Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | If a binary operator in a WHERE clause that should be performed with no affinity conversions applied to its operands (see http://www.sqlite.org/datatype3.html) is optimized by index lookup, do not apply any conversions to the key value before looking it up in the index. Fix for [93fb9f89d6]. |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
e72186f2d68d28c2e0c32894f9adb28c |
User & Date: | dan 2009-08-13 19:21:17.000 |
Original Comment: | If a binary operator in a WHERE clause that should be performed with no affinity conversions applied to its operands (see http://www.sqlite.org/datatype3.html) is optimized by index lookup, do not apply any conversions to the key value before looking it up in the index. Fix for 93fb9f89d6. |
References
2016-09-03
| ||
15:24 | • Ticket [199df4168c] Different answer with and without index on IN operator with type mismatch status still Open with 6 other changes (artifact: 6a41349726 user: drh) | |
2009-08-19
| ||
15:21 | • Fixed ticket [93fb9f89d6]: Index causes incorrect WHERE clause evaluation plus 3 other changes (artifact: 10bc68257e user: drh) | |
Context
2009-08-13
| ||
19:54 | Tweak to the new whereB.test file to make it more consistent. (check-in: 06098505fc user: drh tags: trunk) | |
19:21 | If a binary operator in a WHERE clause that should be performed with no affinity conversions applied to its operands (see http://www.sqlite.org/datatype3.html) is optimized by index lookup, do not apply any conversions to the key value before looking it up in the index. Fix for [93fb9f89d6]. (check-in: e72186f2d6 user: dan tags: trunk) | |
18:14 | Enhancements to the whereB.test to check more affinity corner cases. (check-in: 1048459824 user: drh tags: trunk) | |
Changes
Changes to src/delete.c.
︙ | ︙ | |||
618 619 620 621 622 623 624 | }else{ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); | | | 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 | }else{ sqlite3VdbeAddOp3(v, OP_Column, iCur, idx, regBase+j); sqlite3ColumnDefault(v, pTab, idx, -1); } } if( doMakeRec ){ sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol+1, regOut); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); sqlite3ExprCacheAffinityChange(pParse, regBase, nCol+1); } sqlite3ReleaseTempRange(pParse, regBase, nCol+1); return regBase; } /* Make sure "isView" gets undefined in case this file becomes part of |
︙ | ︙ |
Changes to src/insert.c.
︙ | ︙ | |||
33 34 35 36 37 38 39 | sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); VdbeComment((v, "%s", pTab->zName)); } /* | | | | > > > > | | | | 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 | sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); VdbeComment((v, "%s", pTab->zName)); } /* ** Return a pointer to the column affinity string associated with index ** pIdx. A column affinity string has one character for each column in ** the table, according to the affinity of the column: ** ** Character Column affinity ** ------------------------------ ** 'a' TEXT ** 'b' NONE ** 'c' NUMERIC ** 'd' INTEGER ** 'e' REAL ** ** An extra 'b' is appended to the end of the string to cover the ** rowid that appears as the last column in every index. ** ** Memory for the buffer containing the column index affinity string ** is managed along with the rest of the Index structure. It will be ** released when sqlite3DeleteIndex() is called. */ const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ if( !pIdx->zColAff ){ /* The first time a column affinity string for a particular index is ** required, it is allocated and populated here. It is then stored as ** a member of the Index structure for subsequent use. ** ** The column affinity string will eventually be deleted by ** sqliteDeleteIndex() when the Index structure itself is cleaned ** up. */ int n; Table *pTab = pIdx->pTable; sqlite3 *db = sqlite3VdbeDb(v); pIdx->zColAff = (char *)sqlite3Malloc(pIdx->nColumn+2); if( !pIdx->zColAff ){ db->mallocFailed = 1; return 0; } for(n=0; n<pIdx->nColumn; n++){ pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; } pIdx->zColAff[n++] = SQLITE_AFF_NONE; pIdx->zColAff[n] = 0; } return pIdx->zColAff; } /* ** Set P4 of the most recently inserted opcode to a column affinity ** string for table pTab. A column affinity string has one character ** for each column indexed by the index, according to the affinity of the ** column: |
︙ | ︙ | |||
1294 1295 1296 1297 1298 1299 1300 | sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); | | | 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 | sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); }else{ sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); } } sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), 0); sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); /* Find out what action to take in case there is an indexing conflict */ onError = pIdx->onError; if( onError==OE_None ){ sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); continue; /* pIdx is not a UNIQUE index */ |
︙ | ︙ |
Changes to src/sqliteInt.h.
︙ | ︙ | |||
2751 2752 2753 2754 2755 2756 2757 | */ #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint | | | 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 | */ #define getVarint32(A,B) (u8)((*(A)<(u8)0x80) ? ((B) = (u32)*(A)),1 : sqlite3GetVarint32((A), (u32 *)&(B))) #define putVarint32(A,B) (u8)(((u32)(B)<(u32)0x80) ? (*(A) = (unsigned char)(B)),1 : sqlite3PutVarint32((A), (B))) #define getVarint sqlite3GetVarint #define putVarint sqlite3PutVarint const char *sqlite3IndexAffinityStr(Vdbe *, Index *); void sqlite3TableAffinityStr(Vdbe *, Table *); char sqlite3CompareAffinity(Expr *pExpr, char aff2); int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity); char sqlite3ExprAffinity(Expr *pExpr); int sqlite3Atoi64(const char*, i64*); void sqlite3Error(sqlite3*, int, const char*,...); void *sqlite3HexToBlob(sqlite3*, const char *z, int n); |
︙ | ︙ |
Changes to src/where.c.
︙ | ︙ | |||
2271 2272 2273 2274 2275 2276 2277 | disableTerm(pLevel, pOther); } } } } /* | | | > > > > | < | | | | | < | 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 | disableTerm(pLevel, pOther); } } } } /* ** Code an OP_Affinity opcode to apply the column affinity string zAff ** to the n registers starting at base. ** ** Buffer zAff was allocated using sqlite3DbMalloc(). It is the ** responsibility of this function to arrange for it to be eventually ** freed using sqlite3DbFree(). */ static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ Vdbe *v = pParse->pVdbe; assert( v!=0 ); sqlite3VdbeAddOp2(v, OP_Affinity, base, n); sqlite3VdbeChangeP4(v, -1, zAff, P4_DYNAMIC); sqlite3ExprCacheAffinityChange(pParse, base, n); } /* ** Generate code for a single equality term of the WHERE clause. An equality ** term can be either X=expr or X IN (...). pTerm is the term to be ** coded. |
︙ | ︙ | |||
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 | ** ** This routine always allocates at least one memory cell and returns ** the index of that memory cell. The code that ** calls this routine will use that memory cell to store the termination ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ | > > > > > > > > > > > > > > > | > > > > > > > | 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 | ** ** This routine always allocates at least one memory cell and returns ** the index of that memory cell. The code that ** calls this routine will use that memory cell to store the termination ** key value of the loop. If one or more IN operators appear, then ** this routine allocates an additional nEq memory cells for internal ** use. ** ** Before returning, *pzAff is set to point to a buffer containing a ** copy of the column affinity string of the index allocated using ** sqlite3DbMalloc(). Except, entries in the copy of the string associated ** with equality constraints that use NONE affinity are set to ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: ** ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; ** ** In the example above, the index on t1(a) has TEXT affinity. But since ** the right hand side of the equality constraint (t2.b) has NONE affinity, ** no conversion should be attempted before using a t2.b value as part of ** a key to search the index. Hence the first byte in the returned affinity ** string in this example would be set to SQLITE_AFF_NONE. */ static int codeAllEqualityTerms( Parse *pParse, /* Parsing context */ WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ WhereClause *pWC, /* The WHERE clause */ Bitmask notReady, /* Which parts of FROM have not yet been coded */ int nExtraReg, /* Number of extra registers to allocate */ char **pzAff /* OUT: Set to point to affinity string */ ){ int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ Vdbe *v = pParse->pVdbe; /* The vm under construction */ Index *pIdx; /* The index being used for this loop */ int iCur = pLevel->iTabCur; /* The cursor of the table */ WhereTerm *pTerm; /* A single constraint term */ int j; /* Loop counter */ int regBase; /* Base register */ int nReg; /* Number of registers to allocate */ char *zAff; /* Affinity string to return */ /* This module is only called on query plans that use an index. */ assert( pLevel->plan.wsFlags & WHERE_INDEXED ); pIdx = pLevel->plan.u.pIdx; /* Figure out how many memory cells we will need then allocate them. */ regBase = pParse->nMem + 1; nReg = pLevel->plan.nEq + nExtraReg; pParse->nMem += nReg; zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); if( !zAff ){ pParse->db->mallocFailed = 1; } /* Evaluate the equality constraints */ assert( pIdx->nColumn>=nEq ); for(j=0; j<nEq; j++){ int r1; int k = pIdx->aiColumn[j]; |
︙ | ︙ | |||
2421 2422 2423 2424 2425 2426 2427 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); | > > > > | | > > | 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 | sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); } } testcase( pTerm->eOperator & WO_ISNULL ); testcase( pTerm->eOperator & WO_IN ); if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); if( zAff && sqlite3CompareAffinity(pTerm->pExpr->pRight, zAff[j])==SQLITE_AFF_NONE ){ zAff[j] = SQLITE_AFF_NONE; } } } *pzAff = zAff; return regBase; } /* ** Generate code for the start of the iLevel-th loop in the WHERE clause ** implementation described by pWInfo. */ |
︙ | ︙ | |||
2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 | int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ pIdx = pLevel->plan.u.pIdx; iIdxCur = pLevel->iIdxCur; k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." | > | 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 | int endEq; /* True if range end uses ==, >= or <= */ int start_constraints; /* Start of range is constrained */ int nConstraint; /* Number of constraint terms */ Index *pIdx; /* The index we will be using */ int iIdxCur; /* The VDBE cursor for the index */ int nExtraReg = 0; /* Number of extra registers needed */ int op; /* Instruction opcode */ char *zAff; pIdx = pLevel->plan.u.pIdx; iIdxCur = pLevel->iIdxCur; k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ /* If this loop satisfies a sort order (pOrderBy) request that ** was passed to this function to implement a "SELECT min(x) ..." |
︙ | ︙ | |||
2717 2718 2719 2720 2721 2722 2723 | nExtraReg = 1; } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ | | > > < > | > > > > > > > > | > | > > > > > > > > > | | 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 | nExtraReg = 1; } /* Generate code to evaluate all constraint terms using == or IN ** and store the values of those terms in an array of registers ** starting at regBase. */ regBase = codeAllEqualityTerms( pParse, pLevel, pWC, notReady, nExtraReg, &zAff ); addrNxt = pLevel->addrNxt; /* If we are doing a reverse order scan on an ascending index, or ** a forward order scan on a descending index, interchange the ** start and end terms (pRangeStart and pRangeEnd). */ if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ SWAP(WhereTerm *, pRangeEnd, pRangeStart); } testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); start_constraints = pRangeStart || nEq>0; /* Seek the index cursor to the start of the range. */ nConstraint = nEq; if( pRangeStart ){ Expr *pRight = pRangeStart->pExpr->pRight; sqlite3ExprCode(pParse, pRight, regBase+nEq); sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); if( zAff && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE ){ /* Since the comparison is to be performed with no conversions applied ** to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zAff[nConstraint] = SQLITE_AFF_NONE; } nConstraint++; }else if( isMinQuery ){ sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); nConstraint++; startEq = 0; start_constraints = 1; } codeApplyAffinity(pParse, regBase, nConstraint, zAff); op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; assert( op!=0 ); testcase( op==OP_Rewind ); testcase( op==OP_Last ); testcase( op==OP_SeekGt ); testcase( op==OP_SeekGe ); testcase( op==OP_SeekLe ); testcase( op==OP_SeekLt ); sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, SQLITE_INT_TO_PTR(nConstraint), P4_INT32); /* Load the value for the inequality constraint at the end of the ** range (if any). */ nConstraint = nEq; if( pRangeEnd ){ Expr *pRight = pRangeEnd->pExpr->pRight; sqlite3ExprCacheRemove(pParse, regBase+nEq); sqlite3ExprCode(pParse, pRight, regBase+nEq); sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); zAff = sqlite3DbStrDup(pParse->db, zAff); if( zAff && sqlite3CompareAffinity(pRight, zAff[nConstraint])==SQLITE_AFF_NONE ){ /* Since the comparison is to be performed with no conversions applied ** to the operands, set the affinity to apply to pRight to ** SQLITE_AFF_NONE. */ zAff[nConstraint] = SQLITE_AFF_NONE; } codeApplyAffinity(pParse, regBase, nEq+1, zAff); nConstraint++; } /* Top of the loop body */ pLevel->p2 = sqlite3VdbeCurrentAddr(v); /* Check if the index cursor is past the end of the range. */ |
︙ | ︙ |