# 2010 April 13 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl ifcapable !wal {finish_test ; return } proc reopen_db {} { catch { db close } file delete -force test.db test.db-wal test.db-wal-summary sqlite3_wal db test.db } set ::blobcnt 0 proc blob {nByte} { incr ::blobcnt return [string range [string repeat "${::blobcnt}x" $nByte] 1 $nByte] } proc sqlite3_wal {args} { eval sqlite3 $args [lindex $args 0] eval { PRAGMA page_size = 1024 } [lindex $args 0] eval { PRAGMA journal_mode = wal } [lindex $args 0] eval { PRAGMA synchronous = normal } [lindex $args 0] function blob blob } proc log_file_size {nFrame pgsz} { expr {12 + ($pgsz+16)*$nFrame} } proc log_deleted {logfile} { return [expr [file exists $logfile]==0] } # # These are 'warm-body' tests used while developing the WAL code. They # serve to prove that a few really simple cases work: # # wal-1.*: Read and write the database. # wal-2.*: Test MVCC with one reader, one writer. # wal-3.*: Test transaction rollback. # wal-4.*: Test savepoint/statement rollback. # wal-5.*: Test the temp database. # wal-6.*: Test creating databases with different page sizes. # do_test wal-0.1 { execsql { PRAGMA synchronous = normal } execsql { PRAGMA journal_mode = wal } } {wal} do_test wal-0.2 { file size test.db } {1024} do_test wal-1.0 { execsql { BEGIN; CREATE TABLE t1(a, b); } list [file exists test.db-journal] \ [file exists test.db-wal] \ [file size test.db] } {0 1 1024} do_test wal-1.1 { execsql COMMIT list [file exists test.db-journal] [file exists test.db-wal] } {0 1} do_test wal-1.2 { # There are now two pages in the log. file size test.db-wal } [log_file_size 2 1024] do_test wal-1.3 { execsql { SELECT * FROM sqlite_master } } {table t1 t1 2 {CREATE TABLE t1(a, b)}} do_test wal-1.4 { execsql { INSERT INTO t1 VALUES(1, 2) } execsql { INSERT INTO t1 VALUES(3, 4) } execsql { INSERT INTO t1 VALUES(5, 6) } execsql { INSERT INTO t1 VALUES(7, 8) } execsql { INSERT INTO t1 VALUES(9, 10) } } {} do_test wal-1.5 { execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10} do_test wal-2.1 { sqlite3_wal db2 ./test.db execsql { BEGIN; SELECT * FROM t1 } db2 } {1 2 3 4 5 6 7 8 9 10} do_test wal-2.2 { execsql { INSERT INTO t1 VALUES(11, 12) } execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-2.3 { execsql { SELECT * FROM t1 } db2 } {1 2 3 4 5 6 7 8 9 10} do_test wal-2.4 { execsql { INSERT INTO t1 VALUES(13, 14) } execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} do_test wal-2.5 { execsql { SELECT * FROM t1 } db2 } {1 2 3 4 5 6 7 8 9 10} do_test wal-2.6 { execsql { COMMIT; SELECT * FROM t1 } db2 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} do_test wal-3.1 { execsql { BEGIN; DELETE FROM t1 } execsql { SELECT * FROM t1 } } {} do_test wal-3.2 { execsql { SELECT * FROM t1 } db2 } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} do_test wal-3.3 { execsql { ROLLBACK } execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} db2 close #------------------------------------------------------------------------- # The following tests, wal-4.*, test that savepoints work with WAL # databases. # do_test wal-4.1 { execsql { DELETE FROM t1; BEGIN; INSERT INTO t1 VALUES('a', 'b'); SAVEPOINT sp; INSERT INTO t1 VALUES('c', 'd'); SELECT * FROM t1; } } {a b c d} do_test wal-4.2 { execsql { ROLLBACK TO sp; SELECT * FROM t1; } } {a b} do_test wal-4.3 { execsql { COMMIT; SELECT * FROM t1; } } {a b} do_test wal-4.4.1 { db close sqlite3 db test.db db func blob blob list [execsql { SELECT * FROM t1 }] [file size test.db-wal] } {{a b} 0} do_test wal-4.4.2 { execsql { PRAGMA cache_size = 10 } execsql { CREATE TABLE t2(a, b); INSERT INTO t2 VALUES(blob(400), blob(400)); SAVEPOINT tr; INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */ SELECT count(*) FROM t2; } } {32} do_test wal-4.4.3 { execsql { ROLLBACK TO tr } } {} do_test wal-4.4.4 { set logsize [file size test.db-wal] execsql { INSERT INTO t1 VALUES('x', 'y'); RELEASE tr; } expr { $logsize == [file size test.db-wal] } } {1} do_test wal-4.4.5 { execsql { SELECT count(*) FROM t2 } } {1} do_test wal-4.4.6 { file copy -force test.db test2.db file copy -force test.db-wal test2.db-wal sqlite3 db2 test2.db execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2 } {1 2} do_test wal-4.4.7 { execsql { PRAGMA integrity_check } db2 } {ok} db2 close do_test wal-4.5.1 { reopen_db db func blob blob execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES('a', 'b'); } sqlite3 db test.db db func blob blob list [execsql { SELECT * FROM t1 }] [file size test.db-wal] } {{a b} 0} do_test wal-4.5.2 { execsql { PRAGMA cache_size = 10 } execsql { CREATE TABLE t2(a, b); BEGIN; INSERT INTO t2 VALUES(blob(400), blob(400)); SAVEPOINT tr; INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 2 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 4 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 8 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 16 */ INSERT INTO t2 SELECT blob(400), blob(400) FROM t2; /* 32 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 2 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 4 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 8 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 16 */ INSERT INTO t1 SELECT blob(400), blob(400) FROM t1; /* 32 */ SELECT count(*) FROM t2; } } {32} do_test wal-4.5.3 { execsql { ROLLBACK TO tr } } {} do_test wal-4.5.4 { set logsize [file size test.db-wal] execsql { INSERT INTO t1 VALUES('x', 'y'); RELEASE tr; COMMIT; } expr { $logsize == [file size test.db-wal] } } {1} do_test wal-4.5.5 { execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } } {1 2} do_test wal-4.5.6 { file copy -force test.db test2.db file copy -force test.db-wal test2.db-wal sqlite3 db2 test2.db execsql { SELECT count(*) FROM t2 ; SELECT count(*) FROM t1 } db2 } {1 2} do_test wal-4.5.7 { execsql { PRAGMA integrity_check } db2 } {ok} db2 close reopen_db do_test wal-5.1 { execsql { CREATE TEMP TABLE t2(a, b); INSERT INTO t2 VALUES(1, 2); } } {} do_test wal-5.2 { execsql { BEGIN; INSERT INTO t2 VALUES(3, 4); SELECT * FROM t2; } } {1 2 3 4} do_test wal-5.3 { execsql { ROLLBACK; SELECT * FROM t2; } } {1 2} do_test wal-5.4 { execsql { CREATE TEMP TABLE t3(x UNIQUE); BEGIN; INSERT INTO t2 VALUES(3, 4); INSERT INTO t3 VALUES('abc'); } catchsql { INSERT INTO t3 VALUES('abc') } } {1 {column x is not unique}} do_test wal-5.5 { execsql { COMMIT; SELECT * FROM t2; } } {1 2 3 4} db close foreach sector {512 4096} { sqlite3_simulate_device -sectorsize $sector foreach pgsz {512 1024 2048 4096} { file delete -force test.db test.db-wal do_test wal-6.$sector.$pgsz.1 { sqlite3 db test.db -vfs devsym execsql " PRAGMA page_size = $pgsz; PRAGMA journal_mode = wal; " execsql " CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); " db close file size test.db } [expr $pgsz*2] do_test wal-6.$sector.$pgsz.2 { log_deleted test.db-wal } {1} } } do_test wal-7.1 { file delete -force test.db test.db-wal sqlite3_wal db test.db execsql { PRAGMA page_size = 1024; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } list [file size test.db] [file size test.db-wal] } [list 1024 [log_file_size 3 1024]] do_test wal-7.2 { execsql { PRAGMA wal_checkpoint } list [file size test.db] [file size test.db-wal] } [list 2048 [log_file_size 3 1024]] # Execute some transactions in auto-vacuum mode to test database file # truncation. # do_test wal-8.1 { reopen_db catch { db close } file delete -force test.db test.db-wal sqlite3 db test.db db function blob blob execsql { PRAGMA auto_vacuum = 1; PRAGMA journal_mode = wal; PRAGMA auto_vacuum; } } {wal 1} do_test wal-8.2 { execsql { PRAGMA page_size = 1024; CREATE TABLE t1(x); INSERT INTO t1 VALUES(blob(900)); INSERT INTO t1 VALUES(blob(900)); INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */ PRAGMA wal_checkpoint; } file size test.db } [expr 68*1024] do_test wal-8.3 { execsql { DELETE FROM t1 WHERE rowid<54; PRAGMA wal_checkpoint; } file size test.db } [expr 14*1024] # Run some "warm-body" tests to ensure that log-summary files with more # than 256 entries (log summaries that contain index blocks) work Ok. # do_test wal-9.1 { reopen_db execsql { CREATE TABLE t1(x PRIMARY KEY); INSERT INTO t1 VALUES(blob(900)); INSERT INTO t1 VALUES(blob(900)); INSERT INTO t1 SELECT blob(900) FROM t1; /* 4 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 8 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 16 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 32 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 64 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 128 */ INSERT INTO t1 SELECT blob(900) FROM t1; /* 256 */ } file size test.db } 1024 do_test wal-9.2 { sqlite3_wal db2 test.db execsql {PRAGMA integrity_check } db2 } {ok} do_test wal-9.3 { file delete -force test2.db test2.db-wal file copy test.db test2.db file copy test.db-wal test2.db-wal sqlite3_wal db3 test2.db execsql {PRAGMA integrity_check } db3 } {ok} db3 close do_test wal-9.4 { execsql { PRAGMA wal_checkpoint } db2 close sqlite3_wal db2 test.db execsql {PRAGMA integrity_check } db2 } {ok} foreach handle {db db2 db3} { catch { $handle close } } unset handle #------------------------------------------------------------------------- # The following block of tests - wal-10.* - test that the WAL locking # scheme works in simple cases. This block of tests is run twice. Once # using multiple connections in the address space of the current process, # and once with all connections except one running in external processes. # foreach code [list { set ::code2_chan [launch_testfixture] set ::code3_chan [launch_testfixture] proc code2 {tcl} { testfixture $::code2_chan $tcl } proc code3 {tcl} { testfixture $::code3_chan $tcl } set tn 1 } { proc code2 {tcl} { uplevel #0 $tcl } proc code3 {tcl} { uplevel #0 $tcl } set tn 2 }] { eval $code reopen_db # Open connections [db2] and [db3]. Depending on which iteration this # is, the connections may be created in this interpreter, or in # interpreters running in other OS processes. As such, the [db2] and [db3] # commands should only be accessed within [code2] and [code3] blocks, # respectively. # code2 { sqlite3 db2 test.db ; db2 eval { PRAGMA journal_mode = WAL } } code3 { sqlite3 db3 test.db ; db3 eval { PRAGMA journal_mode = WAL } } # Shorthand commands. Execute SQL using database connection [db2] or # [db3]. Return the results. # proc sql2 {sql} { code2 [list db2 eval $sql] } proc sql3 {sql} { code3 [list db3 eval $sql] } # Initialize the database schema and contents. # do_test wal-10.$tn.1 { execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); SELECT * FROM t1; } } {1 2} # Open a transaction and write to the database using [db]. Check that [db2] # is still able to read the snapshot before the transaction was opened. # do_test wal-10.$tn.2 { execsql { BEGIN; INSERT INTO t1 VALUES(3, 4); } sql2 {SELECT * FROM t1} } {1 2} # Have [db] commit the transaction. Check that [db2] is now seeing the # new, updated snapshot. # do_test wal-10.$tn.3 { execsql { COMMIT } sql2 {SELECT * FROM t1} } {1 2 3 4} # Have [db2] open a read transaction. Then write to the db via [db]. Check # that [db2] is still seeing the original snapshot. Then read with [db3]. # [db3] should see the newly committed data. # do_test wal-10.$tn.4 { sql2 { BEGIN ; SELECT * FROM t1} } {1 2 3 4} do_test wal-10.$tn.5 { execsql { INSERT INTO t1 VALUES(5, 6); } sql2 {SELECT * FROM t1} } {1 2 3 4} do_test wal-10.$tn.6 { sql3 {SELECT * FROM t1} } {1 2 3 4 5 6} do_test wal-10.$tn.7 { sql2 COMMIT } {} # Have [db2] open a write transaction. Then attempt to write to the # database via [db]. This should fail (writer lock cannot be obtained). # # Then open a read-transaction with [db]. Commit the [db2] transaction # to disk. Verify that [db] still cannot write to the database (because # it is reading an old snapshot). # # Close the current [db] transaction. Open a new one. [db] can now write # to the database (as it is not locked and [db] is reading the latest # snapshot). # do_test wal-10.$tn.7 { sql2 { BEGIN; INSERT INTO t1 VALUES(7, 8) ; } catchsql { INSERT INTO t1 VALUES(9, 10) } } {1 {database is locked}} do_test wal-10.$tn.8 { execsql { BEGIN ; SELECT * FROM t1 } } {1 2 3 4 5 6} do_test wal-10.$tn.9 { sql2 COMMIT catchsql { INSERT INTO t1 VALUES(9, 10) } } {1 {database is locked}} do_test wal-10.$tn.10 { execsql { COMMIT; BEGIN; INSERT INTO t1 VALUES(9, 10); COMMIT; } execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10} # Open a read transaction with [db2]. Check that this prevents [db] from # checkpointing the database. But not from writing to it. # do_test wal-10.$tn.11 { sql2 { BEGIN; SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10} do_test wal-10.$tn.12 { catchsql { PRAGMA wal_checkpoint } } {1 {database is locked}} do_test wal-10.$tn.13 { execsql { INSERT INTO t1 VALUES(11, 12) } sql2 {SELECT * FROM t1} } {1 2 3 4 5 6 7 8 9 10} # Connection [db2] is holding a lock on a snapshot, preventing [db] from # checkpointing the database. Add a busy-handler to [db]. If [db2] completes # its transaction from within the busy-handler, [db] is able to complete # the checkpoint operation. # proc busyhandler x { if {$x==4} { sql2 COMMIT } if {$x<5} { return 0 } return 1 } db busy busyhandler do_test wal-10.$tn.14 { execsql { PRAGMA wal_checkpoint } } {} # Similar to the test above. Except this time, a new read transaction is # started (db3) while the checkpointer is waiting for an old one (db2) to # finish. The checkpointer can finish, but any subsequent write operations # must wait until after db3 has closed the read transaction, as db3 is a # "region D" writer. # db busy {} do_test wal-10.$tn.15 { sql2 { BEGIN; SELECT * FROM t1; } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-10.$tn.16 { catchsql { PRAGMA wal_checkpoint } } {1 {database is locked}} proc busyhandler x { if {$x==3} { sql3 { BEGIN; SELECT * FROM t1 } } if {$x==4} { sql2 COMMIT } if {$x<5} { return 0 } return 1 } db busy busyhandler do_test wal-10.$tn.17 { execsql { PRAGMA wal_checkpoint } } {} do_test wal-10.$tn.18 { sql3 { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-10.$tn.19 { catchsql { INSERT INTO t1 VALUES(13, 14) } } {1 {database is locked}} do_test wal-10.$tn.20 { execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12} do_test wal-10.$tn.21 { sql3 COMMIT } {} do_test wal-10.$tn.22 { execsql { INSERT INTO t1 VALUES(13, 14) } execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} # Set [db3] up as a "region D" reader again. Then upgrade it to a writer # and back down to a reader. Then, check that a checkpoint is not possible # (as [db3] still has a snapshot locked). # do_test wal-10.$tn.23 { execsql { PRAGMA wal_checkpoint } } {} do_test wal-10.$tn.24 { sql2 { BEGIN; SELECT * FROM t1; } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14} do_test wal-10.$tn.25 { execsql { PRAGMA wal_checkpoint } } {} do_test wal-10.$tn.26 { catchsql { INSERT INTO t1 VALUES(15, 16) } } {1 {database is locked}} do_test wal-10.$tn.27 { sql3 { INSERT INTO t1 VALUES(15, 16) } } {} do_test wal-10.$tn.28 { code3 { set ::STMT [sqlite3_prepare db3 "SELECT * FROM t1" -1 TAIL] sqlite3_step $::STMT } sql3 COMMIT execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16} db busy {} do_test wal-10.$tn.29 { execsql { INSERT INTO t1 VALUES(17, 18) } catchsql { PRAGMA wal_checkpoint } } {1 {database is locked}} do_test wal-10.$tn.30 { code3 { sqlite3_finalize $::STMT } execsql { PRAGMA wal_checkpoint } } {} # At one point, if a reader failed to upgrade to a writer because it # was reading an old snapshot, the write-locks were not being released. # Test that this bug has been fixed. # do_test wal-10.$tn.31 { execsql { BEGIN ; SELECT * FROM t1 } sql2 { INSERT INTO t1 VALUES(19, 20) } catchsql { INSERT INTO t1 VALUES(21, 22) } } {1 {database is locked}} do_test wal-10.$tn.32 { # This statement would fail when the bug was present. sql2 { INSERT INTO t1 VALUES(21, 22) } } {} do_test wal-10.$tn.33 { execsql { SELECT * FROM t1 ; COMMIT } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18} do_test wal-10.$tn.34 { execsql { SELECT * FROM t1 } } {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22} # Test that if a checkpointer cannot obtain the required locks, it # releases all locks before returning a busy error. # do_test wal-10.$tn.35 { execsql { DELETE FROM t1; INSERT INTO t1 VALUES('a', 'b'); INSERT INTO t1 VALUES('c', 'd'); } sql2 { BEGIN; SELECT * FROM t1; } } {a b c d} proc busyhandler x { return 1 } db busy busyhandler do_test wal-10.$tn.36 { catchsql { PRAGMA wal_checkpoint } } {1 {database is locked}} do_test wal-10.$tn.36 { sql3 { INSERT INTO t1 VALUES('e', 'f') } sql2 { SELECT * FROM t1 } } {a b c d} do_test wal-10.$tn.37 { sql2 COMMIT execsql { PRAGMA wal_checkpoint } } {} catch { db close } catch { code2 { db2 close } } catch { code3 { db3 close } } catch { close $::code2_chan } catch { close $::code3_chan } } #------------------------------------------------------------------------- # This block of tests, wal-11.*, test that nothing goes terribly wrong # if frames must be written to the log file before a transaction is # committed (in order to free up memory). # do_test wal-11.1 { reopen_db execsql { PRAGMA cache_size = 10; PRAGMA page_size = 1024; CREATE TABLE t1(x PRIMARY KEY); } list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044] } {1 3} do_test wal-11.2 { execsql { PRAGMA wal_checkpoint } list [expr [file size test.db]/1024] [file size test.db-wal] } [list 3 [log_file_size 3 1024]] do_test wal-11.3 { execsql { INSERT INTO t1 VALUES( blob(900) ) } list [expr [file size test.db]/1024] [file size test.db-wal] } [list 3 [log_file_size 4 1024]] do_test wal-11.4 { execsql { BEGIN; INSERT INTO t1 SELECT blob(900) FROM t1; -- 2 INSERT INTO t1 SELECT blob(900) FROM t1; -- 4 INSERT INTO t1 SELECT blob(900) FROM t1; -- 8 INSERT INTO t1 SELECT blob(900) FROM t1; -- 16 } list [expr [file size test.db]/1024] [file size test.db-wal] } [list 3 [log_file_size 32 1024]] do_test wal-11.5 { execsql { SELECT count(*) FROM t1; PRAGMA integrity_check; } } {16 ok} do_test wal-11.6 { execsql COMMIT list [expr [file size test.db]/1024] [file size test.db-wal] } [list 3 [log_file_size 41 1024]] do_test wal-11.7 { execsql { SELECT count(*) FROM t1; PRAGMA integrity_check; } } {16 ok} do_test wal-11.8 { execsql { PRAGMA wal_checkpoint } list [expr [file size test.db]/1024] [file size test.db-wal] } [list 37 [log_file_size 41 1024]] do_test wal-11.9 { db close list [expr [file size test.db]/1024] [log_deleted test.db-wal] } {37 1} sqlite3_wal db test.db do_test wal-11.10 { execsql { PRAGMA cache_size = 10; BEGIN; INSERT INTO t1 SELECT blob(900) FROM t1; -- 32 SELECT count(*) FROM t1; } list [expr [file size test.db]/1024] [file size test.db-wal] } [list 37 [log_file_size 37 1024]] do_test wal-11.11 { execsql { SELECT count(*) FROM t1; ROLLBACK; SELECT count(*) FROM t1; } } {32 16} do_test wal-11.12 { list [expr [file size test.db]/1024] [file size test.db-wal] } [list 37 [log_file_size 37 1024]] do_test wal-11.13 { execsql { INSERT INTO t1 VALUES( blob(900) ); SELECT count(*) FROM t1; PRAGMA integrity_check; } } {17 ok} do_test wal-11.14 { list [expr [file size test.db]/1024] [file size test.db-wal] } [list 37 [log_file_size 37 1024]] #------------------------------------------------------------------------- # This block of tests, wal-12.*, tests the fix for a problem that # could occur if a log that is a prefix of an older log is written # into a reused log file. # reopen_db do_test wal-12.1 { execsql { PRAGMA page_size = 1024; CREATE TABLE t1(x, y); CREATE TABLE t2(x, y); INSERT INTO t1 VALUES('A', 1); } list [expr [file size test.db]/1024] [file size test.db-wal] } [list 1 [log_file_size 5 1024]] do_test wal-12.2 { db close sqlite3 db test.db execsql { PRAGMA synchronous = normal; UPDATE t1 SET y = 0 WHERE x = 'A'; } list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044] } {3 1} do_test wal-12.3 { execsql { INSERT INTO t2 VALUES('B', 1) } list [expr [file size test.db]/1024] [expr [file size test.db-wal]/1044] } {3 2} do_test wal-12.4 { file copy -force test.db test2.db file copy -force test.db-wal test2.db-wal sqlite3_wal db2 test2.db execsql { SELECT * FROM t2 } db2 } {B 1} db2 close do_test wal-12.5 { execsql { PRAGMA wal_checkpoint; UPDATE t2 SET y = 2 WHERE x = 'B'; PRAGMA wal_checkpoint; UPDATE t1 SET y = 1 WHERE x = 'A'; PRAGMA wal_checkpoint; UPDATE t1 SET y = 0 WHERE x = 'A'; SELECT * FROM t2; } } {B 2} do_test wal-12.6 { file copy -force test.db test2.db file copy -force test.db-wal test2.db-wal sqlite3_wal db2 test2.db execsql { SELECT * FROM t2 } db2 } {B 2} db2 close db close #------------------------------------------------------------------------- # Test large log summaries. # # In this case "large" usually means a log file that requires a wal-index # mapping larger than 64KB (the default initial allocation). A 64KB wal-index # is large enough for a log file that contains approximately 13100 frames. # So the following tests create logs containing at least this many frames. # # wal-13.1.*: This test case creates a very large log file within the # file-system (around 200MB). The log file does not contain # any valid frames. Test that the database file can still be # opened and queried, and that the invalid log file causes no # problems. # # wal-13.2.*: Test that a process may create a large log file and query # the database (including the log file that it itself created). # # wal-13.3.*: Test that if a very large log file is created, and then a # second connection is opened on the database file, it is possible # to query the database (and the very large log) using the # second connection. # # wal-13.4.*: Same test as wal-13.3.*. Except in this case the second # connection is opened by an external process. # do_test wal-13.1.1 { list [file exists test.db] [file exists test.db-wal] } {1 0} do_test wal-13.1.2 { set fd [open test.db-wal w] seek $fd [expr 200*1024*1024] puts $fd "" close $fd sqlite3 db test.db execsql { SELECT * FROM t2 } } {B 2} do_test wal-13.1.3 { db close file exists test.db-wal } {0} do_test wal-13.2.1 { sqlite3 db test.db execsql { SELECT count(*) FROM t2 } } {1} do_test wal-13.2.2 { for {set i 0} {$i < 16} {incr i} { execsql { INSERT INTO t2 SELECT randomblob(400), randomblob(400) FROM t2 } } execsql { SELECT count(*) FROM t2 } } [expr int(pow(2, 16))] do_test wal-13.2.1 { file size test.db-wal } [log_file_size 33123 1024] foreach code [list { set tn 3 proc buddy {tcl} { uplevel #0 $tcl } } { set tn 4 set ::buddy [launch_testfixture] proc buddy {tcl} { testfixture $::buddy $tcl } }] { eval $code reopen_db do_test wal-13.$tn.0 { buddy { sqlite3 db2 test.db } execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(x); INSERT INTO t1 SELECT randomblob(800); } execsql { SELECT count(*) FROM t1 } } {1} for {set ii 1} {$ii<16} {incr ii} { do_test wal-13.$tn.$ii.a { buddy { db2 eval { INSERT INTO t1 SELECT randomblob(800) FROM t1 } } buddy { db2 eval { SELECT count(*) FROM t1 } } } [expr (1<<$ii)] do_test wal-13.$tn.$ii.b { db eval { SELECT count(*) FROM t1 } } [expr (1<<$ii)] do_test wal-13.$tn.$ii.c { db eval { SELECT count(*) FROM t1 } } [expr (1<<$ii)] do_test wal-13.$tn.$ii.d { db eval { PRAGMA integrity_check } } {ok} } catch { db2 close } catch { close $::buddy } db close } #------------------------------------------------------------------------- # Check a fun corruption case has been fixed. # # The problem was that after performing a checkpoint using a connection # that had an out-of-date pager-cache, the next time the connection was # used it did not realize the cache was out-of-date and proceeded to # operate with an inconsistent cache. Leading to corruption. # catch { db close } catch { db2 close } catch { db3 close } file delete -force test.db test.db-wal sqlite3 db test.db sqlite3 db2 test.db do_test wal-14 { execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a PRIMARY KEY, b); INSERT INTO t1 VALUES(randomblob(10), randomblob(100)); INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1; INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1; INSERT INTO t1 SELECT randomblob(10), randomblob(100) FROM t1; } db2 eval { INSERT INTO t1 SELECT randomblob(10), randomblob(100); INSERT INTO t1 SELECT randomblob(10), randomblob(100); INSERT INTO t1 SELECT randomblob(10), randomblob(100); INSERT INTO t1 SELECT randomblob(10), randomblob(100); } # After executing the "PRAGMA wal_checkpoint", connection [db] was being # left with an inconsistent cache. Running the CREATE INDEX statement # in this state led to database corruption. catchsql { PRAGMA wal_checkpoint; CREATE INDEX i1 on t1(b); } db2 eval { PRAGMA integrity_check } } {ok} catch { db close } catch { db2 close } #------------------------------------------------------------------------- # The following block of tests - wal-15.* - focus on testing the # implementation of the sqlite3_wal_checkpoint() interface. # file delete -force test.db test.db-wal sqlite3 db test.db do_test wal-15.1 { execsql { PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; } execsql { CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); } } {} # Test that an error is returned if the database name is not recognized # do_test wal-15.2.1 { sqlite3_wal_checkpoint db aux } {SQLITE_ERROR} do_test wal-15.2.2 { sqlite3_errcode db } {SQLITE_ERROR} do_test wal-15.2.3 { sqlite3_errmsg db } {unknown database: aux} # Test that an error is returned if an attempt is made to checkpoint # if a transaction is open on the database. # do_test wal-15.3.1 { execsql { BEGIN; INSERT INTO t1 VALUES(3, 4); } sqlite3_wal_checkpoint db main } {SQLITE_LOCKED} do_test wal-15.3.2 { sqlite3_errcode db } {SQLITE_LOCKED} do_test wal-15.3.3 { sqlite3_errmsg db } {database table is locked} # Also test that an error is returned if the db cannot be checkpointed # because of locks held by another connection. # sqlite3 db2 test.db do_test wal-15.4.1 { execsql { BEGIN; SELECT * FROM t1; } db2 } {1 2} do_test wal-15.4.2 { execsql { COMMIT } sqlite3_wal_checkpoint db } {SQLITE_BUSY} do_test wal-15.4.3 { sqlite3_errmsg db } {database is locked} # After [db2] drops its lock, [db] may checkpoint the db. # do_test wal-15.4.4 { execsql { COMMIT } db2 sqlite3_wal_checkpoint db } {SQLITE_OK} do_test wal-15.4.5 { sqlite3_errmsg db } {not an error} do_test wal-15.4.6 { file size test.db } [expr 1024*2] catch { db2 close } catch { db close } #------------------------------------------------------------------------- # The following block of tests - wal-16.* - test that if a NULL pointer or # an empty string is passed as the second argument of the wal_checkpoint() # API, an attempt is made to checkpoint all attached databases. # foreach {tn ckpt_cmd ckpt_res ckpt_main ckpt_aux} { 1 {sqlite3_wal_checkpoint db} SQLITE_OK 1 1 2 {sqlite3_wal_checkpoint db ""} SQLITE_OK 1 1 3 {db eval "PRAGMA wal_checkpoint"} {} 1 1 4 {sqlite3_wal_checkpoint db main} SQLITE_OK 1 0 5 {sqlite3_wal_checkpoint db aux} SQLITE_OK 0 1 6 {sqlite3_wal_checkpoint db temp} SQLITE_OK 0 0 7 {db eval "PRAGMA main.wal_checkpoint"} {} 1 0 8 {db eval "PRAGMA aux.wal_checkpoint"} {} 0 1 9 {db eval "PRAGMA temp.wal_checkpoint"} {} 0 0 } { do_test wal-16.$tn.1 { file delete -force test2.db test2.db-wal test2.db-journal file delete -force test.db test.db-wal test.db-journal sqlite3 db test.db execsql { ATTACH 'test2.db' AS aux; PRAGMA main.journal_mode = WAL; PRAGMA aux.journal_mode = WAL; PRAGMA synchronous = NORMAL; } } {wal wal} do_test wal-16.$tn.2 { execsql { CREATE TABLE main.t1(a, b, PRIMARY KEY(a, b)); CREATE TABLE aux.t2(a, b, PRIMARY KEY(a, b)); INSERT INTO t2 VALUES(1, randomblob(1000)); INSERT INTO t2 VALUES(2, randomblob(1000)); INSERT INTO t1 SELECT * FROM t2; } list [file size test.db] [file size test.db-wal] } [list [expr 1*1024] [log_file_size 10 1024]] do_test wal-16.$tn.3 { list [file size test2.db] [file size test2.db-wal] } [list [expr 1*1024] [log_file_size 16 1024]] do_test wal-16.$tn.4 [list eval $ckpt_cmd] $ckpt_res do_test wal-16.$tn.5 { list [file size test.db] [file size test.db-wal] } [list [expr ($ckpt_main ? 7 : 1)*1024] [log_file_size 10 1024]] do_test wal-16.$tn.6 { list [file size test2.db] [file size test2.db-wal] } [list [expr ($ckpt_aux ? 7 : 1)*1024] [log_file_size 16 1024]] catch { db close } } #------------------------------------------------------------------------- # The following tests - wal-17.* - attempt to verify that the correct # number of "padding" frames are appended to the log file when a transaction # is committed in synchronous=FULL mode. # # Do this by creating a database that uses 512 byte pages. Then writing # a transaction that modifies 171 pages. In synchronous=NORMAL mode, this # produces a log file of: # # 12 + (16+512)*171 = 90300 bytes. # # Slightly larger than 11*8192 = 90112 bytes. # # Run the test using various different sector-sizes. In each case, the # WAL code should write the 90300 bytes of log file containing the # transaction, then append as may frames as are required to extend the # log file so that no part of the next transaction will be written into # a disk-sector used by transaction just committed. # set old_pending_byte [sqlite3_test_control_pending_byte 0x10000000] catch { db close } foreach {tn sectorsize logsize} { 1 128 90828 2 256 90828 3 512 90828 4 1024 91356 5 2048 92412 6 4096 94524 7 8192 98748 } { file delete -force test.db test.db-wal test.db-journal sqlite3_simulate_device -sectorsize $sectorsize sqlite3 db test.db -vfs devsym do_test wal-17.$tn.1 { execsql { PRAGMA auto_vacuum = 0; PRAGMA page_size = 512; PRAGMA journal_mode = WAL; PRAGMA synchronous = FULL; } execsql { BEGIN; CREATE TABLE t(x); } for {set i 0} {$i<166} {incr i} { execsql { INSERT INTO t VALUES(randomblob(400)) } } execsql COMMIT file size test.db-wal } $logsize do_test wal-17.$tn.2 { file size test.db } 512 do_test wal-17.$tn.3 { db close file size test.db } [expr 512*171] } sqlite3_test_control_pending_byte $old_pending_byte #------------------------------------------------------------------------- # This test - wal-18.* - verifies a couple of specific conditions that # may be encountered while recovering a log file are handled correctly: # # wal-18.1.* When the first 32-bits of a frame checksum is correct but # the second 32-bits are false, and # # wal-18.2.* When the page-size field that occurs at the start of a log # file is a power of 2 greater than 16384 or smaller than 512. # file delete -force test.db test.db-wal test.db-journal do_test wal-18.0 { sqlite3 db test.db execsql { PRAGMA page_size = 1024; PRAGMA auto_vacuum = 0; PRAGMA journal_mode = WAL; PRAGMA synchronous = OFF; CREATE TABLE t1(a, b, UNIQUE(a, b)); INSERT INTO t1 VALUES(0, 0); PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(1, 2); -- frames 1 and 2 INSERT INTO t1 VALUES(3, 4); -- frames 3 and 4 INSERT INTO t1 VALUES(5, 6); -- frames 5 and 6 } file copy -force test.db testX.db file copy -force test.db-wal testX.db-wal db close list [file size testX.db] [file size testX.db-wal] } [list [expr 3*1024] [log_file_size 6 1024]] unset -nocomplain nFrame result foreach {nFrame result} { 0 {0 0} 1 {0 0} 2 {0 0 1 2} 3 {0 0 1 2} 4 {0 0 1 2 3 4} 5 {0 0 1 2 3 4} 6 {0 0 1 2 3 4 5 6} } { do_test wal-18.1.$nFrame { file copy -force testX.db test.db file copy -force testX.db-wal test.db-wal hexio_write test.db-wal [expr 12 + $nFrame*(16+1024) + 12] 00000000 sqlite3 db test.db execsql { SELECT * FROM t1; PRAGMA integrity_check; } } [concat $result ok] db close } proc randomblob {pgsz} { sqlite3 rbdb :memory: set blob [rbdb one {SELECT randomblob($pgsz)}] rbdb close set blob } proc logcksum {ckv1 ckv2 blob} { upvar $ckv1 c1 upvar $ckv2 c2 binary scan $blob iu* values foreach v $values { incr c1 $v incr c2 $c1 } set c1 [expr ($c1 + ($c1>>24))&0xFFFFFFFF] set c2 [expr ($c2 + ($c2>>24))&0xFFFFFFFF] } file copy -force test.db testX.db foreach {tn pgsz works} { 1 128 0 2 256 0 3 512 1 4 1024 1 5 2048 1 6 4096 1 7 8192 1 8 16384 1 9 32768 1 10 65536 0 11 1020 0 } { for {set pg 1} {$pg <= 3} {incr pg} { file copy -force testX.db test.db file delete -force test.db-wal # Check that the database now exists and consists of three pages. And # that there is no associated wal file. # do_test wal-18.2.$tn.$pg.1 { file exists test.db-wal } 0 do_test wal-18.2.$tn.$pg.2 { file exists test.db } 1 do_test wal-18.2.$tn.$pg.3 { file size test.db } [expr 1024*3] do_test wal-18.2.$tn.$pg.4 { # Create a wal file that contains a single frame (database page # number $pg) with the commit flag set. The frame checksum is # correct, but the contents of the database page are corrupt. # # The page-size in the log file header is set to $pgsz. If the # WAL code considers $pgsz to be a valid SQLite database file page-size, # the database will be corrupt (because the garbage frame contents # will be treated as valid content). If $pgsz is invalid (too small # or too large), the db will not be corrupt as the log file will # be ignored. # set c1 22 set c2 23 set walhdr [binary format III $pgsz $c1 $c2] set framebody [randomblob $pgsz] set framehdr [binary format II $pg 5] logcksum c1 c2 $framehdr logcksum c1 c2 $framebody set framehdr [binary format IIII $pg 5 $c1 $c2] set fd [open test.db-wal w] fconfigure $fd -encoding binary -translation binary puts -nonewline $fd $walhdr puts -nonewline $fd $framehdr puts -nonewline $fd $framebody close $fd file size test.db-wal } [log_file_size 1 $pgsz] do_test wal-18.2.$tn.$pg.5 { sqlite3 db test.db set rc [catch { db one {PRAGMA integrity_check} } msg] expr { $rc!=0 || $msg!="ok" } } $works db close } } catch { db2 close } catch { db close } finish_test