>=0 );
004777    assert( nExtra>=1 );
004778    assert( pSrc!=0 );
004779    assert( iStart<=pSrc->nSrc );
004780  
004781    /* Allocate additional space if needed */
004782    if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
004783      SrcList *pNew;
004784      sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
004785      sqlite3 *db = pParse->db;
004786  
004787      if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
004788        sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
004789                        SQLITE_MAX_SRCLIST);
004790        return 0;
004791      }
004792      if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
004793      pNew = sqlite3DbRealloc(db, pSrc,
004794                 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
004795      if( pNew==0 ){
004796        assert( db->mallocFailed );
004797        return 0;
004798      }
004799      pSrc = pNew;
004800      pSrc->nAlloc = nAlloc;
004801    }
004802  
004803    /* Move existing slots that come after the newly inserted slots
004804    ** out of the way */
004805    for(i=pSrc->nSrc-1; i>=iStart; i--){
004806      pSrc->a[i+nExtra] = pSrc->a[i];
004807    }
004808    pSrc->nSrc += nExtra;
004809  
004810    /* Zero the newly allocated slots */
004811    memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
004812    for(i=iStart; i<iStart+nExtra; i++){
004813      pSrc->a[i].iCursor = -1;
004814    }
004815  
004816    /* Return a pointer to the enlarged SrcList */
004817    return pSrc;
004818  }
004819  
004820  
004821  /*
004822  ** Append a new table name to the given SrcList.  Create a new SrcList if
004823  ** need be.  A new entry is created in the SrcList even if pTable is NULL.
004824  **
004825  ** A SrcList is returned, or NULL if there is an OOM error or if the
004826  ** SrcList grows to large.  The returned
004827  ** SrcList might be the same as the SrcList that was input or it might be
004828  ** a new one.  If an OOM error does occurs, then the prior value of pList
004829  ** that is input to this routine is automatically freed.
004830  **
004831  ** If pDatabase is not null, it means that the table has an optional
004832  ** database name prefix.  Like this:  "database.table".  The pDatabase
004833  ** points to the table name and the pTable points to the database name.
004834  ** The SrcList.a[].zName field is filled with the table name which might
004835  ** come from pTable (if pDatabase is NULL) or from pDatabase. 
004836  ** SrcList.a[].zDatabase is filled with the database name from pTable,
004837  ** or with NULL if no database is specified.
004838  **
004839  ** In other words, if call like this:
004840  **
004841  **         sqlite3SrcListAppend(D,A,B,0);
004842  **
004843  ** Then B is a table name and the database name is unspecified.  If called
004844  ** like this:
004845  **
004846  **         sqlite3SrcListAppend(D,A,B,C);
004847  **
004848  ** Then C is the table name and B is the database name.  If C is defined
004849  ** then so is B.  In other words, we never have a case where:
004850  **
004851  **         sqlite3SrcListAppend(D,A,0,C);
004852  **
004853  ** Both pTable and pDatabase are assumed to be quoted.  They are dequoted
004854  ** before being added to the SrcList.
004855  */
004856  SrcList *sqlite3SrcListAppend(
004857    Parse *pParse,      /* Parsing context, in which errors are reported */
004858    SrcList *pList,     /* Append to this SrcList. NULL creates a new SrcList */
004859    Token *pTable,      /* Table to append */
004860    Token *pDatabase    /* Database of the table */
004861  ){
004862    SrcItem *pItem;
004863    sqlite3 *db;
004864    assert( pDatabase==0 || pTable!=0 );  /* Cannot have C without B */
004865    assert( pParse!=0 );
004866    assert( pParse->db!=0 );
004867    db = pParse->db;
004868    if( pList==0 ){
004869      pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
004870      if( pList==0 ) return 0;
004871      pList->nAlloc = 1;
004872      pList->nSrc = 1;
004873      memset(&pList->a[0], 0, sizeof(pList->a[0]));
004874      pList->a[0].iCursor = -1;
004875    }else{
004876      SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
004877      if( pNew==0 ){
004878        sqlite3SrcListDelete(db, pList);
004879        return 0;
004880      }else{
004881        pList = pNew;
004882      }
004883    }
004884    pItem = &pList->a[pList->nSrc-1];
004885    if( pDatabase && pDatabase->z==0 ){
004886      pDatabase = 0;
004887    }
004888    if( pDatabase ){
004889      pItem->zName = sqlite3NameFromToken(db, pDatabase);
004890      pItem->zDatabase = sqlite3NameFromToken(db, pTable);
004891    }else{
004892      pItem->zName = sqlite3NameFromToken(db, pTable);
004893      pItem->zDatabase = 0;
004894    }
004895    return pList;
004896  }
004897  
004898  /*
004899  ** Assign VdbeCursor index numbers to all tables in a SrcList
004900  */
004901  void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
004902    int i;
004903    SrcItem *pItem;
004904    assert( pList || pParse->db->mallocFailed );
004905    if( ALWAYS(pList) ){
004906      for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
004907        if( pItem->iCursor>=0 ) continue;
004908        pItem->iCursor = pParse->nTab++;
004909        if( pItem->pSelect ){
004910          sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
004911        }
004912      }
004913    }
004914  }
004915  
004916  /*
004917  ** Delete an entire SrcList including all its substructure.
004918  */
004919  void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
004920    int i;
004921    SrcItem *pItem;
004922    assert( db!=0 );
004923    if( pList==0 ) return;
004924    for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
004925      if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase);
004926      if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName);
004927      if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias);
004928      if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
004929      if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
004930      sqlite3DeleteTable(db, pItem->pTab);
004931      if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
004932      if( pItem->fg.isUsing ){
004933        sqlite3IdListDelete(db, pItem->u3.pUsing);
004934      }else if( pItem->u3.pOn ){
004935        sqlite3ExprDelete(db, pItem->u3.pOn);
004936      }
004937    }
004938    sqlite3DbNNFreeNN(db, pList);
004939  }
004940  
004941  /*
004942  ** This routine is called by the parser to add a new term to the
004943  ** end of a growing FROM clause.  The "p" parameter is the part of
004944  ** the FROM clause that has already been constructed.  "p" is NULL
004945  ** if this is the first term of the FROM clause.  pTable and pDatabase
004946  ** are the name of the table and database named in the FROM clause term.
004947  ** pDatabase is NULL if the database name qualifier is missing - the
004948  ** usual case.  If the term has an alias, then pAlias points to the
004949  ** alias token.  If the term is a subquery, then pSubquery is the
004950  ** SELECT statement that the subquery encodes.  The pTable and
004951  ** pDatabase parameters are NULL for subqueries.  The pOn and pUsing
004952  ** parameters are the content of the ON and USING clauses.
004953  **
004954  ** Return a new SrcList which encodes is the FROM with the new
004955  ** term added.
004956  */
004957  SrcList *sqlite3SrcListAppendFromTerm(
004958    Parse *pParse,          /* Parsing context */
004959    SrcList *p,             /* The left part of the FROM clause already seen */
004960    Token *pTable,          /* Name of the table to add to the FROM clause */
004961    Token *pDatabase,       /* Name of the database containing pTable */
004962    Token *pAlias,          /* The right-hand side of the AS subexpression */
004963    Select *pSubquery,      /* A subquery used in place of a table name */
004964    OnOrUsing *pOnUsing     /* Either the ON clause or the USING clause */
004965  ){
004966    SrcItem *pItem;
004967    sqlite3 *db = pParse->db;
004968    if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
004969      sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
004970        (pOnUsing->pOn ? "ON" : "USING")
004971      );
004972      goto append_from_error;
004973    }
004974    p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
004975    if( p==0 ){
004976      goto append_from_error;
004977    }
004978    assert( p->nSrc>0 );
004979    pItem = &p->a[p->nSrc-1];
004980    assert( (pTable==0)==(pDatabase==0) );
004981    assert( pItem->zName==0 || pDatabase!=0 );
004982    if( IN_RENAME_OBJECT && pItem->zName ){
004983      Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
004984      sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
004985    }
004986    assert( pAlias!=0 );
004987    if( pAlias->n ){
004988      pItem->zAlias = sqlite3NameFromToken(db, pAlias);
004989    }
004990    if( pSubquery ){
004991      pItem->pSelect = pSubquery;
004992      if( pSubquery->selFlags & SF_NestedFrom ){
004993        pItem->fg.isNestedFrom = 1;
004994      }
004995    }
004996    assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
004997    assert( pItem->fg.isUsing==0 );
004998    if( pOnUsing==0 ){
004999      pItem->u3.pOn = 0;
005000    }else if( pOnUsing->pUsing ){
005001      pItem->fg.isUsing = 1;
005002      pItem->u3.pUsing = pOnUsing->pUsing;
005003    }else{
005004      pItem->u3.pOn = pOnUsing->pOn;
005005    }
005006    return p;
005007  
005008  append_from_error:
005009    assert( p==0 );
005010    sqlite3ClearOnOrUsing(db, pOnUsing);
005011    sqlite3SelectDelete(db, pSubquery);
005012    return 0;
005013  }
005014  
005015  /*
005016  ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
005017  ** element of the source-list passed as the second argument.
005018  */
005019  void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
005020    assert( pIndexedBy!=0 );
005021    if( p && pIndexedBy->n>0 ){
005022      SrcItem *pItem;
005023      assert( p->nSrc>0 );
005024      pItem = &p->a[p->nSrc-1];
005025      assert( pItem->fg.notIndexed==0 );
005026      assert( pItem->fg.isIndexedBy==0 );
005027      assert( pItem->fg.isTabFunc==0 );
005028      if( pIndexedBy->n==1 && !pIndexedBy->z ){
005029        /* A "NOT INDEXED" clause was supplied. See parse.y
005030        ** construct "indexed_opt" for details. */
005031        pItem->fg.notIndexed = 1;
005032      }else{
005033        pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
005034        pItem->fg.isIndexedBy = 1;
005035        assert( pItem->fg.isCte==0 );  /* No collision on union u2 */
005036      }
005037    }
005038  }
005039  
005040  /*
005041  ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
005042  ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
005043  ** are deleted by this function.
005044  */
005045  SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
005046    assert( p1 && p1->nSrc==1 );
005047    if( p2 ){
005048      SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
005049      if( pNew==0 ){
005050        sqlite3SrcListDelete(pParse->db, p2);
005051      }else{
005052        p1 = pNew;
005053        memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
005054        sqlite3DbFree(pParse->db, p2);
005055        p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
005056      }
005057    }
005058    return p1;
005059  }
005060  
005061  /*
005062  ** Add the list of function arguments to the SrcList entry for a
005063  ** table-valued-function.
005064  */
005065  void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
005066    if( p ){
005067      SrcItem *pItem = &p->a[p->nSrc-1];
005068      assert( pItem->fg.notIndexed==0 );
005069      assert( pItem->fg.isIndexedBy==0 );
005070      assert( pItem->fg.isTabFunc==0 );
005071      pItem->u1.pFuncArg = pList;
005072      pItem->fg.isTabFunc = 1;
005073    }else{
005074      sqlite3ExprListDelete(pParse->db, pList);
005075    }
005076  }
005077  
005078  /*
005079  ** When building up a FROM clause in the parser, the join operator
005080  ** is initially attached to the left operand.  But the code generator
005081  ** expects the join operator to be on the right operand.  This routine
005082  ** Shifts all join operators from left to right for an entire FROM
005083  ** clause.
005084  **
005085  ** Example: Suppose the join is like this:
005086  **
005087  **           A natural cross join B
005088  **
005089  ** The operator is "natural cross join".  The A and B operands are stored
005090  ** in p->a[0] and p->a[1], respectively.  The parser initially stores the
005091  ** operator with A.  This routine shifts that operator over to B.
005092  **
005093  ** Additional changes:
005094  **
005095  **   *   All tables to the left of the right-most RIGHT JOIN are tagged with
005096  **       JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
005097  **       code generator can easily tell that the table is part of
005098  **       the left operand of at least one RIGHT JOIN.
005099  */
005100  void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
005101    (void)pParse;
005102    if( p && p->nSrc>1 ){
005103      int i = p->nSrc-1;
005104      u8 allFlags = 0;
005105      do{
005106        allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
005107      }while( (--i)>0 );
005108      p->a[0].fg.jointype = 0;
005109  
005110      /* All terms to the left of a RIGHT JOIN should be tagged with the
005111      ** JT_LTORJ flags */
005112      if( allFlags & JT_RIGHT ){
005113        for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
005114        i--;
005115        assert( i>=0 );
005116        do{
005117          p->a[i].fg.jointype |= JT_LTORJ;
005118        }while( (--i)>=0 );
005119      }
005120    }
005121  }
005122  
005123  /*
005124  ** Generate VDBE code for a BEGIN statement.
005125  */
005126  void sqlite3BeginTransaction(Parse *pParse, int type){
005127    sqlite3 *db;
005128    Vdbe *v;
005129    int i;
005130  
005131    assert( pParse!=0 );
005132    db = pParse->db;
005133    assert( db!=0 );
005134    if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
005135      return;
005136    }
005137    v = sqlite3GetVdbe(pParse);
005138    if( !v ) return;
005139    if( type!=TK_DEFERRED ){
005140      for(i=0; i<db->nDb; i++){
005141        int eTxnType;
005142        Btree *pBt = db->aDb[i].pBt;
005143        if( pBt && sqlite3BtreeIsReadonly(pBt) ){
005144          eTxnType = 0;  /* Read txn */
005145        }else if( type==TK_EXCLUSIVE ){
005146          eTxnType = 2;  /* Exclusive txn */
005147        }else{
005148          eTxnType = 1;  /* Write txn */
005149        }
005150        sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
005151        sqlite3VdbeUsesBtree(v, i);
005152      }
005153    }
005154    sqlite3VdbeAddOp0(v, OP_AutoCommit);
005155  }
005156  
005157  /*
005158  ** Generate VDBE code for a COMMIT or ROLLBACK statement.
005159  ** Code for ROLLBACK is generated if eType==TK_ROLLBACK.  Otherwise
005160  ** code is generated for a COMMIT.
005161  */
005162  void sqlite3EndTransaction(Parse *pParse, int eType){
005163    Vdbe *v;
005164    int isRollback;
005165  
005166    assert( pParse!=0 );
005167    assert( pParse->db!=0 );
005168    assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
005169    isRollback = eType==TK_ROLLBACK;
005170    if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
005171         isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
005172      return;
005173    }
005174    v = sqlite3GetVdbe(pParse);
005175    if( v ){
005176      sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
005177    }
005178  }
005179  
005180  /*
005181  ** This function is called by the parser when it parses a command to create,
005182  ** release or rollback an SQL savepoint.
005183  */
005184  void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
005185    char *zName = sqlite3NameFromToken(pParse->db, pName);
005186    if( zName ){
005187      Vdbe *v = sqlite3GetVdbe(pParse);
005188  #ifndef SQLITE_OMIT_AUTHORIZATION
005189      static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
005190      assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
005191  #endif
005192      if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
005193        sqlite3DbFree(pParse->db, zName);
005194        return;
005195      }
005196      sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
005197    }
005198  }
005199  
005200  /*
005201  ** Make sure the TEMP database is open and available for use.  Return
005202  ** the number of errors.  Leave any error messages in the pParse structure.
005203  */
005204  int sqlite3OpenTempDatabase(Parse *pParse){
005205    sqlite3 *db = pParse->db;
005206    if( db->aDb[1].pBt==0 && !pParse->explain ){
005207      int rc;
005208      Btree *pBt;
005209      static const int flags =
005210            SQLITE_OPEN_READWRITE |
005211            SQLITE_OPEN_CREATE |
005212            SQLITE_OPEN_EXCLUSIVE |
005213            SQLITE_OPEN_DELETEONCLOSE |
005214            SQLITE_OPEN_TEMP_DB;
005215  
005216      rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
005217      if( rc!=SQLITE_OK ){
005218        sqlite3ErrorMsg(pParse, "unable to open a temporary database "
005219          "file for storing temporary tables");
005220        pParse->rc = rc;
005221        return 1;
005222      }
005223      db->aDb[1].pBt = pBt;
005224      assert( db->aDb[1].pSchema );
005225      if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
005226        sqlite3OomFault(db);
005227        return 1;
005228      }
005229    }
005230    return 0;
005231  }
005232  
005233  /*
005234  ** Record the fact that the schema cookie will need to be verified
005235  ** for database iDb.  The code to actually verify the schema cookie
005236  ** will occur at the end of the top-level VDBE and will be generated
005237  ** later, by sqlite3FinishCoding().
005238  */
005239  static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
005240    assert( iDb>=0 && iDb<pToplevel->db->nDb );
005241    assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
005242    assert( iDb<SQLITE_MAX_DB );
005243    assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
005244    if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
005245      DbMaskSet(pToplevel->cookieMask, iDb);
005246      if( !OMIT_TEMPDB && iDb==1 ){
005247        sqlite3OpenTempDatabase(pToplevel);
005248      }
005249    }
005250  }
005251  void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
005252    sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
005253  }
005254  
005255  
005256  /*
005257  ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
005258  ** attached database. Otherwise, invoke it for the database named zDb only.
005259  */
005260  void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
005261    sqlite3 *db = pParse->db;
005262    int i;
005263    for(i=0; i<db->nDb; i++){
005264      Db *pDb = &db->aDb[i];
005265      if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
005266        sqlite3CodeVerifySchema(pParse, i);
005267      }
005268    }
005269  }
005270  
005271  /*
005272  ** Generate VDBE code that prepares for doing an operation that
005273  ** might change the database.
005274  **
005275  ** This routine starts a new transaction if we are not already within
005276  ** a transaction.  If we are already within a transaction, then a checkpoint
005277  ** is set if the setStatement parameter is true.  A checkpoint should
005278  ** be set for operations that might fail (due to a constraint) part of
005279  ** the way through and which will need to undo some writes without having to
005280  ** rollback the whole transaction.  For operations where all constraints
005281  ** can be checked before any changes are made to the database, it is never
005282  ** necessary to undo a write and the checkpoint should not be set.
005283  */
005284  void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
005285    Parse *pToplevel = sqlite3ParseToplevel(pParse);
005286    sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
005287    DbMaskSet(pToplevel->writeMask, iDb);
005288    pToplevel->isMultiWrite |= setStatement;
005289  }
005290  
005291  /*
005292  ** Indicate that the statement currently under construction might write
005293  ** more than one entry (example: deleting one row then inserting another,
005294  ** inserting multiple rows in a table, or inserting a row and index entries.)
005295  ** If an abort occurs after some of these writes have completed, then it will
005296  ** be necessary to undo the completed writes.
005297  */
005298  void sqlite3MultiWrite(Parse *pParse){
005299    Parse *pToplevel = sqlite3ParseToplevel(pParse);
005300    pToplevel->isMultiWrite = 1;
005301  }
005302  
005303  /*
005304  ** The code generator calls this routine if is discovers that it is
005305  ** possible to abort a statement prior to completion.  In order to
005306  ** perform this abort without corrupting the database, we need to make
005307  ** sure that the statement is protected by a statement transaction.
005308  **
005309  ** Technically, we only need to set the mayAbort flag if the
005310  ** isMultiWrite flag was previously set.  There is a time dependency
005311  ** such that the abort must occur after the multiwrite.  This makes
005312  ** some statements involving the REPLACE conflict resolution algorithm
005313  ** go a little faster.  But taking advantage of this time dependency
005314  ** makes it more difficult to prove that the code is correct (in
005315  ** particular, it prevents us from writing an effective
005316  ** implementation of sqlite3AssertMayAbort()) and so we have chosen
005317  ** to take the safe route and skip the optimization.
005318  */
005319  void sqlite3MayAbort(Parse *pParse){
005320    Parse *pToplevel = sqlite3ParseToplevel(pParse);
005321    pToplevel->mayAbort = 1;
005322  }
005323  
005324  /*
005325  ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
005326  ** error. The onError parameter determines which (if any) of the statement
005327  ** and/or current transaction is rolled back.
005328  */
005329  void sqlite3HaltConstraint(
005330    Parse *pParse,    /* Parsing context */
005331    int errCode,      /* extended error code */
005332    int onError,      /* Constraint type */
005333    char *p4,         /* Error message */
005334    i8 p4type,        /* P4_STATIC or P4_TRANSIENT */
005335    u8 p5Errmsg       /* P5_ErrMsg type */
005336  ){
005337    Vdbe *v;
005338    assert( pParse->pVdbe!=0 );
005339    v = sqlite3GetVdbe(pParse);
005340    assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
005341    if( onError==OE_Abort ){
005342      sqlite3MayAbort(pParse);
005343    }
005344    sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
005345    sqlite3VdbeChangeP5(v, p5Errmsg);
005346  }
005347  
005348  /*
005349  ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
005350  */
005351  void sqlite3UniqueConstraint(
005352    Parse *pParse,    /* Parsing context */
005353    int onError,      /* Constraint type */
005354    Index *pIdx       /* The index that triggers the constraint */
005355  ){
005356    char *zErr;
005357    int j;
005358    StrAccum errMsg;
005359    Table *pTab = pIdx->pTable;
005360  
005361    sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
005362                        pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
005363    if( pIdx->aColExpr ){
005364      sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
005365    }else{
005366      for(j=0; j<pIdx->nKeyCol; j++){
005367        char *zCol;
005368        assert( pIdx->aiColumn[j]>=0 );
005369        zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
005370        if( j ) sqlite3_str_append(&errMsg, ", ", 2);
005371        sqlite3_str_appendall(&errMsg, pTab->zName);
005372        sqlite3_str_append(&errMsg, ".", 1);
005373        sqlite3_str_appendall(&errMsg, zCol);
005374      }
005375    }
005376    zErr = sqlite3StrAccumFinish(&errMsg);
005377    sqlite3HaltConstraint(pParse,
005378      IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
005379                              : SQLITE_CONSTRAINT_UNIQUE,
005380      onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
005381  }
005382  
005383  
005384  /*
005385  ** Code an OP_Halt due to non-unique rowid.
005386  */
005387  void sqlite3RowidConstraint(
005388    Parse *pParse,    /* Parsing context */
005389    int onError,      /* Conflict resolution algorithm */
005390    Table *pTab       /* The table with the non-unique rowid */
005391  ){
005392    char *zMsg;
005393    int rc;
005394    if( pTab->iPKey>=0 ){
005395      zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
005396                            pTab->aCol[pTab->iPKey].zCnName);
005397      rc = SQLITE_CONSTRAINT_PRIMARYKEY;
005398    }else{
005399      zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
005400      rc = SQLITE_CONSTRAINT_ROWID;
005401    }
005402    sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
005403                          P5_ConstraintUnique);
005404  }
005405  
005406  /*
005407  ** Check to see if pIndex uses the collating sequence pColl.  Return
005408  ** true if it does and false if it does not.
005409  */
005410  #ifndef SQLITE_OMIT_REINDEX
005411  static int collationMatch(const char *zColl, Index *pIndex){
005412    int i;
005413    assert( zColl!=0 );
005414    for(i=0; i<pIndex->nColumn; i++){
005415      const char *z = pIndex->azColl[i];
005416      assert( z!=0 || pIndex->aiColumn[i]<0 );
005417      if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
005418        return 1;
005419      }
005420    }
005421    return 0;
005422  }
005423  #endif
005424  
005425  /*
005426  ** Recompute all indices of pTab that use the collating sequence pColl.
005427  ** If pColl==0 then recompute all indices of pTab.
005428  */
005429  #ifndef SQLITE_OMIT_REINDEX
005430  static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
005431    if( !IsVirtual(pTab) ){
005432      Index *pIndex;              /* An index associated with pTab */
005433  
005434      for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
005435        if( zColl==0 || collationMatch(zColl, pIndex) ){
005436          int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
005437          sqlite3BeginWriteOperation(pParse, 0, iDb);
005438          sqlite3RefillIndex(pParse, pIndex, -1);
005439        }
005440      }
005441    }
005442  }
005443  #endif
005444  
005445  /*
005446  ** Recompute all indices of all tables in all databases where the
005447  ** indices use the collating sequence pColl.  If pColl==0 then recompute
005448  ** all indices everywhere.
005449  */
005450  #ifndef SQLITE_OMIT_REINDEX
005451  static void reindexDatabases(Parse *pParse, char const *zColl){
005452    Db *pDb;                    /* A single database */
005453    int iDb;                    /* The database index number */
005454    sqlite3 *db = pParse->db;   /* The database connection */
005455    HashElem *k;                /* For looping over tables in pDb */
005456    Table *pTab;                /* A table in the database */
005457  
005458    assert( sqlite3BtreeHoldsAllMutexes(db) );  /* Needed for schema access */
005459    for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
005460      assert( pDb!=0 );
005461      for(k=sqliteHashFirst(&pDb->pSchema->tblHash);  k; k=sqliteHashNext(k)){
005462        pTab = (Table*)sqliteHashData(k);
005463        reindexTable(pParse, pTab, zColl);
005464      }
005465    }
005466  }
005467  #endif
005468  
005469  /*
005470  ** Generate code for the REINDEX command.
005471  **
005472  **        REINDEX                            -- 1
005473  **        REINDEX  <collation>               -- 2
005474  **        REINDEX  ?<database>.?<tablename>  -- 3
005475  **        REINDEX  ?<database>.?<indexname>  -- 4
005476  **
005477  ** Form 1 causes all indices in all attached databases to be rebuilt.
005478  ** Form 2 rebuilds all indices in all databases that use the named
005479  ** collating function.  Forms 3 and 4 rebuild the named index or all
005480  ** indices associated with the named table.
005481  */
005482  #ifndef SQLITE_OMIT_REINDEX
005483  void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
005484    CollSeq *pColl;             /* Collating sequence to be reindexed, or NULL */
005485    char *z;                    /* Name of a table or index */
005486    const char *zDb;            /* Name of the database */
005487    Table *pTab;                /* A table in the database */
005488    Index *pIndex;              /* An index associated with pTab */
005489    int iDb;                    /* The database index number */
005490    sqlite3 *db = pParse->db;   /* The database connection */
005491    Token *pObjName;            /* Name of the table or index to be reindexed */
005492  
005493    /* Read the database schema. If an error occurs, leave an error message
005494    ** and code in pParse and return NULL. */
005495    if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
005496      return;
005497    }
005498  
005499    if( pName1==0 ){
005500      reindexDatabases(pParse, 0);
005501      return;
005502    }else if( NEVER(pName2==0) || pName2->z==0 ){
005503      char *zColl;
005504      assert( pName1->z );
005505      zColl = sqlite3NameFromToken(pParse->db, pName1);
005506      if( !zColl ) return;
005507      pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
005508      if( pColl ){
005509        reindexDatabases(pParse, zColl);
005510        sqlite3DbFree(db, zColl);
005511        return;
005512      }
005513      sqlite3DbFree(db, zColl);
005514    }
005515    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
005516    if( iDb<0 ) return;
005517    z = sqlite3NameFromToken(db, pObjName);
005518    if( z==0 ) return;
005519    zDb = db->aDb[iDb].zDbSName;
005520    pTab = sqlite3FindTable(db, z, zDb);
005521    if( pTab ){
005522      reindexTable(pParse, pTab, 0);
005523      sqlite3DbFree(db, z);
005524      return;
005525    }
005526    pIndex = sqlite3FindIndex(db, z, zDb);
005527    sqlite3DbFree(db, z);
005528    if( pIndex ){
005529      sqlite3BeginWriteOperation(pParse, 0, iDb);
005530      sqlite3RefillIndex(pParse, pIndex, -1);
005531      return;
005532    }
005533    sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
005534  }
005535  #endif
005536  
005537  /*
005538  ** Return a KeyInfo structure that is appropriate for the given Index.
005539  **
005540  ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
005541  ** when it has finished using it.
005542  */
005543  KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
005544    int i;
005545    int nCol = pIdx->nColumn;
005546    int nKey = pIdx->nKeyCol;
005547    KeyInfo *pKey;
005548    if( pParse->nErr ) return 0;
005549    if( pIdx->uniqNotNull ){
005550      pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
005551    }else{
005552      pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
005553    }
005554    if( pKey ){
005555      assert( sqlite3KeyInfoIsWriteable(pKey) );
005556      for(i=0; i<nCol; i++){
005557        const char *zColl = pIdx->azColl[i];
005558        pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
005559                          sqlite3LocateCollSeq(pParse, zColl);
005560        pKey->aSortFlags[i] = pIdx->aSortOrder[i];
005561        assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
005562      }
005563      if( pParse->nErr ){
005564        assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
005565        if( pIdx->bNoQuery==0 ){
005566          /* Deactivate the index because it contains an unknown collating
005567          ** sequence.  The only way to reactive the index is to reload the
005568          ** schema.  Adding the missing collating sequence later does not
005569          ** reactive the index.  The application had the chance to register
005570          ** the missing index using the collation-needed callback.  For
005571          ** simplicity, SQLite will not give the application a second chance.
005572          */
005573          pIdx->bNoQuery = 1;
005574          pParse->rc = SQLITE_ERROR_RETRY;
005575        }
005576        sqlite3KeyInfoUnref(pKey);
005577        pKey = 0;
005578      }
005579    }
005580    return pKey;
005581  }
005582  
005583  #ifndef SQLITE_OMIT_CTE
005584  /*
005585  ** Create a new CTE object
005586  */
005587  Cte *sqlite3CteNew(
005588    Parse *pParse,          /* Parsing context */
005589    Token *pName,           /* Name of the common-table */
005590    ExprList *pArglist,     /* Optional column name list for the table */
005591    Select *pQuery,         /* Query used to initialize the table */
005592    u8 eM10d                /* The MATERIALIZED flag */
005593  ){
005594    Cte *pNew;
005595    sqlite3 *db = pParse->db;
005596  
005597    pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
005598    assert( pNew!=0 || db->mallocFailed );
005599  
005600    if( db->mallocFailed ){
005601      sqlite3ExprListDelete(db, pArglist);
005602      sqlite3SelectDelete(db, pQuery);
005603    }else{
005604      pNew->pSelect = pQuery;
005605      pNew->pCols = pArglist;
005606      pNew->zName = sqlite3NameFromToken(pParse->db, pName);
005607      pNew->eM10d = eM10d;
005608    }
005609    return pNew;
005610  }
005611  
005612  /*
005613  ** Clear information from a Cte object, but do not deallocate storage
005614  ** for the object itself.
005615  */
005616  static void cteClear(sqlite3 *db, Cte *pCte){
005617    assert( pCte!=0 );
005618    sqlite3ExprListDelete(db, pCte->pCols);
005619    sqlite3SelectDelete(db, pCte->pSelect);
005620    sqlite3DbFree(db, pCte->zName);
005621  }
005622  
005623  /*
005624  ** Free the contents of the CTE object passed as the second argument.
005625  */
005626  void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
005627    assert( pCte!=0 );
005628    cteClear(db, pCte);
005629    sqlite3DbFree(db, pCte);
005630  }
005631  
005632  /*
005633  ** This routine is invoked once per CTE by the parser while parsing a
005634  ** WITH clause.  The CTE described by the third argument is added to
005635  ** the WITH clause of the second argument.  If the second argument is
005636  ** NULL, then a new WITH argument is created.
005637  */
005638  With *sqlite3WithAdd(
005639    Parse *pParse,          /* Parsing context */
005640    With *pWith,            /* Existing WITH clause, or NULL */
005641    Cte *pCte               /* CTE to add to the WITH clause */
005642  ){
005643    sqlite3 *db = pParse->db;
005644    With *pNew;
005645    char *zName;
005646  
005647    if( pCte==0 ){
005648      return pWith;
005649    }
005650  
005651    /* Check that the CTE name is unique within this WITH clause. If
005652    ** not, store an error in the Parse structure. */
005653    zName = pCte->zName;
005654    if( zName && pWith ){
005655      int i;
005656      for(i=0; i<pWith->nCte; i++){
005657        if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
005658          sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
005659        }
005660      }
005661    }
005662  
005663    if( pWith ){
005664      sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
005665      pNew = sqlite3DbRealloc(db, pWith, nByte);
005666    }else{
005667      pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
005668    }
005669    assert( (pNew!=0 && zName!=0) || db->mallocFailed );
005670  
005671    if( db->mallocFailed ){
005672      sqlite3CteDelete(db, pCte);
005673      pNew = pWith;
005674    }else{
005675      pNew->a[pNew->nCte++] = *pCte;
005676      sqlite3DbFree(db, pCte);
005677    }
005678  
005679    return pNew;
005680  }
005681  
005682  /*
005683  ** Free the contents of the With object passed as the second argument.
005684  */
005685  void sqlite3WithDelete(sqlite3 *db, With *pWith){
005686    if( pWith ){
005687      int i;
005688      for(i=0; i<pWith->nCte; i++){
005689        cteClear(db, &pWith->a[i]);
005690      }
005691      sqlite3DbFree(db, pWith);
005692    }
005693  }
005694  #endif /* !defined(SQLITE_OMIT_CTE) */