/* ** 2008 October 10 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code for 'genfkey', a program to generate trigger ** definitions that emulate foreign keys. See genfkey.README for details. ** ** $Id: genfkey.c,v 1.1 2008/10/10 17:58:27 danielk1977 Exp $ */ #include "sqlite3.h" #include #include #include #include /************************************************************************** *************************************************************************** ** Start of virtual table implementations. **************************************************************************/ /* The code in this file defines a sqlite3 virtual-table module that ** provides a read-only view of the current database schema. There is one ** row in the schema table for each column in the database schema. */ #define SCHEMA \ "CREATE TABLE x(" \ "database," /* Name of database (i.e. main, temp etc.) */ \ "tablename," /* Name of table */ \ "cid," /* Column number (from left-to-right, 0 upward) */ \ "name," /* Column name */ \ "type," /* Specified type (i.e. VARCHAR(32)) */ \ "not_null," /* Boolean. True if NOT NULL was specified */ \ "dflt_value," /* Default value for this column */ \ "pk" /* True if this column is part of the primary key */ \ ")" #define SCHEMA2 \ "CREATE TABLE x(" \ "database," /* Name of database (i.e. main, temp etc.) */ \ "from_tbl," /* Name of table */ \ "fkid," \ "seq," \ "to_tbl," \ "from_col," \ "to_col," \ "on_update," \ "on_delete," \ "match" \ ")" #define SCHEMA3 \ "CREATE TABLE x(" \ "database," /* Name of database (i.e. main, temp etc.) */ \ "tablename," /* Name of table */ \ "seq," \ "name," \ "isunique" \ ")" #define SCHEMA4 \ "CREATE TABLE x(" \ "database," /* Name of database (i.e. main, temp etc.) */ \ "indexname," /* Name of table */ \ "seqno," \ "cid," \ "name" \ ")" typedef struct SchemaTable SchemaTable; struct SchemaTable { const char *zName; const char *zObject; const char *zPragma; const char *zSchema; } aSchemaTable[] = { { "table_info", "table", "PRAGMA %Q.table_info(%Q)", SCHEMA }, { "foreign_key_list", "table", "PRAGMA %Q.foreign_key_list(%Q)", SCHEMA2 }, { "index_list", "table", "PRAGMA %Q.index_list(%Q)", SCHEMA3 }, { "index_info", "index", "PRAGMA %Q.index_info(%Q)", SCHEMA4 }, { 0, 0, 0, 0 } }; typedef struct schema_vtab schema_vtab; typedef struct schema_cursor schema_cursor; /* A schema table object */ struct schema_vtab { sqlite3_vtab base; sqlite3 *db; SchemaTable *pType; }; /* A schema table cursor object */ struct schema_cursor { sqlite3_vtab_cursor base; sqlite3_stmt *pDbList; sqlite3_stmt *pTableList; sqlite3_stmt *pColumnList; int rowid; }; /* ** Table destructor for the schema module. */ static int schemaDestroy(sqlite3_vtab *pVtab){ sqlite3_free(pVtab); return 0; } /* ** Table constructor for the schema module. */ static int schemaCreate( sqlite3 *db, void *pAux, int argc, const char *const*argv, sqlite3_vtab **ppVtab, char **pzErr ){ int rc = SQLITE_NOMEM; schema_vtab *pVtab; SchemaTable *pType = &aSchemaTable[0]; if( argc>3 ){ int i; pType = 0; for(i=0; aSchemaTable[i].zName; i++){ if( 0==strcmp(argv[3], aSchemaTable[i].zName) ){ pType = &aSchemaTable[i]; } } if( !pType ){ return SQLITE_ERROR; } } pVtab = sqlite3_malloc(sizeof(schema_vtab)); if( pVtab ){ memset(pVtab, 0, sizeof(schema_vtab)); pVtab->db = db; pVtab->pType = pType; rc = sqlite3_declare_vtab(db, pType->zSchema); } *ppVtab = (sqlite3_vtab *)pVtab; return rc; } /* ** Open a new cursor on the schema table. */ static int schemaOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ int rc = SQLITE_NOMEM; schema_cursor *pCur; pCur = sqlite3_malloc(sizeof(schema_cursor)); if( pCur ){ memset(pCur, 0, sizeof(schema_cursor)); *ppCursor = (sqlite3_vtab_cursor *)pCur; rc = SQLITE_OK; } return rc; } /* ** Close a schema table cursor. */ static int schemaClose(sqlite3_vtab_cursor *cur){ schema_cursor *pCur = (schema_cursor *)cur; sqlite3_finalize(pCur->pDbList); sqlite3_finalize(pCur->pTableList); sqlite3_finalize(pCur->pColumnList); sqlite3_free(pCur); return SQLITE_OK; } /* ** Retrieve a column of data. */ static int schemaColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ schema_cursor *pCur = (schema_cursor *)cur; switch( i ){ case 0: sqlite3_result_value(ctx, sqlite3_column_value(pCur->pDbList, 1)); break; case 1: sqlite3_result_value(ctx, sqlite3_column_value(pCur->pTableList, 0)); break; default: sqlite3_result_value(ctx, sqlite3_column_value(pCur->pColumnList, i-2)); break; } return SQLITE_OK; } /* ** Retrieve the current rowid. */ static int schemaRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ schema_cursor *pCur = (schema_cursor *)cur; *pRowid = pCur->rowid; return SQLITE_OK; } static int finalize(sqlite3_stmt **ppStmt){ int rc = sqlite3_finalize(*ppStmt); *ppStmt = 0; return rc; } static int schemaEof(sqlite3_vtab_cursor *cur){ schema_cursor *pCur = (schema_cursor *)cur; return (pCur->pDbList ? 0 : 1); } /* ** Advance the cursor to the next row. */ static int schemaNext(sqlite3_vtab_cursor *cur){ int rc = SQLITE_OK; schema_cursor *pCur = (schema_cursor *)cur; schema_vtab *pVtab = (schema_vtab *)(cur->pVtab); char *zSql = 0; while( !pCur->pColumnList || SQLITE_ROW!=sqlite3_step(pCur->pColumnList) ){ if( SQLITE_OK!=(rc = finalize(&pCur->pColumnList)) ) goto next_exit; while( !pCur->pTableList || SQLITE_ROW!=sqlite3_step(pCur->pTableList) ){ if( SQLITE_OK!=(rc = finalize(&pCur->pTableList)) ) goto next_exit; assert(pCur->pDbList); while( SQLITE_ROW!=sqlite3_step(pCur->pDbList) ){ rc = finalize(&pCur->pDbList); goto next_exit; } /* Set zSql to the SQL to pull the list of tables from the ** sqlite_master (or sqlite_temp_master) table of the database ** identfied by the row pointed to by the SQL statement pCur->pDbList ** (iterating through a "PRAGMA database_list;" statement). */ if( sqlite3_column_int(pCur->pDbList, 0)==1 ){ zSql = sqlite3_mprintf( "SELECT name FROM sqlite_temp_master WHERE type=%Q", pVtab->pType->zObject ); }else{ sqlite3_stmt *pDbList = pCur->pDbList; zSql = sqlite3_mprintf( "SELECT name FROM %Q.sqlite_master WHERE type=%Q", sqlite3_column_text(pDbList, 1), pVtab->pType->zObject ); } if( !zSql ){ rc = SQLITE_NOMEM; goto next_exit; } rc = sqlite3_prepare(pVtab->db, zSql, -1, &pCur->pTableList, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ) goto next_exit; } /* Set zSql to the SQL to the table_info pragma for the table currently ** identified by the rows pointed to by statements pCur->pDbList and ** pCur->pTableList. */ zSql = sqlite3_mprintf(pVtab->pType->zPragma, sqlite3_column_text(pCur->pDbList, 1), sqlite3_column_text(pCur->pTableList, 0) ); if( !zSql ){ rc = SQLITE_NOMEM; goto next_exit; } rc = sqlite3_prepare(pVtab->db, zSql, -1, &pCur->pColumnList, 0); sqlite3_free(zSql); if( rc!=SQLITE_OK ) goto next_exit; } pCur->rowid++; next_exit: /* TODO: Handle rc */ return rc; } /* ** Reset a schema table cursor. */ static int schemaFilter( sqlite3_vtab_cursor *pVtabCursor, int idxNum, const char *idxStr, int argc, sqlite3_value **argv ){ int rc; schema_vtab *pVtab = (schema_vtab *)(pVtabCursor->pVtab); schema_cursor *pCur = (schema_cursor *)pVtabCursor; pCur->rowid = 0; finalize(&pCur->pTableList); finalize(&pCur->pColumnList); finalize(&pCur->pDbList); rc = sqlite3_prepare(pVtab->db,"SELECT 0, 'main'", -1, &pCur->pDbList, 0); return (rc==SQLITE_OK ? schemaNext(pVtabCursor) : rc); } /* ** Analyse the WHERE condition. */ static int schemaBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ return SQLITE_OK; } /* ** A virtual table module that merely echos method calls into TCL ** variables. */ static sqlite3_module schemaModule = { 0, /* iVersion */ schemaCreate, schemaCreate, schemaBestIndex, schemaDestroy, schemaDestroy, schemaOpen, /* xOpen - open a cursor */ schemaClose, /* xClose - close a cursor */ schemaFilter, /* xFilter - configure scan constraints */ schemaNext, /* xNext - advance a cursor */ schemaEof, /* xEof */ schemaColumn, /* xColumn - read data */ schemaRowid, /* xRowid - read data */ 0, /* xUpdate */ 0, /* xBegin */ 0, /* xSync */ 0, /* xCommit */ 0, /* xRollback */ 0, /* xFindMethod */ 0, /* xRename */ }; /* ** Extension load function. */ static int installSchemaModule(sqlite3 *db){ sqlite3_create_module(db, "schema", &schemaModule, 0); return 0; } /************************************************************************** *************************************************************************** ** End of virtual table implementations. ** Start of SQL user function implementations. */ /* ** sj(zValue, zJoin) ** ** The following block contains the implementation of an aggregate ** function that returns a string. Each time the function is stepped, ** it appends data to an internal buffer. When the aggregate is finalized, ** the contents of the buffer are returned. ** ** The first time the aggregate is stepped the buffer is set to a copy ** of the first argument. The second time and subsequent times it is ** stepped a copy of the second argument is appended to the buffer, then ** a copy of the first. ** ** Example: ** ** INSERT INTO t1(a) VALUES('1'); ** INSERT INTO t1(a) VALUES('2'); ** INSERT INTO t1(a) VALUES('3'); ** SELECT sj(a, ', ') FROM t1; ** ** => "1, 2, 3" ** */ struct StrBuffer { char *zBuf; }; typedef struct StrBuffer StrBuffer; static void joinFinalize(sqlite3_context *context){ StrBuffer *p; p = (StrBuffer *)sqlite3_aggregate_context(context, sizeof(StrBuffer)); sqlite3_result_text(context, p->zBuf, -1, SQLITE_TRANSIENT); sqlite3_free(p->zBuf); } static void joinStep( sqlite3_context *context, int argc, sqlite3_value **argv ){ StrBuffer *p; p = (StrBuffer *)sqlite3_aggregate_context(context, sizeof(StrBuffer)); if( p->zBuf==0 ){ p->zBuf = sqlite3_mprintf("%s", sqlite3_value_text(argv[0])); }else{ char *zTmp = p->zBuf; p->zBuf = sqlite3_mprintf("%s%s%s", zTmp, sqlite3_value_text(argv[1]), sqlite3_value_text(argv[0]) ); sqlite3_free(zTmp); } } /* ** dq(zString) ** ** This scalar function accepts a single argument and interprets it as ** a text value. The return value is the argument enclosed in double ** quotes. If any double quote characters are present in the argument, ** these are escaped. ** ** dq('the raven "Nevermore."') == '"the raven ""Nevermore."""' */ static void doublequote( sqlite3_context *context, int argc, sqlite3_value **argv ){ int ii; char *zOut; char *zCsr; const char *zIn = (const char *)sqlite3_value_text(argv[0]); int nIn = sqlite3_value_bytes(argv[0]); zOut = sqlite3_malloc(nIn*2+3); zCsr = zOut; *zCsr++ = '"'; for(ii=0; iinMalloc ){ nMalloc += (nMalloc + 16); zOut = (char *)sqlite3_realloc(zOut, nMalloc); } memcpy(&zOut[nOut], zCopy, nCopy); i += nReplace; nOut += nCopy; } sqlite3_result_text(context, zOut, nOut, SQLITE_TRANSIENT); sqlite3_free(zOut); } /************************************************************************** *************************************************************************** ** End of SQL user function implementations. ** Start of application implementation. */ typedef struct Options Options; struct Options { char *zDb; int ignoreErrors; int noDrop; }; /* ** Print out a usage message for the command line and exit. This is ** called from processCmdLine() if the program is invoked incorrectly. */ static int usage(char *zProgram){ fprintf(stderr, "Usage: %s ?--ignore-errors? ?--no-drop? \n", zProgram ); exit(-1); } static void processCmdLine(int nArg, char **azArg, Options *p){ int i; assert( nArg>0 ); if( nArg<2 ){ usage(azArg[0]); } for(i=1; i<(nArg-1); i++){ char *z = azArg[i]; if( 0==strcmp(z, "--ignore-errors") ){ p->ignoreErrors = 1; } else if( 0==strcmp(z, "--no-drop") ){ p->noDrop = 1; } else usage(azArg[0]); } p->zDb = azArg[nArg-1]; } /* ** A callback for sqlite3_exec() that prints its first argument to ** stdout followed by a newline. */ static int printString(void *p, int nArg, char **azArg, char **azCol){ printf("%s\n", azArg[0]); return SQLITE_OK; } int detectSchemaProblem( sqlite3 *db, /* Database connection */ const char *zMessage, /* English language error message */ const char *zSql, /* SQL statement to run */ int *pHasErrors /* Set *pHasErrors==1 if errors found */ ){ sqlite3_stmt *pStmt; int rc; rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ){ return rc; } while( SQLITE_ROW==sqlite3_step(pStmt) ){ char *zDel; int iFk = sqlite3_column_int(pStmt, 0); const char *zTab = (const char *)sqlite3_column_text(pStmt, 1); fprintf(stderr, "Error in table %s: %s\n", zTab, zMessage); zDel = sqlite3_mprintf( "DELETE FROM temp.fkey WHERE from_tbl = %Q AND fkid = %d" , zTab, iFk ); sqlite3_exec(db, zDel, 0, 0, 0); sqlite3_free(zDel); *pHasErrors = 1; } sqlite3_finalize(pStmt); return SQLITE_OK; } /* ** Create and populate temporary table "fkey". */ static int populateTempTable(sqlite3 *db, char **pzErr, int *pHasErrors){ int rc; rc = sqlite3_exec(db, "CREATE VIRTUAL TABLE temp.v_fkey USING schema(foreign_key_list);" "CREATE VIRTUAL TABLE temp.v_col USING schema(table_info);" "CREATE VIRTUAL TABLE temp.v_idxlist USING schema(index_list);" "CREATE VIRTUAL TABLE temp.v_idxinfo USING schema(index_info);" "CREATE TABLE temp.fkey AS " "SELECT from_tbl, to_tbl, fkid, from_col, to_col, on_update, on_delete " "FROM temp.v_fkey WHERE database = 'main';" "CREATE TABLE temp.col AS " "SELECT * FROM temp.v_col WHERE database = 'main';" , 0, 0, pzErr ); if( rc!=SQLITE_OK ) return rc; rc = detectSchemaProblem(db, "foreign key columns do not exist", "SELECT fkid, from_tbl " "FROM temp.fkey " "WHERE to_col IS NOT NULL AND NOT EXISTS (SELECT 1 " "FROM temp.col WHERE tablename=to_tbl AND name==to_col" ")", pHasErrors ); if( rc!=SQLITE_OK ) return rc; /* At this point the temp.fkey table is mostly populated. If any foreign ** keys were specified so that they implicitly refer to they primary ** key of the parent table, the "to_col" values of the temp.fkey rows ** are still set to NULL. ** ** This is easily fixed for single column primary keys, but not for ** composites. With a composite primary key, there is no way to reliably ** query sqlite for the order in which the columns that make up the ** composite key were declared i.e. there is no way to tell if the ** schema actually contains "PRIMARY KEY(a, b)" or "PRIMARY KEY(b, a)". ** Therefore, this case is not handled. The following function call ** detects instances of this case. */ rc = detectSchemaProblem(db, "implicit mapping to composite primary key", "SELECT fkid, from_tbl " "FROM temp.fkey " "WHERE to_col IS NULL " "GROUP BY fkid, from_tbl HAVING count(*) > 1", pHasErrors ); if( rc!=SQLITE_OK ) return rc; /* Detect attempts to implicitly map to the primary key of a table ** that has no primary key column. */ rc = detectSchemaProblem(db, "implicit mapping to non-existant primary key", "SELECT fkid, from_tbl " "FROM temp.fkey " "WHERE to_col IS NULL AND NOT EXISTS " "(SELECT 1 FROM temp.col WHERE pk AND tablename = temp.fkey.to_tbl)" , pHasErrors ); if( rc!=SQLITE_OK ) return rc; /* Fix all the implicit primary key mappings in the temp.fkey table. */ rc = sqlite3_exec(db, "UPDATE temp.fkey SET to_col = " "(SELECT name FROM temp.col WHERE pk AND tablename=temp.fkey.to_tbl)" " WHERE to_col IS NULL;" , 0, 0, pzErr ); if( rc!=SQLITE_OK ) return rc; /* Now check that all all parent keys are either primary keys or ** subject to a unique constraint. */ rc = sqlite3_exec(db, "CREATE TABLE temp.idx2 AS SELECT " "il.tablename AS tablename," "ii.indexname AS indexname," "ii.name AS col " "FROM temp.v_idxlist AS il, temp.v_idxinfo AS ii " "WHERE il.isunique AND il.database='main' AND ii.indexname = il.name;" "INSERT INTO temp.idx2 SELECT tablename, 'pk', name FROM temp.col WHERE pk;" "CREATE TABLE temp.idx AS SELECT " "tablename, indexname, sj(dq(col),',') AS cols " "FROM (SELECT * FROM temp.idx2 ORDER BY col) " "GROUP BY tablename, indexname;" "CREATE TABLE temp.fkey2 AS SELECT " "fkid, from_tbl, to_tbl, sj(dq(to_col),',') AS cols " "FROM (SELECT * FROM temp.fkey ORDER BY to_col) " "GROUP BY fkid, from_tbl;" , 0, 0, pzErr ); if( rc!=SQLITE_OK ) return rc; rc = detectSchemaProblem(db, "foreign key is not unique", "SELECT fkid, from_tbl " "FROM temp.fkey2 " "WHERE NOT EXISTS (SELECT 1 " "FROM temp.idx WHERE tablename=to_tbl AND fkey2.cols==idx.cols" ")", pHasErrors ); if( rc!=SQLITE_OK ) return rc; return rc; } int main(int argc, char **argv){ sqlite3 *db; Options opt = {0, 0, 0}; int rc; int hasErrors = 0; char *zErr = 0; const int enc = SQLITE_UTF8; const char *zSql = "SELECT multireplace('" "-- Triggers for foreign key mapping:\n" "--\n" "-- /from_readable/ REFERENCES /to_readable/\n" "-- on delete /on_delete/\n" "-- on update /on_update/\n" "--\n" /* The "BEFORE INSERT ON " trigger. This trigger's job is to ** throw an exception if the user tries to insert a row into the ** referencing table for which there is no corresponding row in ** the referenced table. */ "CREATE TRIGGER /name/_insert_referencing BEFORE INSERT ON /tbl/ WHEN \n" " /key_notnull/ AND NOT EXISTS (SELECT 1 FROM /ref/ WHERE /cond1/)\n" "BEGIN\n" " SELECT RAISE(ABORT, ''constraint failed'');\n" "END;\n" /* The "BEFORE UPDATE ON " trigger. This trigger's job ** is to throw an exception if the user tries to update a row in the ** referencing table causing it to correspond to no row in the ** referenced table. */ "CREATE TRIGGER /name/_update_referencing BEFORE\n" " UPDATE OF /rkey_list/ ON /tbl/ WHEN \n" " /key_notnull/ AND \n" " NOT EXISTS (SELECT 1 FROM /ref/ WHERE /cond1/)\n" "BEGIN\n" " SELECT RAISE(ABORT, ''constraint failed'');\n" "END;\n" /* The "BEFORE DELETE ON " trigger. This trigger's job ** is to detect when a row is deleted from the referenced table to ** which rows in the referencing table correspond. The action taken ** depends on the value of the 'ON DELETE' clause. */ "CREATE TRIGGER /name/_delete_referenced BEFORE DELETE ON /ref/ WHEN\n" " EXISTS (SELECT 1 FROM /tbl/ WHERE /cond2/)\n" "BEGIN\n" " /delete_action/\n" "END;\n" /* The "BEFORE DELETE ON " trigger. This trigger's job ** is to detect when the key columns of a row in the referenced table ** to which one or more rows in the referencing table correspond are ** updated. The action taken depends on the value of the 'ON UPDATE' ** clause. */ "CREATE TRIGGER /name/_update_referenced AFTER\n" " UPDATE OF /fkey_list/ ON /ref/ WHEN \n" " EXISTS (SELECT 1 FROM /tbl/ WHERE /cond2/)\n" "BEGIN\n" " /update_action/\n" "END;\n" "'" /* These are used in the SQL comment written above each set of triggers */ ", '/from_readable/', from_tbl || '(' || sj(from_col, ', ') || ')'" ", '/to_readable/', to_tbl || '(' || sj(to_col, ', ') || ')'" ", '/on_delete/', on_delete" ", '/on_update/', on_update" ", '/name/', 'genfkey' || min(rowid)" ", '/tbl/', dq(from_tbl)" ", '/ref/', dq(to_tbl)" ", '/key_notnull/', sj('new.' || dq(from_col) || ' IS NOT NULL', ' AND ')" ", '/fkey_list/', sj(to_col, ', ')" ", '/rkey_list/', sj(from_col, ', ')" ", '/cond1/', sj(multireplace('new./from/ == /to/'" ", '/from/', dq(from_col)" ", '/to/', dq(to_col)" "), ' AND ')" ", '/cond2/', sj(multireplace('old./to/ == /from/'" ", '/from/', dq(from_col)" ", '/to/', dq(to_col)" "), ' AND ')" ", '/update_action/', CASE on_update " "WHEN 'SET NULL' THEN " "multireplace('UPDATE /tbl/ SET /setlist/ WHERE /where/;' " ", '/setlist/', sj(from_col||' = NULL',', ')" ", '/tbl/', dq(from_tbl)" ", '/where/', sj(from_col||' = old.'||dq(to_col),' AND ')" ")" "WHEN 'CASCADE' THEN " "multireplace('UPDATE /tbl/ SET /setlist/ WHERE /where/;' " ", '/setlist/', sj(dq(from_col)||' = new.'||dq(to_col),', ')" ", '/tbl/', dq(from_tbl)" ", '/where/', sj(dq(from_col)||' = old.'||dq(to_col),' AND ')" ")" "ELSE " " 'SELECT RAISE(ABORT, ''constraint failed'');'" "END " ", '/delete_action/', CASE on_delete " "WHEN 'SET NULL' THEN " "multireplace('UPDATE /tbl/ SET /setlist/ WHERE /where/;' " ", '/setlist/', sj(from_col||' = NULL',', ')" ", '/tbl/', dq(from_tbl)" ", '/where/', sj(from_col||' = old.'||dq(to_col),' AND ')" ")" "WHEN 'CASCADE' THEN " "multireplace('DELETE FROM /tbl/ WHERE /where/;' " ", '/tbl/', dq(from_tbl)" ", '/where/', sj(dq(from_col)||' = old.'||dq(to_col),' AND ')" ")" "ELSE " " 'SELECT RAISE(ABORT, ''constraint failed'');'" "END " ") FROM temp.fkey " "GROUP BY from_tbl, fkid" ; processCmdLine(argc, argv, &opt); /* Open the database handle. */ rc = sqlite3_open_v2(opt.zDb, &db, SQLITE_OPEN_READONLY, 0); if( rc!=SQLITE_OK ){ fprintf(stderr, "Error opening database file: %s\n", sqlite3_errmsg(db)); return -1; } /* Create the special scalar and aggregate functions used by this program. */ sqlite3_create_function(db, "dq", 1, enc, 0, doublequote, 0, 0); sqlite3_create_function(db, "multireplace", -1, enc, db, multireplace, 0, 0); sqlite3_create_function(db, "sj", 2, enc, 0, 0, joinStep, joinFinalize); /* Install the "schema" virtual table module */ installSchemaModule(db); /* Create and populate a temp table with the information required to ** build the foreign key triggers. See function populateTempTable() ** for details. */ rc = populateTempTable(db, &zErr, &hasErrors); if( rc!=SQLITE_OK ){ fprintf(stderr, "Error reading database: %s\n", zErr); return -1; } if( hasErrors && opt.ignoreErrors==0 ){ return -1; } printf("BEGIN;\n"); /* Unless the --no-drop option was specified, generate DROP TRIGGER ** statements to drop any triggers in the database generated by a ** previous run of this program. */ if( opt.noDrop==0 ){ rc = sqlite3_exec(db, "SELECT 'DROP TRIGGER' || ' ' || dq(name) || ';'" "FROM sqlite_master " "WHERE type='trigger' AND substr(name, 0, 7) == 'genfkey'" , printString, 0, 0 ); if( rc!=SQLITE_OK ){ const char *zMsg = sqlite3_errmsg(db); fprintf(stderr, "Generating drop triggers failed: %s\n", zMsg); return -1; } } /* Run the main query to create the trigger definitions. */ rc = sqlite3_exec(db, zSql, printString, 0, 0); if( rc!=SQLITE_OK ){ fprintf(stderr, "Generating triggers failed: %s\n", sqlite3_errmsg(db)); return -1; } printf("COMMIT;\n"); return 0; }