SQLite

Check-in [e29c7f2c91]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Remove the out2-prerelease VDBE opcode property and its associated code, for a 0.5% performance improvement.
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: e29c7f2c910dac07f0f92dfef5e0e743141954eb
User & Date: drh 2015-04-13 19:14:06.003
Context
2015-04-13
21:39
Omit the "pc" or "program counter" variable from the VDBE loop for 0.6% performance increase. (check-in: d2f10c41a8 user: drh tags: trunk)
19:14
Remove the out2-prerelease VDBE opcode property and its associated code, for a 0.5% performance improvement. (check-in: e29c7f2c91 user: drh tags: trunk)
17:43
Add a comment to wal.c to explain why a race condition is safe. (check-in: bc33af8664 user: dan tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to mkopcodeh.awk.
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  sub(/:/,"",name)
  sub("\r","",name)
  op[name] = -1       # op[x] holds the numeric value for OP symbol x
  jump[name] = 0
  out2_prerelease[name] = 0
  in1[name] = 0
  in2[name] = 0
  in3[name] = 0
  out2[name] = 0
  out3[name] = 0
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)
      val = tk[sym]
      op[name] = val
      used[val] = 1
      sameas[val] = sym
      def[val] = name
    }
    x = $i
    sub(",","",x)
    if(x=="jump"){
      jump[name] = 1
    }else if(x=="out2-prerelease"){
      out2_prerelease[name] = 1
    }else if(x=="in1"){
      in1[name] = 1
    }else if(x=="in2"){
      in2[name] = 1
    }else if(x=="in3"){
      in3[name] = 1
    }else if(x=="out2"){







<



















<
<







68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93


94
95
96
97
98
99
100
# Scan for "case OP_aaaa:" lines in the vdbe.c file
/^case OP_/ {
  name = $2
  sub(/:/,"",name)
  sub("\r","",name)
  op[name] = -1       # op[x] holds the numeric value for OP symbol x
  jump[name] = 0

  in1[name] = 0
  in2[name] = 0
  in3[name] = 0
  out2[name] = 0
  out3[name] = 0
  for(i=3; i<NF; i++){
    if($i=="same" && $(i+1)=="as"){
      sym = $(i+2)
      sub(/,/,"",sym)
      val = tk[sym]
      op[name] = val
      used[val] = 1
      sameas[val] = sym
      def[val] = name
    }
    x = $i
    sub(",","",x)
    if(x=="jump"){
      jump[name] = 1


    }else if(x=="in1"){
      in1[name] = 1
    }else if(x=="in2"){
      in2[name] = 1
    }else if(x=="in3"){
      in3[name] = 1
    }else if(x=="out2"){
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
  #  bit 1:     pushes a result onto stack
  #  bit 2:     output to p1.  release p1 before opcode runs
  #
  for(i=0; i<=max; i++){
    name = def[i]
    a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0
    if( jump[name] ) a0 = 1;
    if( out2_prerelease[name] ) a1 = 2;
    if( in1[name] ) a2 = 4;
    if( in2[name] ) a3 = 8;
    if( in3[name] ) a4 = 16;
    if( out2[name] ) a5 = 32;
    if( out3[name] ) a6 = 64;
    bv[i] = a0+a1+a2+a3+a4+a5+a6+a7;
  }
  print "\n"
  print "/* Properties such as \"out2\" or \"jump\" that are specified in"
  print "** comments following the \"case\" for each opcode in the vdbe.c"
  print "** are encoded into bitvectors as follows:"
  print "*/"
  print "#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */"
  print "#define OPFLG_OUT2_PRERELEASE 0x0002  /* out2-prerelease: */"
  print "#define OPFLG_IN1             0x0004  /* in1:   P1 is an input */"
  print "#define OPFLG_IN2             0x0008  /* in2:   P2 is an input */"
  print "#define OPFLG_IN3             0x0010  /* in3:   P3 is an input */"
  print "#define OPFLG_OUT2            0x0020  /* out2:  P2 is an output */"
  print "#define OPFLG_OUT3            0x0040  /* out3:  P3 is an output */"
  print "#define OPFLG_INITIALIZER {\\"
  for(i=0; i<=max; i++){
    if( i%8==0 ) printf("/* %3d */",i)
    printf " 0x%02x,", bv[i]
    if( i%8==7 ) printf("\\\n");
  }
  print "}"







<
|
|
|
|
|
|







<
|
|
|
|
|







187
188
189
190
191
192
193

194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215
216
217
218
  #  bit 1:     pushes a result onto stack
  #  bit 2:     output to p1.  release p1 before opcode runs
  #
  for(i=0; i<=max; i++){
    name = def[i]
    a0 = a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0
    if( jump[name] ) a0 = 1;

    if( in1[name] ) a2 = 2;
    if( in2[name] ) a3 = 4;
    if( in3[name] ) a4 = 8;
    if( out2[name] ) a5 = 16;
    if( out3[name] ) a6 = 32;
    bv[i] = a0+a1+a2+a3+a4+a5+a6;
  }
  print "\n"
  print "/* Properties such as \"out2\" or \"jump\" that are specified in"
  print "** comments following the \"case\" for each opcode in the vdbe.c"
  print "** are encoded into bitvectors as follows:"
  print "*/"
  print "#define OPFLG_JUMP            0x0001  /* jump:  P2 holds jmp target */"

  print "#define OPFLG_IN1             0x0002  /* in1:   P1 is an input */"
  print "#define OPFLG_IN2             0x0004  /* in2:   P2 is an input */"
  print "#define OPFLG_IN3             0x0008  /* in3:   P3 is an input */"
  print "#define OPFLG_OUT2            0x0010  /* out2:  P2 is an output */"
  print "#define OPFLG_OUT3            0x0020  /* out3:  P3 is an output */"
  print "#define OPFLG_INITIALIZER {\\"
  for(i=0; i<=max; i++){
    if( i%8==0 ) printf("/* %3d */",i)
    printf " 0x%02x,", bv[i]
    if( i%8==7 ) printf("\\\n");
  }
  print "}"
Changes to src/vdbe.c.
510
511
512
513
514
515
516















517
518
519
520
521
522
523
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif

















/*
** Execute as much of a VDBE program as we can.
** This is the core of sqlite3_step().  
*/
int sqlite3VdbeExec(
  Vdbe *p                    /* The VDBE */







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
  Savepoint *p;
  for(p=db->pSavepoint; p; p=p->pNext) n++;
  assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
  return 1;
}
#endif

/*
** Return the register of pOp->p2 after first preparing it to be
** overwritten with an integer value.
*/ 
static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
  Mem *pOut;
  assert( pOp->p2>0 );
  assert( pOp->p2<=(p->nMem-p->nCursor) );
  pOut = &p->aMem[pOp->p2];
  memAboutToChange(p, pOut);
  if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
  pOut->flags = MEM_Int;
  return pOut;
}


/*
** Execute as much of a VDBE program as we can.
** This is the core of sqlite3_step().  
*/
int sqlite3VdbeExec(
  Vdbe *p                    /* The VDBE */
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652

653
654
655
656
657
658
659
      sqlite3_interrupt_count--;
      if( sqlite3_interrupt_count==0 ){
        sqlite3_interrupt(db);
      }
    }
#endif

    /* On any opcode with the "out2-prerelease" tag, free any
    ** external allocations out of mem[p2] and set mem[p2] to be
    ** an undefined integer.  Opcodes will either fill in the integer
    ** value or convert mem[p2] to a different type.
    */
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
      assert( pOp->p2>0 );
      assert( pOp->p2<=(p->nMem-p->nCursor) );
      pOut = &aMem[pOp->p2];
      memAboutToChange(p, pOut);
      if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
      pOut->flags = MEM_Int;
    }

    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG

    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p1]) );
      assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }







<
<
<
<
<
<
<
<
<
<
<
<
<
<
<


>







644
645
646
647
648
649
650















651
652
653
654
655
656
657
658
659
660
      sqlite3_interrupt_count--;
      if( sqlite3_interrupt_count==0 ){
        sqlite3_interrupt(db);
      }
    }
#endif
















    /* Sanity checking on other operands */
#ifdef SQLITE_DEBUG
    assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
    if( (pOp->opflags & OPFLG_IN1)!=0 ){
      assert( pOp->p1>0 );
      assert( pOp->p1<=(p->nMem-p->nCursor) );
      assert( memIsValid(&aMem[pOp->p1]) );
      assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
      REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
    }
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.  If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** Other keywords in the comment that follows each case are used to
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
** Keywords include: in1, in2, in3, out2_prerelease, out2, out3.  See
** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**







|







702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
** opcode and the opcodes.c file is filled with an array of strings where
** each string is the symbolic name for the corresponding opcode.  If the
** case statement is followed by a comment of the form "/# same as ... #/"
** that comment is used to determine the particular value of the opcode.
**
** Other keywords in the comment that follows each case are used to
** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
** Keywords include: in1, in2, in3, out2, out3.  See
** the mkopcodeh.awk script for additional information.
**
** Documentation about VDBE opcodes is generated by scanning this file
** for lines of that contain "Opcode:".  That line and all subsequent
** comment lines are used in the generation of the opcode.html documentation
** file.
**
975
976
977
978
979
980
981
982

983
984
985
986
987
988
989
990
991
992
993

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006

1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

1024
1025
1026
1027
1028
1029
1030
}

/* Opcode: Integer P1 P2 * * *
** Synopsis: r[P2]=P1
**
** The 32-bit integer value P1 is written into register P2.
*/
case OP_Integer: {         /* out2-prerelease */

  pOut->u.i = pOp->p1;
  break;
}

/* Opcode: Int64 * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
*/
case OP_Int64: {           /* out2-prerelease */

  assert( pOp->p4.pI64!=0 );
  pOut->u.i = *pOp->p4.pI64;
  break;
}

#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2-prerelease */

  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->u.r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into a String opcode before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2-prerelease */
  assert( pOp->p4.z!=0 );

  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;







|
>










|
>












|
>















|

>







976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
}

/* Opcode: Integer P1 P2 * * *
** Synopsis: r[P2]=P1
**
** The 32-bit integer value P1 is written into register P2.
*/
case OP_Integer: {         /* out2 */
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = pOp->p1;
  break;
}

/* Opcode: Int64 * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit integer value.
** Write that value into register P2.
*/
case OP_Int64: {           /* out2 */
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p4.pI64!=0 );
  pOut->u.i = *pOp->p4.pI64;
  break;
}

#ifndef SQLITE_OMIT_FLOATING_POINT
/* Opcode: Real * P2 * P4 *
** Synopsis: r[P2]=P4
**
** P4 is a pointer to a 64-bit floating point value.
** Write that value into register P2.
*/
case OP_Real: {            /* same as TK_FLOAT, out2 */
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Real;
  assert( !sqlite3IsNaN(*pOp->p4.pReal) );
  pOut->u.r = *pOp->p4.pReal;
  break;
}
#endif

/* Opcode: String8 * P2 * P4 *
** Synopsis: r[P2]='P4'
**
** P4 points to a nul terminated UTF-8 string. This opcode is transformed 
** into a String opcode before it is executed for the first time.  During
** this transformation, the length of string P4 is computed and stored
** as the P1 parameter.
*/
case OP_String8: {         /* same as TK_STRING, out2 */
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOp->opcode = OP_String;
  pOp->p1 = sqlite3Strlen30(pOp->p4.z);

#ifndef SQLITE_OMIT_UTF16
  if( encoding!=SQLITE_UTF8 ){
    rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
    if( rc==SQLITE_TOOBIG ) goto too_big;
1053
1054
1055
1056
1057
1058
1059
1060
1061

1062
1063
1064
1065
1066
1067
1068
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P5!=0 and the content of register P3 is greater than zero, then
** the datatype of the register P2 is converted to BLOB.  The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST.
*/
case OP_String: {          /* out2-prerelease */
  assert( pOp->p4.z!=0 );

  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  if( pOp->p5 ){
    assert( pOp->p3>0 );







|

>







1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
** The string value P4 of length P1 (bytes) is stored in register P2.
**
** If P5!=0 and the content of register P3 is greater than zero, then
** the datatype of the register P2 is converted to BLOB.  The content is
** the same sequence of bytes, it is merely interpreted as a BLOB instead
** of a string, as if it had been CAST.
*/
case OP_String: {          /* out2 */
  assert( pOp->p4.z!=0 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Str|MEM_Static|MEM_Term;
  pOut->z = pOp->p4.z;
  pOut->n = pOp->p1;
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  if( pOp->p5 ){
    assert( pOp->p3>0 );
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095
1096
1097
1098
** is less than P2 (typically P3 is zero) then only register P2 is
** set to NULL.
**
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: {           /* out2-prerelease */
  int cnt;
  u16 nullFlag;

  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    sqlite3VdbeMemSetNull(pOut);







|


>







1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
** is less than P2 (typically P3 is zero) then only register P2 is
** set to NULL.
**
** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
** NULL values will not compare equal even if SQLITE_NULLEQ is set on
** OP_Ne or OP_Eq.
*/
case OP_Null: {           /* out2 */
  int cnt;
  u16 nullFlag;
  pOut = out2Prerelease(p, pOp);
  cnt = pOp->p3-pOp->p2;
  assert( pOp->p3<=(p->nMem-p->nCursor) );
  pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
  while( cnt>0 ){
    pOut++;
    memAboutToChange(p, pOut);
    sqlite3VdbeMemSetNull(pOut);
1119
1120
1121
1122
1123
1124
1125
1126
1127

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

1151
1152
1153
1154
1155
1156
1157

/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long.  Store this
** blob in register P2.
*/
case OP_Blob: {                /* out2-prerelease */
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );

  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Variable P1 P2 * P4 *
** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2-prerelease */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }

  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2@P3]=r[P1@P3]







|

>














|








>







1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

/* Opcode: Blob P1 P2 * P4 *
** Synopsis: r[P2]=P4 (len=P1)
**
** P4 points to a blob of data P1 bytes long.  Store this
** blob in register P2.
*/
case OP_Blob: {                /* out2 */
  assert( pOp->p1 <= SQLITE_MAX_LENGTH );
  pOut = out2Prerelease(p, pOp);
  sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
  pOut->enc = encoding;
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Variable P1 P2 * P4 *
** Synopsis: r[P2]=parameter(P1,P4)
**
** Transfer the values of bound parameter P1 into register P2
**
** If the parameter is named, then its name appears in P4.
** The P4 value is used by sqlite3_bind_parameter_name().
*/
case OP_Variable: {            /* out2 */
  Mem *pVar;       /* Value being transferred */

  assert( pOp->p1>0 && pOp->p1<=p->nVar );
  assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
  pVar = &p->aVar[pOp->p1 - 1];
  if( sqlite3VdbeMemTooBig(pVar) ){
    goto too_big;
  }
  pOut = out2Prerelease(p, pOp);
  sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
  UPDATE_MAX_BLOBSIZE(pOut);
  break;
}

/* Opcode: Move P1 P2 P3 * *
** Synopsis:  r[P2@P3]=r[P1@P3]
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731

2732
2733
2734
2735
2736
2737
2738
/* Opcode: Count P1 P2 * * *
** Synopsis: r[P2]=count()
**
** Store the number of entries (an integer value) in the table or index 
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2-prerelease */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  assert( pCrsr );
  nEntry = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3BtreeCount(pCrsr, &nEntry);

  pOut->u.i = nEntry;
  break;
}
#endif

/* Opcode: Savepoint P1 * * P4 *
**







|







>







2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
/* Opcode: Count P1 P2 * * *
** Synopsis: r[P2]=count()
**
** Store the number of entries (an integer value) in the table or index 
** opened by cursor P1 in register P2
*/
#ifndef SQLITE_OMIT_BTREECOUNT
case OP_Count: {         /* out2 */
  i64 nEntry;
  BtCursor *pCrsr;

  pCrsr = p->apCsr[pOp->p1]->pCursor;
  assert( pCrsr );
  nEntry = 0;  /* Not needed.  Only used to silence a warning. */
  rc = sqlite3BtreeCount(pCrsr, &nEntry);
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = nEntry;
  break;
}
#endif

/* Opcode: Savepoint P1 * * P4 *
**
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133

3134
3135
3136
3137
3138
3139
3140
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2-prerelease */
  int iMeta;
  int iDb;
  int iCookie;

  assert( p->bIsReader );
  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( DbMaskTest(p->btreeMask, iDb) );

  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);

  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)







|













>







3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
** the main database file and P1==1 is the database file used to store
** temporary tables.
**
** There must be a read-lock on the database (either a transaction
** must be started or there must be an open cursor) before
** executing this instruction.
*/
case OP_ReadCookie: {               /* out2 */
  int iMeta;
  int iDb;
  int iCookie;

  assert( p->bIsReader );
  iDb = pOp->p1;
  iCookie = pOp->p3;
  assert( pOp->p3<SQLITE_N_BTREE_META );
  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );
  assert( DbMaskTest(p->btreeMask, iDb) );

  sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = iMeta;
  break;
}

/* Opcode: SetCookie P1 P2 P3 * *
**
** Write the content of register P3 (interpreted as an integer)
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956

3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986

3987
3988
3989
3990
3991
3992
3993
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2-prerelease */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );

  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
  break;
}


/* Opcode: NewRowid P1 P2 P3 * *
** Synopsis: r[P2]=rowid
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum, 
** an SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2-prerelease */
  i64 v;                 /* The new rowid */
  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
  int res;               /* Result of an sqlite3BtreeLast() */
  int cnt;               /* Counter to limit the number of searches */
  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
  VdbeFrame *pFrame;     /* Root frame of VDBE */

  v = 0;
  res = 0;

  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( NEVER(pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same







|


>




















|









>







3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
** Synopsis: r[P2]=cursor[P1].ctr++
**
** Find the next available sequence number for cursor P1.
** Write the sequence number into register P2.
** The sequence number on the cursor is incremented after this
** instruction.  
*/
case OP_Sequence: {           /* out2 */
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  assert( p->apCsr[pOp->p1]!=0 );
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
  break;
}


/* Opcode: NewRowid P1 P2 P3 * *
** Synopsis: r[P2]=rowid
**
** Get a new integer record number (a.k.a "rowid") used as the key to a table.
** The record number is not previously used as a key in the database
** table that cursor P1 points to.  The new record number is written
** written to register P2.
**
** If P3>0 then P3 is a register in the root frame of this VDBE that holds 
** the largest previously generated record number. No new record numbers are
** allowed to be less than this value. When this value reaches its maximum, 
** an SQLITE_FULL error is generated. The P3 register is updated with the '
** generated record number. This P3 mechanism is used to help implement the
** AUTOINCREMENT feature.
*/
case OP_NewRowid: {           /* out2 */
  i64 v;                 /* The new rowid */
  VdbeCursor *pC;        /* Cursor of table to get the new rowid */
  int res;               /* Result of an sqlite3BtreeLast() */
  int cnt;               /* Counter to limit the number of searches */
  Mem *pMem;             /* Register holding largest rowid for AUTOINCREMENT */
  VdbeFrame *pFrame;     /* Root frame of VDBE */

  v = 0;
  res = 0;
  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  if( NEVER(pC->pCursor==0) ){
    /* The zero initialization above is all that is needed */
  }else{
    /* The next rowid or record number (different terms for the same
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436

4437
4438
4439
4440
4441
4442
4443
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2-prerelease */
  VdbeCursor *pC;
  i64 v;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 || pC->nullRow );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;







|





>







4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
** Store in register P2 an integer which is the key of the table entry that
** P1 is currently point to.
**
** P1 can be either an ordinary table or a virtual table.  There used to
** be a separate OP_VRowid opcode for use with virtual tables, but this
** one opcode now works for both table types.
*/
case OP_Rowid: {                 /* out2 */
  VdbeCursor *pC;
  i64 v;
  sqlite3_vtab *pVtab;
  const sqlite3_module *pModule;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  assert( pC->pseudoTableReg==0 || pC->nullRow );
  if( pC->nullRow ){
    pOut->flags = MEM_Null;
    break;
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815

4816
4817
4818
4819
4820
4821
4822
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2-prerelease */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;


  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;
  assert( pC->isTable==0 );







|




>







4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
**
** Write into register P2 an integer which is the last entry in the record at
** the end of the index key pointed to by cursor P1.  This integer should be
** the rowid of the table entry to which this index entry points.
**
** See also: Rowid, MakeRecord.
*/
case OP_IdxRowid: {              /* out2 */
  BtCursor *pCrsr;
  VdbeCursor *pC;
  i64 rowid;

  pOut = out2Prerelease(p, pOp);
  assert( pOp->p1>=0 && pOp->p1<p->nCursor );
  pC = p->apCsr[pOp->p1];
  assert( pC!=0 );
  pCrsr = pC->pCursor;
  assert( pCrsr!=0 );
  pOut->flags = MEM_Null;
  assert( pC->isTable==0 );
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958

4959
4960
4961
4962
4963
4964
4965
** is stored in register P2.  If no page 
** movement was required (because the table being dropped was already 
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2-prerelease */
  int iMoved;
  int iDb;

  assert( p->readOnly==0 );

  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( DbMaskTest(p->btreeMask, iDb) );







|




>







4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
** is stored in register P2.  If no page 
** movement was required (because the table being dropped was already 
** the last one in the database) then a zero is stored in register P2.
** If AUTOVACUUM is disabled then a zero is stored in register P2.
**
** See also: Clear
*/
case OP_Destroy: {     /* out2 */
  int iMoved;
  int iDb;

  assert( p->readOnly==0 );
  pOut = out2Prerelease(p, pOp);
  pOut->flags = MEM_Null;
  if( db->nVdbeRead > db->nVDestroy+1 ){
    rc = SQLITE_LOCKED;
    p->errorAction = OE_Abort;
  }else{
    iDb = pOp->p3;
    assert( DbMaskTest(p->btreeMask, iDb) );
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072

5073
5074
5075
5076
5077
5078
5079
** Allocate a new index in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2-prerelease */
case OP_CreateTable: {          /* out2-prerelease */
  int pgno;
  int flags;
  Db *pDb;


  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){







|
|




>







5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
** Allocate a new index in the main database file if P1==0 or in the
** auxiliary database file if P1==1 or in an attached database if
** P1>1.  Write the root page number of the new table into
** register P2.
**
** See documentation on OP_CreateTable for additional information.
*/
case OP_CreateIndex:            /* out2 */
case OP_CreateTable: {          /* out2 */
  int pgno;
  int flags;
  Db *pDb;

  pOut = out2Prerelease(p, pOp);
  pgno = 0;
  assert( pOp->p1>=0 && pOp->p1<db->nDb );
  assert( DbMaskTest(p->btreeMask, pOp->p1) );
  assert( p->readOnly==0 );
  pDb = &db->aDb[pOp->p1];
  assert( pDb->pBt!=0 );
  if( pOp->opcode==OP_CreateTable ){
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510

5511
5512
5513
5514
5515
5516
5517
** address space. This is used by trigger programs to access the new.* 
** and old.* values.
**
** The address of the cell in the parent frame is determined by adding
** the value of the P1 argument to the value of the P1 argument to the
** calling OP_Program instruction.
*/
case OP_Param: {           /* out2-prerelease */
  VdbeFrame *pFrame;
  Mem *pIn;

  pFrame = p->pFrame;
  pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];   
  sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
  break;
}

#endif /* #ifndef SQLITE_OMIT_TRIGGER */







|


>







5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
** address space. This is used by trigger programs to access the new.* 
** and old.* values.
**
** The address of the cell in the parent frame is determined by adding
** the value of the P1 argument to the value of the P1 argument to the
** calling OP_Program instruction.
*/
case OP_Param: {           /* out2 */
  VdbeFrame *pFrame;
  Mem *pIn;
  pOut = out2Prerelease(p, pOp);
  pFrame = p->pFrame;
  pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];   
  sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
  break;
}

#endif /* #ifndef SQLITE_OMIT_TRIGGER */
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825

5826
5827
5828
5829
5830
5831
5832
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: {    /* out2-prerelease */
  Btree *pBt;                     /* Btree to change journal mode of */
  Pager *pPager;                  /* Pager associated with pBt */
  int eNew;                       /* New journal mode */
  int eOld;                       /* The old journal mode */
#ifndef SQLITE_OMIT_WAL
  const char *zFilename;          /* Name of database file for pPager */
#endif


  eNew = pOp->p3;
  assert( eNew==PAGER_JOURNALMODE_DELETE 
       || eNew==PAGER_JOURNALMODE_TRUNCATE 
       || eNew==PAGER_JOURNALMODE_PERSIST 
       || eNew==PAGER_JOURNALMODE_OFF
       || eNew==PAGER_JOURNALMODE_MEMORY
       || eNew==PAGER_JOURNALMODE_WAL







|








>







5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
** modes (delete, truncate, persist, off and memory), this is a simple
** operation. No IO is required.
**
** If changing into or out of WAL mode the procedure is more complicated.
**
** Write a string containing the final journal-mode to register P2.
*/
case OP_JournalMode: {    /* out2 */
  Btree *pBt;                     /* Btree to change journal mode of */
  Pager *pPager;                  /* Pager associated with pBt */
  int eNew;                       /* New journal mode */
  int eOld;                       /* The old journal mode */
#ifndef SQLITE_OMIT_WAL
  const char *zFilename;          /* Name of database file for pPager */
#endif

  pOut = out2Prerelease(p, pOp);
  eNew = pOp->p3;
  assert( eNew==PAGER_JOURNALMODE_DELETE 
       || eNew==PAGER_JOURNALMODE_TRUNCATE 
       || eNew==PAGER_JOURNALMODE_PERSIST 
       || eNew==PAGER_JOURNALMODE_OFF
       || eNew==PAGER_JOURNALMODE_MEMORY
       || eNew==PAGER_JOURNALMODE_WAL
6374
6375
6376
6377
6378
6379
6380
6381

6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400

6401
6402
6403
6404
6405
6406
6407
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: {            /* out2-prerelease */

  pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
  break;
}
#endif


#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: MaxPgcnt P1 P2 P3 * *
**
** Try to set the maximum page count for database P1 to the value in P3.
** Do not let the maximum page count fall below the current page count and
** do not change the maximum page count value if P3==0.
**
** Store the maximum page count after the change in register P2.
*/
case OP_MaxPgcnt: {            /* out2-prerelease */
  unsigned int newMax;
  Btree *pBt;


  pBt = db->aDb[pOp->p1].pBt;
  newMax = 0;
  if( pOp->p3 ){
    newMax = sqlite3BtreeLastPage(pBt);
    if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
  }
  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);







|
>















|



>







6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
#endif /* SQLITE_OMIT_VIRTUALTABLE */

#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: Pagecount P1 P2 * * *
**
** Write the current number of pages in database P1 to memory cell P2.
*/
case OP_Pagecount: {            /* out2 */
  pOut = out2Prerelease(p, pOp);
  pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
  break;
}
#endif


#ifndef  SQLITE_OMIT_PAGER_PRAGMAS
/* Opcode: MaxPgcnt P1 P2 P3 * *
**
** Try to set the maximum page count for database P1 to the value in P3.
** Do not let the maximum page count fall below the current page count and
** do not change the maximum page count value if P3==0.
**
** Store the maximum page count after the change in register P2.
*/
case OP_MaxPgcnt: {            /* out2 */
  unsigned int newMax;
  Btree *pBt;

  pOut = out2Prerelease(p, pOp);
  pBt = db->aDb[pOp->p1].pBt;
  newMax = 0;
  if( pOp->p3 ){
    newMax = sqlite3BtreeLastPage(pBt);
    if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
  }
  pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
    */
#ifndef NDEBUG
    assert( pc>=-1 && pc<p->nOp );

#ifdef SQLITE_DEBUG
    if( db->flags & SQLITE_VdbeTrace ){
      if( rc!=0 ) printf("rc=%d\n",rc);
      if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
        registerTrace(pOp->p2, &aMem[pOp->p2]);
      }
      if( pOp->opflags & OPFLG_OUT3 ){
        registerTrace(pOp->p3, &aMem[pOp->p3]);
      }
    }
#endif  /* SQLITE_DEBUG */







|







6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
    */
#ifndef NDEBUG
    assert( pc>=-1 && pc<p->nOp );

#ifdef SQLITE_DEBUG
    if( db->flags & SQLITE_VdbeTrace ){
      if( rc!=0 ) printf("rc=%d\n",rc);
      if( pOp->opflags & (OPFLG_OUT2) ){
        registerTrace(pOp->p2, &aMem[pOp->p2]);
      }
      if( pOp->opflags & OPFLG_OUT3 ){
        registerTrace(pOp->p3, &aMem[pOp->p3]);
      }
    }
#endif  /* SQLITE_DEBUG */