# 2006 January 31 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the join reordering optimization # in cases that include a LEFT JOIN. # # $Id: where3.test,v 1.4 2008/04/17 19:14:02 drh Exp $ set testdir [file dirname $argv0] source $testdir/tester.tcl # The following is from ticket #1652. # # A comma join then a left outer join: A,B left join C. # Arrange indices so that the B table is chosen to go first. # Also put an index on C, but make sure that A is chosen before C. # do_test where3-1.1 { execsql { CREATE TABLE t1(a, b); CREATE TABLE t2(p, q); CREATE TABLE t3(x, y); INSERT INTO t1 VALUES(111,'one'); INSERT INTO t1 VALUES(222,'two'); INSERT INTO t1 VALUES(333,'three'); INSERT INTO t2 VALUES(1,111); INSERT INTO t2 VALUES(2,222); INSERT INTO t2 VALUES(4,444); CREATE INDEX t2i1 ON t2(p); INSERT INTO t3 VALUES(999,'nine'); CREATE INDEX t3i1 ON t3(x); SELECT * FROM t1, t2 LEFT JOIN t3 ON q=x WHERE p=2 AND a=q; } } {222 two 2 222 {} {}} ifcapable explain { do_test where3-1.1.1 { explain_no_trace {SELECT * FROM t1, t2 LEFT JOIN t3 ON q=x WHERE p=2 AND a=q} } [explain_no_trace {SELECT * FROM t1, t2 LEFT JOIN t3 ON x=q WHERE p=2 AND a=q}] } # Ticket #1830 # # This is similar to the above but with the LEFT JOIN on the # other side. # do_test where3-1.2 { execsql { CREATE TABLE parent1(parent1key, child1key, Child2key, child3key); CREATE TABLE child1 ( child1key NVARCHAR, value NVARCHAR ); CREATE UNIQUE INDEX PKIDXChild1 ON child1 ( child1key ); CREATE TABLE child2 ( child2key NVARCHAR, value NVARCHAR ); INSERT INTO parent1(parent1key,child1key,child2key) VALUES ( 1, 'C1.1', 'C2.1' ); INSERT INTO child1 ( child1key, value ) VALUES ( 'C1.1', 'Value for C1.1' ); INSERT INTO child2 ( child2key, value ) VALUES ( 'C2.1', 'Value for C2.1' ); INSERT INTO parent1 ( parent1key, child1key, child2key ) VALUES ( 2, 'C1.2', 'C2.2' ); INSERT INTO child2 ( child2key, value ) VALUES ( 'C2.2', 'Value for C2.2' ); INSERT INTO parent1 ( parent1key, child1key, child2key ) VALUES ( 3, 'C1.3', 'C2.3' ); INSERT INTO child1 ( child1key, value ) VALUES ( 'C1.3', 'Value for C1.3' ); INSERT INTO child2 ( child2key, value ) VALUES ( 'C2.3', 'Value for C2.3' ); SELECT parent1.parent1key, child1.value, child2.value FROM parent1 LEFT OUTER JOIN child1 ON child1.child1key = parent1.child1key INNER JOIN child2 ON child2.child2key = parent1.child2key; } } {1 {Value for C1.1} {Value for C2.1} 2 {} {Value for C2.2} 3 {Value for C1.3} {Value for C2.3}} ifcapable explain { do_test where3-1.2.1 { explain_no_trace { SELECT parent1.parent1key, child1.value, child2.value FROM parent1 LEFT OUTER JOIN child1 ON child1.child1key = parent1.child1key INNER JOIN child2 ON child2.child2key = parent1.child2key; } } [explain_no_trace { SELECT parent1.parent1key, child1.value, child2.value FROM parent1 LEFT OUTER JOIN child1 ON parent1.child1key = child1.child1key INNER JOIN child2 ON child2.child2key = parent1.child2key; }] } # This procedure executes the SQL. Then it appends # the ::sqlite_query_plan variable. # proc queryplan {sql} { set ::sqlite_sort_count 0 set data [execsql $sql] return [concat $data $::sqlite_query_plan] } # If you have a from clause of the form: A B C left join D # then make sure the query optimizer is able to reorder the # A B C part anyway it wants. # # Following the fix to ticket #1652, there was a time when # the C table would not reorder. So the following reorderings # were possible: # # A B C left join D # B A C left join D # # But these reorders were not allowed # # C A B left join D # A C B left join D # C B A left join D # B C A left join D # # The following tests are here to verify that the latter four # reorderings are allowed again. # do_test where3-2.1 { execsql { CREATE TABLE tA(apk integer primary key, ax); CREATE TABLE tB(bpk integer primary key, bx); CREATE TABLE tC(cpk integer primary key, cx); CREATE TABLE tD(dpk integer primary key, dx); } queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND bpk=ax } } {tA {} tB * tC * tD *} do_test where3-2.1.1 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk WHERE cpk=bx AND bpk=ax } } {tA {} tB * tC * tD *} do_test where3-2.1.2 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk WHERE bx=cpk AND bpk=ax } } {tA {} tB * tC * tD *} do_test where3-2.1.3 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON cx=dpk WHERE bx=cpk AND ax=bpk } } {tA {} tB * tC * tD *} do_test where3-2.1.4 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE bx=cpk AND ax=bpk } } {tA {} tB * tC * tD *} do_test where3-2.1.5 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND ax=bpk } } {tA {} tB * tC * tD *} do_test where3-2.2 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND apk=bx } } {tB {} tA * tC * tD *} do_test where3-2.3 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND apk=bx } } {tB {} tA * tC * tD *} do_test where3-2.4 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE apk=cx AND bpk=ax } } {tC {} tA * tB * tD *} do_test where3-2.5 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=ax AND bpk=cx } } {tA {} tC * tB * tD *} do_test where3-2.6 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE bpk=cx AND apk=bx } } {tC {} tB * tA * tD *} do_test where3-2.7 { queryplan { SELECT * FROM tA, tB, tC LEFT JOIN tD ON dpk=cx WHERE cpk=bx AND apk=cx } } {tB {} tC * tA * tD *} finish_test