︙ | | |
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
|
-
+
|
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files. The formatting
** of the code in this file is, therefore, important. See other comments
** in this file for details. If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.251 2004/01/15 02:44:03 drh Exp $
** $Id: vdbe.c,v 1.252 2004/01/30 14:49:17 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"
/*
|
︙ | | |
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
-
+
|
pOld = sqliteHashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
if( pOld!=0 ){
assert( pOld==pElem ); /* Malloc failed on insert */
sqliteFree(pOld);
return 0;
}
for(i=0; i<p->nMem; i++){
pElem->aMem[i].s.flags = STK_Null;
pElem->aMem[i].flags = MEM_Null;
}
p->pCurrent = pElem;
return 0;
}
/*
** Get the AggElem currently in focus
|
︙ | | |
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
-
+
-
+
-
-
-
-
+
+
+
+
-
+
-
-
-
+
+
+
-
+
-
+
-
+
-
+
-
-
-
+
+
+
-
+
-
+
-
+
-
+
-
-
+
-
-
-
-
+
+
+
+
-
+
-
-
-
+
+
+
|
return pElem ? sqliteHashData(pElem) : 0;
}
/*
** Convert the given stack entity into a string if it isn't one
** already.
*/
#define Stringify(P,I) if((aStack[I].flags & STK_Str)==0){hardStringify(P,I);}
#define Stringify(P,I) if((aStack[I].flags & MEM_Str)==0){hardStringify(P,I);}
static int hardStringify(Vdbe *p, int i){
Stack *pStack = &p->aStack[i];
Mem *pStack = &p->aStack[i];
int fg = pStack->flags;
if( fg & STK_Real ){
sqlite_snprintf(sizeof(pStack->z),pStack->z,"%.15g",pStack->r);
}else if( fg & STK_Int ){
sqlite_snprintf(sizeof(pStack->z),pStack->z,"%d",pStack->i);
if( fg & MEM_Real ){
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
}else if( fg & MEM_Int ){
sqlite_snprintf(sizeof(pStack->zShort),pStack->zShort,"%d",pStack->i);
}else{
pStack->z[0] = 0;
pStack->zShort[0] = 0;
}
p->zStack[i] = pStack->z;
pStack->n = strlen(pStack->z)+1;
pStack->flags = STK_Str;
p->aStack[i].z = pStack->zShort;
pStack->n = strlen(pStack->zShort)+1;
pStack->flags = MEM_Str;
return 0;
}
/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc(). This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P,I) ((aStack[I].flags & STK_Dyn)==0 ? hardDynamicify(P,I):0)
#define Dynamicify(P,I) ((aStack[I].flags & MEM_Dyn)==0 ? hardDynamicify(P,I):0)
static int hardDynamicify(Vdbe *p, int i){
Stack *pStack = &p->aStack[i];
Mem *pStack = &p->aStack[i];
int fg = pStack->flags;
char *z;
if( (fg & STK_Str)==0 ){
if( (fg & MEM_Str)==0 ){
hardStringify(p, i);
}
assert( (fg & STK_Dyn)==0 );
assert( (fg & MEM_Dyn)==0 );
z = sqliteMallocRaw( pStack->n );
if( z==0 ) return 1;
memcpy(z, p->zStack[i], pStack->n);
p->zStack[i] = z;
pStack->flags |= STK_Dyn;
memcpy(z, p->aStack[i].z, pStack->n);
p->aStack[i].z = z;
pStack->flags |= MEM_Dyn;
return 0;
}
/*
** An ephemeral string value (signified by the STK_Ephem flag) contains
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string. Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls. In other words, it
** converts an STK_Ephem string into an STK_Dyn string.
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P,I) \
if( ((P)->aStack[I].flags&STK_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;}
if( ((P)->aStack[I].flags&MEM_Ephem)!=0 && hardDeephem(P,I) ){ goto no_mem;}
static int hardDeephem(Vdbe *p, int i){
Stack *pStack = &p->aStack[i];
Mem *pStack = &p->aStack[i];
char **pzStack = &p->zStack[i];
char *z;
assert( (pStack->flags & STK_Ephem)!=0 );
assert( (pStack->flags & MEM_Ephem)!=0 );
z = sqliteMallocRaw( pStack->n );
if( z==0 ) return 1;
memcpy(z, *pzStack, pStack->n);
*pzStack = z;
pStack->flags &= ~STK_Ephem;
pStack->flags |= STK_Dyn;
memcpy(z, pStack->z, pStack->n);
pStack->z = z;
pStack->flags &= ~MEM_Ephem;
pStack->flags |= MEM_Dyn;
return 0;
}
/*
** Release the memory associated with the given stack level
*/
#define Release(P,I) if((P)->aStack[I].flags&STK_Dyn){ hardRelease(P,I); }
#define Release(P,I) if((P)->aStack[I].flags&MEM_Dyn){ hardRelease(P,I); }
static void hardRelease(Vdbe *p, int i){
sqliteFree(p->zStack[i]);
p->zStack[i] = 0;
p->aStack[i].flags &= ~(STK_Str|STK_Dyn|STK_Static|STK_Ephem);
sqliteFree(p->aStack[i].z);
p->aStack[i].z = 0;
p->aStack[i].flags &= ~(MEM_Str|MEM_Dyn|MEM_Static|MEM_Ephem);
}
/*
** Return TRUE if zNum is a 32-bit signed integer and write
** the value of the integer into *pNum. If zNum is not an integer
** or is an integer that is too large to be expressed with just 32
** bits, then return false.
|
︙ | | |
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
|
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
-
+
-
+
-
-
+
+
-
+
-
+
-
-
-
+
+
+
-
+
|
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.
** NULLs are converted into 0.
*/
#define Integerify(P,I) \
if(((P)->aStack[(I)].flags&STK_Int)==0){ hardIntegerify(P,I); }
if(((P)->aStack[(I)].flags&MEM_Int)==0){ hardIntegerify(P,I); }
static void hardIntegerify(Vdbe *p, int i){
if( p->aStack[i].flags & STK_Real ){
if( p->aStack[i].flags & MEM_Real ){
p->aStack[i].i = (int)p->aStack[i].r;
Release(p, i);
}else if( p->aStack[i].flags & STK_Str ){
toInt(p->zStack[i], &p->aStack[i].i);
}else if( p->aStack[i].flags & MEM_Str ){
toInt(p->aStack[i].z, &p->aStack[i].i);
Release(p, i);
}else{
p->aStack[i].i = 0;
}
p->aStack[i].flags = STK_Int;
p->aStack[i].flags = MEM_Int;
}
/*
** Get a valid Real representation for the given stack element.
**
** Any prior string or integer representation is retained.
** NULLs are converted into 0.0.
*/
#define Realify(P,I) \
if(((P)->aStack[(I)].flags&STK_Real)==0){ hardRealify(P,I); }
if(((P)->aStack[(I)].flags&MEM_Real)==0){ hardRealify(P,I); }
static void hardRealify(Vdbe *p, int i){
if( p->aStack[i].flags & STK_Str ){
p->aStack[i].r = sqliteAtoF(p->zStack[i]);
}else if( p->aStack[i].flags & STK_Int ){
if( p->aStack[i].flags & MEM_Str ){
p->aStack[i].r = sqliteAtoF(p->aStack[i].z);
}else if( p->aStack[i].flags & MEM_Int ){
p->aStack[i].r = p->aStack[i].i;
}else{
p->aStack[i].r = 0.0;
}
p->aStack[i].flags |= STK_Real;
p->aStack[i].flags |= MEM_Real;
}
/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures. Merge these two lists together and return
** a single sorted list. This routine forms the core of the merge-sort
** algorithm.
|
︙ | | |
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
-
-
+
|
int sqliteVdbeExec(
Vdbe *p /* The VDBE */
){
int pc; /* The program counter */
Op *pOp; /* Current operation */
int rc = SQLITE_OK; /* Value to return */
sqlite *db = p->db; /* The database */
char **zStack = p->zStack; /* Text stack */
Stack *aStack = p->aStack; /* Additional stack information */
Mem *aStack = p->aStack; /* The operand stack */
char zBuf[100]; /* Space to sprintf() an integer */
#ifdef VDBE_PROFILE
unsigned long long start; /* CPU clock count at start of opcode */
int origPc; /* Program counter at start of opcode */
#endif
#ifndef SQLITE_OMIT_PROGRESS_CALLBACK
int nProgressOps = 0; /* Opcodes executed since progress callback. */
|
︙ | | |
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
-
+
-
-
+
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
|
**
** The integer value P1 is pushed onto the stack. If P3 is not zero
** then it is assumed to be a string representation of the same integer.
*/
case OP_Integer: {
int i = ++p->tos;
aStack[i].i = pOp->p1;
aStack[i].flags = STK_Int;
aStack[i].flags = MEM_Int;
if( pOp->p3 ){
zStack[i] = pOp->p3;
aStack[i].flags |= STK_Str | STK_Static;
aStack[i].z = pOp->p3;
aStack[i].flags |= MEM_Str | MEM_Static;
aStack[i].n = strlen(pOp->p3)+1;
}
break;
}
/* Opcode: String * * P3
**
** The string value P3 is pushed onto the stack. If P3==0 then a
** NULL is pushed onto the stack.
*/
case OP_String: {
int i = ++p->tos;
char *z;
z = pOp->p3;
if( z==0 ){
zStack[i] = 0;
aStack[i].z = 0;
aStack[i].n = 0;
aStack[i].flags = STK_Null;
aStack[i].flags = MEM_Null;
}else{
zStack[i] = z;
aStack[i].z = z;
aStack[i].n = strlen(z) + 1;
aStack[i].flags = STK_Str | STK_Static;
aStack[i].flags = MEM_Str | MEM_Static;
}
break;
}
/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack. A variable is
** an unknown in the original SQL string as handed to sqlite_compile().
** Any occurance of the '?' character in the original SQL is considered
** a variable. Variables in the SQL string are number from left to
** right beginning with 1. The values of variables are set using the
** sqlite_bind() API.
*/
case OP_Variable: {
int i = ++p->tos;
int j = pOp->p1 - 1;
if( j>=0 && j<p->nVar && p->azVar[j]!=0 ){
zStack[i] = p->azVar[j];
aStack[i].z = p->azVar[j];
aStack[i].n = p->anVar[j];
aStack[i].flags = STK_Str | STK_Static;
aStack[i].flags = MEM_Str | MEM_Static;
}else{
zStack[i] = 0;
aStack[i].z = 0;
aStack[i].n = 0;
aStack[i].flags = STK_Null;
aStack[i].flags = MEM_Null;
}
break;
}
/* Opcode: Pop P1 * *
**
** P1 elements are popped off of the top of stack and discarded.
|
︙ | | |
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
|
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
|
-
-
+
+
-
-
-
+
+
+
-
-
-
+
+
+
-
-
-
-
-
+
+
+
+
+
-
+
-
-
-
-
-
+
+
+
-
+
-
-
+
+
-
-
-
+
-
-
+
+
-
-
+
+
-
+
|
** Also see the Pull instruction.
*/
case OP_Dup: {
int i = p->tos - pOp->p1;
int j = ++p->tos;
VERIFY( if( i<0 ) goto not_enough_stack; )
memcpy(&aStack[j], &aStack[i], sizeof(aStack[i])-NBFS);
if( aStack[j].flags & STK_Str ){
int isStatic = (aStack[j].flags & STK_Static)!=0;
if( aStack[j].flags & MEM_Str ){
int isStatic = (aStack[j].flags & MEM_Static)!=0;
if( pOp->p2 || isStatic ){
zStack[j] = zStack[i];
aStack[j].flags &= ~STK_Dyn;
if( !isStatic ) aStack[j].flags |= STK_Ephem;
aStack[j].z = aStack[i].z;
aStack[j].flags &= ~MEM_Dyn;
if( !isStatic ) aStack[j].flags |= MEM_Ephem;
}else if( aStack[i].n<=NBFS ){
memcpy(aStack[j].z, zStack[i], aStack[j].n);
zStack[j] = aStack[j].z;
aStack[j].flags &= ~(STK_Static|STK_Dyn|STK_Ephem);
memcpy(aStack[j].zShort, aStack[i].z, aStack[j].n);
aStack[j].z = aStack[j].zShort;
aStack[j].flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
}else{
zStack[j] = sqliteMallocRaw( aStack[j].n );
if( zStack[j]==0 ) goto no_mem;
memcpy(zStack[j], zStack[i], aStack[j].n);
aStack[j].flags &= ~(STK_Static|STK_Ephem);
aStack[j].flags |= STK_Dyn;
aStack[j].z = sqliteMallocRaw( aStack[j].n );
if( aStack[j].z==0 ) goto no_mem;
memcpy(aStack[j].z, aStack[i].z, aStack[j].n);
aStack[j].flags &= ~(MEM_Static|MEM_Ephem);
aStack[j].flags |= MEM_Dyn;
}
}
break;
}
/* Opcode: Pull P1 * *
**
** The P1-th element is removed from its current location on
** the stack and pushed back on top of the stack. The
** top of the stack is element 0, so "Pull 0 0 0" is
** a no-op. "Pull 1 0 0" swaps the top two elements of
** the stack.
**
** See also the Dup instruction.
*/
case OP_Pull: {
int from = p->tos - pOp->p1;
int to = p->tos;
int i;
Stack ts;
Mem ts;
char *tz;
VERIFY( if( from<0 ) goto not_enough_stack; )
Deephemeralize(p, from);
ts = aStack[from];
tz = zStack[from];
Deephemeralize(p, to);
for(i=from; i<to; i++){
Deephemeralize(p, i+1);
aStack[i] = aStack[i+1];
assert( (aStack[i].flags & STK_Ephem)==0 );
if( aStack[i].flags & (STK_Dyn|STK_Static) ){
zStack[i] = zStack[i+1];
assert( (aStack[i].flags & MEM_Ephem)==0 );
if( aStack[i].flags & (MEM_Dyn|MEM_Static) ){
aStack[i].z = aStack[i+1].z;
}else{
zStack[i] = aStack[i].z;
aStack[i].z = aStack[i].zShort;
}
}
aStack[to] = ts;
assert( (aStack[to].flags & STK_Ephem)==0 );
if( aStack[to].flags & (STK_Dyn|STK_Static) ){
assert( (aStack[to].flags & MEM_Ephem)==0 );
if( (aStack[to].flags & (MEM_Dyn|MEM_Static))==0 ){
zStack[to] = tz;
}else{
zStack[to] = aStack[to].z;
aStack[to].z = aStack[to].zShort;
}
break;
}
/* Opcode: Push P1 * *
**
** Overwrite the value of the P1-th element down on the
** stack (P1==0 is the top of the stack) with the value
** of the top of the stack. Then pop the top of the stack.
*/
case OP_Push: {
int from = p->tos;
int to = p->tos - pOp->p1;
VERIFY( if( to<0 ) goto not_enough_stack; )
if( aStack[to].flags & STK_Dyn ){
sqliteFree(zStack[to]);
if( aStack[to].flags & MEM_Dyn ){
sqliteFree(aStack[to].z);
}
Deephemeralize(p, from);
aStack[to] = aStack[from];
if( aStack[to].flags & (STK_Dyn|STK_Static|STK_Ephem) ){
zStack[to] = zStack[from];
if( aStack[to].flags & (MEM_Dyn|MEM_Static|MEM_Ephem) ){
aStack[to].z = aStack[from].z;
}else{
zStack[to] = aStack[to].z;
aStack[to].z = aStack[to].zShort;
}
aStack[from].flags = 0;
p->tos--;
break;
}
/* Opcode: ColumnName P1 * P3
|
︙ | | |
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
|
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
|
-
-
+
+
+
-
+
-
+
-
+
|
** 3rd parameter.
*/
case OP_Callback: {
int i = p->tos - pOp->p1 + 1;
int j;
VERIFY( if( i<0 ) goto not_enough_stack; )
for(j=i; j<=p->tos; j++){
if( aStack[j].flags & STK_Null ){
zStack[j] = 0;
if( aStack[j].flags & MEM_Null ){
aStack[j].z = 0;
}else{
Stringify(p, j);
}
p->zArgv[j] = aStack[j].z;
}
zStack[p->tos+1] = 0;
p->zArgv[p->tos+1] = 0;
if( p->xCallback==0 ){
p->azResColumn = &zStack[i];
p->azResColumn = &p->zArgv[i];
p->nResColumn = pOp->p1;
p->popStack = pOp->p1;
p->pc = pc + 1;
return SQLITE_ROW;
}
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
if( p->xCallback(p->pCbArg, pOp->p1, &zStack[i], p->azColName)!=0 ){
if( p->xCallback(p->pCbArg, pOp->p1, &p->zArgv[i], p->azColName)!=0 ){
rc = SQLITE_ABORT;
}
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
p->nCallback++;
sqliteVdbePopStack(p, pOp->p1);
if( sqlite_malloc_failed ) goto no_mem;
break;
|
︙ | | |
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
|
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
|
-
+
-
-
+
+
-
-
+
+
-
-
+
+
|
nField = pOp->p1;
zSep = pOp->p3;
if( zSep==0 ) zSep = "";
nSep = strlen(zSep);
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
nByte = 1 - nSep;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( aStack[i].flags & STK_Null ){
if( aStack[i].flags & MEM_Null ){
nByte = -1;
break;
}else{
Stringify(p, i);
nByte += aStack[i].n - 1 + nSep;
}
}
if( nByte<0 ){
if( pOp->p2==0 ) sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].flags = STK_Null;
zStack[p->tos] = 0;
aStack[p->tos].flags = MEM_Null;
aStack[p->tos].z = 0;
break;
}
zNew = sqliteMallocRaw( nByte );
if( zNew==0 ) goto no_mem;
j = 0;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( (aStack[i].flags & STK_Null)==0 ){
memcpy(&zNew[j], zStack[i], aStack[i].n-1);
if( (aStack[i].flags & MEM_Null)==0 ){
memcpy(&zNew[j], aStack[i].z, aStack[i].n-1);
j += aStack[i].n-1;
}
if( nSep>0 && i<p->tos ){
memcpy(&zNew[j], zSep, nSep);
j += nSep;
}
}
zNew[j] = 0;
if( pOp->p2==0 ) sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
aStack[p->tos].flags = STK_Str|STK_Dyn;
zStack[p->tos] = zNew;
aStack[p->tos].flags = MEM_Str|MEM_Dyn;
aStack[p->tos].z = zNew;
break;
}
/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
** and push the result back onto the stack. If either element
|
︙ | | |
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
|
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
|
-
+
-
-
+
+
|
case OP_Subtract:
case OP_Multiply:
case OP_Divide:
case OP_Remainder: {
int tos = p->tos;
int nos = tos - 1;
VERIFY( if( nos<0 ) goto not_enough_stack; )
if( ((aStack[tos].flags | aStack[nos].flags) & STK_Null)!=0 ){
if( ((aStack[tos].flags | aStack[nos].flags) & MEM_Null)!=0 ){
POPSTACK;
Release(p, nos);
aStack[nos].flags = STK_Null;
}else if( (aStack[tos].flags & aStack[nos].flags & STK_Int)==STK_Int ){
aStack[nos].flags = MEM_Null;
}else if( (aStack[tos].flags & aStack[nos].flags & MEM_Int)==MEM_Int ){
int a, b;
a = aStack[tos].i;
b = aStack[nos].i;
switch( pOp->opcode ){
case OP_Add: b += a; break;
case OP_Subtract: b -= a; break;
case OP_Multiply: b *= a; break;
|
︙ | | |
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
|
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
|
-
+
|
b %= a;
break;
}
}
POPSTACK;
Release(p, nos);
aStack[nos].i = b;
aStack[nos].flags = STK_Int;
aStack[nos].flags = MEM_Int;
}else{
double a, b;
Realify(p, tos);
Realify(p, nos);
a = aStack[tos].r;
b = aStack[nos].r;
switch( pOp->opcode ){
|
︙ | | |
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
|
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
|
-
+
-
+
-
-
+
+
+
-
-
+
+
-
+
-
-
-
-
+
+
+
+
-
+
-
+
|
b = ib % ia;
break;
}
}
POPSTACK;
Release(p, nos);
aStack[nos].r = b;
aStack[nos].flags = STK_Real;
aStack[nos].flags = MEM_Real;
}
break;
divide_by_zero:
sqliteVdbePopStack(p, 2);
p->tos = nos;
aStack[nos].flags = STK_Null;
aStack[nos].flags = MEM_Null;
break;
}
/* Opcode: Function P1 * P3
**
** Invoke a user function (P3 is a pointer to a Function structure that
** defines the function) with P1 string arguments taken from the stack.
** Pop all arguments from the stack and push back the result.
**
** See also: AggFunc
*/
case OP_Function: {
int n, i;
sqlite_func ctx;
n = pOp->p1;
VERIFY( if( n<0 ) goto bad_instruction; )
VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
for(i=p->tos-n+1; i<=p->tos; i++){
if( aStack[i].flags & STK_Null ){
zStack[i] = 0;
if( aStack[i].flags & MEM_Null ){
aStack[i].z = 0;
}else{
Stringify(p, i);
}
p->zArgv[i] = aStack[i].z;
}
ctx.pFunc = (FuncDef*)pOp->p3;
ctx.s.flags = STK_Null;
ctx.z = 0;
ctx.s.flags = MEM_Null;
ctx.s.z = 0;
ctx.isError = 0;
ctx.isStep = 0;
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)&zStack[p->tos-n+1]);
(*ctx.pFunc->xFunc)(&ctx, n, (const char**)&p->zArgv[p->tos-n+1]);
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
sqliteVdbePopStack(p, n);
p->tos++;
aStack[p->tos] = ctx.s;
if( ctx.s.flags & STK_Dyn ){
zStack[p->tos] = ctx.z;
}else if( ctx.s.flags & STK_Str ){
zStack[p->tos] = aStack[p->tos].z;
if( ctx.s.flags & MEM_Dyn ){
aStack[p->tos].z = ctx.s.z;
}else if( ctx.s.flags & MEM_Str ){
aStack[p->tos].z = aStack[p->tos].zShort;
}else{
zStack[p->tos] = 0;
aStack[p->tos].z = 0;
}
if( ctx.isError ){
sqliteSetString(&p->zErrMsg,
zStack[p->tos] ? zStack[p->tos] : "user function error", (char*)0);
aStack[p->tos].z ? aStack[p->tos].z : "user function error", (char*)0);
rc = SQLITE_ERROR;
}
break;
}
/* Opcode: BitAnd * * *
**
|
︙ | | |
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
|
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
|
-
+
-
+
-
+
|
case OP_BitOr:
case OP_ShiftLeft:
case OP_ShiftRight: {
int tos = p->tos;
int nos = tos - 1;
int a, b;
VERIFY( if( nos<0 ) goto not_enough_stack; )
if( (aStack[tos].flags | aStack[nos].flags) & STK_Null ){
if( (aStack[tos].flags | aStack[nos].flags) & MEM_Null ){
POPSTACK;
Release(p,nos);
aStack[nos].flags = STK_Null;
aStack[nos].flags = MEM_Null;
break;
}
Integerify(p, tos);
Integerify(p, nos);
a = aStack[tos].i;
b = aStack[nos].i;
switch( pOp->opcode ){
case OP_BitAnd: a &= b; break;
case OP_BitOr: a |= b; break;
case OP_ShiftLeft: a <<= b; break;
case OP_ShiftRight: a >>= b; break;
default: /* CANT HAPPEN */ break;
}
POPSTACK;
Release(p, nos);
aStack[nos].i = a;
aStack[nos].flags = STK_Int;
aStack[nos].flags = MEM_Int;
break;
}
/* Opcode: AddImm P1 * *
**
** Add the value P1 to whatever is on top of the stack. The result
** is always an integer.
|
︙ | | |
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
|
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
|
-
-
+
+
-
+
-
-
+
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
|
** current value if P1==0, or to the least integer that is strictly
** greater than its current value if P1==1.
*/
case OP_ForceInt: {
int tos = p->tos;
int v;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( (aStack[tos].flags & (STK_Int|STK_Real))==0
&& (zStack[tos]==0 || sqliteIsNumber(zStack[tos])==0) ){
if( (aStack[tos].flags & (MEM_Int|MEM_Real))==0
&& (aStack[tos].z==0 || sqliteIsNumber(aStack[tos].z)==0) ){
POPSTACK;
pc = pOp->p2 - 1;
break;
}
if( aStack[tos].flags & STK_Int ){
if( aStack[tos].flags & MEM_Int ){
v = aStack[tos].i + (pOp->p1!=0);
}else{
Realify(p, tos);
v = (int)aStack[tos].r;
if( aStack[tos].r>(double)v ) v++;
if( pOp->p1 && aStack[tos].r==(double)v ) v++;
}
if( aStack[tos].flags & STK_Dyn ) sqliteFree(zStack[tos]);
zStack[tos] = 0;
if( aStack[tos].flags & MEM_Dyn ) sqliteFree(aStack[tos].z);
aStack[tos].z = 0;
aStack[tos].i = v;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
break;
}
/* Opcode: MustBeInt P1 P2 *
**
** Force the top of the stack to be an integer. If the top of the
** stack is not an integer and cannot be converted into an integer
** with out data loss, then jump immediately to P2, or if P2==0
** raise an SQLITE_MISMATCH exception.
**
** If the top of the stack is not an integer and P2 is not zero and
** P1 is 1, then the stack is popped. In all other cases, the depth
** of the stack is unchanged.
*/
case OP_MustBeInt: {
int tos = p->tos;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( aStack[tos].flags & STK_Int ){
if( aStack[tos].flags & MEM_Int ){
/* Do nothing */
}else if( aStack[tos].flags & STK_Real ){
}else if( aStack[tos].flags & MEM_Real ){
int i = aStack[tos].r;
double r = (double)i;
if( r!=aStack[tos].r ){
goto mismatch;
}
aStack[tos].i = i;
}else if( aStack[tos].flags & STK_Str ){
}else if( aStack[tos].flags & MEM_Str ){
int v;
if( !toInt(zStack[tos], &v) ){
if( !toInt(aStack[tos].z, &v) ){
double r;
if( !sqliteIsNumber(zStack[tos]) ){
if( !sqliteIsNumber(aStack[tos].z) ){
goto mismatch;
}
Realify(p, tos);
assert( (aStack[tos].flags & STK_Real)!=0 );
assert( (aStack[tos].flags & MEM_Real)!=0 );
v = aStack[tos].r;
r = (double)v;
if( r!=aStack[tos].r ){
goto mismatch;
}
}
aStack[tos].i = v;
}else{
goto mismatch;
}
Release(p, tos);
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
break;
mismatch:
if( pOp->p2==0 ){
rc = SQLITE_MISMATCH;
goto abort_due_to_error;
}else{
|
︙ | | |
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
|
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
|
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
-
+
|
int tos = p->tos;
int nos = tos - 1;
int c, v;
int ft, fn;
VERIFY( if( nos<0 ) goto not_enough_stack; )
ft = aStack[tos].flags;
fn = aStack[nos].flags;
if( (ft | fn) & STK_Null ){
if( (ft | fn) & MEM_Null ){
POPSTACK;
POPSTACK;
if( pOp->p2 ){
if( pOp->p1 ) pc = pOp->p2-1;
}else{
p->tos++;
aStack[nos].flags = STK_Null;
aStack[nos].flags = MEM_Null;
}
break;
}else if( (ft & fn & STK_Int)==STK_Int ){
}else if( (ft & fn & MEM_Int)==MEM_Int ){
c = aStack[nos].i - aStack[tos].i;
}else if( (ft & STK_Int)!=0 && (fn & STK_Str)!=0 && toInt(zStack[nos],&v) ){
}else if( (ft & MEM_Int)!=0 && (fn & MEM_Str)!=0 && toInt(aStack[nos].z,&v) ){
Release(p, nos);
aStack[nos].i = v;
aStack[nos].flags = STK_Int;
aStack[nos].flags = MEM_Int;
c = aStack[nos].i - aStack[tos].i;
}else if( (fn & STK_Int)!=0 && (ft & STK_Str)!=0 && toInt(zStack[tos],&v) ){
}else if( (fn & MEM_Int)!=0 && (ft & MEM_Str)!=0 && toInt(aStack[tos].z,&v) ){
Release(p, tos);
aStack[tos].i = v;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
c = aStack[nos].i - aStack[tos].i;
}else{
Stringify(p, tos);
Stringify(p, nos);
c = sqliteCompare(zStack[nos], zStack[tos]);
c = sqliteCompare(aStack[nos].z, aStack[tos].z);
}
switch( pOp->opcode ){
case OP_Eq: c = c==0; break;
case OP_Ne: c = c!=0; break;
case OP_Lt: c = c<0; break;
case OP_Le: c = c<=0; break;
case OP_Gt: c = c>0; break;
default: c = c>=0; break;
}
POPSTACK;
POPSTACK;
if( pOp->p2 ){
if( c ) pc = pOp->p2-1;
}else{
p->tos++;
aStack[nos].flags = STK_Int;
aStack[nos].flags = MEM_Int;
aStack[nos].i = c;
}
break;
}
/* INSERT NO CODE HERE!
**
** The opcode numbers are extracted from this source file by doing
|
︙ | | |
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
|
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
|
-
+
-
+
-
+
-
+
|
case OP_StrLe:
case OP_StrGt:
case OP_StrGe: {
int tos = p->tos;
int nos = tos - 1;
int c;
VERIFY( if( nos<0 ) goto not_enough_stack; )
if( (aStack[nos].flags | aStack[tos].flags) & STK_Null ){
if( (aStack[nos].flags | aStack[tos].flags) & MEM_Null ){
POPSTACK;
POPSTACK;
if( pOp->p2 ){
if( pOp->p1 ) pc = pOp->p2-1;
}else{
p->tos++;
aStack[nos].flags = STK_Null;
aStack[nos].flags = MEM_Null;
}
break;
}else{
Stringify(p, tos);
Stringify(p, nos);
c = strcmp(zStack[nos], zStack[tos]);
c = strcmp(aStack[nos].z, aStack[tos].z);
}
/* The asserts on each case of the following switch are there to verify
** that string comparison opcodes are always exactly 6 greater than the
** corresponding numeric comparison opcodes. The code generator depends
** on this fact.
*/
switch( pOp->opcode ){
case OP_StrEq: c = c==0; assert( pOp->opcode-6==OP_Eq ); break;
case OP_StrNe: c = c!=0; assert( pOp->opcode-6==OP_Ne ); break;
case OP_StrLt: c = c<0; assert( pOp->opcode-6==OP_Lt ); break;
case OP_StrLe: c = c<=0; assert( pOp->opcode-6==OP_Le ); break;
case OP_StrGt: c = c>0; assert( pOp->opcode-6==OP_Gt ); break;
default: c = c>=0; assert( pOp->opcode-6==OP_Ge ); break;
}
POPSTACK;
POPSTACK;
if( pOp->p2 ){
if( c ) pc = pOp->p2-1;
}else{
p->tos++;
aStack[nos].flags = STK_Int;
aStack[nos].flags = MEM_Int;
aStack[nos].i = c;
}
break;
}
/* Opcode: And * * *
**
|
︙ | | |
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
|
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
|
-
+
-
+
-
+
-
+
-
+
-
-
+
+
-
-
+
+
-
+
-
+
-
+
-
+
-
+
|
case OP_And:
case OP_Or: {
int tos = p->tos;
int nos = tos - 1;
int v1, v2; /* 0==TRUE, 1==FALSE, 2==UNKNOWN or NULL */
VERIFY( if( nos<0 ) goto not_enough_stack; )
if( aStack[tos].flags & STK_Null ){
if( aStack[tos].flags & MEM_Null ){
v1 = 2;
}else{
Integerify(p, tos);
v1 = aStack[tos].i==0;
}
if( aStack[nos].flags & STK_Null ){
if( aStack[nos].flags & MEM_Null ){
v2 = 2;
}else{
Integerify(p, nos);
v2 = aStack[nos].i==0;
}
if( pOp->opcode==OP_And ){
static const unsigned char and_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
v1 = and_logic[v1*3+v2];
}else{
static const unsigned char or_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
v1 = or_logic[v1*3+v2];
}
POPSTACK;
Release(p, nos);
if( v1==2 ){
aStack[nos].flags = STK_Null;
aStack[nos].flags = MEM_Null;
}else{
aStack[nos].i = v1==0;
aStack[nos].flags = STK_Int;
aStack[nos].flags = MEM_Int;
}
break;
}
/* Opcode: Negative * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its additive inverse. If the top of the stack is NULL
** its value is unchanged.
*/
/* Opcode: AbsValue * * *
**
** Treat the top of the stack as a numeric quantity. Replace it
** with its absolute value. If the top of the stack is NULL
** its value is unchanged.
*/
case OP_Negative:
case OP_AbsValue: {
int tos = p->tos;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( aStack[tos].flags & STK_Real ){
if( aStack[tos].flags & MEM_Real ){
Release(p, tos);
if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
aStack[tos].r = -aStack[tos].r;
}
aStack[tos].flags = STK_Real;
}else if( aStack[tos].flags & STK_Int ){
aStack[tos].flags = MEM_Real;
}else if( aStack[tos].flags & MEM_Int ){
Release(p, tos);
if( pOp->opcode==OP_Negative || aStack[tos].i<0 ){
aStack[tos].i = -aStack[tos].i;
}
aStack[tos].flags = STK_Int;
}else if( aStack[tos].flags & STK_Null ){
aStack[tos].flags = MEM_Int;
}else if( aStack[tos].flags & MEM_Null ){
/* Do nothing */
}else{
Realify(p, tos);
Release(p, tos);
if( pOp->opcode==OP_Negative || aStack[tos].r<0.0 ){
aStack[tos].r = -aStack[tos].r;
}
aStack[tos].flags = STK_Real;
aStack[tos].flags = MEM_Real;
}
break;
}
/* Opcode: Not * * *
**
** Interpret the top of the stack as a boolean value. Replace it
** with its complement. If the top of the stack is NULL its value
** is unchanged.
*/
case OP_Not: {
int tos = p->tos;
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */
if( aStack[tos].flags & MEM_Null ) break; /* Do nothing to NULLs */
Integerify(p, tos);
Release(p, tos);
aStack[tos].i = !aStack[tos].i;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
break;
}
/* Opcode: BitNot * * *
**
** Interpret the top of the stack as an value. Replace it
** with its ones-complement. If the top of the stack is NULL its
** value is unchanged.
*/
case OP_BitNot: {
int tos = p->tos;
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
if( aStack[tos].flags & STK_Null ) break; /* Do nothing to NULLs */
if( aStack[tos].flags & MEM_Null ) break; /* Do nothing to NULLs */
Integerify(p, tos);
Release(p, tos);
aStack[tos].i = ~aStack[tos].i;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
break;
}
/* Opcode: Noop * * *
**
** Do nothing. This instruction is often useful as a jump
** destination.
|
︙ | | |
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
|
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
|
-
+
|
** If the value popped of the stack is NULL, then take the jump if P1
** is true and fall through if P1 is false.
*/
case OP_If:
case OP_IfNot: {
int c;
VERIFY( if( p->tos<0 ) goto not_enough_stack; )
if( aStack[p->tos].flags & STK_Null ){
if( aStack[p->tos].flags & MEM_Null ){
c = pOp->p1;
}else{
Integerify(p, p->tos);
c = aStack[p->tos].i;
if( pOp->opcode==OP_IfNot ) c = !c;
}
POPSTACK;
|
︙ | | |
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
|
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
|
-
+
-
+
|
*/
case OP_IsNull: {
int i, cnt;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; )
for(i=0; i<cnt; i++){
if( aStack[p->tos-i].flags & STK_Null ){
if( aStack[p->tos-i].flags & MEM_Null ){
pc = pOp->p2-1;
break;
}
}
if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt);
break;
}
/* Opcode: NotNull P1 P2 *
**
** Jump to P2 if the top P1 values on the stack are all not NULL. Pop the
** stack if P1 times if P1 is greater than zero. If P1 is less than
** zero then leave the stack unchanged.
*/
case OP_NotNull: {
int i, cnt;
cnt = pOp->p1;
if( cnt<0 ) cnt = -cnt;
VERIFY( if( p->tos+1-cnt<0 ) goto not_enough_stack; )
for(i=0; i<cnt && (aStack[p->tos-i].flags & STK_Null)==0; i++){}
for(i=0; i<cnt && (aStack[p->tos-i].flags & MEM_Null)==0; i++){}
if( i>=cnt ) pc = pOp->p2-1;
if( pOp->p1>0 ) sqliteVdbePopStack(p, cnt);
break;
}
/* Opcode: MakeRecord P1 P2 *
**
|
︙ | | |
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
|
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
|
-
+
|
** of data(0). Idx(k) contains the offset to the start of data(k).
** Idx(N) contains the total number of bytes in the record.
*/
nField = pOp->p1;
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
nByte = 0;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( (aStack[i].flags & STK_Null) ){
if( (aStack[i].flags & MEM_Null) ){
addUnique = pOp->p2;
}else{
Stringify(p, i);
nByte += aStack[i].n;
}
}
if( addUnique ) nByte += sizeof(p->uniqueCnt);
|
︙ | | |
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
|
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
|
-
+
-
-
+
+
-
-
-
+
+
+
-
-
+
+
|
zNewRecord[j++] = addr & 0xff;
if( idxWidth>1 ){
zNewRecord[j++] = (addr>>8)&0xff;
if( idxWidth>2 ){
zNewRecord[j++] = (addr>>16)&0xff;
}
}
if( (aStack[i].flags & STK_Null)==0 ){
if( (aStack[i].flags & MEM_Null)==0 ){
addr += aStack[i].n;
}
}
zNewRecord[j++] = addr & 0xff;
if( idxWidth>1 ){
zNewRecord[j++] = (addr>>8)&0xff;
if( idxWidth>2 ){
zNewRecord[j++] = (addr>>16)&0xff;
}
}
if( addUnique ){
memcpy(&zNewRecord[j], &p->uniqueCnt, sizeof(p->uniqueCnt));
p->uniqueCnt++;
j += sizeof(p->uniqueCnt);
}
for(i=p->tos-nField+1; i<=p->tos; i++){
if( (aStack[i].flags & STK_Null)==0 ){
memcpy(&zNewRecord[j], zStack[i], aStack[i].n);
if( (aStack[i].flags & MEM_Null)==0 ){
memcpy(&zNewRecord[j], aStack[i].z, aStack[i].n);
j += aStack[i].n;
}
}
sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
if( nByte<=NBFS ){
assert( zNewRecord==zTemp );
memcpy(aStack[p->tos].z, zTemp, nByte);
zStack[p->tos] = aStack[p->tos].z;
aStack[p->tos].flags = STK_Str;
memcpy(aStack[p->tos].zShort, zTemp, nByte);
aStack[p->tos].z = aStack[p->tos].zShort;
aStack[p->tos].flags = MEM_Str;
}else{
assert( zNewRecord!=zTemp );
aStack[p->tos].flags = STK_Str | STK_Dyn;
zStack[p->tos] = zNewRecord;
aStack[p->tos].flags = MEM_Str | MEM_Dyn;
aStack[p->tos].z = zNewRecord;
}
break;
}
/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
|
︙ | | |
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
|
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
|
-
+
-
+
-
-
+
+
-
-
+
+
-
+
-
-
+
+
-
+
-
+
+
-
+
-
-
-
+
+
+
-
-
+
+
-
+
-
+
|
nField = pOp->p1;
VERIFY( if( p->tos+1+addRowid<nField ) goto not_enough_stack; )
nByte = 0;
for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
int flags = aStack[i].flags;
int len;
char *z;
if( flags & STK_Null ){
if( flags & MEM_Null ){
nByte += 2;
containsNull = 1;
}else if( pOp->p3 && pOp->p3[j]=='t' ){
Stringify(p, i);
aStack[i].flags &= ~(STK_Int|STK_Real);
aStack[i].flags &= ~(MEM_Int|MEM_Real);
nByte += aStack[i].n+1;
}else if( (flags & (STK_Real|STK_Int))!=0 || sqliteIsNumber(zStack[i]) ){
if( (flags & (STK_Real|STK_Int))==STK_Int ){
}else if( (flags & (MEM_Real|MEM_Int))!=0 || sqliteIsNumber(aStack[i].z) ){
if( (flags & (MEM_Real|MEM_Int))==MEM_Int ){
aStack[i].r = aStack[i].i;
}else if( (flags & (STK_Real|STK_Int))==0 ){
aStack[i].r = sqliteAtoF(zStack[i]);
}else if( (flags & (MEM_Real|MEM_Int))==0 ){
aStack[i].r = sqliteAtoF(aStack[i].z);
}
Release(p, i);
z = aStack[i].z;
z = aStack[i].zShort;
sqliteRealToSortable(aStack[i].r, z);
len = strlen(z);
zStack[i] = 0;
aStack[i].flags = STK_Real;
aStack[i].z = 0;
aStack[i].flags = MEM_Real;
aStack[i].n = len+1;
nByte += aStack[i].n+1;
}else{
nByte += aStack[i].n+1;
}
}
if( nByte+sizeof(u32)>MAX_BYTES_PER_ROW ){
rc = SQLITE_TOOBIG;
goto abort_due_to_error;
}
if( addRowid ) nByte += sizeof(u32);
if( nByte<=NBFS ){
zNewKey = zTemp;
}else{
zNewKey = sqliteMallocRaw( nByte );
if( zNewKey==0 ) goto no_mem;
}
j = 0;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( aStack[i].flags & STK_Null ){
if( aStack[i].flags & MEM_Null ){
zNewKey[j++] = 'a';
zNewKey[j++] = 0;
}else{
if( aStack[i].flags & (STK_Int|STK_Real) ){
if( aStack[i].flags & (MEM_Int|MEM_Real) ){
zNewKey[j++] = 'b';
}else{
zNewKey[j++] = 'c';
}
/*** Is this right? ****/
memcpy(&zNewKey[j], zStack[i] ? zStack[i] : aStack[i].z, aStack[i].n);
memcpy(&zNewKey[j],aStack[i].z?aStack[i].z:aStack[i].zShort,aStack[i].n);
j += aStack[i].n;
}
}
if( addRowid ){
u32 iKey;
Integerify(p, p->tos-nField);
iKey = intToKey(aStack[p->tos-nField].i);
memcpy(&zNewKey[j], &iKey, sizeof(u32));
sqliteVdbePopStack(p, nField+1);
if( pOp->p2 && containsNull ) pc = pOp->p2 - 1;
}else{
if( pOp->p2==0 ) sqliteVdbePopStack(p, nField+addRowid);
}
p->tos++;
aStack[p->tos].n = nByte;
if( nByte<=NBFS ){
assert( zNewKey==zTemp );
zStack[p->tos] = aStack[p->tos].z;
memcpy(zStack[p->tos], zTemp, nByte);
aStack[p->tos].flags = STK_Str;
aStack[p->tos].z = aStack[p->tos].zShort;
memcpy(aStack[p->tos].z, zTemp, nByte);
aStack[p->tos].flags = MEM_Str;
}else{
aStack[p->tos].flags = STK_Str|STK_Dyn;
zStack[p->tos] = zNewKey;
aStack[p->tos].flags = MEM_Str|MEM_Dyn;
aStack[p->tos].z = zNewKey;
}
break;
}
/* Opcode: IncrKey * * *
**
** The top of the stack should contain an index key generated by
** The MakeKey opcode. This routine increases the least significant
** byte of that key by one. This is used so that the MoveTo opcode
** will move to the first entry greater than the key rather than to
** the key itself.
*/
case OP_IncrKey: {
int tos = p->tos;
VERIFY( if( tos<0 ) goto bad_instruction );
Stringify(p, tos);
if( aStack[tos].flags & (STK_Static|STK_Ephem) ){
if( aStack[tos].flags & (MEM_Static|MEM_Ephem) ){
/* CANT HAPPEN. The IncrKey opcode is only applied to keys
** generated by MakeKey or MakeIdxKey and the results of those
** operands are always dynamic strings.
*/
goto abort_due_to_error;
}
zStack[tos][aStack[tos].n-1]++;
aStack[tos].z[aStack[tos].n-1]++;
break;
}
/* Opcode: Checkpoint P1 * *
**
** Begin a checkpoint. A checkpoint is the beginning of a operation that
** is part of a larger transaction but which might need to be rolled back
|
︙ | | |
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
|
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
|
-
+
|
int i = ++p->tos;
int aMeta[SQLITE_N_BTREE_META];
assert( pOp->p2<SQLITE_N_BTREE_META );
assert( pOp->p1>=0 && pOp->p1<db->nDb );
assert( db->aDb[pOp->p1].pBt!=0 );
rc = sqliteBtreeGetMeta(db->aDb[pOp->p1].pBt, aMeta);
aStack[i].i = aMeta[1+pOp->p2];
aStack[i].flags = STK_Int;
aStack[i].flags = MEM_Int;
break;
}
/* Opcode: SetCookie P1 P2 *
**
** Write the top of the stack into cookie number P2 of database P1.
** P2==0 is the schema version. P2==1 is the database format.
|
︙ | | |
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
|
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
|
-
+
-
+
|
VERIFY( if( tos<0 ) goto not_enough_stack; )
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->pCursor!=0 ){
int res, oc;
pC->nullRow = 0;
if( aStack[tos].flags & STK_Int ){
if( aStack[tos].flags & MEM_Int ){
int iKey = intToKey(aStack[tos].i);
if( pOp->p2==0 && pOp->opcode==OP_MoveTo ){
pC->movetoTarget = iKey;
pC->deferredMoveto = 1;
POPSTACK;
break;
}
sqliteBtreeMoveto(pC->pCursor, (char*)&iKey, sizeof(int), &res);
pC->lastRecno = aStack[tos].i;
pC->recnoIsValid = res==0;
}else{
Stringify(p, tos);
sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
sqliteBtreeMoveto(pC->pCursor, aStack[tos].z, aStack[tos].n, &res);
pC->recnoIsValid = 0;
}
pC->deferredMoveto = 0;
sqlite_search_count++;
oc = pOp->opcode;
if( oc==OP_MoveTo && res<0 ){
sqliteBtreeNext(pC->pCursor, &res);
|
︙ | | |
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
|
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
|
-
+
|
int tos = p->tos;
int alreadyExists = 0;
Cursor *pC;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( VERIFY( i>=0 && i<p->nCursor && ) (pC = &p->aCsr[i])->pCursor!=0 ){
int res, rx;
Stringify(p, tos);
rx = sqliteBtreeMoveto(pC->pCursor, zStack[tos], aStack[tos].n, &res);
rx = sqliteBtreeMoveto(pC->pCursor, aStack[tos].z, aStack[tos].n, &res);
alreadyExists = rx==SQLITE_OK && res==0;
pC->deferredMoveto = 0;
}
if( pOp->opcode==OP_Found ){
if( alreadyExists ) pc = pOp->p2 - 1;
}else{
if( !alreadyExists ) pc = pOp->p2 - 1;
|
︙ | | |
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
|
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
|
-
+
|
int v; /* The record number on the P1 entry that matches K */
char *zKey; /* The value of K */
int nKey; /* Number of bytes in K */
/* Make sure K is a string and make zKey point to K
*/
Stringify(p, nos);
zKey = zStack[nos];
zKey = aStack[nos].z;
nKey = aStack[nos].n;
assert( nKey >= 4 );
/* Search for an entry in P1 where all but the last four bytes match K.
** If there is no such entry, jump immediately to P2.
*/
assert( p->aCsr[i].deferredMoveto==0 );
|
︙ | | |
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
|
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
|
-
+
|
/* The last four bytes of the key are different from R. Convert the
** last four bytes of the key into an integer and push it onto the
** stack. (These bytes are the record number of an entry that
** violates a UNIQUE constraint.)
*/
p->tos++;
aStack[tos].i = v;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
}
break;
}
/* Opcode: NotExists P1 P2 *
**
** Use the top of the stack as a integer key. If a record with that key
|
︙ | | |
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
|
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
|
-
+
|
case OP_NotExists: {
int i = pOp->p1;
int tos = p->tos;
BtCursor *pCrsr;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rx, iKey;
assert( aStack[tos].flags & STK_Int );
assert( aStack[tos].flags & MEM_Int );
iKey = intToKey(aStack[tos].i);
rx = sqliteBtreeMoveto(pCrsr, (char*)&iKey, sizeof(int), &res);
p->aCsr[i].lastRecno = aStack[tos].i;
p->aCsr[i].recnoIsValid = res==0;
p->aCsr[i].nullRow = 0;
if( rx!=SQLITE_OK || res!=0 ){
pc = pOp->p2 - 1;
|
︙ | | |
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
|
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
|
-
+
|
}
}
pC->recnoIsValid = 0;
pC->deferredMoveto = 0;
}
p->tos++;
aStack[p->tos].i = v;
aStack[p->tos].flags = STK_Int;
aStack[p->tos].flags = MEM_Int;
break;
}
/* Opcode: PutIntKey P1 P2 *
**
** Write an entry into the table of cursor P1. A new entry is
** created if it doesn't already exist or the data for an existing
|
︙ | | |
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
|
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
|
-
+
-
+
-
-
-
-
+
+
+
+
-
+
-
+
|
if( VERIFY( i>=0 && i<p->nCursor && )
((pC = &p->aCsr[i])->pCursor!=0 || pC->pseudoTable) ){
char *zKey;
int nKey, iKey;
if( pOp->opcode==OP_PutStrKey ){
Stringify(p, nos);
nKey = aStack[nos].n;
zKey = zStack[nos];
zKey = aStack[nos].z;
}else{
assert( aStack[nos].flags & STK_Int );
assert( aStack[nos].flags & MEM_Int );
nKey = sizeof(int);
iKey = intToKey(aStack[nos].i);
zKey = (char*)&iKey;
if( pOp->p2 ){
db->nChange++;
db->lastRowid = aStack[nos].i;
}
if( pC->nextRowidValid && aStack[nos].i>=pC->nextRowid ){
pC->nextRowidValid = 0;
}
}
if( pC->pseudoTable ){
/* PutStrKey does not work for pseudo-tables.
** The following assert makes sure we are not trying to use
** PutStrKey on a pseudo-table
*/
assert( pOp->opcode==OP_PutIntKey );
sqliteFree(pC->pData);
pC->iKey = iKey;
pC->nData = aStack[tos].n;
if( aStack[tos].flags & STK_Dyn ){
pC->pData = zStack[tos];
zStack[tos] = 0;
aStack[tos].flags = STK_Null;
if( aStack[tos].flags & MEM_Dyn ){
pC->pData = aStack[tos].z;
aStack[tos].z = 0;
aStack[tos].flags = MEM_Null;
}else{
pC->pData = sqliteMallocRaw( pC->nData );
if( pC->pData ){
memcpy(pC->pData, zStack[tos], pC->nData);
memcpy(pC->pData, aStack[tos].z, pC->nData);
}
}
pC->nullRow = 0;
}else{
rc = sqliteBtreeInsert(pC->pCursor, zKey, nKey,
zStack[tos], aStack[tos].n);
aStack[tos].z, aStack[tos].n);
}
pC->recnoIsValid = 0;
pC->deferredMoveto = 0;
}
POPSTACK;
POPSTACK;
break;
|
︙ | | |
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
|
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
|
-
+
-
+
-
-
+
+
-
-
+
+
-
+
-
+
-
-
+
+
-
+
|
int tos = ++p->tos;
Cursor *pC;
int n;
assert( i>=0 && i<p->nCursor );
pC = &p->aCsr[i];
if( pC->nullRow ){
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
}else if( pC->pCursor!=0 ){
BtCursor *pCrsr = pC->pCursor;
sqliteVdbeCursorMoveto(pC);
if( pC->nullRow ){
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
break;
}else if( pC->keyAsData || pOp->opcode==OP_RowKey ){
sqliteBtreeKeySize(pCrsr, &n);
}else{
sqliteBtreeDataSize(pCrsr, &n);
}
aStack[tos].n = n;
if( n<=NBFS ){
aStack[tos].flags = STK_Str;
zStack[tos] = aStack[tos].z;
aStack[tos].flags = MEM_Str;
aStack[tos].z = aStack[tos].zShort;
}else{
char *z = sqliteMallocRaw( n );
if( z==0 ) goto no_mem;
aStack[tos].flags = STK_Str | STK_Dyn;
zStack[tos] = z;
aStack[tos].flags = MEM_Str | MEM_Dyn;
aStack[tos].z = z;
}
if( pC->keyAsData || pOp->opcode==OP_RowKey ){
sqliteBtreeKey(pCrsr, 0, n, zStack[tos]);
sqliteBtreeKey(pCrsr, 0, n, aStack[tos].z);
}else{
sqliteBtreeData(pCrsr, 0, n, zStack[tos]);
sqliteBtreeData(pCrsr, 0, n, aStack[tos].z);
}
}else if( pC->pseudoTable ){
aStack[tos].n = pC->nData;
zStack[tos] = pC->pData;
aStack[tos].flags = STK_Str|STK_Ephem;
aStack[tos].z = pC->pData;
aStack[tos].flags = MEM_Str|MEM_Ephem;
}else{
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
}
break;
}
/* Opcode: Column P1 P2 *
**
** Interpret the data that cursor P1 points to as
|
︙ | | |
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
|
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
|
-
-
+
+
|
BtCursor *pCrsr;
int idxWidth;
unsigned char aHdr[10];
assert( i<p->nCursor );
if( i<0 ){
VERIFY( if( tos+i<0 ) goto bad_instruction; )
VERIFY( if( (aStack[tos+i].flags & STK_Str)==0 ) goto bad_instruction; )
zRec = zStack[tos+i];
VERIFY( if( (aStack[tos+i].flags & MEM_Str)==0 ) goto bad_instruction; )
zRec = aStack[tos+i].z;
payloadSize = aStack[tos+i].n;
}else if( (pC = &p->aCsr[i])->pCursor!=0 ){
sqliteVdbeCursorMoveto(pC);
zRec = 0;
pCrsr = pC->pCursor;
if( pC->nullRow ){
payloadSize = 0;
|
︙ | | |
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
|
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
|
-
+
|
payloadSize = 0;
}
/* Figure out how many bytes in the column data and where the column
** data begins.
*/
if( payloadSize==0 ){
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
p->tos = tos;
break;
}else if( payloadSize<256 ){
idxWidth = 1;
}else if( payloadSize<65536 ){
idxWidth = 2;
}else{
|
︙ | | |
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
|
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
|
-
+
-
+
-
+
-
-
+
+
-
-
+
+
-
+
-
+
|
goto abort_due_to_error;
}
/* amt and offset now hold the offset to the start of data and the
** amount of data. Go get the data and put it on the stack.
*/
if( amt==0 ){
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
}else if( zRec ){
aStack[tos].flags = STK_Str | STK_Ephem;
aStack[tos].flags = MEM_Str | MEM_Ephem;
aStack[tos].n = amt;
zStack[tos] = &zRec[offset];
aStack[tos].z = &zRec[offset];
}else{
if( amt<=NBFS ){
aStack[tos].flags = STK_Str;
zStack[tos] = aStack[tos].z;
aStack[tos].flags = MEM_Str;
aStack[tos].z = aStack[tos].zShort;
aStack[tos].n = amt;
}else{
char *z = sqliteMallocRaw( amt );
if( z==0 ) goto no_mem;
aStack[tos].flags = STK_Str | STK_Dyn;
zStack[tos] = z;
aStack[tos].flags = MEM_Str | MEM_Dyn;
aStack[tos].z = z;
aStack[tos].n = amt;
}
if( pC->keyAsData ){
sqliteBtreeKey(pCrsr, offset, amt, zStack[tos]);
sqliteBtreeKey(pCrsr, offset, amt, aStack[tos].z);
}else{
sqliteBtreeData(pCrsr, offset, amt, zStack[tos]);
sqliteBtreeData(pCrsr, offset, amt, aStack[tos].z);
}
}
p->tos = tos;
break;
}
/* Opcode: Recno P1 * *
|
︙ | | |
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
|
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
|
-
+
-
+
|
pC = &p->aCsr[i];
sqliteVdbeCursorMoveto(pC);
if( pC->recnoIsValid ){
v = pC->lastRecno;
}else if( pC->pseudoTable ){
v = keyToInt(pC->iKey);
}else if( pC->nullRow || pC->pCursor==0 ){
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
break;
}else{
assert( pC->pCursor!=0 );
sqliteBtreeKey(pC->pCursor, 0, sizeof(u32), (char*)&v);
v = keyToInt(v);
}
aStack[tos].i = v;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
break;
}
/* Opcode: FullKey P1 * *
**
** Extract the complete key from the record that cursor P1 is currently
** pointing to and push the key onto the stack as a string.
|
︙ | | |
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
|
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
|
-
+
-
-
+
+
-
+
|
if( amt<=0 ){
rc = SQLITE_CORRUPT;
goto abort_due_to_error;
}
if( amt>NBFS ){
z = sqliteMallocRaw( amt );
if( z==0 ) goto no_mem;
aStack[tos].flags = STK_Str | STK_Dyn;
aStack[tos].flags = MEM_Str | MEM_Dyn;
}else{
z = aStack[tos].z;
aStack[tos].flags = STK_Str;
z = aStack[tos].zShort;
aStack[tos].flags = MEM_Str;
}
sqliteBtreeKey(pCrsr, 0, amt, z);
zStack[tos] = z;
aStack[tos].z = z;
aStack[tos].n = amt;
}
break;
}
/* Opcode: NullRow P1 * *
**
|
︙ | | |
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
|
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
|
-
+
|
case OP_IdxPut: {
int i = pOp->p1;
int tos = p->tos;
BtCursor *pCrsr;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
int nKey = aStack[tos].n;
const char *zKey = zStack[tos];
const char *zKey = aStack[tos].z;
if( pOp->p2 ){
int res, n;
assert( aStack[tos].n >= 4 );
rc = sqliteBtreeMoveto(pCrsr, zKey, nKey-4, &res);
if( rc!=SQLITE_OK ) goto abort_due_to_error;
while( res!=0 ){
int c;
|
︙ | | |
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
|
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
|
-
+
|
case OP_IdxDelete: {
int i = pOp->p1;
int tos = p->tos;
BtCursor *pCrsr;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
int rx, res;
rx = sqliteBtreeMoveto(pCrsr, zStack[tos], aStack[tos].n, &res);
rx = sqliteBtreeMoveto(pCrsr, aStack[tos].z, aStack[tos].n, &res);
if( rx==SQLITE_OK && res==0 ){
rc = sqliteBtreeDelete(pCrsr);
}
assert( p->aCsr[i].deferredMoveto==0 );
}
POPSTACK;
break;
|
︙ | | |
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
|
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
|
-
+
-
+
|
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
int v;
int sz;
assert( p->aCsr[i].deferredMoveto==0 );
sqliteBtreeKeySize(pCrsr, &sz);
if( sz<sizeof(u32) ){
aStack[tos].flags = STK_Null;
aStack[tos].flags = MEM_Null;
}else{
sqliteBtreeKey(pCrsr, sz - sizeof(u32), sizeof(u32), (char*)&v);
v = keyToInt(v);
aStack[tos].i = v;
aStack[tos].flags = STK_Int;
aStack[tos].flags = MEM_Int;
}
}
break;
}
/* Opcode: IdxGT P1 P2 *
**
|
︙ | | |
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
|
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
|
-
+
|
BtCursor *pCrsr;
if( VERIFY( i>=0 && i<p->nCursor && ) (pCrsr = p->aCsr[i].pCursor)!=0 ){
int res, rc;
Stringify(p, tos);
assert( p->aCsr[i].deferredMoveto==0 );
rc = sqliteBtreeKeyCompare(pCrsr, zStack[tos], aStack[tos].n, 4, &res);
rc = sqliteBtreeKeyCompare(pCrsr, aStack[tos].z, aStack[tos].n, 4, &res);
if( rc!=SQLITE_OK ){
break;
}
if( pOp->opcode==OP_IdxLT ){
res = -res;
}else if( pOp->opcode==OP_IdxGE ){
res++;
|
︙ | | |
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
|
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
|
-
-
+
+
|
case OP_IdxIsNull: {
int i = pOp->p1;
int tos = p->tos;
int k, n;
const char *z;
assert( tos>=0 );
assert( aStack[tos].flags & STK_Str );
z = zStack[tos];
assert( aStack[tos].flags & MEM_Str );
z = aStack[tos].z;
n = aStack[tos].n;
for(k=0; k<n && i>0; i--){
if( z[k]=='a' ){
pc = pOp->p2-1;
break;
}
while( k<n && z[k] ){ k++; }
|
︙ | | |
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
|
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
|
-
+
|
if( pOp->opcode==OP_CreateTable ){
rc = sqliteBtreeCreateTable(db->aDb[pOp->p2].pBt, &pgno);
}else{
rc = sqliteBtreeCreateIndex(db->aDb[pOp->p2].pBt, &pgno);
}
if( rc==SQLITE_OK ){
aStack[i].i = pgno;
aStack[i].flags = STK_Int;
aStack[i].flags = MEM_Int;
*(u32*)pOp->p3 = pgno;
pOp->p3 = 0;
}
break;
}
/* Opcode: IntegrityCk P1 P2 *
|
︙ | | |
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
|
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
|
-
+
-
+
-
+
-
+
|
}
aRoot[j] = 0;
sqliteHashClear(&pSet->hash);
pSet->prev = 0;
z = sqliteBtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
if( z==0 || z[0]==0 ){
if( z ) sqliteFree(z);
zStack[tos] = "ok";
aStack[tos].z = "ok";
aStack[tos].n = 3;
aStack[tos].flags = STK_Str | STK_Static;
aStack[tos].flags = MEM_Str | MEM_Static;
}else{
zStack[tos] = z;
aStack[tos].z = z;
aStack[tos].n = strlen(z) + 1;
aStack[tos].flags = STK_Str | STK_Dyn;
aStack[tos].flags = MEM_Str | MEM_Dyn;
}
sqliteFree(aRoot);
break;
}
/* Opcode: ListWrite * * *
**
|
︙ | | |
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
|
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
|
-
-
+
+
|
VERIFY(
if( pKeylist->nRead<0
|| pKeylist->nRead>=pKeylist->nUsed
|| pKeylist->nRead>=pKeylist->nKey ) goto bad_instruction;
)
p->tos++;
aStack[p->tos].i = pKeylist->aKey[pKeylist->nRead++];
aStack[p->tos].flags = STK_Int;
zStack[p->tos] = 0;
aStack[p->tos].flags = MEM_Int;
aStack[p->tos].z = 0;
if( pKeylist->nRead>=pKeylist->nUsed ){
p->pList = pKeylist->pNext;
sqliteFree(pKeylist);
}
}else{
pc = pOp->p2 - 1;
}
|
︙ | | |
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
|
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
|
-
+
-
+
-
-
+
+
-
+
-
-
+
+
|
Sorter *pSorter;
VERIFY( if( tos<1 ) goto not_enough_stack; )
if( Dynamicify(p, tos) || Dynamicify(p, nos) ) goto no_mem;
pSorter = sqliteMallocRaw( sizeof(Sorter) );
if( pSorter==0 ) goto no_mem;
pSorter->pNext = p->pSort;
p->pSort = pSorter;
assert( aStack[tos].flags & STK_Dyn );
assert( aStack[tos].flags & MEM_Dyn );
pSorter->nKey = aStack[tos].n;
pSorter->zKey = zStack[tos];
pSorter->zKey = aStack[tos].z;
pSorter->nData = aStack[nos].n;
if( aStack[nos].flags & STK_Dyn ){
pSorter->pData = zStack[nos];
if( aStack[nos].flags & MEM_Dyn ){
pSorter->pData = aStack[nos].z;
}else{
pSorter->pData = sqliteStrDup(zStack[nos]);
pSorter->pData = sqliteStrDup(aStack[nos].z);
}
aStack[tos].flags = 0;
aStack[nos].flags = 0;
zStack[tos] = 0;
zStack[nos] = 0;
aStack[tos].z = 0;
aStack[nos].z = 0;
p->tos -= 2;
break;
}
/* Opcode: SortMakeRec P1 * *
**
** The top P1 elements are the arguments to a callback. Form these
|
︙ | | |
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
|
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
|
-
+
-
+
-
+
-
-
+
+
|
int nField;
int i, j;
nField = pOp->p1;
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
nByte = 0;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( (aStack[i].flags & STK_Null)==0 ){
if( (aStack[i].flags & MEM_Null)==0 ){
Stringify(p, i);
nByte += aStack[i].n;
}
}
nByte += sizeof(char*)*(nField+1);
azArg = sqliteMallocRaw( nByte );
if( azArg==0 ) goto no_mem;
z = (char*)&azArg[nField+1];
for(j=0, i=p->tos-nField+1; i<=p->tos; i++, j++){
if( aStack[i].flags & STK_Null ){
if( aStack[i].flags & MEM_Null ){
azArg[j] = 0;
}else{
azArg[j] = z;
strcpy(z, zStack[i]);
strcpy(z, aStack[i].z);
z += aStack[i].n;
}
}
sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
zStack[p->tos] = (char*)azArg;
aStack[p->tos].flags = STK_Str|STK_Dyn;
aStack[p->tos].z = (char*)azArg;
aStack[p->tos].flags = MEM_Str|MEM_Dyn;
break;
}
/* Opcode: SortMakeKey * * P3
**
** Convert the top few entries of the stack into a sort key. The
** number of stack entries consumed is the number of characters in
|
︙ | | |
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
|
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
|
-
+
-
+
-
+
-
-
+
+
|
int nField;
int i, j, k;
nField = strlen(pOp->p3);
VERIFY( if( p->tos+1<nField ) goto not_enough_stack; )
nByte = 1;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( (aStack[i].flags & STK_Null)!=0 ){
if( (aStack[i].flags & MEM_Null)!=0 ){
nByte += 2;
}else{
Stringify(p, i);
nByte += aStack[i].n+2;
}
}
zNewKey = sqliteMallocRaw( nByte );
if( zNewKey==0 ) goto no_mem;
j = 0;
k = 0;
for(i=p->tos-nField+1; i<=p->tos; i++){
if( (aStack[i].flags & STK_Null)!=0 ){
if( (aStack[i].flags & MEM_Null)!=0 ){
zNewKey[j++] = 'N';
zNewKey[j++] = 0;
k++;
}else{
zNewKey[j++] = pOp->p3[k++];
memcpy(&zNewKey[j], zStack[i], aStack[i].n-1);
memcpy(&zNewKey[j], aStack[i].z, aStack[i].n-1);
j += aStack[i].n-1;
zNewKey[j++] = 0;
}
}
zNewKey[j] = 0;
assert( j<nByte );
sqliteVdbePopStack(p, nField);
p->tos++;
aStack[p->tos].n = nByte;
aStack[p->tos].flags = STK_Str|STK_Dyn;
zStack[p->tos] = zNewKey;
aStack[p->tos].flags = MEM_Str|MEM_Dyn;
aStack[p->tos].z = zNewKey;
break;
}
/* Opcode: Sort * * *
**
** Sort all elements on the sorter. The algorithm is a
** mergesort.
|
︙ | | |
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
|
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
|
-
+
-
+
-
+
-
+
|
*/
case OP_SortNext: {
Sorter *pSorter = p->pSort;
CHECK_FOR_INTERRUPT;
if( pSorter!=0 ){
p->pSort = pSorter->pNext;
p->tos++;
zStack[p->tos] = pSorter->pData;
aStack[p->tos].z = pSorter->pData;
aStack[p->tos].n = pSorter->nData;
aStack[p->tos].flags = STK_Str|STK_Dyn;
aStack[p->tos].flags = MEM_Str|MEM_Dyn;
sqliteFree(pSorter->zKey);
sqliteFree(pSorter);
}else{
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: SortCallback P1 * *
**
** The top of the stack contains a callback record built using
** the SortMakeRec operation with the same P1 value as this
** instruction. Pop this record from the stack and invoke the
** callback on it.
*/
case OP_SortCallback: {
int i = p->tos;
VERIFY( if( i<0 ) goto not_enough_stack; )
if( p->xCallback==0 ){
p->pc = pc+1;
p->azResColumn = (char**)zStack[i];
p->azResColumn = (char**)aStack[i].z;
p->nResColumn = pOp->p1;
p->popStack = 1;
return SQLITE_ROW;
}else{
if( sqliteSafetyOff(db) ) goto abort_due_to_misuse;
if( p->xCallback(p->pCbArg, pOp->p1, (char**)zStack[i], p->azColName)!=0 ){
if( p->xCallback(p->pCbArg, pOp->p1, (char**)aStack[i].z, p->azColName)!=0){
rc = SQLITE_ABORT;
}
if( sqliteSafetyOn(db) ) goto abort_due_to_misuse;
p->nCallback++;
}
POPSTACK;
if( sqlite_malloc_failed ) goto no_mem;
|
︙ | | |
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
|
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
|
-
-
+
+
-
-
+
+
|
z = p->azField[i];
}else{
z = 0;
}
p->tos++;
if( z ){
aStack[p->tos].n = strlen(z) + 1;
zStack[p->tos] = z;
aStack[p->tos].flags = STK_Str;
aStack[p->tos].z = z;
aStack[p->tos].flags = MEM_Str;
}else{
aStack[p->tos].n = 0;
zStack[p->tos] = 0;
aStack[p->tos].flags = STK_Null;
aStack[p->tos].z = 0;
aStack[p->tos].flags = MEM_Null;
}
break;
}
/* Opcode: MemStore P1 P2 *
**
** Write the top of the stack into memory location P1.
|
︙ | | |
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
|
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
|
-
-
+
+
-
-
+
+
-
-
-
-
-
-
-
+
+
+
+
+
+
+
-
-
-
+
+
+
-
+
-
+
-
-
-
-
-
+
+
+
+
+
-
-
-
+
+
+
|
Mem *aMem;
p->nMem = i + 5;
aMem = sqliteRealloc(p->aMem, p->nMem*sizeof(p->aMem[0]));
if( aMem==0 ) goto no_mem;
if( aMem!=p->aMem ){
int j;
for(j=0; j<nOld; j++){
if( aMem[j].z==p->aMem[j].s.z ){
aMem[j].z = aMem[j].s.z;
if( aMem[j].z==p->aMem[j].zShort ){
aMem[j].z = aMem[j].zShort;
}
}
}
p->aMem = aMem;
if( nOld<p->nMem ){
memset(&p->aMem[nOld], 0, sizeof(p->aMem[0])*(p->nMem-nOld));
}
}
pMem = &p->aMem[i];
flags = pMem->s.flags;
if( flags & STK_Dyn ){
flags = pMem->flags;
if( flags & MEM_Dyn ){
zOld = pMem->z;
}else{
zOld = 0;
}
pMem->s = aStack[tos];
flags = pMem->s.flags;
if( flags & (STK_Static|STK_Dyn|STK_Ephem) ){
if( (flags & STK_Static)!=0 || (pOp->p2 && (flags & STK_Dyn)!=0) ){
pMem->z = zStack[tos];
}else if( flags & STK_Str ){
pMem->z = sqliteMallocRaw( pMem->s.n );
*pMem = aStack[tos];
flags = pMem->flags;
if( flags & (MEM_Static|MEM_Dyn|MEM_Ephem) ){
if( (flags & MEM_Static)!=0 || (pOp->p2 && (flags & MEM_Dyn)!=0) ){
/* pMem->z = zStack[tos]; *** do nothing */
}else if( flags & MEM_Str ){
pMem->z = sqliteMallocRaw( pMem->n );
if( pMem->z==0 ) goto no_mem;
memcpy(pMem->z, zStack[tos], pMem->s.n);
pMem->s.flags |= STK_Dyn;
pMem->s.flags &= ~(STK_Static|STK_Ephem);
memcpy(pMem->z, aStack[tos].z, pMem->n);
pMem->flags |= MEM_Dyn;
pMem->flags &= ~(MEM_Static|MEM_Ephem);
}
}else{
pMem->z = pMem->s.z;
pMem->z = pMem->zShort;
}
if( zOld ) sqliteFree(zOld);
if( pOp->p2 ){
zStack[tos] = 0;
aStack[tos].z = 0;
aStack[tos].flags = 0;
POPSTACK;
}
break;
}
/* Opcode: MemLoad P1 * *
**
** Push a copy of the value in memory location P1 onto the stack.
**
** If the value is a string, then the value pushed is a pointer to
** the string that is stored in the memory location. If the memory
** location is subsequently changed (using OP_MemStore) then the
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
int tos = ++p->tos;
int i = pOp->p1;
VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
memcpy(&aStack[tos], &p->aMem[i].s, sizeof(aStack[tos])-NBFS);;
if( aStack[tos].flags & STK_Str ){
zStack[tos] = p->aMem[i].z;
aStack[tos].flags |= STK_Ephem;
aStack[tos].flags &= ~(STK_Dyn|STK_Static);
memcpy(&aStack[tos], &p->aMem[i], sizeof(aStack[tos])-NBFS);;
if( aStack[tos].flags & MEM_Str ){
/* aStack[tos].z = p->aMem[i].z; */
aStack[tos].flags |= MEM_Ephem;
aStack[tos].flags &= ~(MEM_Dyn|MEM_Static);
}
break;
}
/* Opcode: MemIncr P1 P2 *
**
** Increment the integer valued memory cell P1 by 1. If P2 is not zero
** and the result after the increment is greater than zero, then jump
** to P2.
**
** This instruction throws an error if the memory cell is not initially
** an integer.
*/
case OP_MemIncr: {
int i = pOp->p1;
Mem *pMem;
VERIFY( if( i<0 || i>=p->nMem ) goto bad_instruction; )
pMem = &p->aMem[i];
VERIFY( if( pMem->s.flags != STK_Int ) goto bad_instruction; )
pMem->s.i++;
if( pOp->p2>0 && pMem->s.i>0 ){
VERIFY( if( pMem->flags != MEM_Int ) goto bad_instruction; )
pMem->i++;
if( pOp->p2>0 && pMem->i>0 ){
pc = pOp->p2 - 1;
}
break;
}
/* Opcode: AggReset * P2 *
**
|
︙ | | |
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
|
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
|
-
+
-
-
+
+
+
-
+
-
+
-
+
-
+
|
int n = pOp->p2;
int i;
Mem *pMem;
sqlite_func ctx;
VERIFY( if( n<0 ) goto bad_instruction; )
VERIFY( if( p->tos+1<n ) goto not_enough_stack; )
VERIFY( if( aStack[p->tos].flags!=STK_Int ) goto bad_instruction; )
VERIFY( if( aStack[p->tos].flags!=MEM_Int ) goto bad_instruction; )
for(i=p->tos-n; i<p->tos; i++){
if( aStack[i].flags & STK_Null ){
zStack[i] = 0;
if( aStack[i].flags & MEM_Null ){
aStack[i].z = 0;
}else{
Stringify(p, i);
}
p->zArgv[i] = aStack[i].z;
}
i = aStack[p->tos].i;
VERIFY( if( i<0 || i>=p->agg.nMem ) goto bad_instruction; )
ctx.pFunc = (FuncDef*)pOp->p3;
pMem = &p->agg.pCurrent->aMem[i];
ctx.z = pMem->s.z;
ctx.s.z = pMem->zShort; /* Space used for small aggregate contexts */
ctx.pAgg = pMem->z;
ctx.cnt = ++pMem->s.i;
ctx.cnt = ++pMem->i;
ctx.isError = 0;
ctx.isStep = 1;
(ctx.pFunc->xStep)(&ctx, n, (const char**)&zStack[p->tos-n]);
(ctx.pFunc->xStep)(&ctx, n, (const char**)&p->zArgv[p->tos-n]);
pMem->z = ctx.pAgg;
pMem->s.flags = STK_AggCtx;
pMem->flags = MEM_AggCtx;
sqliteVdbePopStack(p, n+1);
if( ctx.isError ){
rc = SQLITE_ERROR;
}
break;
}
|
︙ | | |
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
|
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
|
-
+
|
int tos = p->tos;
AggElem *pElem;
char *zKey;
int nKey;
VERIFY( if( tos<0 ) goto not_enough_stack; )
Stringify(p, tos);
zKey = zStack[tos];
zKey = aStack[tos].z;
nKey = aStack[tos].n;
pElem = sqliteHashFind(&p->agg.hash, zKey, nKey);
if( pElem ){
p->agg.pCurrent = pElem;
pc = pOp->p2 - 1;
}else{
AggInsert(&p->agg, zKey, nKey);
|
︙ | | |
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
|
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
|
-
+
-
-
+
+
-
-
+
-
-
-
-
+
+
+
+
-
+
-
-
-
+
+
|
int i = pOp->p2;
int tos = p->tos;
VERIFY( if( tos<0 ) goto not_enough_stack; )
if( pFocus==0 ) goto no_mem;
if( VERIFY( i>=0 && ) i<p->agg.nMem ){
Mem *pMem = &pFocus->aMem[i];
char *zOld;
if( pMem->s.flags & STK_Dyn ){
if( pMem->flags & MEM_Dyn ){
zOld = pMem->z;
}else{
zOld = 0;
}
Deephemeralize(p, tos);
pMem->s = aStack[tos];
if( pMem->s.flags & STK_Dyn ){
*pMem = aStack[tos];
if( pMem->flags & MEM_Dyn ){
pMem->z = zStack[tos];
zStack[tos] = 0;
aStack[tos].z = 0;
aStack[tos].flags = 0;
}else if( pMem->s.flags & (STK_Static|STK_AggCtx) ){
pMem->z = zStack[tos];
}else if( pMem->s.flags & STK_Str ){
pMem->z = pMem->s.z;
}else if( pMem->flags & (MEM_Static|MEM_AggCtx) ){
/* pMem->z = zStack[tos]; *** do nothing */
}else if( pMem->flags & MEM_Str ){
pMem->z = pMem->zShort;
}
if( zOld ) sqliteFree(zOld);
}
POPSTACK;
break;
}
/* Opcode: AggGet * P2 *
**
** Push a new entry onto the stack which is a copy of the P2-th field
** of the current aggregate. Strings are not duplicated so
** string values will be ephemeral.
*/
case OP_AggGet: {
AggElem *pFocus = AggInFocus(p->agg);
int i = pOp->p2;
int tos = ++p->tos;
if( pFocus==0 ) goto no_mem;
if( VERIFY( i>=0 && ) i<p->agg.nMem ){
Mem *pMem = &pFocus->aMem[i];
aStack[tos] = pMem->s;
aStack[tos] = *pMem;
zStack[tos] = pMem->z;
aStack[tos].flags &= ~STK_Dyn;
aStack[tos].flags |= STK_Ephem;
aStack[tos].flags &= ~MEM_Dyn;
aStack[tos].flags |= MEM_Ephem;
}
break;
}
/* Opcode: AggNext * P2 *
**
** Make the next aggregate value the current aggregate. The prior
|
︙ | | |
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
|
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
|
-
-
+
+
-
-
+
+
-
+
-
-
-
-
+
+
+
|
Mem *aMem;
p->agg.pCurrent = sqliteHashData(p->agg.pSearch);
aMem = p->agg.pCurrent->aMem;
for(i=0; i<p->agg.nMem; i++){
int freeCtx;
if( p->agg.apFunc[i]==0 ) continue;
if( p->agg.apFunc[i]->xFinalize==0 ) continue;
ctx.s.flags = STK_Null;
ctx.z = 0;
ctx.s.flags = MEM_Null;
ctx.s.z = aMem[i].zShort;
ctx.pAgg = (void*)aMem[i].z;
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].s.z;
ctx.cnt = aMem[i].s.i;
freeCtx = aMem[i].z && aMem[i].z!=aMem[i].zShort;
ctx.cnt = aMem[i].i;
ctx.isStep = 0;
ctx.pFunc = p->agg.apFunc[i];
(*p->agg.apFunc[i]->xFinalize)(&ctx);
if( freeCtx ){
sqliteFree( aMem[i].z );
}
aMem[i].s = ctx.s;
aMem[i] = ctx.s;
aMem[i].z = ctx.z;
if( (aMem[i].s.flags & STK_Str) &&
(aMem[i].s.flags & (STK_Dyn|STK_Static|STK_Ephem))==0 ){
aMem[i].z = aMem[i].s.z;
if( (aMem[i].flags & MEM_Str) &&
(aMem[i].flags & (MEM_Dyn|MEM_Static|MEM_Ephem))==0 ){
aMem[i].z = aMem[i].zShort;
}
}
}
break;
}
/* Opcode: SetInsert P1 * P3
|
︙ | | |
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
|
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
|
-
+
-
+
-
+
|
}
if( pOp->p3 ){
sqliteHashInsert(&p->aSet[i].hash, pOp->p3, strlen(pOp->p3)+1, p);
}else{
int tos = p->tos;
if( tos<0 ) goto not_enough_stack;
Stringify(p, tos);
sqliteHashInsert(&p->aSet[i].hash, zStack[tos], aStack[tos].n, p);
sqliteHashInsert(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n, p);
POPSTACK;
}
if( sqlite_malloc_failed ) goto no_mem;
break;
}
/* Opcode: SetFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1. If the element popped exists in set P1,
** then jump to P2. Otherwise fall through.
*/
case OP_SetFound: {
int i = pOp->p1;
int tos = p->tos;
VERIFY( if( tos<0 ) goto not_enough_stack; )
Stringify(p, tos);
if( i>=0 && i<p->nSet &&
sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)){
sqliteHashFind(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n)){
pc = pOp->p2 - 1;
}
POPSTACK;
break;
}
/* Opcode: SetNotFound P1 P2 *
**
** Pop the stack once and compare the value popped off with the
** contents of set P1. If the element popped does not exists in
** set P1, then jump to P2. Otherwise fall through.
*/
case OP_SetNotFound: {
int i = pOp->p1;
int tos = p->tos;
VERIFY( if( tos<0 ) goto not_enough_stack; )
Stringify(p, tos);
if( i<0 || i>=p->nSet ||
sqliteHashFind(&p->aSet[i].hash, zStack[tos], aStack[tos].n)==0 ){
sqliteHashFind(&p->aSet[i].hash, aStack[tos].z, aStack[tos].n)==0 ){
pc = pOp->p2 - 1;
}
POPSTACK;
break;
}
/* Opcode: SetFirst P1 P2 *
|
︙ | | |
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
|
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
|
-
+
-
+
|
if( pSet->prev==0 ){
break;
}else{
pc = pOp->p2 - 1;
}
}
tos = ++p->tos;
zStack[tos] = sqliteHashKey(pSet->prev);
aStack[tos].z = sqliteHashKey(pSet->prev);
aStack[tos].n = sqliteHashKeysize(pSet->prev);
aStack[tos].flags = STK_Str | STK_Ephem;
aStack[tos].flags = MEM_Str | MEM_Ephem;
break;
}
/* Opcode: Vacuum * * *
**
** Vacuum the entire database. This opcode will cause other virtual
** machines to be created and run. It may not be called from within
|
︙ | | |
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
|
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
|
-
+
-
+
-
+
-
+
-
+
-
+
-
-
+
+
-
-
+
+
-
+
-
+
|
sqliteSetString(&p->zErrMsg, "jump destination out of range", (char*)0);
rc = SQLITE_INTERNAL;
}
if( p->trace && p->tos>=0 ){
int i;
fprintf(p->trace, "Stack:");
for(i=p->tos; i>=0 && i>p->tos-5; i--){
if( aStack[i].flags & STK_Null ){
if( aStack[i].flags & MEM_Null ){
fprintf(p->trace, " NULL");
}else if( (aStack[i].flags & (STK_Int|STK_Str))==(STK_Int|STK_Str) ){
}else if( (aStack[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
fprintf(p->trace, " si:%d", aStack[i].i);
}else if( aStack[i].flags & STK_Int ){
}else if( aStack[i].flags & MEM_Int ){
fprintf(p->trace, " i:%d", aStack[i].i);
}else if( aStack[i].flags & STK_Real ){
}else if( aStack[i].flags & MEM_Real ){
fprintf(p->trace, " r:%g", aStack[i].r);
}else if( aStack[i].flags & STK_Str ){
}else if( aStack[i].flags & MEM_Str ){
int j, k;
char zBuf[100];
zBuf[0] = ' ';
if( aStack[i].flags & STK_Dyn ){
if( aStack[i].flags & MEM_Dyn ){
zBuf[1] = 'z';
assert( (aStack[i].flags & (STK_Static|STK_Ephem))==0 );
}else if( aStack[i].flags & STK_Static ){
assert( (aStack[i].flags & (MEM_Static|MEM_Ephem))==0 );
}else if( aStack[i].flags & MEM_Static ){
zBuf[1] = 't';
assert( (aStack[i].flags & (STK_Dyn|STK_Ephem))==0 );
}else if( aStack[i].flags & STK_Ephem ){
assert( (aStack[i].flags & (MEM_Dyn|MEM_Ephem))==0 );
}else if( aStack[i].flags & MEM_Ephem ){
zBuf[1] = 'e';
assert( (aStack[i].flags & (STK_Static|STK_Dyn))==0 );
assert( (aStack[i].flags & (MEM_Static|MEM_Dyn))==0 );
}else{
zBuf[1] = 's';
}
zBuf[2] = '[';
k = 3;
for(j=0; j<20 && j<aStack[i].n; j++){
int c = zStack[i][j];
int c = aStack[i].z[j];
if( c==0 && j==aStack[i].n-1 ) break;
if( isprint(c) && !isspace(c) ){
zBuf[k++] = c;
}else{
zBuf[k++] = '.';
}
}
|
︙ | | |