SQLite

Check-in [05a3a2cd14]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Simplification of the LRU list handling in pcache1.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: 05a3a2cd140587265b5427d23c93c5be1f39e199
User & Date: drh 2015-09-04 04:31:56.886
Context
2015-09-04
10:31
Modify the fts5 custom tokenizer interface to permit synonym support. The fts5_api.iVersion value is now set to 2. Existing fts5 custom tokenizers (if there are such things) will need to be updated to use the new api version. (check-in: 0b7e4ab8ab user: dan tags: trunk)
10:24
Merge latest trunk changes. (Closed-Leaf check-in: 443a5eb8e1 user: dan tags: fts5-incompatible)
04:31
Simplification of the LRU list handling in pcache1. (check-in: 05a3a2cd14 user: drh tags: trunk)
2015-09-03
20:43
Change the pcache module to keep track of the total number of references to all pages rather than the number of pages references, for a performance improvement and size reduction. (check-in: f00a9e1e99 user: drh tags: trunk)
Changes
Unified Diff Show Whitespace Changes Patch
Changes to src/pcache1.c.
82
83
84
85
86
87
88


















89
90
91
92
93
94
95
*/
#include "sqliteInt.h"

typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;



















/* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set 
** of one or more PCaches that are able to recycle each other's unpinned
** pages when they are under memory pressure.  A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
*/
#include "sqliteInt.h"

typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;

/*
** Each cache entry is represented by an instance of the following 
** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
** PgHdr1.pCache->szPage bytes is allocated directly before this structure 
** in memory.
*/
struct PgHdr1 {
  sqlite3_pcache_page page;      /* Base class. Must be first. pBuf & pExtra */
  unsigned int iKey;             /* Key value (page number) */
  u8 isPinned;                   /* Page in use, not on the LRU list */
  u8 isBulkLocal;                /* This page from bulk local storage */
  u8 isAnchor;                   /* This is the PGroup.lru element */
  PgHdr1 *pNext;                 /* Next in hash table chain */
  PCache1 *pCache;               /* Cache that currently owns this page */
  PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
  PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
};

/* Each page cache (or PCache) belongs to a PGroup.  A PGroup is a set 
** of one or more PCaches that are able to recycle each other's unpinned
** pages when they are under memory pressure.  A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
*/
struct PGroup {
  sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
  unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
  unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
  unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
  unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
  PgHdr1 *pLruHead, *pLruTail;   /* LRU list of unpinned pages */
};

/* Each page cache is an instance of the following object.  Every
** open database file (including each in-memory database and each
** temporary or transient database) has a single page cache which
** is an instance of this object.
**







|







129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
*/
struct PGroup {
  sqlite3_mutex *mutex;          /* MUTEX_STATIC_LRU or NULL */
  unsigned int nMaxPage;         /* Sum of nMax for purgeable caches */
  unsigned int nMinPage;         /* Sum of nMin for purgeable caches */
  unsigned int mxPinned;         /* nMaxpage + 10 - nMinPage */
  unsigned int nCurrentPage;     /* Number of purgeable pages allocated */
  PgHdr1 lru;                    /* The beginning and end of the LRU list */
};

/* Each page cache is an instance of the following object.  Every
** open database file (including each in-memory database and each
** temporary or transient database) has a single page cache which
** is an instance of this object.
**
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
  unsigned int nPage;                 /* Total number of pages in apHash */
  unsigned int nHash;                 /* Number of slots in apHash[] */
  PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
  PgHdr1 *pFree;                      /* List of unused pcache-local pages */
  void *pBulk;                        /* Bulk memory used by pcache-local */
};

/*
** Each cache entry is represented by an instance of the following 
** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
** PgHdr1.pCache->szPage bytes is allocated directly before this structure 
** in memory.
*/
struct PgHdr1 {
  sqlite3_pcache_page page;
  unsigned int iKey;             /* Key value (page number) */
  u8 isPinned;                   /* Page in use, not on the LRU list */
  u8 isBulkLocal;                /* This page from bulk local storage */
  PgHdr1 *pNext;                 /* Next in hash table chain */
  PCache1 *pCache;               /* Cache that currently owns this page */
  PgHdr1 *pLruNext;              /* Next in LRU list of unpinned pages */
  PgHdr1 *pLruPrev;              /* Previous in LRU list of unpinned pages */
};

/*
** Free slots in the allocator used to divide up the global page cache
** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
*/
struct PgFreeslot {
  PgFreeslot *pNext;  /* Next free slot */
};







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







167
168
169
170
171
172
173

















174
175
176
177
178
179
180
  unsigned int nPage;                 /* Total number of pages in apHash */
  unsigned int nHash;                 /* Number of slots in apHash[] */
  PgHdr1 **apHash;                    /* Hash table for fast lookup by key */
  PgHdr1 *pFree;                      /* List of unused pcache-local pages */
  void *pBulk;                        /* Bulk memory used by pcache-local */
};


















/*
** Free slots in the allocator used to divide up the global page cache
** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
*/
struct PgFreeslot {
  PgFreeslot *pNext;  /* Next free slot */
};
225
226
227
228
229
230
231

232
233
234
235
236
237
238
# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
#endif

/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/


/*
** This function is called during initialization if a static buffer is 
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
** enough to contain 'n' buffers of 'sz' bytes each.
**







>







226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
#endif

/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/


/*
** This function is called during initialization if a static buffer is 
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
** enough to contain 'n' buffers of 'sz' bytes each.
**
285
286
287
288
289
290
291

292
293
294
295
296
297
298
    int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
    int i;
    for(i=0; i<nBulk; i++){
      PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
      pX->page.pBuf = zBulk;
      pX->page.pExtra = &pX[1];
      pX->isBulkLocal = 1;

      pX->pNext = pCache->pFree;
      pCache->pFree = pX;
      zBulk += pCache->szAlloc;
    }
  }
  return pCache->pFree!=0;
}







>







287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
    int i;
    for(i=0; i<nBulk; i++){
      PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
      pX->page.pBuf = zBulk;
      pX->page.pExtra = &pX[1];
      pX->isBulkLocal = 1;
      pX->isAnchor = 0;
      pX->pNext = pCache->pFree;
      pCache->pFree = pX;
      zBulk += pCache->szAlloc;
    }
  }
  return pCache->pFree!=0;
}
427
428
429
430
431
432
433

434
435
436
437
438
439
440
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    pcache1EnterMutex(pCache->pGroup);
#endif
    if( pPg==0 ) return 0;
    p->page.pBuf = pPg;
    p->page.pExtra = &p[1];
    p->isBulkLocal = 0;

  }
  if( pCache->bPurgeable ){
    pCache->pGroup->nCurrentPage++;
  }
  return p;
}








>







430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
    pcache1EnterMutex(pCache->pGroup);
#endif
    if( pPg==0 ) return 0;
    p->page.pBuf = pPg;
    p->page.pExtra = &p[1];
    p->isBulkLocal = 0;
    p->isAnchor = 0;
  }
  if( pCache->bPurgeable ){
    pCache->pGroup->nCurrentPage++;
  }
  return p;
}

553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575


576
577
578
579
580
581
582
*/
static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
  PCache1 *pCache;

  assert( pPage!=0 );
  assert( pPage->isPinned==0 );
  pCache = pPage->pCache;
  assert( pPage->pLruNext || pPage==pCache->pGroup->pLruTail );
  assert( pPage->pLruPrev || pPage==pCache->pGroup->pLruHead );
  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
  if( pPage->pLruPrev ){
    pPage->pLruPrev->pLruNext = pPage->pLruNext;
  }else{
    pCache->pGroup->pLruHead = pPage->pLruNext;
  }
  if( pPage->pLruNext ){
    pPage->pLruNext->pLruPrev = pPage->pLruPrev;
  }else{
    pCache->pGroup->pLruTail = pPage->pLruPrev;
  }
  pPage->pLruNext = 0;
  pPage->pLruPrev = 0;
  pPage->isPinned = 1;


  pCache->nRecyclable--;
  return pPage;
}


/*
** Remove the page supplied as an argument from the hash table 







|
|

<

<
<
<
<

<
<
<



>
>







557
558
559
560
561
562
563
564
565
566

567




568



569
570
571
572
573
574
575
576
577
578
579
580
*/
static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
  PCache1 *pCache;

  assert( pPage!=0 );
  assert( pPage->isPinned==0 );
  pCache = pPage->pCache;
  assert( pPage->pLruNext );
  assert( pPage->pLruPrev );
  assert( sqlite3_mutex_held(pCache->pGroup->mutex) );

    pPage->pLruPrev->pLruNext = pPage->pLruNext;




    pPage->pLruNext->pLruPrev = pPage->pLruPrev;



  pPage->pLruNext = 0;
  pPage->pLruPrev = 0;
  pPage->isPinned = 1;
  assert( pPage->isAnchor==0 );
  assert( pCache->pGroup->lru.isAnchor==1 );
  pCache->nRecyclable--;
  return pPage;
}


/*
** Remove the page supplied as an argument from the hash table 
601
602
603
604
605
606
607

608
609
610

611
612
613
614
615
616
617

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PCache1 *pCache){
  PGroup *pGroup = pCache->pGroup;

  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
    PgHdr1 *p = pGroup->pLruTail;

    assert( p->pCache->pGroup==pGroup );
    assert( p->isPinned==0 );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p, 1);
  }
  if( pCache->nPage==0 && pCache->pBulk ){
    sqlite3_free(pCache->pBulk);







>

|
|
>







599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617

/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PCache1 *pCache){
  PGroup *pGroup = pCache->pGroup;
  PgHdr1 *p;
  assert( sqlite3_mutex_held(pGroup->mutex) );
  while( pGroup->nCurrentPage>pGroup->nMaxPage
      && (p=pGroup->lru.pLruPrev)->isAnchor==0
  ){
    assert( p->pCache->pGroup==pGroup );
    assert( p->isPinned==0 );
    pcache1PinPage(p);
    pcache1RemoveFromHash(p, 1);
  }
  if( pCache->nPage==0 && pCache->pBulk ){
    sqlite3_free(pCache->pBulk);
737
738
739
740
741
742
743




744
745
746
747
748
749
750
  if( pCache ){
    if( pcache1.separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1.grp;
    }




    pCache->pGroup = pGroup;
    pCache->szPage = szPage;
    pCache->szExtra = szExtra;
    pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
    pCache->bPurgeable = (bPurgeable ? 1 : 0);
    pcache1EnterMutex(pGroup);
    pcache1ResizeHash(pCache);







>
>
>
>







737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
  if( pCache ){
    if( pcache1.separateCache ){
      pGroup = (PGroup*)&pCache[1];
      pGroup->mxPinned = 10;
    }else{
      pGroup = &pcache1.grp;
    }
    if( pGroup->lru.isAnchor==0 ){
      pGroup->lru.isAnchor = 1;
      pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
    }
    pCache->pGroup = pGroup;
    pCache->szPage = szPage;
    pCache->szExtra = szExtra;
    pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
    pCache->bPurgeable = (bPurgeable ? 1 : 0);
    pcache1EnterMutex(pGroup);
    pcache1ResizeHash(pCache);
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
  }

  if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
  assert( pCache->nHash>0 && pCache->apHash );

  /* Step 4. Try to recycle a page. */
  if( pCache->bPurgeable
   && pGroup->pLruTail
   && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
  ){
    PCache1 *pOther;
    pPage = pGroup->pLruTail;
    assert( pPage->isPinned==0 );
    pcache1RemoveFromHash(pPage, 0);
    pcache1PinPage(pPage);
    pOther = pPage->pCache;
    if( pOther->szAlloc != pCache->szAlloc ){
      pcache1FreePage(pPage);
      pPage = 0;







|



|







848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
  }

  if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
  assert( pCache->nHash>0 && pCache->apHash );

  /* Step 4. Try to recycle a page. */
  if( pCache->bPurgeable
   && !pGroup->lru.pLruPrev->isAnchor
   && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
  ){
    PCache1 *pOther;
    pPage = pGroup->lru.pLruPrev;
    assert( pPage->isPinned==0 );
    pcache1RemoveFromHash(pPage, 0);
    pcache1PinPage(pPage);
    pOther = pPage->pCache;
    if( pOther->szAlloc != pCache->szAlloc ){
      pcache1FreePage(pPage);
      pPage = 0;
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
  assert( pPage->pCache==pCache );
  pcache1EnterMutex(pGroup);

  /* It is an error to call this function if the page is already 
  ** part of the PGroup LRU list.
  */
  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
  assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
  assert( pPage->isPinned==1 );

  if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
    pcache1RemoveFromHash(pPage, 1);
  }else{
    /* Add the page to the PGroup LRU list. */
    if( pGroup->pLruHead ){
      pGroup->pLruHead->pLruPrev = pPage;
      pPage->pLruNext = pGroup->pLruHead;
      pGroup->pLruHead = pPage;
    }else{
      pGroup->pLruTail = pPage;
      pGroup->pLruHead = pPage;
    }
    pCache->nRecyclable++;
    pPage->isPinned = 0;
  }

  pcache1LeaveMutex(pCache->pGroup);
}








<






|
|
|
|
<
<
<
<







1041
1042
1043
1044
1045
1046
1047

1048
1049
1050
1051
1052
1053
1054
1055
1056
1057




1058
1059
1060
1061
1062
1063
1064
  assert( pPage->pCache==pCache );
  pcache1EnterMutex(pGroup);

  /* It is an error to call this function if the page is already 
  ** part of the PGroup LRU list.
  */
  assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );

  assert( pPage->isPinned==1 );

  if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
    pcache1RemoveFromHash(pPage, 1);
  }else{
    /* Add the page to the PGroup LRU list. */
    PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
    pPage->pLruPrev = &pGroup->lru;
    (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
    *ppFirst = pPage;




    pCache->nRecyclable++;
    pPage->isPinned = 0;
  }

  pcache1LeaveMutex(pCache->pGroup);
}

1189
1190
1191
1192
1193
1194
1195
1196


1197
1198
1199
1200
1201
1202
1203
int sqlite3PcacheReleaseMemory(int nReq){
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){


      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);
      pcache1RemoveFromHash(p, 1);







|
>
>







1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
int sqlite3PcacheReleaseMemory(int nReq){
  int nFree = 0;
  assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
  assert( sqlite3_mutex_notheld(pcache1.mutex) );
  if( sqlite3GlobalConfig.nPage==0 ){
    PgHdr1 *p;
    pcache1EnterMutex(&pcache1.grp);
    while( (nReq<0 || nFree<nReq)
       &&  (p=pcache1.grp.lru.pLruPrev)->isAnchor==0
    ){
      nFree += pcache1MemSize(p->page.pBuf);
#ifdef SQLITE_PCACHE_SEPARATE_HEADER
      nFree += sqlite3MemSize(p);
#endif
      assert( p->isPinned==0 );
      pcache1PinPage(p);
      pcache1RemoveFromHash(p, 1);
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
  int *pnCurrent,      /* OUT: Total number of pages cached */
  int *pnMax,          /* OUT: Global maximum cache size */
  int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
  int *pnRecyclable    /* OUT: Total number of pages available for recycling */
){
  PgHdr1 *p;
  int nRecyclable = 0;
  for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
    assert( p->isPinned==0 );
    nRecyclable++;
  }
  *pnCurrent = pcache1.grp.nCurrentPage;
  *pnMax = (int)pcache1.grp.nMaxPage;
  *pnMin = (int)pcache1.grp.nMinPage;
  *pnRecyclable = nRecyclable;
}
#endif







|









1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
  int *pnCurrent,      /* OUT: Total number of pages cached */
  int *pnMax,          /* OUT: Global maximum cache size */
  int *pnMin,          /* OUT: Sum of PCache1.nMin for purgeable caches */
  int *pnRecyclable    /* OUT: Total number of pages available for recycling */
){
  PgHdr1 *p;
  int nRecyclable = 0;
  for(p=pcache1.grp.lru.pLruNext; !p->isAnchor; p=p->pLruNext){
    assert( p->isPinned==0 );
    nRecyclable++;
  }
  *pnCurrent = pcache1.grp.nCurrentPage;
  *pnMax = (int)pcache1.grp.nMaxPage;
  *pnMin = (int)pcache1.grp.nMinPage;
  *pnRecyclable = nRecyclable;
}
#endif