/* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string ** representation is already stored using the requested encoding, then this ** routine is a no-op. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ int rc; assert( (pMem->flags&MEM_RowSet)==0 ); assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE || desiredEnc==SQLITE_UTF16BE ); if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ return SQLITE_OK; } assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); #ifdef SQLITE_OMIT_UTF16 return SQLITE_ERROR; #else /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, ** then the encoding of the value may not have changed. */ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make sure pMem->z points to a writable allocation of at least ** n bytes. ** ** If the memory cell currently contains string or blob data ** and the third argument passed to this function is true, the ** current content of the cell is preserved. Otherwise, it may ** be discarded. ** ** This function sets the MEM_Dyn flag and clears any xDel callback. ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is ** not set, Mem.n is zeroed. */ int sqlite3VdbeMemGrow(Mem *pMem, int n, int preserve){ assert( 1 >= ((pMem->zMalloc && pMem->zMalloc==pMem->z) ? 1 : 0) + (((pMem->flags&MEM_Dyn)&&pMem->xDel) ? 1 : 0) + ((pMem->flags&MEM_Ephem) ? 1 : 0) + ((pMem->flags&MEM_Static) ? 1 : 0) ); assert( (pMem->flags&MEM_RowSet)==0 ); if( n<32 ) n = 32; if( sqlite3DbMallocSize(pMem->db, pMem->zMalloc)z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); preserve = 0; }else{ sqlite3DbFree(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } } if( pMem->z && preserve && pMem->zMalloc && pMem->z!=pMem->zMalloc ){ memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( pMem->flags&MEM_Dyn && pMem->xDel ){ assert( pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; if( pMem->z==0 ){ pMem->flags = MEM_Null; }else{ pMem->flags &= ~(MEM_Ephem|MEM_Static); } pMem->xDel = 0; return (pMem->z ? SQLITE_OK : SQLITE_NOMEM); } /* ** Make the given Mem object MEM_Dyn. In other words, make it so ** that any TEXT or BLOB content is stored in memory obtained from ** malloc(). In this way, we know that the memory is safe to be ** overwritten or altered. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ int f; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( (pMem->flags&MEM_RowSet)==0 ); ExpandBlob(pMem); f = pMem->flags; if( (f&(MEM_Str|MEM_Blob)) && pMem->z!=pMem->zMalloc ){ if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; #ifdef SQLITE_DEBUG pMem->pScopyFrom = 0; #endif } return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB int sqlite3VdbeMemExpandBlob(Mem *pMem){ if( pMem->flags & MEM_Zero ){ int nByte; assert( pMem->flags&MEM_Blob ); assert( (pMem->flags&MEM_RowSet)==0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); /* Set nByte to the number of bytes required to store the expanded blob. */ nByte = pMem->n + pMem->u.nZero; if( nByte<=0 ){ nByte = 1; } if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ return SQLITE_NOMEM; } memset(&pMem->z[pMem->n], 0, pMem->u.nZero); pMem->n += pMem->u.nZero; pMem->flags &= ~(MEM_Zero|MEM_Term); } return SQLITE_OK; } #endif /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( (pMem->flags & MEM_Term)!=0 || (pMem->flags & MEM_Str)==0 ){ return SQLITE_OK; /* Nothing to do */ } if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ return SQLITE_NOMEM; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; return SQLITE_OK; } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** ** Existing representations MEM_Int and MEM_Real are *not* invalidated. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the later is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, int enc){ int rc = SQLITE_OK; int fg = pMem->flags; const int nByte = 32; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(fg&MEM_Zero) ); assert( !(fg&(MEM_Str|MEM_Blob)) ); assert( fg&(MEM_Int|MEM_Real) ); assert( (pMem->flags&MEM_RowSet)==0 ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){ return SQLITE_NOMEM; } /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8 ** string representation of the value. Then, if the required encoding ** is UTF-16le or UTF-16be do a translation. ** ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. */ if( fg & MEM_Int ){ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->r); } pMem->n = sqlite3Strlen30(pMem->z); pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str|MEM_Term; sqlite3VdbeChangeEncoding(pMem, enc); return rc; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ int rc = SQLITE_OK; if( ALWAYS(pFunc && pFunc->xFinalize) ){ sqlite3_context ctx; assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); ctx.s.flags = MEM_Null; ctx.s.db = pMem->db; ctx.pMem = pMem; ctx.pFunc = pFunc; pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ assert( 0==(pMem->flags&MEM_Dyn) && !pMem->xDel ); sqlite3DbFree(pMem->db, pMem->zMalloc); memcpy(pMem, &ctx.s, sizeof(ctx.s)); rc = ctx.isError; } return rc; } /* ** If the memory cell contains a string value that must be freed by ** invoking an external callback, free it now. Calling this function ** does not free any Mem.zMalloc buffer. */ void sqlite3VdbeMemReleaseExternal(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); sqlite3VdbeMemRelease(p); }else if( p->flags&MEM_Dyn && p->xDel ){ assert( (p->flags&MEM_RowSet)==0 ); assert( p->xDel!=SQLITE_DYNAMIC ); p->xDel((void *)p->z); p->xDel = 0; }else if( p->flags&MEM_RowSet ){ sqlite3RowSetClear(p->u.pRowSet); }else if( p->flags&MEM_Frame ){ sqlite3VdbeMemSetNull(p); } } /* ** Release any memory held by the Mem. This may leave the Mem in an ** inconsistent state, for example with (Mem.z==0) and ** (Mem.type==SQLITE_TEXT). */ void sqlite3VdbeMemRelease(Mem *p){ VdbeMemRelease(p); sqlite3DbFree(p->db, p->zMalloc); p->z = 0; p->zMalloc = 0; p->xDel = 0; } /* ** Convert a 64-bit IEEE double into a 64-bit signed integer. ** If the double is too large, return 0x8000000000000000. ** ** Most systems appear to do this simply by assigning ** variables and without the extra range tests. But ** there are reports that windows throws an expection ** if the floating point value is out of range. (See ticket #2880.) ** Because we do not completely understand the problem, we will ** take the conservative approach and always do range tests ** before attempting the conversion. */ static i64 doubleToInt64(double r){ #ifdef SQLITE_OMIT_FLOATING_POINT /* When floating-point is omitted, double and int64 are the same thing */ return r; #else /* ** Many compilers we encounter do not define constants for the ** minimum and maximum 64-bit integers, or they define them ** inconsistently. And many do not understand the "LL" notation. ** So we define our own static constants here using nothing ** larger than a 32-bit integer constant. */ static const i64 maxInt = LARGEST_INT64; static const i64 minInt = SMALLEST_INT64; if( r<(double)minInt ){ return minInt; }else if( r>(double)maxInt ){ /* minInt is correct here - not maxInt. It turns out that assigning ** a very large positive number to an integer results in a very large ** negative integer. This makes no sense, but it is what x86 hardware ** does so for compatibility we will do the same in software. */ return minInt; }else{ return (i64)r; } #endif } /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into a integer and return that. If pMem represents an ** an SQL-NULL value, return 0. ** ** If pMem represents a string value, its encoding might be changed. */ i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & MEM_Int ){ return pMem->u.i; }else if( flags & MEM_Real ){ return doubleToInt64(pMem->r); }else if( flags & (MEM_Str|MEM_Blob) ){ i64 value = 0; assert( pMem->z || pMem->n==0 ); testcase( pMem->z==0 ); sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); return value; }else{ return 0; } } /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->r; }else if( pMem->flags & MEM_Int ){ return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ double val = (double)0; sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); return val; }else{ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return (double)0; } } /* ** The MEM structure is already a MEM_Real. Try to also make it a ** MEM_Int if we can. */ void sqlite3VdbeIntegerAffinity(Mem *pMem){ assert( pMem->flags & MEM_Real ); assert( (pMem->flags & MEM_RowSet)==0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.i = doubleToInt64(pMem->r); /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes ** values to wrap around. On x86 hardware, the third term is always ** true and could be omitted. But we leave it in because other ** architectures might behave differently. */ if( pMem->r==(double)pMem->u.i && pMem->u.i>SMALLEST_INT64 #if defined(__i486__) || defined(__x86_64__) && ALWAYS(pMem->u.iu.iflags |= MEM_Int; } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( (pMem->flags & MEM_RowSet)==0 ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.i = sqlite3VdbeIntValue(pMem); MemSetTypeFlag(pMem, MEM_Int); return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->r = sqlite3VdbeRealValue(pMem); MemSetTypeFlag(pMem, MEM_Real); return SQLITE_OK; } /* ** Convert pMem so that it has types MEM_Real or MEM_Int or both. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. */ int sqlite3VdbeMemNumerify(Mem *pMem){ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ MemSetTypeFlag(pMem, MEM_Int); }else{ pMem->r = sqlite3VdbeRealValue(pMem); MemSetTypeFlag(pMem, MEM_Real); sqlite3VdbeIntegerAffinity(pMem); } } assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); pMem->flags &= ~(MEM_Str|MEM_Blob); return SQLITE_OK; } /* ** Delete any previous value and set the value stored in *pMem to NULL. */ void sqlite3VdbeMemSetNull(Mem *pMem){ if( pMem->flags & MEM_Frame ){ VdbeFrame *pFrame = pMem->u.pFrame; pFrame->pParent = pFrame->v->pDelFrame; pFrame->v->pDelFrame = pFrame; } if( pMem->flags & MEM_RowSet ){ sqlite3RowSetClear(pMem->u.pRowSet); } MemSetTypeFlag(pMem, MEM_Null); pMem->type = SQLITE_NULL; } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Blob|MEM_Zero; pMem->type = SQLITE_BLOB; pMem->n = 0; if( n<0 ) n = 0; pMem->u.nZero = n; pMem->enc = SQLITE_UTF8; #ifdef SQLITE_OMIT_INCRBLOB sqlite3VdbeMemGrow(pMem, n, 0); if( pMem->z ){ pMem->n = n; memset(pMem->z, 0, n); } #endif } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemRelease(pMem); pMem->u.i = val; pMem->flags = MEM_Int; pMem->type = SQLITE_INTEGER; } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ if( sqlite3IsNaN(val) ){ sqlite3VdbeMemSetNull(pMem); }else{ sqlite3VdbeMemRelease(pMem); pMem->r = val; pMem->flags = MEM_Real; pMem->type = SQLITE_FLOAT; } } #endif /* ** Delete any previous value and set the value of pMem to be an ** empty boolean index. */ void sqlite3VdbeMemSetRowSet(Mem *pMem){ sqlite3 *db = pMem->db; assert( db!=0 ); assert( (pMem->flags & MEM_RowSet)==0 ); sqlite3VdbeMemRelease(pMem); pMem->zMalloc = sqlite3DbMallocRaw(db, 64); if( db->mallocFailed ){ pMem->flags = MEM_Null; }else{ assert( pMem->zMalloc ); pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, sqlite3DbMallocSize(db, pMem->zMalloc)); assert( pMem->u.pRowSet!=0 ); pMem->flags = MEM_RowSet; } } /* ** Return true if the Mem object contains a TEXT or BLOB that is ** too large - whose size exceeds SQLITE_MAX_LENGTH. */ int sqlite3VdbeMemTooBig(Mem *p){ assert( p->db!=0 ); if( p->flags & (MEM_Str|MEM_Blob) ){ int n = p->n; if( p->flags & MEM_Zero ){ n += p->u.nZero; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* ** This routine prepares a memory cell for modication by breaking ** its link to a shallow copy and by marking any current shallow ** copies of this cell as invalid. ** ** This is used for testing and debugging only - to make sure shallow ** copies are not misused. */ void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ pX->flags |= MEM_Invalid; pX->pScopyFrom = 0; } } pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Size of struct Mem not including the Mem.zMalloc member. */ #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc)) /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ assert( (pFrom->flags & MEM_RowSet)==0 ); VdbeMemRelease(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->xDel = 0; if( (pFrom->flags&MEM_Static)==0 ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( (pFrom->flags & MEM_RowSet)==0 ); VdbeMemRelease(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. */ void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); sqlite3VdbeMemRelease(pTo); memcpy(pTo, pFrom, sizeof(Mem)); pFrom->flags = MEM_Null; pFrom->xDel = 0; pFrom->zMalloc = 0; } /* ** Change the value of a Mem to be a string or a BLOB. ** ** The memory management strategy depends on the value of the xDel ** parameter. If the value passed is SQLITE_TRANSIENT, then the ** string is copied into a (possibly existing) buffer managed by the ** Mem structure. Otherwise, any existing buffer is freed and the ** pointer copied. ** ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH ** size limit) then no memory allocation occurs. If the string can be ** stored without allocating memory, then it is. If a memory allocation ** is required to store the string, then value of pMem is unchanged. In ** either case, SQLITE_TOOBIG is returned. */ int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ int nByte = n; /* New value for pMem->n */ int iLimit; /* Maximum allowed string or blob size */ u16 flags = 0; /* New value for pMem->flags */ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( (pMem->flags & MEM_RowSet)==0 ); /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ if( !z ){ sqlite3VdbeMemSetNull(pMem); return SQLITE_OK; } if( pMem->db ){ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; }else{ iLimit = SQLITE_MAX_LENGTH; } flags = (enc==0?MEM_Blob:MEM_Str); if( nByte<0 ){ assert( enc!=0 ); if( enc==SQLITE_UTF8 ){ for(nByte=0; nByte<=iLimit && z[nByte]; nByte++){} }else{ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} } flags |= MEM_Term; } /* The following block sets the new values of Mem.z and Mem.xDel. It ** also sets a flag in local variable "flags" to indicate the memory ** management (one of MEM_Dyn or MEM_Static). */ if( xDel==SQLITE_TRANSIENT ){ int nAlloc = nByte; if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } if( nByte>iLimit ){ return SQLITE_TOOBIG; } if( sqlite3VdbeMemGrow(pMem, nAlloc, 0) ){ return SQLITE_NOMEM; } memcpy(pMem->z, z, nAlloc); }else if( xDel==SQLITE_DYNAMIC ){ sqlite3VdbeMemRelease(pMem); pMem->zMalloc = pMem->z = (char *)z; pMem->xDel = 0; }else{ sqlite3VdbeMemRelease(pMem); pMem->z = (char *)z; pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } pMem->n = nByte; pMem->flags = flags; pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); pMem->type = (enc==0 ? SQLITE_BLOB : SQLITE_TEXT); #ifndef SQLITE_OMIT_UTF16 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM; } #endif if( nByte>iLimit ){ return SQLITE_TOOBIG; } return SQLITE_OK; } /* ** Compare the values contained by the two memory cells, returning ** negative, zero or positive if pMem1 is less than, equal to, or greater ** than pMem2. Sorting order is NULL's first, followed by numbers (integers ** and reals) sorted numerically, followed by text ordered by the collating ** sequence pColl and finally blob's ordered by memcmp(). ** ** Two NULL values are considered equal by this function. */ int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){ int rc; int f1, f2; int combined_flags; f1 = pMem1->flags; f2 = pMem2->flags; combined_flags = f1|f2; assert( (combined_flags & MEM_RowSet)==0 ); /* If one value is NULL, it is less than the other. If both values ** are NULL, return 0. */ if( combined_flags&MEM_Null ){ return (f2&MEM_Null) - (f1&MEM_Null); } /* If one value is a number and the other is not, the number is less. ** If both are numbers, compare as reals if one is a real, or as integers ** if both values are integers. */ if( combined_flags&(MEM_Int|MEM_Real) ){ if( !(f1&(MEM_Int|MEM_Real)) ){ return 1; } if( !(f2&(MEM_Int|MEM_Real)) ){ return -1; } if( (f1 & f2 & MEM_Int)==0 ){ double r1, r2; if( (f1&MEM_Real)==0 ){ r1 = (double)pMem1->u.i; }else{ r1 = pMem1->r; } if( (f2&MEM_Real)==0 ){ r2 = (double)pMem2->u.i; }else{ r2 = pMem2->r; } if( r1r2 ) return 1; return 0; }else{ assert( f1&MEM_Int ); assert( f2&MEM_Int ); if( pMem1->u.i < pMem2->u.i ) return -1; if( pMem1->u.i > pMem2->u.i ) return 1; return 0; } } /* If one value is a string and the other is a blob, the string is less. ** If both are strings, compare using the collating functions. */ if( combined_flags&MEM_Str ){ if( (f1 & MEM_Str)==0 ){ return 1; } if( (f2 & MEM_Str)==0 ){ return -1; } assert( pMem1->enc==pMem2->enc ); assert( pMem1->enc==SQLITE_UTF8 || pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE ); /* The collation sequence must be defined at this point, even if ** the user deletes the collation sequence after the vdbe program is ** compiled (this was not always the case). */ assert( !pColl || pColl->xCmp ); if( pColl ){ if( pMem1->enc==pColl->enc ){ /* The strings are already in the correct encoding. Call the ** comparison function directly */ return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z); }else{ const void *v1, *v2; int n1, n2; Mem c1; Mem c2; memset(&c1, 0, sizeof(c1)); memset(&c2, 0, sizeof(c2)); sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem); sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem); v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc); n1 = v1==0 ? 0 : c1.n; v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc); n2 = v2==0 ? 0 : c2.n; rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2); sqlite3VdbeMemRelease(&c1); sqlite3VdbeMemRelease(&c2); return rc; } } /* If a NULL pointer was passed as the collate function, fall through ** to the blob case and use memcmp(). */ } /* Both values must be blobs. Compare using memcmp(). */ rc = memcmp(pMem1->z, pMem2->z, (pMem1->n>pMem2->n)?pMem2->n:pMem1->n); if( rc==0 ){ rc = pMem1->n - pMem2->n; } return rc; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data or key is taken from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** key is true to get the key or false to get data. The result is written ** into the pMem element. ** ** The pMem structure is assumed to be uninitialized. Any prior content ** is overwritten without being freed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ int offset, /* Offset from the start of data to return bytes from. */ int amt, /* Number of bytes to return. */ int key, /* If true, retrieve from the btree key, not data. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ int available = 0; /* Number of bytes available on the local btree page */ int rc = SQLITE_OK; /* Return code */ assert( sqlite3BtreeCursorIsValid(pCur) ); /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() ** that both the BtShared and database handle mutexes are held. */ assert( (pMem->flags & MEM_RowSet)==0 ); if( key ){ zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); }else{ zData = (char *)sqlite3BtreeDataFetch(pCur, &available); } assert( zData!=0 ); if( offset+amt<=available && (pMem->flags&MEM_Dyn)==0 ){ sqlite3VdbeMemRelease(pMem); pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; }else if( SQLITE_OK==(rc = sqlite3VdbeMemGrow(pMem, amt+2, 0)) ){ pMem->flags = MEM_Blob|MEM_Dyn|MEM_Term; pMem->enc = 0; pMem->type = SQLITE_BLOB; if( key ){ rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); }else{ rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); } pMem->z[amt] = 0; pMem->z[amt+1] = 0; if( rc!=SQLITE_OK ){ sqlite3VdbeMemRelease(pMem); } } pMem->n = amt; return rc; } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( (pVal->flags & MEM_RowSet)==0 ); if( pVal->flags&MEM_Null ){ return 0; } assert( (MEM_Blob>>3) == MEM_Str ); pVal->flags |= (pVal->flags & MEM_Blob)>>3; ExpandBlob(pVal); if( pVal->flags&MEM_Str ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ }else{ assert( (pVal->flags&MEM_Blob)==0 ); sqlite3VdbeMemStringify(pVal, enc); assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ return pVal->z; }else{ return 0; } } /* ** Create a new sqlite3_value object. */ sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; p->type = SQLITE_NULL; p->db = db; } return p; } /* ** Create a new sqlite3_value object, containing the value of pExpr. ** ** This only works for very simple expressions that consist of one constant ** token (i.e. "5", "5.1", "'a string'"). If the expression can ** be converted directly into a value, then the value is allocated and ** a pointer written to *ppVal. The caller is responsible for deallocating ** the value by passing it to sqlite3ValueFree() later on. If the expression ** cannot be converted to a value, then *ppVal is set to NULL. */ int sqlite3ValueFromExpr( sqlite3 *db, /* The database connection */ Expr *pExpr, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* Write the new value here */ ){ int op; char *zVal = 0; sqlite3_value *pVal = 0; int negInt = 1; const char *zNeg = ""; if( !pExpr ){ *ppVal = 0; return SQLITE_OK; } op = pExpr->op; /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3. ** The ifdef here is to enable us to achieve 100% branch test coverage even ** when SQLITE_ENABLE_STAT3 is omitted. */ #ifdef SQLITE_ENABLE_STAT3 if( op==TK_REGISTER ) op = pExpr->op2; #else if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; #endif /* Handle negative integers in a single step. This is needed in the ** case when the value is -9223372036854775808. */ if( op==TK_UMINUS && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ pExpr = pExpr->pLeft; op = pExpr->op; negInt = -1; zNeg = "-"; } if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); if( op==TK_FLOAT ) pVal->type = SQLITE_FLOAT; } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; if( enc!=SQLITE_UTF8 ){ sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) ){ sqlite3VdbeMemNumerify(pVal); if( pVal->u.i==SMALLEST_INT64 ){ pVal->flags &= MEM_Int; pVal->flags |= MEM_Real; pVal->r = (double)LARGEST_INT64; }else{ pVal->u.i = -pVal->u.i; } pVal->r = -pVal->r; sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_NULL ){ pVal = sqlite3ValueNew(db); if( pVal==0 ) goto no_mem; } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); pVal = sqlite3ValueNew(db); if( !pVal ) goto no_mem; zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif if( pVal ){ sqlite3VdbeMemStoreType(pVal); } *ppVal = pVal; return SQLITE_OK; no_mem: db->mallocFailed = 1; sqlite3DbFree(db, zVal); sqlite3ValueFree(pVal); *ppVal = 0; return SQLITE_NOMEM; } /* ** Change the string value of an sqlite3_value object */ void sqlite3ValueSetStr( sqlite3_value *v, /* Value to be set */ int n, /* Length of string z */ const void *z, /* Text of the new string */ u8 enc, /* Encoding to use */ void (*xDel)(void*) /* Destructor for the string */ ){ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); } /* ** Free an sqlite3_value object */ void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3DbFree(((Mem*)v)->db, v); } /* ** Return the number of bytes in the sqlite3_value object assuming ** that it uses the encoding "enc" */ int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ if( p->flags & MEM_Zero ){ return p->n + p->u.nZero; }else{ return p->n; } } return 0; }