Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Bring in the latest updates from trunk. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | sessions |
Files: | files | file ages | folders |
SHA1: |
7b5f3773867ed0e4ed17bd473ba972d5 |
User & Date: | drh 2014-01-28 18:06:17.362 |
Context
2014-01-29
| ||
14:21 | Merge latest fixes from the trunk. (check-in: 6b6dcd4cc7 user: dan tags: sessions) | |
2014-01-28
| ||
18:06 | Bring in the latest updates from trunk. (check-in: 7b5f377386 user: drh tags: sessions) | |
17:49 | Minor bugfix in main.c so that the library builds with SQLITE_OMIT_WSD defined. (check-in: 5e3b9ecc7b user: dan tags: trunk) | |
2014-01-24
| ||
14:05 | Bring in all the latest trunk changes, including the Common Table Expressions implementation. (check-in: 9b43e55919 user: drh tags: sessions) | |
Changes
Changes to ext/fts3/fts3_hash.c.
︙ | ︙ | |||
92 93 94 95 96 97 98 | } /* ** Hash and comparison functions when the mode is FTS3_HASH_STRING */ static int fts3StrHash(const void *pKey, int nKey){ const char *z = (const char *)pKey; | | | | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 | } /* ** Hash and comparison functions when the mode is FTS3_HASH_STRING */ static int fts3StrHash(const void *pKey, int nKey){ const char *z = (const char *)pKey; unsigned h = 0; if( nKey<=0 ) nKey = (int) strlen(z); while( nKey > 0 ){ h = (h<<3) ^ h ^ *z++; nKey--; } return (int)(h & 0x7fffffff); } static int fts3StrCompare(const void *pKey1, int n1, const void *pKey2, int n2){ if( n1!=n2 ) return 1; return strncmp((const char*)pKey1,(const char*)pKey2,n1); } /* |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
639 640 641 642 643 644 645 | iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld); for(iCol=0; iCol<pTab->nCol; iCol++){ | > | | 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 | iOld = pParse->nMem+1; pParse->nMem += (1 + pTab->nCol); /* Populate the OLD.* pseudo-table register array. These values will be ** used by any BEFORE and AFTER triggers that exist. */ sqlite3VdbeAddOp2(v, OP_Copy, iPk, iOld); for(iCol=0; iCol<pTab->nCol; iCol++){ testcase( mask!=0xffffffff && iCol==31 ); if( mask==0xffffffff || (mask & MASKBIT32(iCol))!=0 ){ sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, iCol, iOld+iCol+1); } } /* Invoke BEFORE DELETE trigger programs. */ addrStart = sqlite3VdbeCurrentAddr(v); sqlite3CodeRowTrigger(pParse, pTrigger, |
︙ | ︙ |
Changes to src/expr.c.
︙ | ︙ | |||
2681 2682 2683 2684 2685 2686 2687 | } case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ int nFarg; /* Number of function arguments */ FuncDef *pDef; /* The function definition object */ int nId; /* Length of the function name in bytes */ const char *zId; /* The function name */ | | | 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 | } case TK_FUNCTION: { ExprList *pFarg; /* List of function arguments */ int nFarg; /* Number of function arguments */ FuncDef *pDef; /* The function definition object */ int nId; /* Length of the function name in bytes */ const char *zId; /* The function name */ u32 constMask = 0; /* Mask of function arguments that are constant */ int i; /* Loop counter */ u8 enc = ENC(db); /* The text encoding used by this database */ CollSeq *pColl = 0; /* A collating sequence */ assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); if( ExprHasProperty(pExpr, EP_TokenOnly) ){ pFarg = 0; |
︙ | ︙ | |||
2732 2733 2734 2735 2736 2737 2738 | assert( nFarg>=1 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); break; } for(i=0; i<nFarg; i++){ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ | > | | 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 | assert( nFarg>=1 ); sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); break; } for(i=0; i<nFarg; i++){ if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ testcase( i==31 ); constMask |= MASKBIT32(i); } if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); } } if( pFarg ){ if( constMask ){ |
︙ | ︙ |
Changes to src/func.c.
︙ | ︙ | |||
133 134 135 136 137 138 139 | static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_INTEGER: { i64 iVal = sqlite3_value_int64(argv[0]); if( iVal<0 ){ | | | 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ assert( argc==1 ); UNUSED_PARAMETER(argc); switch( sqlite3_value_type(argv[0]) ){ case SQLITE_INTEGER: { i64 iVal = sqlite3_value_int64(argv[0]); if( iVal<0 ){ if( iVal==SMALLEST_INT64 ){ /* IMP: R-31676-45509 If X is the integer -9223372036854775808 ** then abs(X) throws an integer overflow error since there is no ** equivalent positive 64-bit two complement value. */ sqlite3_result_error(context, "integer overflow", -1); return; } iVal = -iVal; |
︙ | ︙ |
Changes to src/hash.c.
︙ | ︙ | |||
49 50 51 52 53 54 55 | pH->count = 0; } /* ** The hashing function. */ static unsigned int strHash(const char *z, int nKey){ | | | 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | pH->count = 0; } /* ** The hashing function. */ static unsigned int strHash(const char *z, int nKey){ unsigned int h = 0; assert( nKey>=0 ); while( nKey > 0 ){ h = (h<<3) ^ h ^ sqlite3UpperToLower[(unsigned char)*z++]; nKey--; } return h; } |
︙ | ︙ |
Changes to src/main.c.
︙ | ︙ | |||
3320 3321 3322 3323 3324 3325 3326 | ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated ** that demonstrat invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { | | | 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 | ** Set or clear a flag that indicates that the database file is always well- ** formed and never corrupt. This flag is clear by default, indicating that ** database files might have arbitrary corruption. Setting the flag during ** testing causes certain assert() statements in the code to be activated ** that demonstrat invariants on well-formed database files. */ case SQLITE_TESTCTRL_NEVER_CORRUPT: { sqlite3GlobalConfig.neverCorrupt = va_arg(ap, int); break; } } va_end(ap); #endif /* SQLITE_OMIT_BUILTIN_TEST */ return rc; |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
4093 4094 4095 4096 4097 4098 4099 | rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; } /* Update the global lock state and do debug tracing */ #ifdef SQLITE_DEBUG { u16 mask; OSTRACE(("SHM-LOCK ")); | | | 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 | rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; } /* Update the global lock state and do debug tracing */ #ifdef SQLITE_DEBUG { u16 mask; OSTRACE(("SHM-LOCK ")); mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst); if( rc==SQLITE_OK ){ if( lockType==F_UNLCK ){ OSTRACE(("unlock %d ok", ofst)); pShmNode->exclMask &= ~mask; pShmNode->sharedMask &= ~mask; }else if( lockType==F_RDLCK ){ OSTRACE(("read-lock %d ok", ofst)); |
︙ | ︙ |
Changes to src/pcache1.c.
︙ | ︙ | |||
716 717 718 719 720 721 722 723 724 725 726 727 728 729 | int createFlag ){ unsigned int nPinned; PCache1 *pCache = (PCache1 *)p; PGroup *pGroup; PgHdr1 *pPage = 0; assert( pCache->bPurgeable || createFlag!=1 ); assert( pCache->bPurgeable || pCache->nMin==0 ); assert( pCache->bPurgeable==0 || pCache->nMin==10 ); assert( pCache->nMin==0 || pCache->bPurgeable ); pcache1EnterMutex(pGroup = pCache->pGroup); /* Step 1: Search the hash table for an existing entry. */ | > | 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 | int createFlag ){ unsigned int nPinned; PCache1 *pCache = (PCache1 *)p; PGroup *pGroup; PgHdr1 *pPage = 0; assert( offsetof(PgHdr1,page)==0 ); assert( pCache->bPurgeable || createFlag!=1 ); assert( pCache->bPurgeable || pCache->nMin==0 ); assert( pCache->bPurgeable==0 || pCache->nMin==10 ); assert( pCache->nMin==0 || pCache->bPurgeable ); pcache1EnterMutex(pGroup = pCache->pGroup); /* Step 1: Search the hash table for an existing entry. */ |
︙ | ︙ | |||
821 822 823 824 825 826 827 | } fetch_out: if( pPage && iKey>pCache->iMaxKey ){ pCache->iMaxKey = iKey; } pcache1LeaveMutex(pGroup); | | | 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | } fetch_out: if( pPage && iKey>pCache->iMaxKey ){ pCache->iMaxKey = iKey; } pcache1LeaveMutex(pGroup); return (sqlite3_pcache_page*)pPage; } /* ** Implementation of the sqlite3_pcache.xUnpin method. ** ** Mark a page as unpinned (eligible for asynchronous recycling). |
︙ | ︙ |
Changes to src/select.c.
︙ | ︙ | |||
1721 1722 1723 1724 1725 1726 1727 | } assert( iCol>=0 ); if( pRet==0 && iCol<p->pEList->nExpr ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 | } assert( iCol>=0 ); if( pRet==0 && iCol<p->pEList->nExpr ){ pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); } return pRet; } /* ** The select statement passed as the second parameter is a compound SELECT ** with an ORDER BY clause. This function allocates and returns a KeyInfo ** structure suitable for implementing the ORDER BY. ** ** Space to hold the KeyInfo structure is obtained from malloc. The calling ** function is responsible for ensuring that this structure is eventually ** freed. */ static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ ExprList *pOrderBy = p->pOrderBy; int nOrderBy = p->pOrderBy->nExpr; sqlite3 *db = pParse->db; KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); if( pRet ){ int i; for(i=0; i<nOrderBy; i++){ struct ExprList_item *pItem = &pOrderBy->a[i]; Expr *pTerm = pItem->pExpr; CollSeq *pColl; if( pTerm->flags & EP_Collate ){ pColl = sqlite3ExprCollSeq(pParse, pTerm); }else{ pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); if( pColl==0 ) pColl = db->pDfltColl; pOrderBy->a[i].pExpr = sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); } assert( sqlite3KeyInfoIsWriteable(pRet) ); pRet->aColl[i] = pColl; pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; } } return pRet; } #ifndef SQLITE_OMIT_CTE /* ** This routine generates VDBE code to compute the content of a WITH RECURSIVE ** query of the form: ** ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) |
︙ | ︙ | |||
1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 | computeLimitRegisters(pParse, p, addrBreak); pLimit = p->pLimit; pOffset = p->pOffset; regLimit = p->iLimit; regOffset = p->iOffset; p->pLimit = p->pOffset = 0; p->iLimit = p->iOffset = 0; /* Locate the cursor number of the Current table */ for(i=0; ALWAYS(i<pSrc->nSrc); i++){ if( pSrc->a[i].isRecursive ){ iCurrent = pSrc->a[i].iCursor; break; } } | > < < < < | > > > | 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 | computeLimitRegisters(pParse, p, addrBreak); pLimit = p->pLimit; pOffset = p->pOffset; regLimit = p->iLimit; regOffset = p->iOffset; p->pLimit = p->pOffset = 0; p->iLimit = p->iOffset = 0; pOrderBy = p->pOrderBy; /* Locate the cursor number of the Current table */ for(i=0; ALWAYS(i<pSrc->nSrc); i++){ if( pSrc->a[i].isRecursive ){ iCurrent = pSrc->a[i].iCursor; break; } } /* Allocate cursors numbers for Queue and Distinct. The cursor number for ** the Distinct table must be exactly one greater than Queue in order ** for the SRT_DistTable and SRT_DistQueue destinations to work. */ iQueue = pParse->nTab++; if( p->op==TK_UNION ){ eDest = pOrderBy ? SRT_DistQueue : SRT_DistTable; iDistinct = pParse->nTab++; }else{ eDest = pOrderBy ? SRT_Queue : SRT_Table; } sqlite3SelectDestInit(&destQueue, eDest, iQueue); /* Allocate cursors for Current, Queue, and Distinct. */ regCurrent = ++pParse->nMem; sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); if( pOrderBy ){ KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, (char*)pKeyInfo, P4_KEYINFO); destQueue.pOrderBy = pOrderBy; }else{ sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); } VdbeComment((v, "Queue table")); if( iDistinct ){ p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); p->selFlags |= SF_UsesEphemeral; } /* Detach the ORDER BY clause from the compound SELECT */ p->pOrderBy = 0; /* Store the results of the setup-query in Queue. */ rc = sqlite3Select(pParse, pSetup, &destQueue); if( rc ) goto end_of_recursive_query; /* Find the next row in the Queue and output that row */ addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); |
︙ | ︙ | |||
1879 1880 1881 1882 1883 1884 1885 | end_of_recursive_query: p->pOrderBy = pOrderBy; p->pLimit = pLimit; p->pOffset = pOffset; return; } | | < | 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 | end_of_recursive_query: p->pOrderBy = pOrderBy; p->pLimit = pLimit; p->pOffset = pOffset; return; } #endif /* SQLITE_OMIT_CTE */ /* Forward references */ static int multiSelectOrderBy( Parse *pParse, /* Parsing context */ Select *p, /* The right-most of SELECTs to be coded */ SelectDest *pDest /* What to do with query results */ ); /* ** This routine is called to process a compound query form from ** two or more separate queries using UNION, UNION ALL, EXCEPT, or ** INTERSECT ** ** "p" points to the right-most of the two queries. the query on the ** left is p->pPrior. The left query could also be a compound query |
︙ | ︙ | |||
2621 2622 2623 2624 2625 2626 2627 | if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->u.x.iOrderByCol>0 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } | < | < < < < < < < < < < < < < < < < | 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 | if( aPermute ){ struct ExprList_item *pItem; for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ assert( pItem->u.x.iOrderByCol>0 && pItem->u.x.iOrderByCol<=p->pEList->nExpr ); aPermute[i] = pItem->u.x.iOrderByCol - 1; } pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); }else{ pKeyMerge = 0; } /* Reattach the ORDER BY clause to the query. */ p->pOrderBy = pOrderBy; |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 | */ #define BMS ((int)(sizeof(Bitmask)*8)) /* ** A bit in a Bitmask */ #define MASKBIT(n) (((Bitmask)1)<<(n)) /* ** The following structure describes the FROM clause of a SELECT statement. ** Each table or subquery in the FROM clause is a separate element of ** the SrcList.a[] array. ** ** With the addition of multiple database support, the following structure | > | 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 | */ #define BMS ((int)(sizeof(Bitmask)*8)) /* ** A bit in a Bitmask */ #define MASKBIT(n) (((Bitmask)1)<<(n)) #define MASKBIT32(n) (((unsigned int)1)<<(n)) /* ** The following structure describes the FROM clause of a SELECT statement. ** Each table or subquery in the FROM clause is a separate element of ** the SrcList.a[] array. ** ** With the addition of multiple database support, the following structure |
︙ | ︙ |
Changes to src/tclsqlite.c.
︙ | ︙ | |||
913 914 915 916 917 918 919 | void *pArg, int code, const char *zArg1, const char *zArg2, const char *zArg3, const char *zArg4 ){ | | | 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 | void *pArg, int code, const char *zArg1, const char *zArg2, const char *zArg3, const char *zArg4 ){ const char *zCode; Tcl_DString str; int rc; const char *zReply; SqliteDb *pDb = (SqliteDb*)pArg; if( pDb->disableAuth ) return SQLITE_OK; switch( code ){ |
︙ | ︙ | |||
1039 1040 1041 1042 1043 1044 1045 | ** the transaction or savepoint opened by the [transaction] command. */ static int DbTransPostCmd( ClientData data[], /* data[0] is the Sqlite3Db* for $db */ Tcl_Interp *interp, /* Tcl interpreter */ int result /* Result of evaluating SCRIPT */ ){ | | | 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 | ** the transaction or savepoint opened by the [transaction] command. */ static int DbTransPostCmd( ClientData data[], /* data[0] is the Sqlite3Db* for $db */ Tcl_Interp *interp, /* Tcl interpreter */ int result /* Result of evaluating SCRIPT */ ){ static const char *const azEnd[] = { "RELEASE _tcl_transaction", /* rc==TCL_ERROR, nTransaction!=0 */ "COMMIT", /* rc!=TCL_ERROR, nTransaction==0 */ "ROLLBACK TO _tcl_transaction ; RELEASE _tcl_transaction", "ROLLBACK" /* rc==TCL_ERROR, nTransaction==0 */ }; SqliteDb *pDb = (SqliteDb*)data[0]; int rc = result; |
︙ | ︙ | |||
2018 2019 2020 2021 2022 2023 2024 | Tcl_WrongNumArgs(interp, 2, objv, "?CALLBACK?"); return TCL_ERROR; }else if( objc==2 ){ if( pDb->zCommit ){ Tcl_AppendResult(interp, pDb->zCommit, 0); } }else{ | | | 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 | Tcl_WrongNumArgs(interp, 2, objv, "?CALLBACK?"); return TCL_ERROR; }else if( objc==2 ){ if( pDb->zCommit ){ Tcl_AppendResult(interp, pDb->zCommit, 0); } }else{ const char *zCommit; int len; if( pDb->zCommit ){ Tcl_Free(pDb->zCommit); } zCommit = Tcl_GetStringFromObj(objv[2], &len); if( zCommit && len>0 ){ pDb->zCommit = Tcl_Alloc( len + 1 ); |
︙ | ︙ | |||
2091 2092 2093 2094 2095 2096 2097 | int nByte; /* Number of bytes in an SQL string */ int i, j; /* Loop counters */ int nSep; /* Number of bytes in zSep[] */ int nNull; /* Number of bytes in zNull[] */ char *zSql; /* An SQL statement */ char *zLine; /* A single line of input from the file */ char **azCol; /* zLine[] broken up into columns */ | | | | | 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 | int nByte; /* Number of bytes in an SQL string */ int i, j; /* Loop counters */ int nSep; /* Number of bytes in zSep[] */ int nNull; /* Number of bytes in zNull[] */ char *zSql; /* An SQL statement */ char *zLine; /* A single line of input from the file */ char **azCol; /* zLine[] broken up into columns */ const char *zCommit; /* How to commit changes */ FILE *in; /* The input file */ int lineno = 0; /* Line number of input file */ char zLineNum[80]; /* Line number print buffer */ Tcl_Obj *pResult; /* interp result */ const char *zSep; const char *zNull; if( objc<5 || objc>7 ){ Tcl_WrongNumArgs(interp, 2, objv, "CONFLICT-ALGORITHM TABLE FILENAME ?SEPARATOR? ?NULLINDICATOR?"); return TCL_ERROR; } if( objc>=6 ){ zSep = Tcl_GetStringFromObj(objv[5], 0); |
︙ | ︙ | |||
3077 3078 3079 3080 3081 3082 3083 | #else flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_NOMUTEX; #endif if( objc==2 ){ zArg = Tcl_GetStringFromObj(objv[1], 0); if( strcmp(zArg,"-version")==0 ){ | | | 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 | #else flags = SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_NOMUTEX; #endif if( objc==2 ){ zArg = Tcl_GetStringFromObj(objv[1], 0); if( strcmp(zArg,"-version")==0 ){ Tcl_AppendResult(interp,sqlite3_libversion(),0); return TCL_OK; } if( strcmp(zArg,"-has-codec")==0 ){ #ifdef SQLITE_HAS_CODEC Tcl_AppendResult(interp,"1",0); #else Tcl_AppendResult(interp,"0",0); |
︙ | ︙ | |||
3159 3160 3161 3162 3163 3164 3165 | #endif ); return TCL_ERROR; } zErrMsg = 0; p = (SqliteDb*)Tcl_Alloc( sizeof(*p) ); if( p==0 ){ | | | 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 | #endif ); return TCL_ERROR; } zErrMsg = 0; p = (SqliteDb*)Tcl_Alloc( sizeof(*p) ); if( p==0 ){ Tcl_SetResult(interp, (char *)"malloc failed", TCL_STATIC); return TCL_ERROR; } memset(p, 0, sizeof(*p)); zFile = Tcl_GetStringFromObj(objv[2], 0); zFile = Tcl_TranslateFileName(interp, zFile, &translatedFilename); rc = sqlite3_open_v2(zFile, &p->db, flags, zVfs); Tcl_DStringFree(&translatedFilename); |
︙ | ︙ |
Changes to src/test8.c.
︙ | ︙ | |||
888 889 890 891 892 893 894 | pIdxInfo->idxNum = hashString(zQuery); pIdxInfo->idxStr = zQuery; pIdxInfo->needToFreeIdxStr = 1; if( useCost ){ pIdxInfo->estimatedCost = cost; }else if( useIdx ){ /* Approximation of log2(nRow). */ | | | 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 | pIdxInfo->idxNum = hashString(zQuery); pIdxInfo->idxStr = zQuery; pIdxInfo->needToFreeIdxStr = 1; if( useCost ){ pIdxInfo->estimatedCost = cost; }else if( useIdx ){ /* Approximation of log2(nRow). */ for( ii=0; ii<(sizeof(int)*8)-1; ii++ ){ if( nRow & (1<<ii) ){ pIdxInfo->estimatedCost = (double)ii; } } }else{ pIdxInfo->estimatedCost = (double)nRow; } |
︙ | ︙ |
Changes to src/update.c.
︙ | ︙ | |||
463 464 465 466 467 468 469 | if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( oldmask==0xffffffff | | > | 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | if( chngPk || hasFK || pTrigger ){ u32 oldmask = (hasFK ? sqlite3FkOldmask(pParse, pTab) : 0); oldmask |= sqlite3TriggerColmask(pParse, pTrigger, pChanges, 0, TRIGGER_BEFORE|TRIGGER_AFTER, pTab, onError ); for(i=0; i<pTab->nCol; i++){ if( oldmask==0xffffffff || (i<32 && (oldmask & MASKBIT32(i))!=0) || (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){ testcase( oldmask!=0xffffffff && i==31 ); sqlite3ExprCodeGetColumnOfTable(v, pTab, iDataCur, i, regOld+i); }else{ sqlite3VdbeAddOp2(v, OP_Null, 0, regOld+i); } } if( chngRowid==0 && pPk==0 ){ sqlite3VdbeAddOp2(v, OP_Copy, regOldRowid, regNewRowid); |
︙ | ︙ | |||
500 501 502 503 504 505 506 | for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); }else{ j = aXRef[i]; if( j>=0 ){ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); | | | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 | for(i=0; i<pTab->nCol; i++){ if( i==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regNew+i); }else{ j = aXRef[i]; if( j>=0 ){ sqlite3ExprCode(pParse, pChanges->a[j].pExpr, regNew+i); }else if( 0==(tmask&TRIGGER_BEFORE) || i>31 || (newmask & MASKBIT32(i)) ){ /* This branch loads the value of a column that will not be changed ** into a register. This is done if there are no BEFORE triggers, or ** if there are one or more BEFORE triggers that use this value via ** a new.* reference in a trigger program. */ testcase( i==31 ); testcase( i==32 ); |
︙ | ︙ |
Changes to src/util.c.
︙ | ︙ | |||
997 998 999 1000 1001 1002 1003 | } /* ** Read or write a four-byte big-endian integer value. */ u32 sqlite3Get4byte(const u8 *p){ | > | | 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 | } /* ** Read or write a four-byte big-endian integer value. */ u32 sqlite3Get4byte(const u8 *p){ testcase( p[0]&0x80 ); return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; } void sqlite3Put4byte(unsigned char *p, u32 v){ p[0] = (u8)(v>>24); p[1] = (u8)(v>>16); p[2] = (u8)(v>>8); p[3] = (u8)v; } |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
6231 6232 6233 6234 6235 6236 6237 | sqlite3DbFree(db, z); } #ifdef SQLITE_USE_FCNTL_TRACE zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( zTrace ){ int i; for(i=0; i<db->nDb; i++){ | | | 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 | sqlite3DbFree(db, z); } #ifdef SQLITE_USE_FCNTL_TRACE zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql); if( zTrace ){ int i; for(i=0; i<db->nDb; i++){ if( MASKBIT(i) & p->btreeMask)==0 ) continue; sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace); } } #endif /* SQLITE_USE_FCNTL_TRACE */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
2612 2613 2614 2615 2616 2617 2618 | ** function parameter corrsponds to bit 0 etc.). */ void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ AuxData **pp = &pVdbe->pAuxData; while( *pp ){ AuxData *pAux = *pp; if( (iOp<0) | | > | 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 | ** function parameter corrsponds to bit 0 etc.). */ void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){ AuxData **pp = &pVdbe->pAuxData; while( *pp ){ AuxData *pAux = *pp; if( (iOp<0) || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg)))) ){ testcase( pAux->iArg==31 ); if( pAux->xDelete ){ pAux->xDelete(pAux->pAux); } *pp = pAux->pNext; sqlite3DbFree(pVdbe->db, pAux); }else{ pp= &pAux->pNext; |
︙ | ︙ | |||
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 | ** and store the result in pMem. Return the number of bytes read. */ u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = (signed char)buf[0]; pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ | > > > > | > | | > | | < < < | | | 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 | ** and store the result in pMem. Return the number of bytes read. */ u32 sqlite3VdbeSerialGet( const unsigned char *buf, /* Buffer to deserialize from */ u32 serial_type, /* Serial type to deserialize */ Mem *pMem /* Memory cell to write value into */ ){ u64 x; u32 y; int i; switch( serial_type ){ case 10: /* Reserved for future use */ case 11: /* Reserved for future use */ case 0: { /* NULL */ pMem->flags = MEM_Null; break; } case 1: { /* 1-byte signed integer */ pMem->u.i = (signed char)buf[0]; pMem->flags = MEM_Int; return 1; } case 2: { /* 2-byte signed integer */ i = 256*(signed char)buf[0] | buf[1]; pMem->u.i = (i64)i; pMem->flags = MEM_Int; return 2; } case 3: { /* 3-byte signed integer */ i = 65536*(signed char)buf[0] | (buf[1]<<8) | buf[2]; pMem->u.i = (i64)i; pMem->flags = MEM_Int; return 3; } case 4: { /* 4-byte signed integer */ y = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; pMem->u.i = (i64)*(int*)&y; pMem->flags = MEM_Int; return 4; } case 5: { /* 6-byte signed integer */ x = 256*(signed char)buf[0] + buf[1]; y = ((unsigned)buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; x = (x<<32) | y; pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; return 6; } case 6: /* 8-byte signed integer */ case 7: { /* IEEE floating point */ #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) /* Verify that integers and floating point values use the same ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is ** defined that 64-bit floating point values really are mixed ** endian. */ static const u64 t1 = ((u64)0x3ff00000)<<32; static const double r1 = 1.0; u64 t2 = t1; swapMixedEndianFloat(t2); assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); #endif x = ((unsigned)buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; y = ((unsigned)buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; x = (x<<32) | y; if( serial_type==6 ){ pMem->u.i = *(i64*)&x; pMem->flags = MEM_Int; }else{ assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); swapMixedEndianFloat(x); |
︙ | ︙ |
Changes to src/vdbemem.c.
︙ | ︙ | |||
594 595 596 597 598 599 600 | pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Size of struct Mem not including the Mem.zMalloc member. */ | | | 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 | pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Size of struct Mem not including the Mem.zMalloc member. */ #define MEMCELLSIZE offsetof(Mem,zMalloc) /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ |
︙ | ︙ |
Changes to test/closure01.test.
︙ | ︙ | |||
11 12 13 14 15 16 17 | # # Test cases for transitive_closure virtual table. set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix closure01 | | > > > < < < < < < < < < < < < < < < < < < | > > > > > > > | > > > | > > > > > > > > | > > > | > > > > > > > > > > > | > > > > > > > > | > > > | > > > > > > > > > > > | > > > > > > > > > > > | 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 | # # Test cases for transitive_closure virtual table. set testdir [file dirname $argv0] source $testdir/tester.tcl set testprefix closure01 ifcapable !vtab||!cte { finish_test ; return } load_static_extension db closure do_execsql_test 1.0 { BEGIN; CREATE TABLE t1(x INTEGER PRIMARY KEY, y INTEGER); WITH RECURSIVE cnt(i) AS (VALUES(1) UNION ALL SELECT i+1 FROM cnt LIMIT 131072) INSERT INTO t1(x, y) SELECT i, nullif(i,1)/2 FROM cnt; CREATE INDEX t1y ON t1(y); COMMIT; CREATE VIRTUAL TABLE cx USING transitive_closure(tablename=t1, idcolumn=x, parentcolumn=y); } {} # The entire table do_timed_execsql_test 1.1 { SELECT count(*), depth FROM cx WHERE root=1 GROUP BY depth ORDER BY 1; } {/1 0 1 17 2 1 4 2 8 3 16 4 .* 65536 16/} do_timed_execsql_test 1.1-cte { WITH RECURSIVE below(id,depth) AS ( VALUES(1,0) UNION ALL SELECT t1.x, below.depth+1 FROM t1 JOIN below on t1.y=below.id ) SELECT count(*), depth FROM below GROUP BY depth ORDER BY 1; } {/1 0 1 17 2 1 4 2 8 3 16 4 .* 65536 16/} # descendents of 32768 do_timed_execsql_test 1.2 { SELECT * FROM cx WHERE root=32768 ORDER BY id; } {32768 0 65536 1 65537 1 131072 2} do_timed_execsql_test 1.2-cte { WITH RECURSIVE below(id,depth) AS ( VALUES(32768,0) UNION ALL SELECT t1.x, below.depth+1 FROM t1 JOIN below on t1.y=below.id WHERE below.depth<2 ) SELECT id, depth FROM below ORDER BY id; } {32768 0 65536 1 65537 1 131072 2} # descendents of 16384 do_timed_execsql_test 1.3 { SELECT * FROM cx WHERE root=16384 AND depth<=2 ORDER BY id; } {16384 0 32768 1 32769 1 65536 2 65537 2 65538 2 65539 2} do_timed_execsql_test 1.3-cte { WITH RECURSIVE below(id,depth) AS ( VALUES(16384,0) UNION ALL SELECT t1.x, below.depth+1 FROM t1 JOIN below on t1.y=below.id WHERE below.depth<2 ) SELECT id, depth FROM below ORDER BY id; } {16384 0 32768 1 32769 1 65536 2 65537 2 65538 2 65539 2} # children of 16384 do_execsql_test 1.4 { SELECT id, depth, root, tablename, idcolumn, parentcolumn FROM cx WHERE root=16384 AND depth=1 ORDER BY id; } {32768 1 {} t1 x y 32769 1 {} t1 x y} # great-grandparent of 16384 do_timed_execsql_test 1.5 { SELECT id, depth, root, tablename, idcolumn, parentcolumn FROM cx WHERE root=16384 AND depth=3 AND idcolumn='Y' AND parentcolumn='X'; } {2048 3 {} t1 Y X} do_timed_execsql_test 1.5-cte { WITH RECURSIVE above(id,depth) AS ( VALUES(16384,0) UNION ALL SELECT t1.y, above.depth+1 FROM t1 JOIN above ON t1.x=above.id WHERE above.depth<3 ) SELECT id FROM above WHERE depth=3; } {2048} # depth<5 do_timed_execsql_test 1.6 { SELECT count(*), depth FROM cx WHERE root=1 AND depth<5 GROUP BY depth ORDER BY 1; } {1 0 2 1 4 2 8 3 16 4} do_timed_execsql_test 1.6-cte { WITH RECURSIVE below(id,depth) AS ( VALUES(1,0) UNION ALL SELECT t1.x, below.depth+1 FROM t1 JOIN below ON t1.y=below.id WHERE below.depth<4 ) SELECT count(*), depth FROM below GROUP BY depth ORDER BY 1; } {1 0 2 1 4 2 8 3 16 4} # depth<=5 do_execsql_test 1.7 { SELECT count(*), depth FROM cx WHERE root=1 AND depth<=5 GROUP BY depth ORDER BY 1; } {1 0 2 1 4 2 8 3 16 4 32 5} # depth==5 do_execsql_test 1.8 { SELECT count(*), depth FROM cx WHERE root=1 AND depth=5 GROUP BY depth ORDER BY 1; } {32 5} # depth BETWEEN 3 AND 5 do_execsql_test 1.9 { SELECT count(*), depth FROM cx WHERE root=1 AND depth BETWEEN 3 AND 5 GROUP BY depth ORDER BY 1; } {8 3 16 4 32 5} # depth==5 with min() and max() do_timed_execsql_test 1.10 { SELECT count(*), min(id), max(id) FROM cx WHERE root=1 AND depth=5; } {32 32 63} do_timed_execsql_test 1.10-cte { WITH RECURSIVE below(id,depth) AS ( VALUES(1,0) UNION ALL SELECT t1.x, below.depth+1 FROM t1 JOIN below ON t1.y=below.id WHERE below.depth<5 ) SELECT count(*), min(id), max(id) FROM below WHERE depth=5; } {32 32 63} # Create a much smaller table t2 with only 32 elements db eval { CREATE TABLE t2(x INTEGER PRIMARY KEY, y INTEGER); INSERT INTO t2 SELECT x, y FROM t1 WHERE x<32; CREATE INDEX t2y ON t2(y); CREATE VIRTUAL TABLE c2 |
︙ | ︙ |
Changes to test/corruptH.test.
︙ | ︙ | |||
62 63 64 65 66 67 68 69 70 71 72 73 74 75 | #------------------------------------------------------------------------- reset_db # Initialize the database. # do_execsql_test 2.1 { PRAGMA page_size=1024; CREATE TABLE t1(a INTEGER PRIMARY KEY, b); INSERT INTO t1 VALUES(1, 'one'); INSERT INTO t1 VALUES(2, 'two'); CREATE TABLE t3(x); | > | 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | #------------------------------------------------------------------------- reset_db # Initialize the database. # do_execsql_test 2.1 { PRAGMA auto_vacuum=0; PRAGMA page_size=1024; CREATE TABLE t1(a INTEGER PRIMARY KEY, b); INSERT INTO t1 VALUES(1, 'one'); INSERT INTO t1 VALUES(2, 'two'); CREATE TABLE t3(x); |
︙ | ︙ | |||
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 | hexio_write test.db [expr {($fl-1) * 1024 + 4}] 00000001 hexio_write test.db [expr {($fl-1) * 1024 + 8}] [format %.8X $r(t1)] hexio_write test.db 36 00000002 sqlite3 db test.db } {} do_test 2.3 { list [catch { db eval { SELECT * FROM t1 WHERE a IN (1, 2) } { db eval { INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; } } } msg] $msg | > > > > > > > > > > > > > > > > > > > > > > > > > < > | 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | hexio_write test.db [expr {($fl-1) * 1024 + 4}] 00000001 hexio_write test.db [expr {($fl-1) * 1024 + 8}] [format %.8X $r(t1)] hexio_write test.db 36 00000002 sqlite3 db test.db } {} # The corruption migration caused by the test case below does not # cause corruption to be detected in mmap mode. # # The trick here is that the root page of the tree scanned by the outer # query is also currently on the free-list. So while the first seek on # the table (for a==1) works, by the time the second is attempted The # "INSERT INTO t2..." statements have recycled the root page of t1 and # used it as an index leaf. Normally, BtreeMovetoUnpacked() detects # that the PgHdr object associated with said root page does not match # the cursor (as it is now marked with PgHdr.intKey==0) and returns # SQLITE_CORRUPT. # # However, in mmap mode, the outer query and the inner queries use # different PgHdr objects (same data, but different PgHdr container # objects). And so the corruption is not detected. Instead, the second # seek fails to find anything and only a single row is returned. # set res23 {1 {database disk image is malformed}} if {[permutation]=="mmap"} { set res23 {0 one} } do_test 2.3 { list [catch { set res [list] db eval { SELECT * FROM t1 WHERE a IN (1, 2) } { db eval { INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; INSERT INTO t2 SELECT randomblob(100) FROM t2; } lappend res $b } set res } msg] $msg } $res23 #------------------------------------------------------------------------- reset_db # Initialize the database. # do_execsql_test 3.1 { |
︙ | ︙ |
Changes to test/e_select.test.
︙ | ︙ | |||
329 330 331 332 333 334 335 | 2 "SELECT 'abc' WHERE NULL" {} 3 "SELECT NULL" {{}} 4 "SELECT count(*)" {1} 5 "SELECT count(*) WHERE 0" {0} 6 "SELECT count(*) WHERE 1" {1} } | | | | | 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | 2 "SELECT 'abc' WHERE NULL" {} 3 "SELECT NULL" {{}} 4 "SELECT count(*)" {1} 5 "SELECT count(*) WHERE 0" {0} 6 "SELECT count(*) WHERE 1" {1} } # EVIDENCE-OF: R-45424-07352 If there is only a single table or subquery # in the FROM clause, then the input data used by the SELECT statement # is the contents of the named table. # # The results of the SELECT queries suggest that they are operating on the # contents of the table 'xx'. # do_execsql_test e_select-1.2.0 { CREATE TABLE xx(x, y); INSERT INTO xx VALUES('IiJlsIPepMuAhU', X'10B00B897A15BAA02E3F98DCE8F2'); |
︙ | ︙ | |||
353 354 355 356 357 358 359 | -17.89 'linguistically' } 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3} 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87} } | | | | | | 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | -17.89 'linguistically' } 2 "SELECT count(*), count(x), count(y) FROM xx" {3 2 3} 3 "SELECT sum(x), sum(y) FROM xx" {-17.89 -16.87} } # EVIDENCE-OF: R-28355-09804 If there is more than one table or subquery # in FROM clause then the contents of all tables and/or subqueries are # joined into a single dataset for the simple SELECT statement to # operate on. # # There are more detailed tests for subsequent requirements that add # more detail to this idea. We just add a single test that shows that # data is coming from each of the three tables following the FROM clause # here to show that the statement, vague as it is, is not incorrect. # do_select_tests e_select-1.3 { |
︙ | ︙ | |||
379 380 381 382 383 384 385 | } # # The following block of tests - e_select-1.4.* - test that the description # of cartesian joins in the SELECT documentation is consistent with SQLite. # In doing so, we test the following three requirements as a side-effect: # | | | | | | 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 | } # # The following block of tests - e_select-1.4.* - test that the description # of cartesian joins in the SELECT documentation is consistent with SQLite. # In doing so, we test the following three requirements as a side-effect: # # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN", # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING # clause, then the result of the join is simply the cartesian product of # the left and right-hand datasets. # # The tests are built on this assertion. Really, they test that the output # of a CROSS JOIN, JOIN, INNER JOIN or "," join matches the expected result # of calculating the cartesian product of the left and right-hand datasets. # # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER # JOIN", "JOIN" and "," join operators. |
︙ | ︙ | |||
509 510 511 512 513 514 515 | do_select_tests e_select-1.4.5 [list \ 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \ 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \ 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \ 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \ ] | < | | | | | 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 | do_select_tests e_select-1.4.5 [list \ 1 { SELECT * FROM t1 CROSS JOIN t2 } $t1_cross_t2 \ 2 { SELECT * FROM t1 AS y CROSS JOIN t1 AS x } $t1_cross_t1 \ 3 { SELECT * FROM t1 INNER JOIN t2 } $t1_cross_t2 \ 4 { SELECT * FROM t1 AS y INNER JOIN t1 AS x } $t1_cross_t1 \ ] # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON # expression is evaluated for each row of the cartesian product as a # boolean expression. Only rows for which the expression evaluates to # true are included from the dataset. # foreach {tn select res} [list \ 1 { SELECT * FROM t1 %JOIN% t2 ON (1) } $t1_cross_t2 \ 2 { SELECT * FROM t1 %JOIN% t2 ON (0) } [list] \ 3 { SELECT * FROM t1 %JOIN% t2 ON (NULL) } [list] \ 4 { SELECT * FROM t1 %JOIN% t2 ON ('abc') } [list] \ 5 { SELECT * FROM t1 %JOIN% t2 ON ('1ab') } $t1_cross_t2 \ |
︙ | ︙ | |||
536 537 538 539 540 541 542 | 11 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \ {two I two II two III three I three II three III} \ ] { do_join_test e_select-1.3.$tn $select $res } | | | | | | | | | | 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 | 11 { SELECT t1.b, t2.b FROM t1 %JOIN% t2 ON (CASE WHEN t1.a = 'a' THEN NULL ELSE 1 END) } \ {two I two II two III three I three II three III} \ ] { do_join_test e_select-1.3.$tn $select $res } # EVIDENCE-OF: R-49933-05137 If there is a USING clause then each of the # column names specified must exist in the datasets to both the left and # right of the join-operator. # do_select_tests e_select-1.4 -error { cannot join using column %s - column not present in both tables } { 1 { SELECT * FROM t1, t3 USING (b) } "b" 2 { SELECT * FROM t3, t1 USING (c) } "c" 3 { SELECT * FROM t3, (SELECT a AS b, b AS c FROM t1) USING (a) } "a" } # EVIDENCE-OF: R-22776-52830 For each pair of named columns, the # expression "lhs.X = rhs.X" is evaluated for each row of the cartesian # product as a boolean expression. Only rows for which all such # expressions evaluates to true are included from the result set. # do_select_tests e_select-1.5 { 1 { SELECT * FROM t1, t3 USING (a) } {a one 1 b two 2} 2 { SELECT * FROM t3, t4 USING (a,c) } {b 2} } # EVIDENCE-OF: R-54046-48600 When comparing values as a result of a # USING clause, the normal rules for handling affinities, collation # sequences and NULL values in comparisons apply. # # EVIDENCE-OF: R-38422-04402 The column from the dataset on the # left-hand side of the join-operator is considered to be on the # left-hand side of the comparison operator (=) for the purposes of # collation sequence and affinity precedence. # do_execsql_test e_select-1.6.0 { CREATE TABLE t5(a COLLATE nocase, b COLLATE binary); INSERT INTO t5 VALUES('AA', 'cc'); INSERT INTO t5 VALUES('BB', 'dd'); |
︙ | ︙ | |||
618 619 620 621 622 623 624 | {aa cc cc bb DD dd} 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x %JOIN% t5 ON (x.a=t5.a) } {aa cc AA cc bb DD BB dd} } { do_join_test e_select-1.7.$tn $select $res } | | < | | | 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 | {aa cc cc bb DD dd} 4b { SELECT * FROM (SELECT a COLLATE nocase, b FROM t6) AS x %JOIN% t5 ON (x.a=t5.a) } {aa cc AA cc bb DD BB dd} } { do_join_test e_select-1.7.$tn $select $res } # EVIDENCE-OF: R-42531-52874 If the join-operator is a "LEFT JOIN" or # "LEFT OUTER JOIN", then after the ON or USING filtering clauses have # been applied, an extra row is added to the output for each row in the # original left-hand input dataset that corresponds to no rows at all in # the composite dataset (if any). # do_execsql_test e_select-1.8.0 { CREATE TABLE t7(a, b, c); CREATE TABLE t8(a, d, e); |
︙ | ︙ | |||
656 657 658 659 660 661 662 | 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24} 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24 y why 25 {} {} {}} 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} } | | | | 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 | 1a "SELECT * FROM t7 JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24} 1b "SELECT * FROM t7 LEFT JOIN t8 ON (t7.a=t8.a)" {x ex 24 x abc 24 y why 25 {} {} {}} 2a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 2b "SELECT * FROM t7 LEFT JOIN t8 USING (a)" {x ex 24 abc 24 y why 25 {} {}} } # EVIDENCE-OF: R-04932-55942 If the NATURAL keyword is in the # join-operator then an implicit USING clause is added to the # join-constraints. The implicit USING clause contains each of the # column names that appear in both the left and right-hand input # datasets. # do_select_tests e_select-1-10 { 1a "SELECT * FROM t7 JOIN t8 USING (a)" {x ex 24 abc 24} 1b "SELECT * FROM t7 NATURAL JOIN t8" {x ex 24 abc 24} |
︙ | ︙ |
Changes to test/e_select2.test.
︙ | ︙ | |||
340 341 342 343 344 345 346 | } { catchsql { DROP INDEX i1 } catchsql { DROP INDEX i2 } catchsql { DROP INDEX i3 } execsql $indexes | | | | | | | | | | 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 | } { catchsql { DROP INDEX i1 } catchsql { DROP INDEX i2 } catchsql { DROP INDEX i3 } execsql $indexes # EVIDENCE-OF: R-49872-03192 If the join-operator is "CROSS JOIN", # "INNER JOIN", "JOIN" or a comma (",") and there is no ON or USING # clause, then the result of the join is simply the cartesian product of # the left and right-hand datasets. # # EVIDENCE-OF: R-46256-57243 There is no difference between the "INNER # JOIN", "JOIN" and "," join operators. # # EVIDENCE-OF: R-25071-21202 The "CROSS JOIN" join operator produces the # same result as the "INNER JOIN", "JOIN" and "," operators # test_join $tn.1.1 "t1, t2" {t1 t2} test_join $tn.1.2 "t1 INNER JOIN t2" {t1 t2} test_join $tn.1.3 "t1 CROSS JOIN t2" {t1 t2} test_join $tn.1.4 "t1 JOIN t2" {t1 t2} test_join $tn.1.5 "t2, t3" {t2 t3} test_join $tn.1.6 "t2 INNER JOIN t3" {t2 t3} test_join $tn.1.7 "t2 CROSS JOIN t3" {t2 t3} test_join $tn.1.8 "t2 JOIN t3" {t2 t3} test_join $tn.1.9 "t2, t2 AS x" {t2 t2} test_join $tn.1.10 "t2 INNER JOIN t2 AS x" {t2 t2} test_join $tn.1.11 "t2 CROSS JOIN t2 AS x" {t2 t2} test_join $tn.1.12 "t2 JOIN t2 AS x" {t2 t2} # EVIDENCE-OF: R-38465-03616 If there is an ON clause then the ON # expression is evaluated for each row of the cartesian product as a # boolean expression. Only rows for which the expression evaluates to # true are included from the dataset. # test_join $tn.2.1 "t1, t2 ON (t1.a=t2.a)" {t1 t2 -on {te_equals a a}} test_join $tn.2.2 "t2, t1 ON (t1.a=t2.a)" {t2 t1 -on {te_equals a a}} test_join $tn.2.3 "t2, t1 ON (1)" {t2 t1 -on te_true} test_join $tn.2.4 "t2, t1 ON (NULL)" {t2 t1 -on te_false} test_join $tn.2.5 "t2, t1 ON (1.1-1.1)" {t2 t1 -on te_false} test_join $tn.2.6 "t1, t2 ON (1.1-1.0)" {t1 t2 -on te_true} |
︙ | ︙ | |||
500 501 502 503 504 505 506 | CREATE TABLE t5(y INTEGER, z TEXT COLLATE binary); INSERT INTO t4 VALUES('2.0'); INSERT INTO t4 VALUES('TWO'); INSERT INTO t5 VALUES(2, 'two'); } {} | | | | | | | | | 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 | CREATE TABLE t5(y INTEGER, z TEXT COLLATE binary); INSERT INTO t4 VALUES('2.0'); INSERT INTO t4 VALUES('TWO'); INSERT INTO t5 VALUES(2, 'two'); } {} # EVIDENCE-OF: R-59237-46742 A subquery specified in the # table-or-subquery following the FROM clause in a simple SELECT # statement is handled as if it was a table containing the data returned # by executing the subquery statement. # # EVIDENCE-OF: R-27438-53558 Each column of the subquery has the # collation sequence and affinity of the corresponding expression in the # subquery statement. # foreach {tn subselect select spec} { 1 "SELECT * FROM t2" "SELECT * FROM t1 JOIN %ss%" {t1 %ss%} 2 "SELECT * FROM t2" "SELECT * FROM t1 JOIN %ss% AS x ON (t1.a=x.a)" {t1 %ss% -on {te_equals 0 0}} |
︙ | ︙ |
Changes to test/pager4.test.
1 2 3 4 5 6 7 8 9 10 11 | # 2013-12-06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # | | > > > > > | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | # 2013-12-06 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # # Tests for the SQLITE_READONLY_DBMOVED error condition: the database file # is unlinked or renamed out from under SQLite. # if {$tcl_platform(platform)!="unix"} return set testdir [file dirname $argv0] source $testdir/tester.tcl if {[permutation]=="inmemory_journal"} { finish_test return } # Create a database file for testing # do_execsql_test pager4-1.1 { CREATE TABLE t1(a,b,c); INSERT INTO t1 VALUES(673,'stone','philips'); SELECT * FROM t1; |
︙ | ︙ |
Changes to test/pagerfault.test.
︙ | ︙ | |||
1540 1541 1542 1543 1544 1545 1546 1547 1548 | faultsim_test_result {0 {}} catch { db close } catch { db2 close } } sqlite3_shutdown sqlite3_config_uri 0 finish_test | > | 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 | faultsim_test_result {0 {}} catch { db close } catch { db2 close } } sqlite3_shutdown sqlite3_config_uri 0 sqlite3_initialize finish_test |
Changes to test/printf2.test.
︙ | ︙ | |||
55 56 57 58 59 60 61 | do_execsql_test printf2-1.10 { SELECT printf('%lld',314159.2653); } {314159} do_execsql_test printf2-1.11 { SELECT printf('%lld%n',314159.2653,'hi'); } {314159} | | | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | do_execsql_test printf2-1.10 { SELECT printf('%lld',314159.2653); } {314159} do_execsql_test printf2-1.11 { SELECT printf('%lld%n',314159.2653,'hi'); } {314159} # EVIDENCE-OF: R-17002-27534 The %z format is interchangeable with %s. # do_execsql_test printf2-1.12 { SELECT printf('%.*z',5,'abcdefghijklmnop'); } {abcde} do_execsql_test printf2-1.13 { SELECT printf('%c','abcdefghijklmnop'); } {a} |
︙ | ︙ |
Changes to test/spellfix.test.
︙ | ︙ | |||
230 231 232 233 234 235 236 | do_execsql_test 6.1.2 { SELECT word, distance FROM t3 WHERE rowid = 10; } {keener {}} do_execsql_test 6.1.3 { SELECT word, distance FROM t3 WHERE rowid = 10 AND word MATCH 'kiiner'; } {keener 300} | > | | | | | | | | | | | | | | | | | | | | | | | | | | | | | > | 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | do_execsql_test 6.1.2 { SELECT word, distance FROM t3 WHERE rowid = 10; } {keener {}} do_execsql_test 6.1.3 { SELECT word, distance FROM t3 WHERE rowid = 10 AND word MATCH 'kiiner'; } {keener 300} ifcapable trace { proc trace_callback {sql} { if {[string range $sql 0 2] == "-- "} { lappend ::trace [string range $sql 3 end] } } proc do_tracesql_test {tn sql {res {}}} { set ::trace [list] uplevel [list do_test $tn [subst -nocommands { set vals [execsql {$sql}] concat [set vals] [set ::trace] }] [list {*}$res]] } db trace trace_callback do_tracesql_test 6.2.1 { SELECT word FROM t3 WHERE rowid = 10; } {keener {SELECT word, rank, NULL, langid, id FROM "main"."t3_vocab" WHERE rowid=?} } do_tracesql_test 6.2.2 { SELECT word, distance FROM t3 WHERE rowid = 10; } {keener {} {SELECT word, rank, NULL, langid, id FROM "main"."t3_vocab" WHERE rowid=?} } do_tracesql_test 6.2.3 { SELECT word, distance FROM t3 WHERE rowid = 10 AND word MATCH 'kiiner'; } {keener 300 {SELECT id, word, rank, k1 FROM "main"."t3_vocab" WHERE langid=0 AND k2>=?1 AND k2<?2} } } finish_test |
Changes to test/tester.tcl.
︙ | ︙ | |||
55 56 57 58 59 60 61 62 63 64 65 66 67 68 | # do_ioerr_test TESTNAME ARGS... # crashsql ARGS... # integrity_check TESTNAME ?DB? # verify_ex_errcode TESTNAME EXPECTED ?DB? # do_test TESTNAME SCRIPT EXPECTED # do_execsql_test TESTNAME SQL EXPECTED # do_catchsql_test TESTNAME SQL EXPECTED # # Commands providing a lower level interface to the global test counters: # # set_test_counter COUNTER ?VALUE? # omit_test TESTNAME REASON ?APPEND? # fail_test TESTNAME # incr_ntest | > | 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 | # do_ioerr_test TESTNAME ARGS... # crashsql ARGS... # integrity_check TESTNAME ?DB? # verify_ex_errcode TESTNAME EXPECTED ?DB? # do_test TESTNAME SCRIPT EXPECTED # do_execsql_test TESTNAME SQL EXPECTED # do_catchsql_test TESTNAME SQL EXPECTED # do_timed_execsql_test TESTNAME SQL EXPECTED # # Commands providing a lower level interface to the global test counters: # # set_test_counter COUNTER ?VALUE? # omit_test TESTNAME REASON ?APPEND? # fail_test TESTNAME # incr_ntest |
︙ | ︙ | |||
719 720 721 722 723 724 725 726 727 728 729 730 731 732 | fix_testname testname uplevel do_test [list $testname] [list "execsql {$sql}"] [list [list {*}$result]] } proc do_catchsql_test {testname sql result} { fix_testname testname uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result] } proc do_eqp_test {name sql res} { uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res] } #------------------------------------------------------------------------- # Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST # | > > > > > | 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 | fix_testname testname uplevel do_test [list $testname] [list "execsql {$sql}"] [list [list {*}$result]] } proc do_catchsql_test {testname sql result} { fix_testname testname uplevel do_test [list $testname] [list "catchsql {$sql}"] [list $result] } proc do_timed_execsql_test {testname sql {result {}}} { fix_testname testname uplevel do_test [list $testname] [list "execsql_timed {$sql}"]\ [list [list {*}$result]] } proc do_eqp_test {name sql res} { uplevel do_execsql_test $name [list "EXPLAIN QUERY PLAN $sql"] [list $res] } #------------------------------------------------------------------------- # Usage: do_select_tests PREFIX ?SWITCHES? TESTLIST # |
︙ | ︙ | |||
1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 | } # A procedure to execute SQL # proc execsql {sql {db db}} { # puts "SQL = $sql" uplevel [list $db eval $sql] } # Execute SQL and catch exceptions. # proc catchsql {sql {db db}} { # puts "SQL = $sql" set r [catch [list uplevel [list $db eval $sql]] msg] | > > > > > > > > | 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | } # A procedure to execute SQL # proc execsql {sql {db db}} { # puts "SQL = $sql" uplevel [list $db eval $sql] } proc execsql_timed {sql {db db}} { set tm [time { set x [uplevel [list $db eval $sql]] } 1] set tm [lindex $tm 0] puts -nonewline " ([expr {$tm*0.001}]ms) " set x } # Execute SQL and catch exceptions. # proc catchsql {sql {db db}} { # puts "SQL = $sql" set r [catch [list uplevel [list $db eval $sql]] msg] |
︙ | ︙ |
Changes to test/with1.test.
︙ | ︙ | |||
448 449 450 451 452 453 454 455 456 457 458 | + ((ind-1)/27) * 27 + lp + ((lp-1) / 3) * 6, 1) ) ) SELECT s FROM x WHERE ind=0; } {534678912672195348198342567859761423426853791713924856961537284287419635345286179} # Test cases to illustrate on the ORDER BY clause on a recursive query can be # used to control depth-first versus breath-first search in a tree. # | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | | 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 | + ((ind-1)/27) * 27 + lp + ((lp-1) / 3) * 6, 1) ) ) SELECT s FROM x WHERE ind=0; } {534678912672195348198342567859761423426853791713924856961537284287419635345286179} #-------------------------------------------------------------------------- # Some tests that use LIMIT and OFFSET in the definition of recursive CTEs. # set I [list 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20] proc limit_test {tn iLimit iOffset} { if {$iOffset < 0} { set iOffset 0 } if {$iLimit < 0 } { set result [lrange $::I $iOffset end] } else { set result [lrange $::I $iOffset [expr $iLimit+$iOffset-1]] } uplevel [list do_execsql_test $tn [subst -nocommands { WITH ii(a) AS ( VALUES(1) UNION ALL SELECT a+1 FROM ii WHERE a<20 LIMIT $iLimit OFFSET $iOffset ) SELECT * FROM ii }] $result] } limit_test 9.1 20 0 limit_test 9.2 0 0 limit_test 9.3 19 1 limit_test 9.4 20 -1 limit_test 9.5 5 5 limit_test 9.6 0 -1 limit_test 9.7 40 -1 limit_test 9.8 -1 -1 limit_test 9.9 -1 -1 #-------------------------------------------------------------------------- # Test the ORDER BY clause on recursive tables. # do_execsql_test 10.1 { DROP TABLE IF EXISTS tree; CREATE TABLE tree(id INTEGER PRIMARY KEY, parentid, payload); } proc insert_into_tree {L} { db eval { DELETE FROM tree } foreach key $L { unset -nocomplain parentid foreach seg [split $key /] { if {$seg==""} continue set id [db one { SELECT id FROM tree WHERE parentid IS $parentid AND payload=$seg }] if {$id==""} { db eval { INSERT INTO tree VALUES(NULL, $parentid, $seg) } set parentid [db last_insert_rowid] } else { set parentid $id } } } } insert_into_tree { /a/a/a /a/b/c /a/b/c/d /a/b/d } do_execsql_test 10.2 { WITH flat(fid, p) AS ( SELECT id, '/' || payload FROM tree WHERE parentid IS NULL UNION ALL SELECT id, p || '/' || payload FROM flat, tree WHERE parentid=fid ) SELECT p FROM flat ORDER BY p; } { /a /a/a /a/a/a /a/b /a/b/c /a/b/c/d /a/b/d } # Scan the tree-structure currently stored in table tree. Return a list # of nodes visited. # proc scan_tree {bDepthFirst bReverse} { set order "ORDER BY " if {$bDepthFirst==0} { append order "2 ASC," } if {$bReverse==0} { append order " 3 ASC" } else { append order " 3 DESC" } db eval " WITH flat(fid, depth, p) AS ( SELECT id, 1, '/' || payload FROM tree WHERE parentid IS NULL UNION ALL SELECT id, depth+1, p||'/'||payload FROM flat, tree WHERE parentid=fid $order ) SELECT p FROM flat; " } insert_into_tree { /a/b /a/b/c /a/d /a/d/e /a/d/f /g/h } # Breadth first, siblings in ascending order. # do_test 10.3 { scan_tree 0 0 } [list {*}{ /a /g /a/b /a/d /g/h /a/b/c /a/d/e /a/d/f }] # Depth first, siblings in ascending order. # do_test 10.4 { scan_tree 1 0 } [list {*}{ /a /a/b /a/b/c /a/d /a/d/e /a/d/f /g /g/h }] # Breadth first, siblings in descending order. # do_test 10.5 { scan_tree 0 1 } [list {*}{ /g /a /g/h /a/d /a/b /a/d/f /a/d/e /a/b/c }] # Depth first, siblings in ascending order. # do_test 10.6 { scan_tree 1 1 } [list {*}{ /g /g/h /a /a/d /a/d/f /a/d/e /a/b /a/b/c }] # Test name resolution in ORDER BY clauses. # do_catchsql_test 10.7.1 { WITH t(a) AS ( SELECT 1 AS b UNION ALL SELECT a+1 AS c FROM t WHERE a<5 ORDER BY a ) SELECT * FROM t } {1 {1st ORDER BY term does not match any column in the result set}} do_execsql_test 10.7.2 { WITH t(a) AS ( SELECT 1 AS b UNION ALL SELECT a+1 AS c FROM t WHERE a<5 ORDER BY b ) SELECT * FROM t } {1 2 3 4 5} do_execsql_test 10.7.3 { WITH t(a) AS ( SELECT 1 AS b UNION ALL SELECT a+1 AS c FROM t WHERE a<5 ORDER BY c ) SELECT * FROM t } {1 2 3 4 5} # Test COLLATE clauses attached to ORDER BY. # insert_into_tree { /a/b /a/C /a/d /B/e /B/F /B/g /c/h /c/I /c/j } do_execsql_test 10.8.1 { WITH flat(fid, depth, p) AS ( SELECT id, 1, '/' || payload FROM tree WHERE parentid IS NULL UNION ALL SELECT id, depth+1, p||'/'||payload FROM flat, tree WHERE parentid=fid ORDER BY 2, 3 COLLATE nocase ) SELECT p FROM flat; } { /a /B /c /a/b /a/C /a/d /B/e /B/F /B/g /c/h /c/I /c/j } do_execsql_test 10.8.2 { WITH flat(fid, depth, p) AS ( SELECT id, 1, ('/' || payload) COLLATE nocase FROM tree WHERE parentid IS NULL UNION ALL SELECT id, depth+1, (p||'/'||payload) FROM flat, tree WHERE parentid=fid ORDER BY 2, 3 ) SELECT p FROM flat; } { /a /B /c /a/b /a/C /a/d /B/e /B/F /B/g /c/h /c/I /c/j } do_execsql_test 10.8.3 { WITH flat(fid, depth, p) AS ( SELECT id, 1, ('/' || payload) FROM tree WHERE parentid IS NULL UNION ALL SELECT id, depth+1, (p||'/'||payload) COLLATE nocase FROM flat, tree WHERE parentid=fid ORDER BY 2, 3 ) SELECT p FROM flat; } { /a /B /c /a/b /a/C /a/d /B/e /B/F /B/g /c/h /c/I /c/j } do_execsql_test 10.8.4.1 { CREATE TABLE tst(a,b); INSERT INTO tst VALUES('a', 'A'); INSERT INTO tst VALUES('b', 'B'); INSERT INTO tst VALUES('c', 'C'); SELECT a COLLATE nocase FROM tst UNION ALL SELECT b FROM tst ORDER BY 1; } {a A b B c C} do_execsql_test 10.8.4.2 { SELECT a FROM tst UNION ALL SELECT b COLLATE nocase FROM tst ORDER BY 1; } {A B C a b c} do_execsql_test 10.8.4.3 { SELECT a||'' FROM tst UNION ALL SELECT b COLLATE nocase FROM tst ORDER BY 1; } {a A b B c C} # Test cases to illustrate on the ORDER BY clause on a recursive query can be # used to control depth-first versus breath-first search in a tree. # do_execsql_test 11.1 { CREATE TABLE org( name TEXT PRIMARY KEY, boss TEXT REFERENCES org ) WITHOUT ROWID; INSERT INTO org VALUES('Alice',NULL); INSERT INTO org VALUES('Bob','Alice'); INSERT INTO org VALUES('Cindy','Alice'); |
︙ | ︙ | |||
509 510 511 512 513 514 515 | .........Mary .........Noland .........Olivia}} # The previous query used "ORDER BY level" to yield a breath-first search. # Change that to "ORDER BY level DESC" for a depth-first search. # | | | 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 | .........Mary .........Noland .........Olivia}} # The previous query used "ORDER BY level" to yield a breath-first search. # Change that to "ORDER BY level DESC" for a depth-first search. # do_execsql_test 11.2 { WITH RECURSIVE under_alice(name,level) AS ( VALUES('Alice','0') UNION ALL SELECT org.name, under_alice.level+1 FROM org, under_alice WHERE org.boss=under_alice.name |
︙ | ︙ | |||
540 541 542 543 544 545 546 | ......Gail .........Noland .........Olivia}} # Without an ORDER BY clause, the recursive query should use a FIFO, # resulting in a breath-first search. # | | | 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 | ......Gail .........Noland .........Olivia}} # Without an ORDER BY clause, the recursive query should use a FIFO, # resulting in a breath-first search. # do_execsql_test 11.3 { WITH RECURSIVE under_alice(name,level) AS ( VALUES('Alice','0') UNION ALL SELECT org.name, under_alice.level+1 FROM org, under_alice WHERE org.boss=under_alice.name |
︙ | ︙ | |||
568 569 570 571 572 573 574 | .........Kate .........Lanny .........Mary .........Noland .........Olivia}} finish_test | > | 813 814 815 816 817 818 819 820 | .........Kate .........Lanny .........Mary .........Noland .........Olivia}} finish_test |
Changes to tool/omittest.tcl.
︙ | ︙ | |||
186 187 188 189 190 191 192 193 194 195 196 197 198 199 | SQLITE_OMIT_BTREECOUNT \ SQLITE_OMIT_BUILTIN_TEST \ SQLITE_OMIT_CAST \ SQLITE_OMIT_CHECK \ SQLITE_OMIT_COMPILEOPTION_DIAGS \ SQLITE_OMIT_COMPLETE \ SQLITE_OMIT_COMPOUND_SELECT \ SQLITE_OMIT_DATETIME_FUNCS \ SQLITE_OMIT_DECLTYPE \ SQLITE_OMIT_DEPRECATED \ SQLITE_OMIT_EXPLAIN \ SQLITE_OMIT_FLAG_PRAGMAS \ SQLITE_OMIT_FLOATING_POINT \ SQLITE_OMIT_FOREIGN_KEY \ | > | 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 | SQLITE_OMIT_BTREECOUNT \ SQLITE_OMIT_BUILTIN_TEST \ SQLITE_OMIT_CAST \ SQLITE_OMIT_CHECK \ SQLITE_OMIT_COMPILEOPTION_DIAGS \ SQLITE_OMIT_COMPLETE \ SQLITE_OMIT_COMPOUND_SELECT \ SQLITE_OMIT_CTE \ SQLITE_OMIT_DATETIME_FUNCS \ SQLITE_OMIT_DECLTYPE \ SQLITE_OMIT_DEPRECATED \ SQLITE_OMIT_EXPLAIN \ SQLITE_OMIT_FLAG_PRAGMAS \ SQLITE_OMIT_FLOATING_POINT \ SQLITE_OMIT_FOREIGN_KEY \ |
︙ | ︙ |