90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
-
-
-
+
+
+
-
-
-
-
-
-
+
+
+
-
-
-
+
-
-
-
-
-
+
+
+
+
+
+
+
-
+
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
|
Parse *pParse, /* Parser context */
Table *pTab, /* Table whose indices are to be analyzed */
int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
int iMem /* Available memory locations begin here */
){
Index *pIdx; /* An index to being analyzed */
int iIdxCur; /* Index of VdbeCursor for index being analyzed */
int nCol; /* Number of columns in the index */
Vdbe *v; /* The virtual machine being built up */
int i; /* Loop counter */
int topOfLoop; /* The top of the loop */
int endOfLoop; /* The end of the loop */
int addr; /* The address of an instruction */
int iDb; /* Index of database containing pTab */
/* Assign the required registers. */
int regTabname = iMem++; /* Register containing table name */
int regIdxname = iMem++; /* Register containing index name */
int regSampleno = iMem++; /* Register containing next sample number */
int regCol = iMem++; /* Content of a column analyzed table */
int regSamplerecno = iMem++; /* Next sample index record number */
int regRecno = iMem++; /* Register next index record number */
int regRec = iMem++; /* Register holding completed record */
int regTemp = iMem++; /* Temporary use register */
int regTemp2 = iMem++; /* Temporary use register */
int regRowid = iMem++; /* Rowid for the inserted record */
int regCount = iMem++; /* Total number of records in table */
v = sqlite3GetVdbe(pParse);
if( v==0 || NEVER(pTab==0) || pTab->pIndex==0 ){
/* Do no analysis for tables that have no indices */
return;
}
assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
assert( iDb>=0 );
#ifndef SQLITE_OMIT_AUTHORIZATION
if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
pParse->db->aDb[iDb].zName ) ){
return;
}
#endif
/* Establish a read-lock on the table at the shared-cache level. */
sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
iMem += 3;
iIdxCur = pParse->nTab++;
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
int nCol = pIdx->nColumn;
KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
int regFields; /* Register block for building records */
int regRec; /* Register holding completed record */
int regTemp; /* Temporary use register */
if( iMem+1+(nCol*2)>pParse->nMem ){
pParse->nMem = iMem+1+(nCol*2);
int regCol; /* Content of a column from the table being analyzed */
int regRowid; /* Rowid for the inserted record */
int regF2;
int regStat2;
/* Open a cursor to the index to be analyzed
}
/* Open a cursor to the index to be analyzed. */
*/
assert( iDb==sqlite3SchemaToIndex(pParse->db, pIdx->pSchema) );
nCol = pIdx->nColumn;
sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
(char *)pKey, P4_KEYINFO_HANDOFF);
VdbeComment((v, "%s", pIdx->zName));
regStat2 = iMem+nCol*2+1;
regFields = regStat2+2+SQLITE_INDEX_SAMPLES;
regTemp = regRowid = regCol = regFields+3;
regRec = regCol+1;
if( regRec>pParse->nMem ){
pParse->nMem = regRec;
/* If this iteration of the loop is generating code to analyze the
** first index in the pTab->pIndex list, then register regCount has
** not been populated. In this case populate it now. */
if( pTab->pIndex==pIdx ){
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
}
sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
/* Fill in the register with the total number of rows. */
/* Zero the regSampleno and regRecno registers. */
if( pTab->pIndex==pIdx ){
sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, iMem-3);
}
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem-2);
sqlite3VdbeAddOp2(v, OP_Integer, 1, iMem-1);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regSampleno);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regRecno);
/* If there are less than INDEX_SAMPLES records in the index, then
** set the contents of regSampleRecno to integer value INDEX_SAMPLES.
** Otherwise, set it to zero. This is to ensure that if there are
** less than the said number of entries in the index, no samples at
** all are collected. */
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regSamplerecno);
sqlite3VdbeAddOp3(v, OP_Lt, regSamplerecno, sqlite3VdbeCurrentAddr(v)+2,
regCount);
sqlite3VdbeAddOp2(v, OP_Integer, 0, regSamplerecno);
/* Memory cells are used as follows. All memory cell addresses are
** offset by iMem. That is, cell 0 below is actually cell iMem, cell
** 1 is cell 1+iMem, etc.
**
** 0: The total number of rows in the table.
**
** 1..nCol: Number of distinct entries in index considering the
** left-most N columns, where N is the same as the
** memory cell number.
**
** nCol+1..2*nCol: Previous value of indexed columns, from left to
** right.
**
** 2*nCol+1..2*nCol+10: 10 evenly spaced samples.
**
** Cells iMem through iMem+nCol are initialized to 0. The others
** are initialized to NULL.
*/
for(i=0; i<=nCol; i++){
sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
}
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
}
/* Start the analysis loop. This loop runs through all the entries inof
/* Start the analysis loop. This loop runs through all the entries in
** the index b-tree. */
endOfLoop = sqlite3VdbeMakeLabel(v);
sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
topOfLoop = sqlite3VdbeCurrentAddr(v);
sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1);
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
if( i==0 ){
/* Check if the record that cursor iIdxCur points to contains a
** value that should be stored in the sqlite_stat2 table. If so,
** store it. */
int ne = sqlite3VdbeAddOp3(v, OP_Ne, regRecno, 0, regSamplerecno);
assert( regTabname+1==regIdxname
&& regTabname+2==regSampleno
&& regTabname+3==regCol
);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 4, regRec, "aaab", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);
/* Calculate new values for regSamplerecno and regSampleno.
**
** sampleno = sampleno + 1
** samplerecno = samplerecno+(remaining records)/(remaining samples)
*/
sqlite3VdbeAddOp2(v, OP_AddImm, regSampleno, 1);
sqlite3VdbeAddOp3(v, OP_Sample, iMem-3, regCol, regStat2+2);
}
sqlite3VdbeAddOp3(v, OP_Subtract, regRecno, regCount, regTemp);
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_INDEX_SAMPLES, regTemp2);
sqlite3VdbeAddOp3(v, OP_Subtract, regSampleno, regTemp2, regTemp2);
sqlite3VdbeAddOp3(v, OP_Divide, regTemp2, regTemp, regTemp);
sqlite3VdbeAddOp3(v, OP_Add, regSamplerecno, regTemp, regSamplerecno);
sqlite3VdbeJumpHere(v, ne);
sqlite3VdbeAddOp2(v, OP_AddImm, regRecno, 1);
}
assert( sqlite3VdbeCurrentAddr(v)==(topOfLoop+14+2*i) );
sqlite3VdbeAddOp3(v, OP_Ne, regCol, 0, iMem+nCol+i+1);
/**** TODO: add collating sequence *****/
sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
}
sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
for(i=0; i<nCol; i++){
sqlite3VdbeJumpHere(v, topOfLoop + 1 + 2*(i + 1));
sqlite3VdbeJumpHere(v, topOfLoop+14+2*i);
sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
}
/* End of the analysis loop. */
sqlite3VdbeResolveLabel(v, endOfLoop);
sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
|
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
-
-
-
-
+
-
+
-
+
-
+
-
-
-
-
-
-
-
-
-
-
|
** I = (K+D-1)/D
**
** If K==0 then no entry is made into the sqlite_stat1 table.
** If K>0 then it is always the case the D>0 so division by zero
** is never possible.
*/
addr = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields, 0, pTab->zName, 0);
sqlite3VdbeAddOp4(v, OP_String8, 0, regFields+1, 0, pIdx->zName, 0);
regF2 = regFields+2;
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regF2);
sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regSampleno);
for(i=0; i<nCol; i++){
sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regF2, regF2);
sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regSampleno, regSampleno);
}
sqlite3VdbeAddOp4(v, OP_MakeRecord, regFields, 3, regRec, "aaa", 0);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regRowid);
sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
/* Store the results in sqlite_stat2. */
sqlite3VdbeAddOp4(v, OP_String8, 0, regStat2, 0, pTab->zName, 0);
sqlite3VdbeAddOp4(v, OP_String8, 0, regStat2+1, 0, pIdx->zName, 0);
sqlite3VdbeAddOp4(v, OP_MakeRecord, regStat2, SQLITE_INDEX_SAMPLES+2,
regRec, "aabbbbbbbbbb", 0
);
sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regRowid);
sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regRowid);
sqlite3VdbeJumpHere(v, addr);
}
}
/*
** Generate code that will cause the most recent index analysis to
** be laoded into internal hash tables where is can be used.
|
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
|
-
+
+
+
-
-
+
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
+
-
-
+
-
-
+
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
+
-
-
-
-
-
-
-
-
-
+
+
+
+
-
-
-
-
-
+
-
-
+
-
-
+
-
+
+
+
|
}else{
(void)sqlite3SafetyOff(db);
rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
(void)sqlite3SafetyOn(db);
sqlite3DbFree(db, zSql);
}
/* Load the statistics from the sqlite_stat2 table */
/* Load the statistics from the sqlite_stat2 table. */
if( rc==SQLITE_OK ){
sqlite3_stmt *pStmt = 0;
zSql = sqlite3MPrintf(db,
"SELECT idx," SQLITE_INDEX_SAMPLE_COLS " FROM %Q.sqlite_stat2",
sInfo.zDatabase
"SELECT idx,sampleno,sample FROM %Q.sqlite_stat2", sInfo.zDatabase
);
if( zSql ){
sqlite3_stmt *pStmt = 0;
(void)sqlite3SafetyOff(db);
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
if( rc==SQLITE_OK ){
while( SQLITE_ROW==sqlite3_step(pStmt) ){
char *zIndex = (char *)sqlite3_column_text(pStmt, 0);
if( !zSql ){
return SQLITE_NOMEM;
}
(void)sqlite3SafetyOff(db);
rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
assert( rc!=SQLITE_MISUSE );
(void)sqlite3SafetyOn(db);
sqlite3DbFree(db, zSql);
(void)sqlite3SafetyOff(db);
if( rc==SQLITE_OK ){
while( sqlite3_step(pStmt)==SQLITE_ROW ){
char *zIndex = (char *)sqlite3_column_text(pStmt, 0);
Index *pIdx;
pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
if( pIdx ){
Index *pIdx = sqlite3FindIndex(db, zIndex, sInfo.zDatabase);
if( pIdx ){
char *pSpace;
IndexSample *pSample;
int iSample = sqlite3_column_int(pStmt, 1);
int iCol;
int nAlloc = SQLITE_INDEX_SAMPLES * sizeof(IndexSample);
if( iSample<SQLITE_INDEX_SAMPLES && iSample>=0 ){
for(iCol=1; iCol<=SQLITE_INDEX_SAMPLES; iCol++){
int eType = sqlite3_column_type(pStmt, iCol);
int eType = sqlite3_column_type(pStmt, 2);
if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
nAlloc += sqlite3_column_bytes(pStmt, iCol);
}
}
pSample = sqlite3DbMallocRaw(db, nAlloc);
if( !pSample ){
rc = SQLITE_NOMEM;
break;
}
sqlite3DbFree(db, pIdx->aSample);
pIdx->aSample = pSample;
pSpace = (char *)&pSample[SQLITE_INDEX_SAMPLES];
for(iCol=1; iCol<=SQLITE_INDEX_SAMPLES; iCol++){
int eType = sqlite3_column_type(pStmt, iCol);
pSample[iCol-1].eType = eType;
switch( eType ){
case SQLITE_BLOB:
if( pIdx->aSample==0 ){
pIdx->aSample = (IndexSample *)sqlite3DbMallocZero(db,
sizeof(IndexSample)*SQLITE_INDEX_SAMPLES
);
if( pIdx->aSample==0 ){
break;
}
}
if( pIdx->aSample ){
IndexSample *pSample = &pIdx->aSample[iSample];
if( pSample->eType==SQLITE_TEXT || pSample->eType==SQLITE_BLOB ){
sqlite3DbFree(db, pSample->u.z);
}
pSample->eType = eType;
if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){
pSample->u.r = sqlite3_column_double(pStmt, 2);
}else if( eType==SQLITE_TEXT || eType==SQLITE_BLOB ){
case SQLITE_TEXT: {
const char *z = (const char *)(
(eType==SQLITE_BLOB) ?
sqlite3_column_blob(pStmt, iCol):
sqlite3_column_text(pStmt, iCol)
);
int n = sqlite3_column_bytes(pStmt, iCol);
if( n>24 ){
n = 24;
}
pSample[iCol-1].nByte = n;
pSample[iCol-1].u.z = pSpace;
memcpy(pSpace, z, n);
const char *z = (const char *)(
(eType==SQLITE_BLOB) ?
sqlite3_column_blob(pStmt, 2):
sqlite3_column_text(pStmt, 2)
);
int n = sqlite3_column_bytes(pStmt, 2);
if( n>24 ){
n = 24;
}
pSample->nByte = n;
pSample->u.z = sqlite3DbMallocRaw(db, n);
if( pSample->u.z ){
memcpy(pSample->u.z, z, n);
pSpace += n;
break;
}
}else{
case SQLITE_INTEGER:
case SQLITE_FLOAT:
pSample[iCol-1].u.r = sqlite3_column_double(pStmt, iCol);
break;
case SQLITE_NULL:
break;
}
}
}
}
}
}
}
}
if( rc==SQLITE_NOMEM ){
sqlite3_finalize(pStmt);
}else{
rc = sqlite3_finalize(pStmt);
}
}
}
(void)sqlite3SafetyOn(db);
sqlite3DbFree(db, zSql);
rc = sqlite3_finalize(pStmt);
}else{
rc = SQLITE_NOMEM;
}
(void)sqlite3SafetyOn(db);
}
if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
if( rc==SQLITE_NOMEM ){
db->mallocFailed = 1;
}
return rc;
}
#endif /* SQLITE_OMIT_ANALYZE */
|