/* ** The "printf" code that follows dates from the 1980's. It is in ** the public domain. The original comments are included here for ** completeness. They are very out-of-date but might be useful as ** an historical reference. Most of the "enhancements" have been backed ** out so that the functionality is now the same as standard printf(). ** ************************************************************************** ** ** The following modules is an enhanced replacement for the "printf" subroutines ** found in the standard C library. The following enhancements are ** supported: ** ** + Additional functions. The standard set of "printf" functions ** includes printf, fprintf, sprintf, vprintf, vfprintf, and ** vsprintf. This module adds the following: ** ** * snprintf -- Works like sprintf, but has an extra argument ** which is the size of the buffer written to. ** ** * mprintf -- Similar to sprintf. Writes output to memory ** obtained from malloc. ** ** * xprintf -- Calls a function to dispose of output. ** ** * nprintf -- No output, but returns the number of characters ** that would have been output by printf. ** ** * A v- version (ex: vsnprintf) of every function is also ** supplied. ** ** + A few extensions to the formatting notation are supported: ** ** * The "=" flag (similar to "-") causes the output to be ** be centered in the appropriately sized field. ** ** * The %b field outputs an integer in binary notation. ** ** * The %c field now accepts a precision. The character output ** is repeated by the number of times the precision specifies. ** ** * The %' field works like %c, but takes as its character the ** next character of the format string, instead of the next ** argument. For example, printf("%.78'-") prints 78 minus ** signs, the same as printf("%.78c",'-'). ** ** + When compiled using GCC on a SPARC, this version of printf is ** faster than the library printf for SUN OS 4.1. ** ** + All functions are fully reentrant. ** */ #include "sqliteInt.h" /* ** Conversion types fall into various categories as defined by the ** following enumeration. */ #define etRADIX 1 /* Integer types. %d, %x, %o, and so forth */ #define etFLOAT 2 /* Floating point. %f */ #define etEXP 3 /* Exponentional notation. %e and %E */ #define etGENERIC 4 /* Floating or exponential, depending on exponent. %g */ #define etSIZE 5 /* Return number of characters processed so far. %n */ #define etSTRING 6 /* Strings. %s */ #define etDYNSTRING 7 /* Dynamically allocated strings. %z */ #define etPERCENT 8 /* Percent symbol. %% */ #define etCHARX 9 /* Characters. %c */ #define etERROR 10 /* Used to indicate no such conversion type */ /* The rest are extensions, not normally found in printf() */ #define etCHARLIT 11 /* Literal characters. %' */ #define etSQLESCAPE 12 /* Strings with '\'' doubled. %q */ #define etSQLESCAPE2 13 /* Strings with '\'' doubled and enclosed in '', NULL pointers replaced by SQL NULL. %Q */ #define etTOKEN 14 /* a pointer to a Token structure */ #define etSRCLIST 15 /* a pointer to a SrcList */ #define etPOINTER 16 /* The %p conversion */ /* ** An "etByte" is an 8-bit unsigned value. */ typedef unsigned char etByte; /* ** Each builtin conversion character (ex: the 'd' in "%d") is described ** by an instance of the following structure */ typedef struct et_info { /* Information about each format field */ char fmttype; /* The format field code letter */ etByte base; /* The base for radix conversion */ etByte flags; /* One or more of FLAG_ constants below */ etByte type; /* Conversion paradigm */ etByte charset; /* Offset into aDigits[] of the digits string */ etByte prefix; /* Offset into aPrefix[] of the prefix string */ } et_info; /* ** Allowed values for et_info.flags */ #define FLAG_SIGNED 1 /* True if the value to convert is signed */ #define FLAG_INTERN 2 /* True if for internal use only */ #define FLAG_STRING 4 /* Allow infinity precision */ /* ** The following table is searched linearly, so it is good to put the ** most frequently used conversion types first. */ static const char aDigits[] = "0123456789ABCDEF0123456789abcdef"; static const char aPrefix[] = "-x0\000X0"; static const et_info fmtinfo[] = { { 'd', 10, 1, etRADIX, 0, 0 }, { 's', 0, 4, etSTRING, 0, 0 }, { 'g', 0, 1, etGENERIC, 30, 0 }, { 'z', 0, 6, etDYNSTRING, 0, 0 }, { 'q', 0, 4, etSQLESCAPE, 0, 0 }, { 'Q', 0, 4, etSQLESCAPE2, 0, 0 }, { 'c', 0, 0, etCHARX, 0, 0 }, { 'o', 8, 0, etRADIX, 0, 2 }, { 'u', 10, 0, etRADIX, 0, 0 }, { 'x', 16, 0, etRADIX, 16, 1 }, { 'X', 16, 0, etRADIX, 0, 4 }, { 'f', 0, 1, etFLOAT, 0, 0 }, { 'e', 0, 1, etEXP, 30, 0 }, { 'E', 0, 1, etEXP, 14, 0 }, { 'G', 0, 1, etGENERIC, 14, 0 }, { 'i', 10, 1, etRADIX, 0, 0 }, { 'n', 0, 0, etSIZE, 0, 0 }, { '%', 0, 0, etPERCENT, 0, 0 }, { 'p', 16, 0, etPOINTER, 0, 1 }, { 'T', 0, 2, etTOKEN, 0, 0 }, { 'S', 0, 2, etSRCLIST, 0, 0 }, }; #define etNINFO (sizeof(fmtinfo)/sizeof(fmtinfo[0])) /* ** If NOFLOATINGPOINT is defined, then none of the floating point ** conversions will work. */ #ifndef etNOFLOATINGPOINT /* ** "*val" is a double such that 0.1 <= *val < 10.0 ** Return the ascii code for the leading digit of *val, then ** multiply "*val" by 10.0 to renormalize. ** ** Example: ** input: *val = 3.14159 ** output: *val = 1.4159 function return = '3' ** ** The counter *cnt is incremented each time. After counter exceeds ** 16 (the number of significant digits in a 64-bit float) '0' is ** always returned. */ static int et_getdigit(LONGDOUBLE_TYPE *val, int *cnt){ int digit; LONGDOUBLE_TYPE d; if( (*cnt)++ >= 16 ) return '0'; digit = (int)*val; d = digit; digit += '0'; *val = (*val - d)*10.0; return digit; } #endif #define etBUFSIZE 1000 /* Size of the output buffer */ /* ** The root program. All variations call this core. ** ** INPUTS: ** func This is a pointer to a function taking three arguments ** 1. A pointer to anything. Same as the "arg" parameter. ** 2. A pointer to the list of characters to be output ** (Note, this list is NOT null terminated.) ** 3. An integer number of characters to be output. ** (Note: This number might be zero.) ** ** arg This is the pointer to anything which will be passed as the ** first argument to "func". Use it for whatever you like. ** ** fmt This is the format string, as in the usual print. ** ** ap This is a pointer to a list of arguments. Same as in ** vfprint. ** ** OUTPUTS: ** The return value is the total number of characters sent to ** the function "func". Returns -1 on a error. ** ** Note that the order in which automatic variables are declared below ** seems to make a big difference in determining how fast this beast ** will run. */ static int vxprintf( void (*func)(void*,const char*,int), /* Consumer of text */ void *arg, /* First argument to the consumer */ int useExtended, /* Allow extended %-conversions */ const char *fmt, /* Format string */ va_list ap /* arguments */ ){ int c; /* Next character in the format string */ char *bufpt; /* Pointer to the conversion buffer */ int precision; /* Precision of the current field */ int length; /* Length of the field */ int idx; /* A general purpose loop counter */ int count; /* Total number of characters output */ int width; /* Width of the current field */ etByte flag_leftjustify; /* True if "-" flag is present */ etByte flag_plussign; /* True if "+" flag is present */ etByte flag_blanksign; /* True if " " flag is present */ etByte flag_alternateform; /* True if "#" flag is present */ etByte flag_altform2; /* True if "!" flag is present */ etByte flag_zeropad; /* True if field width constant starts with zero */ etByte flag_long; /* True if "l" flag is present */ etByte flag_longlong; /* True if the "ll" flag is present */ etByte done; /* Loop termination flag */ UINT64_TYPE longvalue; /* Value for integer types */ LONGDOUBLE_TYPE realvalue; /* Value for real types */ const et_info *infop; /* Pointer to the appropriate info structure */ char buf[etBUFSIZE]; /* Conversion buffer */ char prefix; /* Prefix character. "+" or "-" or " " or '\0'. */ etByte errorflag = 0; /* True if an error is encountered */ etByte xtype; /* Conversion paradigm */ char *zExtra; /* Extra memory used for etTCLESCAPE conversions */ static const char spaces[] = " "; #define etSPACESIZE (sizeof(spaces)-1) #ifndef etNOFLOATINGPOINT int exp, e2; /* exponent of real numbers */ double rounder; /* Used for rounding floating point values */ etByte flag_dp; /* True if decimal point should be shown */ etByte flag_rtz; /* True if trailing zeros should be removed */ etByte flag_exp; /* True to force display of the exponent */ int nsd; /* Number of significant digits returned */ #endif func(arg,"",0); count = length = 0; bufpt = 0; for(; (c=(*fmt))!=0; ++fmt){ if( c!='%' ){ int amt; bufpt = (char *)fmt; amt = 1; while( (c=(*++fmt))!='%' && c!=0 ) amt++; (*func)(arg,bufpt,amt); count += amt; if( c==0 ) break; } if( (c=(*++fmt))==0 ){ errorflag = 1; (*func)(arg,"%",1); count++; break; } /* Find out what flags are present */ flag_leftjustify = flag_plussign = flag_blanksign = flag_alternateform = flag_altform2 = flag_zeropad = 0; done = 0; do{ switch( c ){ case '-': flag_leftjustify = 1; break; case '+': flag_plussign = 1; break; case ' ': flag_blanksign = 1; break; case '#': flag_alternateform = 1; break; case '!': flag_altform2 = 1; break; case '0': flag_zeropad = 1; break; default: done = 1; break; } }while( !done && (c=(*++fmt))!=0 ); /* Get the field width */ width = 0; if( c=='*' ){ width = va_arg(ap,int); if( width<0 ){ flag_leftjustify = 1; width = -width; } c = *++fmt; }else{ while( c>='0' && c<='9' ){ width = width*10 + c - '0'; c = *++fmt; } } if( width > etBUFSIZE-10 ){ width = etBUFSIZE-10; } /* Get the precision */ if( c=='.' ){ precision = 0; c = *++fmt; if( c=='*' ){ precision = va_arg(ap,int); if( precision<0 ) precision = -precision; c = *++fmt; }else{ while( c>='0' && c<='9' ){ precision = precision*10 + c - '0'; c = *++fmt; } } }else{ precision = -1; } /* Get the conversion type modifier */ if( c=='l' ){ flag_long = 1; c = *++fmt; if( c=='l' ){ flag_longlong = 1; c = *++fmt; }else{ flag_longlong = 0; } }else{ flag_long = flag_longlong = 0; } /* Fetch the info entry for the field */ infop = 0; xtype = etERROR; for(idx=0; idxflags & FLAG_INTERN)==0 ){ xtype = infop->type; } break; } } zExtra = 0; /* Limit the precision to prevent overflowing buf[] during conversion */ if( precision>etBUFSIZE-40 && (infop->flags & FLAG_STRING)==0 ){ precision = etBUFSIZE-40; } /* ** At this point, variables are initialized as follows: ** ** flag_alternateform TRUE if a '#' is present. ** flag_altform2 TRUE if a '!' is present. ** flag_plussign TRUE if a '+' is present. ** flag_leftjustify TRUE if a '-' is present or if the ** field width was negative. ** flag_zeropad TRUE if the width began with 0. ** flag_long TRUE if the letter 'l' (ell) prefixed ** the conversion character. ** flag_longlong TRUE if the letter 'll' (ell ell) prefixed ** the conversion character. ** flag_blanksign TRUE if a ' ' is present. ** width The specified field width. This is ** always non-negative. Zero is the default. ** precision The specified precision. The default ** is -1. ** xtype The class of the conversion. ** infop Pointer to the appropriate info struct. */ switch( xtype ){ case etPOINTER: flag_longlong = sizeof(char*)==sizeof(i64); flag_long = sizeof(char*)==sizeof(long int); /* Fall through into the next case */ case etRADIX: if( infop->flags & FLAG_SIGNED ){ i64 v; if( flag_longlong ) v = va_arg(ap,i64); else if( flag_long ) v = va_arg(ap,long int); else v = va_arg(ap,int); if( v<0 ){ longvalue = -v; prefix = '-'; }else{ longvalue = v; if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } }else{ if( flag_longlong ) longvalue = va_arg(ap,u64); else if( flag_long ) longvalue = va_arg(ap,unsigned long int); else longvalue = va_arg(ap,unsigned int); prefix = 0; } if( longvalue==0 ) flag_alternateform = 0; if( flag_zeropad && precisioncharset]; base = infop->base; do{ /* Convert to ascii */ *(--bufpt) = cset[longvalue%base]; longvalue = longvalue/base; }while( longvalue>0 ); } length = &buf[etBUFSIZE-1]-bufpt; for(idx=precision-length; idx>0; idx--){ *(--bufpt) = '0'; /* Zero pad */ } if( prefix ) *(--bufpt) = prefix; /* Add sign */ if( flag_alternateform && infop->prefix ){ /* Add "0" or "0x" */ const char *pre; char x; pre = &aPrefix[infop->prefix]; if( *bufpt!=pre[0] ){ for(; (x=(*pre))!=0; pre++) *(--bufpt) = x; } } length = &buf[etBUFSIZE-1]-bufpt; break; case etFLOAT: case etEXP: case etGENERIC: realvalue = va_arg(ap,double); #ifndef etNOFLOATINGPOINT if( precision<0 ) precision = 6; /* Set default precision */ if( precision>etBUFSIZE-10 ) precision = etBUFSIZE-10; if( realvalue<0.0 ){ realvalue = -realvalue; prefix = '-'; }else{ if( flag_plussign ) prefix = '+'; else if( flag_blanksign ) prefix = ' '; else prefix = 0; } if( xtype==etGENERIC && precision>0 ) precision--; #if 0 /* Rounding works like BSD when the constant 0.4999 is used. Wierd! */ for(idx=precision, rounder=0.4999; idx>0; idx--, rounder*=0.1); #else /* It makes more sense to use 0.5 */ for(idx=precision, rounder=0.5; idx>0; idx--, rounder*=0.1); #endif if( xtype==etFLOAT ) realvalue += rounder; /* Normalize realvalue to within 10.0 > realvalue >= 1.0 */ exp = 0; if( realvalue>0.0 ){ while( realvalue>1e32 && exp<=350 ){ realvalue *= 1e-32; exp+=32; } while( realvalue>1e8 && exp<=350 ){ realvalue *= 1e-8; exp+=8; } while( realvalue>10.0 && exp<=350 ){ realvalue *= 0.1; exp++; } while( realvalue<1e-8 && exp>=-350 ){ realvalue *= 1e8; exp-=8; } while( realvalue<1.0 && exp>=-350 ){ realvalue *= 10.0; exp--; } if( exp>350 || exp<-350 ){ bufpt = "NaN"; length = 3; break; } } bufpt = buf; /* ** If the field type is etGENERIC, then convert to either etEXP ** or etFLOAT, as appropriate. */ flag_exp = xtype==etEXP; if( xtype!=etFLOAT ){ realvalue += rounder; if( realvalue>=10.0 ){ realvalue *= 0.1; exp++; } } if( xtype==etGENERIC ){ flag_rtz = !flag_alternateform; if( exp<-4 || exp>precision ){ xtype = etEXP; }else{ precision = precision - exp; xtype = etFLOAT; } }else{ flag_rtz = 0; } /* If exp+precision causes the output to be too big for etFLOAT, then ** do etEXP instead */ if( xtype==etFLOAT && exp+precision>=etBUFSIZE-30 ){ xtype = etEXP; } if( xtype==etEXP ){ e2 = 0; }else{ e2 = exp; } nsd = 0; flag_dp = (precision>0) | flag_alternateform | flag_altform2; /* The sign in front of the number */ if( prefix ){ *(bufpt++) = prefix; } /* Digits prior to the decimal point */ if( e2<0 ){ *(bufpt++) = '0'; }else{ for(; e2>=0; e2--){ *(bufpt++) = et_getdigit(&realvalue,&nsd); } } /* The decimal point */ if( flag_dp ){ *(bufpt++) = '.'; } /* "0" digits after the decimal point but before the first ** significant digit of the number */ for(e2++; e2<0 && precision>0; precision--, e2++){ *(bufpt++) = '0'; } /* Significant digits after the decimal point */ while( (precision--)>0 ){ *(bufpt++) = et_getdigit(&realvalue,&nsd); } /* Remove trailing zeros and the "." if no digits follow the "." */ if( flag_rtz && flag_dp ){ while( bufpt[-1]=='0' ) *(--bufpt) = 0; assert( bufpt>buf ); if( bufpt[-1]=='.' ){ if( flag_altform2 ){ *(bufpt++) = '0'; }else{ *(--bufpt) = 0; } } } /* Add the "eNNN" suffix */ if( flag_exp || (xtype==etEXP && exp) ){ *(bufpt++) = aDigits[infop->charset]; if( exp<0 ){ *(bufpt++) = '-'; exp = -exp; }else{ *(bufpt++) = '+'; } if( exp>=100 ){ *(bufpt++) = (exp/100)+'0'; /* 100's digit */ exp %= 100; } *(bufpt++) = exp/10+'0'; /* 10's digit */ *(bufpt++) = exp%10+'0'; /* 1's digit */ } *bufpt = 0; /* The converted number is in buf[] and zero terminated. Output it. ** Note that the number is in the usual order, not reversed as with ** integer conversions. */ length = bufpt-buf; bufpt = buf; /* Special case: Add leading zeros if the flag_zeropad flag is ** set and we are not left justified */ if( flag_zeropad && !flag_leftjustify && length < width){ int i; int nPad = width - length; for(i=width; i>=nPad; i--){ bufpt[i] = bufpt[i-nPad]; } i = prefix!=0; while( nPad-- ) bufpt[i++] = '0'; length = width; } #endif break; case etSIZE: *(va_arg(ap,int*)) = count; length = width = 0; break; case etPERCENT: buf[0] = '%'; bufpt = buf; length = 1; break; case etCHARLIT: case etCHARX: c = buf[0] = (xtype==etCHARX ? va_arg(ap,int) : *++fmt); if( precision>=0 ){ for(idx=1; idx=0 && precisionetBUFSIZE ){ bufpt = zExtra = sqliteMalloc( n ); if( bufpt==0 ) return -1; }else{ bufpt = buf; } j = 0; if( needQuote ) bufpt[j++] = '\''; for(i=0; (c=arg[i])!=0; i++){ bufpt[j++] = c; if( c=='\'' ) bufpt[j++] = c; } if( needQuote ) bufpt[j++] = '\''; bufpt[j] = 0; length = j; if( precision>=0 && precisionz ){ (*func)(arg, pToken->z, pToken->n); } length = width = 0; break; } case etSRCLIST: { SrcList *pSrc = va_arg(ap, SrcList*); int k = va_arg(ap, int); struct SrcList_item *pItem = &pSrc->a[k]; assert( k>=0 && knSrc ); if( pItem->zDatabase && pItem->zDatabase[0] ){ (*func)(arg, pItem->zDatabase, strlen(pItem->zDatabase)); (*func)(arg, ".", 1); } (*func)(arg, pItem->zName, strlen(pItem->zName)); length = width = 0; break; } case etERROR: buf[0] = '%'; buf[1] = c; errorflag = 0; idx = 1+(c!=0); (*func)(arg,"%",idx); count += idx; if( c==0 ) fmt--; break; }/* End switch over the format type */ /* ** The text of the conversion is pointed to by "bufpt" and is ** "length" characters long. The field width is "width". Do ** the output. */ if( !flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ count += nspace; while( nspace>=etSPACESIZE ){ (*func)(arg,spaces,etSPACESIZE); nspace -= etSPACESIZE; } if( nspace>0 ) (*func)(arg,spaces,nspace); } } if( length>0 ){ (*func)(arg,bufpt,length); count += length; } if( flag_leftjustify ){ register int nspace; nspace = width-length; if( nspace>0 ){ count += nspace; while( nspace>=etSPACESIZE ){ (*func)(arg,spaces,etSPACESIZE); nspace -= etSPACESIZE; } if( nspace>0 ) (*func)(arg,spaces,nspace); } } if( zExtra ){ sqliteFree(zExtra); } }/* End for loop over the format string */ return errorflag ? -1 : count; } /* End of function */ /* This structure is used to store state information about the ** write to memory that is currently in progress. */ struct sgMprintf { char *zBase; /* A base allocation */ char *zText; /* The string collected so far */ int nChar; /* Length of the string so far */ int nTotal; /* Output size if unconstrained */ int nAlloc; /* Amount of space allocated in zText */ void *(*xRealloc)(void*,int); /* Function used to realloc memory */ }; /* ** This function implements the callback from vxprintf. ** ** This routine add nNewChar characters of text in zNewText to ** the sgMprintf structure pointed to by "arg". */ static void mout(void *arg, const char *zNewText, int nNewChar){ struct sgMprintf *pM = (struct sgMprintf*)arg; pM->nTotal += nNewChar; if( pM->nChar + nNewChar + 1 > pM->nAlloc ){ if( pM->xRealloc==0 ){ nNewChar = pM->nAlloc - pM->nChar - 1; }else{ pM->nAlloc = pM->nChar + nNewChar*2 + 1; if( pM->zText==pM->zBase ){ pM->zText = pM->xRealloc(0, pM->nAlloc); if( pM->zText && pM->nChar ){ memcpy(pM->zText, pM->zBase, pM->nChar); } }else{ pM->zText = pM->xRealloc(pM->zText, pM->nAlloc); } } } if( pM->zText ){ if( nNewChar>0 ){ memcpy(&pM->zText[pM->nChar], zNewText, nNewChar); pM->nChar += nNewChar; } pM->zText[pM->nChar] = 0; } } /* ** This routine is a wrapper around xprintf() that invokes mout() as ** the consumer. */ static char *base_vprintf( void *(*xRealloc)(void*,int), /* Routine to realloc memory. May be NULL */ int useInternal, /* Use internal %-conversions if true */ char *zInitBuf, /* Initially write here, before mallocing */ int nInitBuf, /* Size of zInitBuf[] */ const char *zFormat, /* format string */ va_list ap /* arguments */ ){ struct sgMprintf sM; sM.zBase = sM.zText = zInitBuf; sM.nChar = sM.nTotal = 0; sM.nAlloc = nInitBuf; sM.xRealloc = xRealloc; vxprintf(mout, &sM, useInternal, zFormat, ap); if( xRealloc ){ if( sM.zText==sM.zBase ){ sM.zText = xRealloc(0, sM.nChar+1); if( sM.zText ){ memcpy(sM.zText, sM.zBase, sM.nChar+1); } }else if( sM.nAlloc>sM.nChar+10 ){ sM.zText = xRealloc(sM.zText, sM.nChar+1); } } return sM.zText; } /* ** Realloc that is a real function, not a macro. */ static void *printf_realloc(void *old, int size){ return sqliteRealloc(old,size); } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ char *sqlite3VMPrintf(const char *zFormat, va_list ap){ char zBase[1000]; return base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); } /* ** Print into memory obtained from sqliteMalloc(). Use the internal ** %-conversion extensions. */ char *sqlite3MPrintf(const char *zFormat, ...){ va_list ap; char *z; char zBase[1000]; va_start(ap, zFormat); z = base_vprintf(printf_realloc, 1, zBase, sizeof(zBase), zFormat, ap); va_end(ap); return z; } /* ** Print into memory obtained from malloc(). Do not use the internal ** %-conversion extensions. This routine is for use by external users. */ char *sqlite3_mprintf(const char *zFormat, ...){ va_list ap; char *z; char zBuf[200]; va_start(ap,zFormat); z = base_vprintf((void*(*)(void*,int))realloc, 0, zBuf, sizeof(zBuf), zFormat, ap); va_end(ap); return z; } /* This is the varargs version of sqlite3_mprintf. */ char *sqlite3_vmprintf(const char *zFormat, va_list ap){ char zBuf[200]; return base_vprintf((void*(*)(void*,int))realloc, 0, zBuf, sizeof(zBuf), zFormat, ap); } /* ** sqlite3_snprintf() works like snprintf() except that it ignores the ** current locale settings. This is important for SQLite because we ** are not able to use a "," as the decimal point in place of "." as ** specified by some locales. */ char *sqlite3_snprintf(int n, char *zBuf, const char *zFormat, ...){ char *z; va_list ap; va_start(ap,zFormat); z = base_vprintf(0, 0, zBuf, n, zFormat, ap); va_end(ap); return z; } #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) /* ** A version of printf() that understands %lld. Used for debugging. ** The printf() built into some versions of windows does not understand %lld ** and segfaults if you give it a long long int. */ void sqlite3DebugPrintf(const char *zFormat, ...){ extern int getpid(void); va_list ap; char zBuf[500]; va_start(ap, zFormat); base_vprintf(0, 0, zBuf, sizeof(zBuf), zFormat, ap); va_end(ap); fprintf(stdout,"%d: %s", getpid(), zBuf); fflush(stdout); } #endif