/* ** 2001 September 15 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains C code routines that are called by the parser ** to handle INSERT statements in SQLite. */ #include "sqliteInt.h" /* ** Generate code that will open a table for reading. */ void sqlite3OpenTable( Parse *p, /* Generate code into this VDBE */ int iCur, /* The cursor number of the table */ int iDb, /* The database index in sqlite3.aDb[] */ Table *pTab, /* The table to be opened */ int opcode /* OP_OpenRead or OP_OpenWrite */ ){ Vdbe *v; if( IsVirtual(pTab) ) return; v = sqlite3GetVdbe(p); assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); VdbeComment((v, "%s", pTab->zName)); } /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL ** ** An extra 'b' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. ** ** Memory for the buffer containing the column index affinity string ** is managed along with the rest of the Index structure. It will be ** released when sqlite3DeleteIndex() is called. */ const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ if( !pIdx->zColAff ){ /* The first time a column affinity string for a particular index is ** required, it is allocated and populated here. It is then stored as ** a member of the Index structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); if( !pIdx->zColAff ){ db->mallocFailed = 1; return 0; } for(n=0; nnColumn; n++){ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; } pIdx->zColAff[n++] = SQLITE_AFF_NONE; pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* ** Set P4 of the most recently inserted opcode to a column affinity ** string for table pTab. A column affinity string has one character ** for each column indexed by the index, according to the affinity of the ** column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL */ void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ /* The first time a column affinity string for a particular table ** is required, it is allocated and populated here. It is then ** stored as a member of the Table structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqlite3DeleteTable() when the Table structure itself is cleaned up. */ if( !pTab->zColAff ){ char *zColAff; int i; sqlite3 *db = sqlite3VdbeDb(v); zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); if( !zColAff ){ db->mallocFailed = 1; return; } for(i=0; inCol; i++){ zColAff[i] = pTab->aCol[i].affinity; } zColAff[pTab->nCol] = '\0'; pTab->zColAff = zColAff; } sqlite3VdbeChangeP4(v, -1, pTab->zColAff, 0); } /* ** Return non-zero if the table pTab in database iDb or any of its indices ** have been opened at any point in the VDBE program beginning at location ** iStartAddr throught the end of the program. This is used to see if ** a statement of the form "INSERT INTO SELECT ..." can ** run without using temporary table for the results of the SELECT. */ static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ Vdbe *v = sqlite3GetVdbe(p); int i; int iEnd = sqlite3VdbeCurrentAddr(v); #ifndef SQLITE_OMIT_VIRTUALTABLE VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; #endif for(i=iStartAddr; iopcode==OP_OpenRead && pOp->p3==iDb ){ Index *pIndex; int tnum = pOp->p2; if( tnum==pTab->tnum ){ return 1; } for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ if( tnum==pIndex->tnum ){ return 1; } } } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ assert( pOp->p4.pVtab!=0 ); assert( pOp->p4type==P4_VTAB ); return 1; } #endif } return 0; } #ifndef SQLITE_OMIT_AUTOINCREMENT /* ** Locate or create an AutoincInfo structure associated with table pTab ** which is in database iDb. Return the register number for the register ** that holds the maximum rowid. ** ** There is at most one AutoincInfo structure per table even if the ** same table is autoincremented multiple times due to inserts within ** triggers. A new AutoincInfo structure is created if this is the ** first use of table pTab. On 2nd and subsequent uses, the original ** AutoincInfo structure is used. ** ** Three memory locations are allocated: ** ** (1) Register to hold the name of the pTab table. ** (2) Register to hold the maximum ROWID of pTab. ** (3) Register to hold the rowid in sqlite_sequence of pTab ** ** The 2nd register is the one that is returned. That is all the ** insert routine needs to know about. */ static int autoIncBegin( Parse *pParse, /* Parsing context */ int iDb, /* Index of the database holding pTab */ Table *pTab /* The table we are writing to */ ){ int memId = 0; /* Register holding maximum rowid */ if( pTab->tabFlags & TF_Autoincrement ){ Parse *pToplevel = sqlite3ParseToplevel(pParse); AutoincInfo *pInfo; pInfo = pToplevel->pAinc; while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } if( pInfo==0 ){ pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); if( pInfo==0 ) return 0; pInfo->pNext = pToplevel->pAinc; pToplevel->pAinc = pInfo; pInfo->pTab = pTab; pInfo->iDb = iDb; pToplevel->nMem++; /* Register to hold name of table */ pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ pToplevel->nMem++; /* Rowid in sqlite_sequence */ } memId = pInfo->regCtr; } return memId; } /* ** This routine generates code that will initialize all of the ** register used by the autoincrement tracker. */ void sqlite3AutoincrementBegin(Parse *pParse){ AutoincInfo *p; /* Information about an AUTOINCREMENT */ sqlite3 *db = pParse->db; /* The database connection */ Db *pDb; /* Database only autoinc table */ int memId; /* Register holding max rowid */ int addr; /* A VDBE address */ Vdbe *v = pParse->pVdbe; /* VDBE under construction */ /* This routine is never called during trigger-generation. It is ** only called from the top-level */ assert( pParse->pTriggerTab==0 ); assert( pParse==sqlite3ParseToplevel(pParse) ); assert( v ); /* We failed long ago if this is not so */ for(p = pParse->pAinc; p; p = p->pNext){ pDb = &db->aDb[p->iDb]; memId = p->regCtr; sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); addr = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); sqlite3VdbeAddOp0(v, OP_Close); } } /* ** Update the maximum rowid for an autoincrement calculation. ** ** This routine should be called when the top of the stack holds a ** new rowid that is about to be inserted. If that new rowid is ** larger than the maximum rowid in the memId memory cell, then the ** memory cell is updated. The stack is unchanged. */ static void autoIncStep(Parse *pParse, int memId, int regRowid){ if( memId>0 ){ sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); } } /* ** This routine generates the code needed to write autoincrement ** maximum rowid values back into the sqlite_sequence register. ** Every statement that might do an INSERT into an autoincrement ** table (either directly or through triggers) needs to call this ** routine just before the "exit" code. */ void sqlite3AutoincrementEnd(Parse *pParse){ AutoincInfo *p; Vdbe *v = pParse->pVdbe; sqlite3 *db = pParse->db; assert( v ); for(p = pParse->pAinc; p; p = p->pNext){ Db *pDb = &db->aDb[p->iDb]; int j1, j2, j3, j4, j5; int iRec; int memId = p->regCtr; iRec = sqlite3GetTempReg(pParse); sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); j2 = sqlite3VdbeAddOp0(v, OP_Rewind); j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); sqlite3VdbeAddOp2(v, OP_Next, 0, j3); sqlite3VdbeJumpHere(v, j2); sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); j5 = sqlite3VdbeAddOp0(v, OP_Goto); sqlite3VdbeJumpHere(v, j4); sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeJumpHere(v, j5); sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); sqlite3VdbeChangeP5(v, OPFLAG_APPEND); sqlite3VdbeAddOp0(v, OP_Close); sqlite3ReleaseTempReg(pParse, iRec); } } #else /* ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines ** above are all no-ops */ # define autoIncBegin(A,B,C) (0) # define autoIncStep(A,B,C) #endif /* SQLITE_OMIT_AUTOINCREMENT */ /* Forward declaration */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ); /* ** This routine is call to handle SQL of the following forms: ** ** insert into TABLE (IDLIST) values(EXPRLIST) ** insert into TABLE (IDLIST) select ** ** The IDLIST following the table name is always optional. If omitted, ** then a list of all columns for the table is substituted. The IDLIST ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. ** ** The pList parameter holds EXPRLIST in the first form of the INSERT ** statement above, and pSelect is NULL. For the second form, pList is ** NULL and pSelect is a pointer to the select statement used to generate ** data for the insert. ** ** The code generated follows one of four templates. For a simple ** select with data coming from a VALUES clause, the code executes ** once straight down through. Pseudo-code follows (we call this ** the "1st template"): ** ** open write cursor to and its indices ** puts VALUES clause expressions onto the stack ** write the resulting record into
** cleanup ** ** The three remaining templates assume the statement is of the form ** ** INSERT INTO
SELECT ... ** ** If the SELECT clause is of the restricted form "SELECT * FROM " - ** in other words if the SELECT pulls all columns from a single table ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and ** if and are distinct tables but have identical ** schemas, including all the same indices, then a special optimization ** is invoked that copies raw records from over to . ** See the xferOptimization() function for the implementation of this ** template. This is the 2nd template. ** ** open a write cursor to
** open read cursor on ** transfer all records in over to
** close cursors ** foreach index on
** open a write cursor on the
index ** open a read cursor on the corresponding index ** transfer all records from the read to the write cursors ** close cursors ** end foreach ** ** The 3rd template is for when the second template does not apply ** and the SELECT clause does not read from
at any time. ** The generated code follows this template: ** ** EOF <- 0 ** X <- A ** goto B ** A: setup for the SELECT ** loop over the rows in the SELECT ** load values into registers R..R+n ** yield X ** end loop ** cleanup after the SELECT ** EOF <- 1 ** yield X ** goto A ** B: open write cursor to
and its indices ** C: yield X ** if EOF goto D ** insert the select result into
from R..R+n ** goto C ** D: cleanup ** ** The 4th template is used if the insert statement takes its ** values from a SELECT but the data is being inserted into a table ** that is also read as part of the SELECT. In the third form, ** we have to use a intermediate table to store the results of ** the select. The template is like this: ** ** EOF <- 0 ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n ** yield X ** end loop ** cleanup after the SELECT ** EOF <- 1 ** yield X ** halt-error ** B: open temp table ** L: yield X ** if EOF goto M ** insert row from R..R+n into temp table ** goto L ** M: open write cursor to
and its indices ** rewind temp table ** C: loop over rows of intermediate table ** transfer values form intermediate table into
** end loop ** D: cleanup */ void sqlite3Insert( Parse *pParse, /* Parser context */ SrcList *pTabList, /* Name of table into which we are inserting */ ExprList *pList, /* List of values to be inserted */ Select *pSelect, /* A SELECT statement to use as the data source */ IdList *pColumn, /* Column names corresponding to IDLIST. */ int onError /* How to handle constraint errors */ ){ sqlite3 *db; /* The main database structure */ Table *pTab; /* The table to insert into. aka TABLE */ char *zTab; /* Name of the table into which we are inserting */ const char *zDb; /* Name of the database holding this table */ int i, j, idx; /* Loop counters */ Vdbe *v; /* Generate code into this virtual machine */ Index *pIdx; /* For looping over indices of the table */ int nColumn; /* Number of columns in the data */ int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ int baseCur = 0; /* VDBE Cursor number for pTab */ int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ int endOfLoop; /* Label for the end of the insertion loop */ int useTempTable = 0; /* Store SELECT results in intermediate table */ int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ int addrInsTop = 0; /* Jump to label "D" */ int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ int addrSelect = 0; /* Address of coroutine that implements the SELECT */ SelectDest dest; /* Destination for SELECT on rhs of INSERT */ int iDb; /* Index of database holding TABLE */ Db *pDb; /* The database containing table being inserted into */ int appendFlag = 0; /* True if the insert is likely to be an append */ /* Register allocations */ int regFromSelect = 0;/* Base register for data coming from SELECT */ int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ int regRowCount = 0; /* Memory cell used for the row counter */ int regIns; /* Block of regs holding rowid+data being inserted */ int regRowid; /* registers holding insert rowid */ int regData; /* register holding first column to insert */ int regRecord; /* Holds the assemblied row record */ int regEof = 0; /* Register recording end of SELECT data */ int *aRegIdx = 0; /* One register allocated to each index */ #ifndef SQLITE_OMIT_TRIGGER int isView; /* True if attempting to insert into a view */ Trigger *pTrigger; /* List of triggers on pTab, if required */ int tmask; /* Mask of trigger times */ #endif db = pParse->db; memset(&dest, 0, sizeof(dest)); if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } /* Locate the table into which we will be inserting new information. */ assert( pTabList->nSrc==1 ); zTab = pTabList->a[0].zName; if( NEVER(zTab==0) ) goto insert_cleanup; pTab = sqlite3SrcListLookup(pParse, pTabList); if( pTab==0 ){ goto insert_cleanup; } iDb = sqlite3SchemaToIndex(db, pTab->pSchema); assert( iDbnDb ); pDb = &db->aDb[iDb]; zDb = pDb->zName; if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ goto insert_cleanup; } /* Figure out if we have any triggers and if the table being ** inserted into is a view */ #ifndef SQLITE_OMIT_TRIGGER pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); isView = pTab->pSelect!=0; #else # define pTrigger 0 # define tmask 0 # define isView 0 #endif #ifdef SQLITE_OMIT_VIEW # undef isView # define isView 0 #endif assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); /* If pTab is really a view, make sure it has been initialized. ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual ** module table). */ if( sqlite3ViewGetColumnNames(pParse, pTab) ){ goto insert_cleanup; } /* Ensure that: * (a) the table is not read-only, * (b) that if it is a view then ON INSERT triggers exist */ if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ goto insert_cleanup; } /* Allocate a VDBE */ v = sqlite3GetVdbe(pParse); if( v==0 ) goto insert_cleanup; if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); #ifndef SQLITE_OMIT_XFER_OPT /* If the statement is of the form ** ** INSERT INTO SELECT * FROM ; ** ** Then special optimizations can be applied that make the transfer ** very fast and which reduce fragmentation of indices. ** ** This is the 2nd template. */ if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ assert( !pTrigger ); assert( pList==0 ); goto insert_end; } #endif /* SQLITE_OMIT_XFER_OPT */ /* If this is an AUTOINCREMENT table, look up the sequence number in the ** sqlite_sequence table and store it in memory cell regAutoinc. */ regAutoinc = autoIncBegin(pParse, iDb, pTab); /* Figure out how many columns of data are supplied. If the data ** is coming from a SELECT statement, then generate a co-routine that ** produces a single row of the SELECT on each invocation. The ** co-routine is the common header to the 3rd and 4th templates. */ if( pSelect ){ /* Data is coming from a SELECT. Generate code to implement that SELECT ** as a co-routine. The code is common to both the 3rd and 4th ** templates: ** ** EOF <- 0 ** X <- A ** goto B ** A: setup for the SELECT ** loop over the tables in the SELECT ** load value into register R..R+n ** yield X ** end loop ** cleanup after the SELECT ** EOF <- 1 ** yield X ** halt-error ** ** On each invocation of the co-routine, it puts a single row of the ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. ** (These output registers are allocated by sqlite3Select().) When ** the SELECT completes, it sets the EOF flag stored in regEof. */ int rc, j1; regEof = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ VdbeComment((v, "SELECT eof flag")); sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); addrSelect = sqlite3VdbeCurrentAddr(v)+2; sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); VdbeComment((v, "Jump over SELECT coroutine")); /* Resolve the expressions in the SELECT statement and execute it. */ rc = sqlite3Select(pParse, pSelect, &dest); assert( pParse->nErr==0 || rc ); if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ goto insert_cleanup; } sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); VdbeComment((v, "End of SELECT coroutine")); sqlite3VdbeJumpHere(v, j1); /* label B: */ regFromSelect = dest.iMem; assert( pSelect->pEList ); nColumn = pSelect->pEList->nExpr; assert( dest.nMem==nColumn ); /* Set useTempTable to TRUE if the result of the SELECT statement ** should be written into a temporary table (template 4). Set to ** FALSE if each* row of the SELECT can be written directly into ** the destination table (template 3). ** ** A temp table must be used if the table being updated is also one ** of the tables being read by the SELECT statement. Also use a ** temp table in the case of row triggers. */ if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ useTempTable = 1; } if( useTempTable ){ /* Invoke the coroutine to extract information from the SELECT ** and add it to a transient table srcTab. The code generated ** here is from the 4th template: ** ** B: open temp table ** L: yield X ** if EOF goto M ** insert row from R..R+n into temp table ** goto L ** M: ... */ int regRec; /* Register to hold packed record */ int regTempRowid; /* Register to hold temp table ROWID */ int addrTop; /* Label "L" */ int addrIf; /* Address of jump to M */ srcTab = pParse->nTab++; regRec = sqlite3GetTempReg(pParse); regTempRowid = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); sqlite3VdbeJumpHere(v, addrIf); sqlite3ReleaseTempReg(pParse, regRec); sqlite3ReleaseTempReg(pParse, regTempRowid); } }else{ /* This is the case if the data for the INSERT is coming from a VALUES ** clause */ NameContext sNC; memset(&sNC, 0, sizeof(sNC)); sNC.pParse = pParse; srcTab = -1; assert( useTempTable==0 ); nColumn = pList ? pList->nExpr : 0; for(i=0; ia[i].pExpr) ){ goto insert_cleanup; } } } /* Make sure the number of columns in the source data matches the number ** of columns to be inserted into the table. */ if( IsVirtual(pTab) ){ for(i=0; inCol; i++){ nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); } } if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ sqlite3ErrorMsg(pParse, "table %S has %d columns but %d values were supplied", pTabList, 0, pTab->nCol-nHidden, nColumn); goto insert_cleanup; } if( pColumn!=0 && nColumn!=pColumn->nId ){ sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); goto insert_cleanup; } /* If the INSERT statement included an IDLIST term, then make sure ** all elements of the IDLIST really are columns of the table and ** remember the column indices. ** ** If the table has an INTEGER PRIMARY KEY column and that column ** is named in the IDLIST, then record in the keyColumn variable ** the index into IDLIST of the primary key column. keyColumn is ** the index of the primary key as it appears in IDLIST, not as ** is appears in the original table. (The index of the primary ** key in the original table is pTab->iPKey.) */ if( pColumn ){ for(i=0; inId; i++){ pColumn->a[i].idx = -1; } for(i=0; inId; i++){ for(j=0; jnCol; j++){ if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ pColumn->a[i].idx = j; if( j==pTab->iPKey ){ keyColumn = i; } break; } } if( j>=pTab->nCol ){ if( sqlite3IsRowid(pColumn->a[i].zName) ){ keyColumn = i; }else{ sqlite3ErrorMsg(pParse, "table %S has no column named %s", pTabList, 0, pColumn->a[i].zName); pParse->checkSchema = 1; goto insert_cleanup; } } } } /* If there is no IDLIST term but the table has an integer primary ** key, the set the keyColumn variable to the primary key column index ** in the original table definition. */ if( pColumn==0 && nColumn>0 ){ keyColumn = pTab->iPKey; } /* Initialize the count of rows to be inserted */ if( db->flags & SQLITE_CountRows ){ regRowCount = ++pParse->nMem; sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); } /* If this is not a view, open the table and and all indices */ if( !isView ){ int nIdx; baseCur = pParse->nTab; nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); if( aRegIdx==0 ){ goto insert_cleanup; } for(i=0; inMem; } } /* This is the top of the main insertion loop */ if( useTempTable ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 4): ** ** rewind temp table ** C: loop over rows of intermediate table ** transfer values form intermediate table into
** end loop ** D: ... */ addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); addrCont = sqlite3VdbeCurrentAddr(v); }else if( pSelect ){ /* This block codes the top of loop only. The complete loop is the ** following pseudocode (template 3): ** ** C: yield X ** if EOF goto D ** insert the select result into
from R..R+n ** goto C ** D: ... */ addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); } /* Allocate registers for holding the rowid of the new row, ** the content of the new row, and the assemblied row record. */ regRecord = ++pParse->nMem; regRowid = regIns = pParse->nMem+1; pParse->nMem += pTab->nCol + 1; if( IsVirtual(pTab) ){ regRowid++; pParse->nMem++; } regData = regRowid+1; /* Run the BEFORE and INSTEAD OF triggers, if there are any */ endOfLoop = sqlite3VdbeMakeLabel(v); if( tmask & TRIGGER_BEFORE ){ int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); /* build the NEW.* reference row. Note that if there is an INTEGER ** PRIMARY KEY into which a NULL is being inserted, that NULL will be ** translated into a unique ID for the row. But on a BEFORE trigger, ** we do not know what the unique ID will be (because the insert has ** not happened yet) so we substitute a rowid of -1 */ if( keyColumn<0 ){ sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); }else{ int j1; if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); } j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); sqlite3VdbeJumpHere(v, j1); sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); } /* Cannot have triggers on a virtual table. If it were possible, ** this block would have to account for hidden column. */ assert( !IsVirtual(pTab) ); /* Create the new column data */ for(i=0; inCol; i++){ if( pColumn==0 ){ j = i; }else{ for(j=0; jnId; j++){ if( pColumn->a[j].idx==i ) break; } } if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); }else if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); }else{ assert( pSelect==0 ); /* Otherwise useTempTable is true */ sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); } } /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, ** do not attempt any conversions before assembling the record. ** If this is a real table, attempt conversions as required by the ** table column affinities. */ if( !isView ){ sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); sqlite3TableAffinityStr(v, pTab); } /* Fire BEFORE or INSTEAD OF triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, pTab, regCols-pTab->nCol-1, onError, endOfLoop); sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); } /* Push the record number for the new entry onto the stack. The ** record number is a randomly generate integer created by NewRowid ** except when the table has an INTEGER PRIMARY KEY column, in which ** case the record number is the same as that column. */ if( !isView ){ if( IsVirtual(pTab) ){ /* The row that the VUpdate opcode will delete: none */ sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); } if( keyColumn>=0 ){ if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); }else{ VdbeOp *pOp; sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); pOp = sqlite3VdbeGetOp(v, -1); if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ appendFlag = 1; pOp->opcode = OP_NewRowid; pOp->p1 = baseCur; pOp->p2 = regRowid; pOp->p3 = regAutoinc; } } /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid ** to generate a unique primary key value. */ if( !appendFlag ){ int j1; if( !IsVirtual(pTab) ){ j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); sqlite3VdbeJumpHere(v, j1); }else{ j1 = sqlite3VdbeCurrentAddr(v); sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); } sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); } }else if( IsVirtual(pTab) ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); }else{ sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); appendFlag = 1; } autoIncStep(pParse, regAutoinc, regRowid); /* Push onto the stack, data for all columns of the new entry, beginning ** with the first column. */ nHidden = 0; for(i=0; inCol; i++){ int iRegStore = regRowid+1+i; if( i==pTab->iPKey ){ /* The value of the INTEGER PRIMARY KEY column is always a NULL. ** Whenever this column is read, the record number will be substituted ** in its place. So will fill this column with a NULL to avoid ** taking up data space with information that will never be used. */ sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); continue; } if( pColumn==0 ){ if( IsHiddenColumn(&pTab->aCol[i]) ){ assert( IsVirtual(pTab) ); j = -1; nHidden++; }else{ j = i - nHidden; } }else{ for(j=0; jnId; j++){ if( pColumn->a[j].idx==i ) break; } } if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); }else if( useTempTable ){ sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); }else{ sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); } } /* Generate code to check constraints and generate index keys and ** do the insertion. */ #ifndef SQLITE_OMIT_VIRTUALTABLE if( IsVirtual(pTab) ){ const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); sqlite3VtabMakeWritable(pParse, pTab); sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); sqlite3MayAbort(pParse); }else #endif { int isReplace; /* Set to true if constraints may cause a replace */ sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, keyColumn>=0, 0, onError, endOfLoop, &isReplace ); sqlite3FkCheck(pParse, pTab, 0, regIns); sqlite3CompleteInsertion( pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 ); } } /* Update the count of rows that are inserted */ if( (db->flags & SQLITE_CountRows)!=0 ){ sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); } if( pTrigger ){ /* Code AFTER triggers */ sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, pTab, regData-2-pTab->nCol, onError, endOfLoop); } /* The bottom of the main insertion loop, if the data source ** is a SELECT statement. */ sqlite3VdbeResolveLabel(v, endOfLoop); if( useTempTable ){ sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); sqlite3VdbeJumpHere(v, addrInsTop); sqlite3VdbeAddOp1(v, OP_Close, srcTab); }else if( pSelect ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); sqlite3VdbeJumpHere(v, addrInsTop); } if( !IsVirtual(pTab) && !isView ){ /* Close all tables opened */ sqlite3VdbeAddOp1(v, OP_Close, baseCur); for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); } } insert_end: /* Update the sqlite_sequence table by storing the content of the ** maximum rowid counter values recorded while inserting into ** autoincrement tables. */ if( pParse->nested==0 && pParse->pTriggerTab==0 ){ sqlite3AutoincrementEnd(pParse); } /* ** Return the number of rows inserted. If this routine is ** generating code because of a call to sqlite3NestedParse(), do not ** invoke the callback function. */ if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); sqlite3VdbeSetNumCols(v, 1); sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); } insert_cleanup: sqlite3SrcListDelete(db, pTabList); sqlite3ExprListDelete(db, pList); sqlite3SelectDelete(db, pSelect); sqlite3IdListDelete(db, pColumn); sqlite3DbFree(db, aRegIdx); } /* Make sure "isView" and other macros defined above are undefined. Otherwise ** thely may interfere with compilation of other functions in this file ** (or in another file, if this file becomes part of the amalgamation). */ #ifdef isView #undef isView #endif #ifdef pTrigger #undef pTrigger #endif #ifdef tmask #undef tmask #endif /* ** Generate code to do constraint checks prior to an INSERT or an UPDATE. ** ** The input is a range of consecutive registers as follows: ** ** 1. The rowid of the row after the update. ** ** 2. The data in the first column of the entry after the update. ** ** i. Data from middle columns... ** ** N. The data in the last column of the entry after the update. ** ** The regRowid parameter is the index of the register containing (1). ** ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains ** the address of a register containing the rowid before the update takes ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate ** is false, indicating an INSERT statement, then a non-zero rowidChng ** indicates that the rowid was explicitly specified as part of the ** INSERT statement. If rowidChng is false, it means that the rowid is ** computed automatically in an insert or that the rowid value is not ** modified by an update. ** ** The code generated by this routine store new index entries into ** registers identified by aRegIdx[]. No index entry is created for ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is ** the same as the order of indices on the linked list of indices ** attached to the table. ** ** This routine also generates code to check constraints. NOT NULL, ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, ** then the appropriate action is performed. There are five possible ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. ** ** Constraint type Action What Happens ** --------------- ---------- ---------------------------------------- ** any ROLLBACK The current transaction is rolled back and ** sqlite3_exec() returns immediately with a ** return code of SQLITE_CONSTRAINT. ** ** any ABORT Back out changes from the current command ** only (do not do a complete rollback) then ** cause sqlite3_exec() to return immediately ** with SQLITE_CONSTRAINT. ** ** any FAIL Sqlite_exec() returns immediately with a ** return code of SQLITE_CONSTRAINT. The ** transaction is not rolled back and any ** prior changes are retained. ** ** any IGNORE The record number and data is popped from ** the stack and there is an immediate jump ** to label ignoreDest. ** ** NOT NULL REPLACE The NULL value is replace by the default ** value for that column. If the default value ** is NULL, the action is the same as ABORT. ** ** UNIQUE REPLACE The other row that conflicts with the row ** being inserted is removed. ** ** CHECK REPLACE Illegal. The results in an exception. ** ** Which action to take is determined by the overrideError parameter. ** Or if overrideError==OE_Default, then the pParse->onError parameter ** is used. Or if pParse->onError==OE_Default then the onError value ** for the constraint is used. ** ** The calling routine must open a read/write cursor for pTab with ** cursor number "baseCur". All indices of pTab must also have open ** read/write cursors with cursor number baseCur+i for the i-th cursor. ** Except, if there is no possibility of a REPLACE action then ** cursors do not need to be open for indices where aRegIdx[i]==0. */ void sqlite3GenerateConstraintChecks( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int baseCur, /* Index of a read/write cursor pointing at pTab */ int regRowid, /* Index of the range of input registers */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int rowidChng, /* True if the rowid might collide with existing entry */ int isUpdate, /* True for UPDATE, False for INSERT */ int overrideError, /* Override onError to this if not OE_Default */ int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ ){ int i; /* loop counter */ Vdbe *v; /* VDBE under constrution */ int nCol; /* Number of columns */ int onError; /* Conflict resolution strategy */ int j1; /* Addresss of jump instruction */ int j2 = 0, j3; /* Addresses of jump instructions */ int regData; /* Register containing first data column */ int iCur; /* Table cursor number */ Index *pIdx; /* Pointer to one of the indices */ int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ nCol = pTab->nCol; regData = regRowid + 1; /* Test all NOT NULL constraints. */ for(i=0; iiPKey ){ continue; } onError = pTab->aCol[i].notNull; if( onError==OE_None ) continue; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ onError = OE_Abort; } assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); switch( onError ){ case OE_Abort: sqlite3MayAbort(pParse); case OE_Rollback: case OE_Fail: { char *zMsg; j1 = sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT, onError, regData+i); zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", pTab->zName, pTab->aCol[i].zName); sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); break; } case OE_Ignore: { sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); break; } default: { assert( onError==OE_Replace ); j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); sqlite3VdbeJumpHere(v, j1); break; } } } /* Test all CHECK constraints */ #ifndef SQLITE_OMIT_CHECK if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ int allOk = sqlite3VdbeMakeLabel(v); pParse->ckBase = regData; sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); onError = overrideError!=OE_Default ? overrideError : OE_Abort; if( onError==OE_Ignore ){ sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); }else{ if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ sqlite3HaltConstraint(pParse, onError, 0, 0); } sqlite3VdbeResolveLabel(v, allOk); } #endif /* !defined(SQLITE_OMIT_CHECK) */ /* If we have an INTEGER PRIMARY KEY, make sure the primary key ** of the new record does not previously exist. Except, if this ** is an UPDATE and the primary key is not changing, that is OK. */ if( rowidChng ){ onError = pTab->keyConf; if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( isUpdate ){ j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); } j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); switch( onError ){ default: { onError = OE_Abort; /* Fall thru into the next case */ } case OE_Rollback: case OE_Abort: case OE_Fail: { sqlite3HaltConstraint( pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); break; } case OE_Replace: { /* If there are DELETE triggers on this table and the ** recursive-triggers flag is set, call GenerateRowDelete() to ** remove the conflicting row from the the table. This will fire ** the triggers and remove both the table and index b-tree entries. ** ** Otherwise, if there are no triggers or the recursive-triggers ** flag is not set, but the table has one or more indexes, call ** GenerateRowIndexDelete(). This removes the index b-tree entries ** only. The table b-tree entry will be replaced by the new entry ** when it is inserted. ** ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, ** also invoke MultiWrite() to indicate that this VDBE may require ** statement rollback (if the statement is aborted after the delete ** takes place). Earlier versions called sqlite3MultiWrite() regardless, ** but being more selective here allows statements like: ** ** REPLACE INTO t(rowid) VALUES($newrowid) ** ** to run without a statement journal if there are no indexes on the ** table. */ Trigger *pTrigger = 0; if( pParse->db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); } if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowDelete( pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace ); }else if( pTab->pIndex ){ sqlite3MultiWrite(pParse); sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); } seenReplace = 1; break; } case OE_Ignore: { assert( seenReplace==0 ); sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); break; } } sqlite3VdbeJumpHere(v, j3); if( isUpdate ){ sqlite3VdbeJumpHere(v, j2); } } /* Test all UNIQUE constraints by creating entries for each UNIQUE ** index and making sure that duplicate entries do not already exist. ** Add the new records to the indices as we go. */ for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ int regIdx; int regR; if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ /* Create a key for accessing the index entry */ regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); for(i=0; inColumn; i++){ int idx = pIdx->aiColumn[i]; if( idx==pTab->iPKey ){ sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); continue; /* pIdx is not a UNIQUE index */ } if( overrideError!=OE_Default ){ onError = overrideError; }else if( onError==OE_Default ){ onError = OE_Abort; } if( seenReplace ){ if( onError==OE_Ignore ) onError = OE_Replace; else if( onError==OE_Fail ) onError = OE_Abort; } /* Check to see if the new index entry will be unique */ regR = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, regR, SQLITE_INT_TO_PTR(regIdx), P4_INT32); sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); /* Generate code that executes if the new index entry is not unique */ assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail || onError==OE_Ignore || onError==OE_Replace ); switch( onError ){ case OE_Rollback: case OE_Abort: case OE_Fail: { int j; StrAccum errMsg; const char *zSep; char *zErr; sqlite3StrAccumInit(&errMsg, 0, 0, 200); errMsg.db = pParse->db; zSep = pIdx->nColumn>1 ? "columns " : "column "; for(j=0; jnColumn; j++){ char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; sqlite3StrAccumAppend(&errMsg, zSep, -1); zSep = ", "; sqlite3StrAccumAppend(&errMsg, zCol, -1); } sqlite3StrAccumAppend(&errMsg, pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); zErr = sqlite3StrAccumFinish(&errMsg); sqlite3HaltConstraint(pParse, onError, zErr, 0); sqlite3DbFree(errMsg.db, zErr); break; } case OE_Ignore: { assert( seenReplace==0 ); sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); break; } default: { Trigger *pTrigger = 0; assert( onError==OE_Replace ); sqlite3MultiWrite(pParse); if( pParse->db->flags&SQLITE_RecTriggers ){ pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); } sqlite3GenerateRowDelete( pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace ); seenReplace = 1; break; } } sqlite3VdbeJumpHere(v, j3); sqlite3ReleaseTempReg(pParse, regR); } if( pbMayReplace ){ *pbMayReplace = seenReplace; } } /* ** This routine generates code to finish the INSERT or UPDATE operation ** that was started by a prior call to sqlite3GenerateConstraintChecks. ** A consecutive range of registers starting at regRowid contains the ** rowid and the content to be inserted. ** ** The arguments to this routine should be the same as the first six ** arguments to sqlite3GenerateConstraintChecks. */ void sqlite3CompleteInsertion( Parse *pParse, /* The parser context */ Table *pTab, /* the table into which we are inserting */ int baseCur, /* Index of a read/write cursor pointing at pTab */ int regRowid, /* Range of content */ int *aRegIdx, /* Register used by each index. 0 for unused indices */ int isUpdate, /* True for UPDATE, False for INSERT */ int appendBias, /* True if this is likely to be an append */ int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ ){ int i; Vdbe *v; int nIdx; Index *pIdx; u8 pik_flags; int regData; int regRec; v = sqlite3GetVdbe(pParse); assert( v!=0 ); assert( pTab->pSelect==0 ); /* This table is not a VIEW */ for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} for(i=nIdx-1; i>=0; i--){ if( aRegIdx[i]==0 ) continue; sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); if( useSeekResult ){ sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); } } regData = regRowid + 1; regRec = sqlite3GetTempReg(pParse); sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); sqlite3TableAffinityStr(v, pTab); sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); if( pParse->nested ){ pik_flags = 0; }else{ pik_flags = OPFLAG_NCHANGE; pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); } if( appendBias ){ pik_flags |= OPFLAG_APPEND; } if( useSeekResult ){ pik_flags |= OPFLAG_USESEEKRESULT; } sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); if( !pParse->nested ){ sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_STATIC); } sqlite3VdbeChangeP5(v, pik_flags); } /* ** Generate code that will open cursors for a table and for all ** indices of that table. The "baseCur" parameter is the cursor number used ** for the table. Indices are opened on subsequent cursors. ** ** Return the number of indices on the table. */ int sqlite3OpenTableAndIndices( Parse *pParse, /* Parsing context */ Table *pTab, /* Table to be opened */ int baseCur, /* Cursor number assigned to the table */ int op /* OP_OpenRead or OP_OpenWrite */ ){ int i; int iDb; Index *pIdx; Vdbe *v; if( IsVirtual(pTab) ) return 0; iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); v = sqlite3GetVdbe(pParse); assert( v!=0 ); sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); assert( pIdx->pSchema==pTab->pSchema ); sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, (char*)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pIdx->zName)); } if( pParse->nTabnTab = baseCur+i; } return i-1; } #ifdef SQLITE_TEST /* ** The following global variable is incremented whenever the ** transfer optimization is used. This is used for testing ** purposes only - to make sure the transfer optimization really ** is happening when it is suppose to. */ int sqlite3_xferopt_count; #endif /* SQLITE_TEST */ #ifndef SQLITE_OMIT_XFER_OPT /* ** Check to collation names to see if they are compatible. */ static int xferCompatibleCollation(const char *z1, const char *z2){ if( z1==0 ){ return z2==0; } if( z2==0 ){ return 0; } return sqlite3StrICmp(z1, z2)==0; } /* ** Check to see if index pSrc is compatible as a source of data ** for index pDest in an insert transfer optimization. The rules ** for a compatible index: ** ** * The index is over the same set of columns ** * The same DESC and ASC markings occurs on all columns ** * The same onError processing (OE_Abort, OE_Ignore, etc) ** * The same collating sequence on each column */ static int xferCompatibleIndex(Index *pDest, Index *pSrc){ int i; assert( pDest && pSrc ); assert( pDest->pTable!=pSrc->pTable ); if( pDest->nColumn!=pSrc->nColumn ){ return 0; /* Different number of columns */ } if( pDest->onError!=pSrc->onError ){ return 0; /* Different conflict resolution strategies */ } for(i=0; inColumn; i++){ if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ return 0; /* Different columns indexed */ } if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ return 0; /* Different sort orders */ } if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ return 0; /* Different collating sequences */ } } /* If no test above fails then the indices must be compatible */ return 1; } /* ** Attempt the transfer optimization on INSERTs of the form ** ** INSERT INTO tab1 SELECT * FROM tab2; ** ** This optimization is only attempted if ** ** (1) tab1 and tab2 have identical schemas including all the ** same indices and constraints ** ** (2) tab1 and tab2 are different tables ** ** (3) There must be no triggers on tab1 ** ** (4) The result set of the SELECT statement is "*" ** ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, ** or LIMIT clause. ** ** (6) The SELECT statement is a simple (not a compound) select that ** contains only tab2 in its FROM clause ** ** This method for implementing the INSERT transfers raw records from ** tab2 over to tab1. The columns are not decoded. Raw records from ** the indices of tab2 are transfered to tab1 as well. In so doing, ** the resulting tab1 has much less fragmentation. ** ** This routine returns TRUE if the optimization is attempted. If any ** of the conditions above fail so that the optimization should not ** be attempted, then this routine returns FALSE. */ static int xferOptimization( Parse *pParse, /* Parser context */ Table *pDest, /* The table we are inserting into */ Select *pSelect, /* A SELECT statement to use as the data source */ int onError, /* How to handle constraint errors */ int iDbDest /* The database of pDest */ ){ ExprList *pEList; /* The result set of the SELECT */ Table *pSrc; /* The table in the FROM clause of SELECT */ Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ struct SrcList_item *pItem; /* An element of pSelect->pSrc */ int i; /* Loop counter */ int iDbSrc; /* The database of pSrc */ int iSrc, iDest; /* Cursors from source and destination */ int addr1, addr2; /* Loop addresses */ int emptyDestTest; /* Address of test for empty pDest */ int emptySrcTest; /* Address of test for empty pSrc */ Vdbe *v; /* The VDBE we are building */ KeyInfo *pKey; /* Key information for an index */ int regAutoinc; /* Memory register used by AUTOINC */ int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ int regData, regRowid; /* Registers holding data and rowid */ if( pSelect==0 ){ return 0; /* Must be of the form INSERT INTO ... SELECT ... */ } if( sqlite3TriggerList(pParse, pDest) ){ return 0; /* tab1 must not have triggers */ } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pDest->tabFlags & TF_Virtual ){ return 0; /* tab1 must not be a virtual table */ } #endif if( onError==OE_Default ){ onError = OE_Abort; } if( onError!=OE_Abort && onError!=OE_Rollback ){ return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ } assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ if( pSelect->pSrc->nSrc!=1 ){ return 0; /* FROM clause must have exactly one term */ } if( pSelect->pSrc->a[0].pSelect ){ return 0; /* FROM clause cannot contain a subquery */ } if( pSelect->pWhere ){ return 0; /* SELECT may not have a WHERE clause */ } if( pSelect->pOrderBy ){ return 0; /* SELECT may not have an ORDER BY clause */ } /* Do not need to test for a HAVING clause. If HAVING is present but ** there is no ORDER BY, we will get an error. */ if( pSelect->pGroupBy ){ return 0; /* SELECT may not have a GROUP BY clause */ } if( pSelect->pLimit ){ return 0; /* SELECT may not have a LIMIT clause */ } assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ if( pSelect->pPrior ){ return 0; /* SELECT may not be a compound query */ } if( pSelect->selFlags & SF_Distinct ){ return 0; /* SELECT may not be DISTINCT */ } pEList = pSelect->pEList; assert( pEList!=0 ); if( pEList->nExpr!=1 ){ return 0; /* The result set must have exactly one column */ } assert( pEList->a[0].pExpr ); if( pEList->a[0].pExpr->op!=TK_ALL ){ return 0; /* The result set must be the special operator "*" */ } /* At this point we have established that the statement is of the ** correct syntactic form to participate in this optimization. Now ** we have to check the semantics. */ pItem = pSelect->pSrc->a; pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); if( pSrc==0 ){ return 0; /* FROM clause does not contain a real table */ } if( pSrc==pDest ){ return 0; /* tab1 and tab2 may not be the same table */ } #ifndef SQLITE_OMIT_VIRTUALTABLE if( pSrc->tabFlags & TF_Virtual ){ return 0; /* tab2 must not be a virtual table */ } #endif if( pSrc->pSelect ){ return 0; /* tab2 may not be a view */ } if( pDest->nCol!=pSrc->nCol ){ return 0; /* Number of columns must be the same in tab1 and tab2 */ } if( pDest->iPKey!=pSrc->iPKey ){ return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ } for(i=0; inCol; i++){ if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ return 0; /* Affinity must be the same on all columns */ } if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ return 0; /* Collating sequence must be the same on all columns */ } if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ return 0; /* tab2 must be NOT NULL if tab1 is */ } } for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ if( pDestIdx->onError!=OE_None ){ destHasUniqueIdx = 1; } for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } if( pSrcIdx==0 ){ return 0; /* pDestIdx has no corresponding index in pSrc */ } } #ifndef SQLITE_OMIT_CHECK if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ return 0; /* Tables have different CHECK constraints. Ticket #2252 */ } #endif /* If we get this far, it means either: ** ** * We can always do the transfer if the table contains an ** an integer primary key ** ** * We can conditionally do the transfer if the destination ** table is empty. */ #ifdef SQLITE_TEST sqlite3_xferopt_count++; #endif iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); v = sqlite3GetVdbe(pParse); sqlite3CodeVerifySchema(pParse, iDbSrc); iSrc = pParse->nTab++; iDest = pParse->nTab++; regAutoinc = autoIncBegin(pParse, iDbDest, pDest); sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ /* If tables do not have an INTEGER PRIMARY KEY and there ** are indices to be copied and the destination is not empty, ** we have to disallow the transfer optimization because the ** the rowids might change which will mess up indexing. ** ** Or if the destination has a UNIQUE index and is not empty, ** we also disallow the transfer optimization because we cannot ** insure that all entries in the union of DEST and SRC will be ** unique. */ addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); sqlite3VdbeJumpHere(v, addr1); }else{ emptyDestTest = 0; } sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); regData = sqlite3GetTempReg(pParse); regRowid = sqlite3GetTempReg(pParse); if( pDest->iPKey>=0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); sqlite3HaltConstraint( pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); sqlite3VdbeJumpHere(v, addr2); autoIncStep(pParse, regAutoinc, regRowid); }else if( pDest->pIndex==0 ){ addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); }else{ addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); assert( (pDest->tabFlags & TF_Autoincrement)==0 ); } sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; } assert( pSrcIdx ); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, (char*)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pSrcIdx->zName)); pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, (char*)pKey, P4_KEYINFO_HANDOFF); VdbeComment((v, "%s", pDestIdx->zName)); addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); sqlite3VdbeJumpHere(v, addr1); } sqlite3VdbeJumpHere(v, emptySrcTest); sqlite3ReleaseTempReg(pParse, regRowid); sqlite3ReleaseTempReg(pParse, regData); sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); if( emptyDestTest ){ sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); sqlite3VdbeJumpHere(v, emptyDestTest); sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); return 0; }else{ return 1; } } #endif /* SQLITE_OMIT_XFER_OPT */