Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge the experimental shared-memory mmap-by-chunk changes into the trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
f295e7ed5f04f6b8bffdaff8b565be38 |
User & Date: | drh 2010-06-14 17:09:53.000 |
Context
2010-06-14
| ||
18:01 | Move the xShmMap method to in between xShmLock and xShmBarrier, since it seems to fit in there logically. (check-in: 58dfd83d8b user: drh tags: trunk) | |
17:09 | Merge the experimental shared-memory mmap-by-chunk changes into the trunk. (check-in: f295e7ed5f user: drh tags: trunk) | |
16:16 | Add the new xShmMap (formerly xShmPage) to os_win.c. (check-in: 13e7a82422 user: dan tags: experimental) | |
2010-06-11
| ||
17:01 | Refactor and simplify the logic used to change journalmode. (check-in: 95cc3f6fde user: drh tags: trunk) | |
Changes
Changes to src/os.c.
︙ | ︙ | |||
97 98 99 100 101 102 103 | } int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ return id->pMethods->xDeviceCharacteristics(id); } int sqlite3OsShmOpen(sqlite3_file *id){ return id->pMethods->xShmOpen(id); } | < < < < < < < < < > > > > > > > > > | 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 | } int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ return id->pMethods->xDeviceCharacteristics(id); } int sqlite3OsShmOpen(sqlite3_file *id){ return id->pMethods->xShmOpen(id); } int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ return id->pMethods->xShmLock(id, offset, n, flags); } void sqlite3OsShmBarrier(sqlite3_file *id){ id->pMethods->xShmBarrier(id); } int sqlite3OsShmClose(sqlite3_file *id, int deleteFlag){ return id->pMethods->xShmClose(id, deleteFlag); } int sqlite3OsShmMap( sqlite3_file *id, int iPage, int pgsz, int isWrite, void volatile **pp ){ return id->pMethods->xShmMap(id, iPage, pgsz, isWrite, pp); } /* ** The next group of routines are convenience wrappers around the ** VFS methods. */ int sqlite3OsOpen( sqlite3_vfs *pVfs, |
︙ | ︙ |
Changes to src/os.h.
︙ | ︙ | |||
244 245 246 247 248 249 250 | int sqlite3OsUnlock(sqlite3_file*, int); int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); int sqlite3OsFileControl(sqlite3_file*,int,void*); #define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 int sqlite3OsSectorSize(sqlite3_file *id); int sqlite3OsDeviceCharacteristics(sqlite3_file *id); int sqlite3OsShmOpen(sqlite3_file *id); | < < < > | 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | int sqlite3OsUnlock(sqlite3_file*, int); int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut); int sqlite3OsFileControl(sqlite3_file*,int,void*); #define SQLITE_FCNTL_DB_UNCHANGED 0xca093fa0 int sqlite3OsSectorSize(sqlite3_file *id); int sqlite3OsDeviceCharacteristics(sqlite3_file *id); int sqlite3OsShmOpen(sqlite3_file *id); int sqlite3OsShmLock(sqlite3_file *id, int, int, int); void sqlite3OsShmBarrier(sqlite3_file *id); int sqlite3OsShmClose(sqlite3_file *id, int); int sqlite3OsShmMap(sqlite3_file *,int,int,int,void volatile **); /* ** Functions for accessing sqlite3_vfs methods */ int sqlite3OsOpen(sqlite3_vfs *, const char *, sqlite3_file*, int, int *); int sqlite3OsDelete(sqlite3_vfs *, const char *, int); int sqlite3OsAccess(sqlite3_vfs *, const char *, int, int *pResOut); |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
3124 3125 3126 3127 3128 3129 3130 | ** ** fid ** zFilename ** ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and ** unixMutexHeld() is true when reading or writing any other field ** in this structure. | < < < < < < < | | > | 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 | ** ** fid ** zFilename ** ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and ** unixMutexHeld() is true when reading or writing any other field ** in this structure. */ struct unixShmNode { unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the mmapped file */ int h; /* Open file descriptor */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ char **apRegion; /* Array of mapped shared-memory regions */ int nRef; /* Number of unixShm objects pointing to this */ unixShm *pFirst; /* All unixShm objects pointing to this */ #ifdef SQLITE_DEBUG u8 exclMask; /* Mask of exclusive locks held */ u8 sharedMask; /* Mask of shared locks held */ u8 nextShmId; /* Next available unixShm.id value */ #endif |
︙ | ︙ | |||
3165 3166 3167 3168 3169 3170 3171 | ** All other fields are read/write. The unixShm.pFile->mutex must be held ** while accessing any read/write fields. */ struct unixShm { unixShmNode *pShmNode; /* The underlying unixShmNode object */ unixShm *pNext; /* Next unixShm with the same unixShmNode */ u8 hasMutex; /* True if holding the unixShmNode mutex */ | < | 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 | ** All other fields are read/write. The unixShm.pFile->mutex must be held ** while accessing any read/write fields. */ struct unixShm { unixShmNode *pShmNode; /* The underlying unixShmNode object */ unixShm *pNext; /* Next unixShm with the same unixShmNode */ u8 hasMutex; /* True if holding the unixShmNode mutex */ u16 sharedMask; /* Mask of shared locks held */ u16 exclMask; /* Mask of exclusive locks held */ #ifdef SQLITE_DEBUG u8 id; /* Id of this connection within its unixShmNode */ #endif }; |
︙ | ︙ | |||
3262 3263 3264 3265 3266 3267 3268 3269 3270 | ** This is not a VFS shared-memory method; it is a utility function called ** by VFS shared-memory methods. */ static void unixShmPurge(unixFile *pFd){ unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && p->nRef==0 ){ assert( p->pInode==pFd->pInode ); if( p->mutex ) sqlite3_mutex_free(p->mutex); | > < > | > > | 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 | ** This is not a VFS shared-memory method; it is a utility function called ** by VFS shared-memory methods. */ static void unixShmPurge(unixFile *pFd){ unixShmNode *p = pFd->pInode->pShmNode; assert( unixMutexHeld() ); if( p && p->nRef==0 ){ int i; assert( p->pInode==pFd->pInode ); if( p->mutex ) sqlite3_mutex_free(p->mutex); for(i=0; i<p->nRegion; i++){ munmap(p->apRegion[i], p->szRegion); } sqlite3_free(p->apRegion); if( p->h>=0 ) close(p->h); p->pInode->pShmNode = 0; sqlite3_free(p); } } /* Forward reference */ |
︙ | ︙ | |||
3341 3342 3343 3344 3345 3346 3347 | pDbFd->pInode->pShmNode = pShmNode; pShmNode->pInode = pDbFd->pInode; pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } | < < < < < | 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 | pDbFd->pInode->pShmNode = pShmNode; pShmNode->pInode = pDbFd->pInode; pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } pShmNode->h = open(pShmNode->zFilename, O_RDWR|O_CREAT, 0664); if( pShmNode->h<0 ){ rc = SQLITE_CANTOPEN_BKPT; goto shm_open_err; } |
︙ | ︙ | |||
3416 3417 3418 3419 3420 3421 3422 | /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->mutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 | /* Remove connection p from the set of connections associated ** with pShmNode */ sqlite3_mutex_enter(pShmNode->mutex); for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} *pp = p->pNext; /* Free the connection p */ sqlite3_free(p); pDbFd->pShm = 0; sqlite3_mutex_leave(pShmNode->mutex); /* If pShmNode->nRef has reached 0, then close the underlying ** shared-memory file, too */ unixEnterMutex(); assert( pShmNode->nRef>0 ); pShmNode->nRef--; if( pShmNode->nRef==0 ){ if( deleteFlag ) unlink(pShmNode->zFilename); unixShmPurge(pDbFd); } unixLeaveMutex(); return SQLITE_OK; } /* ** Change the lock state for a shared-memory segment. ** ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little ** different here than in posix. In xShmLock(), one can go from unlocked ** to shared and back or from unlocked to exclusive and back. But one may |
︙ | ︙ | |||
3696 3697 3698 3699 3700 3701 3702 | /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void unixShmBarrier( | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < < < > | 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 | /* ** Implement a memory barrier or memory fence on shared memory. ** ** All loads and stores begun before the barrier must complete before ** any load or store begun after the barrier. */ static void unixShmBarrier( sqlite3_file *fd /* Database file holding the shared memory */ ){ unixEnterMutex(); unixLeaveMutex(); } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file fd. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the isWrite parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** isWrite is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int unixShmMap( sqlite3_file *fd, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ unixFile *pDbFd = (unixFile*)fd; unixShm *p = pDbFd->pShm; unixShmNode *pShmNode = p->pShmNode; int rc = SQLITE_OK; sqlite3_mutex_enter(pShmNode->mutex); assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ char **apNew; /* New apRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ struct stat sStat; /* Used by fstat() */ pShmNode->szRegion = szRegion; /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ if( fstat(pShmNode->h, &sStat) ){ rc = SQLITE_IOERR_SHMSIZE; goto shmpage_out; } if( sStat.st_size<nByte ){ /* The requested memory region does not exist. If isWrite is set to ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned. ** ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate ** the requested memory region. */ if( !isWrite ) goto shmpage_out; if( ftruncate(pShmNode->h, nByte) ){ rc = SQLITE_IOERR_SHMSIZE; goto shmpage_out; } } /* Map the requested memory region into this processes address space. */ apNew = (char **)sqlite3_realloc( pShmNode->apRegion, (iRegion+1)*sizeof(char *) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM; goto shmpage_out; } pShmNode->apRegion = apNew; while(pShmNode->nRegion<=iRegion){ void *pMem = mmap(0, szRegion, PROT_READ|PROT_WRITE, MAP_SHARED, pShmNode->h, iRegion*szRegion ); if( pMem==MAP_FAILED ){ rc = SQLITE_IOERR; goto shmpage_out; } pShmNode->apRegion[pShmNode->nRegion] = pMem; pShmNode->nRegion++; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ *pp = pShmNode->apRegion[iRegion]; }else{ *pp = 0; } sqlite3_mutex_leave(pShmNode->mutex); return rc; } #else # define unixShmOpen 0 # define unixShmLock 0 # define unixShmBarrier 0 # define unixShmClose 0 # define unixShmMap 0 #endif /* #ifndef SQLITE_OMIT_WAL */ /* ** Here ends the implementation of all sqlite3_file methods. ** ********************** End sqlite3_file Methods ******************************* ******************************************************************************/ |
︙ | ︙ | |||
3769 3770 3771 3772 3773 3774 3775 | LOCK, /* xLock */ \ UNLOCK, /* xUnlock */ \ CKLOCK, /* xCheckReservedLock */ \ unixFileControl, /* xFileControl */ \ unixSectorSize, /* xSectorSize */ \ unixDeviceCharacteristics, /* xDeviceCapabilities */ \ unixShmOpen, /* xShmOpen */ \ | < < < | > | 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 | LOCK, /* xLock */ \ UNLOCK, /* xUnlock */ \ CKLOCK, /* xCheckReservedLock */ \ unixFileControl, /* xFileControl */ \ unixSectorSize, /* xSectorSize */ \ unixDeviceCharacteristics, /* xDeviceCapabilities */ \ unixShmOpen, /* xShmOpen */ \ unixShmLock, /* xShmLock */ \ unixShmBarrier, /* xShmBarrier */ \ unixShmClose, /* xShmClose */ \ unixShmMap /* xShmMap */ \ }; \ static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ return &METHOD; \ } \ static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ = FINDER##Impl; |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
1212 1213 1214 1215 1216 1217 1218 | ** reverse order that they are acquired. mutexBuf is always acquired ** first and released last. This invariant is check by asserting ** sqlite3_mutex_notheld() on mutex whenever mutexBuf is acquired or ** released. */ struct winShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ | < > > > > | > > | < | 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | ** reverse order that they are acquired. mutexBuf is always acquired ** first and released last. This invariant is check by asserting ** sqlite3_mutex_notheld() on mutex whenever mutexBuf is acquired or ** released. */ struct winShmNode { sqlite3_mutex *mutex; /* Mutex to access this object */ char *zFilename; /* Name of the file */ winFile hFile; /* File handle from winOpen */ int szRegion; /* Size of shared-memory regions */ int nRegion; /* Size of array apRegion */ struct ShmRegion { HANDLE hMap; /* File handle from CreateFileMapping */ void *pMap; } *aRegion; DWORD lastErrno; /* The Windows errno from the last I/O error */ int nRef; /* Number of winShm objects pointing to this */ winShm *pFirst; /* All winShm objects pointing to this */ winShmNode *pNext; /* Next in list of all winShmNode objects */ #ifdef SQLITE_DEBUG u8 nextShmId; /* Next available winShm.id value */ #endif }; |
︙ | ︙ | |||
1321 1322 1323 1324 1325 1326 1327 1328 | static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){ winShmNode **pp; winShmNode *p; assert( winShmMutexHeld() ); pp = &winShmNodeList; while( (p = *pp)!=0 ){ if( p->nRef==0 ){ if( p->mutex ) sqlite3_mutex_free(p->mutex); | > < | | < < | > | 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 | static void winShmPurge(sqlite3_vfs *pVfs, int deleteFlag){ winShmNode **pp; winShmNode *p; assert( winShmMutexHeld() ); pp = &winShmNodeList; while( (p = *pp)!=0 ){ if( p->nRef==0 ){ int i; if( p->mutex ) sqlite3_mutex_free(p->mutex); for(i=0; i<p->nRegion; i++){ UnmapViewOfFile(p->aRegion[i].pMap); CloseHandle(p->aRegion[i].hMap); } if( p->hFile.h != INVALID_HANDLE_VALUE ) { winClose((sqlite3_file *)&p->hFile); } if( deleteFlag ) winDelete(pVfs, p->zFilename, 0); *pp = p->pNext; sqlite3_free(p->aRegion); sqlite3_free(p); }else{ pp = &p->pNext; } } } |
︙ | ︙ | |||
1400 1401 1402 1403 1404 1405 1406 | if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break; } if( pShmNode ){ sqlite3_free(pNew); }else{ pShmNode = pNew; pNew = 0; | < < < < < < < | 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 | if( sqlite3StrICmp(pShmNode->zFilename, pNew->zFilename)==0 ) break; } if( pShmNode ){ sqlite3_free(pNew); }else{ pShmNode = pNew; pNew = 0; ((winFile*)(&pShmNode->hFile))->h = INVALID_HANDLE_VALUE; pShmNode->pNext = winShmNodeList; winShmNodeList = pShmNode; pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); if( pShmNode->mutex==0 ){ rc = SQLITE_NOMEM; goto shm_open_err; } rc = winOpen(pDbFd->pVfs, pShmNode->zFilename, /* Name of the file (UTF-8) */ (sqlite3_file*)&pShmNode->hFile, /* File handle here */ SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE, /* Mode flags */ 0); |
︙ | ︙ | |||
1503 1504 1505 1506 1507 1508 1509 | } winShmLeaveMutex(); return SQLITE_OK; } /* | > | > > < < < | < < < < < | < < < < < < | < < < < < < < < | < < < < < < < > > < < < < < < < < < < | < < < < < < < < < | < < < < | | < < | | > | | | < < | < > | < | > | < < < < > | | | > > > > | | > | < < | > > | > > > > > | | > > > | > > | < < > > > > > | | > | > | | < | > > > | < | | | | | | | > | < < < < < | | < | < < | | | > > > > | > < < < < < < < < < < < < < < < < < < < < < < < < | 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 | } winShmLeaveMutex(); return SQLITE_OK; } /* ** This function is called to obtain a pointer to region iRegion of the ** shared-memory associated with the database file fd. Shared-memory regions ** are numbered starting from zero. Each shared-memory region is szRegion ** bytes in size. ** ** If an error occurs, an error code is returned and *pp is set to NULL. ** ** Otherwise, if the isWrite parameter is 0 and the requested shared-memory ** region has not been allocated (by any client, including one running in a ** separate process), then *pp is set to NULL and SQLITE_OK returned. If ** isWrite is non-zero and the requested shared-memory region has not yet ** been allocated, it is allocated by this function. ** ** If the shared-memory region has already been allocated or is allocated by ** this call as described above, then it is mapped into this processes ** address space (if it is not already), *pp is set to point to the mapped ** memory and SQLITE_OK returned. */ static int winShmMap( sqlite3_file *fd, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ winFile *pDbFd = (winFile*)fd; winShm *p = pDbFd->pShm; winShmNode *pShmNode = p->pShmNode; int rc = SQLITE_OK; sqlite3_mutex_enter(pShmNode->mutex); assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); if( pShmNode->nRegion<=iRegion ){ struct ShmRegion *apNew; /* New aRegion[] array */ int nByte = (iRegion+1)*szRegion; /* Minimum required file size */ sqlite3_int64 sz; /* Current size of wal-index file */ pShmNode->szRegion = szRegion; /* The requested region is not mapped into this processes address space. ** Check to see if it has been allocated (i.e. if the wal-index file is ** large enough to contain the requested region). */ rc = winFileSize((sqlite3_file *)&pShmNode->hFile, &sz); if( rc!=SQLITE_OK ){ goto shmpage_out; } if( sz<nByte ){ /* The requested memory region does not exist. If isWrite is set to ** zero, exit early. *pp will be set to NULL and SQLITE_OK returned. ** ** Alternatively, if isWrite is non-zero, use ftruncate() to allocate ** the requested memory region. */ if( !isWrite ) goto shmpage_out; rc = winTruncate((sqlite3_file *)&pShmNode->hFile, nByte); if( rc!=SQLITE_OK ){ goto shmpage_out; } } /* Map the requested memory region into this processes address space. */ apNew = (struct ShmRegion *)sqlite3_realloc( pShmNode->aRegion, (iRegion+1)*sizeof(apNew[0]) ); if( !apNew ){ rc = SQLITE_IOERR_NOMEM; goto shmpage_out; } pShmNode->aRegion = apNew; while( pShmNode->nRegion<=iRegion ){ HANDLE hMap; /* file-mapping handle */ void *pMap = 0; /* Mapped memory region */ hMap = CreateFileMapping(pShmNode->hFile.h, NULL, PAGE_READWRITE, 0, nByte, NULL ); if( hMap ){ pMap = MapViewOfFile(hMap, FILE_MAP_WRITE | FILE_MAP_READ, 0, 0, nByte ); } if( !pMap ){ pShmNode->lastErrno = GetLastError(); rc = SQLITE_IOERR; if( hMap ) CloseHandle(hMap); goto shmpage_out; } pShmNode->aRegion[pShmNode->nRegion].pMap = pMap; pShmNode->aRegion[pShmNode->nRegion].hMap = hMap; pShmNode->nRegion++; } } shmpage_out: if( pShmNode->nRegion>iRegion ){ char *p = (char *)pShmNode->aRegion[iRegion].pMap; *pp = (void *)&p[iRegion*szRegion]; }else{ *pp = 0; } sqlite3_mutex_leave(pShmNode->mutex); return rc; } /* ** Change the lock state for a shared-memory segment. */ static int winShmLock( sqlite3_file *fd, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ |
︙ | ︙ | |||
1752 1753 1754 1755 1756 1757 1758 | winLock, winUnlock, winCheckReservedLock, winFileControl, winSectorSize, winDeviceCharacteristics, winShmOpen, /* xShmOpen */ | < < < | > | 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 | winLock, winUnlock, winCheckReservedLock, winFileControl, winSectorSize, winDeviceCharacteristics, winShmOpen, /* xShmOpen */ winShmLock, /* xShmLock */ winShmBarrier, /* xShmBarrier */ winShmClose, /* xShmClose */ winShmMap /* xShmMap */ }; /*************************************************************************** ** Here ends the I/O methods that form the sqlite3_io_methods object. ** ** The next block of code implements the VFS methods. ****************************************************************************/ |
︙ | ︙ |
Changes to src/sqlite.h.in.
︙ | ︙ | |||
656 657 658 659 660 661 662 | int (*xUnlock)(sqlite3_file*, int); int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); int (*xFileControl)(sqlite3_file*, int op, void *pArg); int (*xSectorSize)(sqlite3_file*); int (*xDeviceCharacteristics)(sqlite3_file*); /* Methods above are valid for version 1 */ int (*xShmOpen)(sqlite3_file*); | < < < > | 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 | int (*xUnlock)(sqlite3_file*, int); int (*xCheckReservedLock)(sqlite3_file*, int *pResOut); int (*xFileControl)(sqlite3_file*, int op, void *pArg); int (*xSectorSize)(sqlite3_file*); int (*xDeviceCharacteristics)(sqlite3_file*); /* Methods above are valid for version 1 */ int (*xShmOpen)(sqlite3_file*); int (*xShmLock)(sqlite3_file*, int offset, int n, int flags); void (*xShmBarrier)(sqlite3_file*); int (*xShmClose)(sqlite3_file*, int deleteFlag); int (*xShmMap)(sqlite3_file*, int iPage, int pgsz, int, void volatile**); /* Methods above are valid for version 2 */ /* Additional methods may be added in future releases */ }; /* ** CAPI3REF: Standard File Control Opcodes ** |
︙ | ︙ |
Changes to src/test6.c.
︙ | ︙ | |||
522 523 524 525 526 527 528 | /* ** Pass-throughs for WAL support. */ static int cfShmOpen(sqlite3_file *pFile){ return sqlite3OsShmOpen(((CrashFile*)pFile)->pRealFile); } | < < < < < < < < < < < < < < > > > > > > > > | < < < | > | 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 | /* ** Pass-throughs for WAL support. */ static int cfShmOpen(sqlite3_file *pFile){ return sqlite3OsShmOpen(((CrashFile*)pFile)->pRealFile); } static int cfShmLock(sqlite3_file *pFile, int ofst, int n, int flags){ return sqlite3OsShmLock(((CrashFile*)pFile)->pRealFile, ofst, n, flags); } static void cfShmBarrier(sqlite3_file *pFile){ sqlite3OsShmBarrier(((CrashFile*)pFile)->pRealFile); } static int cfShmClose(sqlite3_file *pFile, int delFlag){ return sqlite3OsShmClose(((CrashFile*)pFile)->pRealFile, delFlag); } static int cfShmMap( sqlite3_file *pFile, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int sz, /* Size of regions */ int w, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ return sqlite3OsShmMap(((CrashFile*)pFile)->pRealFile, iRegion, sz, w, pp); } static const sqlite3_io_methods CrashFileVtab = { 2, /* iVersion */ cfClose, /* xClose */ cfRead, /* xRead */ cfWrite, /* xWrite */ cfTruncate, /* xTruncate */ cfSync, /* xSync */ cfFileSize, /* xFileSize */ cfLock, /* xLock */ cfUnlock, /* xUnlock */ cfCheckReservedLock, /* xCheckReservedLock */ cfFileControl, /* xFileControl */ cfSectorSize, /* xSectorSize */ cfDeviceCharacteristics, /* xDeviceCharacteristics */ cfShmOpen, /* xShmOpen */ cfShmLock, /* xShmLock */ cfShmBarrier, /* xShmBarrier */ cfShmClose, /* xShmClose */ cfShmMap /* xShmMap */ }; /* ** Application data for the crash VFS */ struct crashAppData { sqlite3_vfs *pOrig; /* Wrapped vfs structure */ |
︙ | ︙ |
Changes to src/test_devsym.c.
︙ | ︙ | |||
47 48 49 50 51 52 53 | static int devsymLock(sqlite3_file*, int); static int devsymUnlock(sqlite3_file*, int); static int devsymCheckReservedLock(sqlite3_file*, int *); static int devsymFileControl(sqlite3_file*, int op, void *pArg); static int devsymSectorSize(sqlite3_file*); static int devsymDeviceCharacteristics(sqlite3_file*); static int devsymShmOpen(sqlite3_file*); | < < < > | 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | static int devsymLock(sqlite3_file*, int); static int devsymUnlock(sqlite3_file*, int); static int devsymCheckReservedLock(sqlite3_file*, int *); static int devsymFileControl(sqlite3_file*, int op, void *pArg); static int devsymSectorSize(sqlite3_file*); static int devsymDeviceCharacteristics(sqlite3_file*); static int devsymShmOpen(sqlite3_file*); static int devsymShmLock(sqlite3_file*,int,int,int); static void devsymShmBarrier(sqlite3_file*); static int devsymShmClose(sqlite3_file*,int); static int devsymShmMap(sqlite3_file*,int,int,int, void volatile **); /* ** Method declarations for devsym_vfs. */ static int devsymOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); static int devsymDelete(sqlite3_vfs*, const char *zName, int syncDir); static int devsymAccess(sqlite3_vfs*, const char *zName, int flags, int *); |
︙ | ︙ | |||
116 117 118 119 120 121 122 | devsymLock, /* xLock */ devsymUnlock, /* xUnlock */ devsymCheckReservedLock, /* xCheckReservedLock */ devsymFileControl, /* xFileControl */ devsymSectorSize, /* xSectorSize */ devsymDeviceCharacteristics, /* xDeviceCharacteristics */ devsymShmOpen, /* xShmOpen */ | < < < | > | 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 | devsymLock, /* xLock */ devsymUnlock, /* xUnlock */ devsymCheckReservedLock, /* xCheckReservedLock */ devsymFileControl, /* xFileControl */ devsymSectorSize, /* xSectorSize */ devsymDeviceCharacteristics, /* xDeviceCharacteristics */ devsymShmOpen, /* xShmOpen */ devsymShmLock, /* xShmLock */ devsymShmBarrier, /* xShmBarrier */ devsymShmClose, /* xShmClose */ devsymShmMap /* xShmMap */ }; struct DevsymGlobal { sqlite3_vfs *pVfs; int iDeviceChar; int iSectorSize; }; |
︙ | ︙ | |||
242 243 244 245 246 247 248 | /* ** Shared-memory methods are all pass-thrus. */ static int devsymShmOpen(sqlite3_file *pFile){ devsym_file *p = (devsym_file *)pFile; return sqlite3OsShmOpen(p->pReal); } | < < < < < < < < < < < < < < < < < > > > > > > > > > > | 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | /* ** Shared-memory methods are all pass-thrus. */ static int devsymShmOpen(sqlite3_file *pFile){ devsym_file *p = (devsym_file *)pFile; return sqlite3OsShmOpen(p->pReal); } static int devsymShmLock(sqlite3_file *pFile, int ofst, int n, int flags){ devsym_file *p = (devsym_file *)pFile; return sqlite3OsShmLock(p->pReal, ofst, n, flags); } static void devsymShmBarrier(sqlite3_file *pFile){ devsym_file *p = (devsym_file *)pFile; sqlite3OsShmBarrier(p->pReal); } static int devsymShmClose(sqlite3_file *pFile, int delFlag){ devsym_file *p = (devsym_file *)pFile; return sqlite3OsShmClose(p->pReal, delFlag); } static int devsymShmMap( sqlite3_file *pFile, int iRegion, int szRegion, int isWrite, void volatile **pp ){ devsym_file *p = (devsym_file *)pFile; return sqlite3OsShmMap(p->pReal, iRegion, szRegion, isWrite, pp); } /* ** Open an devsym file handle. */ static int devsymOpen( |
︙ | ︙ |
Changes to src/test_osinst.c.
︙ | ︙ | |||
96 97 98 99 100 101 102 | #define OS_SLEEP 16 #define OS_SYNC 17 #define OS_TRUNCATE 18 #define OS_UNLOCK 19 #define OS_WRITE 20 #define OS_SHMOPEN 21 #define OS_SHMCLOSE 22 | | < < | 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | #define OS_SLEEP 16 #define OS_SYNC 17 #define OS_TRUNCATE 18 #define OS_UNLOCK 19 #define OS_WRITE 20 #define OS_SHMOPEN 21 #define OS_SHMCLOSE 22 #define OS_SHMMAP 23 #define OS_SHMLOCK 25 #define OS_SHMBARRIER 26 #define OS_ANNOTATE 28 #define OS_NUMEVENTS 29 #define VFSLOG_BUFFERSIZE 8192 typedef struct VfslogVfs VfslogVfs; |
︙ | ︙ | |||
148 149 150 151 152 153 154 | static int vfslogUnlock(sqlite3_file*, int); static int vfslogCheckReservedLock(sqlite3_file*, int *pResOut); static int vfslogFileControl(sqlite3_file*, int op, void *pArg); static int vfslogSectorSize(sqlite3_file*); static int vfslogDeviceCharacteristics(sqlite3_file*); static int vfslogShmOpen(sqlite3_file *pFile); | < < < > | 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | static int vfslogUnlock(sqlite3_file*, int); static int vfslogCheckReservedLock(sqlite3_file*, int *pResOut); static int vfslogFileControl(sqlite3_file*, int op, void *pArg); static int vfslogSectorSize(sqlite3_file*); static int vfslogDeviceCharacteristics(sqlite3_file*); static int vfslogShmOpen(sqlite3_file *pFile); static int vfslogShmLock(sqlite3_file *pFile, int ofst, int n, int flags); static void vfslogShmBarrier(sqlite3_file*); static int vfslogShmClose(sqlite3_file *pFile, int deleteFlag); static int vfslogShmMap(sqlite3_file *pFile,int,int,int,volatile void **); /* ** Method declarations for vfslog_vfs. */ static int vfslogOpen(sqlite3_vfs*, const char *, sqlite3_file*, int , int *); static int vfslogDelete(sqlite3_vfs*, const char *zName, int syncDir); static int vfslogAccess(sqlite3_vfs*, const char *zName, int flags, int *); |
︙ | ︙ | |||
212 213 214 215 216 217 218 | vfslogLock, /* xLock */ vfslogUnlock, /* xUnlock */ vfslogCheckReservedLock, /* xCheckReservedLock */ vfslogFileControl, /* xFileControl */ vfslogSectorSize, /* xSectorSize */ vfslogDeviceCharacteristics, /* xDeviceCharacteristics */ vfslogShmOpen, /* xShmOpen */ | < < < | > | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | vfslogLock, /* xLock */ vfslogUnlock, /* xUnlock */ vfslogCheckReservedLock, /* xCheckReservedLock */ vfslogFileControl, /* xFileControl */ vfslogSectorSize, /* xSectorSize */ vfslogDeviceCharacteristics, /* xDeviceCharacteristics */ vfslogShmOpen, /* xShmOpen */ vfslogShmLock, /* xShmLock */ vfslogShmBarrier, /* xShmBarrier */ vfslogShmClose, /* xShmClose */ vfslogShmMap /* xShmMap */ }; #if defined(SQLITE_OS_UNIX) && !defined(NO_GETTOD) #include <sys/time.h> static sqlite3_uint64 vfslog_time(){ struct timeval sTime; gettimeofday(&sTime, 0); |
︙ | ︙ | |||
437 438 439 440 441 442 443 | VfslogFile *p = (VfslogFile *)pFile; t = vfslog_time(); rc = p->pReal->pMethods->xShmOpen(p->pReal); t = vfslog_time() - t; vfslog_call(p->pVfslog, OS_SHMOPEN, p->iFileId, t, rc, 0, 0); return rc; } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | 431 432 433 434 435 436 437 438 439 440 441 442 443 444 | VfslogFile *p = (VfslogFile *)pFile; t = vfslog_time(); rc = p->pReal->pMethods->xShmOpen(p->pReal); t = vfslog_time() - t; vfslog_call(p->pVfslog, OS_SHMOPEN, p->iFileId, t, rc, 0, 0); return rc; } static int vfslogShmLock(sqlite3_file *pFile, int ofst, int n, int flags){ int rc; sqlite3_uint64 t; VfslogFile *p = (VfslogFile *)pFile; t = vfslog_time(); rc = p->pReal->pMethods->xShmLock(p->pReal, ofst, n, flags); t = vfslog_time() - t; |
︙ | ︙ | |||
499 500 501 502 503 504 505 506 507 508 509 510 511 512 | sqlite3_uint64 t; VfslogFile *p = (VfslogFile *)pFile; t = vfslog_time(); rc = p->pReal->pMethods->xShmClose(p->pReal, deleteFlag); t = vfslog_time() - t; vfslog_call(p->pVfslog, OS_SHMCLOSE, p->iFileId, t, rc, 0, 0); return rc; } /* ** Open an vfslog file handle. */ static int vfslogOpen( | > > > > > > > > > > > > > > > > | 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 | sqlite3_uint64 t; VfslogFile *p = (VfslogFile *)pFile; t = vfslog_time(); rc = p->pReal->pMethods->xShmClose(p->pReal, deleteFlag); t = vfslog_time() - t; vfslog_call(p->pVfslog, OS_SHMCLOSE, p->iFileId, t, rc, 0, 0); return rc; } static int vfslogShmMap( sqlite3_file *pFile, int iRegion, int szRegion, int isWrite, volatile void **pp ){ int rc; sqlite3_uint64 t; VfslogFile *p = (VfslogFile *)pFile; t = vfslog_time(); rc = p->pReal->pMethods->xShmMap(p->pReal, iRegion, szRegion, isWrite, pp); t = vfslog_time() - t; vfslog_call(p->pVfslog, OS_SHMMAP, p->iFileId, t, rc, 0, 0); return rc; } /* ** Open an vfslog file handle. */ static int vfslogOpen( |
︙ | ︙ | |||
822 823 824 825 826 827 828 | case OS_FULLPATHNAME: zEvent = "xFullPathname"; break; case OS_RANDOMNESS: zEvent = "xRandomness"; break; case OS_SLEEP: zEvent = "xSleep"; break; case OS_CURRENTTIME: zEvent = "xCurrentTime"; break; case OS_SHMCLOSE: zEvent = "xShmClose"; break; case OS_SHMOPEN: zEvent = "xShmOpen"; break; | < < < > | 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 | case OS_FULLPATHNAME: zEvent = "xFullPathname"; break; case OS_RANDOMNESS: zEvent = "xRandomness"; break; case OS_SLEEP: zEvent = "xSleep"; break; case OS_CURRENTTIME: zEvent = "xCurrentTime"; break; case OS_SHMCLOSE: zEvent = "xShmClose"; break; case OS_SHMOPEN: zEvent = "xShmOpen"; break; case OS_SHMLOCK: zEvent = "xShmLock"; break; case OS_SHMBARRIER: zEvent = "xShmBarrier"; break; case OS_SHMMAP: zEvent = "xShmMap"; break; case OS_ANNOTATE: zEvent = "annotation"; break; } return zEvent; } |
︙ | ︙ |
Changes to src/test_vfs.c.
︙ | ︙ | |||
65 66 67 68 69 70 71 | ** If a bit is clear in Testvfs.mask, then calls made by SQLite to the ** corresponding VFS method is ignored for purposes of: ** ** + Simulating IO errors, and ** + Invoking the Tcl callback script. */ #define TESTVFS_SHMOPEN_MASK 0x00000001 | < < < > | | | > > > | | | 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 | ** If a bit is clear in Testvfs.mask, then calls made by SQLite to the ** corresponding VFS method is ignored for purposes of: ** ** + Simulating IO errors, and ** + Invoking the Tcl callback script. */ #define TESTVFS_SHMOPEN_MASK 0x00000001 #define TESTVFS_SHMLOCK_MASK 0x00000010 #define TESTVFS_SHMBARRIER_MASK 0x00000020 #define TESTVFS_SHMCLOSE_MASK 0x00000040 #define TESTVFS_SHMPAGE_MASK 0x00000080 #define TESTVFS_OPEN_MASK 0x00000100 #define TESTVFS_SYNC_MASK 0x00000200 #define TESTVFS_ALL_MASK 0x000003FF #define TESTVFS_MAX_PAGES 256 /* ** A shared-memory buffer. There is one of these objects for each shared ** memory region opened by clients. If two clients open the same file, ** there are two TestvfsFile structures but only one TestvfsBuffer structure. */ struct TestvfsBuffer { char *zFile; /* Associated file name */ int pgsz; /* Page size */ u8 *aPage[TESTVFS_MAX_PAGES]; /* Array of ckalloc'd pages */ TestvfsFile *pFile; /* List of open handles */ TestvfsBuffer *pNext; /* Next in linked list of all buffers */ }; #define PARENTVFS(x) (((Testvfs *)((x)->pAppData))->pParent) |
︙ | ︙ | |||
129 130 131 132 133 134 135 | static void tvfsDlClose(sqlite3_vfs*, void*); #endif /* SQLITE_OMIT_LOAD_EXTENSION */ static int tvfsRandomness(sqlite3_vfs*, int nByte, char *zOut); static int tvfsSleep(sqlite3_vfs*, int microseconds); static int tvfsCurrentTime(sqlite3_vfs*, double*); static int tvfsShmOpen(sqlite3_file*); | < < < > < < < | > | 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 | static void tvfsDlClose(sqlite3_vfs*, void*); #endif /* SQLITE_OMIT_LOAD_EXTENSION */ static int tvfsRandomness(sqlite3_vfs*, int nByte, char *zOut); static int tvfsSleep(sqlite3_vfs*, int microseconds); static int tvfsCurrentTime(sqlite3_vfs*, double*); static int tvfsShmOpen(sqlite3_file*); static int tvfsShmLock(sqlite3_file*, int , int, int); static void tvfsShmBarrier(sqlite3_file*); static int tvfsShmClose(sqlite3_file*, int); static int tvfsShmPage(sqlite3_file*,int,int,int, void volatile **); static sqlite3_io_methods tvfs_io_methods = { 2, /* iVersion */ tvfsClose, /* xClose */ tvfsRead, /* xRead */ tvfsWrite, /* xWrite */ tvfsTruncate, /* xTruncate */ tvfsSync, /* xSync */ tvfsFileSize, /* xFileSize */ tvfsLock, /* xLock */ tvfsUnlock, /* xUnlock */ tvfsCheckReservedLock, /* xCheckReservedLock */ tvfsFileControl, /* xFileControl */ tvfsSectorSize, /* xSectorSize */ tvfsDeviceCharacteristics, /* xDeviceCharacteristics */ tvfsShmOpen, /* xShmOpen */ tvfsShmLock, /* xShmLock */ tvfsShmBarrier, /* xShmBarrier */ tvfsShmClose, /* xShmClose */ tvfsShmPage /* xShmPage */ }; static int tvfsResultCode(Testvfs *p, int *pRc){ struct errcode { int eCode; const char *zCode; } aCode[] = { |
︙ | ︙ | |||
439 440 441 442 443 444 445 | rc = sqlite3OsOpen(PARENTVFS(pVfs), zName, pFd->pReal, flags, pOutFlags); if( pFd->pReal->pMethods ){ sqlite3_io_methods *pMethods; pMethods = (sqlite3_io_methods *)ckalloc(sizeof(sqlite3_io_methods)); memcpy(pMethods, &tvfs_io_methods, sizeof(sqlite3_io_methods)); if( ((Testvfs *)pVfs->pAppData)->isNoshm ){ pMethods->xShmOpen = 0; | < < < > | 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 | rc = sqlite3OsOpen(PARENTVFS(pVfs), zName, pFd->pReal, flags, pOutFlags); if( pFd->pReal->pMethods ){ sqlite3_io_methods *pMethods; pMethods = (sqlite3_io_methods *)ckalloc(sizeof(sqlite3_io_methods)); memcpy(pMethods, &tvfs_io_methods, sizeof(sqlite3_io_methods)); if( ((Testvfs *)pVfs->pAppData)->isNoshm ){ pMethods->xShmOpen = 0; pMethods->xShmClose = 0; pMethods->xShmLock = 0; pMethods->xShmBarrier = 0; pMethods->xShmMap = 0; } pFile->pMethods = pMethods; } return rc; } |
︙ | ︙ | |||
543 544 545 546 547 548 549 | /* ** Return the current time as a Julian Day number in *pTimeOut. */ static int tvfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ return PARENTVFS(pVfs)->xCurrentTime(PARENTVFS(pVfs), pTimeOut); } | < < < < < < < < < < | 538 539 540 541 542 543 544 545 546 547 548 549 550 551 | /* ** Return the current time as a Julian Day number in *pTimeOut. */ static int tvfsCurrentTime(sqlite3_vfs *pVfs, double *pTimeOut){ return PARENTVFS(pVfs)->xCurrentTime(PARENTVFS(pVfs), pTimeOut); } static int tvfsInjectIoerr(Testvfs *p){ int ret = 0; if( p->ioerr ){ p->iIoerrCnt--; if( p->iIoerrCnt==0 || (p->iIoerrCnt<0 && p->ioerr==2) ){ ret = 1; p->nIoerrFail++; |
︙ | ︙ | |||
615 616 617 618 619 620 621 | /* Connect the TestvfsBuffer to the new TestvfsShm handle and return. */ pFd->pNext = pBuffer->pFile; pBuffer->pFile = pFd; pFd->pShm = pBuffer; return SQLITE_OK; } | | | < < | < < < | < < < | < < < | < < | < | < | | | | > | | > > > > > | | < > | | | < | | < < < < < < < < | | < < | 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 | /* Connect the TestvfsBuffer to the new TestvfsShm handle and return. */ pFd->pNext = pBuffer->pFile; pBuffer->pFile = pFd; pFd->pShm = pBuffer; return SQLITE_OK; } static void tvfsAllocPage(TestvfsBuffer *p, int iPage, int pgsz){ assert( iPage<TESTVFS_MAX_PAGES ); if( p->aPage[iPage]==0 ){ p->aPage[iPage] = (u8 *)ckalloc(pgsz); memset(p->aPage[iPage], 0, pgsz); p->pgsz = pgsz; } } static int tvfsShmPage( sqlite3_file *pFile, /* Handle open on database file */ int iPage, /* Page to retrieve */ int pgsz, /* Size of pages */ int isWrite, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ int rc = SQLITE_OK; TestvfsFile *pFd = (TestvfsFile *)pFile; Testvfs *p = (Testvfs *)(pFd->pVfs->pAppData); if( p->pScript && p->mask&TESTVFS_SHMPAGE_MASK ){ Tcl_Obj *pArg = Tcl_NewObj(); Tcl_IncrRefCount(pArg); Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(iPage)); Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(pgsz)); Tcl_ListObjAppendElement(p->interp, pArg, Tcl_NewIntObj(isWrite)); tvfsExecTcl(p, "xShmPage", Tcl_NewStringObj(pFd->pShm->zFile, -1), pFd->pShmId, pArg ); tvfsResultCode(p, &rc); Tcl_DecrRefCount(pArg); } if( rc==SQLITE_OK && p->mask&TESTVFS_SHMPAGE_MASK && tvfsInjectIoerr(p) ){ rc = SQLITE_IOERR; } if( rc==SQLITE_OK && isWrite && !pFd->pShm->aPage[iPage] ){ tvfsAllocPage(pFd->pShm, iPage, pgsz); } *pp = (void volatile *)pFd->pShm->aPage[iPage]; return rc; } static int tvfsShmLock( sqlite3_file *pFile, int ofst, int n, int flags ){ |
︙ | ︙ | |||
778 779 780 781 782 783 784 785 786 787 | } for(ppFd=&pBuffer->pFile; *ppFd!=pFd; ppFd=&((*ppFd)->pNext)); assert( (*ppFd)==pFd ); *ppFd = pFd->pNext; if( pBuffer->pFile==0 ){ TestvfsBuffer **pp; for(pp=&p->pBuffer; *pp!=pBuffer; pp=&((*pp)->pNext)); *pp = (*pp)->pNext; | > > | > | 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 | } for(ppFd=&pBuffer->pFile; *ppFd!=pFd; ppFd=&((*ppFd)->pNext)); assert( (*ppFd)==pFd ); *ppFd = pFd->pNext; if( pBuffer->pFile==0 ){ int i; TestvfsBuffer **pp; for(pp=&p->pBuffer; *pp!=pBuffer; pp=&((*pp)->pNext)); *pp = (*pp)->pNext; for(i=0; pBuffer->aPage[i]; i++){ ckfree((char *)pBuffer->aPage[i]); } ckfree((char *)pBuffer); } pFd->pShm = 0; return rc; } |
︙ | ︙ | |||
817 818 819 820 821 822 823 824 825 826 827 828 829 | if( Tcl_GetIndexFromObj(interp, objv[1], CMD_strs, "subcommand", 0, &i) ){ return TCL_ERROR; } Tcl_ResetResult(interp); switch( (enum DB_enum)i ){ case CMD_SHM: { TestvfsBuffer *pBuffer; char *zName; if( objc!=3 && objc!=4 ){ Tcl_WrongNumArgs(interp, 2, objv, "FILE ?VALUE?"); return TCL_ERROR; } | > > > > | > > > | | > > > > | > | | > > > > > > | < < < > | 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | if( Tcl_GetIndexFromObj(interp, objv[1], CMD_strs, "subcommand", 0, &i) ){ return TCL_ERROR; } Tcl_ResetResult(interp); switch( (enum DB_enum)i ){ case CMD_SHM: { Tcl_Obj *pObj; int i; TestvfsBuffer *pBuffer; char *zName; if( objc!=3 && objc!=4 ){ Tcl_WrongNumArgs(interp, 2, objv, "FILE ?VALUE?"); return TCL_ERROR; } zName = ckalloc(p->pParent->mxPathname); p->pParent->xFullPathname( p->pParent, Tcl_GetString(objv[2]), p->pParent->mxPathname, zName ); for(pBuffer=p->pBuffer; pBuffer; pBuffer=pBuffer->pNext){ if( 0==strcmp(pBuffer->zFile, zName) ) break; } ckfree(zName); if( !pBuffer ){ Tcl_AppendResult(interp, "no such file: ", Tcl_GetString(objv[2]), 0); return TCL_ERROR; } if( objc==4 ){ int n; u8 *a = Tcl_GetByteArrayFromObj(objv[3], &n); assert( pBuffer->pgsz==0 || pBuffer->pgsz==32768 ); for(i=0; i*32768<n; i++){ int nByte = 32768; tvfsAllocPage(pBuffer, i, 32768); if( n-i*32768<32768 ){ nByte = n; } memcpy(pBuffer->aPage[i], &a[i*32768], nByte); } } pObj = Tcl_NewObj(); for(i=0; pBuffer->aPage[i]; i++){ Tcl_AppendObjToObj(pObj, Tcl_NewByteArrayObj(pBuffer->aPage[i], 32768)); } Tcl_SetObjResult(interp, pObj); break; } case CMD_FILTER: { static struct VfsMethod { char *zName; int mask; } vfsmethod [] = { { "xShmOpen", TESTVFS_SHMOPEN_MASK }, { "xShmLock", TESTVFS_SHMLOCK_MASK }, { "xShmBarrier", TESTVFS_SHMBARRIER_MASK }, { "xShmClose", TESTVFS_SHMCLOSE_MASK }, { "xShmPage", TESTVFS_SHMPAGE_MASK }, { "xSync", TESTVFS_SYNC_MASK }, { "xOpen", TESTVFS_OPEN_MASK }, }; Tcl_Obj **apElem = 0; int nElem = 0; int i; int mask = 0; |
︙ | ︙ | |||
895 896 897 898 899 900 901 902 903 904 905 906 907 908 | if( objc==3 ){ int nByte; if( p->pScript ){ Tcl_DecrRefCount(p->pScript); ckfree((char *)p->apScript); p->apScript = 0; p->nScript = 0; } Tcl_GetStringFromObj(objv[2], &nByte); if( nByte>0 ){ p->pScript = Tcl_DuplicateObj(objv[2]); Tcl_IncrRefCount(p->pScript); } }else if( objc!=2 ){ | > | 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 | if( objc==3 ){ int nByte; if( p->pScript ){ Tcl_DecrRefCount(p->pScript); ckfree((char *)p->apScript); p->apScript = 0; p->nScript = 0; p->pScript = 0; } Tcl_GetStringFromObj(objv[2], &nByte); if( nByte>0 ){ p->pScript = Tcl_DuplicateObj(objv[2]); Tcl_IncrRefCount(p->pScript); } }else if( objc!=2 ){ |
︙ | ︙ | |||
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 | } zVfs = Tcl_GetString(objv[1]); nByte = sizeof(Testvfs) + strlen(zVfs)+1; p = (Testvfs *)ckalloc(nByte); memset(p, 0, nByte); p->pParent = sqlite3_vfs_find(0); p->interp = interp; p->zName = (char *)&p[1]; memcpy(p->zName, zVfs, strlen(zVfs)+1); pVfs = (sqlite3_vfs *)ckalloc(sizeof(sqlite3_vfs)); memcpy(pVfs, &tvfs_vfs, sizeof(sqlite3_vfs)); pVfs->pAppData = (void *)p; pVfs->zName = p->zName; pVfs->mxPathname = p->pParent->mxPathname; pVfs->szOsFile += p->pParent->szOsFile; p->pVfs = pVfs; p->isNoshm = isNoshm; p->mask = TESTVFS_ALL_MASK; | > > > > > > > < | 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 | } zVfs = Tcl_GetString(objv[1]); nByte = sizeof(Testvfs) + strlen(zVfs)+1; p = (Testvfs *)ckalloc(nByte); memset(p, 0, nByte); /* Create the new object command before querying SQLite for a default VFS ** to use for 'real' IO operations. This is because creating the new VFS ** may delete an existing [testvfs] VFS of the same name. If such a VFS ** is currently the default, the new [testvfs] may end up calling the ** methods of a deleted object. */ Tcl_CreateObjCommand(interp, zVfs, testvfs_obj_cmd, p, testvfs_obj_del); p->pParent = sqlite3_vfs_find(0); p->interp = interp; p->zName = (char *)&p[1]; memcpy(p->zName, zVfs, strlen(zVfs)+1); pVfs = (sqlite3_vfs *)ckalloc(sizeof(sqlite3_vfs)); memcpy(pVfs, &tvfs_vfs, sizeof(sqlite3_vfs)); pVfs->pAppData = (void *)p; pVfs->zName = p->zName; pVfs->mxPathname = p->pParent->mxPathname; pVfs->szOsFile += p->pParent->szOsFile; p->pVfs = pVfs; p->isNoshm = isNoshm; p->mask = TESTVFS_ALL_MASK; sqlite3_vfs_register(pVfs, isDefault); return TCL_OK; bad_args: Tcl_WrongNumArgs(interp, 1, objv, "VFSNAME ?-noshm BOOL? ?-default BOOL?"); return TCL_ERROR; |
︙ | ︙ |
Changes to src/wal.c.
︙ | ︙ | |||
137 138 139 140 141 142 143 | ** a page number P, return the index of the last frame for page P in the WAL, ** or return NULL if there are no frames for page P in the WAL. ** ** The wal-index consists of a header region, followed by an one or ** more index blocks. ** ** The wal-index header contains the total number of frames within the WAL | | > > > > > > > > | | | | | | > | > > > | > | | < | | 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | ** a page number P, return the index of the last frame for page P in the WAL, ** or return NULL if there are no frames for page P in the WAL. ** ** The wal-index consists of a header region, followed by an one or ** more index blocks. ** ** The wal-index header contains the total number of frames within the WAL ** in the the mxFrame field. ** ** Each index block except for the first contains information on ** HASHTABLE_NPAGE frames. The first index block contains information on ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and ** HASHTABLE_NPAGE are selected so that together the wal-index header and ** first index block are the same size as all other index blocks in the ** wal-index. ** ** Each index block contains two sections, a page-mapping that contains the ** database page number associated with each wal frame, and a hash-table ** that allows users to query an index block for a specific page number. ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE ** for the first index block) 32-bit page numbers. The first entry in the ** first index-block contains the database page number corresponding to the ** first frame in the WAL file. The first entry in the second index block ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in ** the log, and so on. ** ** The last index block in a wal-index usually contains less than the full ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, ** depending on the contents of the WAL file. This does not change the ** allocated size of the page-mapping array - the page-mapping array merely ** contains unused entries. ** ** Even without using the hash table, the last frame for page P ** can be found by scanning the page-mapping sections of each index block ** starting with the last index block and moving toward the first, and ** within each index block, starting at the end and moving toward the ** beginning. The first entry that equals P corresponds to the frame ** holding the content for that page. ** ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the |
︙ | ︙ | |||
366 367 368 369 370 371 372 | ** following object. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ | | | | > < < < < | | | < | | | > > | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | ** following object. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ int nWiData; /* Size of array apWiData */ volatile u32 **apWiData; /* Pointer to wal-index content in memory */ u16 szPage; /* Database page size */ i16 readLock; /* Which read lock is being held. -1 for none */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 isWIndexOpen; /* True if ShmOpen() called on pDbFd */ u8 writeLock; /* True if in a write transaction */ u8 ckptLock; /* True if holding a checkpoint lock */ WalIndexHdr hdr; /* Wal-index header for current transaction */ char *zWalName; /* Name of WAL file */ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ #ifdef SQLITE_DEBUG u8 lockError; /* True if a locking error has occurred */ #endif }; /* ** Each page of the wal-index mapping contains a hash-table made up of ** an array of HASHTABLE_NSLOT elements of the following type. */ typedef u16 ht_slot; /* ** This structure is used to implement an iterator that loops through ** all frames in the WAL in database page order. Where two or more frames ** correspond to the same database page, the iterator visits only the ** frame most recently written to the WAL (in other words, the frame with ** the largest index). ** ** The internals of this structure are only accessed by: ** ** walIteratorInit() - Create a new iterator, ** walIteratorNext() - Step an iterator, ** walIteratorFree() - Free an iterator. ** ** This functionality is used by the checkpoint code (see walCheckpoint()). */ struct WalIterator { int iPrior; /* Last result returned from the iterator */ int nSegment; /* Size of the aSegment[] array */ struct WalSegment { int iNext; /* Next slot in aIndex[] not yet returned */ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ u32 *aPgno; /* Array of page numbers. */ int nEntry; /* Max size of aPgno[] and aIndex[] arrays */ int iZero; /* Frame number associated with aPgno[0] */ } aSegment[1]; /* One for every 32KB page in the WAL */ }; /* ** Define the parameters of the hash tables in the wal-index file. There ** is a hash-table following every HASHTABLE_NPAGE page numbers in the ** wal-index. ** ** Changing any of these constants will alter the wal-index format and ** create incompatibilities. */ #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ #define HASHTABLE_HASH_1 383 /* Should be prime */ #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ /* ** The block of page numbers associated with the first hash-table in a ** wal-index is smaller than usual. This is so that there is a complete ** hash-table on each aligned 32KB page of the wal-index. */ #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ #define WALINDEX_PGSZ ( \ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ ) /* ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are ** numbered from zero. ** ** If this call is successful, *ppPage is set to point to the wal-index ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, ** then an SQLite error code is returned and *ppPage is set to 0. */ static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ int rc = SQLITE_OK; /* Enlarge the pWal->apWiData[] array if required */ if( pWal->nWiData<=iPage ){ int nByte = sizeof(u32 *)*(iPage+1); volatile u32 **apNew; apNew = (volatile u32 **)sqlite3_realloc(pWal->apWiData, nByte); if( !apNew ){ *ppPage = 0; return SQLITE_NOMEM; } memset(&apNew[pWal->nWiData], 0, sizeof(u32 *)*(iPage+1-pWal->nWiData)); pWal->apWiData = apNew; pWal->nWiData = iPage+1; } /* Request a pointer to the required page from the VFS */ if( pWal->apWiData[iPage]==0 ){ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] ); } *ppPage = pWal->apWiData[iPage]; assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); return rc; } /* ** Return a pointer to the WalCkptInfo structure in the wal-index. */ static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); } /* ** Return a pointer to the WalIndexHdr structure in the wal-index. */ static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ assert( pWal->nWiData>0 && pWal->apWiData[0] ); return (volatile WalIndexHdr*)pWal->apWiData[0]; } /* ** The argument to this macro must be of type u32. On a little-endian ** architecture, it returns the u32 value that results from interpreting ** the 4 bytes as a big-endian value. On a big-endian architecture, it ** returns the value that would be produced by intepreting the 4 bytes ** of the input value as a little-endian integer. |
︙ | ︙ | |||
482 483 484 485 486 487 488 | /* ** Write the header information in pWal->hdr into the wal-index. ** ** The checksum on pWal->hdr is updated before it is written. */ static void walIndexWriteHdr(Wal *pWal){ | | > | < < | | | 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 | /* ** Write the header information in pWal->hdr into the wal-index. ** ** The checksum on pWal->hdr is updated before it is written. */ static void walIndexWriteHdr(Wal *pWal){ volatile WalIndexHdr *aHdr = walIndexHdr(pWal); const int nCksum = offsetof(WalIndexHdr, aCksum); assert( pWal->writeLock ); pWal->hdr.isInit = 1; walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr)); sqlite3OsShmBarrier(pWal->pDbFd); memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr)); } /* ** This function encodes a single frame header and writes it to a buffer ** supplied by the caller. A frame-header is made up of a series of ** 4-byte big-endian integers, as follows: ** |
︙ | ︙ | |||
582 583 584 585 586 587 588 | ** and the new database size. */ *piPage = pgno; *pnTruncate = sqlite3Get4byte(&aFrame[4]); return 1; } | < < < < < < < < < < < < < | 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | ** and the new database size. */ *piPage = pgno; *pnTruncate = sqlite3Get4byte(&aFrame[4]); return 1; } #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) /* ** Names of locks. This routine is used to provide debugging output and is not ** a part of an ordinary build. */ static const char *walLockName(int lockIdx){ |
︙ | ︙ | |||
659 660 661 662 663 664 665 | if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, walLockName(lockIdx), n)); } | < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | > | | | < | | | > > > > > > > | | | > > > > > > | | | | > | > > | > > > > > | > > > > > > > > > > | < > | < | < > > > | | < < < > | | | | > > > | | < > > > > > > > > | > | | | | | | | | | | | | | < < | | | | < < < < | > | < < | < < < | | < > > > > > > | < < < | | | | | | > | | > > | 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 | if( pWal->exclusiveMode ) return; (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, walLockName(lockIdx), n)); } /* ** Compute a hash on a page number. The resulting hash value must land ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances ** the hash to the next value in the event of a collision. */ static int walHash(u32 iPage){ assert( iPage>0 ); assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); } static int walNextHash(int iPriorHash){ return (iPriorHash+1)&(HASHTABLE_NSLOT-1); } /* ** Return pointers to the hash table and page number array stored on ** page iHash of the wal-index. The wal-index is broken into 32KB pages ** numbered starting from 0. ** ** Set output variable *paHash to point to the start of the hash table ** in the wal-index file. Set *piZero to one less than the frame ** number of the first frame indexed by this hash table. If a ** slot in the hash table is set to N, it refers to frame number ** (*piZero+N) in the log. ** ** Finally, set *paPgno so that *paPgno[1] is the page number of the ** first frame indexed by the hash table, frame (*piZero+1). */ static int walHashGet( Wal *pWal, /* WAL handle */ int iHash, /* Find the iHash'th table */ volatile ht_slot **paHash, /* OUT: Pointer to hash index */ volatile u32 **paPgno, /* OUT: Pointer to page number array */ u32 *piZero /* OUT: Frame associated with *paPgno[0] */ ){ int rc; /* Return code */ volatile u32 *aPgno; rc = walIndexPage(pWal, iHash, &aPgno); assert( rc==SQLITE_OK || iHash>0 ); if( rc==SQLITE_OK ){ u32 iZero; volatile ht_slot *aHash; aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; if( iHash==0 ){ aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; iZero = 0; }else{ iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; } *paPgno = &aPgno[-1]; *paHash = aHash; *piZero = iZero; } return rc; } /* ** Return the number of the wal-index page that contains the hash-table ** and page-number array that contain entries corresponding to WAL frame ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages ** are numbered starting from 0. */ static int walFramePage(u32 iFrame){ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) ); return iHash; } /* ** Return the page number associated with frame iFrame in this WAL. */ static u32 walFramePgno(Wal *pWal, u32 iFrame){ int iHash = walFramePage(iFrame); if( iHash==0 ){ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; } return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; } /* ** Remove entries from the hash table that point to WAL slots greater ** than pWal->hdr.mxFrame. ** ** This function is called whenever pWal->hdr.mxFrame is decreased due ** to a rollback or savepoint. ** ** At most only the hash table containing pWal->hdr.mxFrame needs to be ** updated. Any later hash tables will be automatically cleared when ** pWal->hdr.mxFrame advances to the point where those hash tables are ** actually needed. */ static void walCleanupHash(Wal *pWal){ volatile ht_slot *aHash; /* Pointer to hash table to clear */ volatile u32 *aPgno; /* Page number array for hash table */ u32 iZero; /* frame == (aHash[x]+iZero) */ int iLimit = 0; /* Zero values greater than this */ int nByte; /* Number of bytes to zero in aPgno[] */ int i; /* Used to iterate through aHash[] */ assert( pWal->writeLock ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE-1 ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE ); testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE+1 ); if( pWal->hdr.mxFrame==0 ) return; /* Obtain pointers to the hash-table and page-number array containing ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed ** that the page said hash-table and array reside on is already mapped. */ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); /* Zero all hash-table entries that correspond to frame numbers greater ** than pWal->hdr.mxFrame. */ iLimit = pWal->hdr.mxFrame - iZero; assert( iLimit>0 ); for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i]>iLimit ){ aHash[i] = 0; } } /* Zero the entries in the aPgno array that correspond to frames with ** frame numbers greater than pWal->hdr.mxFrame. */ nByte = ((char *)aHash - (char *)&aPgno[iLimit+1]); memset((void *)&aPgno[iLimit+1], 0, nByte); #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* Verify that the every entry in the mapping region is still reachable ** via the hash table even after the cleanup. */ if( iLimit ){ int i; /* Loop counter */ int iKey; /* Hash key */ for(i=1; i<=iLimit; i++){ for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ if( aHash[iKey]==i ) break; } assert( aHash[iKey]==i ); } } #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ } /* ** Set an entry in the wal-index that will map database page number ** pPage into WAL frame iFrame. */ static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ int rc; /* Return code */ u32 iZero; /* One less than frame number of aPgno[1] */ volatile u32 *aPgno; /* Page number array */ volatile ht_slot *aHash; /* Hash table */ rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); /* Assuming the wal-index file was successfully mapped, populate the ** page number array and hash table entry. */ if( rc==SQLITE_OK ){ int iKey; /* Hash table key */ int idx; /* Value to write to hash-table slot */ TESTONLY( int nCollide = 0; /* Number of hash collisions */ ) idx = iFrame - iZero; assert( idx <= HASHTABLE_NSLOT/2 + 1 ); /* If this is the first entry to be added to this hash-table, zero the ** entire hash table and aPgno[] array before proceding. */ if( idx==1 ){ int nByte = (u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]; memset((void*)&aPgno[1], 0, nByte); } /* If the entry in aPgno[] is already set, then the previous writer ** must have exited unexpectedly in the middle of a transaction (after ** writing one or more dirty pages to the WAL to free up memory). ** Remove the remnants of that writers uncommitted transaction from ** the hash-table before writing any new entries. */ if( aPgno[idx] ){ walCleanupHash(pWal); assert( !aPgno[idx] ); } /* Write the aPgno[] array entry and the hash-table slot. */ for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ assert( nCollide++ < idx ); } aPgno[idx] = iPage; aHash[iKey] = idx; #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* Verify that the number of entries in the hash table exactly equals ** the number of entries in the mapping region. */ { |
︙ | ︙ | |||
940 941 942 943 944 945 946 | ** via the hash table. This turns out to be a really, really expensive ** thing to check, so only do this occasionally - not on every ** iteration. */ if( (idx&0x3ff)==0 ){ int i; /* Loop counter */ for(i=1; i<=idx; i++){ | | | 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 | ** via the hash table. This turns out to be a really, really expensive ** thing to check, so only do this occasionally - not on every ** iteration. */ if( (idx&0x3ff)==0 ){ int i; /* Loop counter */ for(i=1; i<=idx; i++){ for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ if( aHash[iKey]==i ) break; } assert( aHash[iKey]==i ); } } #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ } |
︙ | ︙ | |||
1072 1073 1074 1075 1076 1077 1078 | } } sqlite3_free(aFrame); } finished: | < < < | 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 | } } sqlite3_free(aFrame); } finished: if( rc==SQLITE_OK ){ volatile WalCkptInfo *pInfo; int i; pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; walIndexWriteHdr(pWal); |
︙ | ︙ | |||
1160 1161 1162 1163 1164 1165 1166 | if( !pRet ){ return SQLITE_NOMEM; } pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; | < | 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 | if( !pRet ){ return SQLITE_NOMEM; } pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; pRet->readLock = -1; sqlite3_randomness(8, &pRet->hdr.aSalt); pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd; sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName); rc = sqlite3OsShmOpen(pDbFd); /* Open file handle on the write-ahead log file. */ |
︙ | ︙ | |||
1203 1204 1205 1206 1207 1208 1209 | WalIterator *p, /* Iterator */ u32 *piPage, /* OUT: The page number of the next page */ u32 *piFrame /* OUT: Wal frame index of next page */ ){ u32 iMin; /* Result pgno must be greater than iMin */ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ int i; /* For looping through segments */ | < | | < | | | | < < > > | | | | 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 | WalIterator *p, /* Iterator */ u32 *piPage, /* OUT: The page number of the next page */ u32 *piFrame /* OUT: Wal frame index of next page */ ){ u32 iMin; /* Result pgno must be greater than iMin */ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ int i; /* For looping through segments */ iMin = p->iPrior; assert( iMin<0xffffffff ); for(i=p->nSegment-1; i>=0; i--){ struct WalSegment *pSegment = &p->aSegment[i]; while( pSegment->iNext<pSegment->nEntry ){ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; if( iPg>iMin ){ if( iPg<iRet ){ iRet = iPg; *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; } break; } pSegment->iNext++; } } *piPage = p->iPrior = iRet; return (iRet==0xFFFFFFFF); } static void walMergesort( u32 *aContent, /* Pages in wal */ ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ ht_slot *aList, /* IN/OUT: List to sort */ int *pnList /* IN/OUT: Number of elements in aList[] */ ){ int nList = *pnList; if( nList>1 ){ int nLeft = nList / 2; /* Elements in left list */ int nRight = nList - nLeft; /* Elements in right list */ int iLeft = 0; /* Current index in aLeft */ int iRight = 0; /* Current index in aright */ int iOut = 0; /* Current index in output buffer */ ht_slot *aLeft = aList; /* Left list */ ht_slot *aRight = aList+nLeft;/* Right list */ /* TODO: Change to non-recursive version. */ walMergesort(aContent, aBuffer, aLeft, &nLeft); walMergesort(aContent, aBuffer, aRight, &nRight); while( iRight<nRight || iLeft<nLeft ){ ht_slot logpage; Pgno dbpage; if( (iLeft<nLeft) && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) ){ logpage = aLeft[iLeft++]; }else{ |
︙ | ︙ | |||
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 | int i; for(i=1; i<*pnList; i++){ assert( aContent[aList[i]] > aContent[aList[i-1]] ); } } #endif } /* ** Map the wal-index into memory owned by this thread, if it is not ** mapped already. Then construct a WalInterator object that can be ** used to loop over all pages in the WAL in ascending order. ** ** On success, make *pp point to the newly allocated WalInterator object ** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error ** code. ** ** The calling routine should invoke walIteratorFree() to destroy the ** WalIterator object when it has finished with it. The caller must ** also unmap the wal-index. But the wal-index must not be unmapped ** prior to the WalIterator object being destroyed. */ static int walIteratorInit(Wal *pWal, WalIterator **pp){ | > > > > > > > < | | | | | < | < | < < | | < | < | > > | < < < | | > > | > > | > > > > > > > > | | | > > | > | < > | < < < < < < < | 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 | int i; for(i=1; i<*pnList; i++){ assert( aContent[aList[i]] > aContent[aList[i-1]] ); } } #endif } /* ** Free an iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Map the wal-index into memory owned by this thread, if it is not ** mapped already. Then construct a WalInterator object that can be ** used to loop over all pages in the WAL in ascending order. ** ** On success, make *pp point to the newly allocated WalInterator object ** return SQLITE_OK. Otherwise, leave *pp unchanged and return an error ** code. ** ** The calling routine should invoke walIteratorFree() to destroy the ** WalIterator object when it has finished with it. The caller must ** also unmap the wal-index. But the wal-index must not be unmapped ** prior to the WalIterator object being destroyed. */ static int walIteratorInit(Wal *pWal, WalIterator **pp){ WalIterator *p; /* Return value */ int nSegment; /* Number of segments to merge */ u32 iLast; /* Last frame in log */ int nByte; /* Number of bytes to allocate */ int i; /* Iterator variable */ ht_slot *aTmp; /* Temp space used by merge-sort */ ht_slot *aSpace; /* Space at the end of the allocation */ /* This routine only runs while holding SQLITE_SHM_CHECKPOINT. No other ** thread is able to write to shared memory while this routine is ** running (or, indeed, while the WalIterator object exists). Hence, ** we can cast off the volatile qualification from shared memory */ assert( pWal->ckptLock ); iLast = pWal->hdr.mxFrame; /* Allocate space for the WalIterator object */ nSegment = walFramePage(iLast) + 1; nByte = sizeof(WalIterator) + nSegment*(sizeof(struct WalSegment)) + (nSegment+1)*(HASHTABLE_NPAGE * sizeof(ht_slot)); p = (WalIterator *)sqlite3_malloc(nByte); if( !p ){ return SQLITE_NOMEM; } memset(p, 0, nByte); /* Allocate space for the WalIterator object */ p->nSegment = nSegment; aSpace = (ht_slot *)&p->aSegment[nSegment]; aTmp = &aSpace[HASHTABLE_NPAGE*nSegment]; for(i=0; i<nSegment; i++){ volatile ht_slot *aHash; int j; u32 iZero; int nEntry; volatile u32 *aPgno; int rc; rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); if( rc!=SQLITE_OK ){ walIteratorFree(p); return rc; } aPgno++; nEntry = ((i+1)==nSegment)?iLast-iZero:(u32 *)aHash-(u32 *)aPgno; iZero++; for(j=0; j<nEntry; j++){ aSpace[j] = j; } walMergesort((u32 *)aPgno, aTmp, aSpace, &nEntry); p->aSegment[i].iZero = iZero; p->aSegment[i].nEntry = nEntry; p->aSegment[i].aIndex = aSpace; p->aSegment[i].aPgno = (u32 *)aPgno; aSpace += HASHTABLE_NPAGE; } assert( aSpace==aTmp ); /* Return the fully initialized WalIterator object */ *pp = p; return SQLITE_OK ; } /* ** Copy as much content as we can from the WAL back into the database file ** in response to an sqlite3_wal_checkpoint() request or the equivalent. ** ** The amount of information copies from WAL to database might be limited ** by active readers. This routine will never overwrite a database page ** that a concurrent reader might be using. |
︙ | ︙ | |||
1405 1406 1407 1408 1409 1410 1411 | int rc; /* Return code */ int szPage = pWal->hdr.szPage; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ int i; /* Loop counter */ | < < < | | 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 | int rc; /* Return code */ int szPage = pWal->hdr.szPage; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ u32 mxSafeFrame; /* Max frame that can be backfilled */ int i; /* Loop counter */ volatile WalCkptInfo *pInfo; /* The checkpoint status information */ /* Allocate the iterator */ rc = walIteratorInit(pWal, &pIter); if( rc!=SQLITE_OK || pWal->hdr.mxFrame==0 ){ goto walcheckpoint_out; } /*** TODO: Move this test out to the caller. Make it an assert() here ***/ if( pWal->hdr.szPage!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; goto walcheckpoint_out; } /* Compute in mxSafeFrame the index of the last frame of the WAL that is ** safe to write into the database. Frames beyond mxSafeFrame might ** overwrite database pages that are in use by active readers and thus ** cannot be backfilled from the WAL. */ mxSafeFrame = pWal->hdr.mxFrame; pInfo = walCkptInfo(pWal); for(i=1; i<WAL_NREADER; i++){ u32 y = pInfo->aReadMark[i]; if( mxSafeFrame>=y ){ assert( y<=pWal->hdr.mxFrame ); rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); if( rc==SQLITE_OK ){ pInfo->aReadMark[i] = READMARK_NOT_USED; |
︙ | ︙ | |||
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 | /* Sync the WAL to disk */ if( sync_flags ){ rc = sqlite3OsSync(pWal->pWalFd, sync_flags); } /* Iterate through the contents of the WAL, copying data to the db file. */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue; rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE ); if( rc!=SQLITE_OK ) break; rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage); if( rc!=SQLITE_OK ) break; } /* If work was actually accomplished... */ if( rc==SQLITE_OK ){ | > | | 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 | /* Sync the WAL to disk */ if( sync_flags ){ rc = sqlite3OsSync(pWal->pWalFd, sync_flags); } /* Iterate through the contents of the WAL, copying data to the db file. */ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ assert( walFramePgno(pWal, iFrame)==iDbpage ); if( iFrame<=nBackfill || iFrame>mxSafeFrame ) continue; rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE ); if( rc!=SQLITE_OK ) break; rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, (iDbpage-1)*szPage); if( rc!=SQLITE_OK ) break; } /* If work was actually accomplished... */ if( rc==SQLITE_OK ){ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)szPage)); if( rc==SQLITE_OK && sync_flags ){ rc = sqlite3OsSync(pWal->pDbFd, sync_flags); } } if( rc==SQLITE_OK ){ pInfo->nBackfill = mxSafeFrame; |
︙ | ︙ | |||
1521 1522 1523 1524 1525 1526 1527 | rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ pWal->exclusiveMode = 1; rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf); if( rc==SQLITE_OK ){ isDelete = 1; } | < > | 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 | rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ pWal->exclusiveMode = 1; rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf); if( rc==SQLITE_OK ){ isDelete = 1; } } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); if( isDelete ){ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); } WALTRACE(("WAL%p: closed\n", pWal)); sqlite3_free(pWal->apWiData); sqlite3_free(pWal); } return rc; } /* ** Try to read the wal-index header. Return 0 on success and 1 if |
︙ | ︙ | |||
1553 1554 1555 1556 1557 1558 1559 | ** pWal->hdr, then pWal->hdr is updated to the content of the new header ** and *pChanged is set to 1. ** ** If the checksum cannot be verified return non-zero. If the header ** is read successfully and the checksum verified, return zero. */ int walIndexTryHdr(Wal *pWal, int *pChanged){ | | | | < | < < < | | | | | 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 | ** pWal->hdr, then pWal->hdr is updated to the content of the new header ** and *pChanged is set to 1. ** ** If the checksum cannot be verified return non-zero. If the header ** is read successfully and the checksum verified, return zero. */ int walIndexTryHdr(Wal *pWal, int *pChanged){ u32 aCksum[2]; /* Checksum on the header content */ WalIndexHdr h1, h2; /* Two copies of the header content */ WalIndexHdr volatile *aHdr; /* Header in shared memory */ /* The first page of the wal-index must be mapped at this point. */ assert( pWal->nWiData>0 && pWal->apWiData[0] ); /* Read the header. This might happen currently with a write to the ** same area of shared memory on a different CPU in a SMP, ** meaning it is possible that an inconsistent snapshot is read ** from the file. If this happens, return non-zero. ** ** There are two copies of the header at the beginning of the wal-index. ** When reading, read [0] first then [1]. Writes are in the reverse order. ** Memory barriers are used to prevent the compiler or the hardware from ** reordering the reads and writes. */ aHdr = walIndexHdr(pWal); memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); sqlite3OsShmBarrier(pWal->pDbFd); memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ return 1; /* Dirty read */ } if( h1.isInit==0 ){ return 1; /* Malformed header - probably all zeros */ } |
︙ | ︙ | |||
1621 1622 1623 1624 1625 1626 1627 1628 1629 | ** ** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int rc; /* Return code */ int badHdr; /* True if a header read failed */ assert( pChanged ); | > > > > | | > > | > | | < | < | > < < < | < < < < | < | 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 | ** ** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int rc; /* Return code */ int badHdr; /* True if a header read failed */ volatile u32 *page0; /* Ensure that page 0 of the wal-index (the page that contains the ** wal-index header) is mapped. Return early if an error occurs here. */ assert( pChanged ); rc = walIndexPage(pWal, 0, &page0); if( rc!=SQLITE_OK ){ return rc; }; assert( page0 || pWal->writeLock==0 ); /* If the first page of the wal-index has been mapped, try to read the ** wal-index header immediately, without holding any lock. This usually ** works, but may fail if the wal-index header is corrupt or currently ** being modified by another user. */ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); /* If the first attempt failed, it might have been due to a race ** with a writer. So get a WRITE lock and try again. */ assert( badHdr==0 || pWal->writeLock==0 ); if( badHdr && SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ pWal->writeLock = 1; if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ badHdr = walIndexTryHdr(pWal, pChanged); if( badHdr ){ /* If the wal-index header is still malformed even while holding ** a WRITE lock, it can only mean that the header is corrupted and ** needs to be reconstructed. So run recovery to do exactly that. */ rc = walIndexRecover(pWal); *pChanged = 1; } } pWal->writeLock = 0; walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); } return rc; } /* ** This is the value that walTryBeginRead returns when it needs to |
︙ | ︙ | |||
1701 1702 1703 1704 1705 1706 1707 | ** to select a particular WAL_READ_LOCK() that strives to let the ** checkpoint process do as much work as possible. This routine might ** update values of the aReadMark[] array in the header, but if it does ** so it takes care to hold an exclusive lock on the corresponding ** WAL_READ_LOCK() while changing values. */ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ | < | | 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 | ** to select a particular WAL_READ_LOCK() that strives to let the ** checkpoint process do as much work as possible. This routine might ** update values of the aReadMark[] array in the header, but if it does ** so it takes care to hold an exclusive lock on the corresponding ** WAL_READ_LOCK() while changing values. */ static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ u32 mxReadMark; /* Largest aReadMark[] value */ int mxI; /* Index of largest aReadMark[] value */ int i; /* Loop counter */ int rc = SQLITE_OK; /* Return code */ assert( pWal->readLock<0 ); /* Not currently locked */ /* Take steps to avoid spinning forever if there is a protocol error. */ if( cnt>5 ){ if( cnt>100 ) return SQLITE_PROTOCOL; sqlite3OsSleep(pWal->pVfs, 1); |
︙ | ︙ | |||
1735 1736 1737 1738 1739 1740 1741 | if( rc==SQLITE_OK ){ walUnlockShared(pWal, WAL_RECOVER_LOCK); rc = WAL_RETRY; }else if( rc==SQLITE_BUSY ){ rc = SQLITE_BUSY_RECOVERY; } } | < < < < | | | 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 | if( rc==SQLITE_OK ){ walUnlockShared(pWal, WAL_RECOVER_LOCK); rc = WAL_RETRY; }else if( rc==SQLITE_BUSY ){ rc = SQLITE_BUSY_RECOVERY; } } } if( rc!=SQLITE_OK ){ return rc; } pInfo = walCkptInfo(pWal); if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ /* The WAL has been completely backfilled (or it is empty). ** and can be safely ignored. */ rc = walLockShared(pWal, WAL_READ_LOCK(0)); sqlite3OsShmBarrier(pWal->pDbFd); if( rc==SQLITE_OK ){ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ /* It is not safe to allow the reader to continue here if frames ** may have been appended to the log before READ_LOCK(0) was obtained. ** When holding READ_LOCK(0), the reader ignores the entire log file, ** which implies that the database file contains a trustworthy ** snapshoT. Since holding READ_LOCK(0) prevents a checkpoint from ** happening, this is usually correct. ** |
︙ | ︙ | |||
1846 1847 1848 1849 1850 1851 1852 | ** date before proceeding. That would not be possible without somehow ** blocking writers. It only guarantees that a dangerous checkpoint or ** log-wrap (either of which would require an exclusive lock on ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. */ sqlite3OsShmBarrier(pWal->pDbFd); if( pInfo->aReadMark[mxI]!=mxReadMark | | | 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 | ** date before proceeding. That would not be possible without somehow ** blocking writers. It only guarantees that a dangerous checkpoint or ** log-wrap (either of which would require an exclusive lock on ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. */ sqlite3OsShmBarrier(pWal->pDbFd); if( pInfo->aReadMark[mxI]!=mxReadMark || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ walUnlockShared(pWal, WAL_READ_LOCK(mxI)); return WAL_RETRY; }else{ assert( mxReadMark<=pWal->hdr.mxFrame ); pWal->readLock = mxI; } |
︙ | ︙ | |||
1879 1880 1881 1882 1883 1884 1885 | int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ do{ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); }while( rc==WAL_RETRY ); | < | 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 | int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ int rc; /* Return code */ int cnt = 0; /* Number of TryBeginRead attempts */ do{ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); }while( rc==WAL_RETRY ); return rc; } /* ** Finish with a read transaction. All this does is release the ** read-lock. */ |
︙ | ︙ | |||
1909 1910 1911 1912 1913 1914 1915 | int sqlite3WalRead( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ int *pInWal, /* OUT: True if data is read from WAL */ int nOut, /* Size of buffer pOut in bytes */ u8 *pOut /* Buffer to write page data to */ ){ | < < < < < < < | 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 | int sqlite3WalRead( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ int *pInWal, /* OUT: True if data is read from WAL */ int nOut, /* Size of buffer pOut in bytes */ u8 *pOut /* Buffer to write page data to */ ){ u32 iRead = 0; /* If !=0, WAL frame to return data from */ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ int iHash; /* Used to loop through N hash tables */ /* This routine is only be called from within a read transaction. */ assert( pWal->readLock>=0 || pWal->lockError ); /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early ** in this case to avoid the walIndexMap/Unmap overhead. Likewise, if ** pWal->readLock==0, then the WAL is ignored by the reader so ** return early, as if the WAL were empty. */ if( iLast==0 || pWal->readLock==0 ){ *pInWal = 0; return SQLITE_OK; } /* Search the hash table or tables for an entry matching page number ** pgno. Each iteration of the following for() loop searches one ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). ** ** This code may run concurrently to the code in walIndexAppend() ** that adds entries to the wal-index (and possibly to this hash ** table). This means the value just read from the hash |
︙ | ︙ | |||
1959 1960 1961 1962 1963 1964 1965 | ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. */ | | | | | | < | > > | < | < | 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 | ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. */ for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ volatile ht_slot *aHash; /* Pointer to hash table */ volatile u32 *aPgno; /* Pointer to array of page numbers */ u32 iZero; /* Frame number corresponding to aPgno[0] */ int iKey; /* Hash slot index */ int rc; rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); if( rc!=SQLITE_OK ){ return rc; } for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ u32 iFrame = aHash[iKey] + iZero; if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ assert( iFrame>iRead ); iRead = iFrame; } } } #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. */ { u32 iRead2 = 0; u32 iTest; for(iTest=iLast; iTest>0; iTest--){ if( walFramePgno(pWal, iTest)==pgno ){ iRead2 = iTest; break; } } assert( iRead==iRead2 ); } #endif /* If iRead is non-zero, then it is the log frame number that contains the ** required page. Read and return data from the log file. */ if( iRead ){ i64 iOffset = walFrameOffset(iRead, pWal->hdr.szPage) + WAL_FRAME_HDRSIZE; *pInWal = 1; return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset); } *pInWal = 0; |
︙ | ︙ | |||
2053 2054 2055 2056 2057 2058 2059 | } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ | < < < < < < | < | 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 | } pWal->writeLock = 1; /* If another connection has written to the database file since the ** time the read transaction on this connection was started, then ** the write is disallowed. */ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); pWal->writeLock = 0; rc = SQLITE_BUSY; } return rc; } /* ** End a write transaction. The commit has already been done. This ** routine merely releases the lock. */ |
︙ | ︙ | |||
2094 2095 2096 2097 2098 2099 2100 | ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( pWal->writeLock ){ | < > | > | < < | < | | | | | | | | | | | | | | | | < | | | | < < > | 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 | ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( pWal->writeLock ){ Pgno iMax = pWal->hdr.mxFrame; Pgno iFrame; /* Restore the clients cache of the wal-index header to the state it ** was in before the client began writing to the database. */ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); for(iFrame=pWal->hdr.mxFrame+1; ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; iFrame++ ){ /* This call cannot fail. Unless the page for which the page number ** is passed as the second argument is (a) in the cache and ** (b) has an outstanding reference, then xUndo is either a no-op ** (if (a) is false) or simply expels the page from the cache (if (b) ** is false). ** ** If the upper layer is doing a rollback, it is guaranteed that there ** are no outstanding references to any page other than page 1. And ** page 1 is never written to the log until the transaction is ** committed. As a result, the call to xUndo may not fail. */ assert( walFramePgno(pWal, iFrame)!=1 ); rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); } walCleanupHash(pWal); } assert( rc==SQLITE_OK ); return rc; } /* ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 ** values. This function populates the array with values required to ** "rollback" the write position of the WAL handle back to the current |
︙ | ︙ | |||
2166 2167 2168 2169 2170 2171 2172 | ** to the start of the log. Update the savepoint values to match. */ aWalData[0] = 0; aWalData[3] = pWal->nCkpt; } if( aWalData[0]<pWal->hdr.mxFrame ){ | < < | | | < < | < < | 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 | ** to the start of the log. Update the savepoint values to match. */ aWalData[0] = 0; aWalData[3] = pWal->nCkpt; } if( aWalData[0]<pWal->hdr.mxFrame ){ pWal->hdr.mxFrame = aWalData[0]; pWal->hdr.aFrameCksum[0] = aWalData[1]; pWal->hdr.aFrameCksum[1] = aWalData[2]; walCleanupHash(pWal); } return rc; } /* ** This function is called just before writing a set of frames to the log ** file (see sqlite3WalFrames()). It checks to see if, instead of appending ** to the current log file, it is possible to overwrite the start of the ** existing log file with the new frames (i.e. "reset" the log). If so, ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left ** unchanged. ** ** SQLITE_OK is returned if no error is encountered (regardless of whether ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned ** if some error */ static int walRestartLog(Wal *pWal){ int rc = SQLITE_OK; int cnt; if( pWal->readLock==0 ){ volatile WalCkptInfo *pInfo = walCkptInfo(pWal); assert( pInfo->nBackfill==pWal->hdr.mxFrame ); if( pInfo->nBackfill>0 ){ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); if( rc==SQLITE_OK ){ /* If all readers are using WAL_READ_LOCK(0) (in other words if no ** readers are currently using the WAL), then the transactions |
︙ | ︙ | |||
2233 2234 2235 2236 2237 2238 2239 | walUnlockShared(pWal, WAL_READ_LOCK(0)); pWal->readLock = -1; cnt = 0; do{ int notUsed; rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); }while( rc==WAL_RETRY ); | < < < < < | 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 | walUnlockShared(pWal, WAL_READ_LOCK(0)); pWal->readLock = -1; cnt = 0; do{ int notUsed; rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); }while( rc==WAL_RETRY ); } return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). |
︙ | ︙ | |||
2263 2264 2265 2266 2267 2268 2269 | u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ PgHdr *p; /* Iterator to run through pList with. */ PgHdr *pLast = 0; /* Last frame in list */ int nLast = 0; /* Number of extra copies of last page */ assert( pList ); assert( pWal->writeLock ); | < < < | 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 | u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ PgHdr *p; /* Iterator to run through pList with. */ PgHdr *pLast = 0; /* Last frame in list */ int nLast = 0; /* Number of extra copies of last page */ assert( pList ); assert( pWal->writeLock ); #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); } #endif /* See if it is possible to write these frames into the start of the ** log file, instead of appending to it at pWal->hdr.mxFrame. */ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ return rc; } /* If this is the first frame written into the log, write the WAL ** header to the start of the WAL file. See comments at the top of ** this source file for a description of the WAL header format. */ iFrame = pWal->hdr.mxFrame; if( iFrame==0 ){ |
︙ | ︙ | |||
2354 2355 2356 2357 2358 2359 2360 | } nLast++; iOffset += szPage; } rc = sqlite3OsSync(pWal->pWalFd, sync_flags); } | < | 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 | } nLast++; iOffset += szPage; } rc = sqlite3OsSync(pWal->pWalFd, sync_flags); } /* Append data to the wal-index. It is not necessary to lock the ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ iFrame = pWal->hdr.mxFrame; |
︙ | ︙ | |||
2387 2388 2389 2390 2391 2392 2393 | /* If this is a commit, update the wal-index header too. */ if( isCommit ){ walIndexWriteHdr(pWal); pWal->iCallback = iFrame; } } | < < | 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 | /* If this is a commit, update the wal-index header too. */ if( isCommit ){ walIndexWriteHdr(pWal); pWal->iCallback = iFrame; } } WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); return rc; } /* ** This routine is called to implement sqlite3_wal_checkpoint() and ** related interfaces. ** ** Obtain a CHECKPOINT lock and then backfill as much information as ** we can from WAL into the database. */ int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ u8 *zBuf /* Temporary buffer to use */ ){ int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ assert( pWal->ckptLock==0 ); WALTRACE(("WAL%p: checkpoint begins\n", pWal)); rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); if( rc ){ /* Usually this is SQLITE_BUSY meaning that another thread or process ** is already running a checkpoint, or maybe a recovery. But it might |
︙ | ︙ | |||
2437 2438 2439 2440 2441 2442 2443 | ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } /* Release the locks. */ | < | 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 | ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } /* Release the locks. */ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); pWal->ckptLock = 0; WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); return rc; } /* Return the value to pass to a sqlite3_wal_hook callback, the |
︙ | ︙ |
Changes to test/permutations.test.
︙ | ︙ | |||
9 10 11 12 13 14 15 16 17 18 19 20 21 22 | # #*********************************************************************** # # $Id: permutations.test,v 1.51 2009/07/01 18:09:02 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # Argument processing. # #puts "PERM-DEBUG: argv=$argv" namespace eval ::perm { variable testmode [lindex $::argv 0] variable testfile [lindex $::argv 1] | > | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # #*********************************************************************** # # $Id: permutations.test,v 1.51 2009/07/01 18:09:02 danielk1977 Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl db close # Argument processing. # #puts "PERM-DEBUG: argv=$argv" namespace eval ::perm { variable testmode [lindex $::argv 0] variable testfile [lindex $::argv 1] |
︙ | ︙ |
Changes to test/wal2.test.
︙ | ︙ | |||
71 72 73 74 75 76 77 | # of the the integer fields (so that the reader ends up with a corrupted # header). # # 3. Check that the reader recovers the wal-index and reads the correct # database content. # do_test wal2-1.0 { | | > > > > > | 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | # of the the integer fields (so that the reader ends up with a corrupted # header). # # 3. Check that the reader recovers the wal-index and reads the correct # database content. # do_test wal2-1.0 { proc tvfs_cb {method filename args} { set ::filename $filename return SQLITE_OK } testvfs tvfs tvfs script tvfs_cb tvfs filter xShmOpen sqlite3 db test.db -vfs tvfs sqlite3 db2 test.db -vfs tvfs execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a); |
︙ | ︙ | |||
119 120 121 122 123 124 125 | 10 13 {13 91} 8 {$RECOVER $READ} 11 14 {14 105} 9 {$RECOVER $READ} 12 15 {15 120} -1 {$READ} " { do_test wal2-1.$tn.1 { execsql { INSERT INTO t1 VALUES($iInsert) } | < < < < < < < < < | > > > | | 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 | 10 13 {13 91} 8 {$RECOVER $READ} 11 14 {14 105} 9 {$RECOVER $READ} 12 15 {15 120} -1 {$READ} " { do_test wal2-1.$tn.1 { execsql { INSERT INTO t1 VALUES($iInsert) } set ::locks [list] proc tvfs_cb {method args} { lappend ::locks [lindex $args 2] return SQLITE_OK } tvfs filter xShmLock if {$::wal_index_hdr_mod >= 0} { incr_tvfs_hdr $::filename $::wal_index_hdr_mod 1 } execsql { SELECT count(a), sum(a) FROM t1 } db2 } $res do_test wal2-1.$tn.2 { set ::locks } $wal_locks } |
︙ | ︙ | |||
170 171 172 173 174 175 176 177 | {4 1 lock exclusive} {4 1 unlock exclusive} \ {4 1 lock shared} {4 1 unlock shared} \ ] do_test wal2-2.0 { testvfs tvfs tvfs script tvfs_cb proc tvfs_cb {method args} { | > | | 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | {4 1 lock exclusive} {4 1 unlock exclusive} \ {4 1 lock shared} {4 1 unlock shared} \ ] do_test wal2-2.0 { testvfs tvfs tvfs script tvfs_cb tvfs filter xShmOpen proc tvfs_cb {method args} { set ::filename [lindex $args 0] return SQLITE_OK } sqlite3 db test.db -vfs tvfs sqlite3 db2 test.db -vfs tvfs execsql { |
︙ | ︙ | |||
204 205 206 207 208 209 210 211 | 4 7 {6 21} {7 28} 2 5 8 {7 28} {8 36} 3 6 9 {8 36} {9 45} 4 7 10 {9 45} {10 55} 5 8 11 {10 55} {11 66} 6 9 12 {11 66} {12 78} 7 } { do_test wal2-2.$tn.1 { | > > | < < < < < < < < | | | | < > > > < < < < < < < < | | < > > > | 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | 4 7 {6 21} {7 28} 2 5 8 {7 28} {8 36} 3 6 9 {8 36} {9 45} 4 7 10 {9 45} {10 55} 5 8 11 {10 55} {11 66} 6 9 12 {11 66} {12 78} 7 } { tvfs filter xShmLock do_test wal2-2.$tn.1 { set oldhdr [set_tvfs_hdr $::filename] execsql { INSERT INTO t1 VALUES($iInsert) } execsql { SELECT count(a), sum(a) FROM t1 } } $res1 do_test wal2-2.$tn.2 { set ::locks [list] proc tvfs_cb {method args} { set lock [lindex $args 2] lappend ::locks $lock if {$lock == $::WRITER} { set_tvfs_hdr $::filename $::oldhdr } return SQLITE_OK } if {$::wal_index_hdr_mod >= 0} { incr_tvfs_hdr $::filename $::wal_index_hdr_mod 1 } execsql { SELECT count(a), sum(a) FROM t1 } db2 } $res0 do_test wal2-2.$tn.3 { set ::locks } $LOCKS do_test wal2-2.$tn.4 { set ::locks [list] proc tvfs_cb {method args} { set lock [lindex $args 2] lappend ::locks $lock return SQLITE_OK } if {$::wal_index_hdr_mod >= 0} { incr_tvfs_hdr $::filename $::wal_index_hdr_mod 1 } execsql { SELECT count(a), sum(a) FROM t1 } db2 } $res1 } db close db2 close tvfs delete file delete -force test.db test.db-wal test.db-journal |
︙ | ︙ |
Changes to test/wal3.test.
︙ | ︙ | |||
349 350 351 352 353 354 355 | testvfs T -default 1 T script method_callback proc method_callback {method args} { if {$method == "xShmBarrier"} { incr ::barrier_count | | | 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 | testvfs T -default 1 T script method_callback proc method_callback {method args} { if {$method == "xShmBarrier"} { incr ::barrier_count if {$::barrier_count == 2} { # This code is executed within the xShmBarrier() callback invoked # by the client running recovery as part of writing the recovered # wal-index header. If a second client attempts to access the # database now, it reads a corrupt (partially written) wal-index # header. But it cannot even get that far, as the first client # is still holding all the locks (recovery takes an exclusive lock # on *all* db locks, preventing access by any other client). |
︙ | ︙ |
Changes to test/walfault.test.
︙ | ︙ | |||
115 116 117 118 119 120 121 122 123 124 125 126 127 128 | db eval { DELETE FROM abc; PRAGMA wal_checkpoint; } } -test { faultsim_test_result {0 {}} } #-------------------------------------------------------------------------- # faultsim_delete_and_reopen faultsim_save_and_close do_faultsim_test walfault-4 -prep { faultsim_restore_and_reopen | > | 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | db eval { DELETE FROM abc; PRAGMA wal_checkpoint; } } -test { faultsim_test_result {0 {}} } #-------------------------------------------------------------------------- # faultsim_delete_and_reopen faultsim_save_and_close do_faultsim_test walfault-4 -prep { faultsim_restore_and_reopen |
︙ | ︙ | |||
148 149 150 151 152 153 154 | PRAGMA journal_mode = WAL; } faultsim_save_and_close } {} do_faultsim_test walfault-5 -faults shmerr* -prep { faultsim_restore_and_reopen execsql { PRAGMA wal_autocheckpoint = 0 } | | | 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | PRAGMA journal_mode = WAL; } faultsim_save_and_close } {} do_faultsim_test walfault-5 -faults shmerr* -prep { faultsim_restore_and_reopen execsql { PRAGMA wal_autocheckpoint = 0 } shmfault filter xShmPage } -body { execsql { CREATE TABLE t1(x); BEGIN; INSERT INTO t1 VALUES(randomblob(400)); /* 1 */ INSERT INTO t1 SELECT randomblob(400) FROM t1; /* 2 */ INSERT INTO t1 SELECT randomblob(400) FROM t1; /* 4 */ |
︙ | ︙ | |||
207 208 209 210 211 212 213 | INSERT INTO t1 SELECT randomblob(400) FROM t1; /* 16384 */ COMMIT; } faultsim_save_and_close } {} do_faultsim_test walfault-6 -faults shmerr* -prep { faultsim_restore_and_reopen | | | 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | INSERT INTO t1 SELECT randomblob(400) FROM t1; /* 16384 */ COMMIT; } faultsim_save_and_close } {} do_faultsim_test walfault-6 -faults shmerr* -prep { faultsim_restore_and_reopen shmfault filter xShmPage } -body { execsql { SELECT count(*) FROM t1 } } -test { faultsim_test_result {0 16384} faultsim_integrity_check set n [db one {SELECT count(*) FROM t1}] if {$n != 16384 && $n != 0} { error "Incorrect number of rows: $n" } |
︙ | ︙ | |||
322 323 324 325 326 327 328 | if {$n != 1 && $n != 2} { error "Incorrect number of rows: $n" } } do_test walfault-10-pre1 { faultsim_delete_and_reopen execsql { PRAGMA journal_mode = WAL; | | | 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 | if {$n != 1 && $n != 2} { error "Incorrect number of rows: $n" } } do_test walfault-10-pre1 { faultsim_delete_and_reopen execsql { PRAGMA journal_mode = WAL; PRAGMA wal_autocheckpoint = 0; CREATE TABLE z(zz INTEGER PRIMARY KEY, zzz BLOB); CREATE INDEX zzzz ON z(zzz); INSERT INTO z VALUES(NULL, randomblob(800)); INSERT INTO z VALUES(NULL, randomblob(800)); INSERT INTO z SELECT NULL, randomblob(800) FROM z; INSERT INTO z SELECT NULL, randomblob(800) FROM z; INSERT INTO z SELECT NULL, randomblob(800) FROM z; |
︙ | ︙ | |||
358 359 360 361 362 363 364 365 366 367 | faultsim_test_result {0 {}} catch { db eval { ROLLBACK } } faultsim_integrity_check set n [db eval {SELECT count(*), sum(length(zzz)) FROM z}] if {$n != "64 51200"} { error "Incorrect data: $n" } } finish_test | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 | faultsim_test_result {0 {}} catch { db eval { ROLLBACK } } faultsim_integrity_check set n [db eval {SELECT count(*), sum(length(zzz)) FROM z}] if {$n != "64 51200"} { error "Incorrect data: $n" } } #-------------------------------------------------------------------------- # Test fault injection while checkpointing a large WAL file, if the # checkpoint is the first operation run after opening the database. # This means that some of the required wal-index pages are mapped as part of # the checkpoint process, which means there are a few more opportunities # for IO errors. # # To speed this up, IO errors are only simulated within xShmPage() calls. # do_test walfault-11-pre-1 { sqlite3 db test.db execsql { PRAGMA journal_mode = WAL; PRAGMA wal_autocheckpoint = 0; BEGIN; CREATE TABLE abc(a PRIMARY KEY); INSERT INTO abc VALUES(randomblob(1500)); INSERT INTO abc VALUES(randomblob(1500)); INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 4 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 8 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 16 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 32 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 64 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 128 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 256 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 512 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 1024 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 2048 INSERT INTO abc SELECT randomblob(1500) FROM abc; -- 4096 COMMIT; } faultsim_save_and_close } {} do_faultsim_test walfault-11 -faults shmerr* -prep { catch { db2 close } faultsim_restore_and_reopen shmfault filter xShmPage } -body { db eval { SELECT count(*) FROM abc } sqlite3 db2 test.db -vfs shmfault db2 eval { PRAGMA wal_checkpoint } } -test { faultsim_test_result {0 {}} } #------------------------------------------------------------------------- # Test the handling of the various IO/OOM/SHM errors that may occur during # a log recovery operation undertaken as part of a call to # sqlite3_wal_checkpoint(). # do_test walfault-12-pre-1 { faultsim_delete_and_reopen execsql { PRAGMA journal_mode = WAL; PRAGMA wal_autocheckpoint = 0; BEGIN; CREATE TABLE abc(a PRIMARY KEY); INSERT INTO abc VALUES(randomblob(1500)); INSERT INTO abc VALUES(randomblob(1500)); COMMIT; } faultsim_save_and_close } {} do_faultsim_test walfault-12 -prep { if {[info commands shmfault] == ""} { testvfs shmfault -default true } faultsim_restore_and_reopen db eval { SELECT * FROM sqlite_master } shmfault shm test.db [string repeat "\000" 40] } -body { set rc [sqlite3_wal_checkpoint db] if {$rc != "SQLITE_OK"} { error [sqlite3_errmsg db] } } -test { db close faultsim_test_result {0 {}} } finish_test |