/* ** 2010 February 1 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains the implementation of a write-ahead log file used in ** "journal_mode=wal" mode. */ #ifndef SQLITE_OMIT_WAL #include "wal.h" /* ** WRITE-AHEAD LOG (WAL) FILE FORMAT ** ** A wal file consists of a header followed by zero or more "frames". ** The header is 12 bytes in size and consists of the following three ** big-endian 32-bit unsigned integer values: ** ** 0: Database page size, ** 4: Randomly selected salt value 1, ** 8: Randomly selected salt value 2. ** ** Immediately following the header are zero or more frames. Each ** frame itself consists of a 16-byte header followed by a bytes ** of page data. The header is broken into 4 big-endian 32-bit unsigned ** integer values, as follows: ** ** 0: Page number. ** 4: For commit records, the size of the database image in pages ** after the commit. For all other records, zero. ** 8: Checksum value 1. ** 12: Checksum value 2. */ /* ** WAL-INDEX FILE FORMAT ** ** The wal-index file consists of a 32-byte header region, followed by an ** 8-byte region that contains no useful data (used to apply byte-range locks ** to), followed by the data region. ** ** The contents of both the header and data region are specified in terms ** of 1, 2 and 4 byte unsigned integers. All integers are stored in ** machine-endian order. The wal-index is not a persistent file and ** so it does not need to be portable across archtectures. ** ** A wal-index file is essentially a shadow-pager map. It contains a ** mapping from database page number to the set of locations in the wal ** file that contain versions of the database page. When a database ** client needs to read a page of data, it first queries the wal-index ** file to determine if the required version of the page is stored in ** the wal. If so, the page is read from the wal. If not, the page is ** read from the database file. ** ** Whenever a transaction is appended to the wal or a checkpoint transfers ** data from the wal into the database file, the wal-index is ** updated accordingly. ** ** The fields in the wal-index file header are described in the comment ** directly above the definition of struct WalIndexHdr (see below). ** Immediately following the fields in the WalIndexHdr structure is ** an 8 byte checksum based on the contents of the header. This field is ** not the same as the iCheck1 and iCheck2 fields of the WalIndexHdr. */ /* Object declarations */ typedef struct WalIndexHdr WalIndexHdr; typedef struct WalIterator WalIterator; /* ** The following object stores a copy of the wal-index header. ** ** Member variables iCheck1 and iCheck2 contain the checksum for the ** last frame written to the wal, or 2 and 3 respectively if the log ** is currently empty. */ struct WalIndexHdr { u32 iChange; /* Counter incremented each transaction */ u32 pgsz; /* Database page size in bytes */ u32 iLastPg; /* Address of last valid frame in log */ u32 nPage; /* Size of database in pages */ u32 iCheck1; /* Checkpoint value 1 */ u32 iCheck2; /* Checkpoint value 2 */ }; /* Size of serialized WalIndexHdr object. */ #define WALINDEX_HDR_NFIELD (sizeof(WalIndexHdr) / sizeof(u32)) /* A block of 16 bytes beginning at WALINDEX_LOCK_OFFSET is reserved ** for locks. Since some systems only feature mandatory file-locks, we ** do not read or write data from the region of the file on which locks ** are applied. */ #define WALINDEX_LOCK_OFFSET ((sizeof(WalIndexHdr))+2*sizeof(u32)) #define WALINDEX_LOCK_RESERVED 8 /* Size of header before each frame in wal */ #define WAL_FRAME_HDRSIZE 16 /* Size of write ahead log header */ #define WAL_HDRSIZE 12 /* ** Return the offset of frame iFrame in the write-ahead log file, ** assuming a database page size of pgsz bytes. The offset returned ** is to the start of the write-ahead log frame-header. */ #define walFrameOffset(iFrame, pgsz) ( \ WAL_HDRSIZE + ((iFrame)-1)*((pgsz)+WAL_FRAME_HDRSIZE) \ ) /* ** An open write-ahead log file is represented by an instance of the ** following object. */ struct Wal { sqlite3_vfs *pVfs; /* The VFS used to create pFd */ sqlite3_file *pDbFd; /* File handle for the database file */ sqlite3_file *pWalFd; /* File handle for WAL file */ u32 iCallback; /* Value to pass to log callback (or 0) */ int szWIndex; /* Size of the wal-index that is mapped in mem */ u32 *pWiData; /* Pointer to wal-index content in memory */ u8 lockState; /* SQLITE_SHM_xxxx constant showing lock state */ u8 readerType; /* SQLITE_SHM_READ or SQLITE_SHM_READ_FULL */ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ u8 isWindexOpen; /* True if ShmOpen() called on pDbFd */ WalIndexHdr hdr; /* Wal-index for current snapshot */ char *zWalName; /* Name of WAL file */ }; /* ** This structure is used to implement an iterator that iterates through ** all frames in the log in database page order. Where two or more frames ** correspond to the same database page, the iterator visits only the ** frame most recently written to the log. ** ** The internals of this structure are only accessed by: ** ** walIteratorInit() - Create a new iterator, ** walIteratorNext() - Step an iterator, ** walIteratorFree() - Free an iterator. ** ** This functionality is used by the checkpoint code (see walCheckpoint()). */ struct WalIterator { int nSegment; /* Size of WalIterator.aSegment[] array */ int nFinal; /* Elements in segment nSegment-1 */ struct WalSegment { int iNext; /* Next aIndex index */ u8 *aIndex; /* Pointer to index array */ u32 *aDbPage; /* Pointer to db page array */ } aSegment[1]; }; /* ** Generate an 8 byte checksum based on the data in array aByte[] and the ** initial values of aCksum[0] and aCksum[1]. The checksum is written into ** aCksum[] before returning. ** ** The range of bytes to checksum is treated as an array of 32-bit ** little-endian unsigned integers. For each integer X in the array, from ** start to finish, do the following: ** ** aCksum[0] += X; ** aCksum[1] += aCksum[0]; ** ** For the calculation above, use 64-bit unsigned accumulators. Before ** returning, truncate the values to 32-bits as follows: ** ** aCksum[0] = (u32)(aCksum[0] + (aCksum[0]>>24)); ** aCksum[1] = (u32)(aCksum[1] + (aCksum[1]>>24)); */ static void walChecksumBytes(u8 *aByte, int nByte, u32 *aCksum){ u64 sum1 = aCksum[0]; u64 sum2 = aCksum[1]; u32 *a32 = (u32 *)aByte; u32 *aEnd = (u32 *)&aByte[nByte]; assert( (nByte&0x00000003)==0 ); if( SQLITE_LITTLEENDIAN ){ #ifdef SQLITE_DEBUG u8 *a = (u8 *)a32; assert( *a32==(a[0] + (a[1]<<8) + (a[2]<<16) + (a[3]<<24)) ); #endif do { sum1 += *a32; sum2 += sum1; } while( ++a32>24); aCksum[1] = sum2 + (sum2>>24); } /* ** Attempt to change the lock status. ** ** When changing the lock status to SQLITE_SHM_READ, store the ** type of reader lock (either SQLITE_SHM_READ or SQLITE_SHM_READ_FULL) ** in pWal->readerType. */ static int walSetLock(Wal *pWal, int desiredStatus){ int rc = SQLITE_OK; /* Return code */ if( pWal->exclusiveMode || pWal->lockState==desiredStatus ){ pWal->lockState = desiredStatus; }else{ int got = pWal->lockState; rc = sqlite3OsShmLock(pWal->pDbFd, desiredStatus, &got); pWal->lockState = got; if( got==SQLITE_SHM_READ_FULL || got==SQLITE_SHM_READ ){ pWal->readerType = got; pWal->lockState = SQLITE_SHM_READ; } } return rc; } /* ** Update the header of the wal-index file. */ static void walIndexWriteHdr(Wal *pWal, WalIndexHdr *pHdr){ u32 *aHdr = pWal->pWiData; /* Write header here */ u32 *aCksum = &aHdr[WALINDEX_HDR_NFIELD]; /* Write header cksum here */ assert( WALINDEX_HDR_NFIELD==sizeof(WalIndexHdr)/4 ); assert( aHdr!=0 ); memcpy(aHdr, pHdr, sizeof(WalIndexHdr)); aCksum[0] = aCksum[1] = 1; walChecksumBytes((u8 *)aHdr, sizeof(WalIndexHdr), aCksum); } /* ** This function encodes a single frame header and writes it to a buffer ** supplied by the caller. A frame-header is made up of a series of ** 4-byte big-endian integers, as follows: ** ** 0: Database page size in bytes. ** 4: Page number. ** 8: New database size (for commit frames, otherwise zero). ** 12: Frame checksum 1. ** 16: Frame checksum 2. */ static void walEncodeFrame( u32 *aCksum, /* IN/OUT: Checksum values */ u32 iPage, /* Database page number for frame */ u32 nTruncate, /* New db size (or 0 for non-commit frames) */ int nData, /* Database page size (size of aData[]) */ u8 *aData, /* Pointer to page data (for checksum) */ u8 *aFrame /* OUT: Write encoded frame here */ ){ assert( WAL_FRAME_HDRSIZE==16 ); sqlite3Put4byte(&aFrame[0], iPage); sqlite3Put4byte(&aFrame[4], nTruncate); walChecksumBytes(aFrame, 8, aCksum); walChecksumBytes(aData, nData, aCksum); sqlite3Put4byte(&aFrame[8], aCksum[0]); sqlite3Put4byte(&aFrame[12], aCksum[1]); } /* ** Return 1 and populate *piPage, *pnTruncate and aCksum if the ** frame checksum looks Ok. Otherwise return 0. */ static int walDecodeFrame( u32 *aCksum, /* IN/OUT: Checksum values */ u32 *piPage, /* OUT: Database page number for frame */ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ int nData, /* Database page size (size of aData[]) */ u8 *aData, /* Pointer to page data (for checksum) */ u8 *aFrame /* Frame data */ ){ assert( WAL_FRAME_HDRSIZE==16 ); walChecksumBytes(aFrame, 8, aCksum); walChecksumBytes(aData, nData, aCksum); if( aCksum[0]!=sqlite3Get4byte(&aFrame[8]) || aCksum[1]!=sqlite3Get4byte(&aFrame[12]) ){ /* Checksum failed. */ return 0; } *piPage = sqlite3Get4byte(&aFrame[0]); *pnTruncate = sqlite3Get4byte(&aFrame[4]); return 1; } static void walMergesort8( Pgno *aContent, /* Pages in wal */ u8 *aBuffer, /* Buffer of at least *pnList items to use */ u8 *aList, /* IN/OUT: List to sort */ int *pnList /* IN/OUT: Number of elements in aList[] */ ){ int nList = *pnList; if( nList>1 ){ int nLeft = nList / 2; /* Elements in left list */ int nRight = nList - nLeft; /* Elements in right list */ u8 *aLeft = aList; /* Left list */ u8 *aRight = &aList[nLeft]; /* Right list */ int iLeft = 0; /* Current index in aLeft */ int iRight = 0; /* Current index in aright */ int iOut = 0; /* Current index in output buffer */ /* TODO: Change to non-recursive version. */ walMergesort8(aContent, aBuffer, aLeft, &nLeft); walMergesort8(aContent, aBuffer, aRight, &nRight); while( iRight=nRight || aContent[aLeft[iLeft]]=nLeft || aContent[aLeft[iLeft]]>dbpage ); assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); } memcpy(aList, aBuffer, sizeof(aList[0])*iOut); *pnList = iOut; } #ifdef SQLITE_DEBUG { int i; for(i=1; i<*pnList; i++){ assert( aContent[aList[i]] > aContent[aList[i-1]] ); } } #endif } /* ** Define the size of the hash tables in the wal-index file. There ** is a hash-table following every HASHTABLE_NPAGE page numbers in the ** wal-index. */ #define HASHTABLE_NPAGE 4096 #define HASHTABLE_DATATYPE u16 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) #define HASHTABLE_NBYTE (sizeof(HASHTABLE_DATATYPE)*HASHTABLE_NSLOT) /* ** Return the index in the WalIndex.aData array that corresponds to ** frame iFrame. The wal-index file consists of a header, followed by ** alternating "map" and "index" blocks. */ static int walIndexEntry(u32 iFrame){ return ( (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED)/sizeof(u32) + (((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NBYTE)/sizeof(u32) + (iFrame-1) ); } /* ** Return the minimum mapping size in bytes that can be used to read the ** wal-index up to and including frame iFrame. If iFrame is the last frame ** in a block of 256 frames, the returned byte-count includes the space ** required by the 256-byte index block. */ static int walMappingSize(u32 iFrame){ const int nByte = (sizeof(u32)*HASHTABLE_NPAGE + HASHTABLE_NBYTE) ; return ( WALINDEX_LOCK_OFFSET + WALINDEX_LOCK_RESERVED + nByte * ((iFrame + HASHTABLE_NPAGE - 1)/HASHTABLE_NPAGE) ); } /* ** Release our reference to the wal-index memory map, if we are holding ** it. */ static void walIndexUnmap(Wal *pWal){ if( pWal->pWiData ){ sqlite3OsShmRelease(pWal->pDbFd); pWal->pWiData = 0; } } /* ** Map the wal-index file into memory if it isn't already. ** ** The reqSize parameter is the minimum required size of the mapping. ** A value of -1 means "don't care". */ static int walIndexMap(Wal *pWal, int reqSize){ int rc = SQLITE_OK; if( pWal->pWiData==0 || reqSize>pWal->szWIndex ){ walIndexUnmap(pWal); rc = sqlite3OsShmGet(pWal->pDbFd, reqSize, &pWal->szWIndex, (void**)(char*)&pWal->pWiData); if( rc==SQLITE_OK && pWal->pWiData==0 ){ /* Make sure pWal->pWiData is not NULL while we are holding the ** lock on the mapping. */ assert( pWal->szWIndex==0 ); pWal->pWiData = &pWal->iCallback; } if( rc!=SQLITE_OK ){ walIndexUnmap(pWal); } } return rc; } /* ** Remap the wal-index so that the mapping covers the full size ** of the underlying file. ** ** If enlargeTo is non-negative, then increase the size of the underlying ** storage to be at least as big as enlargeTo before remapping. */ static int walIndexRemap(Wal *pWal, int enlargeTo){ int rc; int sz; rc = sqlite3OsShmSize(pWal->pDbFd, enlargeTo, &sz); if( rc==SQLITE_OK && sz>pWal->szWIndex ){ walIndexUnmap(pWal); rc = walIndexMap(pWal, sz); } return rc; } /* ** Increment by which to increase the wal-index file size. */ #define WALINDEX_MMAP_INCREMENT (64*1024) static int walHashKey(u32 iPage){ return (iPage*2) % (HASHTABLE_NSLOT-1); } /* ** Find the hash table and (section of the) page number array used to ** store data for WAL frame iFrame. ** ** Set output variable *paHash to point to the start of the hash table ** in the wal-index file. Set *piZero to one less than the frame ** number of the first frame indexed by this hash table. If a ** slot in the hash table is set to N, it refers to frame number ** (*piZero+N) in the log. ** ** Finally, set *paPgno such that for all frames F between (*piZero+1) and ** (*piZero+HASHTABLE_NPAGE), (*paPgno)[F] is the database page number ** associated with frame F. */ static void walHashFind( Wal *pWal, /* WAL handle */ u32 iFrame, /* Find the hash table indexing this frame */ HASHTABLE_DATATYPE **paHash, /* OUT: Pointer to hash index */ u32 **paPgno, /* OUT: Pointer to page number array */ u32 *piZero /* OUT: Frame associated with *paPgno[0] */ ){ u32 iZero; u32 *aPgno; HASHTABLE_DATATYPE *aHash; iZero = ((iFrame-1)/HASHTABLE_NPAGE) * HASHTABLE_NPAGE; aPgno = &pWal->pWiData[walIndexEntry(iZero+1)-iZero-1]; aHash = (HASHTABLE_DATATYPE *)&aPgno[iZero+HASHTABLE_NPAGE+1]; /* Assert that: ** ** + the mapping is large enough for this hash-table, and ** ** + that aPgno[iZero+1] really is the database page number associated ** with the first frame indexed by this hash table. */ assert( (u32*)(&aHash[HASHTABLE_NSLOT])<=&pWal->pWiData[pWal->szWIndex/4] ); assert( walIndexEntry(iZero+1)==(&aPgno[iZero+1] - pWal->pWiData) ); *paHash = aHash; *paPgno = aPgno; *piZero = iZero; } /* ** Set an entry in the wal-index map to map log frame iFrame to db ** page iPage. Values are always appended to the wal-index (i.e. the ** value of iFrame is always exactly one more than the value passed to ** the previous call), but that restriction is not enforced or asserted ** here. */ static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ int rc; /* Return code */ int nMapping; /* Required mapping size in bytes */ /* Make sure the wal-index is mapped. Enlarge the mapping if required. */ nMapping = walMappingSize(iFrame); rc = walIndexMap(pWal, -1); while( rc==SQLITE_OK && nMapping>pWal->szWIndex ){ int nByte = pWal->szWIndex + WALINDEX_MMAP_INCREMENT; rc = walIndexRemap(pWal, nByte); } /* Assuming the wal-index file was successfully mapped, find the hash ** table and section of of the page number array that pertain to frame ** iFrame of the WAL. Then populate the page number array and the hash ** table entry. */ if( rc==SQLITE_OK ){ int iKey; /* Hash table key */ u32 iZero; /* One less than frame number of aPgno[1] */ u32 *aPgno; /* Page number array */ HASHTABLE_DATATYPE *aHash; /* Hash table */ int idx; /* Value to write to hash-table slot */ walHashFind(pWal, iFrame, &aHash, &aPgno, &iZero); idx = iFrame - iZero; if( idx==1 ) memset(aHash, 0, HASHTABLE_NBYTE); aPgno[iFrame] = iPage; for(iKey=walHashKey(iPage); aHash[iKey]; iKey=(iKey+1)%HASHTABLE_NSLOT); aHash[iKey] = idx; } return rc; } /* ** Recover the wal-index by reading the write-ahead log file. ** The caller must hold RECOVER lock on the wal-index file. */ static int walIndexRecover(Wal *pWal){ int rc; /* Return Code */ i64 nSize; /* Size of log file */ WalIndexHdr hdr; /* Recovered wal-index header */ assert( pWal->lockState>SQLITE_SHM_READ ); memset(&hdr, 0, sizeof(hdr)); rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); if( rc!=SQLITE_OK ){ return rc; } if( nSize>WAL_FRAME_HDRSIZE ){ u8 aBuf[WAL_FRAME_HDRSIZE]; /* Buffer to load first frame header into */ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ int nFrame; /* Number of bytes at aFrame */ u8 *aData; /* Pointer to data part of aFrame buffer */ int iFrame; /* Index of last frame read */ i64 iOffset; /* Next offset to read from log file */ int nPgsz; /* Page size according to the log */ u32 aCksum[2]; /* Running checksum */ /* Read in the first frame header in the file (to determine the ** database page size). */ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ return rc; } /* If the database page size is not a power of two, or is greater than ** SQLITE_MAX_PAGE_SIZE, conclude that the log file contains no valid data. */ nPgsz = sqlite3Get4byte(&aBuf[0]); if( nPgsz&(nPgsz-1) || nPgsz>SQLITE_MAX_PAGE_SIZE || nPgsz<512 ){ goto finished; } aCksum[0] = sqlite3Get4byte(&aBuf[4]); aCksum[1] = sqlite3Get4byte(&aBuf[8]); /* Malloc a buffer to read frames into. */ nFrame = nPgsz + WAL_FRAME_HDRSIZE; aFrame = (u8 *)sqlite3_malloc(nFrame); if( !aFrame ){ return SQLITE_NOMEM; } aData = &aFrame[WAL_FRAME_HDRSIZE]; /* Read all frames from the log file. */ iFrame = 0; for(iOffset=WAL_HDRSIZE; (iOffset+nFrame)<=nSize; iOffset+=nFrame){ u32 pgno; /* Database page number for frame */ u32 nTruncate; /* dbsize field from frame header */ int isValid; /* True if this frame is valid */ /* Read and decode the next log frame. */ rc = sqlite3OsRead(pWal->pWalFd, aFrame, nFrame, iOffset); if( rc!=SQLITE_OK ) break; isValid = walDecodeFrame(aCksum, &pgno, &nTruncate, nPgsz, aData, aFrame); if( !isValid ) break; rc = walIndexAppend(pWal, ++iFrame, pgno); if( rc!=SQLITE_OK ) break; /* If nTruncate is non-zero, this is a commit record. */ if( nTruncate ){ hdr.iCheck1 = aCksum[0]; hdr.iCheck2 = aCksum[1]; hdr.iLastPg = iFrame; hdr.nPage = nTruncate; hdr.pgsz = nPgsz; } } sqlite3_free(aFrame); }else{ hdr.iCheck1 = 2; hdr.iCheck2 = 3; } finished: if( rc==SQLITE_OK && hdr.iLastPg==0 ){ rc = walIndexRemap(pWal, WALINDEX_MMAP_INCREMENT); } if( rc==SQLITE_OK ){ walIndexWriteHdr(pWal, &hdr); memcpy(&pWal->hdr, &hdr, sizeof(hdr)); } return rc; } /* ** Close an open wal-index. */ static void walIndexClose(Wal *pWal, int isDelete){ if( pWal->isWindexOpen ){ int notUsed; sqlite3OsShmLock(pWal->pDbFd, SQLITE_SHM_UNLOCK, ¬Used); sqlite3OsShmClose(pWal->pDbFd, isDelete); pWal->isWindexOpen = 0; } } /* ** Open a connection to the log file associated with database zDb. The ** database file does not actually have to exist. zDb is used only to ** figure out the name of the log file to open. If the log file does not ** exist it is created by this call. ** ** A SHARED lock should be held on the database file when this function ** is called. The purpose of this SHARED lock is to prevent any other ** client from unlinking the log or wal-index file. If another process ** were to do this just after this client opened one of these files, the ** system would be badly broken. ** ** If the log file is successfully opened, SQLITE_OK is returned and ** *ppWal is set to point to a new WAL handle. If an error occurs, ** an SQLite error code is returned and *ppWal is left unmodified. */ int sqlite3WalOpen( sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ sqlite3_file *pDbFd, /* The open database file */ const char *zDbName, /* Name of the database file */ Wal **ppWal /* OUT: Allocated Wal handle */ ){ int rc; /* Return Code */ Wal *pRet; /* Object to allocate and return */ int flags; /* Flags passed to OsOpen() */ char *zWal; /* Name of write-ahead log file */ int nWal; /* Length of zWal in bytes */ assert( zDbName && zDbName[0] ); assert( pDbFd ); /* Allocate an instance of struct Wal to return. */ *ppWal = 0; nWal = sqlite3Strlen30(zDbName) + 5; pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile + nWal); if( !pRet ){ return SQLITE_NOMEM; } pRet->pVfs = pVfs; pRet->pWalFd = (sqlite3_file *)&pRet[1]; pRet->pDbFd = pDbFd; pRet->zWalName = zWal = pVfs->szOsFile + (char*)pRet->pWalFd; sqlite3_snprintf(nWal, zWal, "%s-wal", zDbName); rc = sqlite3OsShmOpen(pDbFd); /* Open file handle on the write-ahead log file. */ if( rc==SQLITE_OK ){ pRet->isWindexOpen = 1; flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_MAIN_JOURNAL); rc = sqlite3OsOpen(pVfs, zWal, pRet->pWalFd, flags, &flags); } if( rc!=SQLITE_OK ){ walIndexClose(pRet, 0); sqlite3OsClose(pRet->pWalFd); sqlite3_free(pRet); }else{ *ppWal = pRet; } return rc; } static int walIteratorNext( WalIterator *p, /* Iterator */ u32 *piPage, /* OUT: Next db page to write */ u32 *piFrame /* OUT: Wal frame to read from */ ){ u32 iMin = *piPage; u32 iRet = 0xFFFFFFFF; int i; int nBlock = p->nFinal; for(i=p->nSegment-1; i>=0; i--){ struct WalSegment *pSegment = &p->aSegment[i]; while( pSegment->iNextaDbPage[pSegment->aIndex[pSegment->iNext]]; if( iPg>iMin ){ if( iPgaIndex[pSegment->iNext]; } break; } pSegment->iNext++; } nBlock = 256; } *piPage = iRet; return (iRet==0xFFFFFFFF); } static int walIteratorInit(Wal *pWal, WalIterator **pp){ u32 *aData; /* Content of the wal-index file */ WalIterator *p; /* Return value */ int nSegment; /* Number of segments to merge */ u32 iLast; /* Last frame in log */ int nByte; /* Number of bytes to allocate */ int i; /* Iterator variable */ int nFinal; /* Number of unindexed entries */ u8 *aTmp; /* Temp space used by merge-sort */ int rc; /* Return code of walIndexMap() */ rc = walIndexMap(pWal, walMappingSize(pWal->hdr.iLastPg)); if( rc!=SQLITE_OK ){ return rc; } aData = pWal->pWiData; iLast = pWal->hdr.iLastPg; nSegment = (iLast >> 8) + 1; nFinal = (iLast & 0x000000FF); nByte = sizeof(WalIterator) + (nSegment+1)*(sizeof(struct WalSegment)+256); p = (WalIterator *)sqlite3_malloc(nByte); if( !p ){ rc = SQLITE_NOMEM; }else{ u8 *aSpace; memset(p, 0, nByte); p->nSegment = nSegment; aSpace = (u8 *)&p->aSegment[nSegment]; aTmp = &aSpace[nSegment*256]; for(i=0; iaSegment[i].aDbPage = &aData[walIndexEntry(i*256+1)]; p->aSegment[i].aIndex = aSpace; for(j=0; jaSegment[i].aDbPage, aTmp, aSpace, &nIndex); memset(&aSpace[nIndex], aSpace[nIndex-1], 256-nIndex); aSpace += 256; p->nFinal = nIndex; } } *pp = p; return rc; } /* ** Free a log iterator allocated by walIteratorInit(). */ static void walIteratorFree(WalIterator *p){ sqlite3_free(p); } /* ** Checkpoint the contents of the log file. */ static int walCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags for OsSync() (or 0) */ int nBuf, /* Size of zBuf in bytes */ u8 *zBuf /* Temporary buffer to use */ ){ int rc; /* Return code */ int pgsz = pWal->hdr.pgsz; /* Database page-size */ WalIterator *pIter = 0; /* Wal iterator context */ u32 iDbpage = 0; /* Next database page to write */ u32 iFrame = 0; /* Wal frame containing data for iDbpage */ /* Allocate the iterator */ rc = walIteratorInit(pWal, &pIter); if( rc!=SQLITE_OK || pWal->hdr.iLastPg==0 ){ goto out; } if( pWal->hdr.pgsz!=nBuf ){ rc = SQLITE_CORRUPT_BKPT; goto out; } /* Sync the log file to disk */ if( sync_flags ){ rc = sqlite3OsSync(pWal->pWalFd, sync_flags); if( rc!=SQLITE_OK ) goto out; } /* Iterate through the contents of the log, copying data to the db file. */ while( 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ rc = sqlite3OsRead(pWal->pWalFd, zBuf, pgsz, walFrameOffset(iFrame, pgsz) + WAL_FRAME_HDRSIZE ); if( rc!=SQLITE_OK ) goto out; rc = sqlite3OsWrite(pWal->pDbFd, zBuf, pgsz, (iDbpage-1)*pgsz); if( rc!=SQLITE_OK ) goto out; } /* Truncate the database file */ rc = sqlite3OsTruncate(pWal->pDbFd, ((i64)pWal->hdr.nPage*(i64)pgsz)); if( rc!=SQLITE_OK ) goto out; /* Sync the database file. If successful, update the wal-index. */ if( sync_flags ){ rc = sqlite3OsSync(pWal->pDbFd, sync_flags); if( rc!=SQLITE_OK ) goto out; } pWal->hdr.iLastPg = 0; pWal->hdr.iCheck1 = 2; pWal->hdr.iCheck2 = 3; walIndexWriteHdr(pWal, &pWal->hdr); /* TODO: If a crash occurs and the current log is copied into the ** database there is no problem. However, if a crash occurs while ** writing the next transaction into the start of the log, such that: ** ** * The first transaction currently in the log is left intact, but ** * The second (or subsequent) transaction is damaged, ** ** then the database could become corrupt. ** ** The easiest thing to do would be to write and sync a dummy header ** into the log at this point. Unfortunately, that turns out to be ** an unwelcome performance hit. Alternatives are... */ #if 0 memset(zBuf, 0, WAL_FRAME_HDRSIZE); rc = sqlite3OsWrite(pWal->pWalFd, zBuf, WAL_FRAME_HDRSIZE, 0); if( rc!=SQLITE_OK ) goto out; rc = sqlite3OsSync(pWal->pWalFd, pWal->sync_flags); #endif out: walIteratorFree(pIter); return rc; } /* ** Close a connection to a log file. */ int sqlite3WalClose( Wal *pWal, /* Wal to close */ int sync_flags, /* Flags to pass to OsSync() (or 0) */ int nBuf, u8 *zBuf /* Buffer of at least nBuf bytes */ ){ int rc = SQLITE_OK; if( pWal ){ int isDelete = 0; /* True to unlink wal and wal-index files */ /* If an EXCLUSIVE lock can be obtained on the database file (using the ** ordinary, rollback-mode locking methods, this guarantees that the ** connection associated with this log file is the only connection to ** the database. In this case checkpoint the database and unlink both ** the wal and wal-index files. ** ** The EXCLUSIVE lock is not released before returning. */ rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); if( rc==SQLITE_OK ){ rc = sqlite3WalCheckpoint(pWal, sync_flags, nBuf, zBuf, 0, 0); if( rc==SQLITE_OK ){ isDelete = 1; } walIndexUnmap(pWal); } walIndexClose(pWal, isDelete); sqlite3OsClose(pWal->pWalFd); if( isDelete ){ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); } sqlite3_free(pWal); } return rc; } /* ** Try to read the wal-index header. Attempt to verify the header ** checksum. If the checksum can be verified, copy the wal-index ** header into structure pWal->hdr. If the contents of pWal->hdr are ** modified by this and pChanged is not NULL, set *pChanged to 1. ** Otherwise leave *pChanged unmodified. ** ** If the checksum cannot be verified return non-zero. If the header ** is read successfully and the checksum verified, return zero. */ int walIndexTryHdr(Wal *pWal, int *pChanged){ u32 aCksum[2] = {1, 1}; u32 aHdr[WALINDEX_HDR_NFIELD+2]; assert( pWal->pWiData ); if( pWal->szWIndex==0 ){ /* The wal-index is of size 0 bytes. This is handled in the same way ** as an invalid header. The caller will run recovery to construct ** a valid wal-index file before accessing the database. */ return 1; } /* Read the header. The caller may or may not have an exclusive ** (WRITE, PENDING, CHECKPOINT or RECOVER) lock on the wal-index ** file, meaning it is possible that an inconsistent snapshot is read ** from the file. If this happens, return non-zero. */ memcpy(aHdr, pWal->pWiData, sizeof(aHdr)); walChecksumBytes((u8*)aHdr, sizeof(u32)*WALINDEX_HDR_NFIELD, aCksum); if( aCksum[0]!=aHdr[WALINDEX_HDR_NFIELD] || aCksum[1]!=aHdr[WALINDEX_HDR_NFIELD+1] ){ return 1; } if( memcmp(&pWal->hdr, aHdr, sizeof(WalIndexHdr)) ){ *pChanged = 1; memcpy(&pWal->hdr, aHdr, sizeof(WalIndexHdr)); } /* The header was successfully read. Return zero. */ return 0; } /* ** Read the wal-index header from the wal-index file into structure ** pWal->hdr. If attempting to verify the header checksum fails, try ** to recover the log before returning. ** ** If the wal-index header is successfully read, return SQLITE_OK. ** Otherwise an SQLite error code. */ static int walIndexReadHdr(Wal *pWal, int *pChanged){ int rc; /* Return code */ int lockState; /* pWal->lockState before running recovery */ assert( pWal->lockState>=SQLITE_SHM_READ ); assert( pChanged ); rc = walIndexMap(pWal, -1); if( rc!=SQLITE_OK ){ return rc; } /* First attempt to read the wal-index header. This may fail for one ** of two reasons: (a) the wal-index does not yet exist or has been ** corrupted and needs to be constructed by running recovery, or (b) ** the caller is only holding a READ lock and made a dirty read of ** the wal-index header. ** ** A dirty read of the wal-index header occurs if another thread or ** process happens to be writing to the wal-index header at roughly ** the same time as this thread is reading it. In this case it is ** possible that an inconsistent header is read (which is detected ** using the header checksum mechanism). */ if( walIndexTryHdr(pWal, pChanged)==0 ){ return SQLITE_OK; } /* If the first attempt to read the header failed, lock the wal-index ** file with an exclusive lock and try again. If the header checksum ** verification fails again, we can be sure that it is not simply a ** dirty read, but that the wal-index really does need to be ** reconstructed by running log recovery. ** ** In the paragraph above, an "exclusive lock" may be any of WRITE, ** PENDING, CHECKPOINT or RECOVER. If any of these are already held, ** no locking operations are required. If the caller currently holds ** a READ lock, then upgrade to a RECOVER lock before re-reading the ** wal-index header and revert to a READ lock before returning. */ lockState = pWal->lockState; if( lockState>SQLITE_SHM_READ || SQLITE_OK==(rc = walSetLock(pWal, SQLITE_SHM_RECOVER)) ){ if( walIndexTryHdr(pWal, pChanged) ){ *pChanged = 1; rc = walIndexRecover(pWal); } if( lockState==SQLITE_SHM_READ ){ walSetLock(pWal, SQLITE_SHM_READ); } } return rc; } /* ** Lock a snapshot. ** ** If this call obtains a new read-lock and the database contents have been ** modified since the most recent call to WalCloseSnapshot() on this Wal ** connection, then *pChanged is set to 1 before returning. Otherwise, it ** is left unmodified. This is used by the pager layer to determine whether ** or not any cached pages may be safely reused. */ int sqlite3WalOpenSnapshot(Wal *pWal, int *pChanged){ int rc; /* Return code */ rc = walSetLock(pWal, SQLITE_SHM_READ); assert( rc!=SQLITE_OK || pWal->lockState==SQLITE_SHM_READ ); if( rc==SQLITE_OK ){ rc = walIndexReadHdr(pWal, pChanged); if( rc!=SQLITE_OK ){ /* An error occured while attempting log recovery. */ sqlite3WalCloseSnapshot(pWal); } } walIndexUnmap(pWal); return rc; } /* ** Unlock the current snapshot. */ void sqlite3WalCloseSnapshot(Wal *pWal){ assert( pWal->lockState==SQLITE_SHM_READ || pWal->lockState==SQLITE_SHM_UNLOCK ); walSetLock(pWal, SQLITE_SHM_UNLOCK); } /* ** Read a page from the log, if it is present. */ int sqlite3WalRead( Wal *pWal, /* WAL handle */ Pgno pgno, /* Database page number to read data for */ int *pInWal, /* OUT: True if data is read from WAL */ int nOut, /* Size of buffer pOut in bytes */ u8 *pOut /* Buffer to write page data to */ ){ int rc; /* Return code */ u32 iRead = 0; /* If !=0, WAL frame to return data from */ u32 iLast = pWal->hdr.iLastPg; /* Last page in WAL for this reader */ int iHash; /* Used to loop through N hash tables */ /* If the "last page" field of the wal-index header snapshot is 0, then ** no data will be read from the wal under any circumstances. Return early ** in this case to avoid the walIndexMap/Unmap overhead. */ if( iLast==0 ){ *pInWal = 0; return SQLITE_OK; } /* Ensure the wal-index is mapped. */ assert( pWal->lockState==SQLITE_SHM_READ||pWal->lockState==SQLITE_SHM_WRITE ); rc = walIndexMap(pWal, walMappingSize(iLast)); if( rc!=SQLITE_OK ){ return rc; } /* Search the hash table or tables for an entry matching page number ** pgno. Each iteration of the following for() loop searches one ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). ** ** This code may run concurrently to the code in walIndexAppend() ** that adds entries to the wal-index (and possibly to this hash ** table). This means the non-zero value just read from the hash ** slot (aHash[iKey]) may have been added before or after the ** current read transaction was opened. Values added after the ** read transaction was opened may have been written incorrectly - ** i.e. these slots may contain garbage data. However, we assume ** that any slots written before the current read transaction was ** opened remain unmodified. ** ** For the reasons above, the if(...) condition featured in the inner ** loop of the following block is more stringent that would be required ** if we had exclusive access to the hash-table: ** ** (aPgno[iFrame]==pgno): ** This condition filters out normal hash-table collisions. ** ** (iFrame<=iLast): ** This condition filters out entries that were added to the hash ** table after the current read-transaction had started. ** ** (iFrame>iRead): ** This filters out a dangerous class of garbage data. The ** garbage hash slot may refer to a frame with the correct page ** number, but not the most recent version of the frame. For ** example, if at the start of the read-transaction the log ** contains three copies of the desired page in frames 2, 3 and 4, ** the hash table may contain the following: ** ** { ..., 2, 3, 4, 0, 0, ..... } ** ** The correct answer is to read data from frame 4. But a ** dirty-read may potentially cause the hash-table to appear as ** follows to the reader: ** ** { ..., 2, 3, 4, 3, 0, ..... } ** ** Without this part of the if(...) clause, the reader might ** incorrectly read data from frame 3 instead of 4. This would be ** an error. ** ** It is not actually clear to the developers that such a dirty-read ** can occur. But if it does, it should not cause any problems. */ for(iHash=iLast; iHash>0 && iRead==0; iHash-=HASHTABLE_NPAGE){ HASHTABLE_DATATYPE *aHash; /* Pointer to hash table */ u32 *aPgno; /* Pointer to array of page numbers */ u32 iZero; /* Frame number corresponding to aPgno[0] */ int iKey; /* Hash slot index */ walHashFind(pWal, iHash, &aHash, &aPgno, &iZero); for(iKey=walHashKey(pgno); aHash[iKey]; iKey=(iKey+1)%HASHTABLE_NSLOT){ u32 iFrame = aHash[iKey] + iZero; if( iFrame<=iLast && aPgno[iFrame]==pgno && iFrame>iRead ){ iRead = iFrame; } } } assert( iRead==0 || pWal->pWiData[walIndexEntry(iRead)]==pgno ); #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT /* If expensive assert() statements are available, do a linear search ** of the wal-index file content. Make sure the results agree with the ** result obtained using the hash indexes above. */ { u32 iRead2 = 0; u32 iTest; for(iTest=iLast; iTest>0; iTest--){ if( pWal->pWiData[walIndexEntry(iTest)]==pgno ){ iRead2 = iTest; break; } } assert( iRead==iRead2 ); } #endif /* If iRead is non-zero, then it is the log frame number that contains the ** required page. Read and return data from the log file. */ walIndexUnmap(pWal); if( iRead ){ i64 iOffset = walFrameOffset(iRead, pWal->hdr.pgsz) + WAL_FRAME_HDRSIZE; *pInWal = 1; return sqlite3OsRead(pWal->pWalFd, pOut, nOut, iOffset); } *pInWal = 0; return SQLITE_OK; } /* ** Set *pPgno to the size of the database file (or zero, if unknown). */ void sqlite3WalDbsize(Wal *pWal, Pgno *pPgno){ assert( pWal->lockState==SQLITE_SHM_READ || pWal->lockState==SQLITE_SHM_WRITE ); *pPgno = pWal->hdr.nPage; } /* ** This function returns SQLITE_OK if the caller may write to the database. ** Otherwise, if the caller is operating on a snapshot that has already ** been overwritten by another writer, SQLITE_BUSY is returned. */ int sqlite3WalWriteLock(Wal *pWal, int op){ int rc = SQLITE_OK; if( op ){ assert( pWal->lockState==SQLITE_SHM_READ ); rc = walSetLock(pWal, SQLITE_SHM_WRITE); /* If this connection is not reading the most recent database snapshot, ** it is not possible to write to the database. In this case release ** the write locks and return SQLITE_BUSY. */ if( rc==SQLITE_OK ){ rc = walIndexMap(pWal, sizeof(WalIndexHdr)); if( rc==SQLITE_OK && memcmp(&pWal->hdr, pWal->pWiData, sizeof(WalIndexHdr)) ){ rc = SQLITE_BUSY; } walIndexUnmap(pWal); if( rc!=SQLITE_OK ){ walSetLock(pWal, SQLITE_SHM_READ); } } }else if( pWal->lockState==SQLITE_SHM_WRITE ){ rc = walSetLock(pWal, SQLITE_SHM_READ); } return rc; } /* ** If any data has been written (but not committed) to the log file, this ** function moves the write-pointer back to the start of the transaction. ** ** Additionally, the callback function is invoked for each frame written ** to the log since the start of the transaction. If the callback returns ** other than SQLITE_OK, it is not invoked again and the error code is ** returned to the caller. ** ** Otherwise, if the callback function does not return an error, this ** function returns SQLITE_OK. */ int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ int rc = SQLITE_OK; if( pWal->lockState==SQLITE_SHM_WRITE ){ int unused; Pgno iMax = pWal->hdr.iLastPg; Pgno iFrame; assert( pWal->pWiData==0 ); rc = walIndexReadHdr(pWal, &unused); for(iFrame=pWal->hdr.iLastPg+1; rc==SQLITE_OK && iFrame<=iMax; iFrame++){ assert( pWal->lockState==SQLITE_SHM_WRITE ); rc = xUndo(pUndoCtx, pWal->pWiData[walIndexEntry(iFrame)]); } walIndexUnmap(pWal); } return rc; } /* Return an integer that records the current (uncommitted) write ** position in the WAL */ u32 sqlite3WalSavepoint(Wal *pWal){ assert( pWal->lockState==SQLITE_SHM_WRITE ); return pWal->hdr.iLastPg; } /* Move the write position of the WAL back to iFrame. Called in ** response to a ROLLBACK TO command. */ int sqlite3WalSavepointUndo(Wal *pWal, u32 iFrame){ int rc = SQLITE_OK; u8 aCksum[8]; assert( pWal->lockState==SQLITE_SHM_WRITE ); pWal->hdr.iLastPg = iFrame; if( iFrame>0 ){ i64 iOffset = walFrameOffset(iFrame, pWal->hdr.pgsz) + sizeof(u32)*2; rc = sqlite3OsRead(pWal->pWalFd, aCksum, sizeof(aCksum), iOffset); pWal->hdr.iCheck1 = sqlite3Get4byte(&aCksum[0]); pWal->hdr.iCheck2 = sqlite3Get4byte(&aCksum[4]); } return rc; } /* ** Write a set of frames to the log. The caller must hold the write-lock ** on the log file (obtained using sqlite3WalWriteLock()). */ int sqlite3WalFrames( Wal *pWal, /* Wal handle to write to */ int nPgsz, /* Database page-size in bytes */ PgHdr *pList, /* List of dirty pages to write */ Pgno nTruncate, /* Database size after this commit */ int isCommit, /* True if this is a commit */ int sync_flags /* Flags to pass to OsSync() (or 0) */ ){ int rc; /* Used to catch return codes */ u32 iFrame; /* Next frame address */ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ PgHdr *p; /* Iterator to run through pList with. */ u32 aCksum[2]; /* Checksums */ PgHdr *pLast = 0; /* Last frame in list */ int nLast = 0; /* Number of extra copies of last page */ assert( WAL_FRAME_HDRSIZE==(4 * 2 + 2*sizeof(u32)) ); assert( pList ); assert( pWal->lockState==SQLITE_SHM_WRITE ); assert( pWal->pWiData==0 ); /* If this is the first frame written into the log, write the log ** header to the start of the log file. See comments at the top of ** this file for a description of the log-header format. */ assert( WAL_FRAME_HDRSIZE>=WAL_HDRSIZE ); iFrame = pWal->hdr.iLastPg; if( iFrame==0 ){ sqlite3Put4byte(aFrame, nPgsz); sqlite3_randomness(8, &aFrame[4]); pWal->hdr.iCheck1 = sqlite3Get4byte(&aFrame[4]); pWal->hdr.iCheck2 = sqlite3Get4byte(&aFrame[8]); rc = sqlite3OsWrite(pWal->pWalFd, aFrame, WAL_HDRSIZE, 0); if( rc!=SQLITE_OK ){ return rc; } } aCksum[0] = pWal->hdr.iCheck1; aCksum[1] = pWal->hdr.iCheck2; /* Write the log file. */ for(p=pList; p; p=p->pDirty){ u32 nDbsize; /* Db-size field for frame header */ i64 iOffset; /* Write offset in log file */ iOffset = walFrameOffset(++iFrame, nPgsz); /* Populate and write the frame header */ nDbsize = (isCommit && p->pDirty==0) ? nTruncate : 0; walEncodeFrame(aCksum, p->pgno, nDbsize, nPgsz, p->pData, aFrame); rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset); if( rc!=SQLITE_OK ){ return rc; } /* Write the page data */ rc = sqlite3OsWrite(pWal->pWalFd, p->pData, nPgsz, iOffset + sizeof(aFrame)); if( rc!=SQLITE_OK ){ return rc; } pLast = p; } /* Sync the log file if the 'isSync' flag was specified. */ if( sync_flags ){ i64 iSegment = sqlite3OsSectorSize(pWal->pWalFd); i64 iOffset = walFrameOffset(iFrame+1, nPgsz); assert( isCommit ); if( iSegmentpgno,nTruncate,nPgsz,pLast->pData,aFrame); rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOffset); if( rc!=SQLITE_OK ){ return rc; } iOffset += WAL_FRAME_HDRSIZE; rc = sqlite3OsWrite(pWal->pWalFd, pLast->pData, nPgsz, iOffset); if( rc!=SQLITE_OK ){ return rc; } nLast++; iOffset += nPgsz; } rc = sqlite3OsSync(pWal->pWalFd, sync_flags); } assert( pWal->pWiData==0 ); /* Append data to the log summary. It is not necessary to lock the ** wal-index to do this as the RESERVED lock held on the db file ** guarantees that there are no other writers, and no data that may ** be in use by existing readers is being overwritten. */ iFrame = pWal->hdr.iLastPg; for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ iFrame++; rc = walIndexAppend(pWal, iFrame, p->pgno); } while( nLast>0 && rc==SQLITE_OK ){ iFrame++; nLast--; rc = walIndexAppend(pWal, iFrame, pLast->pgno); } if( rc==SQLITE_OK ){ /* Update the private copy of the header. */ pWal->hdr.pgsz = nPgsz; pWal->hdr.iLastPg = iFrame; if( isCommit ){ pWal->hdr.iChange++; pWal->hdr.nPage = nTruncate; } pWal->hdr.iCheck1 = aCksum[0]; pWal->hdr.iCheck2 = aCksum[1]; /* If this is a commit, update the wal-index header too. */ if( isCommit ){ walIndexWriteHdr(pWal, &pWal->hdr); pWal->iCallback = iFrame; } } walIndexUnmap(pWal); return rc; } /* ** Checkpoint the database: ** ** 1. Acquire a CHECKPOINT lock ** 2. Copy the contents of the log into the database file. ** 3. Zero the wal-index header (so new readers will ignore the log). ** 4. Drop the CHECKPOINT lock. */ int sqlite3WalCheckpoint( Wal *pWal, /* Wal connection */ int sync_flags, /* Flags to sync db file with (or 0) */ int nBuf, /* Size of temporary buffer */ u8 *zBuf, /* Temporary buffer to use */ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */ ){ int rc; /* Return code */ int isChanged = 0; /* True if a new wal-index header is loaded */ assert( pWal->pWiData==0 ); /* Get the CHECKPOINT lock. ** ** Normally, the connection will be in UNLOCK state at this point. But ** if the connection is in exclusive-mode it may still be in READ state ** even though the upper layer has no active read-transaction (because ** WalCloseSnapshot() is not called in exclusive mode). The state will ** be set to UNLOCK when this function returns. This is Ok. */ assert( (pWal->lockState==SQLITE_SHM_UNLOCK) || (pWal->lockState==SQLITE_SHM_READ) ); walSetLock(pWal, SQLITE_SHM_UNLOCK); do { rc = walSetLock(pWal, SQLITE_SHM_CHECKPOINT); }while( rc==SQLITE_BUSY && xBusyHandler(pBusyHandlerArg) ); if( rc!=SQLITE_OK ){ walSetLock(pWal, SQLITE_SHM_UNLOCK); return rc; } /* Copy data from the log to the database file. */ rc = walIndexReadHdr(pWal, &isChanged); if( rc==SQLITE_OK ){ rc = walCheckpoint(pWal, sync_flags, nBuf, zBuf); } if( isChanged ){ /* If a new wal-index header was loaded before the checkpoint was ** performed, then the pager-cache associated with log pWal is now ** out of date. So zero the cached wal-index header to ensure that ** next time the pager opens a snapshot on this database it knows that ** the cache needs to be reset. */ memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); } /* Release the locks. */ walIndexUnmap(pWal); walSetLock(pWal, SQLITE_SHM_UNLOCK); return rc; } /* Return the value to pass to a sqlite3_wal_hook callback, the ** number of frames in the WAL at the point of the last commit since ** sqlite3WalCallback() was called. If no commits have occurred since ** the last call, then return 0. */ int sqlite3WalCallback(Wal *pWal){ u32 ret = 0; if( pWal ){ ret = pWal->iCallback; pWal->iCallback = 0; } return (int)ret; } /* ** This function is called to set or query the exclusive-mode flag ** associated with the WAL connection passed as the first argument. The ** exclusive-mode flag should be set to indicate that the caller is ** holding an EXCLUSIVE lock on the database file (it does this in ** locking_mode=exclusive mode). If the EXCLUSIVE lock is to be dropped, ** the flag set by this function should be cleared before doing so. ** ** The value of the exclusive-mode flag may only be modified when ** the WAL connection is in READ state. ** ** When the flag is set, this module does not call the VFS xShmLock() ** method to obtain any locks on the wal-index (as it assumes it ** has exclusive access to the wal and wal-index files anyhow). It ** continues to hold (and does not drop) the existing READ lock on ** the wal-index. ** ** To set or clear the flag, the "op" parameter is passed 1 or 0, ** respectively. To query the flag, pass -1. In all cases, the value ** returned is the value of the exclusive-mode flag (after its value ** has been modified, if applicable). */ int sqlite3WalExclusiveMode(Wal *pWal, int op){ if( op>=0 ){ assert( pWal->lockState==SQLITE_SHM_READ ); pWal->exclusiveMode = (u8)op; } return pWal->exclusiveMode; } #endif /* #ifndef SQLITE_OMIT_WAL */