/* ** 2013-02-28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** ** This file contains code to implement the next_char(A,T,F,W,C) SQL function. ** ** The next_char(A,T,F,W,C) function finds all valid "next" characters for ** string A given the vocabulary in T.F. If the W value exists and is a ** non-empty string, then it is an SQL expression that limits the entries ** in T.F that will be considered. If C exists and is a non-empty string, ** then it is the name of the collating sequence to use for comparison. If ** ** Only the first three arguments are required. If the C parameter is ** omitted or is NULL or is an empty string, then the default collating ** sequence of T.F is used for comparision. If the W parameter is omitted ** or is NULL or is an empty string, then no filtering of the output is ** done. ** ** The T.F column should be indexed using collation C or else this routine ** will be quite slow. ** ** For example, suppose an application has a dictionary like this: ** ** CREATE TABLE dictionary(word TEXT UNIQUE); ** ** Further suppose that for user keypad entry, it is desired to disable ** (gray out) keys that are not valid as the next character. If the ** the user has previously entered (say) 'cha' then to find all allowed ** next characters (and thereby determine when keys should not be grayed ** out) run the following query: ** ** SELECT next_char('cha','dictionary','word'); ** ** IMPLEMENTATION NOTES: ** ** The next_char function is implemented using recursive SQL that makes ** use of the table name and column name as part of a query. If either ** the table name or column name are keywords or contain special characters, ** then they should be escaped. For example: ** ** SELECT next_char('cha','[dictionary]','[word]'); ** ** This also means that the table name can be a subquery: ** ** SELECT next_char('cha','(SELECT word AS w FROM dictionary)','w'); */ #include "sqlite3ext.h" SQLITE_EXTENSION_INIT1 #include /* ** A structure to hold context of the next_char() computation across ** nested function calls. */ typedef struct nextCharContext nextCharContext; struct nextCharContext { sqlite3 *db; /* Database connection */ sqlite3_stmt *pStmt; /* Prepared statement used to query */ const unsigned char *zPrefix; /* Prefix to scan */ int nPrefix; /* Size of zPrefix in bytes */ int nAlloc; /* Space allocated to aResult */ int nUsed; /* Space used in aResult */ unsigned int *aResult; /* Array of next characters */ int mallocFailed; /* True if malloc fails */ int otherError; /* True for any other failure */ }; /* ** Append a result character if the character is not already in the ** result. */ static void nextCharAppend(nextCharContext *p, unsigned c){ int i; for(i=0; inUsed; i++){ if( p->aResult[i]==c ) return; } if( p->nUsed+1 > p->nAlloc ){ unsigned int *aNew; int n = p->nAlloc*2 + 30; aNew = sqlite3_realloc64(p->aResult, n*sizeof(unsigned int)); if( aNew==0 ){ p->mallocFailed = 1; return; }else{ p->aResult = aNew; p->nAlloc = n; } } p->aResult[p->nUsed++] = c; } /* ** Write a character into z[] as UTF8. Return the number of bytes needed ** to hold the character */ static int writeUtf8(unsigned char *z, unsigned c){ if( c<0x00080 ){ z[0] = (unsigned char)(c&0xff); return 1; } if( c<0x00800 ){ z[0] = 0xC0 + (unsigned char)((c>>6)&0x1F); z[1] = 0x80 + (unsigned char)(c & 0x3F); return 2; } if( c<0x10000 ){ z[0] = 0xE0 + (unsigned char)((c>>12)&0x0F); z[1] = 0x80 + (unsigned char)((c>>6) & 0x3F); z[2] = 0x80 + (unsigned char)(c & 0x3F); return 3; } z[0] = 0xF0 + (unsigned char)((c>>18) & 0x07); z[1] = 0x80 + (unsigned char)((c>>12) & 0x3F); z[2] = 0x80 + (unsigned char)((c>>6) & 0x3F); z[3] = 0x80 + (unsigned char)(c & 0x3F); return 4; } /* ** Read a UTF8 character out of z[] and write it into *pOut. Return ** the number of bytes in z[] that were used to construct the character. */ static int readUtf8(const unsigned char *z, unsigned *pOut){ static const unsigned char validBits[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, }; unsigned c = z[0]; if( c<0xc0 ){ *pOut = c; return 1; }else{ int n = 1; c = validBits[c-0xc0]; while( (z[n] & 0xc0)==0x80 ){ c = (c<<6) + (0x3f & z[n++]); } if( c<0x80 || (c&0xFFFFF800)==0xD800 || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } *pOut = c; return n; } } /* ** The nextCharContext structure has been set up. Add all "next" characters ** to the result set. */ static void findNextChars(nextCharContext *p){ unsigned cPrev = 0; unsigned char zPrev[8]; int n, rc; for(;;){ sqlite3_bind_text(p->pStmt, 1, (char*)p->zPrefix, p->nPrefix, SQLITE_STATIC); n = writeUtf8(zPrev, cPrev+1); sqlite3_bind_text(p->pStmt, 2, (char*)zPrev, n, SQLITE_STATIC); rc = sqlite3_step(p->pStmt); if( rc==SQLITE_DONE ){ sqlite3_reset(p->pStmt); return; }else if( rc!=SQLITE_ROW ){ p->otherError = rc; return; }else{ const unsigned char *zOut = sqlite3_column_text(p->pStmt, 0); unsigned cNext; n = readUtf8(zOut+p->nPrefix, &cNext); sqlite3_reset(p->pStmt); nextCharAppend(p, cNext); cPrev = cNext; if( p->mallocFailed ) return; } } } /* ** next_character(A,T,F,W) ** ** Return a string composted of all next possible characters after ** A for elements of T.F. If W is supplied, then it is an SQL expression ** that limits the elements in T.F that are considered. */ static void nextCharFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ nextCharContext c; const unsigned char *zTable = sqlite3_value_text(argv[1]); const unsigned char *zField = sqlite3_value_text(argv[2]); const unsigned char *zWhere; const unsigned char *zCollName; char *zWhereClause = 0; char *zColl = 0; char *zSql; int rc; memset(&c, 0, sizeof(c)); c.db = sqlite3_context_db_handle(context); c.zPrefix = sqlite3_value_text(argv[0]); c.nPrefix = sqlite3_value_bytes(argv[0]); if( zTable==0 || zField==0 || c.zPrefix==0 ) return; if( argc>=4 && (zWhere = sqlite3_value_text(argv[3]))!=0 && zWhere[0]!=0 ){ zWhereClause = sqlite3_mprintf("AND (%s)", zWhere); if( zWhereClause==0 ){ sqlite3_result_error_nomem(context); return; } }else{ zWhereClause = ""; } if( argc>=5 && (zCollName = sqlite3_value_text(argv[4]))!=0 && zCollName[0]!=0 ){ zColl = sqlite3_mprintf("collate \"%w\"", zCollName); if( zColl==0 ){ sqlite3_result_error_nomem(context); if( zWhereClause[0] ) sqlite3_free(zWhereClause); return; } }else{ zColl = ""; } zSql = sqlite3_mprintf( "SELECT %s FROM %s" " WHERE %s>=(?1 || ?2) %s" " AND %s<=(?1 || char(1114111)) %s" /* 1114111 == 0x10ffff */ " %s" " ORDER BY 1 %s ASC LIMIT 1", zField, zTable, zField, zColl, zField, zColl, zWhereClause, zColl ); if( zWhereClause[0] ) sqlite3_free(zWhereClause); if( zColl[0] ) sqlite3_free(zColl); if( zSql==0 ){ sqlite3_result_error_nomem(context); return; } rc = sqlite3_prepare_v2(c.db, zSql, -1, &c.pStmt, 0); sqlite3_free(zSql); if( rc ){ sqlite3_result_error(context, sqlite3_errmsg(c.db), -1); return; } findNextChars(&c); if( c.mallocFailed ){ sqlite3_result_error_nomem(context); }else{ unsigned char *pRes; pRes = sqlite3_malloc64( c.nUsed*4 + 1 ); if( pRes==0 ){ sqlite3_result_error_nomem(context); }else{ int i; int n = 0; for(i=0; i