Index: Makefile.in ================================================================== --- Makefile.in +++ Makefile.in @@ -354,10 +354,11 @@ $(TOP)/src/test_btree.c \ $(TOP)/src/test_config.c \ $(TOP)/src/test_demovfs.c \ $(TOP)/src/test_devsym.c \ $(TOP)/src/test_func.c \ + $(TOP)/src/test_fuzzer.c \ $(TOP)/src/test_hexio.c \ $(TOP)/src/test_init.c \ $(TOP)/src/test_intarray.c \ $(TOP)/src/test_journal.c \ $(TOP)/src/test_malloc.c \ Index: main.mk ================================================================== --- main.mk +++ main.mk @@ -235,10 +235,11 @@ $(TOP)/src/test_btree.c \ $(TOP)/src/test_config.c \ $(TOP)/src/test_demovfs.c \ $(TOP)/src/test_devsym.c \ $(TOP)/src/test_func.c \ + $(TOP)/src/test_fuzzer.c \ $(TOP)/src/test_hexio.c \ $(TOP)/src/test_init.c \ $(TOP)/src/test_intarray.c \ $(TOP)/src/test_journal.c \ $(TOP)/src/test_malloc.c \ Index: src/tclsqlite.c ================================================================== --- src/tclsqlite.c +++ src/tclsqlite.c @@ -3579,10 +3579,11 @@ extern int SqlitetestStat_Init(Tcl_Interp*); extern int Sqlitetestrtree_Init(Tcl_Interp*); extern int Sqlitequota_Init(Tcl_Interp*); extern int Sqlitemultiplex_Init(Tcl_Interp*); extern int SqliteSuperlock_Init(Tcl_Interp*); + extern int Sqlitetestfuzzer_Init(Tcl_Interp*); #ifdef SQLITE_ENABLE_ZIPVFS extern int Zipvfs_Init(Tcl_Interp*); Zipvfs_Init(interp); #endif @@ -3616,10 +3617,11 @@ SqlitetestStat_Init(interp); Sqlitetestrtree_Init(interp); Sqlitequota_Init(interp); Sqlitemultiplex_Init(interp); SqliteSuperlock_Init(interp); + Sqlitetestfuzzer_Init(interp); Tcl_CreateObjCommand(interp,"load_testfixture_extensions",init_all_cmd,0,0); #ifdef SQLITE_SSE Sqlitetestsse_Init(interp); ADDED src/test_fuzzer.c Index: src/test_fuzzer.c ================================================================== --- /dev/null +++ src/test_fuzzer.c @@ -0,0 +1,944 @@ +/* +** 2011 March 24 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** +** Code for demonstartion virtual table that generates variations +** on an input word at increasing edit distances from the original. +** +** A fuzzer virtual table is created like this: +** +** CREATE VIRTUAL TABLE temp.f USING fuzzer; +** +** The name of the new virtual table in the example above is "f". +** Note that all fuzzer virtual tables must be TEMP tables. The +** "temp." prefix in front of the table name is required when the +** table is being created. The "temp." prefix can be omitted when +** using the table as long as the name is unambiguous. +** +** Before being used, the fuzzer needs to be programmed by giving it +** character transformations and a cost associated with each transformation. +** Examples: +** +** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); +** +** The above statement says that the cost of inserting a letter 'a' is +** 100. (All costs are integers. We recommend that costs be scaled so +** that the average cost is around 100.) +** +** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); +** +** The above statement says that the cost of deleting a single letter +** 'b' is 87. +** +** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); +** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); +** +** This third example says that the cost of transforming the single +** letter "o" into the two-letter sequence "oe" is 38 and that the +** cost of transforming "oe" back into "o" is 40. +** +** After all the transformation costs have been set, the fuzzer table +** can be queried as follows: +** +** SELECT word, distance FROM f +** WHERE word MATCH 'abcdefg' +** AND distance<200; +** +** This first query outputs the string "abcdefg" and all strings that +** can be derived from that string by appling the specified transformations. +** The strings are output together with their total transformation cost +** (called "distance") and appear in order of increasing cost. No string +** is output more than once. If there are multiple ways to transform the +** target string into the output string then the lowest cost transform is +** the one that is returned. In the example, the search is limited to +** strings with a total distance of less than 200. +** +** It is important to put some kind of a limit on the fuzzer output. This +** can be either in the form of a LIMIT clause at the end of the query, +** or better, a "distance +#include +#include +#include + +#ifndef SQLITE_OMIT_VIRTUALTABLE + +/* +** Forward declaration of objects used by this implementation +*/ +typedef struct fuzzer_vtab fuzzer_vtab; +typedef struct fuzzer_cursor fuzzer_cursor; +typedef struct fuzzer_rule fuzzer_rule; +typedef struct fuzzer_seen fuzzer_seen; +typedef struct fuzzer_stem fuzzer_stem; + +/* +** Type of the "cost" of an edit operation. Might be changed to +** "float" or "double" or "sqlite3_int64" in the future. +*/ +typedef int fuzzer_cost; + + +/* +** Each transformation rule is stored as an instance of this object. +** All rules are kept on a linked list sorted by rCost. +*/ +struct fuzzer_rule { + fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ + fuzzer_cost rCost; /* Cost of this transformation */ + int nFrom, nTo; /* Length of the zFrom and zTo strings */ + char *zFrom; /* Transform from */ + char zTo[4]; /* Transform to (extra space appended) */ +}; + +/* +** A stem object is used to generate variants. It is also used to record +** previously generated outputs. +** +** Every stem is added to a hash table as it is output. Generation of +** duplicate stems is suppressed. +** +** Active stems (those that might generate new outputs) are kepts on a linked +** list sorted by increasing cost. The cost is the sum of rBaseCost and +** pRule->rCost. +*/ +struct fuzzer_stem { + char *zBasis; /* Word being fuzzed */ + int nBasis; /* Length of the zBasis string */ + const fuzzer_rule *pRule; /* Current rule to apply */ + int n; /* Apply pRule at this character offset */ + fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ + fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ + fuzzer_stem *pNext; /* Next stem in rCost order */ + fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ +}; + +/* +** A fuzzer virtual-table object +*/ +struct fuzzer_vtab { + sqlite3_vtab base; /* Base class - must be first */ + char *zClassName; /* Name of this class. Default: "fuzzer" */ + fuzzer_rule *pRule; /* All active rules in this fuzzer */ + fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ + int nCursor; /* Number of active cursors */ +}; + +#define FUZZER_HASH 4001 /* Hash table size */ +#define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ + +/* A fuzzer cursor object */ +struct fuzzer_cursor { + sqlite3_vtab_cursor base; /* Base class - must be first */ + sqlite3_int64 iRowid; /* The rowid of the current word */ + fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ + fuzzer_cost rLimit; /* Maximum cost of any term */ + fuzzer_stem *pStem; /* Stem with smallest rCostX */ + fuzzer_stem *pDone; /* Stems already processed to completion */ + fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ + int mxQueue; /* Largest used index in aQueue[] */ + char *zBuf; /* Temporary use buffer */ + int nBuf; /* Bytes allocated for zBuf */ + int nStem; /* Number of stems allocated */ + fuzzer_rule nullRule; /* Null rule used first */ + fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ +}; + +/* Methods for the fuzzer module */ +static int fuzzerConnect( + sqlite3 *db, + void *pAux, + int argc, const char *const*argv, + sqlite3_vtab **ppVtab, + char **pzErr +){ + fuzzer_vtab *pNew; + int n; + if( strcmp(argv[1],"temp")!=0 ){ + *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); + return SQLITE_ERROR; + } + n = strlen(argv[0]) + 1; + pNew = sqlite3_malloc( sizeof(*pNew) + n ); + if( pNew==0 ) return SQLITE_NOMEM; + pNew->zClassName = (char*)&pNew[1]; + memcpy(pNew->zClassName, argv[0], n); + sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); + memset(pNew, 0, sizeof(*pNew)); + *ppVtab = &pNew->base; + return SQLITE_OK; +} +/* Note that for this virtual table, the xCreate and xConnect +** methods are identical. */ + +static int fuzzerDisconnect(sqlite3_vtab *pVtab){ + fuzzer_vtab *p = (fuzzer_vtab*)pVtab; + assert( p->nCursor==0 ); + do{ + while( p->pRule ){ + fuzzer_rule *pRule = p->pRule; + p->pRule = pRule->pNext; + sqlite3_free(pRule); + } + p->pRule = p->pNewRule; + p->pNewRule = 0; + }while( p->pRule ); + sqlite3_free(p); + return SQLITE_OK; +} +/* The xDisconnect and xDestroy methods are also the same */ + +/* +** The two input rule lists are both sorted in order of increasing +** cost. Merge them together into a single list, sorted by cost, and +** return a pointer to the head of that list. +*/ +static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ + fuzzer_rule head; + fuzzer_rule *pTail; + + pTail = &head; + while( pA && pB ){ + if( pA->rCost<=pB->rCost ){ + pTail->pNext = pA; + pTail = pA; + pA = pA->pNext; + }else{ + pTail->pNext = pB; + pTail = pB; + pB = pB->pNext; + } + } + if( pA==0 ){ + pTail->pNext = pB; + }else{ + pTail->pNext = pA; + } + return head.pNext; +} + + +/* +** Open a new fuzzer cursor. +*/ +static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ + fuzzer_vtab *p = (fuzzer_vtab*)pVTab; + fuzzer_cursor *pCur; + pCur = sqlite3_malloc( sizeof(*pCur) ); + if( pCur==0 ) return SQLITE_NOMEM; + memset(pCur, 0, sizeof(*pCur)); + pCur->pVtab = p; + *ppCursor = &pCur->base; + if( p->nCursor==0 && p->pNewRule ){ + unsigned int i; + fuzzer_rule *pX; + fuzzer_rule *a[15]; + for(i=0; ipNewRule)!=0 ){ + p->pNewRule = pX->pNext; + pX->pNext = 0; + for(i=0; a[i] && ipRule = fuzzerMergeRules(p->pRule, pX); + } + p->nCursor++; + return SQLITE_OK; +} + +/* +** Free all stems in a list. +*/ +static void fuzzerClearStemList(fuzzer_stem *pStem){ + while( pStem ){ + fuzzer_stem *pNext = pStem->pNext; + sqlite3_free(pStem); + pStem = pNext; + } +} + +/* +** Free up all the memory allocated by a cursor. Set it rLimit to 0 +** to indicate that it is at EOF. +*/ +static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ + int i; + fuzzerClearStemList(pCur->pStem); + fuzzerClearStemList(pCur->pDone); + for(i=0; iaQueue[i]); + pCur->rLimit = (fuzzer_cost)0; + if( clearHash && pCur->nStem ){ + pCur->mxQueue = 0; + pCur->pStem = 0; + pCur->pDone = 0; + memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); + memset(pCur->apHash, 0, sizeof(pCur->apHash)); + } + pCur->nStem = 0; +} + +/* +** Close a fuzzer cursor. +*/ +static int fuzzerClose(sqlite3_vtab_cursor *cur){ + fuzzer_cursor *pCur = (fuzzer_cursor *)cur; + fuzzerClearCursor(pCur, 0); + sqlite3_free(pCur->zBuf); + pCur->pVtab->nCursor--; + sqlite3_free(pCur); + return SQLITE_OK; +} + +/* +** Compute the current output term for a fuzzer_stem. +*/ +static int fuzzerRender( + fuzzer_stem *pStem, /* The stem to be rendered */ + char **pzBuf, /* Write results into this buffer. realloc if needed */ + int *pnBuf /* Size of the buffer */ +){ + const fuzzer_rule *pRule = pStem->pRule; + int n; + char *z; + + n = pStem->nBasis + pRule->nTo - pRule->nFrom; + if( (*pnBuf)n; + z = *pzBuf; + if( n<0 ){ + memcpy(z, pStem->zBasis, pStem->nBasis+1); + }else{ + memcpy(z, pStem->zBasis, n); + memcpy(&z[n], pRule->zTo, pRule->nTo); + memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], + pStem->nBasis-n-pRule->nFrom+1); + } + return SQLITE_OK; +} + +/* +** Compute a hash on zBasis. +*/ +static unsigned int fuzzerHash(const char *z){ + unsigned int h = 0; + while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } + return h % FUZZER_HASH; +} + +/* +** Current cost of a stem +*/ +static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ + return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; +} + +#if 0 +/* +** Print a description of a fuzzer_stem on stderr. +*/ +static void fuzzerStemPrint( + const char *zPrefix, + fuzzer_stem *pStem, + const char *zSuffix +){ + if( pStem->n<0 ){ + fprintf(stderr, "%s[%s](%d)-->self%s", + zPrefix, + pStem->zBasis, pStem->rBaseCost, + zSuffix + ); + }else{ + char *zBuf = 0; + int nBuf = 0; + if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; + fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", + zPrefix, + pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, + zSuffix + ); + sqlite3_free(zBuf); + } +} +#endif + +/* +** Return 1 if the string to which the cursor is point has already +** been emitted. Return 0 if not. Return -1 on a memory allocation +** failures. +*/ +static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ + unsigned int h; + fuzzer_stem *pLookup; + + if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ + return -1; + } + h = fuzzerHash(pCur->zBuf); + pLookup = pCur->apHash[h]; + while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ + pLookup = pLookup->pHash; + } + return pLookup!=0; +} + +/* +** Advance a fuzzer_stem to its next value. Return 0 if there are +** no more values that can be generated by this fuzzer_stem. Return +** -1 on a memory allocation failure. +*/ +static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ + const fuzzer_rule *pRule; + while( (pRule = pStem->pRule)!=0 ){ + while( pStem->n < pStem->nBasis - pRule->nFrom ){ + pStem->n++; + if( pRule->nFrom==0 + || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 + ){ + /* Found a rewrite case. Make sure it is not a duplicate */ + int rc = fuzzerSeen(pCur, pStem); + if( rc<0 ) return -1; + if( rc==0 ){ + fuzzerCost(pStem); + return 1; + } + } + } + pStem->n = -1; + pStem->pRule = pRule->pNext; + if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; + } + return 0; +} + +/* +** The two input stem lists are both sorted in order of increasing +** rCostX. Merge them together into a single list, sorted by rCostX, and +** return a pointer to the head of that new list. +*/ +static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ + fuzzer_stem head; + fuzzer_stem *pTail; + + pTail = &head; + while( pA && pB ){ + if( pA->rCostX<=pB->rCostX ){ + pTail->pNext = pA; + pTail = pA; + pA = pA->pNext; + }else{ + pTail->pNext = pB; + pTail = pB; + pB = pB->pNext; + } + } + if( pA==0 ){ + pTail->pNext = pB; + }else{ + pTail->pNext = pA; + } + return head.pNext; +} + +/* +** Load pCur->pStem with the lowest-cost stem. Return a pointer +** to the lowest-cost stem. +*/ +static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ + fuzzer_stem *pBest, *pX; + int iBest; + int i; + + if( pCur->pStem==0 ){ + iBest = -1; + pBest = 0; + for(i=0; i<=pCur->mxQueue; i++){ + pX = pCur->aQueue[i]; + if( pX==0 ) continue; + if( pBest==0 || pBest->rCostX>pX->rCostX ){ + pBest = pX; + iBest = i; + } + } + if( pBest ){ + pCur->aQueue[iBest] = pBest->pNext; + pBest->pNext = 0; + pCur->pStem = pBest; + } + } + return pCur->pStem; +} + +/* +** Insert pNew into queue of pending stems. Then find the stem +** with the lowest rCostX and move it into pCur->pStem. +** list. The insert is done such the pNew is in the correct order +** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. +*/ +static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ + fuzzer_stem *pX; + int i; + + /* If pCur->pStem exists and is greater than pNew, then make pNew + ** the new pCur->pStem and insert the old pCur->pStem instead. + */ + if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ + pNew->pNext = 0; + pCur->pStem = pNew; + pNew = pX; + } + + /* Insert the new value */ + pNew->pNext = 0; + pX = pNew; + for(i=0; i<=pCur->mxQueue; i++){ + if( pCur->aQueue[i] ){ + pX = fuzzerMergeStems(pX, pCur->aQueue[i]); + pCur->aQueue[i] = 0; + }else{ + pCur->aQueue[i] = pX; + break; + } + } + if( i>pCur->mxQueue ){ + if( imxQueue = i; + pCur->aQueue[i] = pX; + }else{ + assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); + pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); + pCur->aQueue[FUZZER_NQUEUE-1] = pX; + } + } + + return fuzzerLowestCostStem(pCur); +} + +/* +** Allocate a new fuzzer_stem. Add it to the hash table but do not +** link it into either the pCur->pStem or pCur->pDone lists. +*/ +static fuzzer_stem *fuzzerNewStem( + fuzzer_cursor *pCur, + const char *zWord, + fuzzer_cost rBaseCost +){ + fuzzer_stem *pNew; + unsigned int h; + + pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); + if( pNew==0 ) return 0; + memset(pNew, 0, sizeof(*pNew)); + pNew->zBasis = (char*)&pNew[1]; + pNew->nBasis = strlen(zWord); + memcpy(pNew->zBasis, zWord, pNew->nBasis+1); + pNew->pRule = pCur->pVtab->pRule; + pNew->n = -1; + pNew->rBaseCost = pNew->rCostX = rBaseCost; + h = fuzzerHash(pNew->zBasis); + pNew->pHash = pCur->apHash[h]; + pCur->apHash[h] = pNew; + pCur->nStem++; + return pNew; +} + + +/* +** Advance a cursor to its next row of output +*/ +static int fuzzerNext(sqlite3_vtab_cursor *cur){ + fuzzer_cursor *pCur = (fuzzer_cursor*)cur; + int rc; + fuzzer_stem *pStem, *pNew; + + pCur->iRowid++; + + /* Use the element the cursor is currently point to to create + ** a new stem and insert the new stem into the priority queue. + */ + pStem = pCur->pStem; + if( pStem->rCostX>0 ){ + rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); + if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; + pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); + if( pNew ){ + if( fuzzerAdvance(pCur, pNew)==0 ){ + pNew->pNext = pCur->pDone; + pCur->pDone = pNew; + }else{ + if( fuzzerInsert(pCur, pNew)==pNew ){ + return SQLITE_OK; + } + } + }else{ + return SQLITE_NOMEM; + } + } + + /* Adjust the priority queue so that the first element of the + ** stem list is the next lowest cost word. + */ + while( (pStem = pCur->pStem)!=0 ){ + if( fuzzerAdvance(pCur, pStem) ){ + pCur->pStem = 0; + pStem = fuzzerInsert(pCur, pStem); + if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ + if( rc<0 ) return SQLITE_NOMEM; + continue; + } + return SQLITE_OK; /* New word found */ + } + pCur->pStem = 0; + pStem->pNext = pCur->pDone; + pCur->pDone = pStem; + if( fuzzerLowestCostStem(pCur) ){ + rc = fuzzerSeen(pCur, pCur->pStem); + if( rc<0 ) return SQLITE_NOMEM; + if( rc==0 ){ + return SQLITE_OK; + } + } + } + + /* Reach this point only if queue has been exhausted and there is + ** nothing left to be output. */ + pCur->rLimit = (fuzzer_cost)0; + return SQLITE_OK; +} + +/* +** Called to "rewind" a cursor back to the beginning so that +** it starts its output over again. Always called at least once +** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. +*/ +static int fuzzerFilter( + sqlite3_vtab_cursor *pVtabCursor, + int idxNum, const char *idxStr, + int argc, sqlite3_value **argv +){ + fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; + const char *zWord = 0; + fuzzer_stem *pStem; + + fuzzerClearCursor(pCur, 1); + pCur->rLimit = 2147483647; + if( idxNum==1 ){ + zWord = (const char*)sqlite3_value_text(argv[0]); + }else if( idxNum==2 ){ + pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); + }else if( idxNum==3 ){ + zWord = (const char*)sqlite3_value_text(argv[0]); + pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); + } + if( zWord==0 ) zWord = ""; + pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); + if( pStem==0 ) return SQLITE_NOMEM; + pCur->nullRule.pNext = pCur->pVtab->pRule; + pCur->nullRule.rCost = 0; + pCur->nullRule.nFrom = 0; + pCur->nullRule.nTo = 0; + pCur->nullRule.zFrom = ""; + pStem->pRule = &pCur->nullRule; + pStem->n = pStem->nBasis; + pCur->iRowid = 1; + return SQLITE_OK; +} + +/* +** Only the word and distance columns have values. All other columns +** return NULL +*/ +static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ + fuzzer_cursor *pCur = (fuzzer_cursor*)cur; + if( i==0 ){ + /* the "word" column */ + if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ + return SQLITE_NOMEM; + } + sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); + }else if( i==1 ){ + /* the "distance" column */ + sqlite3_result_int(ctx, pCur->pStem->rCostX); + }else{ + /* All other columns are NULL */ + sqlite3_result_null(ctx); + } + return SQLITE_OK; +} + +/* +** The rowid. +*/ +static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ + fuzzer_cursor *pCur = (fuzzer_cursor*)cur; + *pRowid = pCur->iRowid; + return SQLITE_OK; +} + +/* +** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal +** that the cursor has nothing more to output. +*/ +static int fuzzerEof(sqlite3_vtab_cursor *cur){ + fuzzer_cursor *pCur = (fuzzer_cursor*)cur; + return pCur->rLimit<=(fuzzer_cost)0; +} + +/* +** Search for terms of these forms: +** +** word MATCH $str +** distance < $value +** distance <= $value +** +** The distance< and distance<= are both treated as distance<=. +** The query plan number is as follows: +** +** 0: None of the terms above are found +** 1: There is a "word MATCH" term with $str in filter.argv[0]. +** 2: There is a "distance<" term with $value in filter.argv[0]. +** 3: Both "word MATCH" and "distance<" with $str in argv[0] and +** $value in argv[1]. +*/ +static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ + int iPlan = 0; + int iDistTerm = -1; + int i; + const struct sqlite3_index_constraint *pConstraint; + pConstraint = pIdxInfo->aConstraint; + for(i=0; inConstraint; i++, pConstraint++){ + if( pConstraint->usable==0 ) continue; + if( (iPlan & 1)==0 + && pConstraint->iColumn==0 + && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH + ){ + iPlan |= 1; + pIdxInfo->aConstraintUsage[i].argvIndex = 1; + pIdxInfo->aConstraintUsage[i].omit = 1; + } + if( (iPlan & 2)==0 + && pConstraint->iColumn==1 + && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT + || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) + ){ + iPlan |= 2; + iDistTerm = i; + } + } + if( iPlan==2 ){ + pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; + }else if( iPlan==3 ){ + pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; + } + pIdxInfo->idxNum = iPlan; + if( pIdxInfo->nOrderBy==1 + && pIdxInfo->aOrderBy[0].iColumn==1 + && pIdxInfo->aOrderBy[0].desc==0 + ){ + pIdxInfo->orderByConsumed = 1; + } + pIdxInfo->estimatedCost = (double)10000; + + return SQLITE_OK; +} + +/* +** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. +** +** On an insert, the cFrom, cTo, and cost columns are used to construct +** a new rule. All other columns are ignored. The rule is ignored +** if cFrom and cTo are identical. A NULL value for cFrom or cTo is +** interpreted as an empty string. The cost must be positive. +*/ +static int fuzzerUpdate( + sqlite3_vtab *pVTab, + int argc, + sqlite3_value **argv, + sqlite_int64 *pRowid +){ + fuzzer_vtab *p = (fuzzer_vtab*)pVTab; + fuzzer_rule *pRule; + const char *zFrom; + int nFrom; + const char *zTo; + int nTo; + fuzzer_cost rCost; + if( argc!=7 ){ + sqlite3_free(pVTab->zErrMsg); + pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", + p->zClassName); + return SQLITE_CONSTRAINT; + } + if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ + sqlite3_free(pVTab->zErrMsg); + pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", + p->zClassName); + return SQLITE_CONSTRAINT; + } + zFrom = (char*)sqlite3_value_text(argv[4]); + if( zFrom==0 ) zFrom = ""; + zTo = (char*)sqlite3_value_text(argv[5]); + if( zTo==0 ) zTo = ""; + if( strcmp(zFrom,zTo)==0 ){ + /* Silently ignore null transformations */ + return SQLITE_OK; + } + rCost = sqlite3_value_int(argv[6]); + if( rCost<=0 ){ + sqlite3_free(pVTab->zErrMsg); + pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); + return SQLITE_CONSTRAINT; + } + nFrom = strlen(zFrom); + nTo = strlen(zTo); + pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); + if( pRule==0 ){ + return SQLITE_NOMEM; + } + pRule->zFrom = &pRule->zTo[nTo+1]; + pRule->nFrom = nFrom; + memcpy(pRule->zFrom, zFrom, nFrom+1); + memcpy(pRule->zTo, zTo, nTo+1); + pRule->nTo = nTo; + pRule->rCost = rCost; + pRule->pNext = p->pNewRule; + p->pNewRule = pRule; + return SQLITE_OK; +} + +/* +** A virtual table module that provides read-only access to a +** Tcl global variable namespace. +*/ +static sqlite3_module fuzzerModule = { + 0, /* iVersion */ + fuzzerConnect, + fuzzerConnect, + fuzzerBestIndex, + fuzzerDisconnect, + fuzzerDisconnect, + fuzzerOpen, /* xOpen - open a cursor */ + fuzzerClose, /* xClose - close a cursor */ + fuzzerFilter, /* xFilter - configure scan constraints */ + fuzzerNext, /* xNext - advance a cursor */ + fuzzerEof, /* xEof - check for end of scan */ + fuzzerColumn, /* xColumn - read data */ + fuzzerRowid, /* xRowid - read data */ + fuzzerUpdate, /* xUpdate - INSERT */ + 0, /* xBegin */ + 0, /* xSync */ + 0, /* xCommit */ + 0, /* xRollback */ + 0, /* xFindMethod */ + 0, /* xRename */ +}; + +#endif /* SQLITE_OMIT_VIRTUALTABLE */ + + +/* +** Register the fuzzer virtual table +*/ +int fuzzer_register(sqlite3 *db){ + int rc = SQLITE_OK; +#ifndef SQLITE_OMIT_VIRTUALTABLE + rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); +#endif + return rc; +} + +#ifdef SQLITE_TEST +#include +/* +** Decode a pointer to an sqlite3 object. +*/ +extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); + +/* +** Register the echo virtual table module. +*/ +static int register_fuzzer_module( + ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ + Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ + int objc, /* Number of arguments */ + Tcl_Obj *CONST objv[] /* Command arguments */ +){ + sqlite3 *db; + if( objc!=2 ){ + Tcl_WrongNumArgs(interp, 1, objv, "DB"); + return TCL_ERROR; + } + if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; + fuzzer_register(db); + return TCL_OK; +} + + +/* +** Register commands with the TCL interpreter. +*/ +int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ + static struct { + char *zName; + Tcl_ObjCmdProc *xProc; + void *clientData; + } aObjCmd[] = { + { "register_fuzzer_module", register_fuzzer_module, 0 }, + }; + int i; + for(i=0; i=f2.word AND streetname.n<=(f2.word || x'F7BFBFBF') + } +} {steelewood tallia tallu talwyn taymouth thelema trailer {tyler finley}} + + +finish_test