#ifndef __SQLITESESSION_H_ #define __SQLITESESSION_H_ 1 /* ** Make sure we can call this stuff from C++. */ #ifdef __cplusplus extern "C" { #endif #include "sqlite3.h" /* ** CAPI3REF: Session Object Handle */ typedef struct sqlite3_session sqlite3_session; /* ** CAPI3REF: Changeset Iterator Handle */ typedef struct sqlite3_changeset_iter sqlite3_changeset_iter; /* ** CAPI3REF: Create A New Session Object ** ** Create a new session object attached to database handle db. If successful, ** a pointer to the new object is written to *ppSession and SQLITE_OK is ** returned. If an error occurs, *ppSession is set to NULL and an SQLite ** error code (e.g. SQLITE_NOMEM) is returned. ** ** It is possible to create multiple session objects attached to a single ** database handle. ** ** Session objects created using this function should be deleted using the ** [sqlite3session_delete()] function before the database handle that they ** are attached to is itself closed. If the database handle is closed before ** the session object is deleted, then the results of calling any session ** module function, including [sqlite3session_delete()] on the session object ** are undefined. ** ** Because the session module uses the [sqlite3_preupdate_hook()] API, it ** is not possible for an application to register a pre-update hook on a ** database handle that has one or more session objects attached. Nor is ** it possible to create a session object attached to a database handle for ** which a pre-update hook is already defined. The results of attempting ** either of these things are undefined. ** ** The session object will be used to create changesets for tables in ** database zDb, where zDb is either "main", or "temp", or the name of an ** attached database. It is not an error if database zDb is not attached ** to the database when the session object is created. */ int sqlite3session_create( sqlite3 *db, /* Database handle */ const char *zDb, /* Name of db (e.g. "main") */ sqlite3_session **ppSession /* OUT: New session object */ ); /* ** CAPI3REF: Delete A Session Object ** ** Delete a session object previously allocated using ** [sqlite3session_create()]. Once a session object has been deleted, the ** results of attempting to use pSession with any other session module ** function are undefined. ** ** Session objects must be deleted before the database handle to which they ** are attached is closed. Refer to the documentation for ** [sqlite3session_create()] for details. */ void sqlite3session_delete(sqlite3_session *pSession); /* ** CAPI3REF: Enable Or Disable A Session Object ** ** Enable or disable the recording of changes by a session object. When ** enabled, a session object records changes made to the database. When ** disabled - it does not. A newly created session object is enabled. ** Refer to the documentation for [sqlite3session_changeset()] for further ** details regarding how enabling and disabling a session object affects ** the eventual changesets. ** ** Passing zero to this function disables the session. Passing a value ** greater than zero enables it. Passing a value less than zero is a ** no-op, and may be used to query the current state of the session. ** ** The return value indicates the final state of the session object: 0 if ** the session is disabled, or 1 if it is enabled. */ int sqlite3session_enable(sqlite3_session *pSession, int bEnable); /* ** CAPI3REF: Set Or Clear the Indirect Change Flag ** ** Each change recorded by a session object is marked as either direct or ** indirect. A change is marked as indirect if either: ** ** ** ** If a single row is affected by more than one operation within a session, ** then the change is considered indirect if all operations meet the criteria ** for an indirect change above, or direct otherwise. ** ** This function is used to set, clear or query the session object indirect ** flag. If the second argument passed to this function is zero, then the ** indirect flag is cleared. If it is greater than zero, the indirect flag ** is set. Passing a value less than zero does not modify the current value ** of the indirect flag, and may be used to query the current state of the ** indirect flag for the specified session object. ** ** The return value indicates the final state of the indirect flag: 0 if ** it is clear, or 1 if it is set. */ int sqlite3session_indirect(sqlite3_session *pSession, int bIndirect); /* ** CAPI3REF: Attach A Table To A Session Object ** ** If argument zTab is not NULL, then it is the name of a table to attach ** to the session object passed as the first argument. All subsequent changes ** made to the table while the session object is enabled will be recorded. See ** documentation for [sqlite3session_changeset()] for further details. ** ** Or, if argument zTab is NULL, then changes are recorded for all tables ** in the database. If additional tables are added to the database (by ** executing "CREATE TABLE" statements) after this call is made, changes for ** the new tables are also recorded. ** ** Changes can only be recorded for tables that have a PRIMARY KEY explicitly ** defined as part of their CREATE TABLE statement. It does not matter if the ** PRIMARY KEY is an "INTEGER PRIMARY KEY" (rowid alias) or not. The PRIMARY ** KEY may consist of a single column, or may be a composite key. ** ** It is not an error if the named table does not exist in the database. Nor ** is it an error if the named table does not have a PRIMARY KEY. However, ** no changes will be recorded in either of these scenarios. ** ** Changes are not recorded for individual rows that have NULL values stored ** in one or more of their PRIMARY KEY columns. ** ** SQLITE_OK is returned if the call completes without error. Or, if an error ** occurs, an SQLite error code (e.g. SQLITE_NOMEM) is returned. */ int sqlite3session_attach( sqlite3_session *pSession, /* Session object */ const char *zTab /* Table name */ ); /* ** CAPI3REF: Set a table filter on a Session Object. ** ** The second argument (xFilter) is the "filter callback". For changes to rows ** in tables that are not attached to the Session oject, the filter is called ** to determine whether changes to the table's rows should be tracked or not. ** If xFilter returns 0, changes is not tracked. Note that once a table is ** attached, xFilter will not be called again. */ void sqlite3session_table_filter( sqlite3_session *pSession, /* Session object */ int(*xFilter)( void *pCtx, /* Copy of third arg to _filter_table() */ const char *zTab /* Table name */ ), void *pCtx /* First argument passed to xFilter */ ); /* ** CAPI3REF: Generate A Changeset From A Session Object ** ** Obtain a changeset containing changes to the tables attached to the ** session object passed as the first argument. If successful, ** set *ppChangeset to point to a buffer containing the changeset ** and *pnChangeset to the size of the changeset in bytes before returning ** SQLITE_OK. If an error occurs, set both *ppChangeset and *pnChangeset to ** zero and return an SQLite error code. ** ** A changeset consists of zero or more INSERT, UPDATE and/or DELETE changes, ** each representing a change to a single row of an attached table. An INSERT ** change contains the values of each field of a new database row. A DELETE ** contains the original values of each field of a deleted database row. An ** UPDATE change contains the original values of each field of an updated ** database row along with the updated values for each updated non-primary-key ** column. It is not possible for an UPDATE change to represent a change that ** modifies the values of primary key columns. If such a change is made, it ** is represented in a changeset as a DELETE followed by an INSERT. ** ** Changes are not recorded for rows that have NULL values stored in one or ** more of their PRIMARY KEY columns. If such a row is inserted or deleted, ** no corresponding change is present in the changesets returned by this ** function. If an existing row with one or more NULL values stored in ** PRIMARY KEY columns is updated so that all PRIMARY KEY columns are non-NULL, ** only an INSERT is appears in the changeset. Similarly, if an existing row ** with non-NULL PRIMARY KEY values is updated so that one or more of its ** PRIMARY KEY columns are set to NULL, the resulting changeset contains a ** DELETE change only. ** ** The contents of a changeset may be traversed using an iterator created ** using the [sqlite3changeset_start()] API. A changeset may be applied to ** a database with a compatible schema using the [sqlite3changeset_apply()] ** API. ** ** Following a successful call to this function, it is the responsibility of ** the caller to eventually free the buffer that *ppChangeset points to using ** [sqlite3_free()]. ** **

Changeset Generation

** ** Once a table has been attached to a session object, the session object ** records the primary key values of all new rows inserted into the table. ** It also records the original primary key and other column values of any ** deleted or updated rows. For each unique primary key value, data is only ** recorded once - the first time a row with said primary key is inserted, ** updated or deleted in the lifetime of the session. ** ** There is one exception to the previous paragraph: when a row is inserted, ** updated or deleted, if one or more of its primary key columns contain a ** NULL value, no record of the change is made. ** ** The session object therefore accumulates two types of records - those ** that consist of primary key values only (created when the user inserts ** a new record) and those that consist of the primary key values and the ** original values of other table columns (created when the users deletes ** or updates a record). ** ** When this function is called, the requested changeset is created using ** both the accumulated records and the current contents of the database ** file. Specifically: ** ** ** ** This means, amongst other things, that if a row is inserted and then later ** deleted while a session object is active, neither the insert nor the delete ** will be present in the changeset. Or if a row is deleted and then later a ** row with the same primary key values inserted while a session object is ** active, the resulting changeset will contain an UPDATE change instead of ** a DELETE and an INSERT. ** ** When a session object is disabled (see the [sqlite3session_enable()] API), ** it does not accumulate records when rows are inserted, updated or deleted. ** This may appear to have some counter-intuitive effects if a single row ** is written to more than once during a session. For example, if a row ** is inserted while a session object is enabled, then later deleted while ** the same session object is disabled, no INSERT record will appear in the ** changeset, even though the delete took place while the session was disabled. ** Or, if one field of a row is updated while a session is disabled, and ** another field of the same row is updated while the session is enabled, the ** resulting changeset will contain an UPDATE change that updates both fields. */ int sqlite3session_changeset( sqlite3_session *pSession, /* Session object */ int *pnChangeset, /* OUT: Size of buffer at *ppChangeset */ void **ppChangeset /* OUT: Buffer containing changeset */ ); /* ** This function is similar to sqlite3session_changeset(), except that instead ** of storing the output changeset in a buffer obtained from sqlite3_malloc() ** it invokes the supplied xOutput() callback zero or more times to stream the ** changeset to the application. This is useful in order to avoid large memory ** allocations when working with very large changesets. ** ** The first parameter passed to each call to the xOutput callback is a copy ** of the pOut parameter passed to this function. The following two parameters ** are a pointer to the buffer containing the next chunk of the output changeset ** and the size of that buffer in bytes. ** ** If the data is successfully processed by the xOutput callback, it should ** return SQLITE_OK. Or, if an error occurs, some other SQLite error code. In ** this case the sqlite3session_changeset_str() call is abandoned immediately ** and returns a copy of the xOutput return code. */ int sqlite3session_changeset_str( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Generate A Patchset From A Session Object ** ** The differences between a patchset and a changeset are that: ** ** ** ** A patchset blob may be used with up to date versions of all ** sqlite3changeset_xxx API functions except for sqlite3changeset_invert(), ** which returns SQLITE_CORRUPT if it is passed a patchset. Similarly, ** attempting to use a patchset blob with old versions of the ** sqlite3changeset_xxx APIs also provokes an SQLITE_CORRUPT error. ** ** Because the non-primary key "old.*" fields are omitted, no ** SQLITE_CHANGESET_DATA conflicts can be detected or reported if a patchset ** is passed to the sqlite3changeset_apply() API. Other conflict types work ** in the same way as for changesets. */ int sqlite3session_patchset( sqlite3_session *pSession, /* Session object */ int *pnPatchset, /* OUT: Size of buffer at *ppChangeset */ void **ppPatchset /* OUT: Buffer containing changeset */ ); /* ** Streaming version of sqlite3session_patchset(). */ int sqlite3session_patchset_str( sqlite3_session *pSession, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Test if a changeset has recorded any changes. ** ** Return non-zero if no changes to attached tables have been recorded by ** the session object passed as the first argument. Otherwise, if one or ** more changes have been recorded, return zero. ** ** Even if this function returns zero, it is possible that calling ** [sqlite3session_changeset()] on the session handle may still return a ** changeset that contains no changes. This can happen when a row in ** an attached table is modified and then later on the original values ** are restored. However, if this function returns non-zero, then it is ** guaranteed that a call to sqlite3session_changeset() will return a ** changeset containing zero changes. */ int sqlite3session_isempty(sqlite3_session *pSession); /* ** CAPI3REF: Create An Iterator To Traverse A Changeset ** ** Create an iterator used to iterate through the contents of a changeset. ** If successful, *pp is set to point to the iterator handle and SQLITE_OK ** is returned. Otherwise, if an error occurs, *pp is set to zero and an ** SQLite error code is returned. ** ** The following functions can be used to advance and query a changeset ** iterator created by this function: ** ** ** ** It is the responsibility of the caller to eventually destroy the iterator ** by passing it to [sqlite3changeset_finalize()]. The buffer containing the ** changeset (pChangeset) must remain valid until after the iterator is ** destroyed. ** ** Assuming the changeset blob was created by one of the ** [sqlite3session_changeset()], [sqlite3changeset_concat()] or ** [sqlite3changeset_invert()] functions, all changes within the changeset ** that apply to a single table are grouped together. This means that when ** an application iterates through a changeset using an iterator created by ** this function, all changes that relate to a single table are visted ** consecutively. There is no chance that the iterator will visit a change ** the applies to table X, then one for table Y, and then later on visit ** another change for table X. */ int sqlite3changeset_start( sqlite3_changeset_iter **pp, /* OUT: New changeset iterator handle */ int nChangeset, /* Size of changeset blob in bytes */ void *pChangeset /* Pointer to blob containing changeset */ ); /* ** This function is similar to sqlite3changeset_start(), except that instead ** of reading data from a single buffer, it requests it one chunk at a time ** from the application by invoking the supplied xInput() callback. The xInput() ** callback may be invoked at any time during the lifetime of the iterator. ** ** Each time the xInput callback is invoked, the first argument passed is a ** copy of the third parameter passed to this function. The second argument, ** pData, points to a buffer (*pnData) bytes in size. Assuming no error occurs ** the xInput method should copy up to (*pnData) bytes of data into the buffer ** and set (*pnData) to the actual number of bytes copied before returning ** SQLITE_OK. If the input is completely exhausted, (*pnData) should be set ** to zero to indicate this. Or, if an error occurs, an SQLite error code ** should be returned. In this case the iterator is put into an error state and ** all subsequent calls to iterator methods return a copy of the xInput error ** code. */ int sqlite3changeset_start_str( sqlite3_changeset_iter **pp, int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn ); /* ** CAPI3REF: Advance A Changeset Iterator ** ** This function may only be used with iterators created by function ** [sqlite3changeset_start()]. If it is called on an iterator passed to ** a conflict-handler callback by [sqlite3changeset_apply()], SQLITE_MISUSE ** is returned and the call has no effect. ** ** Immediately after an iterator is created by sqlite3changeset_start(), it ** does not point to any change in the changeset. Assuming the changeset ** is not empty, the first call to this function advances the iterator to ** point to the first change in the changeset. Each subsequent call advances ** the iterator to point to the next change in the changeset (if any). If ** no error occurs and the iterator points to a valid change after a call ** to sqlite3changeset_next() has advanced it, SQLITE_ROW is returned. ** Otherwise, if all changes in the changeset have already been visited, ** SQLITE_DONE is returned. ** ** If an error occurs, an SQLite error code is returned. Possible error ** codes include SQLITE_CORRUPT (if the changeset buffer is corrupt) or ** SQLITE_NOMEM. */ int sqlite3changeset_next(sqlite3_changeset_iter *pIter); /* ** CAPI3REF: Obtain The Current Operation From A Changeset Iterator ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned [SQLITE_ROW]. If this ** is not the case, this function returns [SQLITE_MISUSE]. ** ** If argument pzTab is not NULL, then *pzTab is set to point to a ** nul-terminated utf-8 encoded string containing the name of the table ** affected by the current change. The buffer remains valid until either ** sqlite3changeset_next() is called on the iterator or until the ** conflict-handler function returns. If pnCol is not NULL, then *pnCol is ** set to the number of columns in the table affected by the change. If ** pbIncorrect is not NULL, then *pbIndirect is set to true (1) if the change ** is an indirect change, or false (0) otherwise. See the documentation for ** [sqlite3session_indirect()] for a description of direct and indirect ** changes. Finally, if pOp is not NULL, then *pOp is set to one of ** [SQLITE_INSERT], [SQLITE_DELETE] or [SQLITE_UPDATE], depending on the ** type of change that the iterator currently points to. ** ** If no error occurs, SQLITE_OK is returned. If an error does occur, an ** SQLite error code is returned. The values of the output variables may not ** be trusted in this case. */ int sqlite3changeset_op( sqlite3_changeset_iter *pIter, /* Iterator object */ const char **pzTab, /* OUT: Pointer to table name */ int *pnCol, /* OUT: Number of columns in table */ int *pOp, /* OUT: SQLITE_INSERT, DELETE or UPDATE */ int *pbIndirect /* OUT: True for an 'indirect' change */ ); /* ** CAPI3REF: Obtain The Primary Key Definition Of A Table ** ** For each modified table, a changeset includes the following: ** ** ** ** This function is used to find which columns comprise the PRIMARY KEY of ** the table modified by the change that iterator pIter currently points to. ** If successful, *pabPK is set to point to an array of nCol entries, where ** nCol is the number of columns in the table. Elements of *pabPK are set to ** 0x01 if the corresponding column is part of the tables primary key, or ** 0x00 if it is not. ** ** If argumet pnCol is not NULL, then *pnCol is set to the number of columns ** in the table. ** ** If this function is called when the iterator does not point to a valid ** entry, SQLITE_MISUSE is returned and the output variables zeroed. Otherwise, ** SQLITE_OK is returned and the output variables populated as described ** above. */ int sqlite3changeset_pk( sqlite3_changeset_iter *pIter, /* Iterator object */ unsigned char **pabPK, /* OUT: Array of boolean - true for PK cols */ int *pnCol /* OUT: Number of entries in output array */ ); /* ** CAPI3REF: Obtain old.* Values From A Changeset Iterator ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. ** Furthermore, it may only be called if the type of change that the iterator ** currently points to is either [SQLITE_DELETE] or [SQLITE_UPDATE]. Otherwise, ** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the vector of ** original row values stored as part of the UPDATE or DELETE change and ** returns SQLITE_OK. The name of the function comes from the fact that this ** is similar to the "old.*" columns available to update or delete triggers. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ int sqlite3changeset_old( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: Old value (or NULL pointer) */ ); /* ** CAPI3REF: Obtain new.* Values From A Changeset Iterator ** ** The pIter argument passed to this function may either be an iterator ** passed to a conflict-handler by [sqlite3changeset_apply()], or an iterator ** created by [sqlite3changeset_start()]. In the latter case, the most recent ** call to [sqlite3changeset_next()] must have returned SQLITE_ROW. ** Furthermore, it may only be called if the type of change that the iterator ** currently points to is either [SQLITE_UPDATE] or [SQLITE_INSERT]. Otherwise, ** this function returns [SQLITE_MISUSE] and sets *ppValue to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the vector of ** new row values stored as part of the UPDATE or INSERT change and ** returns SQLITE_OK. If the change is an UPDATE and does not include ** a new value for the requested column, *ppValue is set to NULL and ** SQLITE_OK returned. The name of the function comes from the fact that ** this is similar to the "new.*" columns available to update or delete ** triggers. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ int sqlite3changeset_new( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: New value (or NULL pointer) */ ); /* ** CAPI3REF: Obtain Conflicting Row Values From A Changeset Iterator ** ** This function should only be used with iterator objects passed to a ** conflict-handler callback by [sqlite3changeset_apply()] with either ** [SQLITE_CHANGESET_DATA] or [SQLITE_CHANGESET_CONFLICT]. If this function ** is called on any other iterator, [SQLITE_MISUSE] is returned and *ppValue ** is set to NULL. ** ** Argument iVal must be greater than or equal to 0, and less than the number ** of columns in the table affected by the current change. Otherwise, ** [SQLITE_RANGE] is returned and *ppValue is set to NULL. ** ** If successful, this function sets *ppValue to point to a protected ** sqlite3_value object containing the iVal'th value from the ** "conflicting row" associated with the current conflict-handler callback ** and returns SQLITE_OK. ** ** If some other error occurs (e.g. an OOM condition), an SQLite error code ** is returned and *ppValue is set to NULL. */ int sqlite3changeset_conflict( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int iVal, /* Column number */ sqlite3_value **ppValue /* OUT: Value from conflicting row */ ); /* ** CAPI3REF: Determine The Number Of Foreign Key Constraint Violations ** ** This function may only be called with an iterator passed to an ** SQLITE_CHANGESET_FOREIGN_KEY conflict handler callback. In this case ** it sets the output variable to the total number of known foreign key ** violations in the destination database and returns SQLITE_OK. ** ** In all other cases this function returns SQLITE_MISUSE. */ int sqlite3changeset_fk_conflicts( sqlite3_changeset_iter *pIter, /* Changeset iterator */ int *pnOut /* OUT: Number of FK violations */ ); /* ** CAPI3REF: Finalize A Changeset Iterator ** ** This function is used to finalize an iterator allocated with ** [sqlite3changeset_start()]. ** ** This function should only be called on iterators created using the ** [sqlite3changeset_start()] function. If an application calls this ** function with an iterator passed to a conflict-handler by ** [sqlite3changeset_apply()], [SQLITE_MISUSE] is immediately returned and the ** call has no effect. ** ** If an error was encountered within a call to an sqlite3changeset_xxx() ** function (for example an [SQLITE_CORRUPT] in [sqlite3changeset_next()] or an ** [SQLITE_NOMEM] in [sqlite3changeset_new()]) then an error code corresponding ** to that error is returned by this function. Otherwise, SQLITE_OK is ** returned. This is to allow the following pattern (pseudo-code): ** ** sqlite3changeset_start(); ** while( SQLITE_ROW==sqlite3changeset_next() ){ ** // Do something with change. ** } ** rc = sqlite3changeset_finalize(); ** if( rc!=SQLITE_OK ){ ** // An error has occurred ** } */ int sqlite3changeset_finalize(sqlite3_changeset_iter *pIter); /* ** CAPI3REF: Invert A Changeset ** ** This function is used to "invert" a changeset object. Applying an inverted ** changeset to a database reverses the effects of applying the uninverted ** changeset. Specifically: ** ** ** ** If successful, a pointer to a buffer containing the inverted changeset ** is stored in *ppOut, the size of the same buffer is stored in *pnOut, and ** SQLITE_OK is returned. If an error occurs, both *pnOut and *ppOut are ** zeroed and an SQLite error code returned. ** ** It is the responsibility of the caller to eventually call sqlite3_free() ** on the *ppOut pointer to free the buffer allocation following a successful ** call to this function. ** ** WARNING/TODO: This function currently assumes that the input is a valid ** changeset. If it is not, the results are undefined. */ int sqlite3changeset_invert( int nIn, const void *pIn, /* Input changeset */ int *pnOut, void **ppOut /* OUT: Inverse of input */ ); /* ** Streaming version of sqlite3changeset_invert(). */ int sqlite3changeset_invert_str( int (*xInput)(void *pIn, void *pData, int *pnData), void *pIn, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Concatenate Two Changeset Objects ** ** This function is used to concatenate two changesets, A and B, into a ** single changeset. The result is a changeset equivalent to applying ** changeset A followed by changeset B. ** ** Rows are identified by the values in their PRIMARY KEY columns. A change ** in changeset A is considered to apply to the same row as a change in ** changeset B if the two rows have the same primary key. ** ** Changes to rows that appear only in changeset A or B are copied into the ** output changeset. Or, if both changeset A and B contain a change that ** applies to a single row, the output depends on the type of each change, ** as follows: ** ** ** ** **
Change A Change B Output Change **
INSERT INSERT ** Change A is copied into the output changeset. Change B is discarded. ** This case does not occur if changeset B is recorded immediately after ** changeset A. **
INSERT UPDATE ** An INSERT change is copied into the output changeset. The values in ** the INSERT change are as if the row was inserted by change A and then ** updated according to change B. **
INSERT DELETE ** No change at all is copied into the output changeset. **
UPDATE INSERT ** Change A is copied into the output changeset. Change B is discarded. ** This case does not occur if changeset B is recorded immediately after ** changeset A. **
UPDATE UPDATE ** A single UPDATE is copied into the output changeset. The accompanying ** values are as if the row was updated once by change A and then again ** by change B. **
UPDATE DELETE ** A single DELETE is copied into the output changeset. **
DELETE INSERT ** If one or more of the column values in the row inserted by change ** B differ from those in the row deleted by change A, an UPDATE ** change is added to the output changeset. Otherwise, if the inserted ** row is exactly the same as the deleted row, no change is added to ** the output changeset. **
DELETE UPDATE ** Change A is copied into the output changeset. Change B is discarded. ** This case does not occur if changeset B is recorded immediately after ** changeset A. **
DELETE DELETE ** Change A is copied into the output changeset. Change B is discarded. ** This case does not occur if changeset B is recorded immediately after ** changeset A. **
** ** If the two changesets contain changes to the same table, then the number ** of columns and the position of the primary key columns for the table must ** be the same in each changeset. If this is not the case, attempting to ** concatenate the two changesets together fails and this function returns ** SQLITE_SCHEMA. If either of the two input changesets appear to be corrupt, ** and the corruption is detected, SQLITE_CORRUPT is returned. Or, if an ** out-of-memory condition occurs during processing, this function returns ** SQLITE_NOMEM. ** ** If none of the above errors occur, SQLITE_OK is returned and *ppOut set ** to point to a buffer containing the output changeset. It is the ** responsibility of the caller to eventually call sqlite3_free() on *ppOut ** to release memory allocated for the buffer. *pnOut is set to the number ** of bytes in the output changeset. If an error does occur, both *ppOut and ** *pnOut are set to zero before returning. */ int sqlite3changeset_concat( int nA, /* Number of bytes in buffer pA */ void *pA, /* Pointer to buffer containing changeset A */ int nB, /* Number of bytes in buffer pB */ void *pB, /* Pointer to buffer containing changeset B */ int *pnOut, /* OUT: Number of bytes in output changeset */ void **ppOut /* OUT: Buffer containing output changeset */ ); /* ** Streaming verson of sqlite3changeset_concat(). */ int sqlite3changeset_concat_str( int (*xInputA)(void *pIn, void *pData, int *pnData), void *pInA, int (*xInputB)(void *pIn, void *pData, int *pnData), void *pInB, int (*xOutput)(void *pOut, const void *pData, int nData), void *pOut ); /* ** CAPI3REF: Apply A Changeset To A Database ** ** Apply a changeset to a database. This function attempts to update the ** "main" database attached to handle db with the changes found in the ** changeset passed via the second and third arguments. ** ** The fourth argument (xFilter) passed to this function is the "filter ** callback". If it is not NULL, then for each table affected by at least one ** change in the changeset, the filter callback is invoked with ** the table name as the second argument, and a copy of the context pointer ** passed as the sixth argument to this function as the first. If the "filter ** callback" returns zero, then no attempt is made to apply any changes to ** the table. Otherwise, if the return value is non-zero or the xFilter ** argument to this function is NULL, all changes related to the table are ** attempted. ** ** For each table that is not excluded by the filter callback, this function ** tests that the target database contains a compatible table. A table is ** considered compatible if all of the following are true: ** ** ** ** If there is no compatible table, it is not an error, but none of the ** changes associated with the table are applied. A warning message is issued ** via the sqlite3_log() mechanism with the error code SQLITE_SCHEMA. At most ** one such warning is issued for each table in the changeset. ** ** For each change for which there is a compatible table, an attempt is made ** to modify the table contents according to the UPDATE, INSERT or DELETE ** change. If a change cannot be applied cleanly, the conflict handler ** function passed as the fifth argument to sqlite3changeset_apply() may be ** invoked. A description of exactly when the conflict handler is invoked for ** each type of change is below. ** ** Unlike the xFilter argument, xConflict may not be passed NULL. The results ** of passing anything other than a valid function pointer as the xConflict ** argument are undefined. ** ** Each time the conflict handler function is invoked, it must return one ** of [SQLITE_CHANGESET_OMIT], [SQLITE_CHANGESET_ABORT] or ** [SQLITE_CHANGESET_REPLACE]. SQLITE_CHANGESET_REPLACE may only be returned ** if the second argument passed to the conflict handler is either ** SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If the conflict-handler ** returns an illegal value, any changes already made are rolled back and ** the call to sqlite3changeset_apply() returns SQLITE_MISUSE. Different ** actions are taken by sqlite3changeset_apply() depending on the value ** returned by each invocation of the conflict-handler function. Refer to ** the documentation for the three ** [SQLITE_CHANGESET_OMIT|available return values] for details. ** **
**
DELETE Changes
** For each DELETE change, this function checks if the target database ** contains a row with the same primary key value (or values) as the ** original row values stored in the changeset. If it does, and the values ** stored in all non-primary key columns also match the values stored in ** the changeset the row is deleted from the target database. ** ** If a row with matching primary key values is found, but one or more of ** the non-primary key fields contains a value different from the original ** row value stored in the changeset, the conflict-handler function is ** invoked with [SQLITE_CHANGESET_DATA] as the second argument. ** ** If no row with matching primary key values is found in the database, ** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] ** passed as the second argument. ** ** If the DELETE operation is attempted, but SQLite returns SQLITE_CONSTRAINT ** (which can only happen if a foreign key constraint is violated), the ** conflict-handler function is invoked with [SQLITE_CHANGESET_CONSTRAINT] ** passed as the second argument. This includes the case where the DELETE ** operation is attempted because an earlier call to the conflict handler ** function returned [SQLITE_CHANGESET_REPLACE]. ** **
INSERT Changes
** For each INSERT change, an attempt is made to insert the new row into ** the database. ** ** If the attempt to insert the row fails because the database already ** contains a row with the same primary key values, the conflict handler ** function is invoked with the second argument set to ** [SQLITE_CHANGESET_CONFLICT]. ** ** If the attempt to insert the row fails because of some other constraint ** violation (e.g. NOT NULL or UNIQUE), the conflict handler function is ** invoked with the second argument set to [SQLITE_CHANGESET_CONSTRAINT]. ** This includes the case where the INSERT operation is re-attempted because ** an earlier call to the conflict handler function returned ** [SQLITE_CHANGESET_REPLACE]. ** **
UPDATE Changes
** For each UPDATE change, this function checks if the target database ** contains a row with the same primary key value (or values) as the ** original row values stored in the changeset. If it does, and the values ** stored in all non-primary key columns also match the values stored in ** the changeset the row is updated within the target database. ** ** If a row with matching primary key values is found, but one or more of ** the non-primary key fields contains a value different from an original ** row value stored in the changeset, the conflict-handler function is ** invoked with [SQLITE_CHANGESET_DATA] as the second argument. Since ** UPDATE changes only contain values for non-primary key fields that are ** to be modified, only those fields need to match the original values to ** avoid the SQLITE_CHANGESET_DATA conflict-handler callback. ** ** If no row with matching primary key values is found in the database, ** the conflict-handler function is invoked with [SQLITE_CHANGESET_NOTFOUND] ** passed as the second argument. ** ** If the UPDATE operation is attempted, but SQLite returns ** SQLITE_CONSTRAINT, the conflict-handler function is invoked with ** [SQLITE_CHANGESET_CONSTRAINT] passed as the second argument. ** This includes the case where the UPDATE operation is attempted after ** an earlier call to the conflict handler function returned ** [SQLITE_CHANGESET_REPLACE]. **
** ** It is safe to execute SQL statements, including those that write to the ** table that the callback related to, from within the xConflict callback. ** This can be used to further customize the applications conflict ** resolution strategy. ** ** All changes made by this function are enclosed in a savepoint transaction. ** If any other error (aside from a constraint failure when attempting to ** write to the target database) occurs, then the savepoint transaction is ** rolled back, restoring the target database to its original state, and an ** SQLite error code returned. */ int sqlite3changeset_apply( sqlite3 *db, /* Apply change to "main" db of this handle */ int nChangeset, /* Size of changeset in bytes */ void *pChangeset, /* Changeset blob */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx /* First argument passed to xConflict */ ); /* ** This function is similar to sqlite3changeset_apply(), except that instead ** of reading data from a single buffer, it requests it one chunk at a time ** from the application by invoking the supplied xInput() callback. ** ** See the documentation for sqlite3changeset_start_str() for a description ** of how the xInput callback should be implemented. */ int sqlite3changeset_apply_str( sqlite3 *db, /* Apply change to "main" db of this handle */ int (*xInput)(void *pIn, void *pData, int *pnData), /* Input function */ void *pIn, /* First arg for xInput */ int(*xFilter)( void *pCtx, /* Copy of sixth arg to _apply() */ const char *zTab /* Table name */ ), int(*xConflict)( void *pCtx, /* Copy of sixth arg to _apply() */ int eConflict, /* DATA, MISSING, CONFLICT, CONSTRAINT */ sqlite3_changeset_iter *p /* Handle describing change and conflict */ ), void *pCtx /* First argument passed to xConflict */ ); /* ** CAPI3REF: Constants Passed To The Conflict Handler ** ** Values that may be passed as the second argument to a conflict-handler. ** **
**
SQLITE_CHANGESET_DATA
** The conflict handler is invoked with CHANGESET_DATA as the second argument ** when processing a DELETE or UPDATE change if a row with the required ** PRIMARY KEY fields is present in the database, but one or more other ** (non primary-key) fields modified by the update do not contain the ** expected "before" values. ** ** The conflicting row, in this case, is the database row with the matching ** primary key. ** **
SQLITE_CHANGESET_NOTFOUND
** The conflict handler is invoked with CHANGESET_NOTFOUND as the second ** argument when processing a DELETE or UPDATE change if a row with the ** required PRIMARY KEY fields is not present in the database. ** ** There is no conflicting row in this case. The results of invoking the ** sqlite3changeset_conflict() API are undefined. ** **
SQLITE_CHANGESET_CONFLICT
** CHANGESET_CONFLICT is passed as the second argument to the conflict ** handler while processing an INSERT change if the operation would result ** in duplicate primary key values. ** ** The conflicting row in this case is the database row with the matching ** primary key. ** **
SQLITE_CHANGESET_FOREIGN_KEY
** If foreign key handling is enabled, and applying a changeset leaves the ** database in a state containing foreign key violations, the conflict ** handler is invoked with CHANGESET_FOREIGN_KEY as the second argument ** exactly once before the changeset is committed. If the conflict handler ** returns CHANGESET_OMIT, the changes, including those that caused the ** foreign key constraint violation, are committed. Or, if it returns ** CHANGESET_ABORT, the changeset is rolled back. ** ** No current or conflicting row information is provided. The only function ** it is possible to call on the supplied sqlite3_changeset_iter handle ** is sqlite3changeset_fk_conflicts(). ** **
SQLITE_CHANGESET_CONSTRAINT
** If any other constraint violation occurs while applying a change (i.e. ** a UNIQUE, CHECK or NOT NULL constraint), the conflict handler is ** invoked with CHANGESET_CONSTRAINT as the second argument. ** ** There is no conflicting row in this case. The results of invoking the ** sqlite3changeset_conflict() API are undefined. ** **
*/ #define SQLITE_CHANGESET_DATA 1 #define SQLITE_CHANGESET_NOTFOUND 2 #define SQLITE_CHANGESET_CONFLICT 3 #define SQLITE_CHANGESET_CONSTRAINT 4 #define SQLITE_CHANGESET_FOREIGN_KEY 5 /* ** CAPI3REF: Constants Returned By The Conflict Handler ** ** A conflict handler callback must return one of the following three values. ** **
**
SQLITE_CHANGESET_OMIT
** If a conflict handler returns this value no special action is taken. The ** change that caused the conflict is not applied. The session module ** continues to the next change in the changeset. ** **
SQLITE_CHANGESET_REPLACE
** This value may only be returned if the second argument to the conflict ** handler was SQLITE_CHANGESET_DATA or SQLITE_CHANGESET_CONFLICT. If this ** is not the case, any changes applied so far are rolled back and the ** call to sqlite3changeset_apply() returns SQLITE_MISUSE. ** ** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_DATA conflict ** handler, then the conflicting row is either updated or deleted, depending ** on the type of change. ** ** If CHANGESET_REPLACE is returned by an SQLITE_CHANGESET_CONFLICT conflict ** handler, then the conflicting row is removed from the database and a ** second attempt to apply the change is made. If this second attempt fails, ** the original row is restored to the database before continuing. ** **
SQLITE_CHANGESET_ABORT
** If this value is returned, any changes applied so far are rolled back ** and the call to sqlite3changeset_apply() returns SQLITE_ABORT. **
*/ #define SQLITE_CHANGESET_OMIT 0 #define SQLITE_CHANGESET_REPLACE 1 #define SQLITE_CHANGESET_ABORT 2 /* ** Make sure we can call this stuff from C++. */ #ifdef __cplusplus } #endif #endif /* SQLITE_ENABLE_SESSION && SQLITE_ENABLE_PREUPDATE_HOOK */