Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Merge in trunk enhancements. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | prepare_v3 |
Files: | files | file ages | folders |
SHA3-256: |
f8bbb608cbf6c245628e3d362e9181fb |
User & Date: | drh 2017-06-07 16:25:25.048 |
Context
2017-06-09
| ||
15:14 | Merge enhancements and fixes from trunk. (check-in: 3fd050c343 user: drh tags: prepare_v3) | |
2017-06-07
| ||
16:25 | Merge in trunk enhancements. (check-in: f8bbb608cb user: drh tags: prepare_v3) | |
2017-06-06
| ||
18:20 | Add the SQLITE_DEFAULT_ROWEST compile-time option for changing the estimated number of rows in tables that lack sqlite_stat1 entries. (check-in: 234ede26e3 user: drh tags: trunk) | |
2017-06-01
| ||
00:54 | Add interfaces sqlite3_prepare_v3() and sqlite3_prepare16_v3() with the extra prepFlags argument. Add the SQLITE_PREPARE_PERSISTENT option as one bit in that argument. (check-in: 4a25c58833 user: drh tags: prepare_v3) | |
Changes
Changes to doc/lemon.html.
︙ | ︙ | |||
18 19 20 21 22 23 24 25 26 27 28 29 30 31 | Lemon also implements features that can be used to eliminate resource leaks, making is suitable for use in long-running programs such as graphical user interfaces or embedded controllers.</p> <p>This document is an introduction to the Lemon parser generator.</p> <h2>Theory of Operation</h2> <p>The main goal of Lemon is to translate a context free grammar (CFG) for a particular language into C code that implements a parser for that language. The program has two inputs: | > > > > > > > > > > > > > > > > > > > > | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | Lemon also implements features that can be used to eliminate resource leaks, making is suitable for use in long-running programs such as graphical user interfaces or embedded controllers.</p> <p>This document is an introduction to the Lemon parser generator.</p> <h2>Security Note</h2> <p>The language parser code created by Lemon is very robust and is well-suited for use in internet-facing applications that need to safely process maliciously crafted inputs. <p>The "lemon.exe" command-line tool itself works great when given a valid input grammar file and almost always gives helpful error messages for malformed inputs. However, it is possible for a malicious user to craft a grammar file that will cause lemon.exe to crash. We do not see this as a problem, as lemon.exe is not intended to be used with hostile inputs. To summarize:</p> <ul> <li>Parser code generated by lemon → Robust and secure <li>The "lemon.exe" command line tool itself → Not so much </ul> <h2>Theory of Operation</h2> <p>The main goal of Lemon is to translate a context free grammar (CFG) for a particular language into C code that implements a parser for that language. The program has two inputs: |
︙ | ︙ |
Changes to ext/misc/series.c.
︙ | ︙ | |||
29 30 31 32 33 34 35 | ** Integers 20 through 29. ** ** HOW IT WORKS ** ** The generate_series "function" is really a virtual table with the ** following schema: ** | | | 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | ** Integers 20 through 29. ** ** HOW IT WORKS ** ** The generate_series "function" is really a virtual table with the ** following schema: ** ** CREATE TABLE generate_series( ** value, ** start HIDDEN, ** stop HIDDEN, ** step HIDDEN ** ); ** ** Function arguments in queries against this virtual table are translated |
︙ | ︙ |
Changes to src/build.c.
︙ | ︙ | |||
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 | pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nTabRef = 1; pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); assert( pParse->pNewTable==0 ); pParse->pNewTable = pTable; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ | > > > > | 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 | pParse->nErr++; goto begin_table_error; } pTable->zName = zName; pTable->iPKey = -1; pTable->pSchema = db->aDb[iDb].pSchema; pTable->nTabRef = 1; #ifdef SQLITE_DEFAULT_ROWEST pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST); #else pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); #endif assert( pParse->pNewTable==0 ); pParse->pNewTable = pTable; /* If this is the magic sqlite_sequence table used by autoincrement, ** then record a pointer to this table in the main database structure ** so that INSERT can find the table easily. */ |
︙ | ︙ |
Changes to src/delete.c.
︙ | ︙ | |||
455 456 457 458 459 460 461 | iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(pParse->db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEphCur, iKey, iPk, nPk); }else{ /* Add the rowid of the row to be deleted to the RowSet */ | | | 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | iKey = ++pParse->nMem; nKey = 0; /* Zero tells OP_Found to use a composite key */ sqlite3VdbeAddOp4(v, OP_MakeRecord, iPk, nPk, iKey, sqlite3IndexAffinityStr(pParse->db, pPk), nPk); sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iEphCur, iKey, iPk, nPk); }else{ /* Add the rowid of the row to be deleted to the RowSet */ nKey = 1; /* OP_DeferredSeek always uses a single rowid */ sqlite3VdbeAddOp2(v, OP_RowSetAdd, iRowSet, iKey); } } /* If this DELETE cannot use the ONEPASS strategy, this is the ** end of the WHERE loop */ if( eOnePass!=ONEPASS_OFF ){ |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
520 521 522 523 524 525 526 527 528 529 530 531 532 533 | int tmask; /* Mask of trigger times */ #endif db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } /* If the Select object is really just a simple VALUES() list with a ** single row (the common case) then keep that one row of values ** and discard the other (unused) parts of the pSelect object */ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ pList = pSelect->pEList; | > | 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | int tmask; /* Mask of trigger times */ #endif db = pParse->db; if( pParse->nErr || db->mallocFailed ){ goto insert_cleanup; } dest.iSDParm = 0; /* Suppress a harmless compiler warning */ /* If the Select object is really just a simple VALUES() list with a ** single row (the common case) then keep that one row of values ** and discard the other (unused) parts of the pSelect object */ if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ pList = pSelect->pEList; |
︙ | ︙ |
Changes to src/shell.c.
︙ | ︙ | |||
504 505 506 507 508 509 510 511 512 513 514 515 516 517 | ** lower 30 bits of a 32-bit signed integer. */ static int strlen30(const char *z){ const char *z2 = z; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* ** This routine reads a line of text from FILE in, stores ** the text in memory obtained from malloc() and returns a pointer ** to the text. NULL is returned at end of file, or if malloc() ** fails. ** | > > > > > > > > > > > > | 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 | ** lower 30 bits of a 32-bit signed integer. */ static int strlen30(const char *z){ const char *z2 = z; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* ** Return the length of a string in characters. Multibyte UTF8 characters ** count as a single character. */ static int strlenChar(const char *z){ int n = 0; while( *z ){ if( (0xc0&*(z++))!=0x80 ) n++; } return n; } /* ** This routine reads a line of text from FILE in, stores ** the text in memory obtained from malloc() and returns a pointer ** to the text. NULL is returned at end of file, or if malloc() ** fails. ** |
︙ | ︙ | |||
1913 1914 1915 1916 1917 1918 1919 | int w, n; if( i<ArraySize(p->colWidth) ){ w = colWidth[i]; }else{ w = 0; } if( w==0 ){ | | | | 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 | int w, n; if( i<ArraySize(p->colWidth) ){ w = colWidth[i]; }else{ w = 0; } if( w==0 ){ w = strlenChar(azCol[i] ? azCol[i] : ""); if( w<10 ) w = 10; n = strlenChar(azArg && azArg[i] ? azArg[i] : p->nullValue); if( w<n ) w = n; } if( i<ArraySize(p->actualWidth) ){ p->actualWidth[i] = w; } if( showHdr ){ utf8_width_print(p->out, w, azCol[i]); |
︙ | ︙ | |||
1950 1951 1952 1953 1954 1955 1956 | for(i=0; i<nArg; i++){ int w; if( i<ArraySize(p->actualWidth) ){ w = p->actualWidth[i]; }else{ w = 10; } | | | | 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 | for(i=0; i<nArg; i++){ int w; if( i<ArraySize(p->actualWidth) ){ w = p->actualWidth[i]; }else{ w = 10; } if( p->cMode==MODE_Explain && azArg[i] && strlenChar(azArg[i])>w ){ w = strlenChar(azArg[i]); } if( i==1 && p->aiIndent && p->pStmt ){ if( p->iIndent<p->nIndent ){ utf8_printf(p->out, "%*.s", p->aiIndent[p->iIndent], ""); } p->iIndent++; } |
︙ | ︙ |
Changes to src/test_fs.c.
︙ | ︙ | |||
541 542 543 544 545 546 547 548 549 550 551 552 553 554 | for(i=nPrefix; zQuery[i]; i++){ if( zQuery[i]==aWild[0] || zQuery[i]==aWild[1] ) break; if( zQuery[i]=='/' ) nDir = i; } zDir = zQuery; } } sqlite3_bind_text(pCsr->pStmt, 1, zDir, nDir, SQLITE_TRANSIENT); sqlite3_bind_text(pCsr->pStmt, 2, zRoot, nRoot, SQLITE_TRANSIENT); sqlite3_bind_text(pCsr->pStmt, 3, zPrefix, nPrefix, SQLITE_TRANSIENT); #if SQLITE_OS_WIN sqlite3_free(zPrefix); | > | 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 | for(i=nPrefix; zQuery[i]; i++){ if( zQuery[i]==aWild[0] || zQuery[i]==aWild[1] ) break; if( zQuery[i]=='/' ) nDir = i; } zDir = zQuery; } } if( nDir==0 ) nDir = 1; sqlite3_bind_text(pCsr->pStmt, 1, zDir, nDir, SQLITE_TRANSIENT); sqlite3_bind_text(pCsr->pStmt, 2, zRoot, nRoot, SQLITE_TRANSIENT); sqlite3_bind_text(pCsr->pStmt, 3, zPrefix, nPrefix, SQLITE_TRANSIENT); #if SQLITE_OS_WIN sqlite3_free(zPrefix); |
︙ | ︙ |
Changes to src/vdbe.c.
︙ | ︙ | |||
2493 2494 2495 2496 2497 2498 2499 | u32 avail; /* Number of bytes of available data */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ pC = p->apCsr[pOp->p1]; p2 = pOp->p2; | | > > | 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 | u32 avail; /* Number of bytes of available data */ u32 t; /* A type code from the record header */ Mem *pReg; /* PseudoTable input register */ pC = p->apCsr[pOp->p1]; p2 = pOp->p2; /* If the cursor cache is stale (meaning it is not currently point at ** the correct row) then bring it up-to-date by doing the necessary ** B-Tree seek. */ rc = sqlite3VdbeCursorMoveto(&pC, &p2); if( rc ) goto abort_due_to_error; assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) ); pDest = &aMem[pOp->p3]; memAboutToChange(p, pDest); assert( pOp->p1>=0 && pOp->p1<p->nCursor ); |
︙ | ︙ | |||
5261 5262 5263 5264 5265 5266 5267 | } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; break; } | | | | 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 | } assert( pC->deferredMoveto==0 ); pC->cacheStatus = CACHE_STALE; pC->seekResult = 0; break; } /* Opcode: DeferredSeek P1 * P3 P4 * ** Synopsis: Move P3 to P1.rowid if needed ** ** P1 is an open index cursor and P3 is a cursor on the corresponding ** table. This opcode does a deferred seek of the P3 table cursor ** to the row that corresponds to the current row of P1. ** ** This is a deferred seek. Nothing actually happens until ** the cursor is used to read a record. That way, if no reads |
︙ | ︙ | |||
5289 5290 5291 5292 5293 5294 5295 | ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ | | | | | | | 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 | ** ** Write into register P2 an integer which is the last entry in the record at ** the end of the index key pointed to by cursor P1. This integer should be ** the rowid of the table entry to which this index entry points. ** ** See also: Rowid, MakeRecord. */ case OP_DeferredSeek: case OP_IdxRowid: { /* out2 */ VdbeCursor *pC; /* The P1 index cursor */ VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */ i64 rowid; /* Rowid that P1 current points to */ assert( pOp->p1>=0 && pOp->p1<p->nCursor ); pC = p->apCsr[pOp->p1]; assert( pC!=0 ); assert( pC->eCurType==CURTYPE_BTREE ); assert( pC->uc.pCursor!=0 ); assert( pC->isTable==0 ); |
︙ | ︙ | |||
5319 5320 5321 5322 5323 5324 5325 | if( !pC->nullRow ){ rowid = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } | | | 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 | if( !pC->nullRow ){ rowid = 0; /* Not needed. Only used to silence a warning. */ rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid); if( rc!=SQLITE_OK ){ goto abort_due_to_error; } if( pOp->opcode==OP_DeferredSeek ){ assert( pOp->p3>=0 && pOp->p3<p->nCursor ); pTabCur = p->apCsr[pOp->p3]; assert( pTabCur!=0 ); assert( pTabCur->eCurType==CURTYPE_BTREE ); assert( pTabCur->uc.pCursor!=0 ); assert( pTabCur->isTable ); pTabCur->nullRow = 0; |
︙ | ︙ |
Changes to src/wherecode.c.
︙ | ︙ | |||
962 963 964 965 966 967 968 | ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains ** a rowid value just read from cursor iIdxCur, open on index pIdx. This ** function generates code to do a deferred seek of cursor iCur to the ** rowid stored in register iRowid. ** ** Normally, this is just: ** | | | | | 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 | ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains ** a rowid value just read from cursor iIdxCur, open on index pIdx. This ** function generates code to do a deferred seek of cursor iCur to the ** rowid stored in register iRowid. ** ** Normally, this is just: ** ** OP_DeferredSeek $iCur $iRowid ** ** However, if the scan currently being coded is a branch of an OR-loop and ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek ** is set to iIdxCur and P4 is set to point to an array of integers ** containing one entry for each column of the table cursor iCur is open ** on. For each table column, if the column is the i'th column of the ** index, then the corresponding array entry is set to (i+1). If the column ** does not appear in the index at all, the array entry is set to 0. */ static void codeDeferredSeek( WhereInfo *pWInfo, /* Where clause context */ Index *pIdx, /* Index scan is using */ int iCur, /* Cursor for IPK b-tree */ int iIdxCur /* Index cursor */ ){ Parse *pParse = pWInfo->pParse; /* Parse context */ Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */ assert( iIdxCur>0 ); assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 ); sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur); if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE) && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask) ){ int i; Table *pTab = pIdx->pTable; int *ai = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*(pTab->nCol+1)); if( ai ){ |
︙ | ︙ |
Changes to test/kvtest.c.
︙ | ︙ | |||
67 68 69 70 71 72 73 | "\n" " Generate a new test database file named DBFILE containing N\n" " BLOBs each of size M bytes. The page size of the new database\n" " file will be X. Additional options:\n" "\n" " --variance V Randomly vary M by plus or minus V\n" "\n" | | | > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 | "\n" " Generate a new test database file named DBFILE containing N\n" " BLOBs each of size M bytes. The page size of the new database\n" " file will be X. Additional options:\n" "\n" " --variance V Randomly vary M by plus or minus V\n" "\n" " kvtest export DBFILE DIRECTORY [--tree]\n" "\n" " Export all the blobs in the kv table of DBFILE into separate\n" " files in DIRECTORY. DIRECTORY is created if it does not previously\n" " exist. If the --tree option is used, then the blobs are written\n" " into a hierarchy of directories, using names like 00/00/00,\n" " 00/00/01, 00/00/02, and so forth. Without the --tree option, all\n" " files are in the top-level directory with names like 000000, 000001,\n" " 000002, and so forth.\n" "\n" " kvtest stat DBFILE [options]\n" "\n" " Display summary information about DBFILE. Options:\n" "\n" " --vacuum Run VACUUM on the database file\n" "\n" " kvtest run DBFILE [options]\n" "\n" " Run a performance test. DBFILE can be either the name of a\n" " database or a directory containing sample files. Options:\n" "\n" " --asc Read blobs in ascending order\n" " --blob-api Use the BLOB API\n" " --cache-size N Database cache size\n" " --count N Read N blobs\n" " --desc Read blobs in descending order\n" " --fsync Synchronous file writes\n" " --integrity-check Run \"PRAGMA integrity_check\" after test\n" " --max-id N Maximum blob key to use\n" " --mmap N Mmap as much as N bytes of DBFILE\n" " --multitrans Each read or write in its own transaction\n" " --nocheckpoint Omit the checkpoint on WAL mode writes\n" " --nosync Set \"PRAGMA synchronous=OFF\"\n" " --jmode MODE Set MODE journal mode prior to starting\n" " --random Read blobs in a random order\n" " --start N Start reading with this blob key\n" " --stats Output operating stats before exiting\n" " --update Do an overwrite test\n" ; /* Reference resources used */ #include <stdio.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <assert.h> #include <string.h> #include "sqlite3.h" #ifndef _WIN32 # include <unistd.h> #else /* Provide Windows equivalent for the needed parts of unistd.h */ # include <direct.h> # include <io.h> # define R_OK 2 # define S_ISREG(m) (((m) & S_IFMT) == S_IFREG) # define S_ISDIR(m) (((m) & S_IFMT) == S_IFDIR) # define access _access #endif #include <stdint.h> /* ** The following macros are used to cast pointers to integers and ** integers to pointers. The way you do this varies from one compiler ** to the next, so we have developed the following set of #if statements ** to generate appropriate macros for a wide range of compilers. ** ** The correct "ANSI" way to do this is to use the intptr_t type. ** Unfortunately, that typedef is not available on all compilers, or ** if it is available, it requires an #include of specific headers ** that vary from one machine to the next. ** ** Ticket #3860: The llvm-gcc-4.2 compiler from Apple chokes on ** the ((void*)&((char*)0)[X]) construct. But MSVC chokes on ((void*)(X)). ** So we have to define the macros in different ways depending on the ** compiler. */ #if defined(__PTRDIFF_TYPE__) /* This case should work for GCC */ # define SQLITE_INT_TO_PTR(X) ((void*)(__PTRDIFF_TYPE__)(X)) # define SQLITE_PTR_TO_INT(X) ((sqlite3_int64)(__PTRDIFF_TYPE__)(X)) #else # define SQLITE_INT_TO_PTR(X) ((void*)(intptr_t)(X)) # define SQLITE_PTR_TO_INT(X) ((sqlite3_int64)(intptr_t)(X)) #endif /* ** Show thqe help text and quit. */ static void showHelp(void){ fprintf(stdout, "%s", zHelp); exit(1); |
︙ | ︙ | |||
197 198 199 200 201 202 203 | return isNeg? -v : v; } /* ** Check the filesystem object zPath. Determine what it is: ** | | > > > > > > > > > > | > > > > > > | > > | 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | return isNeg? -v : v; } /* ** Check the filesystem object zPath. Determine what it is: ** ** PATH_DIR A single directory holding many files ** PATH_TREE A directory hierarchy with files at the leaves ** PATH_DB An SQLite database ** PATH_NEXIST Does not exist ** PATH_OTHER Something else ** ** PATH_DIR means all of the separate files are grouped together ** into a single directory with names like 000000, 000001, 000002, and ** so forth. PATH_TREE means there is a hierarchy of directories so ** that no single directory has too many entries. The files have names ** like 00/00/00, 00/00/01, 00/00/02 and so forth. The decision between ** PATH_DIR and PATH_TREE is determined by the presence of a subdirectory ** named "00" at the top-level. */ #define PATH_DIR 1 #define PATH_TREE 2 #define PATH_DB 3 #define PATH_NEXIST 0 #define PATH_OTHER 99 static int pathType(const char *zPath){ struct stat x; int rc; if( access(zPath,R_OK) ) return PATH_NEXIST; memset(&x, 0, sizeof(x)); rc = stat(zPath, &x); if( rc<0 ) return PATH_OTHER; if( S_ISDIR(x.st_mode) ){ char *zLayer1 = sqlite3_mprintf("%s/00", zPath); memset(&x, 0, sizeof(x)); rc = stat(zLayer1, &x); sqlite3_free(zLayer1); if( rc<0 ) return PATH_DIR; if( S_ISDIR(x.st_mode) ) return PATH_TREE; return PATH_DIR; } if( (x.st_size%512)==0 ) return PATH_DB; return PATH_OTHER; } /* ** Return the size of a file in bytes. Or return -1 if the ** named object is not a regular file or does not exist. |
︙ | ︙ | |||
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | */ static int statMain(int argc, char **argv){ char *zDb; int i, rc; sqlite3 *db; char *zSql; sqlite3_stmt *pStmt; assert( strcmp(argv[1],"stat")==0 ); assert( argc>=3 ); zDb = argv[2]; for(i=3; i<argc; i++){ char *z = argv[i]; if( z[0]!='-' ) fatalError("unknown argument: \"%s\"", z); if( z[1]=='-' ) z++; fatalError("unknown option: \"%s\"", argv[i]); } rc = sqlite3_open(zDb, &db); if( rc ){ fatalError("cannot open database \"%s\": %s", zDb, sqlite3_errmsg(db)); } zSql = sqlite3_mprintf( "SELECT count(*), min(length(v)), max(length(v)), avg(length(v))" " FROM kv" ); rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ) fatalError("cannot prepare SQL [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_free(zSql); | > > > > > > > > > > | 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 | */ static int statMain(int argc, char **argv){ char *zDb; int i, rc; sqlite3 *db; char *zSql; sqlite3_stmt *pStmt; int doVacuum = 0; assert( strcmp(argv[1],"stat")==0 ); assert( argc>=3 ); zDb = argv[2]; for(i=3; i<argc; i++){ char *z = argv[i]; if( z[0]!='-' ) fatalError("unknown argument: \"%s\"", z); if( z[1]=='-' ) z++; if( strcmp(z, "-vacuum")==0 ){ doVacuum = 1; continue; } fatalError("unknown option: \"%s\"", argv[i]); } rc = sqlite3_open(zDb, &db); if( rc ){ fatalError("cannot open database \"%s\": %s", zDb, sqlite3_errmsg(db)); } if( doVacuum ){ printf("Vacuuming...."); fflush(stdout); sqlite3_exec(db, "VACUUM", 0, 0, 0); printf(" done\n"); } zSql = sqlite3_mprintf( "SELECT count(*), min(length(v)), max(length(v)), avg(length(v))" " FROM kv" ); rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ) fatalError("cannot prepare SQL [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_free(zSql); |
︙ | ︙ | |||
369 370 371 372 373 374 375 376 377 378 379 380 381 | zSql = sqlite3_mprintf("PRAGMA page_count"); rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ) fatalError("cannot prepare SQL [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_free(zSql); if( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("Page-count: %8d\n", sqlite3_column_int(pStmt, 0)); } sqlite3_finalize(pStmt); sqlite3_close(db); return 0; } /* | > > > > > > > > > > > > > > | | | | | | | < | < | | < < < | < | < | | | > > > > > > > | | | > > | > > > > < > > > > > > > > > > > > | > > > > > > > > > > > | | > | > > | > > | > | | > > > > > > > | > > > | > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 | zSql = sqlite3_mprintf("PRAGMA page_count"); rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ) fatalError("cannot prepare SQL [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_free(zSql); if( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("Page-count: %8d\n", sqlite3_column_int(pStmt, 0)); } sqlite3_finalize(pStmt); zSql = sqlite3_mprintf("PRAGMA freelist_count"); rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc ) fatalError("cannot prepare SQL [%s]: %s", zSql, sqlite3_errmsg(db)); sqlite3_free(zSql); if( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("Freelist-count: %8d\n", sqlite3_column_int(pStmt, 0)); } sqlite3_finalize(pStmt); rc = sqlite3_prepare_v2(db, "PRAGMA integrity_check(10)", -1, &pStmt, 0); if( rc ) fatalError("cannot prepare integrity check: %s", sqlite3_errmsg(db)); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("Integrity-check: %s\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); sqlite3_close(db); return 0; } /* ** remember(V,PTR) ** ** Return the integer value V. Also save the value of V in a ** C-language variable whose address is PTR. */ static void rememberFunc( sqlite3_context *pCtx, int argc, sqlite3_value **argv ){ sqlite3_int64 v; sqlite3_int64 ptr; assert( argc==2 ); v = sqlite3_value_int64(argv[0]); ptr = sqlite3_value_int64(argv[1]); *(sqlite3_int64*)SQLITE_INT_TO_PTR(ptr) = v; sqlite3_result_int64(pCtx, v); } /* ** Make sure a directory named zDir exists. */ static void kvtest_mkdir(const char *zDir){ #if defined(_WIN32) (void)mkdir(zDir); #else (void)mkdir(zDir, 0755); #endif } /* ** Export the kv table to individual files in the filesystem */ static int exportMain(int argc, char **argv){ char *zDb; char *zDir; sqlite3 *db; sqlite3_stmt *pStmt; int rc; int ePathType; int nFN; char *zFN; char *zTail; size_t nWrote; int i; assert( strcmp(argv[1],"export")==0 ); assert( argc>=3 ); if( argc<4 ) fatalError("Usage: kvtest export DATABASE DIRECTORY [OPTIONS]"); zDb = argv[2]; zDir = argv[3]; kvtest_mkdir(zDir); for(i=4; i<argc; i++){ const char *z = argv[i]; if( z[0]=='-' && z[1]=='-' ) z++; if( strcmp(z,"-tree")==0 ){ zFN = sqlite3_mprintf("%s/00", zDir); kvtest_mkdir(zFN); sqlite3_free(zFN); continue; } fatalError("unknown argument: \"%s\"\n", argv[i]); } ePathType = pathType(zDir); if( ePathType!=PATH_DIR && ePathType!=PATH_TREE ){ fatalError("object \"%s\" is not a directory", zDir); } rc = sqlite3_open(zDb, &db); if( rc ){ fatalError("cannot open database \"%s\": %s", zDb, sqlite3_errmsg(db)); } rc = sqlite3_prepare_v2(db, "SELECT k, v FROM kv ORDER BY k", -1, &pStmt, 0); if( rc ){ fatalError("prepare_v2 failed: %s\n", sqlite3_errmsg(db)); } nFN = (int)strlen(zDir); zFN = sqlite3_mprintf("%s/00/00/00.extra---------------------", zDir); if( zFN==0 ){ fatalError("malloc failed\n"); } zTail = zFN + nFN + 1; while( sqlite3_step(pStmt)==SQLITE_ROW ){ int iKey = sqlite3_column_int(pStmt, 0); sqlite3_int64 nData = sqlite3_column_bytes(pStmt, 1); const void *pData = sqlite3_column_blob(pStmt, 1); FILE *out; if( ePathType==PATH_DIR ){ sqlite3_snprintf(20, zTail, "%06d", iKey); }else{ sqlite3_snprintf(20, zTail, "%02d", iKey/10000); kvtest_mkdir(zFN); sqlite3_snprintf(20, zTail, "%02d/%02d", iKey/10000, (iKey/100)%100); kvtest_mkdir(zFN); sqlite3_snprintf(20, zTail, "%02d/%02d/%02d", iKey/10000, (iKey/100)%100, iKey%100); } out = fopen(zFN, "wb"); nWrote = fwrite(pData, 1, nData, out); fclose(out); printf("\r%s ", zTail); fflush(stdout); if( nWrote!=nData ){ fatalError("Wrote only %d of %d bytes to %s\n", (int)nWrote, nData, zFN); } } sqlite3_finalize(pStmt); sqlite3_close(db); sqlite3_free(zFN); printf("\n"); return 0; } /* ** Read the content of file zName into memory obtained from sqlite3_malloc64() ** and return a pointer to the buffer. The caller is responsible for freeing ** the memory. ** ** If parameter pnByte is not NULL, (*pnByte) is set to the number of bytes ** read. ** ** For convenience, a nul-terminator byte is always appended to the data read ** from the file before the buffer is returned. This byte is not included in ** the final value of (*pnByte), if applicable. ** ** NULL is returned if any error is encountered. The final value of *pnByte ** is undefined in this case. */ static unsigned char *readFile(const char *zName, sqlite3_int64 *pnByte){ FILE *in; /* FILE from which to read content of zName */ sqlite3_int64 nIn; /* Size of zName in bytes */ size_t nRead; /* Number of bytes actually read */ unsigned char *pBuf; /* Content read from disk */ nIn = fileSize(zName); if( nIn<0 ) return 0; in = fopen(zName, "rb"); if( in==0 ) return 0; pBuf = sqlite3_malloc64( nIn ); if( pBuf==0 ) return 0; nRead = fread(pBuf, (size_t)nIn, 1, in); fclose(in); if( nRead!=1 ){ sqlite3_free(pBuf); return 0; } if( pnByte ) *pnByte = nIn; return pBuf; } /* ** Overwrite a file with randomness. Do not change the size of the ** file. */ static void updateFile(const char *zName, sqlite3_int64 *pnByte, int doFsync){ FILE *out; /* FILE from which to read content of zName */ sqlite3_int64 sz; /* Size of zName in bytes */ size_t nWritten; /* Number of bytes actually read */ unsigned char *pBuf; /* Content to store on disk */ const char *zMode = "wb"; /* Mode for fopen() */ sz = fileSize(zName); if( sz<0 ){ fatalError("No such file: \"%s\"", zName); } *pnByte = sz; if( sz==0 ) return; pBuf = sqlite3_malloc64( sz ); if( pBuf==0 ){ fatalError("Cannot allocate %lld bytes\n", sz); } sqlite3_randomness((int)sz, pBuf); #if defined(_WIN32) if( doFsync ) zMode = "wbc"; #endif out = fopen(zName, zMode); if( out==0 ){ fatalError("Cannot open \"%s\" for writing\n", zName); } nWritten = fwrite(pBuf, 1, (size_t)sz, out); if( doFsync ){ #if defined(_WIN32) fflush(out); #else fsync(fileno(out)); #endif } fclose(out); if( nWritten!=(size_t)sz ){ fatalError("Wrote only %d of %d bytes to \"%s\"\n", (int)nWritten, (int)sz, zName); } sqlite3_free(pBuf); } /* ** Return the current time in milliseconds since the beginning of ** the Julian epoch. */ static sqlite3_int64 timeOfDay(void){ static sqlite3_vfs *clockVfs = 0; |
︙ | ︙ | |||
633 634 635 636 637 638 639 640 641 642 643 644 645 | int iKey = 1; /* Next blob key */ int iMax = 0; /* Largest allowed key */ int iPagesize = 0; /* Database page size */ int iCache = 1000; /* Database cache size in kibibytes */ int bBlobApi = 0; /* Use the incremental blob I/O API */ int bStats = 0; /* Print stats before exiting */ int eOrder = ORDER_ASC; /* Access order */ sqlite3 *db = 0; /* Database connection */ sqlite3_stmt *pStmt = 0; /* Prepared statement for SQL access */ sqlite3_blob *pBlob = 0; /* Handle for incremental Blob I/O */ sqlite3_int64 tmStart; /* Start time */ sqlite3_int64 tmElapsed; /* Elapsed time */ int mmapSize = 0; /* --mmap N argument */ | > > > > > > | | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | < | < | < | | < | | | | < | < < < < < > > > > > > > > > > > > > > > > > > | | | > | > > > > > > > | | > | | > | > > > > > > > > | | | | > > > > > | > > > > > | > > < < > > > | > > > > > > > > > > > > > > > > > > > > > > | | > | 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 | int iKey = 1; /* Next blob key */ int iMax = 0; /* Largest allowed key */ int iPagesize = 0; /* Database page size */ int iCache = 1000; /* Database cache size in kibibytes */ int bBlobApi = 0; /* Use the incremental blob I/O API */ int bStats = 0; /* Print stats before exiting */ int eOrder = ORDER_ASC; /* Access order */ int isUpdateTest = 0; /* Do in-place updates rather than reads */ int doIntegrityCk = 0; /* Run PRAGMA integrity_check after the test */ int noSync = 0; /* Disable synchronous mode */ int doFsync = 0; /* Update disk files synchronously */ int doMultiTrans = 0; /* Each operation in its own transaction */ int noCheckpoint = 0; /* Omit the checkpoint in WAL mode */ sqlite3 *db = 0; /* Database connection */ sqlite3_stmt *pStmt = 0; /* Prepared statement for SQL access */ sqlite3_blob *pBlob = 0; /* Handle for incremental Blob I/O */ sqlite3_int64 tmStart; /* Start time */ sqlite3_int64 tmElapsed; /* Elapsed time */ int mmapSize = 0; /* --mmap N argument */ sqlite3_int64 nData = 0; /* Bytes of data */ sqlite3_int64 nTotal = 0; /* Total data read */ unsigned char *pData = 0; /* Content of the blob */ sqlite3_int64 nAlloc = 0; /* Space allocated for pData[] */ const char *zJMode = 0; /* Journal mode */ assert( strcmp(argv[1],"run")==0 ); assert( argc>=3 ); zDb = argv[2]; eType = pathType(zDb); if( eType==PATH_OTHER ) fatalError("unknown object type: \"%s\"", zDb); if( eType==PATH_NEXIST ) fatalError("object does not exist: \"%s\"", zDb); for(i=3; i<argc; i++){ char *z = argv[i]; if( z[0]!='-' ) fatalError("unknown argument: \"%s\"", z); if( z[1]=='-' ) z++; if( strcmp(z, "-asc")==0 ){ eOrder = ORDER_ASC; continue; } if( strcmp(z, "-blob-api")==0 ){ bBlobApi = 1; continue; } if( strcmp(z, "-cache-size")==0 ){ if( i==argc-1 ) fatalError("missing argument on \"%s\"", argv[i]); iCache = integerValue(argv[++i]); continue; } if( strcmp(z, "-count")==0 ){ if( i==argc-1 ) fatalError("missing argument on \"%s\"", argv[i]); nCount = integerValue(argv[++i]); if( nCount<1 ) fatalError("the --count must be positive"); continue; } if( strcmp(z, "-desc")==0 ){ eOrder = ORDER_DESC; continue; } if( strcmp(z, "-fsync")==0 ){ doFsync = 1; continue; } if( strcmp(z, "-integrity-check")==0 ){ doIntegrityCk = 1; continue; } if( strcmp(z, "-jmode")==0 ){ if( i==argc-1 ) fatalError("missing argument on \"%s\"", argv[i]); zJMode = argv[++i]; continue; } if( strcmp(z, "-mmap")==0 ){ if( i==argc-1 ) fatalError("missing argument on \"%s\"", argv[i]); mmapSize = integerValue(argv[++i]); if( nCount<0 ) fatalError("the --mmap must be non-negative"); continue; } if( strcmp(z, "-max-id")==0 ){ if( i==argc-1 ) fatalError("missing argument on \"%s\"", argv[i]); iMax = integerValue(argv[++i]); continue; } if( strcmp(z, "-multitrans")==0 ){ doMultiTrans = 1; continue; } if( strcmp(z, "-nocheckpoint")==0 ){ noCheckpoint = 1; continue; } if( strcmp(z, "-nosync")==0 ){ noSync = 1; continue; } if( strcmp(z, "-random")==0 ){ eOrder = ORDER_RANDOM; continue; } if( strcmp(z, "-start")==0 ){ if( i==argc-1 ) fatalError("missing argument on \"%s\"", argv[i]); iKey = integerValue(argv[++i]); if( iKey<1 ) fatalError("the --start must be positive"); continue; } if( strcmp(z, "-stats")==0 ){ bStats = 1; continue; } if( strcmp(z, "-update")==0 ){ isUpdateTest = 1; continue; } fatalError("unknown option: \"%s\"", argv[i]); } if( eType==PATH_DB ){ /* Recover any prior crashes prior to starting the timer */ sqlite3_open(zDb, &db); sqlite3_exec(db, "SELECT rowid FROM sqlite_master LIMIT 1", 0, 0, 0); sqlite3_close(db); db = 0; } tmStart = timeOfDay(); if( eType==PATH_DB ){ char *zSql; rc = sqlite3_open(zDb, &db); if( rc ){ fatalError("cannot open database \"%s\": %s", zDb, sqlite3_errmsg(db)); } zSql = sqlite3_mprintf("PRAGMA mmap_size=%d", mmapSize); sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); zSql = sqlite3_mprintf("PRAGMA cache_size=%d", iCache); sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); if( noSync ){ sqlite3_exec(db, "PRAGMA synchronous=OFF", 0, 0, 0); } pStmt = 0; sqlite3_prepare_v2(db, "PRAGMA page_size", -1, &pStmt, 0); if( sqlite3_step(pStmt)==SQLITE_ROW ){ iPagesize = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); sqlite3_prepare_v2(db, "PRAGMA cache_size", -1, &pStmt, 0); if( sqlite3_step(pStmt)==SQLITE_ROW ){ iCache = sqlite3_column_int(pStmt, 0); }else{ iCache = 0; } sqlite3_finalize(pStmt); pStmt = 0; if( zJMode ){ zSql = sqlite3_mprintf("PRAGMA journal_mode=%Q", zJMode); sqlite3_exec(db, zSql, 0, 0, 0); sqlite3_free(zSql); if( noCheckpoint ){ sqlite3_exec(db, "PRAGMA wal_autocheckpoint=0", 0, 0, 0); } } sqlite3_prepare_v2(db, "PRAGMA journal_mode", -1, &pStmt, 0); if( sqlite3_step(pStmt)==SQLITE_ROW ){ zJMode = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 0)); }else{ zJMode = "???"; } sqlite3_finalize(pStmt); if( iMax<=0 ){ sqlite3_prepare_v2(db, "SELECT max(k) FROM kv", -1, &pStmt, 0); if( sqlite3_step(pStmt)==SQLITE_ROW ){ iMax = sqlite3_column_int(pStmt, 0); } sqlite3_finalize(pStmt); } pStmt = 0; if( !doMultiTrans ) sqlite3_exec(db, "BEGIN", 0, 0, 0); } if( iMax<=0 ) iMax = 1000; for(i=0; i<nCount; i++){ if( eType==PATH_DIR || eType==PATH_TREE ){ /* CASE 1: Reading or writing blobs out of separate files */ char *zKey; if( eType==PATH_DIR ){ zKey = sqlite3_mprintf("%s/%06d", zDb, iKey); }else{ zKey = sqlite3_mprintf("%s/%02d/%02d/%02d", zDb, iKey/10000, (iKey/100)%100, iKey%100); } nData = 0; if( isUpdateTest ){ updateFile(zKey, &nData, doFsync); }else{ pData = readFile(zKey, &nData); sqlite3_free(pData); } sqlite3_free(zKey); }else if( bBlobApi ){ /* CASE 2: Reading from database using the incremental BLOB I/O API */ if( pBlob==0 ){ rc = sqlite3_blob_open(db, "main", "kv", "v", iKey, isUpdateTest, &pBlob); if( rc ){ fatalError("could not open sqlite3_blob handle: %s", sqlite3_errmsg(db)); } }else{ rc = sqlite3_blob_reopen(pBlob, iKey); } if( rc==SQLITE_OK ){ nData = sqlite3_blob_bytes(pBlob); if( nAlloc<nData+1 ){ nAlloc = nData+100; pData = sqlite3_realloc64(pData, nAlloc); } if( pData==0 ) fatalError("cannot allocate %d bytes", nData+1); if( isUpdateTest ){ sqlite3_randomness((int)nData, pData); rc = sqlite3_blob_write(pBlob, pData, (int)nData, 0); if( rc!=SQLITE_OK ){ fatalError("could not write the blob at %d: %s", iKey, sqlite3_errmsg(db)); } }else{ rc = sqlite3_blob_read(pBlob, pData, (int)nData, 0); if( rc!=SQLITE_OK ){ fatalError("could not read the blob at %d: %s", iKey, sqlite3_errmsg(db)); } } } }else{ /* CASE 3: Reading from database using SQL */ if( pStmt==0 ){ if( isUpdateTest ){ sqlite3_create_function(db, "remember", 2, SQLITE_UTF8, 0, rememberFunc, 0, 0); rc = sqlite3_prepare_v2(db, "UPDATE kv SET v=randomblob(remember(length(v),?2))" " WHERE k=?1", -1, &pStmt, 0); sqlite3_bind_int64(pStmt, 2, SQLITE_PTR_TO_INT(&nData)); }else{ rc = sqlite3_prepare_v2(db, "SELECT v FROM kv WHERE k=?1", -1, &pStmt, 0); } if( rc ){ fatalError("cannot prepare query: %s", sqlite3_errmsg(db)); } }else{ sqlite3_reset(pStmt); } sqlite3_bind_int(pStmt, 1, iKey); nData = 0; rc = sqlite3_step(pStmt); if( rc==SQLITE_ROW ){ nData = sqlite3_column_bytes(pStmt, 0); pData = (unsigned char*)sqlite3_column_blob(pStmt, 0); } } if( eOrder==ORDER_ASC ){ iKey++; if( iKey>iMax ) iKey = 1; }else if( eOrder==ORDER_DESC ){ iKey--; if( iKey<=0 ) iKey = iMax; }else{ iKey = (randInt()%iMax)+1; } nTotal += nData; if( nData==0 ){ nCount++; nExtra++; } } if( nAlloc ) sqlite3_free(pData); if( pStmt ) sqlite3_finalize(pStmt); if( pBlob ) sqlite3_blob_close(pBlob); if( bStats ){ display_stats(db, 0); } if( db ){ if( !doMultiTrans ) sqlite3_exec(db, "COMMIT", 0, 0, 0); if( !noCheckpoint ){ sqlite3_close(db); db = 0; } } tmElapsed = timeOfDay() - tmStart; if( db && noCheckpoint ){ sqlite3_close(db); db = 0; } if( nExtra ){ printf("%d cycles due to %d misses\n", nCount, nExtra); } if( eType==PATH_DB ){ printf("SQLite version: %s\n", sqlite3_libversion()); if( doIntegrityCk ){ sqlite3_open(zDb, &db); sqlite3_prepare_v2(db, "PRAGMA integrity_check", -1, &pStmt, 0); while( sqlite3_step(pStmt)==SQLITE_ROW ){ printf("integrity-check: %s\n", sqlite3_column_text(pStmt, 0)); } sqlite3_finalize(pStmt); sqlite3_close(db); db = 0; } } printf("--count %d --max-id %d", nCount-nExtra, iMax); switch( eOrder ){ case ORDER_RANDOM: printf(" --random\n"); break; case ORDER_DESC: printf(" --desc\n"); break; default: printf(" --asc\n"); break; } if( eType==PATH_DB ){ printf("--cache-size %d --jmode %s\n", iCache, zJMode); printf("--mmap %d%s\n", mmapSize, bBlobApi ? " --blob-api" : ""); if( noSync ) printf("--nosync\n"); } if( iPagesize ) printf("Database page size: %d\n", iPagesize); printf("Total elapsed time: %.3f\n", tmElapsed/1000.0); if( isUpdateTest ){ printf("Microseconds per BLOB write: %.3f\n", tmElapsed*1000.0/nCount); printf("Content write rate: %.1f MB/s\n", nTotal/(1000.0*tmElapsed)); }else{ printf("Microseconds per BLOB read: %.3f\n", tmElapsed*1000.0/nCount); printf("Content read rate: %.1f MB/s\n", nTotal/(1000.0*tmElapsed)); } return 0; } int main(int argc, char **argv){ if( argc<3 ) showHelp(); if( strcmp(argv[1],"init")==0 ){ |
︙ | ︙ |
Changes to test/vtabH.test.
︙ | ︙ | |||
212 213 214 215 216 217 218 | set fd [open $path w] puts -nonewline $fd [string repeat 1 $sz] close $fd } } {} set pwd [pwd] | > | | > | | | | | | > | | | | | | | | | | > | 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 | set fd [open $path w] puts -nonewline $fd [string repeat 1 $sz] close $fd } } {} set pwd [pwd] if {![string match {*[_%]*} $pwd]} { do_execsql_test 3.5 { SELECT path, size FROM fstree WHERE path GLOB $pwd || '/subdir/*' ORDER BY 1 } [list \ "$pwd/subdir/x1.txt" 143 \ "$pwd/subdir/x2.txt" 153 \ ] do_execsql_test 3.6 { SELECT path, size FROM fstree WHERE path LIKE $pwd || '/subdir/%' ORDER BY 1 } [list \ "$pwd/subdir/x1.txt" 143 \ "$pwd/subdir/x2.txt" 153 \ ] do_execsql_test 3.7 { SELECT sum(size) FROM fstree WHERE path LIKE $pwd || '/subdir/%' } 296 do_execsql_test 3.8 { SELECT size FROM fstree WHERE path = $pwd || '/subdir/x1.txt' } 143 } } finish_test |