/* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to manipulate "Mem" structure. A "Mem" ** stores a single value in the VDBE. Mem is an opaque structure visible ** only within the VDBE. Interface routines refer to a Mem using the ** name sqlite_value */ #include "sqliteInt.h" #include "vdbeInt.h" #ifdef SQLITE_DEBUG /* ** Check invariants on a Mem object. ** ** This routine is intended for use inside of assert() statements, like ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); */ int sqlite3VdbeCheckMemInvariants(Mem *p){ /* If MEM_Dyn is set then Mem.xDel!=0. ** Mem.xDel might not be initialized if MEM_Dyn is clear. */ assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we ** ensure that if Mem.szMalloc>0 then it is safe to do ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. ** That saves a few cycles in inner loops. */ assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); /* Cannot be both MEM_Int and MEM_Real at the same time */ assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); if( p->flags & MEM_Null ){ /* Cannot be both MEM_Null and some other type */ assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 ); /* If MEM_Null is set, then either the value is a pure NULL (the usual ** case) or it is a pointer set using sqlite3_bind_pointer() or ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be ** set. */ if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){ /* This is a pointer type. There may be a flag to indicate what to ** do with the pointer. */ assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 ); /* No other bits set */ assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype |MEM_Dyn|MEM_Ephem|MEM_Static))==0 ); }else{ /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn, ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */ } }else{ /* The MEM_Cleared bit is only allowed on NULLs */ assert( (p->flags & MEM_Cleared)==0 ); } /* The szMalloc field holds the correct memory allocation size */ assert( p->szMalloc==0 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); /* If p holds a string or blob, the Mem.z must point to exactly ** one of the following: ** ** (1) Memory in Mem.zMalloc and managed by the Mem object ** (2) Memory to be freed using Mem.xDel ** (3) An ephemeral string or blob ** (4) A static string or blob */ if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ assert( ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 ); } return 1; } #endif #ifdef SQLITE_DEBUG /* ** Check that string value of pMem agrees with its integer or real value. ** ** A single int or real value always converts to the same strings. But ** many different strings can be converted into the same int or real. ** If a table contains a numeric value and an index is based on the ** corresponding string value, then it is important that the string be ** derived from the numeric value, not the other way around, to ensure ** that the index and table are consistent. See ticket ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for ** an example. ** ** This routine looks at pMem to verify that if it has both a numeric ** representation and a string representation then the string rep has ** been derived from the numeric and not the other way around. It returns ** true if everything is ok and false if there is a problem. ** ** This routine is for use inside of assert() statements only. */ int sqlite3VdbeMemConsistentDualRep(Mem *p){ char zBuf[100]; char *z; int i, j, incr; if( (p->flags & MEM_Str)==0 ) return 1; if( (p->flags & (MEM_Int|MEM_Real))==0 ) return 1; if( p->flags & MEM_Int ){ sqlite3_snprintf(sizeof(zBuf),zBuf,"%lld",p->u.i); }else{ sqlite3_snprintf(sizeof(zBuf),zBuf,"%!.15g",p->u.r); } z = p->z; i = j = 0; incr = 1; if( p->enc!=SQLITE_UTF8 ){ incr = 2; if( p->enc==SQLITE_UTF16BE ) z++; } while( zBuf[j] ){ if( zBuf[j++]!=z[i] ) return 0; i += incr; } return 1; } #endif /* SQLITE_DEBUG */ /* ** If pMem is an object with a valid string representation, this routine ** ensures the internal encoding for the string representation is ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. ** ** If pMem is not a string object, or the encoding of the string ** representation is already stored using the requested encoding, then this ** routine is a no-op. ** ** SQLITE_OK is returned if the conversion is successful (or not required). ** SQLITE_NOMEM may be returned if a malloc() fails during conversion ** between formats. */ int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ #ifndef SQLITE_OMIT_UTF16 int rc; #endif assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE || desiredEnc==SQLITE_UTF16BE ); if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ return SQLITE_OK; } assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); #ifdef SQLITE_OMIT_UTF16 return SQLITE_ERROR; #else /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, ** then the encoding of the value may not have changed. */ rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); return rc; #endif } /* ** Make sure pMem->z points to a writable allocation of at least ** min(n,32) bytes. ** ** If the bPreserve argument is true, then copy of the content of ** pMem->z into the new allocation. pMem must be either a string or ** blob if bPreserve is true. If bPreserve is false, any prior content ** in pMem->z is discarded. */ SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ assert( sqlite3VdbeCheckMemInvariants(pMem) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); testcase( pMem->db==0 ); /* If the bPreserve flag is set to true, then the memory cell must already ** contain a valid string or blob value. */ assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); testcase( bPreserve && pMem->z==0 ); assert( pMem->szMalloc==0 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); if( n<32 ) n = 32; if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){ pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); bPreserve = 0; }else{ if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); } if( pMem->zMalloc==0 ){ sqlite3VdbeMemSetNull(pMem); pMem->z = 0; pMem->szMalloc = 0; return SQLITE_NOMEM_BKPT; }else{ pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); } if( bPreserve && pMem->z ){ assert( pMem->z!=pMem->zMalloc ); memcpy(pMem->zMalloc, pMem->z, pMem->n); } if( (pMem->flags&MEM_Dyn)!=0 ){ assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); pMem->xDel((void *)(pMem->z)); } pMem->z = pMem->zMalloc; pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); return SQLITE_OK; } /* ** Change the pMem->zMalloc allocation to be at least szNew bytes. ** If pMem->zMalloc already meets or exceeds the requested size, this ** routine is a no-op. ** ** Any prior string or blob content in the pMem object may be discarded. ** The pMem->xDel destructor is called, if it exists. Though MEM_Str ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null ** values are preserved. ** ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) ** if unable to complete the resizing. */ int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ assert( szNew>0 ); assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); if( pMem->szMallocflags & MEM_Dyn)==0 ); pMem->z = pMem->zMalloc; pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); return SQLITE_OK; } /* ** It is already known that pMem contains an unterminated string. ** Add the zero terminator. */ static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ return SQLITE_NOMEM_BKPT; } pMem->z[pMem->n] = 0; pMem->z[pMem->n+1] = 0; pMem->flags |= MEM_Term; return SQLITE_OK; } /* ** Change pMem so that its MEM_Str or MEM_Blob value is stored in ** MEM.zMalloc, where it can be safely written. ** ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. */ int sqlite3VdbeMemMakeWriteable(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){ if( ExpandBlob(pMem) ) return SQLITE_NOMEM; if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){ int rc = vdbeMemAddTerminator(pMem); if( rc ) return rc; } } pMem->flags &= ~MEM_Ephem; #ifdef SQLITE_DEBUG pMem->pScopyFrom = 0; #endif return SQLITE_OK; } /* ** If the given Mem* has a zero-filled tail, turn it into an ordinary ** blob stored in dynamically allocated space. */ #ifndef SQLITE_OMIT_INCRBLOB int sqlite3VdbeMemExpandBlob(Mem *pMem){ int nByte; assert( pMem->flags & MEM_Zero ); assert( pMem->flags&MEM_Blob ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); /* Set nByte to the number of bytes required to store the expanded blob. */ nByte = pMem->n + pMem->u.nZero; if( nByte<=0 ){ nByte = 1; } if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ return SQLITE_NOMEM_BKPT; } memset(&pMem->z[pMem->n], 0, pMem->u.nZero); pMem->n += pMem->u.nZero; pMem->flags &= ~(MEM_Zero|MEM_Term); return SQLITE_OK; } #endif /* ** Make sure the given Mem is \u0000 terminated. */ int sqlite3VdbeMemNulTerminate(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ return SQLITE_OK; /* Nothing to do */ }else{ return vdbeMemAddTerminator(pMem); } } /* ** Add MEM_Str to the set of representations for the given Mem. Numbers ** are converted using sqlite3_snprintf(). Converting a BLOB to a string ** is a no-op. ** ** Existing representations MEM_Int and MEM_Real are invalidated if ** bForce is true but are retained if bForce is false. ** ** A MEM_Null value will never be passed to this function. This function is ** used for converting values to text for returning to the user (i.e. via ** sqlite3_value_text()), or for ensuring that values to be used as btree ** keys are strings. In the former case a NULL pointer is returned the ** user and the latter is an internal programming error. */ int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ int fg = pMem->flags; const int nByte = 32; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !(fg&MEM_Zero) ); assert( !(fg&(MEM_Str|MEM_Blob)) ); assert( fg&(MEM_Int|MEM_Real) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ pMem->enc = 0; return SQLITE_NOMEM_BKPT; } /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 ** string representation of the value. Then, if the required encoding ** is UTF-16le or UTF-16be do a translation. ** ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. */ if( fg & MEM_Int ){ sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); }else{ assert( fg & MEM_Real ); sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); } assert( pMem->z!=0 ); pMem->n = sqlite3Strlen30NN(pMem->z); pMem->enc = SQLITE_UTF8; pMem->flags |= MEM_Str|MEM_Term; if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); sqlite3VdbeChangeEncoding(pMem, enc); return SQLITE_OK; } /* ** Memory cell pMem contains the context of an aggregate function. ** This routine calls the finalize method for that function. The ** result of the aggregate is stored back into pMem. ** ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK ** otherwise. */ int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ sqlite3_context ctx; Mem t; assert( pFunc!=0 ); assert( pFunc->xFinalize!=0 ); assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); memset(&t, 0, sizeof(t)); t.flags = MEM_Null; t.db = pMem->db; ctx.pOut = &t; ctx.pMem = pMem; ctx.pFunc = pFunc; pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ assert( (pMem->flags & MEM_Dyn)==0 ); if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc); memcpy(pMem, &t, sizeof(t)); return ctx.isError; } /* ** Memory cell pAccum contains the context of an aggregate function. ** This routine calls the xValue method for that function and stores ** the results in memory cell pMem. ** ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK ** otherwise. */ #ifndef SQLITE_OMIT_WINDOWFUNC int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){ sqlite3_context ctx; Mem t; assert( pFunc!=0 ); assert( pFunc->xValue!=0 ); assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef ); assert( pAccum->db==0 || sqlite3_mutex_held(pAccum->db->mutex) ); memset(&ctx, 0, sizeof(ctx)); memset(&t, 0, sizeof(t)); t.flags = MEM_Null; t.db = pAccum->db; sqlite3VdbeMemSetNull(pOut); ctx.pOut = pOut; ctx.pMem = pAccum; ctx.pFunc = pFunc; pFunc->xValue(&ctx); return ctx.isError; } #endif /* SQLITE_OMIT_WINDOWFUNC */ /* ** If the memory cell contains a value that must be freed by ** invoking the external callback in Mem.xDel, then this routine ** will free that value. It also sets Mem.flags to MEM_Null. ** ** This is a helper routine for sqlite3VdbeMemSetNull() and ** for sqlite3VdbeMemRelease(). Use those other routines as the ** entry point for releasing Mem resources. */ static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); assert( VdbeMemDynamic(p) ); if( p->flags&MEM_Agg ){ sqlite3VdbeMemFinalize(p, p->u.pDef); assert( (p->flags & MEM_Agg)==0 ); testcase( p->flags & MEM_Dyn ); } if( p->flags&MEM_Dyn ){ assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); p->xDel((void *)p->z); } p->flags = MEM_Null; } /* ** Release memory held by the Mem p, both external memory cleared ** by p->xDel and memory in p->zMalloc. ** ** This is a helper routine invoked by sqlite3VdbeMemRelease() in ** the unusual case where there really is memory in p that needs ** to be freed. */ static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ if( VdbeMemDynamic(p) ){ vdbeMemClearExternAndSetNull(p); } if( p->szMalloc ){ sqlite3DbFreeNN(p->db, p->zMalloc); p->szMalloc = 0; } p->z = 0; } /* ** Release any memory resources held by the Mem. Both the memory that is ** free by Mem.xDel and the Mem.zMalloc allocation are freed. ** ** Use this routine prior to clean up prior to abandoning a Mem, or to ** reset a Mem back to its minimum memory utilization. ** ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space ** prior to inserting new content into the Mem. */ void sqlite3VdbeMemRelease(Mem *p){ assert( sqlite3VdbeCheckMemInvariants(p) ); if( VdbeMemDynamic(p) || p->szMalloc ){ vdbeMemClear(p); } } /* ** Convert a 64-bit IEEE double into a 64-bit signed integer. ** If the double is out of range of a 64-bit signed integer then ** return the closest available 64-bit signed integer. */ static SQLITE_NOINLINE i64 doubleToInt64(double r){ #ifdef SQLITE_OMIT_FLOATING_POINT /* When floating-point is omitted, double and int64 are the same thing */ return r; #else /* ** Many compilers we encounter do not define constants for the ** minimum and maximum 64-bit integers, or they define them ** inconsistently. And many do not understand the "LL" notation. ** So we define our own static constants here using nothing ** larger than a 32-bit integer constant. */ static const i64 maxInt = LARGEST_INT64; static const i64 minInt = SMALLEST_INT64; if( r<=(double)minInt ){ return minInt; }else if( r>=(double)maxInt ){ return maxInt; }else{ return (i64)r; } #endif } /* ** Return some kind of integer value which is the best we can do ** at representing the value that *pMem describes as an integer. ** If pMem is an integer, then the value is exact. If pMem is ** a floating-point then the value returned is the integer part. ** If pMem is a string or blob, then we make an attempt to convert ** it into an integer and return that. If pMem represents an ** an SQL-NULL value, return 0. ** ** If pMem represents a string value, its encoding might be changed. */ static SQLITE_NOINLINE i64 memIntValue(Mem *pMem){ i64 value = 0; sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); return value; } i64 sqlite3VdbeIntValue(Mem *pMem){ int flags; assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); flags = pMem->flags; if( flags & MEM_Int ){ return pMem->u.i; }else if( flags & MEM_Real ){ return doubleToInt64(pMem->u.r); }else if( flags & (MEM_Str|MEM_Blob) ){ assert( pMem->z || pMem->n==0 ); return memIntValue(pMem); }else{ return 0; } } /* ** Return the best representation of pMem that we can get into a ** double. If pMem is already a double or an integer, return its ** value. If it is a string or blob, try to convert it to a double. ** If it is a NULL, return 0.0. */ static SQLITE_NOINLINE double memRealValue(Mem *pMem){ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ double val = (double)0; sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); return val; } double sqlite3VdbeRealValue(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); if( pMem->flags & MEM_Real ){ return pMem->u.r; }else if( pMem->flags & MEM_Int ){ return (double)pMem->u.i; }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ return memRealValue(pMem); }else{ /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ return (double)0; } } /* ** Return 1 if pMem represents true, and return 0 if pMem represents false. ** Return the value ifNull if pMem is NULL. */ int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){ if( pMem->flags & MEM_Int ) return pMem->u.i!=0; if( pMem->flags & MEM_Null ) return ifNull; return sqlite3VdbeRealValue(pMem)!=0.0; } /* ** The MEM structure is already a MEM_Real. Try to also make it a ** MEM_Int if we can. */ void sqlite3VdbeIntegerAffinity(Mem *pMem){ i64 ix; assert( pMem->flags & MEM_Real ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); ix = doubleToInt64(pMem->u.r); /* Only mark the value as an integer if ** ** (1) the round-trip conversion real->int->real is a no-op, and ** (2) The integer is neither the largest nor the smallest ** possible integer (ticket #3922) ** ** The second and third terms in the following conditional enforces ** the second condition under the assumption that addition overflow causes ** values to wrap around. */ if( pMem->u.r==ix && ix>SMALLEST_INT64 && ixu.i = ix; MemSetTypeFlag(pMem, MEM_Int); } } /* ** Convert pMem to type integer. Invalidate any prior representations. */ int sqlite3VdbeMemIntegerify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.i = sqlite3VdbeIntValue(pMem); MemSetTypeFlag(pMem, MEM_Int); return SQLITE_OK; } /* ** Convert pMem so that it is of type MEM_Real. ** Invalidate any prior representations. */ int sqlite3VdbeMemRealify(Mem *pMem){ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( EIGHT_BYTE_ALIGNMENT(pMem) ); pMem->u.r = sqlite3VdbeRealValue(pMem); MemSetTypeFlag(pMem, MEM_Real); return SQLITE_OK; } /* Compare a floating point value to an integer. Return true if the two ** values are the same within the precision of the floating point value. ** ** For some versions of GCC on 32-bit machines, if you do the more obvious ** comparison of "r1==(double)i" you sometimes get an answer of false even ** though the r1 and (double)i values are bit-for-bit the same. */ static int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){ double r2 = (double)i; return memcmp(&r1, &r2, sizeof(r1))==0; } /* ** Convert pMem so that it has types MEM_Real or MEM_Int or both. ** Invalidate any prior representations. ** ** Every effort is made to force the conversion, even if the input ** is a string that does not look completely like a number. Convert ** as much of the string as we can and ignore the rest. */ int sqlite3VdbeMemNumerify(Mem *pMem){ if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ int rc; assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); rc = sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc); if( rc==0 ){ MemSetTypeFlag(pMem, MEM_Int); }else{ i64 i = pMem->u.i; sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc); if( rc==1 && sqlite3RealSameAsInt(pMem->u.r, i) ){ pMem->u.i = i; MemSetTypeFlag(pMem, MEM_Int); }else{ MemSetTypeFlag(pMem, MEM_Real); } } } assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero); return SQLITE_OK; } /* ** Cast the datatype of the value in pMem according to the affinity ** "aff". Casting is different from applying affinity in that a cast ** is forced. In other words, the value is converted into the desired ** affinity even if that results in loss of data. This routine is ** used (for example) to implement the SQL "cast()" operator. */ void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ if( pMem->flags & MEM_Null ) return; switch( aff ){ case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */ if( (pMem->flags & MEM_Blob)==0 ){ sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob); }else{ pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); } break; } case SQLITE_AFF_NUMERIC: { sqlite3VdbeMemNumerify(pMem); break; } case SQLITE_AFF_INTEGER: { sqlite3VdbeMemIntegerify(pMem); break; } case SQLITE_AFF_REAL: { sqlite3VdbeMemRealify(pMem); break; } default: { assert( aff==SQLITE_AFF_TEXT ); assert( MEM_Str==(MEM_Blob>>3) ); pMem->flags |= (pMem->flags&MEM_Blob)>>3; sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); break; } } } /* ** Initialize bulk memory to be a consistent Mem object. ** ** The minimum amount of initialization feasible is performed. */ void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ assert( (flags & ~MEM_TypeMask)==0 ); pMem->flags = flags; pMem->db = db; pMem->szMalloc = 0; } /* ** Delete any previous value and set the value stored in *pMem to NULL. ** ** This routine calls the Mem.xDel destructor to dispose of values that ** require the destructor. But it preserves the Mem.zMalloc memory allocation. ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this ** routine to invoke the destructor and deallocates Mem.zMalloc. ** ** Use this routine to reset the Mem prior to insert a new value. ** ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. */ void sqlite3VdbeMemSetNull(Mem *pMem){ if( VdbeMemDynamic(pMem) ){ vdbeMemClearExternAndSetNull(pMem); }else{ pMem->flags = MEM_Null; } } void sqlite3ValueSetNull(sqlite3_value *p){ sqlite3VdbeMemSetNull((Mem*)p); } /* ** Delete any previous value and set the value to be a BLOB of length ** n containing all zeros. */ void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ sqlite3VdbeMemRelease(pMem); pMem->flags = MEM_Blob|MEM_Zero; pMem->n = 0; if( n<0 ) n = 0; pMem->u.nZero = n; pMem->enc = SQLITE_UTF8; pMem->z = 0; } /* ** The pMem is known to contain content that needs to be destroyed prior ** to a value change. So invoke the destructor, then set the value to ** a 64-bit integer. */ static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ sqlite3VdbeMemSetNull(pMem); pMem->u.i = val; pMem->flags = MEM_Int; } /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type INTEGER. */ void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ if( VdbeMemDynamic(pMem) ){ vdbeReleaseAndSetInt64(pMem, val); }else{ pMem->u.i = val; pMem->flags = MEM_Int; } } /* A no-op destructor */ void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); } /* ** Set the value stored in *pMem should already be a NULL. ** Also store a pointer to go with it. */ void sqlite3VdbeMemSetPointer( Mem *pMem, void *pPtr, const char *zPType, void (*xDestructor)(void*) ){ assert( pMem->flags==MEM_Null ); pMem->u.zPType = zPType ? zPType : ""; pMem->z = pPtr; pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term; pMem->eSubtype = 'p'; pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor; } #ifndef SQLITE_OMIT_FLOATING_POINT /* ** Delete any previous value and set the value stored in *pMem to val, ** manifest type REAL. */ void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ sqlite3VdbeMemSetNull(pMem); if( !sqlite3IsNaN(val) ){ pMem->u.r = val; pMem->flags = MEM_Real; } } #endif #ifdef SQLITE_DEBUG /* ** Return true if the Mem holds a RowSet object. This routine is intended ** for use inside of assert() statements. */ int sqlite3VdbeMemIsRowSet(const Mem *pMem){ return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn) && pMem->xDel==sqlite3RowSetDelete; } #endif /* ** Delete any previous value and set the value of pMem to be an ** empty boolean index. ** ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation ** error occurs. */ int sqlite3VdbeMemSetRowSet(Mem *pMem){ sqlite3 *db = pMem->db; RowSet *p; assert( db!=0 ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); sqlite3VdbeMemRelease(pMem); p = sqlite3RowSetInit(db); if( p==0 ) return SQLITE_NOMEM; pMem->z = (char*)p; pMem->flags = MEM_Blob|MEM_Dyn; pMem->xDel = sqlite3RowSetDelete; return SQLITE_OK; } /* ** Return true if the Mem object contains a TEXT or BLOB that is ** too large - whose size exceeds SQLITE_MAX_LENGTH. */ int sqlite3VdbeMemTooBig(Mem *p){ assert( p->db!=0 ); if( p->flags & (MEM_Str|MEM_Blob) ){ int n = p->n; if( p->flags & MEM_Zero ){ n += p->u.nZero; } return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; } return 0; } #ifdef SQLITE_DEBUG /* ** This routine prepares a memory cell for modification by breaking ** its link to a shallow copy and by marking any current shallow ** copies of this cell as invalid. ** ** This is used for testing and debugging only - to make sure shallow ** copies are not misused. */ void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ int i; Mem *pX; for(i=0, pX=pVdbe->aMem; inMem; i++, pX++){ if( pX->pScopyFrom==pMem ){ /* If pX is marked as a shallow copy of pMem, then verify that ** no significant changes have been made to pX since the OP_SCopy. ** A significant change would indicated a missed call to this ** function for pX. Minor changes, such as adding or removing a ** dual type, are allowed, as long as the underlying value is the ** same. */ u16 mFlags = pMem->flags & pX->flags & pX->mScopyFlags; assert( (mFlags&MEM_Int)==0 || pMem->u.i==pX->u.i ); assert( (mFlags&MEM_Real)==0 || pMem->u.r==pX->u.r ); assert( (mFlags&MEM_Str)==0 || (pMem->n==pX->n && pMem->z==pX->z) ); assert( (mFlags&MEM_Blob)==0 || sqlite3BlobCompare(pMem,pX)==0 ); /* pMem is the register that is changing. But also mark pX as ** undefined so that we can quickly detect the shallow-copy error */ pX->flags = MEM_Undefined; pX->pScopyFrom = 0; } } pMem->pScopyFrom = 0; } #endif /* SQLITE_DEBUG */ /* ** Make an shallow copy of pFrom into pTo. Prior contents of ** pTo are freed. The pFrom->z field is not duplicated. If ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z ** and flags gets srcType (either MEM_Ephem or MEM_Static). */ static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){ vdbeMemClearExternAndSetNull(pTo); assert( !VdbeMemDynamic(pTo) ); sqlite3VdbeMemShallowCopy(pTo, pFrom, eType); } void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ assert( !sqlite3VdbeMemIsRowSet(pFrom) ); assert( pTo->db==pFrom->db ); if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; } memcpy(pTo, pFrom, MEMCELLSIZE); if( (pFrom->flags&MEM_Static)==0 ){ pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); assert( srcType==MEM_Ephem || srcType==MEM_Static ); pTo->flags |= srcType; } } /* ** Make a full copy of pFrom into pTo. Prior contents of pTo are ** freed before the copy is made. */ int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ int rc = SQLITE_OK; assert( !sqlite3VdbeMemIsRowSet(pFrom) ); if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); memcpy(pTo, pFrom, MEMCELLSIZE); pTo->flags &= ~MEM_Dyn; if( pTo->flags&(MEM_Str|MEM_Blob) ){ if( 0==(pFrom->flags&MEM_Static) ){ pTo->flags |= MEM_Ephem; rc = sqlite3VdbeMemMakeWriteable(pTo); } } return rc; } /* ** Transfer the contents of pFrom to pTo. Any existing value in pTo is ** freed. If pFrom contains ephemeral data, a copy is made. ** ** pFrom contains an SQL NULL when this routine returns. */ void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); sqlite3VdbeMemRelease(pTo); memcpy(pTo, pFrom, sizeof(Mem)); pFrom->flags = MEM_Null; pFrom->szMalloc = 0; } /* ** Change the value of a Mem to be a string or a BLOB. ** ** The memory management strategy depends on the value of the xDel ** parameter. If the value passed is SQLITE_TRANSIENT, then the ** string is copied into a (possibly existing) buffer managed by the ** Mem structure. Otherwise, any existing buffer is freed and the ** pointer copied. ** ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH ** size limit) then no memory allocation occurs. If the string can be ** stored without allocating memory, then it is. If a memory allocation ** is required to store the string, then value of pMem is unchanged. In ** either case, SQLITE_TOOBIG is returned. */ int sqlite3VdbeMemSetStr( Mem *pMem, /* Memory cell to set to string value */ const char *z, /* String pointer */ int n, /* Bytes in string, or negative */ u8 enc, /* Encoding of z. 0 for BLOBs */ void (*xDel)(void*) /* Destructor function */ ){ int nByte = n; /* New value for pMem->n */ int iLimit; /* Maximum allowed string or blob size */ u16 flags = 0; /* New value for pMem->flags */ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); assert( !sqlite3VdbeMemIsRowSet(pMem) ); /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ if( !z ){ sqlite3VdbeMemSetNull(pMem); return SQLITE_OK; } if( pMem->db ){ iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; }else{ iLimit = SQLITE_MAX_LENGTH; } flags = (enc==0?MEM_Blob:MEM_Str); if( nByte<0 ){ assert( enc!=0 ); if( enc==SQLITE_UTF8 ){ nByte = 0x7fffffff & (int)strlen(z); if( nByte>iLimit ) nByte = iLimit+1; }else{ for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} } flags |= MEM_Term; } /* The following block sets the new values of Mem.z and Mem.xDel. It ** also sets a flag in local variable "flags" to indicate the memory ** management (one of MEM_Dyn or MEM_Static). */ if( xDel==SQLITE_TRANSIENT ){ int nAlloc = nByte; if( flags&MEM_Term ){ nAlloc += (enc==SQLITE_UTF8?1:2); } if( nByte>iLimit ){ return SQLITE_TOOBIG; } testcase( nAlloc==0 ); testcase( nAlloc==31 ); testcase( nAlloc==32 ); if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ return SQLITE_NOMEM_BKPT; } memcpy(pMem->z, z, nAlloc); }else if( xDel==SQLITE_DYNAMIC ){ sqlite3VdbeMemRelease(pMem); pMem->zMalloc = pMem->z = (char *)z; pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); }else{ sqlite3VdbeMemRelease(pMem); pMem->z = (char *)z; pMem->xDel = xDel; flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); } pMem->n = nByte; pMem->flags = flags; pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); #ifndef SQLITE_OMIT_UTF16 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ return SQLITE_NOMEM_BKPT; } #endif if( nByte>iLimit ){ return SQLITE_TOOBIG; } return SQLITE_OK; } /* ** Move data out of a btree key or data field and into a Mem structure. ** The data is payload from the entry that pCur is currently pointing ** to. offset and amt determine what portion of the data or key to retrieve. ** The result is written into the pMem element. ** ** The pMem object must have been initialized. This routine will use ** pMem->zMalloc to hold the content from the btree, if possible. New ** pMem->zMalloc space will be allocated if necessary. The calling routine ** is responsible for making sure that the pMem object is eventually ** destroyed. ** ** If this routine fails for any reason (malloc returns NULL or unable ** to read from the disk) then the pMem is left in an inconsistent state. */ static SQLITE_NOINLINE int vdbeMemFromBtreeResize( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ int rc; pMem->flags = MEM_Null; if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){ rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z); if( rc==SQLITE_OK ){ pMem->z[amt] = 0; /* Overrun area used when reading malformed records */ pMem->flags = MEM_Blob; pMem->n = (int)amt; }else{ sqlite3VdbeMemRelease(pMem); } } return rc; } int sqlite3VdbeMemFromBtree( BtCursor *pCur, /* Cursor pointing at record to retrieve. */ u32 offset, /* Offset from the start of data to return bytes from. */ u32 amt, /* Number of bytes to return. */ Mem *pMem /* OUT: Return data in this Mem structure. */ ){ char *zData; /* Data from the btree layer */ u32 available = 0; /* Number of bytes available on the local btree page */ int rc = SQLITE_OK; /* Return code */ assert( sqlite3BtreeCursorIsValid(pCur) ); assert( !VdbeMemDynamic(pMem) ); /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() ** that both the BtShared and database handle mutexes are held. */ assert( !sqlite3VdbeMemIsRowSet(pMem) ); zData = (char *)sqlite3BtreePayloadFetch(pCur, &available); assert( zData!=0 ); if( offset+amt<=available ){ pMem->z = &zData[offset]; pMem->flags = MEM_Blob|MEM_Ephem; pMem->n = (int)amt; }else{ rc = vdbeMemFromBtreeResize(pCur, offset, amt, pMem); } return rc; } /* ** The pVal argument is known to be a value other than NULL. ** Convert it into a string with encoding enc and return a pointer ** to a zero-terminated version of that string. */ static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ assert( pVal!=0 ); assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( !sqlite3VdbeMemIsRowSet(pVal) ); assert( (pVal->flags & (MEM_Null))==0 ); if( pVal->flags & (MEM_Blob|MEM_Str) ){ if( ExpandBlob(pVal) ) return 0; pVal->flags |= MEM_Str; if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); } if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ return 0; } } sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ }else{ sqlite3VdbeMemStringify(pVal, enc, 0); assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); } assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 || pVal->db->mallocFailed ); if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ assert( sqlite3VdbeMemConsistentDualRep(pVal) ); return pVal->z; }else{ return 0; } } /* This function is only available internally, it is not part of the ** external API. It works in a similar way to sqlite3_value_text(), ** except the data returned is in the encoding specified by the second ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or ** SQLITE_UTF8. ** ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. ** If that is the case, then the result must be aligned on an even byte ** boundary. */ const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ if( !pVal ) return 0; assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); assert( !sqlite3VdbeMemIsRowSet(pVal) ); if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ assert( sqlite3VdbeMemConsistentDualRep(pVal) ); return pVal->z; } if( pVal->flags&MEM_Null ){ return 0; } return valueToText(pVal, enc); } /* ** Create a new sqlite3_value object. */ sqlite3_value *sqlite3ValueNew(sqlite3 *db){ Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); if( p ){ p->flags = MEM_Null; p->db = db; } return p; } /* ** Context object passed by sqlite3Stat4ProbeSetValue() through to ** valueNew(). See comments above valueNew() for details. */ struct ValueNewStat4Ctx { Parse *pParse; Index *pIdx; UnpackedRecord **ppRec; int iVal; }; /* ** Allocate and return a pointer to a new sqlite3_value object. If ** the second argument to this function is NULL, the object is allocated ** by calling sqlite3ValueNew(). ** ** Otherwise, if the second argument is non-zero, then this function is ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not ** already been allocated, allocate the UnpackedRecord structure that ** that function will return to its caller here. Then return a pointer to ** an sqlite3_value within the UnpackedRecord.a[] array. */ static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( p ){ UnpackedRecord *pRec = p->ppRec[0]; if( pRec==0 ){ Index *pIdx = p->pIdx; /* Index being probed */ int nByte; /* Bytes of space to allocate */ int i; /* Counter variable */ int nCol = pIdx->nColumn; /* Number of index columns including rowid */ nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); if( pRec ){ pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); if( pRec->pKeyInfo ){ assert( pRec->pKeyInfo->nAllField==nCol ); assert( pRec->pKeyInfo->enc==ENC(db) ); pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); for(i=0; iaMem[i].flags = MEM_Null; pRec->aMem[i].db = db; } }else{ sqlite3DbFreeNN(db, pRec); pRec = 0; } } if( pRec==0 ) return 0; p->ppRec[0] = pRec; } pRec->nField = p->iVal+1; return &pRec->aMem[p->iVal]; } #else UNUSED_PARAMETER(p); #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ return sqlite3ValueNew(db); } /* ** The expression object indicated by the second argument is guaranteed ** to be a scalar SQL function. If ** ** * all function arguments are SQL literals, ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and ** * the SQLITE_FUNC_NEEDCOLL function flag is not set, ** ** then this routine attempts to invoke the SQL function. Assuming no ** error occurs, output parameter (*ppVal) is set to point to a value ** object containing the result before returning SQLITE_OK. ** ** Affinity aff is applied to the result of the function before returning. ** If the result is a text value, the sqlite3_value object uses encoding ** enc. ** ** If the conditions above are not met, this function returns SQLITE_OK ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to ** NULL and an SQLite error code returned. */ #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 static int valueFromFunction( sqlite3 *db, /* The database connection */ Expr *p, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 aff, /* Affinity to use */ sqlite3_value **ppVal, /* Write the new value here */ struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ ){ sqlite3_context ctx; /* Context object for function invocation */ sqlite3_value **apVal = 0; /* Function arguments */ int nVal = 0; /* Size of apVal[] array */ FuncDef *pFunc = 0; /* Function definition */ sqlite3_value *pVal = 0; /* New value */ int rc = SQLITE_OK; /* Return code */ ExprList *pList = 0; /* Function arguments */ int i; /* Iterator variable */ assert( pCtx!=0 ); assert( (p->flags & EP_TokenOnly)==0 ); pList = p->x.pList; if( pList ) nVal = pList->nExpr; pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0); assert( pFunc ); if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL) ){ return SQLITE_OK; } if( pList ){ apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal); if( apVal==0 ){ rc = SQLITE_NOMEM_BKPT; goto value_from_function_out; } for(i=0; ia[i].pExpr, enc, aff, &apVal[i]); if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out; } } pVal = valueNew(db, pCtx); if( pVal==0 ){ rc = SQLITE_NOMEM_BKPT; goto value_from_function_out; } assert( pCtx->pParse->rc==SQLITE_OK ); memset(&ctx, 0, sizeof(ctx)); ctx.pOut = pVal; ctx.pFunc = pFunc; pFunc->xSFunc(&ctx, nVal, apVal); if( ctx.isError ){ rc = ctx.isError; sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal)); }else{ sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8); assert( rc==SQLITE_OK ); rc = sqlite3VdbeChangeEncoding(pVal, enc); if( rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal) ){ rc = SQLITE_TOOBIG; pCtx->pParse->nErr++; } } pCtx->pParse->rc = rc; value_from_function_out: if( rc!=SQLITE_OK ){ pVal = 0; } if( apVal ){ for(i=0; iop)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft; #if defined(SQLITE_ENABLE_STAT3_OR_STAT4) if( op==TK_REGISTER ) op = pExpr->op2; #else if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; #endif /* Compressed expressions only appear when parsing the DEFAULT clause ** on a table column definition, and hence only when pCtx==0. This ** check ensures that an EP_TokenOnly expression is never passed down ** into valueFromFunction(). */ assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 ); if( op==TK_CAST ){ u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); testcase( rc!=SQLITE_OK ); if( *ppVal ){ sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); } return rc; } /* Handle negative integers in a single step. This is needed in the ** case when the value is -9223372036854775808. */ if( op==TK_UMINUS && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ pExpr = pExpr->pLeft; op = pExpr->op; negInt = -1; zNeg = "-"; } if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ pVal = valueNew(db, pCtx); if( pVal==0 ) goto no_mem; if( ExprHasProperty(pExpr, EP_IntValue) ){ sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); }else{ zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); if( zVal==0 ) goto no_mem; sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); } if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){ sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); }else{ sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); } if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; if( enc!=SQLITE_UTF8 ){ rc = sqlite3VdbeChangeEncoding(pVal, enc); } }else if( op==TK_UMINUS ) { /* This branch happens for multiple negative signs. Ex: -(-5) */ if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx) && pVal!=0 ){ sqlite3VdbeMemNumerify(pVal); if( pVal->flags & MEM_Real ){ pVal->u.r = -pVal->u.r; }else if( pVal->u.i==SMALLEST_INT64 ){ pVal->u.r = -(double)SMALLEST_INT64; MemSetTypeFlag(pVal, MEM_Real); }else{ pVal->u.i = -pVal->u.i; } sqlite3ValueApplyAffinity(pVal, affinity, enc); } }else if( op==TK_NULL ){ pVal = valueNew(db, pCtx); if( pVal==0 ) goto no_mem; sqlite3VdbeMemNumerify(pVal); } #ifndef SQLITE_OMIT_BLOB_LITERAL else if( op==TK_BLOB ){ int nVal; assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); assert( pExpr->u.zToken[1]=='\'' ); pVal = valueNew(db, pCtx); if( !pVal ) goto no_mem; zVal = &pExpr->u.zToken[2]; nVal = sqlite3Strlen30(zVal)-1; assert( zVal[nVal]=='\'' ); sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, 0, SQLITE_DYNAMIC); } #endif #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 else if( op==TK_FUNCTION && pCtx!=0 ){ rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx); } #endif else if( op==TK_TRUEFALSE ){ pVal = valueNew(db, pCtx); pVal->flags = MEM_Int; pVal->u.i = pExpr->u.zToken[4]==0; } *ppVal = pVal; return rc; no_mem: #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( pCtx==0 || pCtx->pParse->nErr==0 ) #endif sqlite3OomFault(db); sqlite3DbFree(db, zVal); assert( *ppVal==0 ); #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 if( pCtx==0 ) sqlite3ValueFree(pVal); #else assert( pCtx==0 ); sqlite3ValueFree(pVal); #endif return SQLITE_NOMEM_BKPT; } /* ** Create a new sqlite3_value object, containing the value of pExpr. ** ** This only works for very simple expressions that consist of one constant ** token (i.e. "5", "5.1", "'a string'"). If the expression can ** be converted directly into a value, then the value is allocated and ** a pointer written to *ppVal. The caller is responsible for deallocating ** the value by passing it to sqlite3ValueFree() later on. If the expression ** cannot be converted to a value, then *ppVal is set to NULL. */ int sqlite3ValueFromExpr( sqlite3 *db, /* The database connection */ Expr *pExpr, /* The expression to evaluate */ u8 enc, /* Encoding to use */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* Write the new value here */ ){ return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0; } #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 /* ** The implementation of the sqlite_record() function. This function accepts ** a single argument of any type. The return value is a formatted database ** record (a blob) containing the argument value. ** ** This is used to convert the value stored in the 'sample' column of the ** sqlite_stat3 table to the record format SQLite uses internally. */ static void recordFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ const int file_format = 1; u32 iSerial; /* Serial type */ int nSerial; /* Bytes of space for iSerial as varint */ u32 nVal; /* Bytes of space required for argv[0] */ int nRet; sqlite3 *db; u8 *aRet; UNUSED_PARAMETER( argc ); iSerial = sqlite3VdbeSerialType(argv[0], file_format, &nVal); nSerial = sqlite3VarintLen(iSerial); db = sqlite3_context_db_handle(context); nRet = 1 + nSerial + nVal; aRet = sqlite3DbMallocRawNN(db, nRet); if( aRet==0 ){ sqlite3_result_error_nomem(context); }else{ aRet[0] = nSerial+1; putVarint32(&aRet[1], iSerial); sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); sqlite3DbFreeNN(db, aRet); } } /* ** Register built-in functions used to help read ANALYZE data. */ void sqlite3AnalyzeFunctions(void){ static FuncDef aAnalyzeTableFuncs[] = { FUNCTION(sqlite_record, 1, 0, 0, recordFunc), }; sqlite3InsertBuiltinFuncs(aAnalyzeTableFuncs, ArraySize(aAnalyzeTableFuncs)); } /* ** Attempt to extract a value from pExpr and use it to construct *ppVal. ** ** If pAlloc is not NULL, then an UnpackedRecord object is created for ** pAlloc if one does not exist and the new value is added to the ** UnpackedRecord object. ** ** A value is extracted in the following cases: ** ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, ** ** * The expression is a bound variable, and this is a reprepare, or ** ** * The expression is a literal value. ** ** On success, *ppVal is made to point to the extracted value. The caller ** is responsible for ensuring that the value is eventually freed. */ static int stat4ValueFromExpr( Parse *pParse, /* Parse context */ Expr *pExpr, /* The expression to extract a value from */ u8 affinity, /* Affinity to use */ struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ ){ int rc = SQLITE_OK; sqlite3_value *pVal = 0; sqlite3 *db = pParse->db; /* Skip over any TK_COLLATE nodes */ pExpr = sqlite3ExprSkipCollate(pExpr); assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE ); if( !pExpr ){ pVal = valueNew(db, pAlloc); if( pVal ){ sqlite3VdbeMemSetNull((Mem*)pVal); } }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){ Vdbe *v; int iBindVar = pExpr->iColumn; sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); if( (v = pParse->pReprepare)!=0 ){ pVal = valueNew(db, pAlloc); if( pVal ){ rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); pVal->db = pParse->db; } } }else{ rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); } assert( pVal==0 || pVal->db==db ); *ppVal = pVal; return rc; } /* ** This function is used to allocate and populate UnpackedRecord ** structures intended to be compared against sample index keys stored ** in the sqlite_stat4 table. ** ** A single call to this function populates zero or more fields of the ** record starting with field iVal (fields are numbered from left to ** right starting with 0). A single field is populated if: ** ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, ** ** * The expression is a bound variable, and this is a reprepare, or ** ** * The sqlite3ValueFromExpr() function is able to extract a value ** from the expression (i.e. the expression is a literal value). ** ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the ** vector components that match either of the two latter criteria listed ** above. ** ** Before any value is appended to the record, the affinity of the ** corresponding column within index pIdx is applied to it. Before ** this function returns, output parameter *pnExtract is set to the ** number of values appended to the record. ** ** When this function is called, *ppRec must either point to an object ** allocated by an earlier call to this function, or must be NULL. If it ** is NULL and a value can be successfully extracted, a new UnpackedRecord ** is allocated (and *ppRec set to point to it) before returning. ** ** Unless an error is encountered, SQLITE_OK is returned. It is not an ** error if a value cannot be extracted from pExpr. If an error does ** occur, an SQLite error code is returned. */ int sqlite3Stat4ProbeSetValue( Parse *pParse, /* Parse context */ Index *pIdx, /* Index being probed */ UnpackedRecord **ppRec, /* IN/OUT: Probe record */ Expr *pExpr, /* The expression to extract a value from */ int nElem, /* Maximum number of values to append */ int iVal, /* Array element to populate */ int *pnExtract /* OUT: Values appended to the record */ ){ int rc = SQLITE_OK; int nExtract = 0; if( pExpr==0 || pExpr->op!=TK_SELECT ){ int i; struct ValueNewStat4Ctx alloc; alloc.pParse = pParse; alloc.pIdx = pIdx; alloc.ppRec = ppRec; for(i=0; idb, pIdx, iVal+i); alloc.iVal = iVal+i; rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal); if( !pVal ) break; nExtract++; } } *pnExtract = nExtract; return rc; } /* ** Attempt to extract a value from expression pExpr using the methods ** as described for sqlite3Stat4ProbeSetValue() above. ** ** If successful, set *ppVal to point to a new value object and return ** SQLITE_OK. If no value can be extracted, but no other error occurs ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error ** does occur, return an SQLite error code. The final value of *ppVal ** is undefined in this case. */ int sqlite3Stat4ValueFromExpr( Parse *pParse, /* Parse context */ Expr *pExpr, /* The expression to extract a value from */ u8 affinity, /* Affinity to use */ sqlite3_value **ppVal /* OUT: New value object (or NULL) */ ){ return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); } /* ** Extract the iCol-th column from the nRec-byte record in pRec. Write ** the column value into *ppVal. If *ppVal is initially NULL then a new ** sqlite3_value object is allocated. ** ** If *ppVal is initially NULL then the caller is responsible for ** ensuring that the value written into *ppVal is eventually freed. */ int sqlite3Stat4Column( sqlite3 *db, /* Database handle */ const void *pRec, /* Pointer to buffer containing record */ int nRec, /* Size of buffer pRec in bytes */ int iCol, /* Column to extract */ sqlite3_value **ppVal /* OUT: Extracted value */ ){ u32 t = 0; /* a column type code */ int nHdr; /* Size of the header in the record */ int iHdr; /* Next unread header byte */ int iField; /* Next unread data byte */ int szField = 0; /* Size of the current data field */ int i; /* Column index */ u8 *a = (u8*)pRec; /* Typecast byte array */ Mem *pMem = *ppVal; /* Write result into this Mem object */ assert( iCol>0 ); iHdr = getVarint32(a, nHdr); if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; iField = nHdr; for(i=0; i<=iCol; i++){ iHdr += getVarint32(&a[iHdr], t); testcase( iHdr==nHdr ); testcase( iHdr==nHdr+1 ); if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; szField = sqlite3VdbeSerialTypeLen(t); iField += szField; } testcase( iField==nRec ); testcase( iField==nRec+1 ); if( iField>nRec ) return SQLITE_CORRUPT_BKPT; if( pMem==0 ){ pMem = *ppVal = sqlite3ValueNew(db); if( pMem==0 ) return SQLITE_NOMEM_BKPT; } sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); pMem->enc = ENC(db); return SQLITE_OK; } /* ** Unless it is NULL, the argument must be an UnpackedRecord object returned ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes ** the object. */ void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ if( pRec ){ int i; int nCol = pRec->pKeyInfo->nAllField; Mem *aMem = pRec->aMem; sqlite3 *db = aMem[0].db; for(i=0; ipKeyInfo); sqlite3DbFreeNN(db, pRec); } } #endif /* ifdef SQLITE_ENABLE_STAT4 */ /* ** Change the string value of an sqlite3_value object */ void sqlite3ValueSetStr( sqlite3_value *v, /* Value to be set */ int n, /* Length of string z */ const void *z, /* Text of the new string */ u8 enc, /* Encoding to use */ void (*xDel)(void*) /* Destructor for the string */ ){ if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); } /* ** Free an sqlite3_value object */ void sqlite3ValueFree(sqlite3_value *v){ if( !v ) return; sqlite3VdbeMemRelease((Mem *)v); sqlite3DbFreeNN(((Mem*)v)->db, v); } /* ** The sqlite3ValueBytes() routine returns the number of bytes in the ** sqlite3_value object assuming that it uses the encoding "enc". ** The valueBytes() routine is a helper function. */ static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){ return valueToText(pVal, enc)!=0 ? pVal->n : 0; } int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ Mem *p = (Mem*)pVal; assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 ); if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){ return p->n; } if( (p->flags & MEM_Blob)!=0 ){ if( p->flags & MEM_Zero ){ return p->n + p->u.nZero; }else{ return p->n; } } if( p->flags & MEM_Null ) return 0; return valueBytes(pVal, enc); }