/* ** 2004 May 26 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains code use to implement APIs that are part of the ** VDBE. */ #include "sqliteInt.h" #include "vdbeInt.h" #include "os.h" /* ** Return TRUE (non-zero) of the statement supplied as an argument needs ** to be recompiled. A statement needs to be recompiled whenever the ** execution environment changes in a way that would alter the program ** that sqlite3_prepare() generates. For example, if new functions or ** collating sequences are registered or if an authorizer function is ** added or changed. */ int sqlite3_expired(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p==0 || p->expired; } /**************************** sqlite3_value_ ******************************* ** The following routines extract information from a Mem or sqlite3_value ** structure. */ const void *sqlite3_value_blob(sqlite3_value *pVal){ Mem *p = (Mem*)pVal; if( p->flags & (MEM_Blob|MEM_Str) ){ return p->z; }else{ return sqlite3_value_text(pVal); } } int sqlite3_value_bytes(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF8); } int sqlite3_value_bytes16(sqlite3_value *pVal){ return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); } double sqlite3_value_double(sqlite3_value *pVal){ return sqlite3VdbeRealValue((Mem*)pVal); } int sqlite3_value_int(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ return sqlite3VdbeIntValue((Mem*)pVal); } const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ return (const char *)sqlite3ValueText(pVal, SQLITE_UTF8); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_value_text16(sqlite3_value* pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); } const void *sqlite3_value_text16be(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16BE); } const void *sqlite3_value_text16le(sqlite3_value *pVal){ return sqlite3ValueText(pVal, SQLITE_UTF16LE); } #endif /* SQLITE_OMIT_UTF16 */ int sqlite3_value_type(sqlite3_value* pVal){ return pVal->type; } /**************************** sqlite3_result_ ******************************* ** The following routines are used by user-defined functions to specify ** the function result. */ void sqlite3_result_blob( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ assert( n>=0 ); sqlite3VdbeMemSetStr(&pCtx->s, z, n, 0, xDel); } void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ sqlite3VdbeMemSetDouble(&pCtx->s, rVal); } void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); } void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ pCtx->isError = 1; sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); } void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); } void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ sqlite3VdbeMemSetInt64(&pCtx->s, iVal); } void sqlite3_result_null(sqlite3_context *pCtx){ sqlite3VdbeMemSetNull(&pCtx->s); } void sqlite3_result_text( sqlite3_context *pCtx, const char *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, xDel); } #ifndef SQLITE_OMIT_UTF16 void sqlite3_result_text16( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, xDel); } void sqlite3_result_text16be( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16BE, xDel); } void sqlite3_result_text16le( sqlite3_context *pCtx, const void *z, int n, void (*xDel)(void *) ){ sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16LE, xDel); } #endif /* SQLITE_OMIT_UTF16 */ void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ sqlite3VdbeMemCopy(&pCtx->s, pValue); } /* ** Execute the statement pStmt, either until a row of data is ready, the ** statement is completely executed or an error occurs. */ int sqlite3_step(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; sqlite3 *db; int rc; assert(!sqlite3Tsd()->mallocFailed); if( p==0 || p->magic!=VDBE_MAGIC_RUN ){ return SQLITE_MISUSE; } if( p->aborted ){ return SQLITE_ABORT; } if( p->pc<=0 && p->expired ){ if( p->rc==SQLITE_OK ){ p->rc = SQLITE_SCHEMA; } return SQLITE_ERROR; } db = p->db; if( sqlite3SafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } if( p->pc<0 ){ #ifndef SQLITE_OMIT_TRACE /* Invoke the trace callback if there is one */ if( db->xTrace && !db->init.busy ){ assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); assert( p->aOp[p->nOp-1].p3!=0 ); assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); sqlite3SafetyOff(db); db->xTrace(db->pTraceArg, p->aOp[p->nOp-1].p3); if( sqlite3SafetyOn(db) ){ p->rc = SQLITE_MISUSE; return SQLITE_MISUSE; } } if( db->xProfile && !db->init.busy ){ double rNow; sqlite3Os.xCurrentTime(&rNow); p->startTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0; } #endif /* Print a copy of SQL as it is executed if the SQL_TRACE pragma is turned ** on in debugging mode. */ #ifdef SQLITE_DEBUG if( (db->flags & SQLITE_SqlTrace)!=0 ){ sqlite3DebugPrintf("SQL-trace: %s\n", p->aOp[p->nOp-1].p3); } #endif /* SQLITE_DEBUG */ db->activeVdbeCnt++; p->pc = 0; } #ifndef SQLITE_OMIT_EXPLAIN if( p->explain ){ rc = sqlite3VdbeList(p); }else #endif /* SQLITE_OMIT_EXPLAIN */ { rc = sqlite3VdbeExec(p); } if( sqlite3SafetyOff(db) ){ rc = SQLITE_MISUSE; } #ifndef SQLITE_OMIT_TRACE /* Invoke the profile callback if there is one */ if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy ){ double rNow; u64 elapseTime; sqlite3Os.xCurrentTime(&rNow); elapseTime = (rNow - (int)rNow)*3600.0*24.0*1000000000.0 - p->startTime; assert( p->nOp>0 ); assert( p->aOp[p->nOp-1].opcode==OP_Noop ); assert( p->aOp[p->nOp-1].p3!=0 ); assert( p->aOp[p->nOp-1].p3type==P3_DYNAMIC ); db->xProfile(db->pProfileArg, p->aOp[p->nOp-1].p3, elapseTime); } #endif sqlite3Error(p->db, rc, p->zErrMsg ? "%s" : 0, p->zErrMsg); sqlite3ClearMallocFailed(); return rc; } /* ** Extract the user data from a sqlite3_context structure and return a ** pointer to it. */ void *sqlite3_user_data(sqlite3_context *p){ assert( p && p->pFunc ); return p->pFunc->pUserData; } /* ** Allocate or return the aggregate context for a user function. A new ** context is allocated on the first call. Subsequent calls return the ** same context that was returned on prior calls. */ void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ Mem *pMem = p->pMem; assert( p && p->pFunc && p->pFunc->xStep ); if( (pMem->flags & MEM_Agg)==0 ){ if( nByte==0 ){ assert( pMem->flags==MEM_Null ); pMem->z = 0; }else{ pMem->flags = MEM_Agg; pMem->xDel = sqlite3FreeX; *(FuncDef**)&pMem->i = p->pFunc; if( nByte<=NBFS ){ pMem->z = pMem->zShort; memset(pMem->z, 0, nByte); }else{ pMem->z = sqliteMalloc( nByte ); } } } return (void*)pMem->z; } /* ** Return the auxilary data pointer, if any, for the iArg'th argument to ** the user-function defined by pCtx. */ void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ VdbeFunc *pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ return 0; } return pVdbeFunc->apAux[iArg].pAux; } /* ** Set the auxilary data pointer and delete function, for the iArg'th ** argument to the user-function defined by pCtx. Any previous value is ** deleted by calling the delete function specified when it was set. */ void sqlite3_set_auxdata( sqlite3_context *pCtx, int iArg, void *pAux, void (*xDelete)(void*) ){ struct AuxData *pAuxData; VdbeFunc *pVdbeFunc; if( iArg<0 ) return; pVdbeFunc = pCtx->pVdbeFunc; if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; pVdbeFunc = sqliteRealloc(pVdbeFunc, nMalloc); if( !pVdbeFunc ) return; pCtx->pVdbeFunc = pVdbeFunc; memset(&pVdbeFunc->apAux[pVdbeFunc->nAux], 0, sizeof(struct AuxData)*(iArg+1-pVdbeFunc->nAux)); pVdbeFunc->nAux = iArg+1; pVdbeFunc->pFunc = pCtx->pFunc; } pAuxData = &pVdbeFunc->apAux[iArg]; if( pAuxData->pAux && pAuxData->xDelete ){ pAuxData->xDelete(pAuxData->pAux); } pAuxData->pAux = pAux; pAuxData->xDelete = xDelete; } /* ** Return the number of times the Step function of a aggregate has been ** called. ** ** This routine is defined here in vdbe.c because it depends on knowing ** the internals of the sqlite3_context structure which is only defined in ** this source file. */ int sqlite3_aggregate_count(sqlite3_context *p){ assert( p && p->pFunc && p->pFunc->xStep ); return p->pMem->n; } /* ** Return the number of columns in the result set for the statement pStmt. */ int sqlite3_column_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; return pVm ? pVm->nResColumn : 0; } /* ** Return the number of values available from the current row of the ** currently executing statement pStmt. */ int sqlite3_data_count(sqlite3_stmt *pStmt){ Vdbe *pVm = (Vdbe *)pStmt; if( pVm==0 || !pVm->resOnStack ) return 0; return pVm->nResColumn; } /* ** Check to see if column iCol of the given statement is valid. If ** it is, return a pointer to the Mem for the value of that column. ** If iCol is not valid, return a pointer to a Mem which has a value ** of NULL. */ static Mem *columnMem(sqlite3_stmt *pStmt, int i){ Vdbe *pVm = (Vdbe *)pStmt; int vals = sqlite3_data_count(pStmt); if( i>=vals || i<0 ){ static Mem nullMem; if( nullMem.flags==0 ){ nullMem.flags = MEM_Null; } sqlite3Error(pVm->db, SQLITE_RANGE, 0); return &nullMem; } return &pVm->pTos[(1-vals)+i]; } /**************************** sqlite3_column_ ******************************* ** The following routines are used to access elements of the current row ** in the result set. */ const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ return sqlite3_value_blob( columnMem(pStmt,i) ); } int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ return sqlite3_value_bytes( columnMem(pStmt,i) ); } int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ return sqlite3_value_bytes16( columnMem(pStmt,i) ); } double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ return sqlite3_value_double( columnMem(pStmt,i) ); } int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ return sqlite3_value_int( columnMem(pStmt,i) ); } sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ return sqlite3_value_int64( columnMem(pStmt,i) ); } const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ return sqlite3_value_text( columnMem(pStmt,i) ); } #if 0 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ return columnMem(pStmt, i); } #endif #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ return sqlite3_value_text16( columnMem(pStmt,i) ); } #endif /* SQLITE_OMIT_UTF16 */ int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ return sqlite3_value_type( columnMem(pStmt,i) ); } /* ** Convert the N-th element of pStmt->pColName[] into a string using ** xFunc() then return that string. If N is out of range, return 0. ** ** There are up to 5 names for each column. useType determines which ** name is returned. Here are the names: ** ** 0 The column name as it should be displayed for output ** 1 The datatype name for the column ** 2 The name of the database that the column derives from ** 3 The name of the table that the column derives from ** 4 The name of the table column that the result column derives from ** ** If the result is not a simple column reference (if it is an expression ** or a constant) then useTypes 2, 3, and 4 return NULL. */ static const void *columnName( sqlite3_stmt *pStmt, int N, const void *(*xFunc)(Mem*), int useType ){ Vdbe *p = (Vdbe *)pStmt; int n = sqlite3_column_count(pStmt); if( p==0 || N>=n || N<0 ){ return 0; } N += useType*n; return xFunc(&p->aColName[N]); } /* ** Return the name of the Nth column of the result set returned by SQL ** statement pStmt. */ const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 0); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 0); } #endif /* ** Return the column declaration type (if applicable) of the 'i'th column ** of the result set of SQL statement pStmt. */ const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 1); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 1); } #endif /* SQLITE_OMIT_UTF16 */ #if !defined(SQLITE_OMIT_ORIGIN_NAMES) && 0 /* ** Return the name of the database from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unabiguous reference to a database column. */ const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 2); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 2); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unabiguous reference to a database column. */ const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 3); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 3); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the name of the table column from which a result column derives. ** NULL is returned if the result column is an expression or constant or ** anything else which is not an unabiguous reference to a database column. */ const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, 4); } #ifndef SQLITE_OMIT_UTF16 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ return columnName(pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, 4); } #endif /* SQLITE_OMIT_UTF16 */ #endif /* SQLITE_OMIT_ORIGIN_NAMES */ /******************************* sqlite3_bind_ *************************** ** ** Routines used to attach values to wildcards in a compiled SQL statement. */ /* ** Unbind the value bound to variable i in virtual machine p. This is the ** the same as binding a NULL value to the column. If the "i" parameter is ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. ** ** The error code stored in database p->db is overwritten with the return ** value in any case. */ static int vdbeUnbind(Vdbe *p, int i){ Mem *pVar; if( p==0 || p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ if( p ) sqlite3Error(p->db, SQLITE_MISUSE, 0); return SQLITE_MISUSE; } if( i<1 || i>p->nVar ){ sqlite3Error(p->db, SQLITE_RANGE, 0); return SQLITE_RANGE; } i--; pVar = &p->aVar[i]; sqlite3VdbeMemRelease(pVar); pVar->flags = MEM_Null; sqlite3Error(p->db, SQLITE_OK, 0); return SQLITE_OK; } /* ** Bind a text or BLOB value. */ static int bindText( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*), int encoding ){ Vdbe *p = (Vdbe *)pStmt; Mem *pVar; int rc; rc = vdbeUnbind(p, i); if( rc || zData==0 ){ return rc; } pVar = &p->aVar[i-1]; rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); if( rc ){ return rc; } if( rc==SQLITE_OK && encoding!=0 ){ rc = sqlite3VdbeChangeEncoding(pVar, p->db->enc); } return rc; } /* ** Bind a blob value to an SQL statement variable. */ int sqlite3_bind_blob( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, 0); } int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); } return rc; } int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ return sqlite3_bind_int64(p, i, (i64)iValue); } int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ int rc; Vdbe *p = (Vdbe *)pStmt; rc = vdbeUnbind(p, i); if( rc==SQLITE_OK ){ sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); } return rc; } int sqlite3_bind_null(sqlite3_stmt* p, int i){ return vdbeUnbind((Vdbe *)p, i); } int sqlite3_bind_text( sqlite3_stmt *pStmt, int i, const char *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); } #ifndef SQLITE_OMIT_UTF16 int sqlite3_bind_text16( sqlite3_stmt *pStmt, int i, const void *zData, int nData, void (*xDel)(void*) ){ return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); } #endif /* SQLITE_OMIT_UTF16 */ /* ** Return the number of wildcards that can be potentially bound to. ** This routine is added to support DBD::SQLite. */ int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ Vdbe *p = (Vdbe*)pStmt; return p ? p->nVar : 0; } /* ** Create a mapping from variable numbers to variable names ** in the Vdbe.azVar[] array, if such a mapping does not already ** exist. */ static void createVarMap(Vdbe *p){ if( !p->okVar ){ int j; Op *pOp; for(j=0, pOp=p->aOp; jnOp; j++, pOp++){ if( pOp->opcode==OP_Variable ){ assert( pOp->p1>0 && pOp->p1<=p->nVar ); p->azVar[pOp->p1-1] = pOp->p3; } } p->okVar = 1; } } /* ** Return the name of a wildcard parameter. Return NULL if the index ** is out of range or if the wildcard is unnamed. ** ** The result is always UTF-8. */ const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ Vdbe *p = (Vdbe*)pStmt; if( p==0 || i<1 || i>p->nVar ){ return 0; } createVarMap(p); return p->azVar[i-1]; } /* ** Given a wildcard parameter name, return the index of the variable ** with that name. If there is no variable with the given name, ** return 0. */ int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ Vdbe *p = (Vdbe*)pStmt; int i; if( p==0 ){ return 0; } createVarMap(p); if( zName ){ for(i=0; inVar; i++){ const char *z = p->azVar[i]; if( z && strcmp(z,zName)==0 ){ return i+1; } } } return 0; } /* ** Transfer all bindings from the first statement over to the second. ** If the two statements contain a different number of bindings, then ** an SQLITE_ERROR is returned. */ int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ Vdbe *pFrom = (Vdbe*)pFromStmt; Vdbe *pTo = (Vdbe*)pToStmt; int i, rc = SQLITE_OK; if( (pFrom->magic!=VDBE_MAGIC_RUN && pFrom->magic!=VDBE_MAGIC_HALT) || (pTo->magic!=VDBE_MAGIC_RUN && pTo->magic!=VDBE_MAGIC_HALT) ){ return SQLITE_MISUSE; } if( pFrom->nVar!=pTo->nVar ){ return SQLITE_ERROR; } for(i=0; rc==SQLITE_OK && inVar; i++){ rc = sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); } return rc; } /* ** Return the sqlite3* database handle to which the prepared statement given ** in the argument belongs. This is the same database handle that was ** the first argument to the sqlite3_prepare() that was used to create ** the statement in the first place. */ sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ return pStmt ? ((Vdbe*)pStmt)->db : 0; }