SQLite

Changes On Branch sessions-value-dup
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Changes In Branch sessions-value-dup Excluding Merge-Ins

This is equivalent to a diff from 7530e1bf to b9e45596

2015-05-22
23:26
Merge enhancements from trunk, including the new sqlite3_value_dup() API and the addition of the apSqlParam field in the sqlite3_rtree_query_info object of R-Tree. (check-in: cdc0ca6f user: drh tags: sessions)
16:08
Have r-tree prefer to use the constraint "col MATCH ?" over "rowid = ?". (check-in: b9fb9519 user: dan tags: trunk)
2015-05-21
20:26
Have r-tree prefer to use the constraint "col MATCH ?" over "rowid = ?". drh added later: All changes on this branch have been cherrypicked to trunk and will be merged into sessions from trunk. So this branch can close. (Closed-Leaf check-in: b9e45596 user: dan tags: sessions-value-dup)
2015-05-20
22:01
Add the sqlite3_value_dup() and sqlite3_value_free() interfaces and use those to add the sqlite3_rtree_query_info.apSqlParam field to the query callback in R-Tree. (check-in: 2007391c user: drh tags: sessions-value-dup)
2015-05-19
23:04
Merge the Makefile.msc fix and the compiler warning fix from trunk. Also fix another compiler warning in sqlite3session_diff(). (check-in: 7530e1bf user: drh tags: sessions)
22:56
Fix the MSVC makefile so that it works with OTA. Fix a harmless compiler warning in FTS3. (check-in: c7b16645 user: drh tags: trunk)
22:42
Merge recent trunk changes, include the R-Tree enhancement that allows 8-byte BLOB arguments to geometry functions, and the fix for the TEXT affinity problem that could cause corrupt indexes. (check-in: 0a0de8b7 user: drh tags: sessions)

Changes to ext/rtree/rtree.c.

347
348
349
350
351
352
353

354
355
356
357
358
359
360
** sqlite3_rtree_query_callback() create, and is read as the right-hand
** operand to the MATCH operator of an R-Tree.
*/
struct RtreeMatchArg {
  u32 magic;                  /* Always RTREE_GEOMETRY_MAGIC */
  RtreeGeomCallback cb;       /* Info about the callback functions */
  int nParam;                 /* Number of parameters to the SQL function */

  RtreeDValue aParam[1];      /* Values for parameters to the SQL function */
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN







>







347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
** sqlite3_rtree_query_callback() create, and is read as the right-hand
** operand to the MATCH operator of an R-Tree.
*/
struct RtreeMatchArg {
  u32 magic;                  /* Always RTREE_GEOMETRY_MAGIC */
  RtreeGeomCallback cb;       /* Info about the callback functions */
  int nParam;                 /* Number of parameters to the SQL function */
  sqlite3_value **apSqlParam; /* Original SQL parameter values */
  RtreeDValue aParam[1];      /* Values for parameters to the SQL function */
};

#ifndef MAX
# define MAX(x,y) ((x) < (y) ? (y) : (x))
#endif
#ifndef MIN
1491
1492
1493
1494
1495
1496
1497

1498
1499
1500
1501
1502
1503
1504
1505

1506
1507
1508
1509
1510
1511
1512
  pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob );
  if( !pInfo ) return SQLITE_NOMEM;
  memset(pInfo, 0, sizeof(*pInfo));
  pBlob = (RtreeMatchArg*)&pInfo[1];

  memcpy(pBlob, sqlite3_value_blob(pValue), nBlob);
  nExpected = (int)(sizeof(RtreeMatchArg) +

                    (pBlob->nParam-1)*sizeof(RtreeDValue));
  if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){
    sqlite3_free(pInfo);
    return SQLITE_ERROR;
  }
  pInfo->pContext = pBlob->cb.pContext;
  pInfo->nParam = pBlob->nParam;
  pInfo->aParam = pBlob->aParam;


  if( pBlob->cb.xGeom ){
    pCons->u.xGeom = pBlob->cb.xGeom;
  }else{
    pCons->op = RTREE_QUERY;
    pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
  }







>








>







1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
  pInfo = (sqlite3_rtree_query_info*)sqlite3_malloc( sizeof(*pInfo)+nBlob );
  if( !pInfo ) return SQLITE_NOMEM;
  memset(pInfo, 0, sizeof(*pInfo));
  pBlob = (RtreeMatchArg*)&pInfo[1];

  memcpy(pBlob, sqlite3_value_blob(pValue), nBlob);
  nExpected = (int)(sizeof(RtreeMatchArg) +
                    pBlob->nParam*sizeof(sqlite3_value*) +
                    (pBlob->nParam-1)*sizeof(RtreeDValue));
  if( pBlob->magic!=RTREE_GEOMETRY_MAGIC || nBlob!=nExpected ){
    sqlite3_free(pInfo);
    return SQLITE_ERROR;
  }
  pInfo->pContext = pBlob->cb.pContext;
  pInfo->nParam = pBlob->nParam;
  pInfo->aParam = pBlob->aParam;
  pInfo->apSqlParam = pBlob->apSqlParam;

  if( pBlob->cb.xGeom ){
    pCons->u.xGeom = pBlob->cb.xGeom;
  }else{
    pCons->op = RTREE_QUERY;
    pCons->u.xQueryFunc = pBlob->cb.xQueryFunc;
  }
1665
1666
1667
1668
1669
1670
1671

1672
1673
1674
1675
1676










1677
1678
1679
1680
1681

1682

1683
1684
1685
1686
1687
1688
1689
** to which the constraint applies. The leftmost coordinate column
** is 'a', the second from the left 'b' etc.
*/
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  Rtree *pRtree = (Rtree*)tab;
  int rc = SQLITE_OK;
  int ii;

  i64 nRow;                       /* Estimated rows returned by this scan */

  int iIdx = 0;
  char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
  memset(zIdxStr, 0, sizeof(zIdxStr));











  assert( pIdxInfo->idxStr==0 );
  for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];


    if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){

      /* We have an equality constraint on the rowid. Use strategy 1. */
      int jj;
      for(jj=0; jj<ii; jj++){
        pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
        pIdxInfo->aConstraintUsage[jj].omit = 0;
      }
      pIdxInfo->idxNum = 1;







>





>
>
>
>
>
>
>
>
>
>





>
|
>







1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
** to which the constraint applies. The leftmost coordinate column
** is 'a', the second from the left 'b' etc.
*/
static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
  Rtree *pRtree = (Rtree*)tab;
  int rc = SQLITE_OK;
  int ii;
  int bMatch = 0;                 /* True if there exists a MATCH constraint */
  i64 nRow;                       /* Estimated rows returned by this scan */

  int iIdx = 0;
  char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
  memset(zIdxStr, 0, sizeof(zIdxStr));

  /* Check if there exists a MATCH constraint - even an unusable one. If there
  ** is, do not consider the lookup-by-rowid plan as using such a plan would
  ** require the VDBE to evaluate the MATCH constraint, which is not currently
  ** possible. */
  for(ii=0; ii<pIdxInfo->nConstraint; ii++){
    if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){
      bMatch = 1;
    }
  }

  assert( pIdxInfo->idxStr==0 );
  for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
    struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];

    if( bMatch==0 && p->usable 
     && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ 
    ){
      /* We have an equality constraint on the rowid. Use strategy 1. */
      int jj;
      for(jj=0; jj<ii; jj++){
        pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
        pIdxInfo->aConstraintUsage[jj].omit = 0;
      }
      pIdxInfo->idxNum = 1;
3367
3368
3369
3370
3371
3372
3373












3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392

3393
3394

3395
3396
3397
3398
3399
3400
3401

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415



3416
3417

3418
3419
3420
3421
3422
3423
3424
** the corresponding SQL function is deleted.
*/
static void rtreeFreeCallback(void *p){
  RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
  if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
  sqlite3_free(p);
}













/*
** Each call to sqlite3_rtree_geometry_callback() or
** sqlite3_rtree_query_callback() creates an ordinary SQLite
** scalar function that is implemented by this routine.
**
** All this function does is construct an RtreeMatchArg object that
** contains the geometry-checking callback routines and a list of
** parameters to this function, then return that RtreeMatchArg object
** as a BLOB.
**
** The R-Tree MATCH operator will read the returned BLOB, deserialize
** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
** out which elements of the R-Tree should be returned by the query.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;


  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue);

  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->cb = pGeomCtx[0];

    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){
      if( sqlite3_value_type(aArg[i])==SQLITE_BLOB
        && sqlite3_value_bytes(aArg[i])==sizeof(sqlite3_rtree_dbl)
      ){
        memcpy(&pBlob->aParam[i], sqlite3_value_blob(aArg[i]),
               sizeof(sqlite3_rtree_dbl));
      }else{
#ifdef SQLITE_RTREE_INT_ONLY
        pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
#else
        pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
#endif
      }



    }
    sqlite3_result_blob(ctx, pBlob, nBlob, sqlite3_free);

  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
int sqlite3_rtree_geometry_callback(







>
>
>
>
>
>
>
>
>
>
>
>



















>

|
>







>


|
<
<
|
<
<

|

|

|
>
>
>
|
|
>







3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435


3436


3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
** the corresponding SQL function is deleted.
*/
static void rtreeFreeCallback(void *p){
  RtreeGeomCallback *pInfo = (RtreeGeomCallback*)p;
  if( pInfo->xDestructor ) pInfo->xDestructor(pInfo->pContext);
  sqlite3_free(p);
}

/*
** This routine frees the BLOB that is returned by geomCallback().
*/
static void rtreeMatchArgFree(void *pArg){
  int i;
  RtreeMatchArg *p = (RtreeMatchArg*)pArg;
  for(i=0; i<p->nParam; i++){
    sqlite3_value_free(p->apSqlParam[i]);
  }
  sqlite3_free(p);
}

/*
** Each call to sqlite3_rtree_geometry_callback() or
** sqlite3_rtree_query_callback() creates an ordinary SQLite
** scalar function that is implemented by this routine.
**
** All this function does is construct an RtreeMatchArg object that
** contains the geometry-checking callback routines and a list of
** parameters to this function, then return that RtreeMatchArg object
** as a BLOB.
**
** The R-Tree MATCH operator will read the returned BLOB, deserialize
** the RtreeMatchArg object, and use the RtreeMatchArg object to figure
** out which elements of the R-Tree should be returned by the query.
*/
static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
  RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
  RtreeMatchArg *pBlob;
  int nBlob;
  int memErr = 0;

  nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(RtreeDValue)
           + nArg*sizeof(sqlite3_value*);
  pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
  if( !pBlob ){
    sqlite3_result_error_nomem(ctx);
  }else{
    int i;
    pBlob->magic = RTREE_GEOMETRY_MAGIC;
    pBlob->cb = pGeomCtx[0];
    pBlob->apSqlParam = (sqlite3_value**)&pBlob->aParam[nArg];
    pBlob->nParam = nArg;
    for(i=0; i<nArg; i++){
      pBlob->apSqlParam[i] = sqlite3_value_dup(aArg[i]);


      if( pBlob->apSqlParam[i]==0 ) memErr = 1;


#ifdef SQLITE_RTREE_INT_ONLY
      pBlob->aParam[i] = sqlite3_value_int64(aArg[i]);
#else
      pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
#endif
    }
    if( memErr ){
      sqlite3_result_error_nomem(ctx);
      rtreeMatchArgFree(pBlob);
    }else{
      sqlite3_result_blob(ctx, pBlob, nBlob, rtreeMatchArgFree);
    }
  }
}

/*
** Register a new geometry function for use with the r-tree MATCH operator.
*/
int sqlite3_rtree_geometry_callback(

Changes to ext/rtree/rtreeE.test.

48
49
50
51
52
53
54



55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78







79
80
81
82
83
84
85
  INSERT INTO rt1 SELECT 200+x+5*y, x*7, x*7+15, y*7+200, y*7+215 FROM x, y;
} {}

# Queries against each of the three clusters */
do_execsql_test rtreeE-1.1 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0.0, 0.0, 50.0, 3) ORDER BY id;
} {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}



do_execsql_test rtreeE-1.2 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(100.0, 0.0, 50.0, 3) ORDER BY id;
} {100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124}
do_execsql_test rtreeE-1.3 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0.0, 200.0, 50.0, 3) ORDER BY id;
} {200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224}

# The Qcircle geometry function gives a lower score to larger leaf-nodes.
# This causes the 200s to sort before the 100s and the 0s to sort before
# last.
#
do_execsql_test rtreeE-1.4 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,3) AND id%100==0
} {200 100 0}

# Exclude odd rowids on a depth-first search
do_execsql_test rtreeE-1.5 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,4) ORDER BY +id
} {0 2 4 6 8 10 12 14 16 18 20 22 24 100 102 104 106 108 110 112 114 116 118 120 122 124 200 202 204 206 208 210 212 214 216 218 220 222 224}

# Exclude odd rowids on a breadth-first search.
do_execsql_test rtreeE-1.6 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,5) ORDER BY +id
} {0 2 4 6 8 10 12 14 16 18 20 22 24 100 102 104 106 108 110 112 114 116 118 120 122 124 200 202 204 206 208 210 212 214 216 218 220 222 224}








# Construct a large 2-D RTree with thousands of random entries.
#
do_test rtreeE-2.1 {
  db eval {
    CREATE TABLE t2(id,x0,x1,y0,y1);
    CREATE VIRTUAL TABLE rt2 USING rtree(id,x0,x1,y0,y1);







>
>
>












|




|






>
>
>
>
>
>
>







48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
  INSERT INTO rt1 SELECT 200+x+5*y, x*7, x*7+15, y*7+200, y*7+215 FROM x, y;
} {}

# Queries against each of the three clusters */
do_execsql_test rtreeE-1.1 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0.0, 0.0, 50.0, 3) ORDER BY id;
} {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
do_execsql_test rtreeE-1.1x {
  SELECT id FROM rt1 WHERE id MATCH Qcircle('x:0 y:0 r:50.0 e:3') ORDER BY id;
} {0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24}
do_execsql_test rtreeE-1.2 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(100.0, 0.0, 50.0, 3) ORDER BY id;
} {100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124}
do_execsql_test rtreeE-1.3 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0.0, 200.0, 50.0, 3) ORDER BY id;
} {200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224}

# The Qcircle geometry function gives a lower score to larger leaf-nodes.
# This causes the 200s to sort before the 100s and the 0s to sort before
# last.
#
do_execsql_test rtreeE-1.4 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle('r:1000 e:3') AND id%100==0
} {200 100 0}

# Exclude odd rowids on a depth-first search
do_execsql_test rtreeE-1.5 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle('r:1000 e:4') ORDER BY +id
} {0 2 4 6 8 10 12 14 16 18 20 22 24 100 102 104 106 108 110 112 114 116 118 120 122 124 200 202 204 206 208 210 212 214 216 218 220 222 224}

# Exclude odd rowids on a breadth-first search.
do_execsql_test rtreeE-1.6 {
  SELECT id FROM rt1 WHERE id MATCH Qcircle(0,0,1000,5) ORDER BY +id
} {0 2 4 6 8 10 12 14 16 18 20 22 24 100 102 104 106 108 110 112 114 116 118 120 122 124 200 202 204 206 208 210 212 214 216 218 220 222 224}

# Test that rtree prefers MATCH to lookup-by-rowid.
#
do_execsql_test rtreeE-1.7 {
  SELECT id FROM rt1 WHERE id=18 AND id MATCH Qcircle(0,0,1000,5)
} {18}


# Construct a large 2-D RTree with thousands of random entries.
#
do_test rtreeE-2.1 {
  db eval {
    CREATE TABLE t2(id,x0,x1,y0,y1);
    CREATE VIRTUAL TABLE rt2 USING rtree(id,x0,x1,y0,y1);
121
122
123
124
125
126
127
128

129
do_execsql_test rtreeE-2.3 {
  SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch(0,5000,0,5000) ORDER BY id
} $ans
set ans [db eval {SELECT id FROM t2 WHERE x1>=0 AND x0<=10000 AND y1>=0 AND y0<=10000 ORDER BY id}]
do_execsql_test rtreeE-2.4 {
  SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch(0,10000,0,10000) ORDER BY id
} $ans


finish_test








>

131
132
133
134
135
136
137
138
139
140
do_execsql_test rtreeE-2.3 {
  SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch(0,5000,0,5000) ORDER BY id
} $ans
set ans [db eval {SELECT id FROM t2 WHERE x1>=0 AND x0<=10000 AND y1>=0 AND y0<=10000 ORDER BY id}]
do_execsql_test rtreeE-2.4 {
  SELECT id FROM rt2 WHERE id MATCH breadthfirstsearch(0,10000,0,10000) ORDER BY id
} $ans


finish_test

Changes to ext/rtree/sqlite3rtree.h.

94
95
96
97
98
99
100


101
102
103
104
105
106
107
  int iLevel;                       /* Level of current node or entry */
  int mxLevel;                      /* The largest iLevel value in the tree */
  sqlite3_int64 iRowid;             /* Rowid for current entry */
  sqlite3_rtree_dbl rParentScore;   /* Score of parent node */
  int eParentWithin;                /* Visibility of parent node */
  int eWithin;                      /* OUT: Visiblity */
  sqlite3_rtree_dbl rScore;         /* OUT: Write the score here */


};

/*
** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
*/
#define NOT_WITHIN       0   /* Object completely outside of query region */
#define PARTLY_WITHIN    1   /* Object partially overlaps query region */







>
>







94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
  int iLevel;                       /* Level of current node or entry */
  int mxLevel;                      /* The largest iLevel value in the tree */
  sqlite3_int64 iRowid;             /* Rowid for current entry */
  sqlite3_rtree_dbl rParentScore;   /* Score of parent node */
  int eParentWithin;                /* Visibility of parent node */
  int eWithin;                      /* OUT: Visiblity */
  sqlite3_rtree_dbl rScore;         /* OUT: Write the score here */
  /* The following fields are only available in 3.8.11 and later */
  sqlite3_value **apSqlParam;       /* Original SQL values of parameters */
};

/*
** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
*/
#define NOT_WITHIN       0   /* Object completely outside of query region */
#define PARTLY_WITHIN    1   /* Object partially overlaps query region */

Changes to src/build.c.

1909
1910
1911
1912
1913
1914
1915
1916





1917
1918



1919
1920
1921
1922


1923
1924
1925

1926
1927
1928
1929
1930
1931
1932
1933
1934
1935









1936
1937
1938
1939
1940
1941
1942
    **
    ** A shared-cache write-lock is not required to write to the new table,
    ** as a schema-lock must have already been obtained to create it. Since
    ** a schema-lock excludes all other database users, the write-lock would
    ** be redundant.
    */
    if( pSelect ){
      SelectDest dest;





      Table *pSelTab;




      assert(pParse->nTab==1);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;


      sqlite3SelectDestInit(&dest, SRT_Table, 1);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeAddOp1(v, OP_Close, 1);

      if( pParse->nErr==0 ){
        pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
        if( pSelTab==0 ) return;
        assert( p->aCol==0 );
        p->nCol = pSelTab->nCol;
        p->aCol = pSelTab->aCol;
        pSelTab->nCol = 0;
        pSelTab->aCol = 0;
        sqlite3DeleteTable(db, pSelTab);
      }









    }

    /* Compute the complete text of the CREATE statement */
    if( pSelect ){
      zStmt = createTableStmt(db, p);
    }else{
      Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;







|
>
>
>
>
>
|

>
>
>




>
>
|

|
>
|
|
|
|
|
|
|
|
|
<
>
>
>
>
>
>
>
>
>







1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
    **
    ** A shared-cache write-lock is not required to write to the new table,
    ** as a schema-lock must have already been obtained to create it. Since
    ** a schema-lock excludes all other database users, the write-lock would
    ** be redundant.
    */
    if( pSelect ){
      SelectDest dest;    /* Where the SELECT should store results */
      int regYield;       /* Register holding co-routine entry-point */
      int addrTop;        /* Top of the co-routine */
      int regRec;         /* A record to be insert into the new table */
      int regRowid;       /* Rowid of the next row to insert */
      int addrInsLoop;    /* Top of the loop for inserting rows */
      Table *pSelTab;     /* A table that describes the SELECT results */

      regYield = ++pParse->nMem;
      regRec = ++pParse->nMem;
      regRowid = ++pParse->nMem;
      assert(pParse->nTab==1);
      sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
      sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
      pParse->nTab = 2;
      addrTop = sqlite3VdbeCurrentAddr(v) + 1;
      sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
      sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
      sqlite3Select(pParse, pSelect, &dest);
      sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
      sqlite3VdbeJumpHere(v, addrTop - 1);
      if( pParse->nErr ) return;
      pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
      if( pSelTab==0 ) return;
      assert( p->aCol==0 );
      p->nCol = pSelTab->nCol;
      p->aCol = pSelTab->aCol;
      pSelTab->nCol = 0;
      pSelTab->aCol = 0;
      sqlite3DeleteTable(db, pSelTab);

      addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
      VdbeCoverage(v);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
      sqlite3TableAffinity(v, p, 0);
      sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 0, addrInsLoop);
      sqlite3VdbeJumpHere(v, addrInsLoop);
      sqlite3VdbeAddOp1(v, OP_Close, 1);
    }

    /* Compute the complete text of the CREATE statement */
    if( pSelect ){
      zStmt = createTableStmt(db, p);
    }else{
      Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;

Changes to src/parse.y.

444
445
446
447
448
449
450

451
452
453
454
455
456
457
458
459
460
461

462
463
464
465
466
467
468
469
470
471
472
  A = p;
}

selectnowith(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z).  {
  Select *pRhs = Z;

  if( pRhs && pRhs->pPrior ){
    SrcList *pFrom;
    Token x;
    x.n = 0;
    parserDoubleLinkSelect(pParse, pRhs);
    pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
    pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
  }
  if( pRhs ){
    pRhs->op = (u8)Y;
    pRhs->pPrior = X;

    pRhs->selFlags &= ~SF_MultiValue;
    if( Y!=TK_ALL ) pParse->hasCompound = 1;
  }else{
    sqlite3SelectDelete(pParse->db, X);
  }
  A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}







>










|
>



|







444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
  A = p;
}

selectnowith(A) ::= oneselect(X).                      {A = X;}
%ifndef SQLITE_OMIT_COMPOUND_SELECT
selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z).  {
  Select *pRhs = Z;
  Select *pLhs = X;
  if( pRhs && pRhs->pPrior ){
    SrcList *pFrom;
    Token x;
    x.n = 0;
    parserDoubleLinkSelect(pParse, pRhs);
    pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0);
    pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0);
  }
  if( pRhs ){
    pRhs->op = (u8)Y;
    pRhs->pPrior = pLhs;
    if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue;
    pRhs->selFlags &= ~SF_MultiValue;
    if( Y!=TK_ALL ) pParse->hasCompound = 1;
  }else{
    sqlite3SelectDelete(pParse->db, pLhs);
  }
  A = pRhs;
}
%type multiselect_op {int}
multiselect_op(A) ::= UNION(OP).             {A = @OP;}
multiselect_op(A) ::= UNION ALL.             {A = TK_ALL;}
multiselect_op(A) ::= EXCEPT|INTERSECT(OP).  {A = @OP;}

Changes to src/select.c.

5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
#ifdef SQLITE_DEBUG
/*
** Generate a human-readable description of a the Select object.
*/
void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p)",
    ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
    ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p
  );
  if( p->pSrc && p->pSrc->nSrc ) n++;
  if( p->pWhere ) n++;
  if( p->pGroupBy ) n++;
  if( p->pHaving ) n++;
  if( p->pOrderBy ) n++;
  if( p->pLimit ) n++;







|

|







5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
#ifdef SQLITE_DEBUG
/*
** Generate a human-readable description of a the Select object.
*/
void sqlite3TreeViewSelect(TreeView *pView, const Select *p, u8 moreToFollow){
  int n = 0;
  pView = sqlite3TreeViewPush(pView, moreToFollow);
  sqlite3TreeViewLine(pView, "SELECT%s%s (0x%p) selFlags=0x%x",
    ((p->selFlags & SF_Distinct) ? " DISTINCT" : ""),
    ((p->selFlags & SF_Aggregate) ? " agg_flag" : ""), p, p->selFlags
  );
  if( p->pSrc && p->pSrc->nSrc ) n++;
  if( p->pWhere ) n++;
  if( p->pGroupBy ) n++;
  if( p->pHaving ) n++;
  if( p->pOrderBy ) n++;
  if( p->pLimit ) n++;

Changes to src/sqlite.h.in.

4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
SQLITE_DEPRECATED int sqlite3_global_recover(void);
SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Function Parameter Values
** METHOD: sqlite3_value
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** the function or aggregate.
**
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
** define callbacks that implement the SQL functions and aggregates.
** The 3rd parameter to these callbacks is an array of pointers to
** [protected sqlite3_value] objects.  There is one [sqlite3_value] object for
** each parameter to the SQL function.  These routines are used to







|




|







4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
SQLITE_DEPRECATED int sqlite3_global_recover(void);
SQLITE_DEPRECATED void sqlite3_thread_cleanup(void);
SQLITE_DEPRECATED int sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
                      void*,sqlite3_int64);
#endif

/*
** CAPI3REF: Obtaining SQL Values
** METHOD: sqlite3_value
**
** The C-language implementation of SQL functions and aggregates uses
** this set of interface routines to access the parameter values on
** the function or aggregate.  
**
** The xFunc (for scalar functions) or xStep (for aggregates) parameters
** to [sqlite3_create_function()] and [sqlite3_create_function16()]
** define callbacks that implement the SQL functions and aggregates.
** The 3rd parameter to these callbacks is an array of pointers to
** [protected sqlite3_value] objects.  There is one [sqlite3_value] object for
** each parameter to the SQL function.  These routines are used to
4348
4349
4350
4351
4352
4353
4354

















4355
4356
4357
4358
4359
4360
4361
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);


















/*
** CAPI3REF: Obtain Aggregate Function Context
** METHOD: sqlite3_context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
const unsigned char *sqlite3_value_text(sqlite3_value*);
const void *sqlite3_value_text16(sqlite3_value*);
const void *sqlite3_value_text16le(sqlite3_value*);
const void *sqlite3_value_text16be(sqlite3_value*);
int sqlite3_value_type(sqlite3_value*);
int sqlite3_value_numeric_type(sqlite3_value*);

/*
** CAPI3REF: Copy And Free SQL Values
** METHOD: sqlite3_value
**
** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
** object D and returns a pointer to that copy.  ^The [sqlite3_value] returned
** is a [protected sqlite3_value] object even if the input is not.
** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
** memory allocation fails.
**
** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
** previously obtained from [sqlite_value_dup()].  ^If V is a NULL pointer
** then sqlite3_value_free(V) is a harmless no-op.
*/
SQLITE_EXPERIMENTAL sqlite3_value *sqlite3_value_dup(const sqlite3_value*);
SQLITE_EXPERIMENTAL void sqlite3_value_free(sqlite3_value*);

/*
** CAPI3REF: Obtain Aggregate Function Context
** METHOD: sqlite3_context
**
** Implementations of aggregate SQL functions use this
** routine to allocate memory for storing their state.
**
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
SQLITE_EXPERIMENTAL int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
** DESTRUCTOR: sqlite3_blob
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 







|







5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
** always returns zero.
**
** ^This function sets the database handle error code and message.
*/
int sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);

/*
** CAPI3REF: Close A BLOB Handle
** DESTRUCTOR: sqlite3_blob
**
** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
** unconditionally.  Even if this routine returns an error code, the 
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
SQLITE_EXPERIMENTAL int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
** METHOD: sqlite3_stmt
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
SQLITE_EXPERIMENTAL void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** CAPI3REF: The pre-update hook.
** EXPERIMENTAL
**
** ^These interfaces are only available if SQLite is compiled using the







|















|







7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
** ^Statistics might not be available for all loops in all statements. ^In cases
** where there exist loops with no available statistics, this function behaves
** as if the loop did not exist - it returns non-zero and leave the variable
** that pOut points to unchanged.
**
** See also: [sqlite3_stmt_scanstatus_reset()]
*/
int sqlite3_stmt_scanstatus(
  sqlite3_stmt *pStmt,      /* Prepared statement for which info desired */
  int idx,                  /* Index of loop to report on */
  int iScanStatusOp,        /* Information desired.  SQLITE_SCANSTAT_* */
  void *pOut                /* Result written here */
);     

/*
** CAPI3REF: Zero Scan-Status Counters
** METHOD: sqlite3_stmt
**
** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
**
** This API is only available if the library is built with pre-processor
** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
*/
void sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);


/*
** CAPI3REF: The pre-update hook.
** EXPERIMENTAL
**
** ^These interfaces are only available if SQLite is compiled using the

Changes to src/sqlite3ext.h.

263
264
265
266
267
268
269


270
271
272
273
274
275
276
  void *(*realloc64)(void*,sqlite3_uint64);
  void (*reset_auto_extension)(void);
  void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
                        void(*)(void*));
  void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);


};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file







>
>







263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
  void *(*realloc64)(void*,sqlite3_uint64);
  void (*reset_auto_extension)(void);
  void (*result_blob64)(sqlite3_context*,const void*,sqlite3_uint64,
                        void(*)(void*));
  void (*result_text64)(sqlite3_context*,const char*,sqlite3_uint64,
                         void(*)(void*), unsigned char);
  int (*strglob)(const char*,const char*);
  sqlite3_value (*value_dup)(const sqlite3_value*);
  void (*value_free)(sqlite3_value*);
};

/*
** The following macros redefine the API routines so that they are
** redirected through the global sqlite3_api structure.
**
** This header file is also used by the loadext.c source file
493
494
495
496
497
498
499



500
501
502
503
504
505
506
#define sqlite3_malloc64               sqlite3_api->malloc64
#define sqlite3_msize                  sqlite3_api->msize
#define sqlite3_realloc64              sqlite3_api->realloc64
#define sqlite3_reset_auto_extension   sqlite3_api->reset_auto_extension
#define sqlite3_result_blob64          sqlite3_api->result_blob64
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob



#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;







>
>
>







495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
#define sqlite3_malloc64               sqlite3_api->malloc64
#define sqlite3_msize                  sqlite3_api->msize
#define sqlite3_realloc64              sqlite3_api->realloc64
#define sqlite3_reset_auto_extension   sqlite3_api->reset_auto_extension
#define sqlite3_result_blob64          sqlite3_api->result_blob64
#define sqlite3_result_text64          sqlite3_api->result_text64
#define sqlite3_strglob                sqlite3_api->strglob
/* Version 3.8.11 and later */
#define sqlite3_value_dup              sqlite3_api->value_dup
#define sqlite3_value_free             sqlite3_api->value_free
#endif /* SQLITE_CORE */

#ifndef SQLITE_CORE
  /* This case when the file really is being compiled as a loadable 
  ** extension */
# define SQLITE_EXTENSION_INIT1     const sqlite3_api_routines *sqlite3_api=0;
# define SQLITE_EXTENSION_INIT2(v)  sqlite3_api=v;

Changes to src/test_rtree.c.

151
152
153
154
155
156
157





158
159
160
161
162
163
164
  *pRes = 0;
  return SQLITE_OK;
}

/*
** Implementation of "circle" r-tree geometry callback using the 
** 2nd-generation interface that allows scoring.





*/
static int circle_query_func(sqlite3_rtree_query_info *p){
  int i;                          /* Iterator variable */
  Circle *pCircle;                /* Structure defining circular region */
  double xmin, xmax;              /* X dimensions of box being tested */
  double ymin, ymax;              /* X dimensions of box being tested */
  int nWithin = 0;                /* Number of corners inside the circle */







>
>
>
>
>







151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
  *pRes = 0;
  return SQLITE_OK;
}

/*
** Implementation of "circle" r-tree geometry callback using the 
** 2nd-generation interface that allows scoring.
**
** Two calling forms:
**
**          Qcircle(X,Y,Radius,eType)        -- All values are doubles
**          Qcircle('x:X y:Y r:R e:ETYPE')   -- Single string parameter
*/
static int circle_query_func(sqlite3_rtree_query_info *p){
  int i;                          /* Iterator variable */
  Circle *pCircle;                /* Structure defining circular region */
  double xmin, xmax;              /* X dimensions of box being tested */
  double ymin, ymax;              /* X dimensions of box being tested */
  int nWithin = 0;                /* Number of corners inside the circle */
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

194
195
196
197



























198
199
200
201
202
203
204
    /* If pUser is still 0, then the parameter values have not been tested
    ** for correctness or stored into a Circle structure yet. Do this now. */

    /* This geometry callback is for use with a 2-dimensional r-tree table.
    ** Return an error if the table does not have exactly 2 dimensions. */
    if( p->nCoord!=4 ) return SQLITE_ERROR;

    /* Test that the correct number of parameters (4) have been supplied,
    ** and that the parameters are in range (that the radius of the circle 
    ** radius is greater than zero). */
    if( p->nParam!=4 || p->aParam[2]<0.0 ) return SQLITE_ERROR;

    /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
    ** if the allocation fails. */
    pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
    if( !pCircle ) return SQLITE_NOMEM;
    p->xDelUser = circle_del;

    /* Record the center and radius of the circular region. One way that
    ** tested bounding boxes that intersect the circular region are detected
    ** is by testing if each corner of the bounding box lies within radius
    ** units of the center of the circle. */

    pCircle->centerx = p->aParam[0];
    pCircle->centery = p->aParam[1];
    pCircle->radius = p->aParam[2];
    pCircle->eScoreType = (int)p->aParam[3];




























    /* Define two bounding box regions. The first, aBox[0], extends to
    ** infinity in the X dimension. It covers the same range of the Y dimension
    ** as the circular region. The second, aBox[1], extends to infinity in
    ** the Y dimension and is constrained to the range of the circle in the
    ** X dimension.
    **







|
|
<
|











>
|
|
|
|
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







177
178
179
180
181
182
183
184
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    /* If pUser is still 0, then the parameter values have not been tested
    ** for correctness or stored into a Circle structure yet. Do this now. */

    /* This geometry callback is for use with a 2-dimensional r-tree table.
    ** Return an error if the table does not have exactly 2 dimensions. */
    if( p->nCoord!=4 ) return SQLITE_ERROR;

    /* Test that the correct number of parameters (1 or 4) have been supplied.
    */

    if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR;

    /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM
    ** if the allocation fails. */
    pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle)));
    if( !pCircle ) return SQLITE_NOMEM;
    p->xDelUser = circle_del;

    /* Record the center and radius of the circular region. One way that
    ** tested bounding boxes that intersect the circular region are detected
    ** is by testing if each corner of the bounding box lies within radius
    ** units of the center of the circle. */
    if( p->nParam==4 ){
      pCircle->centerx = p->aParam[0];
      pCircle->centery = p->aParam[1];
      pCircle->radius = p->aParam[2];
      pCircle->eScoreType = (int)p->aParam[3];
    }else{
      const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]);
      pCircle->centerx = 0.0;
      pCircle->centery = 0.0;
      pCircle->radius = 0.0;
      pCircle->eScoreType = 0;
      while( z && z[0] ){
        if( z[0]=='r' && z[1]==':' ){
          pCircle->radius = atof(&z[2]);
        }else if( z[0]=='x' && z[1]==':' ){
          pCircle->centerx = atof(&z[2]);
        }else if( z[0]=='y' && z[1]==':' ){
          pCircle->centery = atof(&z[2]);
        }else if( z[0]=='e' && z[1]==':' ){
          pCircle->eScoreType = (int)atof(&z[2]);
        }else if( z[0]==' ' ){
          z++;
          continue;
        }
        while( z[0]!=0 && z[0]!=' ' ) z++;
        while( z[0]==' ' ) z++;
      }
    }
    if( pCircle->radius<0.0 ){
      sqlite3_free(pCircle);
      return SQLITE_NOMEM;
    }

    /* Define two bounding box regions. The first, aBox[0], extends to
    ** infinity in the X dimension. It covers the same range of the Y dimension
    ** as the circular region. The second, aBox[1], extends to infinity in
    ** the Y dimension and is constrained to the range of the circle in the
    ** X dimension.
    **

Changes to src/vdbeInt.h.

182
183
184
185
186
187
188






189
190
191
192
193
194
195
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
};







/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.
**
** If the MEM_Str flag is set then Mem.z points at a string representation.







>
>
>
>
>
>







182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
  void (*xDel)(void*);/* Destructor for Mem.z - only valid if MEM_Dyn */
#ifdef SQLITE_DEBUG
  Mem *pScopyFrom;    /* This Mem is a shallow copy of pScopyFrom */
  void *pFiller;      /* So that sizeof(Mem) is a multiple of 8 */
#endif
};

/*
** Size of struct Mem not including the Mem.zMalloc member or anything that
** follows.
*/
#define MEMCELLSIZE offsetof(Mem,zMalloc)

/* One or more of the following flags are set to indicate the validOK
** representations of the value stored in the Mem struct.
**
** If the MEM_Null flag is set, then the value is an SQL NULL value.
** No other flags may be set in this case.
**
** If the MEM_Str flag is set then Mem.z points at a string representation.

Changes to src/vdbeapi.c.

207
208
209
210
211
212
213




























214
215
216
217
218
219
220
     SQLITE_INTEGER,  /* 0x1c */
     SQLITE_NULL,     /* 0x1d */
     SQLITE_INTEGER,  /* 0x1e */
     SQLITE_NULL,     /* 0x1f */
  };
  return aType[pVal->flags&MEM_AffMask];
}





























/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
**
** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
** result as a string or blob but if the string or blob is too large, it







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
     SQLITE_INTEGER,  /* 0x1c */
     SQLITE_NULL,     /* 0x1d */
     SQLITE_INTEGER,  /* 0x1e */
     SQLITE_NULL,     /* 0x1f */
  };
  return aType[pVal->flags&MEM_AffMask];
}

/* Make a copy of an sqlite3_value object
*/
sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
  sqlite3_value *pNew;
  if( pOrig==0 ) return 0;
  pNew = sqlite3_malloc( sizeof(*pNew) );
  if( pNew==0 ) return 0;
  memset(pNew, 0, sizeof(*pNew));
  memcpy(pNew, pOrig, MEMCELLSIZE);
  pNew->flags &= ~MEM_Dyn;
  pNew->db = 0;
  if( pNew->flags&(MEM_Str|MEM_Blob) ){
    if( 0==(pOrig->flags&MEM_Static) ){
      pNew->flags |= MEM_Ephem;
      sqlite3VdbeMemMakeWriteable(pNew);
    }
  }
  return pNew;
}

/* Destroy an sqlite3_value object previously obtained from
** sqlite3_value_dup().
*/
void sqlite3_value_free(sqlite3_value *pOld){
  sqlite3ValueFree(pOld);
}
  

/**************************** sqlite3_result_  *******************************
** The following routines are used by user-defined functions to specify
** the function result.
**
** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
** result as a string or blob but if the string or blob is too large, it

Changes to src/vdbemem.c.

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
      pX->pScopyFrom = 0;
    }
  }
  pMem->pScopyFrom = 0;
}
#endif /* SQLITE_DEBUG */

/*
** Size of struct Mem not including the Mem.zMalloc member.
*/
#define MEMCELLSIZE offsetof(Mem,zMalloc)

/*
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/







<
<
<
<







766
767
768
769
770
771
772




773
774
775
776
777
778
779
      pX->pScopyFrom = 0;
    }
  }
  pMem->pScopyFrom = 0;
}
#endif /* SQLITE_DEBUG */






/*
** Make an shallow copy of pFrom into pTo.  Prior contents of
** pTo are freed.  The pFrom->z field is not duplicated.  If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/

Changes to test/misc1.test.

598
599
600
601
602
603
604









605
606
607
608
609
610
611
  CREATE TABLE t19 AS SELECT 1, 2 AS '', 3;
  SELECT * FROM t19;
} {1 2 3}
do_execsql_test misc1-19.2 {
  CREATE TABLE t19b AS SELECT 4 AS '', 5 AS '',  6 AS '';
  SELECT * FROM t19b;
} {4 5 6}










# 2014-05-16:  Tests for the SQLITE_TESTCTRL_FAULT_INSTALL feature.
#
unset -nocomplain fault_callbacks
set fault_callbacks {}
proc fault_callback {n} {
  lappend ::fault_callbacks $n







>
>
>
>
>
>
>
>
>







598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
  CREATE TABLE t19 AS SELECT 1, 2 AS '', 3;
  SELECT * FROM t19;
} {1 2 3}
do_execsql_test misc1-19.2 {
  CREATE TABLE t19b AS SELECT 4 AS '', 5 AS '',  6 AS '';
  SELECT * FROM t19b;
} {4 5 6}

# 2015-05-20:  CREATE TABLE AS should not store INT value is a TEXT
# column.
#
do_execsql_test misc1-19.3 {
  CREATE TABLE t19c(x TEXT);
  CREATE TABLE t19d AS SELECT * FROM t19c UNION ALL SELECT 1234;
  SELECT x, typeof(x) FROM t19d;
} {1234 text}

# 2014-05-16:  Tests for the SQLITE_TESTCTRL_FAULT_INSTALL feature.
#
unset -nocomplain fault_callbacks
set fault_callbacks {}
proc fault_callback {n} {
  lappend ::fault_callbacks $n

Changes to test/select4.test.

905
906
907
908
909
910
911






912
913
} {1 3}
do_execsql_test select4-14.14 {
  VALUES(1),(2),(3) EXCEPT VALUES(1),(3);
} {2}
do_execsql_test select4-14.15 {
  SELECT * FROM (SELECT 123), (SELECT 456) ON likely(0 OR 1) OR 0;
} {123 456}







finish_test







>
>
>
>
>
>


905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
} {1 3}
do_execsql_test select4-14.14 {
  VALUES(1),(2),(3) EXCEPT VALUES(1),(3);
} {2}
do_execsql_test select4-14.15 {
  SELECT * FROM (SELECT 123), (SELECT 456) ON likely(0 OR 1) OR 0;
} {123 456}
do_execsql_test select4-14.16 {
  VALUES(1),(2),(3),(4) UNION ALL SELECT 5 LIMIT 99;
} {1 2 3 4 5}
do_execsql_test select4-14.17 {
  VALUES(1),(2),(3),(4) UNION ALL SELECT 5 LIMIT 3;
} {1 2 3}

finish_test