/* ** 2010 August 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing all sorts of SQLite interfaces. This code ** is not included in the SQLite library. */ #include /* Solely for the UNUSED_PARAMETER() macro. */ #include "sqliteInt.h" #ifdef SQLITE_ENABLE_RTREE /* ** Type used to cache parameter information for the "circle" r-tree geometry ** callback. */ typedef struct Circle Circle; struct Circle { struct Box { double xmin; double xmax; double ymin; double ymax; } aBox[2]; double centerx; double centery; double radius; }; /* ** Destructor function for Circle objects allocated by circle_geom(). */ static void circle_del(void *p){ sqlite3_free(p); } /* ** Implementation of "circle" r-tree geometry callback. */ static int circle_geom( sqlite3_rtree_geometry *p, int nCoord, double *aCoord, int *pRes ){ int i; /* Iterator variable */ Circle *pCircle; /* Structure defining circular region */ double xmin, xmax; /* X dimensions of box being tested */ double ymin, ymax; /* X dimensions of box being tested */ if( p->pUser==0 ){ /* If pUser is still 0, then the parameter values have not been tested ** for correctness or stored into a Circle structure yet. Do this now. */ /* This geometry callback is for use with a 2-dimensional r-tree table. ** Return an error if the table does not have exactly 2 dimensions. */ if( nCoord!=4 ) return SQLITE_ERROR; /* Test that the correct number of parameters (3) have been supplied, ** and that the parameters are in range (that the radius of the circle ** radius is greater than zero). */ if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM ** if the allocation fails. */ pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); if( !pCircle ) return SQLITE_NOMEM; p->xDelUser = circle_del; /* Record the center and radius of the circular region. One way that ** tested bounding boxes that intersect the circular region are detected ** is by testing if each corner of the bounding box lies within radius ** units of the center of the circle. */ pCircle->centerx = p->aParam[0]; pCircle->centery = p->aParam[1]; pCircle->radius = p->aParam[2]; /* Define two bounding box regions. The first, aBox[0], extends to ** infinity in the X dimension. It covers the same range of the Y dimension ** as the circular region. The second, aBox[1], extends to infinity in ** the Y dimension and is constrained to the range of the circle in the ** X dimension. ** ** Then imagine each box is split in half along its short axis by a line ** that intersects the center of the circular region. A bounding box ** being tested can be said to intersect the circular region if it contains ** points from each half of either of the two infinite bounding boxes. */ pCircle->aBox[0].xmin = pCircle->centerx; pCircle->aBox[0].xmax = pCircle->centerx; pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; pCircle->aBox[1].ymin = pCircle->centery; pCircle->aBox[1].ymax = pCircle->centery; } pCircle = (Circle *)p->pUser; xmin = aCoord[0]; xmax = aCoord[1]; ymin = aCoord[2]; ymax = aCoord[3]; /* Check if any of the 4 corners of the bounding-box being tested lie ** inside the circular region. If they do, then the bounding-box does ** intersect the region of interest. Set the output variable to true and ** return SQLITE_OK in this case. */ for(i=0; i<4; i++){ double x = (i&0x01) ? xmax : xmin; double y = (i&0x02) ? ymax : ymin; double d2; d2 = (x-pCircle->centerx)*(x-pCircle->centerx); d2 += (y-pCircle->centery)*(y-pCircle->centery); if( d2<(pCircle->radius*pCircle->radius) ){ *pRes = 1; return SQLITE_OK; } } /* Check if the bounding box covers any other part of the circular region. ** See comments above for a description of how this test works. If it does ** cover part of the circular region, set the output variable to true ** and return SQLITE_OK. */ for(i=0; i<2; i++){ if( xmin<=pCircle->aBox[i].xmin && xmax>=pCircle->aBox[i].xmax && ymin<=pCircle->aBox[i].ymin && ymax>=pCircle->aBox[i].ymax ){ *pRes = 1; return SQLITE_OK; } } /* The specified bounding box does not intersect the circular region. Set ** the output variable to zero and return SQLITE_OK. */ *pRes = 0; return SQLITE_OK; } /* END of implementation of "circle" geometry callback. ************************************************************************** *************************************************************************/ #include #include "tcl.h" typedef struct Cube Cube; struct Cube { double x; double y; double z; double width; double height; double depth; }; static void cube_context_free(void *p){ sqlite3_free(p); } /* ** The context pointer registered along with the 'cube' callback is ** always ((void *)&gHere). This is just to facilitate testing, it is not ** actually used for anything. */ static int gHere = 42; /* ** Implementation of a simple r-tree geom callback to test for intersection ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar ** coordinates as follows: ** ** cube(x, y, z, width, height, depth) ** ** The width, height and depth parameters must all be greater than zero. */ static int cube_geom( sqlite3_rtree_geometry *p, int nCoord, double *aCoord, int *piRes ){ Cube *pCube = (Cube *)p->pUser; assert( p->pContext==(void *)&gHere ); if( pCube==0 ){ if( p->nParam!=6 || nCoord!=6 || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 ){ return SQLITE_ERROR; } pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); if( !pCube ){ return SQLITE_NOMEM; } pCube->x = p->aParam[0]; pCube->y = p->aParam[1]; pCube->z = p->aParam[2]; pCube->width = p->aParam[3]; pCube->height = p->aParam[4]; pCube->depth = p->aParam[5]; p->pUser = (void *)pCube; p->xDelUser = cube_context_free; } assert( nCoord==6 ); *piRes = 0; if( aCoord[0]<=(pCube->x+pCube->width) && aCoord[1]>=pCube->x && aCoord[2]<=(pCube->y+pCube->height) && aCoord[3]>=pCube->y && aCoord[4]<=(pCube->z+pCube->depth) && aCoord[5]>=pCube->z ){ *piRes = 1; } return SQLITE_OK; } #endif /* SQLITE_ENABLE_RTREE */ static int register_cube_geom( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ #ifndef SQLITE_ENABLE_RTREE UNUSED_PARAMETER(clientData); UNUSED_PARAMETER(interp); UNUSED_PARAMETER(objc); UNUSED_PARAMETER(objv); #else extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); extern const char *sqlite3TestErrorName(int); sqlite3 *db; int rc; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); #endif return TCL_OK; } static int register_circle_geom( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ #ifndef SQLITE_ENABLE_RTREE UNUSED_PARAMETER(clientData); UNUSED_PARAMETER(interp); UNUSED_PARAMETER(objc); UNUSED_PARAMETER(objv); #else extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); extern const char *sqlite3TestErrorName(int); sqlite3 *db; int rc; if( objc!=2 ){ Tcl_WrongNumArgs(interp, 1, objv, "DB"); return TCL_ERROR; } if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); Tcl_SetResult(interp, (char *)sqlite3TestErrorName(rc), TCL_STATIC); #endif return TCL_OK; } int Sqlitetestrtree_Init(Tcl_Interp *interp){ Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); return TCL_OK; }