SQLite

Check-in [fc94575d77]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Further work on the new API. All the functions to execute queries are there now. (CVS 1427)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: fc94575d77f9865e1553bb70c2e3eda2a0b8669e
User & Date: danielk1977 2004-05-21 10:08:54.000
Context
2004-05-21
10:49
Pretty-print blobs in vdbe-traces. (CVS 1428) (check-in: 5eb94c9765 user: danielk1977 tags: trunk)
10:08
Further work on the new API. All the functions to execute queries are there now. (CVS 1427) (check-in: fc94575d77 user: danielk1977 tags: trunk)
03:01
Eliminate the OP_SortMakeRec and OP_SortCallback opcodes. Sort using the standard record format. (CVS 1426) (check-in: 25643a0137 user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/main.c.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.179 2004/05/21 01:47:27 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** A pointer to this structure is used to communicate information







|







10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
**
*************************************************************************
** Main file for the SQLite library.  The routines in this file
** implement the programmer interface to the library.  Routines in
** other files are for internal use by SQLite and should not be
** accessed by users of the library.
**
** $Id: main.c,v 1.180 2004/05/21 10:08:54 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>

/*
** A pointer to this structure is used to communicate information
1357
1358
1359
1360
1361
1362
1363


























1364
1365
1366
1367
1368
1369
1370
    rc = openDatabase(zFilename8, ppDb, options, TEXT_Utf16le);
  }

  sqliteFree(zFilename8);
  return rc;
}




























#if 0

/*
** sqlite3_open
**
*/







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
    rc = openDatabase(zFilename8, ppDb, options, TEXT_Utf16le);
  }

  sqliteFree(zFilename8);
  return rc;
}

/*
** The following routine destroys a virtual machine that is created by
** the sqlite3_compile() routine. The integer returned is an SQLITE_
** success/failure code that describes the result of executing the virtual
** machine.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
int sqlite3_finalize_new(sqlite3_stmt *pStmt){
  return sqlite3VdbeFinalize((Vdbe*)pStmt, 0);
}

/*
** Terminate the current execution of an SQL statement and reset it
** back to its starting state so that it can be reused. A success code from
** the prior execution is returned.
**
** This routine sets the error code and string returned by
** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
*/
int sqlite3_reset_new(sqlite3_stmt *pStmt){
  int rc = sqlite3VdbeReset((Vdbe*)pStmt, 0);
  sqlite3VdbeMakeReady((Vdbe*)pStmt, -1, 0);
  return rc;
}

#if 0

/*
** sqlite3_open
**
*/
Changes to src/sqlite.h.in.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the SQLite library
** presents to client programs.
**
** @(#) $Id: sqlite.h.in,v 1.67 2004/05/21 01:47:27 danielk1977 Exp $
*/
#ifndef _SQLITE_H_
#define _SQLITE_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the SQLite library
** presents to client programs.
**
** @(#) $Id: sqlite.h.in,v 1.68 2004/05/21 10:08:54 danielk1977 Exp $
*/
#ifndef _SQLITE_H_
#define _SQLITE_H_
#include <stdarg.h>     /* Needed for the definition of va_list */

/*
** Make sure we can call this stuff from C++.
994
995
996
997
998
999
1000






1001
1002
1003
1004
1005
1006
1007
** sqlite3_bind_int32
** sqlite3_bind_int64
** sqlite3_bind_double
** sqlite3_bind_null
** sqlite3_bind_text
** sqlite3_bind_text16
** sqlite3_bind_blob






**
** Assuming no other intervening sqlite3_* API calls are made, the error
** code returned by this function is associated with the same error as
** the strings  returned by sqlite3_errmsg() and sqlite3_errmsg16().
*/
int sqlite3_errcode(sqlite3 *db);








>
>
>
>
>
>







994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
** sqlite3_bind_int32
** sqlite3_bind_int64
** sqlite3_bind_double
** sqlite3_bind_null
** sqlite3_bind_text
** sqlite3_bind_text16
** sqlite3_bind_blob
** sqlite3_open
** sqlite3_open16
** sqlite3_prepare
** sqlite3_prepare16
** sqlite3_step
** sqlite3_finalize
**
** Assuming no other intervening sqlite3_* API calls are made, the error
** code returned by this function is associated with the same error as
** the strings  returned by sqlite3_errmsg() and sqlite3_errmsg16().
*/
int sqlite3_errcode(sqlite3 *db);

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056





















1057
1058
1059
1060
1061
1062
1063
1064


















































































































1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

1085
1086
1087
1088
1089
1090
1091
1092


1093






1094
1095


1096
1097



1098







1099
















1100











1101













1102
1103
1104
1105













1106
1107
1108
1109
1110
/*
** To execute an SQL query, it must first be compiled into a byte-code
** program using this routine. The first parameter "db" is an SQLite
** database handle. The second parameter "zSql" is the statement
** to be compiled, encoded as UTF-8 text. If the next parameter, "nBytes",
** is less than zero, then zSql is read up to the first nul terminator.
** If "nBytes" is not less than zero, then it is the length of the
** string zSql, in bytes (not characters).
**
** *pzTail is made to point to the first character past the end of the first
** SQL statement in zSql.  This routine only compiles the first statement
** in zSql, so *pzTail is left pointing to what remains uncompiled.
**
** *ppStmt is left pointing to a compiled SQL statement that can be
** executed using sqlite3_step().  Or if there is an error, *ppStmt may be
** set to NULL.  If the input text contained no SQL (if the input is and
** empty string or a comment) then *ppStmt is set to NULL.
**
** On success, SQLITE_OK is returned.  Otherwise an error code is returned.
** 
*/
int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nBytes,             /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);






















int sqlite3_prepare16(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nBytes,             /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);



















































































































int sqlite3_open_new(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  const char **args       /* Null terminated array of option strings */
);

int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  const char **args       /* Null terminated array of option strings */
);


#if 0

int sqlite3_close(sqlite3*);

int sqlite3_finalize(sqlite3_stmt*);
int sqlite3_reset(sqlite3_stmt*);


int sqlite3_step(sqlite3_stmt*);

#define SQLITE3_INTEGER  1
#define SQLITE3_FLOAT    2
#define SQLITE3_TEXT     3
#define SQLITE3_BLOB     4
#define SQLITE3_NULL     5



int sqlite3_column_count(sqlite3_stmt*);






int sqlite3_column_type(sqlite3_stmt*,int);
const char *sqlite3_column_decltype(sqlite3_stmt*,int);


const void *sqlite3_column_decltype16(sqlite3_stmt*,int);
const char *sqlite3_column_name(sqlite3_stmt*,int);



const void *sqlite3_column_name16(sqlite3_stmt*,int);







const unsigned char *sqlite3_column_data(sqlite3_stmt*,int);
















const void *sqlite3_column_data16(sqlite3_stmt*,int);











int sqlite3_column_bytes(sqlite3_stmt*,int);













long long int sqlite3_column_int(sqlite3_stmt*,int);
double sqlite3_column_float(sqlite3_stmt*,int);

#endif














#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif







|

|



















>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>








>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>












|
|
|
|
|
|
|
|
>
|







>
>
|
>
>
>
>
>
>
|
|
>
>
|
|
>
>
>
|
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>

>
>
>
>
>
>
>
>
>
>
>
>
>

<

<
>
>
>
>
>
>
>
>
>
>
>
>
>





1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304

1305

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
/*
** To execute an SQL query, it must first be compiled into a byte-code
** program using this routine. The first parameter "db" is an SQLite
** database handle. The second parameter "zSql" is the statement
** to be compiled, encoded as UTF-8 text. If the next parameter, "nBytes",
** is less than zero, then zSql is read up to the first nul terminator.
** If "nBytes" is not less than zero, then it is the length of the
** string zSql in bytes (not characters).
**
** *pzTail is made to point to the first byte past the end of the first
** SQL statement in zSql.  This routine only compiles the first statement
** in zSql, so *pzTail is left pointing to what remains uncompiled.
**
** *ppStmt is left pointing to a compiled SQL statement that can be
** executed using sqlite3_step().  Or if there is an error, *ppStmt may be
** set to NULL.  If the input text contained no SQL (if the input is and
** empty string or a comment) then *ppStmt is set to NULL.
**
** On success, SQLITE_OK is returned.  Otherwise an error code is returned.
** 
*/
int sqlite3_prepare(
  sqlite3 *db,            /* Database handle */
  const char *zSql,       /* SQL statement, UTF-8 encoded */
  int nBytes,             /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const char **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** To execute an SQL query, it must first be compiled into a byte-code
** program using this routine. The first parameter "db" is an SQLite
** database handle. The second parameter "zSql" is the statement
** to be compiled, encoded as UTF-16 text. If the next parameter, "nBytes",
** is less than zero, then zSql is read up to the first pair of successive
** 0x00 bytes.  If "nBytes" is not less than zero, then it is the length of
** the string zSql in bytes (not characters).
**
** *pzTail is made to point to the first byte past the end of the first
** SQL statement in zSql.  This routine only compiles the first statement
** in zSql, so *pzTail is left pointing to what remains uncompiled.
**
** *ppStmt is left pointing to a compiled SQL statement that can be
** executed using sqlite3_step().  Or if there is an error, *ppStmt may be
** set to NULL.  If the input text contained no SQL (if the input is and
** empty string or a comment) then *ppStmt is set to NULL.
**
** On success, SQLITE_OK is returned.  Otherwise an error code is returned.
** 
*/
int sqlite3_prepare16(
  sqlite3 *db,            /* Database handle */
  const void *zSql,       /* SQL statement, UTF-16 encoded */
  int nBytes,             /* Length of zSql in bytes. */
  sqlite3_stmt **ppStmt,  /* OUT: Statement handle */
  const void **pzTail     /* OUT: Pointer to unused portion of zSql */
);

/*
** Return the number of columns in the result set returned by the compiled
** SQL statement. This routine returns 0 if pStmt is an SQL statement
** that does not return data (for example an UPDATE).
*/
int sqlite3_column_count(sqlite3_stmt *pStmt);

/*
** The first parameter is a compiled SQL statement. This function returns
** the column heading for the Nth column of that statement, where N is the
** second function parameter. The string returned is UTF-8 encoded.
*/
const char *sqlite3_column_name(sqlite3_stmt*,int);

/*
** The first parameter is a compiled SQL statement. This function returns
** the column heading for the Nth column of that statement, where N is the
** second function parameter. The string returned is UTF-16 encoded.
*/
const void *sqlite3_column_name16(sqlite3_stmt*,int);

/*
** The first parameter is a compiled SQL statement. If this statement
** is a SELECT statement, the Nth column of the returned result set 
** of the SELECT is a table column then the declared type of the table
** column is returned. If the Nth column of the result set is not at table
** column, then a NULL pointer is returned. The returned string is always
** UTF-8 encoded. For example, in the database schema:
**
** CREATE TABLE t1(c1 VARINT);
**
** And the following statement compiled:
**
** SELECT c1 + 1, 0 FROM t1;
**
** Then this routine would return the string "VARIANT" for the second
** result column (i==1), and a NULL pointer for the first result column
** (i==0).
*/
const char *sqlite3_column_decltype(sqlite3_stmt *, int i);

/*
** The first parameter is a compiled SQL statement. If this statement
** is a SELECT statement, the Nth column of the returned result set 
** of the SELECT is a table column then the declared type of the table
** column is returned. If the Nth column of the result set is not at table
** column, then a NULL pointer is returned. The returned string is always
** UTF-16 encoded. For example, in the database schema:
**
** CREATE TABLE t1(c1 VARINT);
**
** And the following statement compiled:
**
** SELECT c1 + 1, 0 FROM t1;
**
** Then this routine would return the string "VARIANT" for the second
** result column (i==1), and a NULL pointer for the first result column
** (i==0).
*/
const void *sqlite3_column_decltype16(sqlite3_stmt*,int);

/* 
** After an SQL query has been compiled with a call to either
** sqlite3_prepare() or sqlite3_prepare16(), then this function must be
** called one or more times to execute the statement.
**
** The return value will be either SQLITE_BUSY, SQLITE_DONE, 
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
**
** SQLITE_BUSY means that the database engine attempted to open
** a locked database and there is no busy callback registered.
** Call sqlite3_step() again to retry the open.
**
** SQLITE_DONE means that the statement has finished executing
** successfully.  sqlite3_step() should not be called again on this virtual
** machine.
**
** If the SQL statement being executed returns any data, then 
** SQLITE_ROW is returned each time a new row of data is ready
** for processing by the caller. The values may be accessed using
** the sqlite3_column_*() functions described below. sqlite3_step()
** is called again to retrieve the next row of data.
** 
** SQLITE_ERROR means that a run-time error (such as a constraint
** violation) has occurred.  sqlite3_step() should not be called again on
** the VM. More information may be found by calling sqlite3_errmsg().
**
** SQLITE_MISUSE means that the this routine was called inappropriately.
** Perhaps it was called on a virtual machine that had already been
** finalized or on one that had previously returned SQLITE_ERROR or
** SQLITE_DONE.  Or it could be the case the the same database connection
** is being used simulataneously by two or more threads.
*/
int sqlite3_step_new(sqlite3_stmt*);


/*
** The sqlite3_finalize() function is called to delete a compiled
** SQL statement obtained by a previous call to sqlite3_prepare()
** or sqlite3_prepare16(). If the statement was executed successfully, or
** not executed at all, then SQLITE_OK is returned. If execution of the
** statement failed then an error code is returned. 
*/
int sqlite3_finalize_new(sqlite3_stmt *pStmt);

/*
** The sqlite3_reset() function is called to reset a compiled SQL
** statement obtained by a previous call to sqlite3_prepare() or
** sqlite3_prepare16() back to it's initial state, ready to be re-executed.
** Any SQL statement variables that had values bound to them using
** the sqlite3_bind_*() API retain their values.
*/
int sqlite3_reset_new(sqlite3_stmt *pStmt);

int sqlite3_open_new(
  const char *filename,   /* Database filename (UTF-8) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  const char **args       /* Null terminated array of option strings */
);

int sqlite3_open16(
  const void *filename,   /* Database filename (UTF-16) */
  sqlite3 **ppDb,         /* OUT: SQLite db handle */
  const char **args       /* Null terminated array of option strings */
);

/*
** Return the number of values in the current row of the result set.
**
** After a call to sqlite3_step() that returns SQLITE_ROW, this routine
** will return the same value as the sqlite3_column_count() function.
** After sqlite3_step() has returned an SQLITE_DONE, SQLITE_BUSY or
** error code, or before sqlite3_step() has been called on a 
** compiled SQL statement, this routine returns zero.
*/
int sqlite3_value_count(sqlite3_stmt *pStmt);

#define SQLITE3_INTEGER  1
#define SQLITE3_FLOAT    2
#define SQLITE3_TEXT     3
#define SQLITE3_BLOB     4
#define SQLITE3_NULL     5

/*
** The first parameter is a compiled SQL statement for which the most
** recent call to sqlite3_step() has returned SQLITE_ROW. This routine
** retrieves the type of the Nth column of the current row, where
** N is the second function parameter.
**
** The value type is one of SQLITE3_INTEGER, SQLITE3_FLOAT, SQLITE3_TEXT,
** SQLITE3_BLOB and SQLITE3_NULL.
*/
int sqlite3_column_type(sqlite3_stmt *pStmt, int i);

/*
** The first parameter is a compiled SQL statement for which the most
** recent call to sqlite3_step() has returned SQLITE_ROW. This routine
** retrieves the value of the Nth column of the current row, where
** N is the second function parameter.
**
** The value returned depends on the type of the SQL column value, as
** returned by sqlite3_column_type():
**
** SQLITE3_NULL      A Null pointer.
** SQLITE3_INTEGER   String representation of the integer, UTF-8 encoded.
** SQLITE3_FLOAT     String representation of the real, UTF-8 encoded.
** SQLITE3_TEXT      The string UTF-8 encoded.
** SQLITE3_BLOB      A pointer to the blob of data.
*/
const unsigned char *sqlite3_column_data(sqlite3_stmt*,int);

/*
** The first parameter is a compiled SQL statement for which the most
** recent call to sqlite3_step() has returned SQLITE_ROW. This routine
** retrieves the value of the Nth column of the current row, where
** N is the second function parameter.
**
** The value returned depends on the type of the SQL column value, as
** returned by sqlite3_column_type():
**
** SQLITE3_NULL      A Null pointer.
** SQLITE3_INTEGER   String representation of the integer, UTF-16 encoded.
** SQLITE3_FLOAT     String representation of the real, UTF-16 encoded.
** SQLITE3_TEXT      The string UTF-16 encoded.
** SQLITE3_BLOB      A pointer to the blob of data.
*/
const void *sqlite3_column_data16(sqlite3_stmt*,int);

/*
** The first parameter is a compiled SQL statement for which the most
** recent call to sqlite3_step() has returned SQLITE_ROW. This routine
** retrieves the length of the data in bytse returned by the
** sqlite3_column_data() routine for the same second parameter value.
**
** If sqlite3_column_data() returns a UTF-8 string, then the length
** returned by this function includes the nul terminator character at the
** end of the UTF-8 string.
*/
int sqlite3_column_bytes(sqlite3_stmt*,int);

/*
** The first parameter is a compiled SQL statement for which the most
** recent call to sqlite3_step() has returned SQLITE_ROW. This routine
** retrieves the value of the Nth column of the current row, where
** N is the second function parameter as an integer.
**
** SQLITE3_NULL      0
** SQLITE3_INTEGER   The integer value.
** SQLITE3_FLOAT     The integer component of the real (2^63 if too large)
** SQLITE3_TEXT      Integer conversion of string, or 0
** SQLITE3_BLOB      0
*/
long long int sqlite3_column_int(sqlite3_stmt*,int);



/*
** The first parameter is a compiled SQL statement for which the most
** recent call to sqlite3_step() has returned SQLITE_ROW. This routine
** retrieves the value of the Nth column of the current row, where
** N is the second function parameter as an integer.
**
** SQLITE3_NULL      0.0
** SQLITE3_INTEGER   The value of the integer. Some rounding may occur.
** SQLITE3_FLOAT     The value of the float.
** SQLITE3_TEXT      Real number conversion of string, or 0.0
** SQLITE3_BLOB      0.0
*/
double sqlite3_column_float(sqlite3_stmt*,int);

#ifdef __cplusplus
}  /* End of the 'extern "C"' block */
#endif
#endif
Changes to src/sqliteInt.h.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.243 2004/05/21 01:47:27 danielk1977 Exp $
*/
#include "config.h"
#include "sqlite.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
** 2001 September 15
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Internal interface definitions for SQLite.
**
** @(#) $Id: sqliteInt.h,v 1.244 2004/05/21 10:08:54 danielk1977 Exp $
*/
#include "config.h"
#include "sqlite.h"
#include "hash.h"
#include "parse.h"
#include <stdio.h>
#include <stdlib.h>
318
319
320
321
322
323
324

325
326
327
328
329
330
331

/*
** Possible values for the Db.textEnc field.
*/
#define TEXT_Utf8             1
#define TEXT_Utf16le          2
#define TEXT_Utf16be          3


/*
** Each database is an instance of the following structure.
**
** The sqlite.file_format is initialized by the database file
** and helps determines how the data in the database file is
** represented.  This field allows newer versions of the library







>







318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

/*
** Possible values for the Db.textEnc field.
*/
#define TEXT_Utf8             1
#define TEXT_Utf16le          2
#define TEXT_Utf16be          3
#define TEXT_Utf16            4

/*
** Each database is an instance of the following structure.
**
** The sqlite.file_format is initialized by the database file
** and helps determines how the data in the database file is
** represented.  This field allows newer versions of the library
1356
1357
1358
1359
1360
1361
1362

void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
char const *sqlite3AffinityString(char affinity);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3atoi64(const char*, i64*);
void sqlite3Error(sqlite *, int, const char*,...);








>
1357
1358
1359
1360
1361
1362
1363
1364
void sqlite3TableAffinityStr(Vdbe *, Table *);
char sqlite3CompareAffinity(Expr *pExpr, char aff2);
char const *sqlite3AffinityString(char affinity);
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity);
char sqlite3ExprAffinity(Expr *pExpr);
int sqlite3atoi64(const char*, i64*);
void sqlite3Error(sqlite *, int, const char*,...);

Changes to src/test1.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the printf() interface to SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.44 2004/05/21 01:47:27 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include "os.h"
#include <stdlib.h>
#include <string.h>








|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the printf() interface to SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.45 2004/05/21 10:08:54 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include "os.h"
#include <stdlib.h>
#include <string.h>

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833


834
835




836













837

838



839




840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
    default:            zRc = "unknown";        break;
  }
  Tcl_AppendResult(interp, zRc, 0);
  return TCL_OK;
}

/*
** Usage:  sqlite3_finalize  VM 
**
** Shutdown a virtual machine.
*/
static int test_finalize(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  char **argv            /* Text of each argument */
){
  sqlite_vm *vm;
  int rc;
  char *zErrMsg = 0;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], 
       " VM\"", 0);
    return TCL_ERROR;
  }
  if( getVmPointer(interp, argv[1], &vm) ) return TCL_ERROR;


  rc = sqlite3_finalize(vm, &zErrMsg);
  if( rc ){




    char zBuf[50];













    sprintf(zBuf, "(%d) ", rc);

    Tcl_AppendResult(interp, zBuf, zErrMsg, 0);



    sqlite3_freemem(zErrMsg);




    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:  sqlite3_reset   VM 
**
** Reset a virtual machine and prepare it to be run again.
*/
static int test_reset(
  void *NotUsed,
  Tcl_Interp *interp,    /* The TCL interpreter that invoked this command */
  int argc,              /* Number of arguments */
  char **argv            /* Text of each argument */
){
  sqlite_vm *vm;
  int rc;
  char *zErrMsg = 0;
  if( argc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", argv[0], 
       " VM\"", 0);
    return TCL_ERROR;
  }
  if( getVmPointer(interp, argv[1], &vm) ) return TCL_ERROR;
  rc = sqlite3_reset(vm, &zErrMsg);
  if( rc ){
    char zBuf[50];
    sprintf(zBuf, "(%d) ", rc);
    Tcl_AppendResult(interp, zBuf, zErrMsg, 0);
    sqlite3_freemem(zErrMsg);
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** This is the "static_bind_value" that variables are bound to when
** the FLAG option of sqlite3_bind is "static"
*/
static char *sqlite_static_bind_value = 0;








|

|


|
|
|
|

|

|
|
|
|


|
>
>
|

>
>
>
>
|
>
>
>
>
>
>
>
>
>
>
>
>
>
|
>
|
>
>
>
|
>
>
>
>










<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

























877
878
879
880
881
882
883
    default:            zRc = "unknown";        break;
  }
  Tcl_AppendResult(interp, zRc, 0);
  return TCL_OK;
}

/*
** Usage:  sqlite3_finalize  STMT 
**
** Finalize a statement handle.
*/
static int test_finalize(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_stmt *pStmt;
  int rc;

  if( objc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " <STMT>", 0);
    return TCL_ERROR;
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;

  rc = sqlite3_finalize_new(pStmt);
  if( rc ){
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:  sqlite3_reset  STMT 
**
** Finalize a statement handle.
*/
static int test_reset(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_stmt *pStmt;
  int rc;

  if( objc!=2 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"",
        Tcl_GetStringFromObj(objv[0], 0), " <STMT>", 0);
    return TCL_ERROR;
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;

  rc = sqlite3_reset_new(pStmt);
  if( rc ){
    return TCL_ERROR;
  }
  return TCL_OK;
}

/*
** Usage:  sqlite3_reset   VM 
**
** Reset a virtual machine and prepare it to be run again.
*/


























/*
** This is the "static_bind_value" that variables are bound to when
** the FLAG option of sqlite3_bind is "static"
*/
static char *sqlite_static_bind_value = 0;

1395
1396
1397
1398
1399
1400
1401



























1402
1403
1404
1405
1406
1407
1408
  zFilename = Tcl_GetByteArrayFromObj(objv[1], 0);
  rc = sqlite3_open16(zFilename, &db, 0);
  
  if( makePointerStr(interp, zBuf, db) ) return TCL_ERROR;
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}




























/*
** This is a collating function named "REVERSE" which sorts text
** in reverse order.
*/
static int reverseCollatingFunc(
  void *NotUsed,







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
  zFilename = Tcl_GetByteArrayFromObj(objv[1], 0);
  rc = sqlite3_open16(zFilename, &db, 0);
  
  if( makePointerStr(interp, zBuf, db) ) return TCL_ERROR;
  Tcl_AppendResult(interp, zBuf, 0);
  return TCL_OK;
}

/*
** Usage: sqlite3_step STMT
**
** Advance the statement to the next row.
*/
static int test_step_new(
  void * clientData,
  Tcl_Interp *interp,
  int objc,
  Tcl_Obj *CONST objv[]
){
  sqlite3_stmt *pStmt;
  int rc;

  if( objc!=3 ){
    Tcl_AppendResult(interp, "wrong # args: should be \"", 
       Tcl_GetString(objv[0]), " STMT", 0);
    return TCL_ERROR;
  }

  if( getStmtPointer(interp, Tcl_GetString(objv[1]), &pStmt) ) return TCL_ERROR;
  rc = sqlite3_step_new(pStmt);

  if( rc!=SQLITE_OK ) return TCL_ERROR;
  return TCL_OK;
}

/*
** This is a collating function named "REVERSE" which sorts text
** in reverse order.
*/
static int reverseCollatingFunc(
  void *NotUsed,
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499



1500
1501
1502
1503
1504
1505
1506
     { "sqlite_abort",                  (Tcl_CmdProc*)sqlite_abort          },
     { "sqlite_datatypes",              (Tcl_CmdProc*)sqlite_datatypes      },
#ifdef MEMORY_DEBUG
     { "sqlite_malloc_fail",            (Tcl_CmdProc*)sqlite_malloc_fail    },
     { "sqlite_malloc_stat",            (Tcl_CmdProc*)sqlite_malloc_stat    },
#endif
     { "sqlite_step",                    (Tcl_CmdProc*)test_step             },
     { "sqlite_finalize",                (Tcl_CmdProc*)test_finalize         },
     { "sqlite_bind",                    (Tcl_CmdProc*)test_bind             },
     { "sqlite_reset",                   (Tcl_CmdProc*)test_reset            },
     { "breakpoint",                     (Tcl_CmdProc*)test_breakpoint       },
  };
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_bind_int32",            (Tcl_ObjCmdProc*)test_bind_int32    },
     { "sqlite3_bind_int64",            (Tcl_ObjCmdProc*)test_bind_int64    },
     { "sqlite3_bind_double",           (Tcl_ObjCmdProc*)test_bind_double   },
     { "sqlite3_bind_null",             (Tcl_ObjCmdProc*)test_bind_null     },
     { "sqlite3_bind_text",             (Tcl_ObjCmdProc*)test_bind_text     },
     { "sqlite3_bind_text16",           (Tcl_ObjCmdProc*)test_bind_text16   },
     { "sqlite3_bind_blob",             (Tcl_ObjCmdProc*)test_bind_blob     },
     { "sqlite3_errcode",               (Tcl_ObjCmdProc*)test_errcode       },
     { "sqlite3_errmsg",                (Tcl_ObjCmdProc*)test_errmsg        },
     { "sqlite3_errmsg16",              (Tcl_ObjCmdProc*)test_errmsg16      },
     { "sqlite3_prepare",               (Tcl_ObjCmdProc*)test_prepare       },
     { "sqlite3_prepare16",             (Tcl_ObjCmdProc*)test_prepare16     },
     { "sqlite3_open",                  (Tcl_ObjCmdProc*)test_open          },
     { "sqlite3_open16",                (Tcl_ObjCmdProc*)test_open16        },



     { "add_reverse_collating_func",    (Tcl_ObjCmdProc*)reverse_collfunc   },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }







|

|




















>
>
>







1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
     { "sqlite_abort",                  (Tcl_CmdProc*)sqlite_abort          },
     { "sqlite_datatypes",              (Tcl_CmdProc*)sqlite_datatypes      },
#ifdef MEMORY_DEBUG
     { "sqlite_malloc_fail",            (Tcl_CmdProc*)sqlite_malloc_fail    },
     { "sqlite_malloc_stat",            (Tcl_CmdProc*)sqlite_malloc_stat    },
#endif
     { "sqlite_step",                    (Tcl_CmdProc*)test_step             },
// { "sqlite_finalize",                (Tcl_CmdProc*)test_finalize         },
     { "sqlite_bind",                    (Tcl_CmdProc*)test_bind             },
// { "sqlite_reset",                   (Tcl_CmdProc*)test_reset            },
     { "breakpoint",                     (Tcl_CmdProc*)test_breakpoint       },
  };
  static struct {
     char *zName;
     Tcl_ObjCmdProc *xProc;
  } aObjCmd[] = {
     { "sqlite3_bind_int32",            (Tcl_ObjCmdProc*)test_bind_int32    },
     { "sqlite3_bind_int64",            (Tcl_ObjCmdProc*)test_bind_int64    },
     { "sqlite3_bind_double",           (Tcl_ObjCmdProc*)test_bind_double   },
     { "sqlite3_bind_null",             (Tcl_ObjCmdProc*)test_bind_null     },
     { "sqlite3_bind_text",             (Tcl_ObjCmdProc*)test_bind_text     },
     { "sqlite3_bind_text16",           (Tcl_ObjCmdProc*)test_bind_text16   },
     { "sqlite3_bind_blob",             (Tcl_ObjCmdProc*)test_bind_blob     },
     { "sqlite3_errcode",               (Tcl_ObjCmdProc*)test_errcode       },
     { "sqlite3_errmsg",                (Tcl_ObjCmdProc*)test_errmsg        },
     { "sqlite3_errmsg16",              (Tcl_ObjCmdProc*)test_errmsg16      },
     { "sqlite3_prepare",               (Tcl_ObjCmdProc*)test_prepare       },
     { "sqlite3_prepare16",             (Tcl_ObjCmdProc*)test_prepare16     },
     { "sqlite3_open",                  (Tcl_ObjCmdProc*)test_open          },
     { "sqlite3_open16",                (Tcl_ObjCmdProc*)test_open16        },
     { "sqlite3_finalize",              (Tcl_ObjCmdProc*)test_finalize     },
     { "sqlite3_reset",                 (Tcl_ObjCmdProc*)test_reset        },
     { "sqlite3_step",                  (Tcl_ObjCmdProc*)test_step_new      },
     { "add_reverse_collating_func",    (Tcl_ObjCmdProc*)reverse_collfunc   },
  };
  int i;

  for(i=0; i<sizeof(aCmd)/sizeof(aCmd[0]); i++){
    Tcl_CreateCommand(interp, aCmd[i].zName, aCmd[i].xProc, 0, 0);
  }
Changes to src/vdbe.c.
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.312 2004/05/21 03:01:59 drh Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*







|







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
**
** Various scripts scan this source file in order to generate HTML
** documentation, headers files, or other derived files.  The formatting
** of the code in this file is, therefore, important.  See other comments
** in this file for details.  If in doubt, do not deviate from existing
** commenting and indentation practices when changing or adding code.
**
** $Id: vdbe.c,v 1.313 2004/05/21 10:08:54 danielk1977 Exp $
*/
#include "sqliteInt.h"
#include "os.h"
#include <ctype.h>
#include "vdbeInt.h"

/*
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
** of the db.flags field is set in order to simulate and interrupt.
**
** This facility is used for testing purposes only.  It does not function
** in an ordinary build.
*/
int sqlite3_interrupt_count = 0;

/*
** Advance the virtual machine to the next output row.
**
** The return vale will be either SQLITE_BUSY, SQLITE_DONE, 
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
**
** SQLITE_BUSY means that the virtual machine attempted to open
** a locked database and there is no busy callback registered.
** Call sqlite3_step() again to retry the open.  *pN is set to 0
** and *pazColName and *pazValue are both set to NULL.
**
** SQLITE_DONE means that the virtual machine has finished
** executing.  sqlite3_step() should not be called again on this
** virtual machine.  *pN and *pazColName are set appropriately
** but *pazValue is set to NULL.
**
** SQLITE_ROW means that the virtual machine has generated another
** row of the result set.  *pN is set to the number of columns in
** the row.  *pazColName is set to the names of the columns followed
** by the column datatypes.  *pazValue is set to the values of each
** column in the row.  The value of the i-th column is (*pazValue)[i].
** The name of the i-th column is (*pazColName)[i] and the datatype
** of the i-th column is (*pazColName)[i+*pN].
**
** SQLITE_ERROR means that a run-time error (such as a constraint
** violation) has occurred.  The details of the error will be returned
** by the next call to sqlite3_finalize().  sqlite3_step() should not
** be called again on the VM.
**
** SQLITE_MISUSE means that the this routine was called inappropriately.
** Perhaps it was called on a virtual machine that had already been
** finalized or on one that had previously returned SQLITE_ERROR or
** SQLITE_DONE.  Or it could be the case the the same database connection
** is being used simulataneously by two or more threads.
*/
int sqlite3_step(
  sqlite_vm *pVm,              /* The virtual machine to execute */
  int *pN,                     /* OUT: Number of columns in result */
  const char ***pazValue,      /* OUT: Column data */
  const char ***pazColName     /* OUT: Column names and datatypes */
){
  Vdbe *p = (Vdbe*)pVm;
  sqlite *db;
  int rc;

  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_MISUSE;
  }
  db = p->db;
  if( sqlite3SafetyOn(db) ){
    p->rc = SQLITE_MISUSE;
    return SQLITE_MISUSE;
  }
  if( p->explain ){
    rc = sqlite3VdbeList(p);
  }else{
    rc = sqlite3VdbeExec(p);
  }
  if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
    if( pazColName ) *pazColName = (const char**)p->azColName;
    if( pN ) *pN = p->nResColumn;
  }else{
    if( pazColName) *pazColName = 0;
    if( pN ) *pN = 0;
  }
  if( pazValue ){
    if( rc==SQLITE_ROW ){
      *pazValue = (const char**)p->azResColumn;
    }else{
      *pazValue = 0;
    }
  }
  if( sqlite3SafetyOff(db) ){
    return SQLITE_MISUSE;
  }
  return rc;
}

/*
** Insert a new aggregate element and make it the element that
** has focus.
**
** Return 0 on success and 1 if memory is exhausted.
*/
static int AggInsert(Agg *p, char *zKey, int nKey){
  AggElem *pElem, *pOld;
  int i;
  Mem *pMem;
  pElem = sqliteMalloc( sizeof(AggElem) + nKey +
                        (p->nMem-1)*sizeof(pElem->aMem[0]) );
  if( pElem==0 ) return 1;
  pElem->zKey = (char*)&pElem->aMem[p->nMem];
  memcpy(pElem->zKey, zKey, nKey);
  pElem->nKey = nKey;
  pOld = sqlite3HashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
  if( pOld!=0 ){
    assert( pOld==pElem );  /* Malloc failed on insert */
    sqliteFree(pOld);
    return 0;
  }
  for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
    pMem->flags = MEM_Null;
  }
  p->pCurrent = pElem;
  return 0;
}

/*
** Get the AggElem currently in focus
*/
#define AggInFocus(P)   ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
static AggElem *_AggInFocus(Agg *p){
  HashElem *pElem = sqliteHashFirst(&p->hash);
  if( pElem==0 ){
    AggInsert(p,"",1);
    pElem = sqliteHashFirst(&p->hash);
  }
  return pElem ? sqliteHashData(pElem) : 0;
}

#define NulTermify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} \
                      else if(((P)->flags & MEM_Term)==0){hardNulTermify(P);}
static int hardNulTermify(Mem *pStack){
  int flags = pStack->flags;

  assert( !(flags&MEM_Term) && (flags&MEM_Str) );
  assert( flags&(MEM_Utf8|MEM_Utf16le|MEM_Utf16be) );







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<







65
66
67
68
69
70
71
























































































































72
73
74
75
76
77
78
** of the db.flags field is set in order to simulate and interrupt.
**
** This facility is used for testing purposes only.  It does not function
** in an ordinary build.
*/
int sqlite3_interrupt_count = 0;

























































































































#define NulTermify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);} \
                      else if(((P)->flags & MEM_Term)==0){hardNulTermify(P);}
static int hardNulTermify(Mem *pStack){
  int flags = pStack->flags;

  assert( !(flags&MEM_Term) && (flags&MEM_Str) );
  assert( flags&(MEM_Utf8|MEM_Utf16le|MEM_Utf16be) );
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
  return 0;
}

/*
** Convert the given stack entity into a string if it isn't one
** already.
*/
#define Stringify(P) if(((P)->flags & MEM_Str)==0){hardStringify(P);}
static int hardStringify(Mem *pStack){
  int fg = pStack->flags;
  if( fg & MEM_Real ){
    sqlite3_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
  }else if( fg & MEM_Int ){
    sqlite3_snprintf(sizeof(pStack->zShort),pStack->zShort,"%lld",pStack->i);
  }else{
    pStack->zShort[0] = 0;
  }
  pStack->z = pStack->zShort;
  pStack->n = strlen(pStack->zShort)+1;
  pStack->flags = MEM_Str | MEM_Short | MEM_Term;
  return 0;
}

/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc().  This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
static int hardDynamicify(Mem *pStack){
  int fg = pStack->flags;
  char *z;
  if( (fg & MEM_Str)==0 ){
    hardStringify(pStack);
  }
  assert( (fg & MEM_Dyn)==0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string.  Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
static int hardDeephem(Mem *pStack){
  char *z;
  assert( (pStack->flags & MEM_Ephem)!=0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags &= ~MEM_Ephem;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** Release the memory associated with the given stack level.  This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }

/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;
    Release(pTos);
    pTos--;
  }
  *ppTos = pTos;
}

/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.  
** NULLs are converted into 0.
*/







|











|
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<









<
<
<
<
<
<
<
<
<
<
<
<
<







114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
















































134
135
136
137
138
139
140
141
142













143
144
145
146
147
148
149
  return 0;
}

/*
** Convert the given stack entity into a string if it isn't one
** already.
*/
#define Stringify(P) if(!((P)->flags&(MEM_Str|MEM_Blob))){hardStringify(P);}
static int hardStringify(Mem *pStack){
  int fg = pStack->flags;
  if( fg & MEM_Real ){
    sqlite3_snprintf(sizeof(pStack->zShort),pStack->zShort,"%.15g",pStack->r);
  }else if( fg & MEM_Int ){
    sqlite3_snprintf(sizeof(pStack->zShort),pStack->zShort,"%lld",pStack->i);
  }else{
    pStack->zShort[0] = 0;
  }
  pStack->z = pStack->zShort;
  pStack->n = strlen(pStack->zShort)+1;
  pStack->flags = MEM_Str | MEM_Short | MEM_Term | MEM_Utf8;
















































  return 0;
}

/*
** Release the memory associated with the given stack level.  This
** leaves the Mem.flags field in an inconsistent state.
*/
#define Release(P) if((P)->flags&MEM_Dyn){ sqliteFree((P)->z); }














/*
** Convert the given stack entity into a integer if it isn't one
** already.
**
** Any prior string or real representation is invalidated.  
** NULLs are converted into 0.
*/
355
356
357
358
359
360
361







































































































































































































































































































































































































































































































































362
363
364
365
366
367
368
  }else if( pStack->flags & MEM_Int ){
    pStack->r = pStack->i;
  }else{
    pStack->r = 0.0;
  }
  pStack->flags |= MEM_Real;
}








































































































































































































































































































































































































































































































































/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures.  Merge these two lists together and return
** a single sorted list.  This routine forms the core of the merge-sort
** algorithm.
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
  }else if( pStack->flags & MEM_Int ){
    pStack->r = pStack->i;
  }else{
    pStack->r = 0.0;
  }
  pStack->flags |= MEM_Real;
}

/*
** If pMem is a string object, this routine sets the encoding of the string
** (to one of UTF-8 or UTF16) and whether or not the string is
** nul-terminated. If pMem is not a string object, then this routine is
** a no-op.
**
** If argument "utf16" is true, then this routine will attempt to convert
** the string to native byte order UTF-16 encoding. Otherwise, the
** conversion is to UTF-8 encoding. If the "term" argument is true, then a
** nul terminator is added to the string if it does not already have one.
**
**
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
static int SetEncoding(Mem *pMem, int flags){
  int f;
  if( !(pMem->flags&MEM_Str) ){
    return SQLITE_OK;
  }

  f = (pMem->flags)&(MEM_Utf8|MEM_Utf16le|MEM_Utf16be|MEM_Term);
  assert( flags==(flags&(MEM_Utf8|MEM_Utf16le|MEM_Utf16be|MEM_Term)));
  if( f==flags ){
    return SQLITE_OK;
  }

  if( (SQLITE3_BIGENDIAN    && (f&MEM_Utf16le)) ||
      (SQLITE3_LITTLEENDIAN && (f&MEM_Utf16be)) ){
    int i;
    for(i=0; i<pMem->n; i+=2){
      char c = pMem->z[i];
      pMem->z[i] = pMem->z[i+1];
      pMem->z[i+1] = c;
    }
  }

  if( (flags&MEM_Utf8) && (f&(MEM_Utf16le|MEM_Utf16be)) ){
    char *z = sqlite3utf16to8(pMem->z, pMem->n); 
    if( !z ){
      return SQLITE_NOMEM;
    }
    Release(pMem);
    pMem->z = z;
    pMem->n = strlen(z)+1;
    pMem->flags = (MEM_Utf8|MEM_Dyn|MEM_Str|MEM_Term);
    return SQLITE_OK;
  }

  if( (flags&MEM_Utf16le) && (f&MEM_Utf8) ){
    char *z = sqlite3utf8to16le(pMem->z, pMem->n); 
    if( !z ){
      return SQLITE_NOMEM;
    }
    Release(pMem);
    pMem->z = z;
    pMem->n = sqlite3utf16ByteLen(z, -1) + 2;
    pMem->flags = (MEM_Utf16le|MEM_Dyn|MEM_Str|MEM_Term);
    return SQLITE_OK;
  }

  if( (flags&MEM_Utf16be) && (f&MEM_Utf8) ){
    char *z = sqlite3utf8to16be(pMem->z, pMem->n); 
    if( !z ){
      return SQLITE_NOMEM;
    }
    Release(pMem);
    pMem->z = z;
    pMem->n = sqlite3utf16ByteLen(z, -1) + 2;
    pMem->flags = (MEM_Utf16be|MEM_Dyn|MEM_Str|MEM_Term);
    return SQLITE_OK;
  }

  if( (flags&MEM_Term) && !(f&&MEM_Term) ){
    NulTermify(pMem);
  }

  return SQLITE_OK;
}

/*
** Convert the given stack entity into a string that has been obtained
** from sqliteMalloc().  This is different from Stringify() above in that
** Stringify() will use the NBFS bytes of static string space if the string
** will fit but this routine always mallocs for space.
** Return non-zero if we run out of memory.
*/
#define Dynamicify(P) (((P)->flags & MEM_Dyn)==0 ? hardDynamicify(P):0)
static int hardDynamicify(Mem *pStack){
  int fg = pStack->flags;
  char *z;
  if( (fg & MEM_Str)==0 ){
    hardStringify(pStack);
  }
  assert( (fg & MEM_Dyn)==0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** Advance the virtual machine to the next output row.
**
** The return vale will be either SQLITE_BUSY, SQLITE_DONE, 
** SQLITE_ROW, SQLITE_ERROR, or SQLITE_MISUSE.
**
** SQLITE_BUSY means that the virtual machine attempted to open
** a locked database and there is no busy callback registered.
** Call sqlite3_step() again to retry the open.  *pN is set to 0
** and *pazColName and *pazValue are both set to NULL.
**
** SQLITE_DONE means that the virtual machine has finished
** executing.  sqlite3_step() should not be called again on this
** virtual machine.  *pN and *pazColName are set appropriately
** but *pazValue is set to NULL.
**
** SQLITE_ROW means that the virtual machine has generated another
** row of the result set.  *pN is set to the number of columns in
** the row.  *pazColName is set to the names of the columns followed
** by the column datatypes.  *pazValue is set to the values of each
** column in the row.  The value of the i-th column is (*pazValue)[i].
** The name of the i-th column is (*pazColName)[i] and the datatype
** of the i-th column is (*pazColName)[i+*pN].
**
** SQLITE_ERROR means that a run-time error (such as a constraint
** violation) has occurred.  The details of the error will be returned
** by the next call to sqlite3_finalize().  sqlite3_step() should not
** be called again on the VM.
**
** SQLITE_MISUSE means that the this routine was called inappropriately.
** Perhaps it was called on a virtual machine that had already been
** finalized or on one that had previously returned SQLITE_ERROR or
** SQLITE_DONE.  Or it could be the case the the same database connection
** is being used simulataneously by two or more threads.
*/
int sqlite3_step(
  sqlite_vm *pVm,              /* The virtual machine to execute */
  int *pN,                     /* OUT: Number of columns in result */
  const char ***pazValue,      /* OUT: Column data */
  const char ***pazColName     /* OUT: Column names and datatypes */
){
  sqlite3_stmt *pStmt = (sqlite3_stmt*)pVm;
  int rc;

  rc = sqlite3_step_new(pStmt);

  if( pazValue ) *pazValue = 0;
  if( pazColName ) *pazColName = 0;
  if( pN ) *pN = 0;

  if( rc==SQLITE_DONE || rc==SQLITE_ROW ){
    int i;
    int cols = sqlite3_column_count(pStmt) * (pazColName?1:0);
    int vals = sqlite3_value_count(pStmt) * (pazValue?1:0);

    /* Temporary memory leak */
    if( cols ) *pazColName = sqliteMalloc(sizeof(char *)*cols * 2); 
    if( pN ) *pN = cols;

    for(i=0; i<cols; i++){
      (*pazColName)[i] = sqlite3_column_name(pStmt, i);
    }
    for(i=cols; i<(2*cols); i++){
      (*pazColName)[i] = sqlite3_column_decltype(pStmt, i-cols);
    }

    if( rc==SQLITE_ROW ){
      if( vals ) *pazValue = sqliteMalloc(sizeof(char *)*vals); 
      for(i=0; i<vals; i++){
        (*pazValue)[i] = sqlite3_column_data(pStmt, i);
      }
    }
  }

  return rc;
}

/*
** Execute the statement pStmt, either until a row of data is ready, the
** statement is completely executed or an error occurs.
*/
int sqlite3_step_new(sqlite3_stmt *pStmt){
  Vdbe *p = (Vdbe*)pStmt;
  sqlite *db;
  int rc;

  if( p->magic!=VDBE_MAGIC_RUN ){
    return SQLITE_MISUSE;
  }
  db = p->db;
  if( sqlite3SafetyOn(db) ){
    p->rc = SQLITE_MISUSE;
    return SQLITE_MISUSE;
  }
  if( p->explain ){
    rc = sqlite3VdbeList(p);
  }else{
    rc = sqlite3VdbeExec(p);
  }

  if( sqlite3SafetyOff(db) ){
    rc = SQLITE_MISUSE;
  }

  sqlite3Error(p->db, rc, p->zErrMsg);
  return rc;
}

/*
** Return the number of columns in the result set for the statement pStmt.
*/
int sqlite3_column_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  return pVm->nResColumn;
}

/*
** Return the number of values available from the current row of the
** currently executing statement pStmt.
*/
int sqlite3_value_count(sqlite3_stmt *pStmt){
  Vdbe *pVm = (Vdbe *)pStmt;
  if( !pVm->resOnStack ) return 0;
  return pVm->nResColumn;
}

/*
** Return the value of the 'i'th column of the current row of the currently
** executing statement pStmt.
*/
const unsigned char *sqlite3_column_data(sqlite3_stmt *pStmt, int i){
  int vals;
  Vdbe *pVm = (Vdbe *)pStmt;
  Mem *pVal;

  vals = sqlite3_value_count(pStmt);
  if( i>=vals || i<0 ){
    sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    return 0;
  }

  pVal = &pVm->pTos[(1-vals)+i];
  if( pVal->flags&MEM_Null ){
    return 0;
  }

  if( !pVal->flags&MEM_Blob ){
    Stringify(pVal);
    SetEncoding(pVal, MEM_Utf8|MEM_Term);
  }

  return pVal->z;
}

/*
** Return the number of bytes of data that will be returned by the
** equivalent sqlite3_column_data() call.
*/
int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
  Vdbe *pVm = (Vdbe *)pStmt;
  int vals;

  vals = sqlite3_value_count(pStmt);
  if( i>=vals || i<0 ){
    sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    return 0;
  }

  if( sqlite3_column_data(pStmt, i) ){
    return pVm->pTos[(1-vals)+i].n;
  }
  return 0;
}

/*
** Return the value of the 'i'th column of the current row of the currently
** executing statement pStmt.
*/
long long int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
  int vals;
  Vdbe *pVm = (Vdbe *)pStmt;
  Mem *pVal;

  vals = sqlite3_value_count(pStmt);
  if( i>=vals || i<0 ){
    sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    return 0;
  }

  pVal = &pVm->pTos[(1-vals)+i];
  Integerify(pVal);
  return pVal->i;
}

/*
** Return the value of the 'i'th column of the current row of the currently
** executing statement pStmt.
*/
double sqlite3_column_float(sqlite3_stmt *pStmt, int i){
  int vals;
  Vdbe *pVm = (Vdbe *)pStmt;
  Mem *pVal;

  vals = sqlite3_value_count(pStmt);
  if( i>=vals || i<0 ){
    sqlite3Error(pVm->db, SQLITE_RANGE, 0);
    return 0;
  }

  pVal = &pVm->pTos[(1-vals)+i];
  Realify(pVal);
  return pVal->r;
}

/*
** Return the name of the Nth column of the result set returned by SQL
** statement pStmt.
*/
const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
  Vdbe *p = (Vdbe *)pStmt;

  if( N>=sqlite3_column_count(pStmt) || N<0 ){
    sqlite3Error(p->db, SQLITE_RANGE, 0);
    return 0;
  }

  return p->azColName[N];
}

/*
** Return the type of the 'i'th column of the current row of the currently
** executing statement pStmt.
*/
int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
  int vals;
  Vdbe *p = (Vdbe *)pStmt;
  int f;

  vals = sqlite3_value_count(pStmt);
  if( i>=vals || i<0 ){
    sqlite3Error(p->db, SQLITE_RANGE, 0);
    return 0;
  }

  f = p->pTos[(1-vals)+i].flags;

  if( f&MEM_Null ){
    return SQLITE3_NULL;
  }
  if( f&MEM_Int ){
    return SQLITE3_INTEGER;
  }
  if( f&MEM_Real ){
    return SQLITE3_FLOAT;
  }
  if( f&MEM_Str ){
    return SQLITE3_TEXT;
  }
  if( f&MEM_Blob ){
    return SQLITE3_BLOB;
  }
  assert(0);
}

/*
** This routine returns either the column name, or declaration type (see
** sqlite3_column_decltype16() ) of the 'i'th column of the result set of
** SQL statement pStmt. The returned string is UTF-16 encoded.
**
** The declaration type is returned if 'decltype' is true, otherwise
** the column name.
*/
static const void *columnName16(sqlite3_stmt *pStmt, int i, int decltype){
  Vdbe *p = (Vdbe *)pStmt;

  if( i>=sqlite3_column_count(pStmt) || i<0 ){
    sqlite3Error(p->db, SQLITE_RANGE, 0);
    return 0;
  }

  if( decltype ){
    i += p->nResColumn;
  }

  if( !p->azColName16 ){
    p->azColName16 = (void **)sqliteMalloc(sizeof(void *)*p->nResColumn*2);
    if( !p->azColName16 ){
      sqlite3Error(p->db, SQLITE_NOMEM, 0);
      return 0;
    }
  }
  if( !p->azColName16[i] ){
    if( SQLITE3_BIGENDIAN ){
      p->azColName16[i] = sqlite3utf8to16be(p->azColName[i], -1);
    }
    if( !p->azColName16[i] ){
      sqlite3Error(p->db, SQLITE_NOMEM, 0);
      return 0;
    }
  }
  return p->azColName16[i];
}

/*
** Return the name of the 'i'th column of the result set of SQL statement
** pStmt, encoded as UTF-16.
*/
const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int i){
  return columnName16(pStmt, i, 0);
}

/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt, encoded as UTF-8.
*/
const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int i){
  Vdbe *p = (Vdbe *)pStmt;

  if( i>=sqlite3_column_count(pStmt) || i<0 ){
    sqlite3Error(p->db, SQLITE_RANGE, 0);
    return 0;
  }

  return p->azColName[i+p->nResColumn];
}

/*
** Return the column declaration type (if applicable) of the 'i'th column
** of the result set of SQL statement pStmt, encoded as UTF-16.
*/
const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int i){
  return columnName16(pStmt, i, 1);
}

/*
** Insert a new aggregate element and make it the element that
** has focus.
**
** Return 0 on success and 1 if memory is exhausted.
*/
static int AggInsert(Agg *p, char *zKey, int nKey){
  AggElem *pElem, *pOld;
  int i;
  Mem *pMem;
  pElem = sqliteMalloc( sizeof(AggElem) + nKey +
                        (p->nMem-1)*sizeof(pElem->aMem[0]) );
  if( pElem==0 ) return 1;
  pElem->zKey = (char*)&pElem->aMem[p->nMem];
  memcpy(pElem->zKey, zKey, nKey);
  pElem->nKey = nKey;
  pOld = sqlite3HashInsert(&p->hash, pElem->zKey, pElem->nKey, pElem);
  if( pOld!=0 ){
    assert( pOld==pElem );  /* Malloc failed on insert */
    sqliteFree(pOld);
    return 0;
  }
  for(i=0, pMem=pElem->aMem; i<p->nMem; i++, pMem++){
    pMem->flags = MEM_Null;
  }
  p->pCurrent = pElem;
  return 0;
}

/*
** Get the AggElem currently in focus
*/
#define AggInFocus(P)   ((P).pCurrent ? (P).pCurrent : _AggInFocus(&(P)))
static AggElem *_AggInFocus(Agg *p){
  HashElem *pElem = sqliteHashFirst(&p->hash);
  if( pElem==0 ){
    AggInsert(p,"",1);
    pElem = sqliteHashFirst(&p->hash);
  }
  return pElem ? sqliteHashData(pElem) : 0;
}

/*
** An ephemeral string value (signified by the MEM_Ephem flag) contains
** a pointer to a dynamically allocated string where some other entity
** is responsible for deallocating that string.  Because the stack entry
** does not control the string, it might be deleted without the stack
** entry knowing it.
**
** This routine converts an ephemeral string into a dynamically allocated
** string that the stack entry itself controls.  In other words, it
** converts an MEM_Ephem string into an MEM_Dyn string.
*/
#define Deephemeralize(P) \
   if( ((P)->flags&MEM_Ephem)!=0 && hardDeephem(P) ){ goto no_mem;}
static int hardDeephem(Mem *pStack){
  char *z;
  assert( (pStack->flags & MEM_Ephem)!=0 );
  z = sqliteMallocRaw( pStack->n );
  if( z==0 ) return 1;
  memcpy(z, pStack->z, pStack->n);
  pStack->z = z;
  pStack->flags &= ~MEM_Ephem;
  pStack->flags |= MEM_Dyn;
  return 0;
}

/*
** Pop the stack N times.
*/
static void popStack(Mem **ppTos, int N){
  Mem *pTos = *ppTos;
  while( N>0 ){
    N--;
    Release(pTos);
    pTos--;
  }
  *ppTos = pTos;
}

/*
** The parameters are pointers to the head of two sorted lists
** of Sorter structures.  Merge these two lists together and return
** a single sorted list.  This routine forms the core of the merge-sort
** algorithm.
**
645
646
647
648
649
650
651

652
653
654
655
656
657
658
  assert( p->explain==0 );
  if( sqlite3_malloc_failed ) goto no_mem;
  pTos = p->pTos;
  if( p->popStack ){
    popStack(&pTos, p->popStack);
    p->popStack = 0;
  }

  CHECK_FOR_INTERRUPT;
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    assert( pTos<=&p->aStack[pc] );
#ifdef VDBE_PROFILE
    origPc = pc;
    start = hwtime();







>







983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
  assert( p->explain==0 );
  if( sqlite3_malloc_failed ) goto no_mem;
  pTos = p->pTos;
  if( p->popStack ){
    popStack(&pTos, p->popStack);
    p->popStack = 0;
  }
  p->resOnStack = 0;
  CHECK_FOR_INTERRUPT;
  for(pc=p->pc; rc==SQLITE_OK; pc++){
    assert( pc>=0 && pc<p->nOp );
    assert( pTos<=&p->aStack[pc] );
#ifdef VDBE_PROFILE
    origPc = pc;
    start = hwtime();
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
*/
case OP_Integer: {
  pTos++;
  pTos->i = pOp->p1;
  pTos->flags = MEM_Int;
  if( pOp->p3 ){
    pTos->z = pOp->p3;
    pTos->flags |= MEM_Str | MEM_Static;
    pTos->n = strlen(pOp->p3)+1;
    if( pTos->i==0 ){
      sqlite3GetInt64(pTos->z, &pTos->i);
    }
  }
  break;
}







|







1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
*/
case OP_Integer: {
  pTos++;
  pTos->i = pOp->p1;
  pTos->flags = MEM_Int;
  if( pOp->p3 ){
    pTos->z = pOp->p3;
    pTos->flags |= MEM_Utf8 | MEM_Str | MEM_Static;
    pTos->n = strlen(pOp->p3)+1;
    if( pTos->i==0 ){
      sqlite3GetInt64(pTos->z, &pTos->i);
    }
  }
  break;
}
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
  char *z = pOp->p3;
  pTos++;
  if( z==0 ){
    pTos->flags = MEM_Null;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Static;
  }
  break;
}

/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/
case OP_Real: {
  char *z = pOp->p3;

  assert( z );
  assert( sqlite3IsNumber(z, 0) );

  pTos++;
  pTos->r = sqlite3AtoF(z, 0);
  pTos->z = z;
  pTos->n = strlen(z)+1;
  pTos->flags = MEM_Real|MEM_Str|MEM_Static;
  break;
}

/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().







|


















|







1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
  char *z = pOp->p3;
  pTos++;
  if( z==0 ){
    pTos->flags = MEM_Null;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Static | MEM_Utf8 | MEM_Term;
  }
  break;
}

/* Opcode: Real * * P3
**
** The string value P3 is converted to a real and pushed on to the stack.
*/
case OP_Real: {
  char *z = pOp->p3;

  assert( z );
  assert( sqlite3IsNumber(z, 0) );

  pTos++;
  pTos->r = sqlite3AtoF(z, 0);
  pTos->z = z;
  pTos->n = strlen(z)+1;
  pTos->flags = MEM_Real|MEM_Str|MEM_Static|MEM_Utf8;
  break;
}

/* Opcode: Variable P1 * *
**
** Push the value of variable P1 onto the stack.  A variable is
** an unknown in the original SQL string as handed to sqlite3_compile().
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
** Also see the Pull instruction.
*/
case OP_Dup: {
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
  if( pTos->flags & MEM_Str ){
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
      pTos->flags &= ~MEM_Dyn;
      pTos->flags |= MEM_Ephem;
    }else if( pTos->flags & MEM_Short ){
      memcpy(pTos->zShort, pFrom->zShort, pTos->n);
      pTos->z = pTos->zShort;
    }else if( (pTos->flags & MEM_Static)==0 ){







|







1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
** Also see the Pull instruction.
*/
case OP_Dup: {
  Mem *pFrom = &pTos[-pOp->p1];
  assert( pFrom<=pTos && pFrom>=p->aStack );
  pTos++;
  memcpy(pTos, pFrom, sizeof(*pFrom)-NBFS);
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    if( pOp->p2 && (pTos->flags & (MEM_Dyn|MEM_Ephem)) ){
      pTos->flags &= ~MEM_Dyn;
      pTos->flags |= MEM_Ephem;
    }else if( pTos->flags & MEM_Short ){
      memcpy(pTos->zShort, pFrom->zShort, pTos->n);
      pTos->z = pTos->zShort;
    }else if( (pTos->flags & MEM_Static)==0 ){
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
    Deephemeralize(&pFrom[1]);
    *pFrom = pFrom[1];
    assert( (pFrom->flags & MEM_Ephem)==0 );
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & MEM_Str );
      assert( pFrom->z==pFrom[1].zShort );
      pFrom->z = pFrom->zShort;
    }
  }
  *pTos = ts;
  if( pTos->flags & MEM_Short ){
    assert( pTos->flags & MEM_Str );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    pTos->z = pTos->zShort;
  }
  break;
}

/* Opcode: Push P1 * *







|






|







1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
  ts = *pFrom;
  Deephemeralize(pTos);
  for(i=0; i<pOp->p1; i++, pFrom++){
    Deephemeralize(&pFrom[1]);
    *pFrom = pFrom[1];
    assert( (pFrom->flags & MEM_Ephem)==0 );
    if( pFrom->flags & MEM_Short ){
      assert( pFrom->flags & (MEM_Str|MEM_Blob) );
      assert( pFrom->z==pFrom[1].zShort );
      pFrom->z = pFrom->zShort;
    }
  }
  *pTos = ts;
  if( pTos->flags & MEM_Short ){
    assert( pTos->flags & (MEM_Str|MEM_Blob) );
    assert( pTos->z==pTos[-pOp->p1].zShort );
    pTos->z = pTos->zShort;
  }
  break;
}

/* Opcode: Push P1 * *
1070
1071
1072
1073
1074
1075
1076


1077
1078
1079
1080
1081
1082
1083
    if( pCol->flags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(pCol);
      azArgv[i] = pCol->z;
    }
  }


  azArgv[i] = 0;
  p->nCallback++;
  p->azResColumn = azArgv;
  assert( p->nResColumn==pOp->p1 );
  p->popStack = pOp->p1;
  p->pc = pc + 1;
  p->pTos = pTos;







>
>







1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
    if( pCol->flags & MEM_Null ){
      azArgv[i] = 0;
    }else{
      Stringify(pCol);
      azArgv[i] = pCol->z;
    }
  }
  p->resOnStack = 1;

  azArgv[i] = 0;
  p->nCallback++;
  p->azResColumn = azArgv;
  assert( p->nResColumn==pOp->p1 );
  p->popStack = pOp->p1;
  p->pc = pc + 1;
  p->pTos = pTos;
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
  }
  zNew[j] = 0;
  if( pOp->p2==0 ){
    popStack(&pTos, nField);
  }
  pTos++;
  pTos->n = nByte;
  pTos->flags = MEM_Str|MEM_Dyn;
  pTos->z = zNew;
  break;
}

/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,







|







1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
  }
  zNew[j] = 0;
  if( pOp->p2==0 ){
    popStack(&pTos, nField);
  }
  pTos++;
  pTos->n = nByte;
  pTos->flags = MEM_Str|MEM_Dyn|MEM_Utf8;
  pTos->z = zNew;
  break;
}

/* Opcode: Add * * *
**
** Pop the top two elements from the stack, add them together,
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
    {MEM_Int, "INTEGER"},
    {MEM_Real, "REAL"},
    {MEM_Str, "TEXT"},
    {MEM_Blob, "BLOB"}
  };

  Release(pTos);
  pTos->flags = MEM_Str|MEM_Static;

  for(i=0; i<5; i++){
    if( classes[i].mask&flags ){
      pTos->z = classes[i].zClass;
      break;
    }
  }







|







2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
    {MEM_Int, "INTEGER"},
    {MEM_Real, "REAL"},
    {MEM_Str, "TEXT"},
    {MEM_Blob, "BLOB"}
  };

  Release(pTos);
  pTos->flags = MEM_Str|MEM_Static|MEM_Utf8;

  for(i=0; i<5; i++){
    if( classes[i].mask&flags ){
      pTos->z = classes[i].zClass;
      break;
    }
  }
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
  if( i<0 ){
    char *zRec;     /* Pointer to record data from the stack. */
    int off = 0;    /* Offset in zRec to start of the columns data. */
    int off2 = 0;   /* Offset in zRec to the next serial type to read */
    u64 colType;    /* The serial type of the value being read. */

    assert( &pTos[i-1]>=p->aStack );
    assert( pTos[i].flags & MEM_Str );
    assert( pTos[i-1].flags & MEM_Int );

    if( pTos[i].n==0 ){
      pTos->flags = MEM_Null;
      break;
    }








|







2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
  if( i<0 ){
    char *zRec;     /* Pointer to record data from the stack. */
    int off = 0;    /* Offset in zRec to start of the columns data. */
    int off2 = 0;   /* Offset in zRec to the next serial type to read */
    u64 colType;    /* The serial type of the value being read. */

    assert( &pTos[i-1]>=p->aStack );
    assert( pTos[i].flags & MEM_Blob );
    assert( pTos[i-1].flags & MEM_Int );

    if( pTos[i].n==0 ){
      pTos->flags = MEM_Null;
      break;
    }

2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
  }

  /* Pop nField entries from the stack and push the new entry on */
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nBytes;
  pTos->z = zNewRecord;
  pTos->flags = MEM_Str | MEM_Dyn;

  break;
}

/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable







|







2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
  }

  /* Pop nField entries from the stack and push the new entry on */
  popStack(&pTos, nField);
  pTos++;
  pTos->n = nBytes;
  pTos->z = zNewRecord;
  pTos->flags = MEM_Blob | MEM_Dyn;

  break;
}

/* Opcode: MakeKey P1 P2 P3
**
** Convert the top P1 entries of the stack into a single entry suitable
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
  assert( offset==nByte );

  /* Pop the consumed values off the stack and push on the new key. */
  if( addRowid||(pOp->p2==0) ){
    popStack(&pTos, nField+addRowid);
  }
  pTos++;
  pTos->flags = MEM_Str|MEM_Dyn; /* TODO: should eventually be MEM_Blob */
  pTos->z = zKey;
  pTos->n = nByte;

  /* If P2 is non-zero, and if the key contains a NULL value, and if this
  ** was an OP_MakeIdxKey instruction, not OP_MakeKey, jump to P2.
  */
  if( pOp->p2 && containsNull && addRowid ){







|







2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
  assert( offset==nByte );

  /* Pop the consumed values off the stack and push on the new key. */
  if( addRowid||(pOp->p2==0) ){
    popStack(&pTos, nField+addRowid);
  }
  pTos++;
  pTos->flags = MEM_Blob|MEM_Dyn; /* TODO: should eventually be MEM_Blob */
  pTos->z = zKey;
  pTos->n = nByte;

  /* If P2 is non-zero, and if the key contains a NULL value, and if this
  ** was an OP_MakeIdxKey instruction, not OP_MakeKey, jump to P2.
  */
  if( pOp->p2 && containsNull && addRowid ){
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
        pC->nextRowidValid = 0;
      }
    }
    if( pTos->flags & MEM_Null ){
      pTos->z = 0;
      pTos->n = 0;
    }else{
      assert( pTos->flags & MEM_Str );
    }
    if( pC->pseudoTable ){
      /* PutStrKey does not work for pseudo-tables.
      ** The following assert makes sure we are not trying to use
      ** PutStrKey on a pseudo-table
      */
      assert( pOp->opcode==OP_PutIntKey );







|







3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
        pC->nextRowidValid = 0;
      }
    }
    if( pTos->flags & MEM_Null ){
      pTos->z = 0;
      pTos->n = 0;
    }else{
      assert( pTos->flags & (MEM_Blob|MEM_Str) );
    }
    if( pC->pseudoTable ){
      /* PutStrKey does not work for pseudo-tables.
      ** The following assert makes sure we are not trying to use
      ** PutStrKey on a pseudo-table
      */
      assert( pOp->opcode==OP_PutIntKey );
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
      sqlite3BtreeKeySize(pCrsr, &n64);
      n = n64;
    }else{
      sqlite3BtreeDataSize(pCrsr, &n);
    }
    pTos->n = n;
    if( n<=NBFS ){
      pTos->flags = MEM_Str | MEM_Short;
      pTos->z = pTos->zShort;
    }else{
      char *z = sqliteMallocRaw( n );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Str | MEM_Dyn;
      pTos->z = z;
    }
    if( pC->keyAsData || pOp->opcode==OP_RowKey ){
      sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
    }else{
      sqlite3BtreeData(pCrsr, 0, n, pTos->z);
    }
  }else if( pC->pseudoTable ){
    pTos->n = pC->nData;
    pTos->z = pC->pData;
    pTos->flags = MEM_Str|MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Recno P1 * *







|




|










|







3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
      sqlite3BtreeKeySize(pCrsr, &n64);
      n = n64;
    }else{
      sqlite3BtreeDataSize(pCrsr, &n);
    }
    pTos->n = n;
    if( n<=NBFS ){
      pTos->flags = MEM_Blob | MEM_Short;
      pTos->z = pTos->zShort;
    }else{
      char *z = sqliteMallocRaw( n );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Blob | MEM_Dyn;
      pTos->z = z;
    }
    if( pC->keyAsData || pOp->opcode==OP_RowKey ){
      sqlite3BtreeKey(pCrsr, 0, n, pTos->z);
    }else{
      sqlite3BtreeData(pCrsr, 0, n, pTos->z);
    }
  }else if( pC->pseudoTable ){
    pTos->n = pC->nData;
    pTos->z = pC->pData;
    pTos->flags = MEM_Blob|MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: Recno P1 * *
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
    if( amt<=0 ){
      rc = SQLITE_CORRUPT;
      goto abort_due_to_error;
    }
    if( amt>NBFS ){
      z = sqliteMallocRaw( amt );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Str | MEM_Dyn;
    }else{
      z = pTos->zShort;
      pTos->flags = MEM_Str | MEM_Short;
    }
    sqlite3BtreeKey(pCrsr, 0, amt, z);
    pTos->z = z;
    pTos->n = amt;
  }
  break;
}







|


|







3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
    if( amt<=0 ){
      rc = SQLITE_CORRUPT;
      goto abort_due_to_error;
    }
    if( amt>NBFS ){
      z = sqliteMallocRaw( amt );
      if( z==0 ) goto no_mem;
      pTos->flags = MEM_Blob | MEM_Dyn;
    }else{
      z = pTos->zShort;
      pTos->flags = MEM_Blob | MEM_Short;
    }
    sqlite3BtreeKey(pCrsr, 0, amt, z);
    pTos->z = z;
    pTos->n = amt;
  }
  break;
}
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
*/
case OP_IdxPut: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( pTos->flags & MEM_Str );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int nKey = pTos->n;
    const char *zKey = pTos->z;
    if( pOp->p2 ){
      int res;
      int len;
      u64 n;







|







3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
*/
case OP_IdxPut: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( i>=0 && i<p->nCursor );
  assert( pTos->flags & MEM_Blob );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int nKey = pTos->n;
    const char *zKey = pTos->z;
    if( pOp->p2 ){
      int res;
      int len;
      u64 n;
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  assert( i>=0 && i<p->nCursor );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int rx, res;
    rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
    if( rx==SQLITE_OK && res==0 ){
      rc = sqlite3BtreeDelete(pCrsr);
    }







|







4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
** This opcode removes that entry from the index.
*/
case OP_IdxDelete: {
  int i = pOp->p1;
  Cursor *pC;
  BtCursor *pCrsr;
  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );
  assert( i>=0 && i<p->nCursor );
  if( (pCrsr = (pC = p->apCsr[i])->pCursor)!=0 ){
    int rx, res;
    rx = sqlite3BtreeMoveto(pCrsr, pTos->z, pTos->n, &res);
    if( rx==SQLITE_OK && res==0 ){
      rc = sqlite3BtreeDelete(pCrsr);
    }
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
*/
case OP_IdxIsNull: {
  int i = pOp->p1;
  int k, n;
  const char *z;

  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Str );
  z = pTos->z;
  n = pTos->n;
  for(k=0; k<n && i>0; i--){
    u64 serial_type;
    k += sqlite3GetVarint(&z[k], &serial_type);
    if( serial_type==6 ){   /* Serial type 6 is a NULL */
      pc = pOp->p2-1;







|







4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
*/
case OP_IdxIsNull: {
  int i = pOp->p1;
  int k, n;
  const char *z;

  assert( pTos>=p->aStack );
  assert( pTos->flags & MEM_Blob );
  z = pTos->z;
  n = pTos->n;
  for(k=0; k<n && i>0; i--){
    u64 serial_type;
    k += sqlite3GetVarint(&z[k], &serial_type);
    if( serial_type==6 ){   /* Serial type 6 is a NULL */
      pc = pOp->p2-1;
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
  sqlite3HashClear(&pSet->hash);
  pSet->prev = 0;
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
  if( z==0 || z[0]==0 ){
    if( z ) sqliteFree(z);
    pTos->z = "ok";
    pTos->n = 3;
    pTos->flags = MEM_Str | MEM_Static;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Str | MEM_Dyn;
  }
  sqliteFree(aRoot);
  break;
}

/* Opcode: ListWrite * * *
**







|



|







4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
  sqlite3HashClear(&pSet->hash);
  pSet->prev = 0;
  z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p2].pBt, aRoot, nRoot);
  if( z==0 || z[0]==0 ){
    if( z ) sqliteFree(z);
    pTos->z = "ok";
    pTos->n = 3;
    pTos->flags = MEM_Utf8 | MEM_Str | MEM_Static;
  }else{
    pTos->z = z;
    pTos->n = strlen(z) + 1;
    pTos->flags = MEM_Utf8 | MEM_Str | MEM_Dyn;
  }
  sqliteFree(aRoot);
  break;
}

/* Opcode: ListWrite * * *
**
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
  Sorter *pSorter = p->pSort;
  CHECK_FOR_INTERRUPT;
  if( pSorter!=0 ){
    p->pSort = pSorter->pNext;
    pTos++;
    pTos->z = pSorter->pData;
    pTos->n = pSorter->nData;
    pTos->flags = MEM_Str|MEM_Dyn;
    sqliteFree(pSorter->zKey);
    sqliteFree(pSorter);
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}







|







4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
  Sorter *pSorter = p->pSort;
  CHECK_FOR_INTERRUPT;
  if( pSorter!=0 ){
    p->pSort = pSorter->pNext;
    pTos++;
    pTos->z = pSorter->pData;
    pTos->n = pSorter->nData;
    pTos->flags = MEM_Blob|MEM_Dyn;
    sqliteFree(pSorter->zKey);
    sqliteFree(pSorter);
  }else{
    pc = pOp->p2 - 1;
  }
  break;
}
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
  }else{
    z = 0;
  }
  pTos++;
  if( z ){
    pTos->n = strlen(z) + 1;
    pTos->z = z;
    pTos->flags = MEM_Str | MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: MemStore P1 P2 *







|







4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
  }else{
    z = 0;
  }
  pTos++;
  if( z ){
    pTos->n = strlen(z) + 1;
    pTos->z = z;
    pTos->flags = MEM_Utf8 | MEM_Str | MEM_Ephem;
  }else{
    pTos->flags = MEM_Null;
  }
  break;
}

/* Opcode: MemStore P1 P2 *
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
  int i = pOp->p1;
  assert( i>=0 && i<p->nMem );
  pTos++;
  memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
  if( pTos->flags & MEM_Str ){
    pTos->flags |= MEM_Ephem;
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
  }
  break;
}

/* Opcode: MemIncr P1 P2 *







|







4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
** value pushed onto the stack will change too.
*/
case OP_MemLoad: {
  int i = pOp->p1;
  assert( i>=0 && i<p->nMem );
  pTos++;
  memcpy(pTos, &p->aMem[i], sizeof(pTos[0])-NBFS);;
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    pTos->flags |= MEM_Ephem;
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
  }
  break;
}

/* Opcode: MemIncr P1 P2 *
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
  Mem *pMem;
  int i = pOp->p2;
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && i<p->agg.nMem );
  pTos++;
  pMem = &pFocus->aMem[i];
  *pTos = *pMem;
  if( pTos->flags & MEM_Str ){
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
    pTos->flags |= MEM_Ephem;
  }
  break;
}

/* Opcode: AggNext * P2 *







|







5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
  Mem *pMem;
  int i = pOp->p2;
  if( pFocus==0 ) goto no_mem;
  assert( i>=0 && i<p->agg.nMem );
  pTos++;
  pMem = &pFocus->aMem[i];
  *pTos = *pMem;
  if( pTos->flags & (MEM_Str|MEM_Blob) ){
    pTos->flags &= ~(MEM_Dyn|MEM_Static|MEM_Short);
    pTos->flags |= MEM_Ephem;
  }
  break;
}

/* Opcode: AggNext * P2 *
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
    }else{
      pc = pOp->p2 - 1;
    }
  }
  pTos++;
  pTos->z = sqliteHashKey(pSet->prev);
  pTos->n = sqliteHashKeysize(pSet->prev);
  pTos->flags = MEM_Str | MEM_Ephem;
  break;
}

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within







|







5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
    }else{
      pc = pOp->p2 - 1;
    }
  }
  pTos++;
  pTos->z = sqliteHashKey(pSet->prev);
  pTos->n = sqliteHashKeysize(pSet->prev);
  pTos->flags = MEM_Utf8 | MEM_Str | MEM_Ephem;
  break;
}

/* Opcode: Vacuum * * *
**
** Vacuum the entire database.  This opcode will cause other virtual
** machines to be created and run.  It may not be called from within
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
          fprintf(p->trace, " NULL");
        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
          fprintf(p->trace, " si:%lld", pTos[i].i);
        }else if( pTos[i].flags & MEM_Int ){
          fprintf(p->trace, " i:%lld", pTos[i].i);
        }else if( pTos[i].flags & MEM_Real ){
          fprintf(p->trace, " r:%g", pTos[i].r);
        }else if( pTos[i].flags & MEM_Str ){
          int j, k;
          char zBuf[100];
          zBuf[0] = ' ';
          if( pTos[i].flags & MEM_Dyn ){
            zBuf[1] = 'z';
            assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
          }else if( pTos[i].flags & MEM_Static ){







|







5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
          fprintf(p->trace, " NULL");
        }else if( (pTos[i].flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
          fprintf(p->trace, " si:%lld", pTos[i].i);
        }else if( pTos[i].flags & MEM_Int ){
          fprintf(p->trace, " i:%lld", pTos[i].i);
        }else if( pTos[i].flags & MEM_Real ){
          fprintf(p->trace, " r:%g", pTos[i].r);
        }else if( pTos[i].flags & (MEM_Str|MEM_Blob) ){
          int j, k;
          char zBuf[100];
          zBuf[0] = ' ';
          if( pTos[i].flags & MEM_Dyn ){
            zBuf[1] = 'z';
            assert( (pTos[i].flags & (MEM_Static|MEM_Ephem))==0 );
          }else if( pTos[i].flags & MEM_Static ){
Changes to src/vdbe.h.
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.80 2004/05/21 01:29:06 drh Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines







|







11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
*************************************************************************
** Header file for the Virtual DataBase Engine (VDBE)
**
** This header defines the interface to the virtual database engine
** or VDBE.  The VDBE implements an abstract machine that runs a
** simple program to access and modify the underlying database.
**
** $Id: vdbe.h,v 1.81 2004/05/21 10:08:55 danielk1977 Exp $
*/
#ifndef _SQLITE_VDBE_H_
#define _SQLITE_VDBE_H_
#include <stdio.h>

/*
** A single VDBE is an opaque structure named "Vdbe".  Only routines
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
void sqlite3VdbeDequoteP3(Vdbe*, int addr);
int sqlite3VdbeFindOp(Vdbe*, int, int, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
int sqlite3VdbeFinalize(Vdbe*,char**);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
void sqlite3VdbeTrace(Vdbe*,FILE*);
void sqlite3VdbeCompressSpace(Vdbe*,int);
int sqlite3VdbeReset(Vdbe*,char **);
int sqliteVdbeSetVariables(Vdbe*,int,const char**);







<
<







109
110
111
112
113
114
115


116
117
118
119
120
121
122
void sqlite3VdbeChangeP3(Vdbe*, int addr, const char *zP1, int N);
void sqlite3VdbeDequoteP3(Vdbe*, int addr);
int sqlite3VdbeFindOp(Vdbe*, int, int, int);
VdbeOp *sqlite3VdbeGetOp(Vdbe*, int);
int sqlite3VdbeMakeLabel(Vdbe*);
void sqlite3VdbeDelete(Vdbe*);
void sqlite3VdbeMakeReady(Vdbe*,int,int);


int sqlite3VdbeFinalize(Vdbe*,char**);
void sqlite3VdbeResolveLabel(Vdbe*, int);
int sqlite3VdbeCurrentAddr(Vdbe*);
void sqlite3VdbeTrace(Vdbe*,FILE*);
void sqlite3VdbeCompressSpace(Vdbe*,int);
int sqlite3VdbeReset(Vdbe*,char **);
int sqliteVdbeSetVariables(Vdbe*,int,const char**);
Changes to src/vdbeInt.h.
265
266
267
268
269
270
271

272
273
274
275
276
277
278
  int nLabel;         /* Number of labels used */
  int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
  int *aLabel;        /* Space to hold the labels */
  Mem *aStack;        /* The operand stack, except string values */
  Mem *pTos;          /* Top entry in the operand stack */
  char **zArgv;       /* Text values used by the callback */
  char **azColName;   /* Becomes the 4th parameter to callbacks */

  int nCursor;        /* Number of slots in apCsr[] */
  Cursor **apCsr;     /* One element of this array for each open cursor */
  Sorter *pSort;      /* A linked list of objects to be sorted */
  FILE *pFile;        /* At most one open file handler */
  int nField;         /* Number of file fields */
  char **azField;     /* Data for each file field */
  int nVar;           /* Number of entries in apVar[] */







>







265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
  int nLabel;         /* Number of labels used */
  int nLabelAlloc;    /* Number of slots allocated in aLabel[] */
  int *aLabel;        /* Space to hold the labels */
  Mem *aStack;        /* The operand stack, except string values */
  Mem *pTos;          /* Top entry in the operand stack */
  char **zArgv;       /* Text values used by the callback */
  char **azColName;   /* Becomes the 4th parameter to callbacks */
  void **azColName16; /* UTF-16 encoded equivalent of azColName */
  int nCursor;        /* Number of slots in apCsr[] */
  Cursor **apCsr;     /* One element of this array for each open cursor */
  Sorter *pSort;      /* A linked list of objects to be sorted */
  FILE *pFile;        /* At most one open file handler */
  int nField;         /* Number of file fields */
  char **azField;     /* Data for each file field */
  int nVar;           /* Number of entries in apVar[] */
297
298
299
300
301
302
303

304
305
306
307
308
309
310
  int errorAction;        /* Recovery action to do in case of an error */
  int undoTransOnError;   /* If error, either ROLLBACK or COMMIT */
  int inTempTrans;        /* True if temp database is transactioned */
  int returnStack[100];   /* Return address stack for OP_Gosub & OP_Return */
  int returnDepth;        /* Next unused element in returnStack[] */
  int nResColumn;         /* Number of columns in one row of the result set */
  char **azResColumn;     /* Values for one row of result */ 

  int popStack;           /* Pop the stack this much on entry to VdbeExec() */
  char *zErrMsg;          /* Error message written here */
  u8 explain;             /* True if EXPLAIN present on SQL command */
};

/*
** The following are allowed values for Vdbe.magic







>







298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
  int errorAction;        /* Recovery action to do in case of an error */
  int undoTransOnError;   /* If error, either ROLLBACK or COMMIT */
  int inTempTrans;        /* True if temp database is transactioned */
  int returnStack[100];   /* Return address stack for OP_Gosub & OP_Return */
  int returnDepth;        /* Next unused element in returnStack[] */
  int nResColumn;         /* Number of columns in one row of the result set */
  char **azResColumn;     /* Values for one row of result */ 
  u8 resOnStack;          /* True if there are result values on the stack */
  int popStack;           /* Pop the stack this much on entry to VdbeExec() */
  char *zErrMsg;          /* Error message written here */
  u8 explain;             /* True if EXPLAIN present on SQL command */
};

/*
** The following are allowed values for Vdbe.magic
333
334
335
336
337
338
339



int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeKeyCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeRowCompare(void*,int,const void*,int, const void*);









>
>
335
336
337
338
339
340
341
342
343

int sqlite2BtreeKeyCompare(BtCursor *, const void *, int, int, int *);
int sqlite3VdbeIdxKeyCompare(Cursor*, int , const unsigned char*, int*);
int sqlite3VdbeIdxRowid(BtCursor *, i64 *);
int sqlite3MemCompare(const Mem*, const Mem*, const CollSeq*);
int sqlite3VdbeKeyCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeRowCompare(void*,int,const void*,int, const void*);
int sqlite3VdbeExec(Vdbe*);
int sqlite3VdbeList(Vdbe*);
Changes to src/vdbeaux.c.
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    p->s.z = 0;
    p->s.n = 0;
  }else{
    if( n<0 ) n = strlen(zResult);
    if( n<NBFS-1 ){
      memcpy(p->s.zShort, zResult, n);
      p->s.zShort[n] = 0;
      p->s.flags = MEM_Str | MEM_Short;
      p->s.z = p->s.zShort;
    }else{
      p->s.z = sqliteMallocRaw( n+1 );
      if( p->s.z ){
        memcpy(p->s.z, zResult, n);
        p->s.z[n] = 0;
      }
      p->s.flags = MEM_Str | MEM_Dyn;
    }
    p->s.n = n+1;
  }
  return p->s.z;
}
void sqlite3_set_result_int(sqlite_func *p, int iResult){
  assert( !p->isStep );







|







|







456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    p->s.z = 0;
    p->s.n = 0;
  }else{
    if( n<0 ) n = strlen(zResult);
    if( n<NBFS-1 ){
      memcpy(p->s.zShort, zResult, n);
      p->s.zShort[n] = 0;
      p->s.flags = MEM_Utf8 | MEM_Str | MEM_Short;
      p->s.z = p->s.zShort;
    }else{
      p->s.z = sqliteMallocRaw( n+1 );
      if( p->s.z ){
        memcpy(p->s.z, zResult, n);
        p->s.z[n] = 0;
      }
      p->s.flags = MEM_Utf8 | MEM_Str | MEM_Dyn;
    }
    p->s.n = n+1;
  }
  return p->s.z;
}
void sqlite3_set_result_int(sqlite_func *p, int iResult){
  assert( !p->isStep );
933
934
935
936
937
938
939

940
941
942

943
944
945
946
947
948
949
950



951
952
953
954
955
956
957
*/
int sqlite3VdbeReset(Vdbe *p, char **pzErrMsg){
  sqlite *db = p->db;
  int i;

  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
    sqlite3SetString(pzErrMsg, sqlite3_error_string(SQLITE_MISUSE), (char*)0);

    return SQLITE_MISUSE;
  }
  if( p->zErrMsg ){

    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = p->zErrMsg;
    }else{
      sqliteFree(p->zErrMsg);
    }
    p->zErrMsg = 0;
  }else if( p->rc ){
    sqlite3SetString(pzErrMsg, sqlite3_error_string(p->rc), (char*)0);



  }
  Cleanup(p);
  if( p->rc!=SQLITE_OK ){
    switch( p->errorAction ){
      case OE_Abort: {
        if( !p->undoTransOnError ){
          for(i=0; i<db->nDb; i++){







>



>








>
>
>







933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
*/
int sqlite3VdbeReset(Vdbe *p, char **pzErrMsg){
  sqlite *db = p->db;
  int i;

  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
    sqlite3SetString(pzErrMsg, sqlite3_error_string(SQLITE_MISUSE), (char*)0);
    sqlite3Error(p->db, SQLITE_MISUSE, sqlite3_error_string(SQLITE_MISUSE),0);
    return SQLITE_MISUSE;
  }
  if( p->zErrMsg ){
    sqlite3Error(p->db, p->rc, "%s", p->zErrMsg, 0);
    if( pzErrMsg && *pzErrMsg==0 ){
      *pzErrMsg = p->zErrMsg;
    }else{
      sqliteFree(p->zErrMsg);
    }
    p->zErrMsg = 0;
  }else if( p->rc ){
    sqlite3SetString(pzErrMsg, sqlite3_error_string(p->rc), (char*)0);
    sqlite3Error(p->db, p->rc, "%s", sqlite3_error_string(p->rc) , 0);
  }else{
    sqlite3Error(p->db, SQLITE_OK, 0);
  }
  Cleanup(p);
  if( p->rc!=SQLITE_OK ){
    switch( p->errorAction ){
      case OE_Abort: {
        if( !p->undoTransOnError ){
          for(i=0; i<db->nDb; i++){
1019
1020
1021
1022
1023
1024
1025



1026
1027
1028
1029
1030
1031
1032
*/
int sqlite3VdbeFinalize(Vdbe *p, char **pzErrMsg){
  int rc;
  sqlite *db;

  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
    sqlite3SetString(pzErrMsg, sqlite3_error_string(SQLITE_MISUSE), (char*)0);



    return SQLITE_MISUSE;
  }
  db = p->db;
  rc = sqlite3VdbeReset(p, pzErrMsg);
  sqlite3VdbeDelete(p);
  if( db->want_to_close && db->pVdbe==0 ){
    sqlite3_close(db);







>
>
>







1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
*/
int sqlite3VdbeFinalize(Vdbe *p, char **pzErrMsg){
  int rc;
  sqlite *db;

  if( p->magic!=VDBE_MAGIC_RUN && p->magic!=VDBE_MAGIC_HALT ){
    sqlite3SetString(pzErrMsg, sqlite3_error_string(SQLITE_MISUSE), (char*)0);
    if( p->magic==VDBE_MAGIC_INIT ){
      sqlite3Error(p->db, SQLITE_MISUSE, sqlite3_error_string(SQLITE_MISUSE),0);
    }
    return SQLITE_MISUSE;
  }
  db = p->db;
  rc = sqlite3VdbeReset(p, pzErrMsg);
  sqlite3VdbeDelete(p);
  if( db->want_to_close && db->pVdbe==0 ){
    sqlite3_close(db);
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
    return 8;
  }
  
  /* String or blob */
  assert( serial_type>=12 );
  len = sqlite3VdbeSerialTypeLen(serial_type);
  if( serial_type&0x01 ){
    pMem->flags = MEM_Str;
    pMem->n = len+1;
  }else{
    pMem->flags = MEM_Blob;
    pMem->n = len;
  }

  if( (pMem->n)>NBFS ){







|







1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
    return 8;
  }
  
  /* String or blob */
  assert( serial_type>=12 );
  len = sqlite3VdbeSerialTypeLen(serial_type);
  if( serial_type&0x01 ){
    pMem->flags = MEM_Str|MEM_Utf8;
    pMem->n = len+1;
  }else{
    pMem->flags = MEM_Blob;
    pMem->n = len;
  }

  if( (pMem->n)>NBFS ){
1865
1866
1867
1868
1869
1870
1871



  *res = sqlite3VdbeKeyCompare(pC->pKeyInfo, len, pCellKey, nKey, pKey);
  
  if( freeCellKey ){
    sqliteFree(pCellKey);
  }
  return SQLITE_OK;
}










>
>
>
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
  *res = sqlite3VdbeKeyCompare(pC->pKeyInfo, len, pCellKey, nKey, pKey);
  
  if( freeCellKey ){
    sqliteFree(pCellKey);
  }
  return SQLITE_OK;
}



Changes to test/attach2.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the ATTACH and DETACH commands
# and related functionality.
#
# $Id: attach2.test,v 1.8 2004/05/21 01:47:27 danielk1977 Exp $
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Ticket #354







|







8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the ATTACH and DETACH commands
# and related functionality.
#
# $Id: attach2.test,v 1.9 2004/05/21 10:08:55 danielk1977 Exp $
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Ticket #354
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Ticket #574:  Make sure it works usingi the non-callback API
#
do_test attach2-3.1 {
  db close
  set DB [sqlite db test.db]
  set rc [catch {sqlite3_prepare $DB "ATTACH 'test2.db' AS t2" -1 TAIL} VM]
  if {$rc} {lappend rc $VM}
  sqlite_finalize $VM
  set rc
} {0}
do_test attach2-3.2 {
  set rc [catch {sqlite3_prepare $DB "DETACH t2" -1 TAIL} VM]
  if {$rc} {lappend rc $VM}
  sqlite_finalize $VM
  set rc
} {0}

db close
for {set i 2} {$i<=15} {incr i} {
  catch {db$i close}
}
file delete -force test2.db


finish_test







|





|











122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# Ticket #574:  Make sure it works usingi the non-callback API
#
do_test attach2-3.1 {
  db close
  set DB [sqlite db test.db]
  set rc [catch {sqlite3_prepare $DB "ATTACH 'test2.db' AS t2" -1 TAIL} VM]
  if {$rc} {lappend rc $VM}
  sqlite3_finalize $VM
  set rc
} {0}
do_test attach2-3.2 {
  set rc [catch {sqlite3_prepare $DB "DETACH t2" -1 TAIL} VM]
  if {$rc} {lappend rc $VM}
  sqlite3_finalize $VM
  set rc
} {0}

db close
for {set i 2} {$i<=15} {incr i} {
  catch {db$i close}
}
file delete -force test2.db


finish_test
Changes to test/bind.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# 2003 September 6
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script testing the sqlite_bind API.
#
# $Id: bind.test,v 1.5 2004/05/21 02:11:41 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test bind-1.1 {
  db close
  set DB [sqlite db test.db]
  execsql {CREATE TABLE t1(a,b,c)}
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(?,?,?)} -1 TAIL]
  set TAIL
} {}
do_test bind-1.2 {
  sqlite_step $VM N VALUES COLNAMES
} {SQLITE_DONE}
do_test bind-1.3 {
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {}}
do_test bind-1.4 {
  sqlite_reset $VM
  sqlite_bind $VM 1 {test value 1} normal
  sqlite_step $VM N VALUES COLNAMES
} SQLITE_DONE
do_test bind-1.5 {
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {} 2 {test value 1} {} {}}
do_test bind-1.6 {
  sqlite_reset $VM
  sqlite_bind $VM 3 {'test value 2'} normal
  sqlite_step $VM N VALUES COLNAMES
} SQLITE_DONE
do_test bind-1.7 {
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {} 2 {test value 1} {} {} 3 {test value 1} {} {'test value 2'}}
do_test bind-1.8 {
  sqlite_reset $VM
  set sqlite_static_bind_value 123
  sqlite_bind $VM 1 {} static
  sqlite_bind $VM 2 {abcdefg} normal
  sqlite_bind $VM 3 {} null
  execsql {DELETE FROM t1}
  sqlite_step $VM N VALUES COLNAMES
  execsql {SELECT rowid, * FROM t1}
} {1 123 abcdefg {}}
do_test bind-1.9 {
  sqlite_reset $VM
  sqlite_bind $VM 1 {456} normal
  sqlite_step $VM N VALUES COLNAMES
  execsql {SELECT rowid, * FROM t1}
} {1 123 abcdefg {} 2 456 abcdefg {}}

do_test bind-1.99 {
  sqlite_finalize $VM
} {}

do_test bind-2.1 {
  execsql {
    DELETE FROM t1;
  }
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(?,?,?)} -1 TAIL]
  set TAIL
} {}

# 32 bit Integers
do_test bind-2.2 {
  sqlite3_bind_int32 $VM 1 123
  sqlite3_bind_int32 $VM 2 456
  sqlite3_bind_int32 $VM 3 789
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 123 456 789}
do_test bind-2.3 {
  sqlite3_bind_int32 $VM 2 -2000000000
  sqlite3_bind_int32 $VM 3 2000000000
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 123 456 789 2 123 -2000000000 2000000000}
do_test bind-2.4 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER}
do_test bind-2.5 {
  execsql {
    DELETE FROM t1;
  }
} {}

# 64 bit Integers
do_test bind-3.1 {
  sqlite3_bind_int64 $VM 1 32
  sqlite3_bind_int64 $VM 2 -2000000000000
  sqlite3_bind_int64 $VM 3 2000000000000
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 32 -2000000000000 2000000000000}
do_test bind-3.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {INTEGER INTEGER INTEGER}
do_test bind-3.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# Doubles
do_test bind-4.1 {
  sqlite3_bind_double $VM 1 1234.1234
  sqlite3_bind_double $VM 2 0.00001
  sqlite3_bind_double $VM 3 123456789
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 1234.1234 1e-05 123456789}
do_test bind-4.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {REAL REAL REAL}
do_test bind-4.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# NULL
do_test bind-5.1 {
  sqlite3_bind_null $VM 1
  sqlite3_bind_null $VM 2
  sqlite3_bind_null $VM 3 
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {}}
do_test bind-5.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {NULL NULL NULL}
do_test bind-5.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# UTF-8 text
do_test bind-6.1 {
  sqlite3_bind_text $VM 1 hellothere 5
  sqlite3_bind_text $VM 2 "." 2
  sqlite3_bind_text $VM 3 world -1
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 hello . world}
do_test bind-6.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {TEXT TEXT TEXT}
do_test bind-6.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# UTF-16 text
do_test bind-7.1 {
  sqlite3_bind_text16 $VM 1 [encoding convertto unicode hellothere] 10
  sqlite3_bind_text16 $VM 2 [encoding convertto unicode ""] 0
  sqlite3_bind_text16 $VM 3 [encoding convertto unicode world] 10
  sqlite_step $VM N VALUES COLNAMES
  sqlite_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 hello {} world}
do_test bind-7.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {TEXT TEXT TEXT}
do_test bind-7.3 {
  execsql {













|



















|







|







|









|






|
















|






|

















|

















|

















|

















|

















|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# 2003 September 6
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script testing the sqlite_bind API.
#
# $Id: bind.test,v 1.6 2004/05/21 10:08:55 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

do_test bind-1.1 {
  db close
  set DB [sqlite db test.db]
  execsql {CREATE TABLE t1(a,b,c)}
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(?,?,?)} -1 TAIL]
  set TAIL
} {}
do_test bind-1.2 {
  sqlite_step $VM N VALUES COLNAMES
} {SQLITE_DONE}
do_test bind-1.3 {
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {}}
do_test bind-1.4 {
  sqlite3_reset $VM
  sqlite_bind $VM 1 {test value 1} normal
  sqlite_step $VM N VALUES COLNAMES
} SQLITE_DONE
do_test bind-1.5 {
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {} 2 {test value 1} {} {}}
do_test bind-1.6 {
  sqlite3_reset $VM
  sqlite_bind $VM 3 {'test value 2'} normal
  sqlite_step $VM N VALUES COLNAMES
} SQLITE_DONE
do_test bind-1.7 {
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {} 2 {test value 1} {} {} 3 {test value 1} {} {'test value 2'}}
do_test bind-1.8 {
  sqlite3_reset $VM
  set sqlite_static_bind_value 123
  sqlite_bind $VM 1 {} static
  sqlite_bind $VM 2 {abcdefg} normal
  sqlite_bind $VM 3 {} null
  execsql {DELETE FROM t1}
  sqlite_step $VM N VALUES COLNAMES
  execsql {SELECT rowid, * FROM t1}
} {1 123 abcdefg {}}
do_test bind-1.9 {
  sqlite3_reset $VM
  sqlite_bind $VM 1 {456} normal
  sqlite_step $VM N VALUES COLNAMES
  execsql {SELECT rowid, * FROM t1}
} {1 123 abcdefg {} 2 456 abcdefg {}}

do_test bind-1.99 {
  sqlite3_finalize $VM
} {}

do_test bind-2.1 {
  execsql {
    DELETE FROM t1;
  }
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(?,?,?)} -1 TAIL]
  set TAIL
} {}

# 32 bit Integers
do_test bind-2.2 {
  sqlite3_bind_int32 $VM 1 123
  sqlite3_bind_int32 $VM 2 456
  sqlite3_bind_int32 $VM 3 789
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 123 456 789}
do_test bind-2.3 {
  sqlite3_bind_int32 $VM 2 -2000000000
  sqlite3_bind_int32 $VM 3 2000000000
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 123 456 789 2 123 -2000000000 2000000000}
do_test bind-2.4 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER}
do_test bind-2.5 {
  execsql {
    DELETE FROM t1;
  }
} {}

# 64 bit Integers
do_test bind-3.1 {
  sqlite3_bind_int64 $VM 1 32
  sqlite3_bind_int64 $VM 2 -2000000000000
  sqlite3_bind_int64 $VM 3 2000000000000
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 32 -2000000000000 2000000000000}
do_test bind-3.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {INTEGER INTEGER INTEGER}
do_test bind-3.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# Doubles
do_test bind-4.1 {
  sqlite3_bind_double $VM 1 1234.1234
  sqlite3_bind_double $VM 2 0.00001
  sqlite3_bind_double $VM 3 123456789
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 1234.1234 1e-05 123456789}
do_test bind-4.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {REAL REAL REAL}
do_test bind-4.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# NULL
do_test bind-5.1 {
  sqlite3_bind_null $VM 1
  sqlite3_bind_null $VM 2
  sqlite3_bind_null $VM 3 
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 {} {} {}}
do_test bind-5.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {NULL NULL NULL}
do_test bind-5.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# UTF-8 text
do_test bind-6.1 {
  sqlite3_bind_text $VM 1 hellothere 5
  sqlite3_bind_text $VM 2 "." 2
  sqlite3_bind_text $VM 3 world -1
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 hello . world}
do_test bind-6.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {TEXT TEXT TEXT}
do_test bind-6.3 {
  execsql {
    DELETE FROM t1;
  }
} {}

# UTF-16 text
do_test bind-7.1 {
  sqlite3_bind_text16 $VM 1 [encoding convertto unicode hellothere] 10
  sqlite3_bind_text16 $VM 2 [encoding convertto unicode ""] 0
  sqlite3_bind_text16 $VM 3 [encoding convertto unicode world] 10
  sqlite_step $VM N VALUES COLNAMES
  sqlite3_reset $VM
  execsql {SELECT rowid, * FROM t1}
} {1 hello {} world}
do_test bind-7.2 {
  execsql {SELECT classof(a), classof(b), classof(c) FROM t1}
} {TEXT TEXT TEXT}
do_test bind-7.3 {
  execsql {
212
213
214
215
216
217
218
219
220
221
222
223
224
} {bind index out of range}
do_test bind-8.7 {
  encoding convertfrom unicode [sqlite3_errmsg16 $DB]
} {bind index out of range}


do_test bind-9.99 {
  sqlite_finalize $VM
} {}



finish_test







|





212
213
214
215
216
217
218
219
220
221
222
223
224
} {bind index out of range}
do_test bind-8.7 {
  encoding convertfrom unicode [sqlite3_errmsg16 $DB]
} {bind index out of range}


do_test bind-9.99 {
  sqlite3_finalize $VM
} {}



finish_test
Changes to test/capi2.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2003 January 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script testing the callback-free C/C++ API.
#
# $Id: capi2.test,v 1.11 2004/05/21 01:47:27 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Check basic functionality
#













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2003 January 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script testing the callback-free C/C++ API.
#
# $Id: capi2.test,v 1.12 2004/05/21 10:08:55 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Check basic functionality
#
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  set COLNAMES z
  sqlite_step $VM N VALUES COLNAMES
} {SQLITE_MISUSE}
do_test capi2-1.9 {
  list $N $VALUES $COLNAMES
} {0 {} {}}
do_test capi2-1.10 {
  sqlite_finalize $VM
} {}

# Check to make sure that the "tail" of a multi-statement SQL script
# is returned by sqlite3_prepare.
#
do_test capi2-2.1 {
  set SQL {







|







53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
  set COLNAMES z
  sqlite_step $VM N VALUES COLNAMES
} {SQLITE_MISUSE}
do_test capi2-1.9 {
  list $N $VALUES $COLNAMES
} {0 {} {}}
do_test capi2-1.10 {
  sqlite3_finalize $VM
} {}

# Check to make sure that the "tail" of a multi-statement SQL script
# is returned by sqlite3_prepare.
#
do_test capi2-2.1 {
  set SQL {
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  lappend r $n $val $colname
} {SQLITE_ROW 2 {t1 1} {name rowid text INTEGER}}
do_test capi2-2.3 {
  set r [sqlite_step $VM n val colname]
  lappend r $n $val $colname
} {SQLITE_DONE 2 {} {name rowid text INTEGER}}
do_test capi2-2.4 {
  sqlite_finalize $VM
} {}
do_test capi2-2.5 {
  set VM [sqlite3_prepare $DB $SQL -1 SQL]
  set SQL
} {
    -- A comment at the end
  }
do_test capi2-2.6 {
  set r [sqlite_step $VM n val colname]
  lappend r $n $val $colname
} {SQLITE_DONE 2 {} {name rowid text INTEGER}}
do_test capi2-2.7 {
  sqlite_finalize $VM
} {}
do_test capi2-2.8 {
  set VM [sqlite3_prepare $DB $SQL -1 SQL]
  list $SQL $VM
} {{} {}}

# Check the error handling.







|












|







80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
  lappend r $n $val $colname
} {SQLITE_ROW 2 {t1 1} {name rowid text INTEGER}}
do_test capi2-2.3 {
  set r [sqlite_step $VM n val colname]
  lappend r $n $val $colname
} {SQLITE_DONE 2 {} {name rowid text INTEGER}}
do_test capi2-2.4 {
  sqlite3_finalize $VM
} {}
do_test capi2-2.5 {
  set VM [sqlite3_prepare $DB $SQL -1 SQL]
  set SQL
} {
    -- A comment at the end
  }
do_test capi2-2.6 {
  set r [sqlite_step $VM n val colname]
  lappend r $n $val $colname
} {SQLITE_DONE 2 {} {name rowid text INTEGER}}
do_test capi2-2.7 {
  sqlite3_finalize $VM
} {}
do_test capi2-2.8 {
  set VM [sqlite3_prepare $DB $SQL -1 SQL]
  list $SQL $VM
} {{} {}}

# Check the error handling.
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
do_test capi2-3.7 {
  set N {}
  set VALUE {}
  set COLNAME {}
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 {{}} {5/0 NUMERIC}}
do_test capi2-3.8 {
  sqlite_finalize $VM
} {}
do_test capi2-3.9 {
  execsql {CREATE UNIQUE INDEX i1 ON t1(a)}
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(1,2,3)} -1 TAIL]
  set TAIL
} {}
do_test capi2-3.9b {db changes} {0}
do_test capi2-3.10 {
  set N {}
  set VALUE {}
  set COLNAME {}
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-3.10b {db changes} {1}
do_test capi2-3.11 {
  sqlite_finalize $VM
} {}
do_test capi2-3.11b {db changes} {1}
do_test capi2-3.12 {
  list [catch {sqlite_finalize $VM} msg] [set msg]
} {1 {(21) library routine called out of sequence}}
do_test capi2-3.13 {
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(1,3,4)} -1 TAIL]
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ERROR 0 {} {}}
do_test capi2-3.13b {db changes} {0}
do_test capi2-3.14 {
  list [catch {sqlite_finalize $VM} msg] [set msg]
} {1 {(19) column a is not unique}}
do_test capi2-3.15 {
  set VM [sqlite3_prepare $DB {CREATE TABLE t2(a NOT NULL, b)} -1 TAIL]
  set TAIL
} {}
do_test capi2-3.16 {
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-3.17 {
  list [catch {sqlite_finalize $VM} msg] [set msg]
} {0 {}}
do_test capi2-3.18 {
  set VM [sqlite3_prepare $DB {INSERT INTO t2 VALUES(NULL,2)} -1 TAIL]
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ERROR 0 {} {}}
do_test capi2-3.19 {
  list [catch {sqlite_finalize $VM} msg] [set msg]
} {1 {(19) t2.a may not be NULL}}

# Two or more virtual machines exists at the same time.
#
do_test capi2-4.1 {
  set VM1 [sqlite3_prepare $DB {INSERT INTO t2 VALUES(1,2)} -1 TAIL]
  set TAIL







|















|



|







|









|






|







145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
do_test capi2-3.7 {
  set N {}
  set VALUE {}
  set COLNAME {}
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 {{}} {5/0 NUMERIC}}
do_test capi2-3.8 {
  sqlite3_finalize $VM
} {}
do_test capi2-3.9 {
  execsql {CREATE UNIQUE INDEX i1 ON t1(a)}
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(1,2,3)} -1 TAIL]
  set TAIL
} {}
do_test capi2-3.9b {db changes} {0}
do_test capi2-3.10 {
  set N {}
  set VALUE {}
  set COLNAME {}
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-3.10b {db changes} {1}
do_test capi2-3.11 {
  sqlite3_finalize $VM
} {}
do_test capi2-3.11b {db changes} {1}
do_test capi2-3.12 {
  list [catch {sqlite3_finalize $VM} msg] [set msg]
} {1 {(21) library routine called out of sequence}}
do_test capi2-3.13 {
  set VM [sqlite3_prepare $DB {INSERT INTO t1 VALUES(1,3,4)} -1 TAIL]
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ERROR 0 {} {}}
do_test capi2-3.13b {db changes} {0}
do_test capi2-3.14 {
  list [catch {sqlite3_finalize $VM} msg] [set msg]
} {1 {(19) column a is not unique}}
do_test capi2-3.15 {
  set VM [sqlite3_prepare $DB {CREATE TABLE t2(a NOT NULL, b)} -1 TAIL]
  set TAIL
} {}
do_test capi2-3.16 {
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-3.17 {
  list [catch {sqlite3_finalize $VM} msg] [set msg]
} {0 {}}
do_test capi2-3.18 {
  set VM [sqlite3_prepare $DB {INSERT INTO t2 VALUES(NULL,2)} -1 TAIL]
  list [sqlite_step $VM N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ERROR 0 {} {}}
do_test capi2-3.19 {
  list [catch {sqlite3_finalize $VM} msg] [set msg]
} {1 {(19) t2.a may not be NULL}}

# Two or more virtual machines exists at the same time.
#
do_test capi2-4.1 {
  set VM1 [sqlite3_prepare $DB {INSERT INTO t2 VALUES(1,2)} -1 TAIL]
  set TAIL
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
do_test capi2-4.4 {
  list [sqlite_step $VM2 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-4.5 {
  execsql {SELECT * FROM t2 ORDER BY a}
} {2 3}
do_test capi2-4.6 {
  list [catch {sqlite_finalize $VM2} msg] [set msg]
} {0 {}}  
do_test capi2-4.7 {
  list [sqlite_step $VM3 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-4.8 {
  execsql {SELECT * FROM t2 ORDER BY a}
} {2 3 3 4}
do_test capi2-4.9 {
  list [catch {sqlite_finalize $VM3} msg] [set msg]
} {0 {}}  
do_test capi2-4.10 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-4.11 {
  execsql {SELECT * FROM t2 ORDER BY a}
} {1 2 2 3 3 4}
do_test capi2-4.12 {
  list [catch {sqlite_finalize $VM1} msg] [set msg]
} {0 {}}  

# Interleaved SELECTs
#
do_test capi2-5.1 {
  set VM1 [sqlite3_prepare $DB {SELECT * FROM t2} -1 TAIL]
  set VM2 [sqlite3_prepare $DB {SELECT * FROM t2} -1 TAIL]







|








|








|







214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
do_test capi2-4.4 {
  list [sqlite_step $VM2 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-4.5 {
  execsql {SELECT * FROM t2 ORDER BY a}
} {2 3}
do_test capi2-4.6 {
  list [catch {sqlite3_finalize $VM2} msg] [set msg]
} {0 {}}  
do_test capi2-4.7 {
  list [sqlite_step $VM3 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-4.8 {
  execsql {SELECT * FROM t2 ORDER BY a}
} {2 3 3 4}
do_test capi2-4.9 {
  list [catch {sqlite3_finalize $VM3} msg] [set msg]
} {0 {}}  
do_test capi2-4.10 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 0 {} {}}
do_test capi2-4.11 {
  execsql {SELECT * FROM t2 ORDER BY a}
} {1 2 2 3 3 4}
do_test capi2-4.12 {
  list [catch {sqlite3_finalize $VM1} msg] [set msg]
} {0 {}}  

# Interleaved SELECTs
#
do_test capi2-5.1 {
  set VM1 [sqlite3_prepare $DB {SELECT * FROM t2} -1 TAIL]
  set VM2 [sqlite3_prepare $DB {SELECT * FROM t2} -1 TAIL]
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
do_test capi2-5.6 {
  list [sqlite_step $VM3 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {1 2} {a b {} {}}}
do_test capi2-5.7 {
  list [sqlite_step $VM3 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 2 {} {a b {} {}}}
do_test capi2-5.8 {
  list [catch {sqlite_finalize $VM3} msg] [set msg]
} {0 {}}  
do_test capi2-5.9 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {1 2} {a b {} {}}}
do_test capi2-5.10 {
  list [catch {sqlite_finalize $VM1} msg] [set msg]
} {0 {}}  
do_test capi2-5.11 {
  list [sqlite_step $VM2 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {3 4} {a b {} {}}}
do_test capi2-5.12 {
  list [sqlite_step $VM2 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {1 2} {a b {} {}}}
do_test capi2-5.11 {
  list [catch {sqlite_finalize $VM2} msg] [set msg]
} {0 {}}  

# Check for proper SQLITE_BUSY returns.
#
do_test capi2-6.1 {
  execsql {
    BEGIN;







|





|








|







262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
do_test capi2-5.6 {
  list [sqlite_step $VM3 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {1 2} {a b {} {}}}
do_test capi2-5.7 {
  list [sqlite_step $VM3 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_DONE 2 {} {a b {} {}}}
do_test capi2-5.8 {
  list [catch {sqlite3_finalize $VM3} msg] [set msg]
} {0 {}}  
do_test capi2-5.9 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {1 2} {a b {} {}}}
do_test capi2-5.10 {
  list [catch {sqlite3_finalize $VM1} msg] [set msg]
} {0 {}}  
do_test capi2-5.11 {
  list [sqlite_step $VM2 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {3 4} {a b {} {}}}
do_test capi2-5.12 {
  list [sqlite_step $VM2 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 2 {1 2} {a b {} {}}}
do_test capi2-5.11 {
  list [catch {sqlite3_finalize $VM2} msg] [set msg]
} {0 {}}  

# Check for proper SQLITE_BUSY returns.
#
do_test capi2-6.1 {
  execsql {
    BEGIN;
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# execsql {pragma vdbe_trace=on}
do_test capi2-6.13 {
  catchsql {UPDATE t3 SET x=x+1}
} {1 {database table is locked}}
do_test capi2-6.14 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 6 {x counter}}
# puts [list [catch {sqlite_finalize $VM1} msg] [set msg]]; exit
do_test capi2-6.15 {
  execsql {SELECT * FROM t1}
} {1 2 3}
do_test capi2-6.16 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 7 {x counter}}
do_test capi2-6.17 {







|







337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
# execsql {pragma vdbe_trace=on}
do_test capi2-6.13 {
  catchsql {UPDATE t3 SET x=x+1}
} {1 {database table is locked}}
do_test capi2-6.14 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 6 {x counter}}
# puts [list [catch {sqlite3_finalize $VM1} msg] [set msg]]; exit
do_test capi2-6.15 {
  execsql {SELECT * FROM t1}
} {1 2 3}
do_test capi2-6.16 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 7 {x counter}}
do_test capi2-6.17 {
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    SELECT * FROM t1;
  }
} {1 {column a is not unique}}
do_test capi2-6.28 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 13 {x counter}}
do_test capi2-6.99 {
  list [catch {sqlite_finalize $VM1} msg] [set msg]
} {0 {}}
catchsql {ROLLBACK}

do_test capi2-7.1 {
  stepsql $DB {
    SELECT * FROM t1
  }







|







387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    SELECT * FROM t1;
  }
} {1 {column a is not unique}}
do_test capi2-6.28 {
  list [sqlite_step $VM1 N VALUE COLNAME] [set N] [set VALUE] [set COLNAME]
} {SQLITE_ROW 1 13 {x counter}}
do_test capi2-6.99 {
  list [catch {sqlite3_finalize $VM1} msg] [set msg]
} {0 {}}
catchsql {ROLLBACK}

do_test capi2-7.1 {
  stepsql $DB {
    SELECT * FROM t1
  }
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  lindex $x 0
} {0}

# Ticket #261 - make sure we can finalize before the end of a query.
#
do_test capi2-8.1 {
  set VM1 [sqlite3_prepare $DB {SELECT * FROM t2} -1 TAIL]
  sqlite_finalize $VM1
} {}
  
# Tickets #384 and #385 - make sure the TAIL argument to sqlite3_prepare
# and all of the return pointers in sqlite_step can be null.
#
do_test capi2-9.1 {
  set VM1 [sqlite3_prepare $DB {SELECT * FROM t2} -1 DUMMY]
  sqlite_step $VM1
  sqlite_finalize $VM1
} {}

db2 close

finish_test







|








|





454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  lindex $x 0
} {0}

# Ticket #261 - make sure we can finalize before the end of a query.
#
do_test capi2-8.1 {
  set VM1 [sqlite3_prepare $DB {SELECT * FROM t2} -1 TAIL]
  sqlite3_finalize $VM1
} {}
  
# Tickets #384 and #385 - make sure the TAIL argument to sqlite3_prepare
# and all of the return pointers in sqlite_step can be null.
#
do_test capi2-9.1 {
  set VM1 [sqlite3_prepare $DB {SELECT * FROM t2} -1 DUMMY]
  sqlite_step $VM1
  sqlite3_finalize $VM1
} {}

db2 close

finish_test
Changes to test/capi3.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2003 January 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script testing the callback-free C/C++ API.
#
# $Id: capi3.test,v 1.2 2004/05/21 01:47:27 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Return the UTF-16 representation of the supplied UTF-8 string $str.
# If $nt is true, append two 0x00 bytes as a nul terminator.













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2003 January 29
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script testing the callback-free C/C++ API.
#
# $Id: capi3.test,v 1.3 2004/05/21 10:08:55 danielk1977 Exp $
#

set testdir [file dirname $argv0]
source $testdir/tester.tcl

# Return the UTF-16 representation of the supplied UTF-8 string $str.
# If $nt is true, append two 0x00 bytes as a nul terminator.
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#

db close
set DB [sqlite db test.db]

do_test capi3-1.1 {
  set STMT [sqlite3_prepare $DB {SELECT name FROM sqlite_master} -1 TAIL]
  sqlite_finalize $STMT
  set TAIL
} {}
do_test capi3-1.2 {
  sqlite3_errcode $DB
} {SQLITE_OK}
do_test capi3-1.3 {
  sqlite3_errmsg $DB
} {not an error}
do_test capi3-1.4 {
  set sql {SELECT name FROM sqlite_master;SELECT 10}
  set STMT [sqlite3_prepare $DB $sql -1 TAIL]
  sqlite_finalize $STMT
  set TAIL
} {SELECT 10}
do_test capi3-1.5 {
  set sql {SELECT namex FROM sqlite_master}
  catch {
    set STMT [sqlite3_prepare $DB $sql -1 TAIL]
  }
} {1}
do_test capi3-1.6 {
  sqlite3_errcode $DB
} {SQLITE_ERROR}
do_test capi3-1.7 {
  sqlite3_errmsg $DB
} {no such column: namex}

do_test capi3-2.1 {
  set sql16 [utf16 {SELECT name FROM sqlite_master}]
  set STMT [sqlite3_prepare16 $DB $sql16 -1 ::TAIL]
  sqlite_finalize $STMT
  utf8 $::TAIL
} {}
do_test capi3-2.2 {
  set sql [utf16 {SELECT name FROM sqlite_master;SELECT 10}]
  set STMT [sqlite3_prepare16 $DB $sql -1 TAIL]
  sqlite_finalize $STMT
  utf8 $TAIL
} {SELECT 10}
do_test capi3-2.3 {
  set sql [utf16 {SELECT namex FROM sqlite_master}]
  catch {
    set STMT [sqlite3_prepare16 $DB $sql -1 TAIL]
  }







|











|


















|





|







50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#

db close
set DB [sqlite db test.db]

do_test capi3-1.1 {
  set STMT [sqlite3_prepare $DB {SELECT name FROM sqlite_master} -1 TAIL]
  sqlite3_finalize $STMT
  set TAIL
} {}
do_test capi3-1.2 {
  sqlite3_errcode $DB
} {SQLITE_OK}
do_test capi3-1.3 {
  sqlite3_errmsg $DB
} {not an error}
do_test capi3-1.4 {
  set sql {SELECT name FROM sqlite_master;SELECT 10}
  set STMT [sqlite3_prepare $DB $sql -1 TAIL]
  sqlite3_finalize $STMT
  set TAIL
} {SELECT 10}
do_test capi3-1.5 {
  set sql {SELECT namex FROM sqlite_master}
  catch {
    set STMT [sqlite3_prepare $DB $sql -1 TAIL]
  }
} {1}
do_test capi3-1.6 {
  sqlite3_errcode $DB
} {SQLITE_ERROR}
do_test capi3-1.7 {
  sqlite3_errmsg $DB
} {no such column: namex}

do_test capi3-2.1 {
  set sql16 [utf16 {SELECT name FROM sqlite_master}]
  set STMT [sqlite3_prepare16 $DB $sql16 -1 ::TAIL]
  sqlite3_finalize $STMT
  utf8 $::TAIL
} {}
do_test capi3-2.2 {
  set sql [utf16 {SELECT name FROM sqlite_master;SELECT 10}]
  set STMT [sqlite3_prepare16 $DB $sql -1 TAIL]
  sqlite3_finalize $STMT
  utf8 $TAIL
} {SELECT 10}
do_test capi3-2.3 {
  set sql [utf16 {SELECT namex FROM sqlite_master}]
  catch {
    set STMT [sqlite3_prepare16 $DB $sql -1 TAIL]
  }
150
151
152
153
154
155
156


157
158
159
160
} {SQLITE_CANTOPEN}
do_test capi3-4.4 {
  utf8 [sqlite3_errmsg16 $db2]
} {unable to open database file}
do_test capi3-4.4 {
  sqlite3_close $db2
} {}



finish_test









>
>




150
151
152
153
154
155
156
157
158
159
160
161
162
} {SQLITE_CANTOPEN}
do_test capi3-4.4 {
  utf8 [sqlite3_errmsg16 $db2]
} {unable to open database file}
do_test capi3-4.4 {
  sqlite3_close $db2
} {}

db close

finish_test


Changes to test/tester.tcl.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.34 2004/05/21 01:47:27 danielk1977 Exp $

# Make sure tclsqlite was compiled correctly.  Abort now with an
# error message if not.
#
if {[sqlite -tcl-uses-utf]} {
  if {"\u1234"=="u1234"} {
    puts stderr "***** BUILD PROBLEM *****"













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements some common TCL routines used for regression
# testing the SQLite library
#
# $Id: tester.tcl,v 1.35 2004/05/21 10:08:55 danielk1977 Exp $

# Make sure tclsqlite was compiled correctly.  Abort now with an
# error message if not.
#
if {[sqlite -tcl-uses-utf]} {
  if {"\u1234"=="u1234"} {
    puts stderr "***** BUILD PROBLEM *****"
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    if {[catch {sqlite3_prepare $dbptr $sql -1 sqltail} vm]} {
      return [list 1 $vm]
    }
    set sql [string trim $sqltail]
    while {[sqlite_step $vm N VAL COL]=="SQLITE_ROW"} {
      foreach v $VAL {lappend r $v}
    }
    if {[catch {sqlite_finalize $vm} errmsg]} {
      return [list 1 $errmsg]
    }
  }
  return $r
}

# Delete a file or directory







|







201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    if {[catch {sqlite3_prepare $dbptr $sql -1 sqltail} vm]} {
      return [list 1 $vm]
    }
    set sql [string trim $sqltail]
    while {[sqlite_step $vm N VAL COL]=="SQLITE_ROW"} {
      foreach v $VAL {lappend r $v}
    }
    if {[catch {sqlite3_finalize $vm} errmsg]} {
      return [list 1 $errmsg]
    }
  }
  return $r
}

# Delete a file or directory
Changes to test/vacuum.test.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the VACUUM statement.
#
# $Id: vacuum.test,v 1.16 2004/05/21 01:47:27 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

proc cksum {{db db}} {
  set txt [$db eval {SELECT name, type, sql FROM sqlite_master}]\n
  foreach tbl [$db eval {SELECT name FROM sqlite_master WHERE type='table'}] {













|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
# 2001 September 15
#
# The author disclaims copyright to this source code.  In place of
# a legal notice, here is a blessing:
#
#    May you do good and not evil.
#    May you find forgiveness for yourself and forgive others.
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this file is testing the VACUUM statement.
#
# $Id: vacuum.test,v 1.17 2004/05/21 10:08:55 danielk1977 Exp $

set testdir [file dirname $argv0]
source $testdir/tester.tcl

proc cksum {{db db}} {
  set txt [$db eval {SELECT name, type, sql FROM sqlite_master}]\n
  foreach tbl [$db eval {SELECT name FROM sqlite_master WHERE type='table'}] {
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
do_test vacuum-4.1 {
  db close
  set DB [sqlite db test.db]
  set VM [sqlite3_prepare $DB {VACUUM} -1 TAIL]
  sqlite_step $VM N VALUES COLNAMES
} {SQLITE_DONE}
do_test vacuum-4.2 {
  sqlite_finalize $VM
} {}

# Ticket #515.  VACUUM after deleting and recreating the table that
# a view refers to.
#
do_test vacuum-5.1 {
  db close







|







135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
do_test vacuum-4.1 {
  db close
  set DB [sqlite db test.db]
  set VM [sqlite3_prepare $DB {VACUUM} -1 TAIL]
  sqlite_step $VM N VALUES COLNAMES
} {SQLITE_DONE}
do_test vacuum-4.2 {
  sqlite3_finalize $VM
} {}

# Ticket #515.  VACUUM after deleting and recreating the table that
# a view refers to.
#
do_test vacuum-5.1 {
  db close