SQLite

Check-in [822ab52f10]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Have r-tree virtual tables support on-conflict clauses.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | vtab-conflict
Files: files | file ages | folders
SHA1: 822ab52f1023b1c4973c806cc75454acd4e95fd0
User & Date: dan 2011-04-28 18:46:46.861
Context
2011-05-04
12:52
Optimize "ORDER BY rowid/docid DESC/ASC" clauses on FTS tables. (check-in: 13395121e3 user: dan tags: vtab-conflict)
2011-04-28
18:46
Have r-tree virtual tables support on-conflict clauses. (check-in: 822ab52f10 user: dan tags: vtab-conflict)
2011-04-27
16:02
Add documentation for the newly introduced sqlite3_vtab_config() and on_conflict() API functions. Test that encountering an SQLITE_MISMATCH in fts3 does not corrupt the full text index. (check-in: abdd70ae04 user: dan tags: vtab-conflict)
Changes
Unified Diff Show Whitespace Changes Patch
Changes to ext/rtree/rtree.c.
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652

2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
  sqlite3_step(pRtree->pWriteRowid);
  rc = sqlite3_reset(pRtree->pWriteRowid);
  *piRowid = sqlite3_last_insert_rowid(pRtree->db);
  return rc;
}

/*
** The xUpdate method for rtree module virtual tables.
*/
static int rtreeUpdate(
  sqlite3_vtab *pVtab, 
  int nData, 
  sqlite3_value **azData, 
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;

  rtreeReference(pRtree);

  assert(nData>=1);

  /* If azData[0] is not an SQL NULL value, it is the rowid of a
  ** record to delete from the r-tree table. The following block does
  ** just that.
  */
  if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
    i64 iDelete;                /* The rowid to delete */
    RtreeNode *pLeaf;           /* Leaf node containing record iDelete */
    int iCell;                  /* Index of iDelete cell in pLeaf */
    RtreeNode *pRoot;


    /* Obtain a reference to the root node to initialise Rtree.iDepth */
    rc = nodeAcquire(pRtree, 1, 0, &pRoot);

    /* Obtain a reference to the leaf node that contains the entry 
    ** about to be deleted. 
    */
    if( rc==SQLITE_OK ){
      iDelete = sqlite3_value_int64(azData[0]);
      rc = findLeafNode(pRtree, iDelete, &pLeaf);
    }

    /* Delete the cell in question from the leaf node. */
    if( rc==SQLITE_OK ){
      int rc2;
      rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);







|

|
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<


|
>








<







2622
2623
2624
2625
2626
2627
2628
2629
2630
2631







2632










2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644

2645
2646
2647
2648
2649
2650
2651
  sqlite3_step(pRtree->pWriteRowid);
  rc = sqlite3_reset(pRtree->pWriteRowid);
  *piRowid = sqlite3_last_insert_rowid(pRtree->db);
  return rc;
}

/*
** Remove the entry with rowid=iDelete from the r-tree structure.
*/
static int rtreeDeleteRowid(Rtree *pRtree, sqlite3_int64 iDelete){







  int rc;                         /* Return code */










    RtreeNode *pLeaf;           /* Leaf node containing record iDelete */
    int iCell;                  /* Index of iDelete cell in pLeaf */
  RtreeNode *pRoot;               /* Root node of rtree structure */


    /* Obtain a reference to the root node to initialise Rtree.iDepth */
    rc = nodeAcquire(pRtree, 1, 0, &pRoot);

    /* Obtain a reference to the leaf node that contains the entry 
    ** about to be deleted. 
    */
    if( rc==SQLITE_OK ){

      rc = findLeafNode(pRtree, iDelete, &pLeaf);
    }

    /* Delete the cell in question from the leaf node. */
    if( rc==SQLITE_OK ){
      int rc2;
      rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
2718
2719
2720
2721
2722
2723
2724
2725

2726
2727













2728


2729










2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742

    /* Release the reference to the root node. */
    if( rc==SQLITE_OK ){
      rc = nodeRelease(pRtree, pRoot);
    }else{
      nodeRelease(pRtree, pRoot);
    }
  }


  /* If the azData[] array contains more than one element, elements













  ** (azData[2]..azData[argc-1]) contain a new record to insert into


  ** the r-tree structure.










  */
  if( rc==SQLITE_OK && nData>1 ){
    /* Insert a new record into the r-tree */
    RtreeCell cell;
    int ii;
    RtreeNode *pLeaf;

    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
        cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);







|
>
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
>
|
>
>
>
>
>
>
>
>
>
>

|
<
<

<







2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740


2741

2742
2743
2744
2745
2746
2747
2748

    /* Release the reference to the root node. */
    if( rc==SQLITE_OK ){
      rc = nodeRelease(pRtree, pRoot);
    }else{
      nodeRelease(pRtree, pRoot);
    }

  return rc;
}

/*
** The xUpdate method for rtree module virtual tables.
*/
static int rtreeUpdate(
  sqlite3_vtab *pVtab, 
  int nData, 
  sqlite3_value **azData, 
  sqlite_int64 *pRowid
){
  Rtree *pRtree = (Rtree *)pVtab;
  int rc = SQLITE_OK;
  RtreeCell cell;                 /* New cell to insert if nData>1 */
  int bHaveRowid = 0;             /* Set to 1 after new rowid is determined */

  rtreeReference(pRtree);
  assert(nData>=1);

  /* Constraint handling. A write operation on an r-tree table may return
  ** SQLITE_CONSTRAINT for two reasons:
  **
  **   1. A duplicate rowid value, or
  **   2. The supplied data violates the "x2>=x1" constraint.
  **
  ** In the first case, if the conflict-handling mode is REPLACE, then
  ** the conflicting row can be removed before proceeding. In the second
  ** case, SQLITE_CONSTRAINT must be returned regardless of the
  ** conflict-handling mode specified by the user.
  */
  if( nData>1 ){


    int ii;


    /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
    assert( nData==(pRtree->nDim*2 + 3) );
    if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
      for(ii=0; ii<(pRtree->nDim*2); ii+=2){
        cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
        cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
2752
2753
2754
2755
2756
2757
2758
2759

2760
2761
2762
2763




2764
2765
2766




2767
2768
2769





2770



















2771
2772
2773
2774
2775
2776
2777
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }

    /* Figure out the rowid of the new row. */

    if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
      rc = newRowid(pRtree, &cell.iRowid);
    }else{
      cell.iRowid = sqlite3_value_int64(azData[2]);




      sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
      if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
        sqlite3_reset(pRtree->pReadRowid);




        rc = SQLITE_CONSTRAINT;
        goto constraint;
      }





      rc = sqlite3_reset(pRtree->pReadRowid);



















    }
    *pRowid = cell.iRowid;

    if( rc==SQLITE_OK ){
      rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
    }
    if( rc==SQLITE_OK ){







|
>
|
<
<

>
>
>
>

|
|
>
>
>
>



>
>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







2758
2759
2760
2761
2762
2763
2764
2765
2766
2767


2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
        if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
          rc = SQLITE_CONSTRAINT;
          goto constraint;
        }
      }
    }

    /* If a rowid value was supplied, check if it is already present in 
    ** the table. If so, the constraint has failed. */
    if( sqlite3_value_type(azData[2])!=SQLITE_NULL ){


      cell.iRowid = sqlite3_value_int64(azData[2]);
      if( sqlite3_value_type(azData[0])==SQLITE_NULL
       || sqlite3_value_int64(azData[0])!=cell.iRowid
      ){
        int steprc;
      sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
        steprc = sqlite3_step(pRtree->pReadRowid);
        rc = sqlite3_reset(pRtree->pReadRowid);
        if( SQLITE_ROW==steprc ){
          if( sqlite3_vtab_on_conflict(pRtree->db)==SQLITE_REPLACE ){
            rc = rtreeDeleteRowid(pRtree, cell.iRowid);
          }else{
        rc = SQLITE_CONSTRAINT;
        goto constraint;
      }
        }
      }
      bHaveRowid = 1;
    }
  }

  /* If azData[0] is not an SQL NULL value, it is the rowid of a
  ** record to delete from the r-tree table. The following block does
  ** just that.
  */
  if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
    rc = rtreeDeleteRowid(pRtree, sqlite3_value_int64(azData[0]));
  }

  /* If the azData[] array contains more than one element, elements
  ** (azData[2]..azData[argc-1]) contain a new record to insert into
  ** the r-tree structure.
  */
  if( rc==SQLITE_OK && nData>1 ){
    /* Insert the new record into the r-tree */
    RtreeNode *pLeaf;

    /* Figure out the rowid of the new row. */
    if( bHaveRowid==0 ){
      rc = newRowid(pRtree, &cell.iRowid);
    }
    *pRowid = cell.iRowid;

    if( rc==SQLITE_OK ){
      rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
    }
    if( rc==SQLITE_OK ){
3003
3004
3005
3006
3007
3008
3009


3010
3011
3012
3013
3014
3015
3016
  };

  int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
  if( aErrMsg[iErr] ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    return SQLITE_ERROR;
  }



  /* Allocate the sqlite3_vtab structure */
  nDb = strlen(argv[1]);
  nName = strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;







>
>







3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
  };

  int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
  if( aErrMsg[iErr] ){
    *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
    return SQLITE_ERROR;
  }

  sqlite3_vtab_config(db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1);

  /* Allocate the sqlite3_vtab structure */
  nDb = strlen(argv[1]);
  nName = strlen(argv[2]);
  pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
  if( !pRtree ){
    return SQLITE_NOMEM;
Changes to ext/rtree/rtree1.test.
27
28
29
30
31
32
33


34
35
36
37
38
39
40
#   rtree-3.*: Linear scans of r-tree data.
#   rtree-4.*: Test INSERT
#   rtree-5.*: Test DELETE
#   rtree-6.*: Test UPDATE
#   rtree-7.*: Test renaming an r-tree table.
#   rtree-8.*: Test constrained scans of r-tree data.
#



ifcapable !rtree {
  finish_test
  return
}

#----------------------------------------------------------------------------







>
>







27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#   rtree-3.*: Linear scans of r-tree data.
#   rtree-4.*: Test INSERT
#   rtree-5.*: Test DELETE
#   rtree-6.*: Test UPDATE
#   rtree-7.*: Test renaming an r-tree table.
#   rtree-8.*: Test constrained scans of r-tree data.
#
#   rtree-12.*: Test that on-conflict clauses are supported.
#

ifcapable !rtree {
  finish_test
  return
}

#----------------------------------------------------------------------------
412
413
414
415
416
417
418















































































419
do_test rtree-11.2 {
  execsql {
    INSERT INTO t8 VALUES(NULL, 1.0, 1.0, 2.0, 2.0);
    SELECT last_insert_rowid();
  }
} {2}
















































































finish_test







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
do_test rtree-11.2 {
  execsql {
    INSERT INTO t8 VALUES(NULL, 1.0, 1.0, 2.0, 2.0);
    SELECT last_insert_rowid();
  }
} {2}

#-------------------------------------------------------------------------
# Test on-conflict clause handling.
#
db_delete_and_reopen
do_execsql_test 12.0 {
  CREATE VIRTUAL TABLE t1 USING rtree_i32(idx, x1, x2, y1, y2);
  INSERT INTO t1 VALUES(1,   1, 2, 3, 4);
  INSERT INTO t1 VALUES(2,   2, 3, 4, 5);
  INSERT INTO t1 VALUES(3,   3, 4, 5, 6);

  CREATE TABLE source(idx, x1, x2, y1, y2);
  INSERT INTO source VALUES(5, 8, 8, 8, 8);
  INSERT INTO source VALUES(2, 7, 7, 7, 7);
  
}
db_save_and_close
foreach {tn sql_template testdata} {
  1    "INSERT %CONF% INTO t1 VALUES(2, 7, 7, 7, 7)" {
    ROLLBACK 0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   0 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    FAIL     0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    REPLACE  0 0 {1 1 2 3 4   2 7 7 7 7   3 3 4 5 6   4 4 5 6 7}
  }

  2    "INSERT %CONF% INTO t1 SELECT * FROM source" {
    ROLLBACK 1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
    REPLACE  1 0 {1 1 2 3 4   2 7 7 7 7   3 3 4 5 6   4 4 5 6 7  5 8 8 8 8}
  }

  3    "UPDATE %CONF% t1 SET idx = 2 WHERE idx = 4" {
    ROLLBACK 1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    REPLACE  1 0 {1 1 2 3 4   2 4 5 6 7   3 3 4 5 6}
  }

  3    "UPDATE %CONF% t1 SET idx = ((idx+1)%5)+1 WHERE idx > 2" {
    ROLLBACK 1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    1 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   1 0 {1 1 2 3 4   2 2 3 4 5               4 4 5 6 7   5 3 4 5 6}
    FAIL     1 1 {1 1 2 3 4   2 2 3 4 5               4 4 5 6 7   5 3 4 5 6}
    REPLACE  1 0 {1 4 5 6 7   2 2 3 4 5                           5 3 4 5 6}
  }

  4    "INSERT %CONF% INTO t1 VALUES(2, 7, 6, 7, 7)" {
    ROLLBACK 0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6}
    ABORT    0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    IGNORE   0 0 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    FAIL     0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
    REPLACE  0 1 {1 1 2 3 4   2 2 3 4 5   3 3 4 5 6   4 4 5 6 7}
  }

} {
  foreach {mode uses error data} $testdata {
    db_restore_and_reopen

    set sql [string map [list %CONF% "OR $mode"] $sql_template]
    set testname "12.$tn.[string tolower $mode]"

    execsql {
      BEGIN;
        INSERT INTO t1 VALUES(4,   4, 5, 6, 7);
    }

    set res(0) {0 {}}
    set res(1) {1 {constraint failed}}
    do_catchsql_test $testname.1 $sql $res($error)
    do_test $testname.2 [list sql_uses_stmt db $sql] $uses
    do_execsql_test $testname.3 { SELECT * FROM t1 ORDER BY idx } $data

    do_test $testname.4 { rtree_check db t1 } 0
    db close
  }
}
finish_test
Changes to test/fts3conf.test.
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
    DROP TABLE temp.fts3check2;
    DROP TABLE temp.fts3check3;
  }
  
  uplevel [list do_test $tn [list set {} $m1] $m2]
}

# Return true if the SQL statement passed as the second argument uses a
# statement transaction.
#
proc sql_uses_stmt {db sql} {
  set stmt [sqlite3_prepare db $sql -1 dummy]
  set uses [uses_stmt_journal $stmt]
  sqlite3_finalize $stmt
  return $uses
}

do_execsql_test 1.0.1 {
  CREATE VIRTUAL TABLE t1 USING fts3(x);
  INSERT INTO t1(rowid, x) VALUES(1, 'a b c d');
  INSERT INTO t1(rowid, x) VALUES(2, 'e f g h');

  CREATE TABLE source(a, b);
  INSERT INTO source VALUES(4, 'z');







<
<
<
<
<
<
<
<
<
<







52
53
54
55
56
57
58










59
60
61
62
63
64
65
    DROP TABLE temp.fts3check2;
    DROP TABLE temp.fts3check3;
  }
  
  uplevel [list do_test $tn [list set {} $m1] $m2]
}











do_execsql_test 1.0.1 {
  CREATE VIRTUAL TABLE t1 USING fts3(x);
  INSERT INTO t1(rowid, x) VALUES(1, 'a b c d');
  INSERT INTO t1(rowid, x) VALUES(2, 'e f g h');

  CREATE TABLE source(a, b);
  INSERT INTO source VALUES(4, 'z');
Changes to test/tester.tcl.
743
744
745
746
747
748
749











750
751
752
753
754
755
756
#
proc integrity_check {name {db db}} {
  ifcapable integrityck {
    do_test $name [list execsql {PRAGMA integrity_check} $db] {ok}
  }
}












proc fix_ifcapable_expr {expr} {
  set ret ""
  set state 0
  for {set i 0} {$i < [string length $expr]} {incr i} {
    set char [string range $expr $i $i]
    set newstate [expr {[string is alnum $char] || $char eq "_"}]
    if {$newstate && !$state} {







>
>
>
>
>
>
>
>
>
>
>







743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
#
proc integrity_check {name {db db}} {
  ifcapable integrityck {
    do_test $name [list execsql {PRAGMA integrity_check} $db] {ok}
  }
}


# Return true if the SQL statement passed as the second argument uses a
# statement transaction.
#
proc sql_uses_stmt {db sql} {
  set stmt [sqlite3_prepare $db $sql -1 dummy]
  set uses [uses_stmt_journal $stmt]
  sqlite3_finalize $stmt
  return $uses
}

proc fix_ifcapable_expr {expr} {
  set ret ""
  set state 0
  for {set i 0} {$i < [string length $expr]} {incr i} {
    set char [string range $expr $i $i]
    set newstate [expr {[string is alnum $char] || $char eq "_"}]
    if {$newstate && !$state} {