Many hyperlinks are disabled.
Use anonymous login
to enable hyperlinks.
Overview
Comment: | Fixes to the file locking. 109 tests are now failing. (CVS 1548) |
---|---|
Downloads: | Tarball | ZIP archive |
Timelines: | family | ancestors | descendants | both | trunk |
Files: | files | file ages | folders |
SHA1: |
dc0763455bbf54c1d8728e16033709ca |
User & Date: | drh 2004-06-09 17:37:23.000 |
Context
2004-06-09
| ||
19:03 | Remove legacy journal formats. (CVS 1549) (check-in: a12bef4a08 user: drh tags: trunk) | |
17:37 | Fixes to the file locking. 109 tests are now failing. (CVS 1548) (check-in: dc0763455b user: drh tags: trunk) | |
14:17 | Add the "lock_status" pragma - only available when SQLITE_DEBUG is defined. Used for testing only. (CVS 1547) (check-in: 0ecbba78fc user: drh tags: trunk) | |
Changes
Changes to src/btree.c.
1 2 3 4 5 6 7 8 9 10 11 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* | | | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | /* ** 2004 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** $Id: btree.c,v 1.162 2004/06/09 17:37:23 drh Exp $ ** ** This file implements a external (disk-based) database using BTrees. ** For a detailed discussion of BTrees, refer to ** ** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3: ** "Sorting And Searching", pages 473-480. Addison-Wesley ** Publishing Company, Reading, Massachusetts. |
︙ | ︙ | |||
257 258 259 260 261 262 263 | ** ** The pParent field points back to the parent page. This allows us to ** walk up the BTree from any leaf to the root. Care must be taken to ** unref() the parent page pointer when this page is no longer referenced. ** The pageDestructor() routine handles that chore. */ struct MemPage { | | | 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | ** ** The pParent field points back to the parent page. This allows us to ** walk up the BTree from any leaf to the root. Care must be taken to ** unref() the parent page pointer when this page is no longer referenced. ** The pageDestructor() routine handles that chore. */ struct MemPage { u8 isInit; /* True if previously initialized. MUST BE FIRST! */ u8 idxShift; /* True if Cell indices have changed */ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */ u8 intKey; /* True if intkey flag is set */ u8 leaf; /* True if leaf flag is set */ u8 zeroData; /* True if table stores keys only */ u8 leafData; /* True if tables stores data on leaves only */ u8 hasData; /* True if this page stores data */ |
︙ | ︙ | |||
957 958 959 960 961 962 963 964 965 966 967 968 969 970 | if( pPage->pParent ){ MemPage *pParent = pPage->pParent; pPage->pParent = 0; releasePage(pParent); } pPage->isInit = 0; } /* ** Open a new database. ** ** Actually, this routine just sets up the internal data structures ** for accessing the database. We do not open the database file ** until the first page is loaded. | > > > > > > > > > > > > > > > > | 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 | if( pPage->pParent ){ MemPage *pParent = pPage->pParent; pPage->pParent = 0; releasePage(pParent); } pPage->isInit = 0; } /* ** During a rollback, when the pager reloads information into the cache ** so that the cache is restored to its original state at the start of ** the transaction, for each page restored this routine is called. ** ** This routine needs to reset the extra data section at the end of the ** page to agree with the restored data. */ static void pageReinit(void *pData, int pageSize){ MemPage *pPage = (MemPage*)&((char*)pData)[pageSize]; if( pPage->isInit ){ pPage->isInit = 0; initPage(pPage, pPage->pParent); } } /* ** Open a new database. ** ** Actually, this routine just sets up the internal data structures ** for accessing the database. We do not open the database file ** until the first page is loaded. |
︙ | ︙ | |||
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 | if( rc!=SQLITE_OK ){ if( pBt->pPager ) sqlite3pager_close(pBt->pPager); sqliteFree(pBt); *ppBtree = 0; return rc; } sqlite3pager_set_destructor(pBt->pPager, pageDestructor); pBt->pCursor = 0; pBt->pPage1 = 0; pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */ pBt->usableSize = pBt->pageSize; pBt->maxEmbedFrac = 64; /* FIX ME - read from header */ pBt->minEmbedFrac = 32; /* FIX ME - read from header */ | > | 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 | if( rc!=SQLITE_OK ){ if( pBt->pPager ) sqlite3pager_close(pBt->pPager); sqliteFree(pBt); *ppBtree = 0; return rc; } sqlite3pager_set_destructor(pBt->pPager, pageDestructor); sqlite3pager_set_reiniter(pBt->pPager, pageReinit); pBt->pCursor = 0; pBt->pPage1 = 0; pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager); pBt->pageSize = SQLITE_PAGE_SIZE; /* FIX ME - read from header */ pBt->usableSize = pBt->pageSize; pBt->maxEmbedFrac = 64; /* FIX ME - read from header */ pBt->minEmbedFrac = 32; /* FIX ME - read from header */ |
︙ | ︙ |
Changes to src/os.h.
︙ | ︙ | |||
152 153 154 155 156 157 158 | int sqlite3OsClose(OsFile*); int sqlite3OsRead(OsFile*, void*, int amt); int sqlite3OsWrite(OsFile*, const void*, int amt); int sqlite3OsSeek(OsFile*, off_t offset); int sqlite3OsSync(OsFile*); int sqlite3OsTruncate(OsFile*, off_t size); int sqlite3OsFileSize(OsFile*, off_t *pSize); | < < < > | | 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | int sqlite3OsClose(OsFile*); int sqlite3OsRead(OsFile*, void*, int amt); int sqlite3OsWrite(OsFile*, const void*, int amt); int sqlite3OsSeek(OsFile*, off_t offset); int sqlite3OsSync(OsFile*); int sqlite3OsTruncate(OsFile*, off_t size); int sqlite3OsFileSize(OsFile*, off_t *pSize); int sqlite3OsRandomSeed(char*); int sqlite3OsSleep(int ms); int sqlite3OsCurrentTime(double*); void sqlite3OsEnterMutex(void); void sqlite3OsLeaveMutex(void); char *sqlite3OsFullPathname(const char*); int sqlite3OsLock(OsFile*, int); int sqlite3OsUnlock(OsFile*, int); int sqlite3OsCheckReservedLock(OsFile *id); #endif /* _SQLITE_OS_H_ */ |
Changes to src/os_common.h.
︙ | ︙ | |||
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | #define TIMER_END elapse=hwtime()-g_start #define SEEK(X) last_page=(X) #define TRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X) #define TRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y) #define TRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z) #define TRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A) #define TRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B) #else #define TIMER_START #define TIMER_END #define SEEK(X) #define TRACE1(X) #define TRACE2(X,Y) #define TRACE3(X,Y,Z) #define TRACE4(X,Y,Z,A) #define TRACE5(X,Y,Z,A,B) #endif /* ** If we compile with the SQLITE_TEST macro set, then the following block ** of code will give us the ability to simulate a disk I/O error. This ** is used for testing the I/O recovery logic. | > > | 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | #define TIMER_END elapse=hwtime()-g_start #define SEEK(X) last_page=(X) #define TRACE1(X) if( sqlite3_os_trace ) sqlite3DebugPrintf(X) #define TRACE2(X,Y) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y) #define TRACE3(X,Y,Z) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z) #define TRACE4(X,Y,Z,A) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A) #define TRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B) #define TRACE6(X,Y,Z,A,B,C) if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C) #else #define TIMER_START #define TIMER_END #define SEEK(X) #define TRACE1(X) #define TRACE2(X,Y) #define TRACE3(X,Y,Z) #define TRACE4(X,Y,Z,A) #define TRACE5(X,Y,Z,A,B) #define TRACE6(X,Y,Z,A,B,C) #endif /* ** If we compile with the SQLITE_TEST macro set, then the following block ** of code will give us the ability to simulate a disk I/O error. This ** is used for testing the I/O recovery logic. |
︙ | ︙ |
Changes to src/os_unix.c.
︙ | ︙ | |||
338 339 340 341 342 343 344 | int sqlite3OsOpenReadWrite( const char *zFilename, OsFile *id, int *pReadonly ){ int rc; id->dirfd = -1; | | | | | | | | | 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 | int sqlite3OsOpenReadWrite( const char *zFilename, OsFile *id, int *pReadonly ){ int rc; id->dirfd = -1; id->h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644); if( id->h<0 ){ id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY); if( id->h<0 ){ return SQLITE_CANTOPEN; } *pReadonly = 1; }else{ *pReadonly = 0; } sqlite3OsEnterMutex(); rc = findLockInfo(id->h, &id->pLock, &id->pOpen); sqlite3OsLeaveMutex(); if( rc ){ close(id->h); return SQLITE_NOMEM; } id->locktype = 0; TRACE3("OPEN %-3d %s\n", id->h, zFilename); OpenCounter(+1); return SQLITE_OK; } /* ** Attempt to open a new file for exclusive access by this process. |
︙ | ︙ | |||
382 383 384 385 386 387 388 | */ int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){ int rc; if( access(zFilename, 0)==0 ){ return SQLITE_CANTOPEN; } id->dirfd = -1; | | | | | | | | | | | | 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | */ int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){ int rc; if( access(zFilename, 0)==0 ){ return SQLITE_CANTOPEN; } id->dirfd = -1; id->h = open(zFilename, O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600); if( id->h<0 ){ return SQLITE_CANTOPEN; } sqlite3OsEnterMutex(); rc = findLockInfo(id->h, &id->pLock, &id->pOpen); sqlite3OsLeaveMutex(); if( rc ){ close(id->h); unlink(zFilename); return SQLITE_NOMEM; } id->locktype = 0; if( delFlag ){ unlink(zFilename); } TRACE3("OPEN-EX %-3d %s\n", id->h, zFilename); OpenCounter(+1); return SQLITE_OK; } /* ** Attempt to open a new file for read-only access. ** ** On success, write the file handle into *id and return SQLITE_OK. ** ** On failure, return SQLITE_CANTOPEN. */ int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){ int rc; id->dirfd = -1; id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY); if( id->h<0 ){ return SQLITE_CANTOPEN; } sqlite3OsEnterMutex(); rc = findLockInfo(id->h, &id->pLock, &id->pOpen); sqlite3OsLeaveMutex(); if( rc ){ close(id->h); return SQLITE_NOMEM; } id->locktype = 0; TRACE3("OPEN-RO %-3d %s\n", id->h, zFilename); OpenCounter(+1); return SQLITE_OK; } /* ** Attempt to open a file descriptor for the directory that contains a ** file. This file descriptor can be used to fsync() the directory |
︙ | ︙ | |||
451 452 453 454 455 456 457 | ** On failure, the function returns SQLITE_CANTOPEN and leaves ** *id unchanged. */ int sqlite3OsOpenDirectory( const char *zDirname, OsFile *id ){ | | | 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 | ** On failure, the function returns SQLITE_CANTOPEN and leaves ** *id unchanged. */ int sqlite3OsOpenDirectory( const char *zDirname, OsFile *id ){ if( id->h<0 ){ /* Do not open the directory if the corresponding file is not already ** open. */ return SQLITE_CANTOPEN; } assert( id->dirfd<0 ); id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644); if( id->dirfd<0 ){ |
︙ | ︙ | |||
506 507 508 509 510 511 512 | return SQLITE_OK; } /* ** Close a file. */ int sqlite3OsClose(OsFile *id){ | | | | | | | | | | | | | | | | | | 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | return SQLITE_OK; } /* ** Close a file. */ int sqlite3OsClose(OsFile *id){ sqlite3OsUnlock(id, NO_LOCK); if( id->dirfd>=0 ) close(id->dirfd); id->dirfd = -1; sqlite3OsEnterMutex(); if( id->pOpen->nLock ){ /* If there are outstanding locks, do not actually close the file just ** yet because that would clear those locks. Instead, add the file ** descriptor to pOpen->aPending. It will be automatically closed when ** the last lock is cleared. */ int *aNew; struct openCnt *pOpen = id->pOpen; pOpen->nPending++; aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) ); if( aNew==0 ){ /* If a malloc fails, just leak the file descriptor */ }else{ pOpen->aPending = aNew; pOpen->aPending[pOpen->nPending-1] = id->h; } }else{ /* There are no outstanding locks so we can close the file immediately */ close(id->h); } releaseLockInfo(id->pLock); releaseOpenCnt(id->pOpen); sqlite3OsLeaveMutex(); TRACE2("CLOSE %-3d\n", id->h); OpenCounter(-1); return SQLITE_OK; } /* ** Read data from a file into a buffer. Return SQLITE_OK if all ** bytes were read successfully and SQLITE_IOERR if anything goes ** wrong. */ int sqlite3OsRead(OsFile *id, void *pBuf, int amt){ int got; SimulateIOError(SQLITE_IOERR); TIMER_START; got = read(id->h, pBuf, amt); TIMER_END; TRACE4("READ %-3d %7d %d\n", id->h, last_page, elapse); SEEK(0); /* if( got<0 ) got = 0; */ if( got==amt ){ return SQLITE_OK; }else{ return SQLITE_IOERR; } } /* ** Write data from a buffer into a file. Return SQLITE_OK on success ** or some other error code on failure. */ int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){ int wrote = 0; SimulateIOError(SQLITE_IOERR); TIMER_START; while( amt>0 && (wrote = write(id->h, pBuf, amt))>0 ){ amt -= wrote; pBuf = &((char*)pBuf)[wrote]; } TIMER_END; TRACE4("WRITE %-3d %7d %d\n", id->h, last_page, elapse); SEEK(0); if( amt>0 ){ return SQLITE_FULL; } return SQLITE_OK; } /* ** Move the read/write pointer in a file. */ int sqlite3OsSeek(OsFile *id, off_t offset){ SEEK(offset/1024 + 1); lseek(id->h, offset, SEEK_SET); return SQLITE_OK; } /* ** Make sure all writes to a particular file are committed to disk. ** ** Under Unix, also make sure that the directory entry for the file ** has been created by fsync-ing the directory that contains the file. ** If we do not do this and we encounter a power failure, the directory ** entry for the journal might not exist after we reboot. The next ** SQLite to access the file will not know that the journal exists (because ** the directory entry for the journal was never created) and the transaction ** will not roll back - possibly leading to database corruption. */ int sqlite3OsSync(OsFile *id){ SimulateIOError(SQLITE_IOERR); TRACE2("SYNC %-3d\n", id->h); if( fsync(id->h) ){ return SQLITE_IOERR; }else{ if( id->dirfd>=0 ){ TRACE2("DIRSYNC %-3d\n", id->dirfd); fsync(id->dirfd); close(id->dirfd); /* Only need to sync once, so close the directory */ id->dirfd = -1; /* when we are done. */ } return SQLITE_OK; } } /* ** Truncate an open file to a specified size */ int sqlite3OsTruncate(OsFile *id, off_t nByte){ SimulateIOError(SQLITE_IOERR); return ftruncate(id->h, nByte)==0 ? SQLITE_OK : SQLITE_IOERR; } /* ** Determine the current size of a file in bytes */ int sqlite3OsFileSize(OsFile *id, off_t *pSize){ struct stat buf; SimulateIOError(SQLITE_IOERR); if( fstat(id->h, &buf)!=0 ){ return SQLITE_IOERR; } *pSize = buf.st_size; return SQLITE_OK; } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, return ** non-zero. If the file is unlocked or holds only SHARED locks, then ** return zero. */ int sqlite3OsCheckReservedLock(OsFile *id){ int r = 0; sqlite3OsEnterMutex(); /* Needed because id->pLock is shared across threads */ /* Check if a thread in this process holds such a lock */ if( id->pLock->locktype>SHARED_LOCK ){ r = 1; } /* Otherwise see if some other process holds it. */ if( !r ){ struct flock lock; lock.l_whence = SEEK_SET; lock.l_start = RESERVED_BYTE; lock.l_len = 1; lock.l_type = F_WRLCK; fcntl(id->h, F_GETLK, &lock); if( lock.l_type!=F_UNLCK ){ r = 1; } } sqlite3OsLeaveMutex(); TRACE3("TEST WR-LOCK %d %d\n", id->h, r); return r; } /* ** Lock the file with the lock specified by parameter locktype - one ** of the following: |
︙ | ︙ | |||
694 695 696 697 698 699 700 | ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** | | < < | | | | 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 | ** ** UNLOCKED -> SHARED ** SHARED -> RESERVED ** SHARED -> (PENDING) -> EXCLUSIVE ** RESERVED -> (PENDING) -> EXCLUSIVE ** PENDING -> EXCLUSIVE ** ** This routine will only increase a lock. Use the sqlite3OsUnlock() ** routine to lower a locking level. */ int sqlite3OsLock(OsFile *id, int locktype){ int rc = SQLITE_OK; struct lockInfo *pLock = id->pLock; struct flock lock; int s; TRACE6("LOCK %d %d was %d(%d,%d)\n", id->h, locktype, id->locktype, pLock->locktype, pLock->cnt); /* If there is already a lock of this type or more restrictive on the ** OsFile, do nothing. Don't use the end_lock: exit path, as ** sqlite3OsEnterMutex() hasn't been called yet. */ if( id->locktype>=locktype ){ return SQLITE_OK; |
︙ | ︙ | |||
767 768 769 770 771 772 773 | assert( pLock->locktype==0 ); /* Temporarily grab a PENDING lock. This prevents new SHARED locks from ** being formed if a PENDING lock is already held. */ lock.l_type = F_RDLCK; lock.l_start = PENDING_BYTE; | | | | | 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 | assert( pLock->locktype==0 ); /* Temporarily grab a PENDING lock. This prevents new SHARED locks from ** being formed if a PENDING lock is already held. */ lock.l_type = F_RDLCK; lock.l_start = PENDING_BYTE; s = fcntl(id->h, F_SETLK, &lock); if( s ){ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; goto end_lock; } /* Now get the read-lock */ lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; s = fcntl(id->h, F_SETLK, &lock); /* Drop the temporary PENDING lock */ lock.l_start = PENDING_BYTE; lock.l_len = 1L; lock.l_type = F_UNLCK; fcntl(id->h, F_SETLK, &lock); if( s ){ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; }else{ id->locktype = SHARED_LOCK; id->pOpen->nLock++; pLock->cnt = 1; } |
︙ | ︙ | |||
811 812 813 814 815 816 817 | case EXCLUSIVE_LOCK: lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; break; default: assert(0); } | | | | > > > | > | < | > > | > > | > | > > | | | < < | < | > | < < < < < | | > > | > > > > > > > > > > > | | | | | | 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 | case EXCLUSIVE_LOCK: lock.l_start = SHARED_FIRST; lock.l_len = SHARED_SIZE; break; default: assert(0); } s = fcntl(id->h, F_SETLK, &lock); if( s ){ rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY; } } if( rc==SQLITE_OK ){ id->locktype = locktype; pLock->locktype = locktype; } end_lock: sqlite3OsLeaveMutex(); TRACE4("LOCK %d %d %s\n", id->h, locktype, rc==SQLITE_OK ? "ok" : "failed"); return rc; } /* ** Lower the locking level on file descriptor id to locktype. locktype ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** It is not possible for this routine to fail. */ int sqlite3OsUnlock(OsFile *id, int locktype){ struct lockInfo *pLock; struct flock lock; TRACE6("UNLOCK %d %d was %d(%d,%d)\n", id->h, locktype, id->locktype, id->pLock->locktype, id->pLock->cnt); assert( locktype<=SHARED_LOCK ); if( id->locktype<=locktype ){ return SQLITE_OK; } sqlite3OsEnterMutex(); pLock = id->pLock; assert( pLock->cnt!=0 ); if( id->locktype>SHARED_LOCK ){ assert( pLock->locktype==id->locktype ); lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = PENDING_BYTE; lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); fcntl(id->h, F_SETLK, &lock); pLock->locktype = SHARED_LOCK; } if( locktype==NO_LOCK ){ struct openCnt *pOpen; /* Decrement the shared lock counter. Release the lock using an ** OS call only when all threads in this same process have released ** the lock. */ pLock->cnt--; if( pLock->cnt==0 ){ lock.l_type = F_UNLCK; lock.l_whence = SEEK_SET; lock.l_start = lock.l_len = 0L; fcntl(id->h, F_SETLK, &lock); pLock->locktype = NO_LOCK; } /* Decrement the count of locks against this same file. When the ** count reaches zero, close any other file descriptors whose close ** was deferred because of outstanding locks. */ pOpen = id->pOpen; pOpen->nLock--; assert( pOpen->nLock>=0 ); if( pOpen->nLock==0 && pOpen->nPending>0 ){ int i; for(i=0; i<pOpen->nPending; i++){ close(pOpen->aPending[i]); } sqliteFree(pOpen->aPending); pOpen->nPending = 0; pOpen->aPending = 0; } } sqlite3OsLeaveMutex(); id->locktype = locktype; return SQLITE_OK; } /* ** Get information to seed the random number generator. The seed ** is written into the buffer zBuf[256]. The calling function must ** supply a sufficiently large buffer. */ |
︙ | ︙ |
Changes to src/os_unix.h.
︙ | ︙ | |||
60 61 62 63 64 65 66 | ** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK, ** PENDING_LOCK or EXCLUSIVE_LOCK. */ typedef struct OsFile OsFile; struct OsFile { struct openCnt *pOpen; /* Info about all open fd's on this inode */ struct lockInfo *pLock; /* Info about locks on this inode */ | | | 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 | ** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK, ** PENDING_LOCK or EXCLUSIVE_LOCK. */ typedef struct OsFile OsFile; struct OsFile { struct openCnt *pOpen; /* Info about all open fd's on this inode */ struct lockInfo *pLock; /* Info about locks on this inode */ int h; /* The file descriptor */ int locktype; /* The type of lock held on this fd */ int dirfd; /* File descriptor for the directory */ }; /* ** Maximum number of characters in a temporary file name */ |
︙ | ︙ |
Changes to src/os_win.c.
︙ | ︙ | |||
504 505 506 507 508 509 510 | } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, return ** non-zero, otherwise zero. */ | | | > > > | > | < | > > | | | | 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 | } /* ** This routine checks if there is a RESERVED lock held on the specified ** file by this or any other process. If such a lock is held, return ** non-zero, otherwise zero. */ int sqlite3OsCheckReservedLock(OsFile *id){ int rc; if( id->locktype>=RESERVED_LOCK ){ rc = 1; TRACE3("TEST WR-LOCK %d %d (local)\n", id->h, rc); }else{ rc = LockFile(id->h, RESERVED_BYTE, 0, 1, 0); if( rc ){ UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0); } rc = !rc; TRACE3("TEST WR-LOCK %d %d (remote)\n", id->h, rc); } return rc; } /* ** Lower the locking level on file descriptor id to locktype. locktype ** must be either NO_LOCK or SHARED_LOCK. ** ** If the locking level of the file descriptor is already at or below ** the requested locking level, this routine is a no-op. ** ** It is not possible for this routine to fail. */ int sqlite3OsUnlock(OsFile *id, int locktype){ int rc, type; assert( locktype<=SHARED_LOCK ); TRACE4("UNLOCK %d to %d was %d(%d)\n", id->h, locktype, id->locktype, id->sharedLockByte); type = id->locktype; if( type>=EXCLUSIVE_LOCK ){ UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0); } if( type>=RESERVED_LOCK ){ UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0); } if( locktype==NO_LOCK && type>=SHARED_LOCK && type<EXCLUSIVE_LOCK ){ unlockReadLock(id); } if( type>=PENDING_LOCK ){ UnlockFile(id->h, PENDING_BYTE, 0, 1, 0); } id->locktype = locktype; return SQLITE_OK; } /* ** Get information to seed the random number generator. The seed ** is written into the buffer zBuf[256]. The calling function must ** supply a sufficiently large buffer. |
︙ | ︙ |
Changes to src/pager.c.
︙ | ︙ | |||
14 15 16 17 18 19 20 | ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** | | | 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ** The pager is used to access a database disk file. It implements ** atomic commit and rollback through the use of a journal file that ** is separate from the database file. The pager also implements file ** locking to prevent two processes from writing the same database ** file simultaneously, or one process from reading the database while ** another is writing. ** ** @(#) $Id: pager.c,v 1.115 2004/06/09 17:37:28 drh Exp $ */ #include "os.h" /* Must be first to enable large file support */ #include "sqliteInt.h" #include "pager.h" #include <assert.h> #include <string.h> |
︙ | ︙ | |||
45 46 47 48 49 50 51 | #endif /* ** The page cache as a whole is always in one of the following ** states: ** | | | > > > > > | | | | | | | > | | | > | 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | #endif /* ** The page cache as a whole is always in one of the following ** states: ** ** PAGER_UNLOCK The page cache is not currently reading or ** writing the database file. There is no ** data held in memory. This is the initial ** state. ** ** PAGER_SHARED The page cache is reading the database. ** Writing is not permitted. There can be ** multiple readers accessing the same database ** file at the same time. ** ** PAGER_RESERVED Writing is permitted to the page cache only. ** The original database file has not been modified. ** Other processes may still be reading the on-disk ** database file. ** ** PAGER_EXCLUSIVE The page cache is writing the database. ** Access is exclusive. No other processes or ** threads can be reading or writing while one ** process is writing. ** ** The page cache comes up in PAGER_UNLOCK. The first time a ** sqlite_page_get() occurs, the state transitions to PAGER_SHARED. ** After all pages have been released using sqlite_page_unref(), ** the state transitions back to PAGER_UNLOCK. The first time ** that sqlite_page_write() is called, the state transitions to ** PAGER_RESERVED. (Note that sqlite_page_write() can only be ** called on an outstanding page which means that the pager must ** be in PAGER_SHARED before it transitions to PAGER_RESERVED.) ** The sqlite_page_rollback() and sqlite_page_commit() functions ** transition the state from PAGER_RESERVED to PAGER_EXCLUSIVE to ** PAGER_SHARED. */ #define PAGER_UNLOCK 0 #define PAGER_SHARED 1 #define PAGER_RESERVED 2 #define PAGER_EXCLUSIVE 3 /* ** Each in-memory image of a page begins with the following header. ** This header is only visible to this pager module. The client ** code that calls pager sees only the data that follows the header. ** |
︙ | ︙ | |||
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 | int stmtSize; /* Size of database (in pages) at stmt_begin() */ off_t stmtJSize; /* Size of journal at stmt_begin() */ int nRec; /* Number of pages written to the journal */ u32 cksumInit; /* Quasi-random value added to every checksum */ int stmtNRec; /* Number of records in stmt subjournal */ int nExtra; /* Add this many bytes to each in-memory page */ void (*xDestructor)(void*,int); /* Call this routine when freeing pages */ int pageSize; /* Number of bytes in a page */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ void *pCodecArg; /* First argument to xCodec() */ u8 journalOpen; /* True if journal file descriptors is valid */ u8 journalStarted; /* True if header of journal is synced */ u8 useJournal; /* Use a rollback journal on this file */ u8 stmtOpen; /* True if the statement subjournal is open */ u8 stmtInUse; /* True we are in a statement subtransaction */ u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ | > | | | 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | int stmtSize; /* Size of database (in pages) at stmt_begin() */ off_t stmtJSize; /* Size of journal at stmt_begin() */ int nRec; /* Number of pages written to the journal */ u32 cksumInit; /* Quasi-random value added to every checksum */ int stmtNRec; /* Number of records in stmt subjournal */ int nExtra; /* Add this many bytes to each in-memory page */ void (*xDestructor)(void*,int); /* Call this routine when freeing pages */ void (*xReiniter)(void*,int); /* Call this routine when reloading pages */ int pageSize; /* Number of bytes in a page */ int nPage; /* Total number of in-memory pages */ int nRef; /* Number of in-memory pages with PgHdr.nRef>0 */ int mxPage; /* Maximum number of pages to hold in cache */ int nHit, nMiss, nOvfl; /* Cache hits, missing, and LRU overflows */ void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */ void *pCodecArg; /* First argument to xCodec() */ u8 journalOpen; /* True if journal file descriptors is valid */ u8 journalStarted; /* True if header of journal is synced */ u8 useJournal; /* Use a rollback journal on this file */ u8 stmtOpen; /* True if the statement subjournal is open */ u8 stmtInUse; /* True we are in a statement subtransaction */ u8 stmtAutoopen; /* Open stmt journal when main journal is opened*/ u8 noSync; /* Do not sync the journal if true */ u8 fullSync; /* Do extra syncs of the journal for robustness */ u8 state; /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */ u8 errMask; /* One of several kinds of errors */ u8 tempFile; /* zFilename is a temporary file */ u8 readOnly; /* True for a read-only database */ u8 needSync; /* True if an fsync() is needed on the journal */ u8 dirtyCache; /* True if cached pages have changed */ u8 alwaysRollback; /* Disable dont_rollback() for all pages */ u8 memDb; /* True to inhibit all file I/O */ u8 *aInJournal; /* One bit for each page in the database file */ u8 *aInStmt; /* One bit for each page in the database */ PgHdr *pFirst, *pLast; /* List of free pages */ PgHdr *pFirstSynced; /* First free page with PgHdr.needSync==0 */ PgHdr *pAll; /* List of all pages */ |
︙ | ︙ | |||
475 476 477 478 479 480 481 | } pPager->pFirst = 0; pPager->pFirstSynced = 0; pPager->pLast = 0; pPager->pAll = 0; memset(pPager->aHash, 0, sizeof(pPager->aHash)); pPager->nPage = 0; | | | | | | | < | > > | | < < < < < < < | < | | 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 | } pPager->pFirst = 0; pPager->pFirstSynced = 0; pPager->pLast = 0; pPager->pAll = 0; memset(pPager->aHash, 0, sizeof(pPager->aHash)); pPager->nPage = 0; if( pPager->state>=PAGER_RESERVED ){ sqlite3pager_rollback(pPager); } sqlite3OsUnlock(&pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; pPager->dbSize = -1; pPager->nRef = 0; assert( pPager->journalOpen==0 ); } /* ** When this routine is called, the pager has the journal file open and ** a RESERVED or EXCLUSIVE lock on the database. This routine releases ** the database lock and acquires a SHARED lock in its place. The journal ** file is deleted and closed. ** ** TODO: Consider keeping the journal file open for temporary databases. ** This might give a performance improvement on windows where opening ** a file is an expensive operation. */ static int pager_unwritelock(Pager *pPager){ PgHdr *pPg; if( pPager->state<PAGER_RESERVED ){ return SQLITE_OK; } sqlite3pager_stmt_commit(pPager); if( pPager->stmtOpen ){ sqlite3OsClose(&pPager->stfd); pPager->stmtOpen = 0; } if( pPager->journalOpen ){ sqlite3OsClose(&pPager->jfd); pPager->journalOpen = 0; sqlite3OsDelete(pPager->zJournal); sqliteFree( pPager->aInJournal ); pPager->aInJournal = 0; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ pPg->inJournal = 0; pPg->dirty = 0; pPg->needSync = 0; } }else{ assert( pPager->dirtyCache==0 || pPager->useJournal==0 ); } sqlite3OsUnlock(&pPager->fd, SHARED_LOCK); pPager->state = PAGER_SHARED; return SQLITE_OK; } /* ** Compute and return a checksum for the page of data. ** ** This is not a real checksum. It is really just the sum of the ** random initial value and the page number. We considered do a checksum |
︙ | ︙ | |||
584 585 586 587 588 589 590 | } } /* Playback the page. Update the in-memory copy of the page ** at the same time, if there is one. */ pPg = pager_lookup(pPager, pgRec.pgno); | | | 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 | } } /* Playback the page. Update the in-memory copy of the page ** at the same time, if there is one. */ pPg = pager_lookup(pPager, pgRec.pgno); TRACE2("PLAYBACK page %d\n", pgRec.pgno); sqlite3OsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE); rc = sqlite3OsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE); if( pPg ){ /* No page should ever be rolled back that is in use, except for page ** 1 which is held in use in order to keep the lock on the database ** active. */ |
︙ | ︙ | |||
716 717 718 719 720 721 722 723 724 725 726 727 728 729 | sqliteFree(zMasterJournal); } if( master_open ){ sqlite3OsClose(&master); } return rc; } /* ** Playback the journal and thus restore the database file to ** the state it was in before we started making changes. ** ** The journal file format is as follows: ** | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 | sqliteFree(zMasterJournal); } if( master_open ){ sqlite3OsClose(&master); } return rc; } /* ** Make every page in the cache agree with what is on disk. In other words, ** reread the disk to reset the state of the cache. ** ** This routine is called after a rollback in which some of the dirty cache ** pages had never been written out to disk. We need to roll back the ** cache content and the easiest way to do that is to reread the old content ** back from the disk. */ static int pager_reload_cache(Pager *pPager){ PgHdr *pPg; int rc = SQLITE_OK; for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){ char zBuf[SQLITE_PAGE_SIZE]; if( !pPg->dirty ) continue; if( (int)pPg->pgno <= pPager->origDbSize ){ sqlite3OsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1)); rc = sqlite3OsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE); TRACE2("REFETCH page %d\n", pPg->pgno); CODEC(pPager, zBuf, pPg->pgno, 2); if( rc ) break; }else{ memset(zBuf, 0, SQLITE_PAGE_SIZE); } if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){ memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE); if( pPager->xReiniter ){ pPager->xReiniter(PGHDR_TO_DATA(pPg), pPager->pageSize); }else{ memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra); } } pPg->needSync = 0; pPg->dirty = 0; } return rc; } /* ** Playback the journal and thus restore the database file to ** the state it was in before we started making changes. ** ** The journal file format is as follows: ** |
︙ | ︙ | |||
883 884 885 886 887 888 889 | } /* Pages that have been written to the journal but never synced ** where not restored by the loop above. We have to restore those ** pages by reading them back from the original database. */ if( rc==SQLITE_OK ){ | < < < < < < < < | < < < < < < < < < < < | 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 | } /* Pages that have been written to the journal but never synced ** where not restored by the loop above. We have to restore those ** pages by reading them back from the original database. */ if( rc==SQLITE_OK ){ pager_reload_cache(pPager); } end_playback: if( zMaster ){ /* If there was a master journal and this routine will return true, ** see if it is possible to delete the master journal. If errors ** occur during this process, ignore them. |
︙ | ︙ | |||
1161 1162 1163 1164 1165 1166 1167 | pPager->nRef = 0; pPager->dbSize = memDb-1; pPager->pageSize = SQLITE_PAGE_SIZE; pPager->stmtSize = 0; pPager->stmtJSize = 0; pPager->nPage = 0; pPager->mxPage = mxPage>5 ? mxPage : 10; | | | 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 | pPager->nRef = 0; pPager->dbSize = memDb-1; pPager->pageSize = SQLITE_PAGE_SIZE; pPager->stmtSize = 0; pPager->stmtJSize = 0; pPager->nPage = 0; pPager->mxPage = mxPage>5 ? mxPage : 10; pPager->state = PAGER_UNLOCK; pPager->errMask = 0; pPager->tempFile = tempFile; pPager->memDb = memDb; pPager->readOnly = readOnly; pPager->needSync = 0; pPager->noSync = pPager->tempFile || !useJournal; pPager->pFirst = 0; |
︙ | ︙ | |||
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 | ** ** The destructor is not called as a result sqlite3pager_close(). ** Destructors are only called by sqlite3pager_unref(). */ void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){ pPager->xDestructor = xDesc; } /* ** Return the total number of pages in the disk file associated with ** pPager. */ int sqlite3pager_pagecount(Pager *pPager){ off_t n; assert( pPager!=0 ); if( pPager->dbSize>=0 ){ return pPager->dbSize; } if( sqlite3OsFileSize(&pPager->fd, &n)!=SQLITE_OK ){ pPager->errMask |= PAGER_ERR_DISK; return 0; } n /= SQLITE_PAGE_SIZE; | > > > > > > > > > > > | | 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 | ** ** The destructor is not called as a result sqlite3pager_close(). ** Destructors are only called by sqlite3pager_unref(). */ void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){ pPager->xDestructor = xDesc; } /* ** Set the reinitializer for this pager. If not NULL, the reinitializer ** is called when the content of a page in cache is restored to its original ** value as a result of a rollback. The callback gives higher-level code ** an opportunity to restore the EXTRA section to agree with the restored ** page data. */ void sqlite3pager_set_reiniter(Pager *pPager, void (*xReinit)(void*,int)){ pPager->xReiniter = xReinit; } /* ** Return the total number of pages in the disk file associated with ** pPager. */ int sqlite3pager_pagecount(Pager *pPager){ off_t n; assert( pPager!=0 ); if( pPager->dbSize>=0 ){ return pPager->dbSize; } if( sqlite3OsFileSize(&pPager->fd, &n)!=SQLITE_OK ){ pPager->errMask |= PAGER_ERR_DISK; return 0; } n /= SQLITE_PAGE_SIZE; if( pPager->state!=PAGER_UNLOCK ){ pPager->dbSize = n; } return n; } /* ** Forward declaration |
︙ | ︙ | |||
1326 1327 1328 1329 1330 1331 1332 | ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. */ int sqlite3pager_close(Pager *pPager){ PgHdr *pPg, *pNext; switch( pPager->state ){ | | > | | | | 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 | ** and their memory is freed. Any attempt to use a page associated ** with this page cache after this function returns will likely ** result in a coredump. */ int sqlite3pager_close(Pager *pPager){ PgHdr *pPg, *pNext; switch( pPager->state ){ case PAGER_RESERVED: case PAGER_EXCLUSIVE: { sqlite3pager_rollback(pPager); if( !pPager->memDb ){ sqlite3OsUnlock(&pPager->fd, NO_LOCK); } assert( pPager->journalOpen==0 ); break; } case PAGER_SHARED: { if( !pPager->memDb ){ sqlite3OsUnlock(&pPager->fd, NO_LOCK); } break; } default: { /* Do nothing */ break; } |
︙ | ︙ | |||
1481 1482 1483 1484 1485 1486 1487 | assert( pPager->nRec*pgSz+hdrSz==jSz ); } #endif if( journal_format>=3 ){ /* Write the nRec value into the journal file header */ off_t szJ; if( pPager->fullSync ){ | | | | 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 | assert( pPager->nRec*pgSz+hdrSz==jSz ); } #endif if( journal_format>=3 ){ /* Write the nRec value into the journal file header */ off_t szJ; if( pPager->fullSync ){ TRACE2("SYNC journal of %d\n", pPager->fd.h); rc = sqlite3OsSync(&pPager->jfd); if( rc!=0 ) return rc; } sqlite3OsSeek(&pPager->jfd, sizeof(aJournalMagic1)); rc = write32bits(&pPager->jfd, pPager->nRec); if( rc ) return rc; /* Write the name of the master journal file if one is specified */ if( zMaster ){ assert( strlen(zMaster)<pPager->nMaster ); rc = sqlite3OsSeek(&pPager->jfd, sizeof(aJournalMagic3) + 3*4); if( rc ) return rc; rc = sqlite3OsWrite(&pPager->jfd, zMaster, strlen(zMaster)+1); if( rc ) return rc; } szJ = JOURNAL_HDR_SZ(pPager, journal_format) + pPager->nRec*JOURNAL_PG_SZ(journal_format); sqlite3OsSeek(&pPager->jfd, szJ); } TRACE2("SYNC journal of %d\n", pPager->fd.h); rc = sqlite3OsSync(&pPager->jfd); if( rc!=0 ) return rc; pPager->journalStarted = 1; } pPager->needSync = 0; /* Erase the needSync flag from every page. |
︙ | ︙ | |||
1550 1551 1552 1553 1554 1555 1556 | if( pList==0 ) return SQLITE_OK; pPager = pList->pPager; /* At this point there may be either a RESERVED or EXCLUSIVE lock on the ** database file. If there is already an EXCLUSIVE lock, the following ** calls to sqlite3OsLock() are no-ops. ** | | < | | | > > > > | < | > | | 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 | if( pList==0 ) return SQLITE_OK; pPager = pList->pPager; /* At this point there may be either a RESERVED or EXCLUSIVE lock on the ** database file. If there is already an EXCLUSIVE lock, the following ** calls to sqlite3OsLock() are no-ops. ** ** Moving the lock from RESERVED to EXCLUSIVE actually involves going ** through an intermediate state PENDING. A PENDING lock prevents new ** readers from attaching to the database but is unsufficient for us to ** write. The idea of a PENDING lock is to prevent new readers from ** coming in while we wait for existing readers to clear. ** ** While the pager is in the RESERVED state, the original database file ** is unchanged and we can rollback without having to playback the ** journal into the original database file. Once we transition to ** EXCLUSIVE, it means the database file has been changed and any rollback ** will require a journal playback. */ do { rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK); }while( rc==SQLITE_BUSY && pPager->pBusyHandler && pPager->pBusyHandler->xFunc && pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++) ); if( rc!=SQLITE_OK ){ return rc; } pPager->state = PAGER_EXCLUSIVE; while( pList ){ assert( pList->dirty ); sqlite3OsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE); CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6); TRACE2("STORE page %d\n", pList->pgno); rc = sqlite3OsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE); CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0); if( rc ) return rc; pList->dirty = 0; pList = pList->pDirty; } return SQLITE_OK; |
︙ | ︙ | |||
1653 1654 1655 1656 1657 1658 1659 | pPager->pBusyHandler && pPager->pBusyHandler->xFunc && pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++) ); if( rc!=SQLITE_OK ){ return rc; } | | | | < | < | | | | | | 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 | pPager->pBusyHandler && pPager->pBusyHandler->xFunc && pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++) ); if( rc!=SQLITE_OK ){ return rc; } pPager->state = PAGER_SHARED; /* If a journal file exists, and there is no RESERVED lock on the ** database file, then it either needs to be played back or deleted. */ if( pPager->useJournal && sqlite3OsFileExists(pPager->zJournal) && !sqlite3OsCheckReservedLock(&pPager->fd) ){ int rc; /* Get an EXCLUSIVE lock on the database file. */ rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK); if( rc!=SQLITE_OK ){ sqlite3OsUnlock(&pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; return rc; } pPager->state = PAGER_EXCLUSIVE; /* Open the journal for reading only. Return SQLITE_BUSY if ** we are unable to open the journal file. ** ** The journal file does not need to be locked itself. The ** journal file is never open unless the main database file holds ** a write lock, so there is never any chance of two or more ** processes opening the journal at the same time. */ rc = sqlite3OsOpenReadOnly(pPager->zJournal, &pPager->jfd); if( rc!=SQLITE_OK ){ sqlite3OsUnlock(&pPager->fd, NO_LOCK); pPager->state = PAGER_UNLOCK; return SQLITE_BUSY; } pPager->journalOpen = 1; pPager->journalStarted = 0; /* Playback and delete the journal. Drop the database write ** lock and reacquire the read lock. */ rc = pager_playback(pPager, 0); if( rc!=SQLITE_OK ){ return rc; } } pPg = 0; }else{ /* Search for page in cache */ pPg = pager_lookup(pPager, pgno); if( pPager->memDb && pPager->state==PAGER_UNLOCK ){ pPager->state = PAGER_SHARED; } } if( pPg==0 ){ /* The requested page is not in the page cache. */ int h; pPager->nMiss++; if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || pPager->memDb ){ |
︙ | ︙ | |||
1824 1825 1826 1827 1828 1829 1830 | if( pPager->dbSize<(int)pgno ){ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE); }else{ int rc; assert( pPager->memDb==0 ); sqlite3OsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE); rc = sqlite3OsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE); | | | 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 | if( pPager->dbSize<(int)pgno ){ memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE); }else{ int rc; assert( pPager->memDb==0 ); sqlite3OsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE); rc = sqlite3OsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE); TRACE2("FETCH page %d\n", pPg->pgno); CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3); if( rc!=SQLITE_OK ){ off_t fileSize; if( sqlite3OsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK || fileSize>=pgno*SQLITE_PAGE_SIZE ){ sqlite3pager_unref(PGHDR_TO_DATA(pPg)); return rc; |
︙ | ︙ | |||
1923 1924 1925 1926 1927 1928 1929 | pager_reset(pPager); } } return SQLITE_OK; } /* | | | | | | | | | 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 | pager_reset(pPager); } } return SQLITE_OK; } /* ** Create a journal file for pPager. There should already be a RESERVED ** or EXCLUSIVE lock on the database file when this routine is called. ** ** Return SQLITE_OK if everything. Return an error code and release the ** write lock if anything goes wrong. */ static int pager_open_journal(Pager *pPager){ int rc; assert( pPager->state>=PAGER_RESERVED ); assert( pPager->journalOpen==0 ); assert( pPager->useJournal ); sqlite3pager_pagecount(pPager); pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 ); if( pPager->aInJournal==0 ){ sqlite3OsUnlock(&pPager->fd, SHARED_LOCK); pPager->state = PAGER_SHARED; return SQLITE_NOMEM; } rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile); if( rc!=SQLITE_OK ){ sqliteFree(pPager->aInJournal); pPager->aInJournal = 0; sqlite3OsUnlock(&pPager->fd, SHARED_LOCK); pPager->state = PAGER_SHARED; return SQLITE_CANTOPEN; } sqlite3OsOpenDirectory(pPager->zDirectory, &pPager->jfd); pPager->journalOpen = 1; pPager->journalStarted = 0; pPager->needSync = 0; pPager->alwaysRollback = 0; |
︙ | ︙ | |||
2035 2036 2037 2038 2039 2040 2041 | ** The second parameter indicates how much space in bytes to reserve for a ** master journal file-name at the start of the journal when it is created. ** ** A journal file is opened if this is not a temporary file. For temporary ** files, the opening of the journal file is deferred until there is an ** actual need to write to the journal. ** | | | | | < < < < < | | | | | 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 | ** The second parameter indicates how much space in bytes to reserve for a ** master journal file-name at the start of the journal when it is created. ** ** A journal file is opened if this is not a temporary file. For temporary ** files, the opening of the journal file is deferred until there is an ** actual need to write to the journal. ** ** If the database is already reserved for writing, this routine is a no-op. */ int sqlite3pager_begin(void *pData, int nMaster){ PgHdr *pPg = DATA_TO_PGHDR(pData); Pager *pPager = pPg->pPager; int rc = SQLITE_OK; assert( pPg->nRef>0 ); assert( nMaster>=0 ); assert( pPager->state!=PAGER_UNLOCK ); if( pPager->state==PAGER_SHARED ){ assert( pPager->aInJournal==0 ); if( pPager->memDb ){ pPager->state = PAGER_EXCLUSIVE; pPager->origDbSize = pPager->dbSize; }else{ int busy = 1; do { rc = sqlite3OsLock(&pPager->fd, RESERVED_LOCK); }while( rc==SQLITE_BUSY && pPager->pBusyHandler && pPager->pBusyHandler->xFunc && pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++) ); if( rc!=SQLITE_OK ){ return rc; } pPager->nMaster = nMaster; pPager->state = PAGER_RESERVED; pPager->dirtyCache = 0; TRACE3("TRANSACTION %d nMaster=%d\n", pPager->fd.h, nMaster); if( pPager->useJournal && !pPager->tempFile ){ rc = pager_open_journal(pPager); } } } return rc; } /* ** Mark a data page as writeable. The page is written into the journal ** if it is not there already. This routine must be called before making ** changes to a page. ** ** The first time this routine is called, the pager creates a new ** journal and acquires a RESERVED lock on the database. If the RESERVED ** lock could not be acquired, this routine returns SQLITE_BUSY. The ** calling routine must check for that return value and be careful not to ** change any page data until this routine returns SQLITE_OK. ** ** If the journal file could not be written because the disk is full, ** then this routine returns SQLITE_FULL and does an immediate rollback. ** All subsequent write attempts also return SQLITE_FULL until there |
︙ | ︙ | |||
2114 2115 2116 2117 2118 2119 2120 | } /* Mark the page as dirty. If the page has already been written ** to the journal then we can return right away. */ pPg->dirty = 1; if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){ | | | | | | | | | | | 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 | } /* Mark the page as dirty. If the page has already been written ** to the journal then we can return right away. */ pPg->dirty = 1; if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){ pPager->dirtyCache = 1; return SQLITE_OK; } /* If we get this far, it means that the page needs to be ** written to the transaction journal or the ckeckpoint journal ** or both. ** ** First check to see that the transaction journal exists and ** create it if it does not. */ assert( pPager->state!=PAGER_UNLOCK ); rc = sqlite3pager_begin(pData, 0); if( rc!=SQLITE_OK ){ return rc; } assert( pPager->state>=PAGER_RESERVED ); if( !pPager->journalOpen && pPager->useJournal ){ rc = pager_open_journal(pPager); if( rc!=SQLITE_OK ) return rc; } assert( pPager->journalOpen || !pPager->useJournal ); pPager->dirtyCache = 1; /* The transaction journal now exists and we have a RESERVED or an ** EXCLUSIVE lock on the main database file. Write the current page to ** the transaction journal if it is not there already. */ if( !pPg->inJournal && (pPager->useJournal || pPager->memDb) ){ if( (int)pPg->pgno <= pPager->origDbSize ){ int szPg; u32 saved; if( pPager->memDb ){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); TRACE2("JOURNAL page %d\n", pPg->pgno); assert( pHist->pOrig==0 ); pHist->pOrig = sqliteMallocRaw( pPager->pageSize ); if( pHist->pOrig ){ memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize); } pPg->inJournal = 1; }else{ if( journal_format>=JOURNAL_FORMAT_3 ){ u32 cksum = pager_cksum(pPager, pPg->pgno, pData); saved = *(u32*)PGHDR_TO_EXTRA(pPg); store32bits(cksum, pPg, SQLITE_PAGE_SIZE); szPg = SQLITE_PAGE_SIZE+8; }else{ szPg = SQLITE_PAGE_SIZE+4; } store32bits(pPg->pgno, pPg, -4); CODEC(pPager, pData, pPg->pgno, 7); rc = sqlite3OsWrite(&pPager->jfd, &((char*)pData)[-4], szPg); TRACE3("JOURNAL page %d needSync=%d\n", pPg->pgno, pPg->needSync); CODEC(pPager, pData, pPg->pgno, 0); if( journal_format>=JOURNAL_FORMAT_3 ){ *(u32*)PGHDR_TO_EXTRA(pPg) = saved; } if( rc!=SQLITE_OK ){ sqlite3pager_rollback(pPager); pPager->errMask |= PAGER_ERR_FULL; |
︙ | ︙ | |||
2189 2190 2191 2192 2193 2194 2195 | if( pPager->stmtInUse ){ pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); page_add_to_stmt_list(pPg); } } }else{ pPg->needSync = !pPager->journalStarted && !pPager->noSync; | | | | | 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 | if( pPager->stmtInUse ){ pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); page_add_to_stmt_list(pPg); } } }else{ pPg->needSync = !pPager->journalStarted && !pPager->noSync; TRACE3("APPEND page %d needSync=%d\n", pPg->pgno, pPg->needSync); } if( pPg->needSync ){ pPager->needSync = 1; } } /* If the statement journal is open and the page is not in it, ** then write the current page to the statement journal. Note that ** the statement journal always uses the simplier format 2 that lacks ** checksums. The header is also omitted from the statement journal. */ if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); if( pPager->memDb ){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); assert( pHist->pStmt==0 ); pHist->pStmt = sqliteMallocRaw( pPager->pageSize ); if( pHist->pStmt ){ memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize); } TRACE2("STMT-JOURNAL page %d\n", pPg->pgno); }else{ store32bits(pPg->pgno, pPg, -4); CODEC(pPager, pData, pPg->pgno, 7); rc = sqlite3OsWrite(&pPager->stfd, ((char*)pData)-4, SQLITE_PAGE_SIZE+4); TRACE2("STMT-JOURNAL page %d\n", pPg->pgno); CODEC(pPager, pData, pPg->pgno, 0); if( rc!=SQLITE_OK ){ sqlite3pager_rollback(pPager); pPager->errMask |= PAGER_ERR_FULL; return rc; } pPager->stmtNRec++; |
︙ | ︙ | |||
2306 2307 2308 2309 2310 2311 2312 | ** When the database file grows, we must make sure that the last page ** gets written at least once so that the disk file will be the correct ** size. If you do not write this page and the size of the file ** on the disk ends up being too small, that can lead to database ** corruption during the next transaction. */ }else{ | | | | | 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 | ** When the database file grows, we must make sure that the last page ** gets written at least once so that the disk file will be the correct ** size. If you do not write this page and the size of the file ** on the disk ends up being too small, that can lead to database ** corruption during the next transaction. */ }else{ TRACE3("DONT_WRITE page %d of %d\n", pgno, pPager->fd.h); pPg->dirty = 0; } } } /* ** A call to this routine tells the pager that if a rollback occurs, ** it is not necessary to restore the data on the given page. This ** means that the pager does not have to record the given page in the ** rollback journal. */ void sqlite3pager_dont_rollback(void *pData){ PgHdr *pPg = DATA_TO_PGHDR(pData); Pager *pPager = pPg->pPager; if( pPager->state!=PAGER_EXCLUSIVE || pPager->journalOpen==0 ) return; if( pPg->alwaysRollback || pPager->alwaysRollback || pPager->memDb ) return; if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){ assert( pPager->aInJournal!=0 ); pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7); pPg->inJournal = 1; if( pPager->stmtInUse ){ pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); page_add_to_stmt_list(pPg); } TRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, pPager->fd.h); } if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){ assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize ); assert( pPager->aInStmt!=0 ); pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7); page_add_to_stmt_list(pPg); } |
︙ | ︙ | |||
2375 2376 2377 2378 2379 2380 2381 | } return rc; } if( pPager->errMask!=0 ){ rc = pager_errcode(pPager); return rc; } | | | | < | > | > | | | | 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 | } return rc; } if( pPager->errMask!=0 ){ rc = pager_errcode(pPager); return rc; } if( pPager->state<PAGER_RESERVED ){ return SQLITE_ERROR; } TRACE2("COMMIT %d\n", pPager->fd.h); if( pPager->memDb ){ pPg = pager_get_all_dirty_pages(pPager); while( pPg ){ clearHistory(PGHDR_TO_HIST(pPg, pPager)); pPg->dirty = 0; pPg->inJournal = 0; pPg->inStmt = 0; pPg->pPrevStmt = pPg->pNextStmt = 0; pPg = pPg->pDirty; } pPager->pStmt = 0; pPager->state = PAGER_SHARED; return SQLITE_OK; } if( pPager->dirtyCache==0 ){ /* Exit early (without doing the time-consuming sqlite3OsSync() calls) ** if there have been no changes to the database file. */ assert( pPager->needSync==0 ); rc = pager_unwritelock(pPager); pPager->dbSize = -1; return rc; } assert( pPager->journalOpen ); #if 0 rc = syncJournal(pPager, 0); if( rc!=SQLITE_OK ){ goto commit_abort; } pPg = pager_get_all_dirty_pages(pPager); if( pPg ){ rc = pager_write_pagelist(pPg); if( rc || (!pPager->noSync && sqlite3OsSync(&pPager->fd)!=SQLITE_OK) ){ goto commit_abort; } } #endif rc = sqlite3pager_sync(pPager, 0); if( rc!=SQLITE_OK ){ goto commit_abort; } rc = pager_unwritelock(pPager); pPager->dbSize = -1; return rc; /* Jump here if anything goes wrong during the commit process. */ commit_abort: rc = sqlite3pager_rollback(pPager); if( rc==SQLITE_OK ){ rc = SQLITE_FULL; } return rc; } /* ** Rollback all changes. The database falls back to PAGER_SHARED mode. ** All in-memory cache pages revert to their original data contents. ** The journal is deleted. ** ** This routine cannot fail unless some other process is not following ** the correct locking protocol (SQLITE_PROTOCOL) or unless some other ** process is writing trash into the journal file (SQLITE_CORRUPT) or ** unless a prior malloc() failed (SQLITE_NOMEM). Appropriate error ** codes are returned for all these occasions. Otherwise, ** SQLITE_OK is returned. */ int sqlite3pager_rollback(Pager *pPager){ int rc; TRACE2("ROLLBACK %d\n", pPager->fd.h); if( pPager->memDb ){ PgHdr *p; for(p=pPager->pAll; p; p=p->pNextAll){ PgHistory *pHist; if( !p->dirty ) continue; pHist = PGHDR_TO_HIST(p, pPager); if( pHist->pOrig ){ |
︙ | ︙ | |||
2469 2470 2471 2472 2473 2474 2475 | p->inStmt = 0; p->pPrevStmt = p->pNextStmt = 0; } pPager->pStmt = 0; pPager->dbSize = pPager->origDbSize; memoryTruncate(pPager); pPager->stmtInUse = 0; | | | | | > > > | > | > | > | 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 | p->inStmt = 0; p->pPrevStmt = p->pNextStmt = 0; } pPager->pStmt = 0; pPager->dbSize = pPager->origDbSize; memoryTruncate(pPager); pPager->stmtInUse = 0; pPager->state = PAGER_SHARED; return SQLITE_OK; } if( !pPager->dirtyCache || !pPager->journalOpen ){ rc = pager_unwritelock(pPager); pPager->dbSize = -1; return rc; } if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){ if( pPager->state>=PAGER_EXCLUSIVE ){ pager_playback(pPager, 1); } return pager_errcode(pPager); } if( pPager->state==PAGER_RESERVED ){ int rc2; rc = pager_reload_cache(pPager); rc2 = pager_unwritelock(pPager); if( rc==SQLITE_OK ){ rc = rc2; } }else{ rc = pager_playback(pPager, 1); } if( rc!=SQLITE_OK ){ rc = SQLITE_CORRUPT; pPager->errMask |= PAGER_ERR_CORRUPT; } pPager->dbSize = -1; return rc; } |
︙ | ︙ | |||
2533 2534 2535 2536 2537 2538 2539 | ** open. A new statement journal is created that can be used to rollback ** changes of a single SQL command within a larger transaction. */ int sqlite3pager_stmt_begin(Pager *pPager){ int rc; char zTemp[SQLITE_TEMPNAME_SIZE]; assert( !pPager->stmtInUse ); | | | 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 | ** open. A new statement journal is created that can be used to rollback ** changes of a single SQL command within a larger transaction. */ int sqlite3pager_stmt_begin(Pager *pPager){ int rc; char zTemp[SQLITE_TEMPNAME_SIZE]; assert( !pPager->stmtInUse ); TRACE2("STMT-BEGIN %d\n", pPager->fd.h); if( pPager->memDb ){ pPager->stmtInUse = 1; pPager->stmtSize = pPager->dbSize; return SQLITE_OK; } if( !pPager->journalOpen ){ pPager->stmtAutoopen = 1; |
︙ | ︙ | |||
2582 2583 2584 2585 2586 2587 2588 | /* ** Commit a statement. */ int sqlite3pager_stmt_commit(Pager *pPager){ if( pPager->stmtInUse ){ PgHdr *pPg, *pNext; | | | 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 | /* ** Commit a statement. */ int sqlite3pager_stmt_commit(Pager *pPager){ if( pPager->stmtInUse ){ PgHdr *pPg, *pNext; TRACE2("STMT-COMMIT %d\n", pPager->fd.h); if( !pPager->memDb ){ sqlite3OsSeek(&pPager->stfd, 0); /* sqlite3OsTruncate(&pPager->stfd, 0); */ sqliteFree( pPager->aInStmt ); pPager->aInStmt = 0; } for(pPg=pPager->pStmt; pPg; pPg=pNext){ |
︙ | ︙ | |||
2614 2615 2616 2617 2618 2619 2620 | /* ** Rollback a statement. */ int sqlite3pager_stmt_rollback(Pager *pPager){ int rc; if( pPager->stmtInUse ){ | | | 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 | /* ** Rollback a statement. */ int sqlite3pager_stmt_rollback(Pager *pPager){ int rc; if( pPager->stmtInUse ){ TRACE2("STMT-ROLLBACK %d\n", pPager->fd.h); if( pPager->memDb ){ PgHdr *pPg; for(pPg=pPager->pStmt; pPg; pPg=pPg->pNextStmt){ PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager); if( pHist->pStmt ){ memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize); sqliteFree(pHist->pStmt); |
︙ | ︙ | |||
2678 2679 2680 2681 2682 2683 2684 | */ int sqlite3pager_sync(Pager *pPager, const char *zMaster){ int rc = SQLITE_OK; /* If this is an in-memory db, or no pages have been written to, this ** function is a no-op. */ | | | 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 | */ int sqlite3pager_sync(Pager *pPager, const char *zMaster){ int rc = SQLITE_OK; /* If this is an in-memory db, or no pages have been written to, this ** function is a no-op. */ if( !pPager->memDb && pPager->dirtyCache ){ PgHdr *pPg; assert( pPager->journalOpen ); /* Sync the journal file */ rc = syncJournal(pPager, zMaster); if( rc!=SQLITE_OK ) goto sync_exit; |
︙ | ︙ |
Changes to src/pager.h.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** This header file defines the interface that the sqlite page cache ** subsystem. The page cache subsystem reads and writes a file a page ** at a time and provides a journal for rollback. ** ** @(#) $Id: pager.h,v 1.33 2004/06/09 17:37:28 drh Exp $ */ /* ** The size of a page. ** ** You can change this value to another (reasonable) value you want. ** It need not be a power of two, though the interface to the disk |
︙ | ︙ | |||
69 70 71 72 73 74 75 76 77 78 79 80 81 82 | ** See source code comments for a detailed description of the following ** routines: */ int sqlite3pager_open(Pager **ppPager, const char *zFilename, int nPage, int nExtra, int useJournal, void *pBusyHandler); void sqlite3pager_set_destructor(Pager*, void(*)(void*,int)); void sqlite3pager_set_cachesize(Pager*, int); int sqlite3pager_close(Pager *pPager); int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage); void *sqlite3pager_lookup(Pager *pPager, Pgno pgno); int sqlite3pager_ref(void*); int sqlite3pager_unref(void*); Pgno sqlite3pager_pagenumber(void*); | > | 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | ** See source code comments for a detailed description of the following ** routines: */ int sqlite3pager_open(Pager **ppPager, const char *zFilename, int nPage, int nExtra, int useJournal, void *pBusyHandler); void sqlite3pager_set_destructor(Pager*, void(*)(void*,int)); void sqlite3pager_set_reiniter(Pager*, void(*)(void*,int)); void sqlite3pager_set_cachesize(Pager*, int); int sqlite3pager_close(Pager *pPager); int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage); void *sqlite3pager_lookup(Pager *pPager, Pgno pgno); int sqlite3pager_ref(void*); int sqlite3pager_unref(void*); Pgno sqlite3pager_pagenumber(void*); |
︙ | ︙ |
Changes to src/test1.c.
︙ | ︙ | |||
9 10 11 12 13 14 15 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the printf() interface to SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** | | | 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ** May you share freely, never taking more than you give. ** ************************************************************************* ** Code for testing the printf() interface to SQLite. This code ** is not included in the SQLite library. It is used for automated ** testing of the SQLite library. ** ** $Id: test1.c,v 1.74 2004/06/09 17:37:28 drh Exp $ */ #include "sqliteInt.h" #include "tcl.h" #include "os.h" #include <stdlib.h> #include <string.h> |
︙ | ︙ | |||
1778 1779 1780 1781 1782 1783 1784 | Tcl_GetString(objv[0]), " filehandle", 0); return TCL_ERROR; } if( getFilePointer(interp, Tcl_GetString(objv[1]), &pFile) ){ return TCL_ERROR; } | | | 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 | Tcl_GetString(objv[0]), " filehandle", 0); return TCL_ERROR; } if( getFilePointer(interp, Tcl_GetString(objv[1]), &pFile) ){ return TCL_ERROR; } rc = sqlite3OsUnlock(pFile, NO_LOCK); if( rc!=SQLITE_OK ){ Tcl_SetResult(interp, (char *)errorName(rc), TCL_STATIC); return TCL_ERROR; } return TCL_OK; } |
︙ | ︙ |
Changes to src/vdbeaux.c.
︙ | ︙ | |||
930 931 932 933 934 935 936 | } } /* The simple case - no more than one database file (not counting the TEMP ** database) has a transaction active. There is no need for the ** master-journal. */ | | | 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 | } } /* The simple case - no more than one database file (not counting the TEMP ** database) has a transaction active. There is no need for the ** master-journal. */ if( nTrans<=100 ){ /**** FIX ME ****/ for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ Btree *pBt = db->aDb[i].pBt; if( pBt ){ rc = sqlite3BtreeSync(pBt, 0); } } |
︙ | ︙ | |||
960 961 962 963 964 965 966 | else{ char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); OsFile master; /* Select a master journal file name */ do { | | < | < | | 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 | else{ char *zMaster = 0; /* File-name for the master journal */ char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); OsFile master; /* Select a master journal file name */ do { u32 random; sqliteFree(zMaster); sqlite3Randomness(sizeof(random), &random); zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random); if( !zMaster ){ return SQLITE_NOMEM; } }while( sqlite3OsFileExists(zMaster) ); /* Open the master journal. */ rc = sqlite3OsOpenExclusive(zMaster, &master, 0); |
︙ | ︙ |
Changes to test/attach2.test.
︙ | ︙ | |||
8 9 10 11 12 13 14 | # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is testing the ATTACH and DETACH commands # and related functionality. # | | < | 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this script is testing the ATTACH and DETACH commands # and related functionality. # # $Id: attach2.test,v 1.14 2004/06/09 17:37:29 drh Exp $ # set testdir [file dirname $argv0] source $testdir/tester.tcl # Ticket #354 # |
︙ | ︙ | |||
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | set rc } {0} db close for {set i 2} {$i<=15} {incr i} { catch {db$i close} } set sqlite_os_trace 0 # Tests attach2-4.* test that read-locks work correctly with attached # databases. do_test attach2-4.1 { sqlite db test.db sqlite db2 test.db execsql {ATTACH 'test2.db' as file2} execsql {ATTACH 'test2.db' as file2} db2 } {} do_test attach2-4.2 { # Handle 'db' read-locks test.db execsql {BEGIN} execsql {SELECT * FROM t1} # Lock status: # db - shared(main) # db2 - } {} do_test attach2-4.3 { # The read lock held by db does not prevent db2 from reading test.db execsql {SELECT * FROM t1} db2 } {} do_test attach2-4.4 { # db is holding a read lock on test.db, so we should not be able # to commit a write to test.db from db2 catchsql { INSERT INTO t1 VALUES(1, 2) } db2 } {1 {database is locked}} do_test attach2-4.5 { # Handle 'db2' reserves file2. execsql {BEGIN} db2 execsql {INSERT INTO file2.t1 VALUES(1, 2)} db2 # Lock status: # db - shared(main) # db2 - reserved(file2) } {} do_test attach2-4.6.1 { # Reads are allowed against a reserved database. catchsql { SELECT * FROM file2.t1; } # Lock status: # db - shared(main), shared(file2) # db2 - reserved(file2) } {0 {}} do_test attach2-4.6.2 { # Writes against a reserved database are not allowed. catchsql { UPDATE file2.t1 SET a=0; } } {1 {database is locked}} do_test attach2-4.7 { # Ensure handle 'db' retains the lock on the main file after # failing to obtain a write-lock on file2. catchsql { INSERT INTO t1 VALUES(1, 2) } db2 | > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > | > > > < < > | | > | | < > > > > > > > > | 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 | set rc } {0} db close for {set i 2} {$i<=15} {incr i} { catch {db$i close} } # A procedure to verify the status of locks on a database. # proc lock_status {testnum db expected_result} { do_test attach2-$testnum [subst { execsql {PRAGMA lock_status} $db }] $expected_result } set sqlite_os_trace 0 # Tests attach2-4.* test that read-locks work correctly with attached # databases. do_test attach2-4.1 { sqlite db test.db sqlite db2 test.db execsql {ATTACH 'test2.db' as file2} execsql {ATTACH 'test2.db' as file2} db2 } {} lock_status 4.1.1 db {main unlocked temp unlocked file2 unlocked} lock_status 4.1.2 db2 {main unlocked temp unlocked file2 unlocked} do_test attach2-4.2 { # Handle 'db' read-locks test.db execsql {BEGIN} execsql {SELECT * FROM t1} # Lock status: # db - shared(main) # db2 - } {} lock_status 4.2.1 db {main shared temp shared file2 unlocked} lock_status 4.2.2 db2 {main unlocked temp unlocked file2 unlocked} do_test attach2-4.3 { # The read lock held by db does not prevent db2 from reading test.db execsql {SELECT * FROM t1} db2 } {} lock_status 4.3.1 db {main shared temp shared file2 unlocked} lock_status 4.3.2 db2 {main unlocked temp unlocked file2 unlocked} do_test attach2-4.4 { # db is holding a read lock on test.db, so we should not be able # to commit a write to test.db from db2 catchsql { INSERT INTO t1 VALUES(1, 2) } db2 } {1 {database is locked}} lock_status 4.4.1 db {main shared temp shared file2 unlocked} lock_status 4.4.2 db2 {main unlocked temp unlocked file2 unlocked} do_test attach2-4.5 { # Handle 'db2' reserves file2. execsql {BEGIN} db2 execsql {INSERT INTO file2.t1 VALUES(1, 2)} db2 # Lock status: # db - shared(main) # db2 - reserved(file2) } {} lock_status 4.5.1 db {main shared temp shared file2 unlocked} lock_status 4.5.2 db2 {main unlocked temp reserved file2 reserved} do_test attach2-4.6.1 { # Reads are allowed against a reserved database. catchsql { SELECT * FROM file2.t1; } # Lock status: # db - shared(main), shared(file2) # db2 - reserved(file2) } {0 {}} lock_status 4.6.1.1 db {main shared temp shared file2 shared} lock_status 4.6.1.2 db2 {main unlocked temp reserved file2 reserved} do_test attach2-4.6.2 { # Writes against a reserved database are not allowed. catchsql { UPDATE file2.t1 SET a=0; } } {1 {database is locked}} lock_status 4.6.2.1 db {main shared temp reserved file2 shared} lock_status 4.6.2.2 db2 {main unlocked temp reserved file2 reserved} do_test attach2-4.7 { # Ensure handle 'db' retains the lock on the main file after # failing to obtain a write-lock on file2. catchsql { INSERT INTO t1 VALUES(1, 2) } db2 } {0 {}} lock_status 4.7.1 db {main shared temp reserved file2 shared} lock_status 4.7.2 db2 {main reserved temp reserved file2 reserved} do_test attach2-4.8 { # We should still be able to read test.db from db2 execsql {SELECT * FROM t1} db2 } {1 2} lock_status 4.8.1 db {main shared temp reserved file2 shared} lock_status 4.8.2 db2 {main reserved temp reserved file2 reserved} do_test attach2-4.9 { # Try to upgrade the handle 'db' lock. catchsql { INSERT INTO t1 VALUES(1, 2) } } {1 {database is locked}} lock_status 4.9.1 db {main shared temp reserved file2 shared} lock_status 4.9.2 db2 {main reserved temp reserved file2 reserved} do_test attach2-4.10 { # Release the locks held by handle 'db2' execsql {COMMIT} db2 } {} lock_status 4.10.1 db {main shared temp reserved file2 shared} lock_status 4.10.2 db2 {main unlocked temp unlocked file2 unlocked} do_test attach2-4.11 { execsql {SELECT * FROM file2.t1} } {1 2} do_test attach2-4.12 { execsql {INSERT INTO t1 VALUES(1, 2)} } {} do_test attach2-4.13 { |
︙ | ︙ |