Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Add examples to the json1 documentation. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
bc16b0015f05e051224d991c298e79c2 |
User & Date: | drh 2015-09-09 19:01:26.663 |
Context
2015-09-09
| ||
20:26 | Typo fixes in the examples of the json1 document. (check-in: e5c50d4f24 user: drh tags: trunk) | |
19:01 | Add examples to the json1 documentation. (check-in: bc16b0015f user: drh tags: trunk) | |
15:39 | Enhance wrap.tcl to recognize <yyterm> elements in the input HTML and convert them into real HTML that renders an terminal-symbol oval around the enclosed text. Use this markup when talking about terminal symbols in the language specification. (check-in: 8e1d4f3bb5 user: drh tags: trunk) | |
Changes
Changes to pages/json1.in.
︙ | ︙ | |||
24 25 26 27 28 29 30 31 32 33 34 35 36 37 | regsub -all {(value[1-9]?|path|label[1-9]?)} $fx "<i>\\1</i>" fx regsub -all {\((json)} $fx "(<i>\\1</i>" fx hd_puts $fx\n hd_puts "</td><td valign='top'>\n" hd_puts [string trim $desc]\n hd_puts "</td></tr>\n\n" } tabentry {json_array(value1,value2,...)} { Return a JSON array holding the function arguments. } jarray tabentry {json_array_length(json)<br>json_array_length(json,path)} { Return a JSON array holding the function arguments. The optional | > > > > > > > > > > | 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | regsub -all {(value[1-9]?|path|label[1-9]?)} $fx "<i>\\1</i>" fx regsub -all {\((json)} $fx "(<i>\\1</i>" fx hd_puts $fx\n hd_puts "</td><td valign='top'>\n" hd_puts [string trim $desc]\n hd_puts "</td></tr>\n\n" } proc jexample {args} { hd_puts "<blockquote><table border=0 cellpadding=0>\n" foreach {sql res} $args { # puts "SELECT [string trim $sql];\n-- [string trim $res]" hd_puts "<tr><td>[string trim $sql]</td>\n" hd_puts "<td width='50' align='center'><b>→</b></td>\n" hd_puts "<td>[string trim $res]</td></tr>\n" } hd_puts "</table></blockquote>\n" } tabentry {json_array(value1,value2,...)} { Return a JSON array holding the function arguments. } jarray tabentry {json_array_length(json)<br>json_array_length(json,path)} { Return a JSON array holding the function arguments. The optional |
︙ | ︙ | |||
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 | <p>In the current implementation, if an argument to json_array() is text that looks like JSON, it is quoted and interpreted as a single JSON string value. In future enhancements in which a SQLite text value can have a sub-type of "JSON", this routine will insert substructure instead of a single string value. Please beware of this future incompatibility and plan accordingly. <tcl>hd_fragment jarraylen {json_array_length SQL function} \ {json_array_length}</tcl> <h3>2.2 The json_array_length() function</h3> <p>The json_array_length(J) function returns the number of elements in the JSON array J, or 0 if J is some kind of JSON value other than an array. The json_array_length(J,P) locates the array at path P within J and returns the length of that array, or 0 if path P does not locate an array within J. Errors are thrown if either J is not well-formed JSON or if P is not a well-formed path. <tcl>hd_fragment jex {json_extract SQL function} {json_extract}</tcl> <h3>2.3 The json_extract() function</h3> <p>The json_extract(J,P1,P2,...) extracts and returns one or more values from the well-formed JSON at J. If only a single path P1 is provided, then the SQLite type of the value returned is NULL for a JSON null, INTEGER or REAL for a JSON numeric value, INTEGER 0 for a JSON false value, INTEGER 1 for a JSON true value, the dequoted text for a JSON string value, and a text representation for JSON object and array values. If there are multiple path arguments (P1, P2, and so forth) then this routine returns an SQLite text which is a well-formed JSON array holding the various values. <tcl>hd_fragment jins {json_insert SQL function} {json_insert}</tcl> <tcl>hd_fragment jrepl {json_replace SQL function} {json_replace}</tcl> <tcl>hd_fragment jset {json_set SQL function} {json_set}</tcl> <h3>2.4 The json_insert(), json_replace, and json_set() functions</h3> <p>The json_insert(), json_replace, and json_set() functions all take | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 | <p>In the current implementation, if an argument to json_array() is text that looks like JSON, it is quoted and interpreted as a single JSON string value. In future enhancements in which a SQLite text value can have a sub-type of "JSON", this routine will insert substructure instead of a single string value. Please beware of this future incompatibility and plan accordingly. <p>Examples: <tcl> jexample \ {json_array(1,2,'3',4)} {'[1,2,"3",4]'} \ {json_array('[1,2]')} {'["[1,2]"]'} \ {json_array(1,null,'3','[4,5]','{"six":7.7}')} \ {'[1,null,"3","[4,5]","{\"six\":7.7}"]'} </tcl> <tcl>hd_fragment jarraylen {json_array_length SQL function} \ {json_array_length}</tcl> <h3>2.2 The json_array_length() function</h3> <p>The json_array_length(J) function returns the number of elements in the JSON array J, or 0 if J is some kind of JSON value other than an array. The json_array_length(J,P) locates the array at path P within J and returns the length of that array, or 0 if path P does not locate an array within J. Errors are thrown if either J is not well-formed JSON or if P is not a well-formed path. <p>Examples: <tcl> jexample \ {json_array_length('[1,2,3,4]')} {4} \ {json_array_length('{"one":[1,2,3]}')} {0} \ {json_array_length('{"one":[1,2,3]}', '$.one')} {3} </tcl> <tcl>hd_fragment jex {json_extract SQL function} {json_extract}</tcl> <h3>2.3 The json_extract() function</h3> <p>The json_extract(J,P1,P2,...) extracts and returns one or more values from the well-formed JSON at J. If only a single path P1 is provided, then the SQLite type of the value returned is NULL for a JSON null, INTEGER or REAL for a JSON numeric value, INTEGER 0 for a JSON false value, INTEGER 1 for a JSON true value, the dequoted text for a JSON string value, and a text representation for JSON object and array values. If there are multiple path arguments (P1, P2, and so forth) then this routine returns an SQLite text which is a well-formed JSON array holding the various values. <p>Examples: <tcl> jexample \ {json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$')} \ {'{"a":2,"c":[4,5,{"f":7}]}'} \ {json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c')} \ {'[4,5,{"f":7}]'} \ {json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c[2]')} \ {'{"f":7}'} \ {json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.c[2].f')} {7} \ {json_extract('{"a":2,"c":[4,5],"f":7}','$.c','$.a')} {'[[4,5],2]'} \ {json_extract('{"a":2,"c":[4,5,{"f":7}]}', '$.x')} NULL </tcl> <tcl>hd_fragment jins {json_insert SQL function} {json_insert}</tcl> <tcl>hd_fragment jrepl {json_replace SQL function} {json_replace}</tcl> <tcl>hd_fragment jset {json_set SQL function} {json_set}</tcl> <h3>2.4 The json_insert(), json_replace, and json_set() functions</h3> <p>The json_insert(), json_replace, and json_set() functions all take |
︙ | ︙ | |||
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 | a sub-type of JSON and will only quote and insert values as JSON strings if the input value is not of sub-type JSON. <p>These routines throw an error if the first JSON argument is not well-formed or if any PATH argument is not well-formed or if any argument is of type BLOB. <tcl>hd_fragment jobj {json_object SQL function} {json_object}</tcl> <h3>2.5 The json_object() function</h3> <p>The json_object() SQL function accepts zero or more pairs of arguments and returns a well-formed JSON object that is composed from those arguments. The first argument of each pair is the label and the second argument of each pair is the value. If any argument to json_array() is a BLOB then an error is thrown. <p>The json_object() function does not currently object to having duplicate labels, though this might change in a future enhancement. <p>In the current implementation, if a value argument to json_object() is text that looks like JSON, it is quoted and interpreted as a single JSON string value. In future enhancements in which a SQLite text value can have a sub-type of "JSON", this routine will insert substructure instead of a single string value. Please beware of this future incompatibility and plan accordingly. <tcl>hd_fragment jrm {json_remove SQL function} {json_remove}</tcl> <h3>2.6 The json_remove() function</h3> <p>The json_remove(J,P,...) function takes a single JSON value as its first argument followed by zero or more path arguments in the second | > > > > > > > > > > > > > > > > > > > | 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 | a sub-type of JSON and will only quote and insert values as JSON strings if the input value is not of sub-type JSON. <p>These routines throw an error if the first JSON argument is not well-formed or if any PATH argument is not well-formed or if any argument is of type BLOB. <p>Examples: <tcl> jexample \ {json_insert('{"a":2,"c":4}', '$.a', 99)} {'{"a":2,"c":4}'} \ {json_insert('{"a":2,"c":4}', '$.e', 99)} {'{"a":2,"c":4,"e":99}'} \ {json_replace('{"a":2,"c":4}', '$.a', 99)} {'{"a":99,"c":4}'} \ {json_replace('{"a":2,"c":4}', '$.e', 99)} {'{"a":2,"c":4}'} \ {json_set('{"a":2,"c":4}', '$.a', 99)} {'{"a":99,"c":4}'} \ {json_set('{"a":2,"c":4}', '$.e', 99)} {'{"a":2,"c":4,"e":99}'} </tcl> <tcl>hd_fragment jobj {json_object SQL function} {json_object}</tcl> <h3>2.5 The json_object() function</h3> <p>The json_object() SQL function accepts zero or more pairs of arguments and returns a well-formed JSON object that is composed from those arguments. The first argument of each pair is the label and the second argument of each pair is the value. If any argument to json_array() is a BLOB then an error is thrown. <p>The json_object() function does not currently object to having duplicate labels, though this might change in a future enhancement. <p>In the current implementation, if a value argument to json_object() is text that looks like JSON, it is quoted and interpreted as a single JSON string value. In future enhancements in which a SQLite text value can have a sub-type of "JSON", this routine will insert substructure instead of a single string value. Please beware of this future incompatibility and plan accordingly. <p>Examples: <tcl> jexample \ {json_object('a',2,'c',4)} {'{"a":2,"c":4}'} \ {json_object('a',2,'c','{e:5}')} {'{"a":2,"c":"{e:5}"}'} </tcl> <tcl>hd_fragment jrm {json_remove SQL function} {json_remove}</tcl> <h3>2.6 The json_remove() function</h3> <p>The json_remove(J,P,...) function takes a single JSON value as its first argument followed by zero or more path arguments in the second |
︙ | ︙ | |||
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | then it returns the input J reformatted, with excess whitespace removed. <p>The json_remove() function throws an error if the first argument is not well-formed JSON or if any later argument is not a well-formed path, or if any argument is a BLOB. <tcl>hd_fragment jtype {json_type SQL function} {json_type}</tcl> <h3>2.7 The json_type() function</h3> <p>The json_type(J) function returns the "type" of the outermost element of J. The json_type(J,P) function returns the "type" of the element in J that is selected by path P. The "type" returned by json_type() is an SQL text value which is one of the following: 'null', 'true', 'false', 'integer', 'real', 'text', 'array', or 'object'. If the path P in json_type(J,P) selects a element that does not exist in J, then the function returns NULL. <p>The json_type() function throws an error if any of its arguments are not well-formed or are a BLOB. <tcl>hd_fragment jvalid {json_valid SQL function} {json_valid}</tcl> <h3>2.8 The json_valid() function</h3> <p>The json_valid(J) function return 1 if the argument J is well-formed JSON and return 0 if the argument J is not well-formed JSON. <tcl>hd_fragment jeach {json_each table-valued function} {json_each}</tcl> <tcl>hd_fragment jtree {json_tree table-valued function} {json_tree}</tcl> <h3>2.9 The json_each() and json_tree() table-valued functions</h3> <p>The json_each(J) and json_tree(J) [table-valued functions] walk the JSON value provided as their first argument and return one row for each | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | then it returns the input J reformatted, with excess whitespace removed. <p>The json_remove() function throws an error if the first argument is not well-formed JSON or if any later argument is not a well-formed path, or if any argument is a BLOB. <p>Examples: <tcl> jexample \ {json_remove('[0,1,2,3,4]','$[2]')} {'[0,1,3,4]'} \ {json_remove('[0,1,2,3,4]','$[2]',$[0])} {'[1,3,4]'} \ {json_remove('[0,1,2,3,4]','$[0]',$[2])} {'[1,2,4]'} \ {json_remove('{"x":25,"y":42}')} {'{"x":25,"y":42}'} \ {json_remove('{"x":25,"y":42}','$.z')} {'{"x":25,"y":42}'} \ {json_remove('{"x":25,"y":42}','$.y')} {'{"x":25}'} \ {json_remove('{"x":25,"y":42}','$')} NULL </tcl> <tcl>hd_fragment jtype {json_type SQL function} {json_type}</tcl> <h3>2.7 The json_type() function</h3> <p>The json_type(J) function returns the "type" of the outermost element of J. The json_type(J,P) function returns the "type" of the element in J that is selected by path P. The "type" returned by json_type() is an SQL text value which is one of the following: 'null', 'true', 'false', 'integer', 'real', 'text', 'array', or 'object'. If the path P in json_type(J,P) selects a element that does not exist in J, then the function returns NULL. <p>The json_type() function throws an error if any of its arguments are not well-formed or are a BLOB. <p>Examples: <tcl> jexample \ {json_type('{"a":[2,3.5,true,false,null,"x"]}')} 'object' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$')} 'object' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a')} 'array' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[0]')} 'integer' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[1]')} 'real' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[2]')} 'true' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[3]')} 'false' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[4]')} 'null' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[5]')} 'text' \ {json_type('{"a":[2,3.5,true,false,null,"x"]}','$.a[6]')} NULL </tcl> <tcl>hd_fragment jvalid {json_valid SQL function} {json_valid}</tcl> <h3>2.8 The json_valid() function</h3> <p>The json_valid(J) function return 1 if the argument J is well-formed JSON and return 0 if the argument J is not well-formed JSON. <p>Examples: <tcl> jexample \ {json_valid('{"x":35}')} 1 \ "json_valid('\173\"x\":35')" 0 </tcl> <tcl>hd_fragment jeach {json_each table-valued function} {json_each}</tcl> <tcl>hd_fragment jtree {json_tree table-valued function} {json_tree}</tcl> <h3>2.9 The json_each() and json_tree() table-valued functions</h3> <p>The json_each(J) and json_tree(J) [table-valued functions] walk the JSON value provided as their first argument and return one row for each |
︙ | ︙ | |||
367 368 369 370 371 372 373 374 | The "parent" column is the "id" integer for the parent of the current element, or NULL for the top-level JSON element. <p> The "fullkey" column is a text path that uniquely identifies the current row element within the original JSON string. | > > > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 | The "parent" column is the "id" integer for the parent of the current element, or NULL for the top-level JSON element. <p> The "fullkey" column is a text path that uniquely identifies the current row element within the original JSON string. <h4>2.9.1 Examples using json_each() and json_tree()</h4> <p>Suppose the table "CREATE TABLE user(name,phone)" stores zero or more phone numbers as a JSON array object in the user.phone field. To find all users who have any phone number with a 704 area code: <blockquote><pre> SELECT DISTINCT user.name FROM user, json_each(user.phone) WHERE json_each.value LIKE '704-%'; </pre></blockquote> <p>Now suppose the user.phone field contains plain text if the user has only a single phone number and a JSON array if the user has multiple phone numbers. We ask the same question: Which uses have a phone number in the 704 area code. But now the json_each() function can only be called for those users that have two or more phone numbers: <blockquote><pre> SELECT name FROM user WHERE phone LIKE '704-%' UNION SELECT user.name FROM user, json_each(user.phone) WHERE json_valid(user.phone) AND json_each.value LIKE '704-%'; </pre></blockquote> <p>Consider a different database with "CREATE TABLE big(json JSON)". To see a complete line-by-line decomposition of the data: <blockquote><pre> SELECT big.rowid, fullkey, value FROM big, json_tree(big.json) WHERE json_tree.type NOT IN ('object','array'); </pre></blockquote> <p>In the previous, the "type NOT IN ('object','array')" term of the WHERE clause suppresses containers and only lets through leaf elements. The same effect could be achieved this way: <blockquote><pre> SELECT big.rowid, fullkey, atom FROM big, json_tree(big.json) WHERE atom IS NOT NULL; </pre></blockquote> <p>Suppose each entry in the BIG table is an object with an '$.id' field that is a unique indentifier and a '$.partlist' field that is a deeply nested object. You want to find the id of every entry that contains one or more references to uuid '6fa5181e-5721-11e5-a04e-57f3d7b32808' anywhere in its '$.partlist'. <blockquote><pre> SELECT DISTINCT json_extract(big.json,'$.id') FROM big, json_tree(big.json, '$.partlist') WHERE json_tree.key='uuid' AND json_tree.value='6fa5181e-5721-11e5-a04e-57f3d7b32808'; </pre></blockquote> |