SQLite

Check-in [dc0763455b]
Login

Many hyperlinks are disabled.
Use anonymous login to enable hyperlinks.

Overview
Comment:Fixes to the file locking. 109 tests are now failing. (CVS 1548)
Downloads: Tarball | ZIP archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA1: dc0763455bbf54c1d8728e16033709caedd6e1c6
User & Date: drh 2004-06-09 17:37:23.000
Context
2004-06-09
19:03
Remove legacy journal formats. (CVS 1549) (check-in: a12bef4a08 user: drh tags: trunk)
17:37
Fixes to the file locking. 109 tests are now failing. (CVS 1548) (check-in: dc0763455b user: drh tags: trunk)
14:17
Add the "lock_status" pragma - only available when SQLITE_DEBUG is defined. Used for testing only. (CVS 1547) (check-in: 0ecbba78fc user: drh tags: trunk)
Changes
Unified Diff Ignore Whitespace Patch
Changes to src/btree.c.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.161 2004/06/07 16:27:46 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.











|







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
/*
** 2004 April 6
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** $Id: btree.c,v 1.162 2004/06/09 17:37:23 drh Exp $
**
** This file implements a external (disk-based) database using BTrees.
** For a detailed discussion of BTrees, refer to
**
**     Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
**     "Sorting And Searching", pages 473-480. Addison-Wesley
**     Publishing Company, Reading, Massachusetts.
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
**
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized */
  u8 idxShift;         /* True if Cell indices have changed */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if intkey flag is set */
  u8 leaf;             /* True if leaf flag is set */
  u8 zeroData;         /* True if table stores keys only */
  u8 leafData;         /* True if tables stores data on leaves only */
  u8 hasData;          /* True if this page stores data */







|







257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
**
** The pParent field points back to the parent page.  This allows us to
** walk up the BTree from any leaf to the root.  Care must be taken to
** unref() the parent page pointer when this page is no longer referenced.
** The pageDestructor() routine handles that chore.
*/
struct MemPage {
  u8 isInit;           /* True if previously initialized. MUST BE FIRST! */
  u8 idxShift;         /* True if Cell indices have changed */
  u8 nOverflow;        /* Number of overflow cell bodies in aCell[] */
  u8 intKey;           /* True if intkey flag is set */
  u8 leaf;             /* True if leaf flag is set */
  u8 zeroData;         /* True if table stores keys only */
  u8 leafData;         /* True if tables stores data on leaves only */
  u8 hasData;          /* True if this page stores data */
957
958
959
960
961
962
963
















964
965
966
967
968
969
970
  if( pPage->pParent ){
    MemPage *pParent = pPage->pParent;
    pPage->pParent = 0;
    releasePage(pParent);
  }
  pPage->isInit = 0;
}

















/*
** Open a new database.
**
** Actually, this routine just sets up the internal data structures
** for accessing the database.  We do not open the database file 
** until the first page is loaded.







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
  if( pPage->pParent ){
    MemPage *pParent = pPage->pParent;
    pPage->pParent = 0;
    releasePage(pParent);
  }
  pPage->isInit = 0;
}

/*
** During a rollback, when the pager reloads information into the cache
** so that the cache is restored to its original state at the start of
** the transaction, for each page restored this routine is called.
**
** This routine needs to reset the extra data section at the end of the
** page to agree with the restored data.
*/
static void pageReinit(void *pData, int pageSize){
  MemPage *pPage = (MemPage*)&((char*)pData)[pageSize];
  if( pPage->isInit ){
    pPage->isInit = 0;
    initPage(pPage, pPage->pParent);
  }
}

/*
** Open a new database.
**
** Actually, this routine just sets up the internal data structures
** for accessing the database.  We do not open the database file 
** until the first page is loaded.
1007
1008
1009
1010
1011
1012
1013

1014
1015
1016
1017
1018
1019
1020
  if( rc!=SQLITE_OK ){
    if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
    sqliteFree(pBt);
    *ppBtree = 0;
    return rc;
  }
  sqlite3pager_set_destructor(pBt->pPager, pageDestructor);

  pBt->pCursor = 0;
  pBt->pPage1 = 0;
  pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
  pBt->pageSize = SQLITE_PAGE_SIZE;  /* FIX ME - read from header */
  pBt->usableSize = pBt->pageSize;
  pBt->maxEmbedFrac = 64;            /* FIX ME - read from header */
  pBt->minEmbedFrac = 32;            /* FIX ME - read from header */







>







1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
  if( rc!=SQLITE_OK ){
    if( pBt->pPager ) sqlite3pager_close(pBt->pPager);
    sqliteFree(pBt);
    *ppBtree = 0;
    return rc;
  }
  sqlite3pager_set_destructor(pBt->pPager, pageDestructor);
  sqlite3pager_set_reiniter(pBt->pPager, pageReinit);
  pBt->pCursor = 0;
  pBt->pPage1 = 0;
  pBt->readOnly = sqlite3pager_isreadonly(pBt->pPager);
  pBt->pageSize = SQLITE_PAGE_SIZE;  /* FIX ME - read from header */
  pBt->usableSize = pBt->pageSize;
  pBt->maxEmbedFrac = 64;            /* FIX ME - read from header */
  pBt->minEmbedFrac = 32;            /* FIX ME - read from header */
Changes to src/os.h.
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
int sqlite3OsClose(OsFile*);
int sqlite3OsRead(OsFile*, void*, int amt);
int sqlite3OsWrite(OsFile*, const void*, int amt);
int sqlite3OsSeek(OsFile*, off_t offset);
int sqlite3OsSync(OsFile*);
int sqlite3OsTruncate(OsFile*, off_t size);
int sqlite3OsFileSize(OsFile*, off_t *pSize);
int sqlite3OsReadLock(OsFile*);
int sqlite3OsWriteLock(OsFile*);
int sqlite3OsUnlock(OsFile*);
int sqlite3OsRandomSeed(char*);
int sqlite3OsSleep(int ms);
int sqlite3OsCurrentTime(double*);
void sqlite3OsEnterMutex(void);
void sqlite3OsLeaveMutex(void);
char *sqlite3OsFullPathname(const char*);
int sqlite3OsLock(OsFile*, int);

int sqlite3OsCheckWriteLock(OsFile *id);

#endif /* _SQLITE_OS_H_ */







<
<
<







>
|


152
153
154
155
156
157
158



159
160
161
162
163
164
165
166
167
168
169
int sqlite3OsClose(OsFile*);
int sqlite3OsRead(OsFile*, void*, int amt);
int sqlite3OsWrite(OsFile*, const void*, int amt);
int sqlite3OsSeek(OsFile*, off_t offset);
int sqlite3OsSync(OsFile*);
int sqlite3OsTruncate(OsFile*, off_t size);
int sqlite3OsFileSize(OsFile*, off_t *pSize);



int sqlite3OsRandomSeed(char*);
int sqlite3OsSleep(int ms);
int sqlite3OsCurrentTime(double*);
void sqlite3OsEnterMutex(void);
void sqlite3OsLeaveMutex(void);
char *sqlite3OsFullPathname(const char*);
int sqlite3OsLock(OsFile*, int);
int sqlite3OsUnlock(OsFile*, int);
int sqlite3OsCheckReservedLock(OsFile *id);

#endif /* _SQLITE_OS_H_ */
Changes to src/os_common.h.
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
#define TIMER_END         elapse=hwtime()-g_start
#define SEEK(X)           last_page=(X)
#define TRACE1(X)         if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
#define TRACE2(X,Y)       if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
#define TRACE3(X,Y,Z)     if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
#define TRACE4(X,Y,Z,A)   if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
#define TRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)

#else
#define TIMER_START
#define TIMER_END
#define SEEK(X)
#define TRACE1(X)
#define TRACE2(X,Y)
#define TRACE3(X,Y,Z)
#define TRACE4(X,Y,Z,A)
#define TRACE5(X,Y,Z,A,B)

#endif


/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.







>









>







39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#define TIMER_END         elapse=hwtime()-g_start
#define SEEK(X)           last_page=(X)
#define TRACE1(X)         if( sqlite3_os_trace ) sqlite3DebugPrintf(X)
#define TRACE2(X,Y)       if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y)
#define TRACE3(X,Y,Z)     if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z)
#define TRACE4(X,Y,Z,A)   if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A)
#define TRACE5(X,Y,Z,A,B) if( sqlite3_os_trace ) sqlite3DebugPrintf(X,Y,Z,A,B)
#define TRACE6(X,Y,Z,A,B,C) if(sqlite3_os_trace) sqlite3DebugPrintf(X,Y,Z,A,B,C)
#else
#define TIMER_START
#define TIMER_END
#define SEEK(X)
#define TRACE1(X)
#define TRACE2(X,Y)
#define TRACE3(X,Y,Z)
#define TRACE4(X,Y,Z,A)
#define TRACE5(X,Y,Z,A,B)
#define TRACE6(X,Y,Z,A,B,C)
#endif


/*
** If we compile with the SQLITE_TEST macro set, then the following block
** of code will give us the ability to simulate a disk I/O error.  This
** is used for testing the I/O recovery logic.
Changes to src/os_unix.c.
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
int sqlite3OsOpenReadWrite(
  const char *zFilename,
  OsFile *id,
  int *pReadonly
){
  int rc;
  id->dirfd = -1;
  id->fd = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
  if( id->fd<0 ){
    id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
    if( id->fd<0 ){
      return SQLITE_CANTOPEN; 
    }
    *pReadonly = 1;
  }else{
    *pReadonly = 0;
  }
  sqlite3OsEnterMutex();
  rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
  sqlite3OsLeaveMutex();
  if( rc ){
    close(id->fd);
    return SQLITE_NOMEM;
  }
  id->locktype = 0;
  TRACE3("OPEN    %-3d %s\n", id->fd, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
}


/*
** Attempt to open a new file for exclusive access by this process.







|
|
|
|







|


|



|







338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
int sqlite3OsOpenReadWrite(
  const char *zFilename,
  OsFile *id,
  int *pReadonly
){
  int rc;
  id->dirfd = -1;
  id->h = open(zFilename, O_RDWR|O_CREAT|O_LARGEFILE|O_BINARY, 0644);
  if( id->h<0 ){
    id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
    if( id->h<0 ){
      return SQLITE_CANTOPEN; 
    }
    *pReadonly = 1;
  }else{
    *pReadonly = 0;
  }
  sqlite3OsEnterMutex();
  rc = findLockInfo(id->h, &id->pLock, &id->pOpen);
  sqlite3OsLeaveMutex();
  if( rc ){
    close(id->h);
    return SQLITE_NOMEM;
  }
  id->locktype = 0;
  TRACE3("OPEN    %-3d %s\n", id->h, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
}


/*
** Attempt to open a new file for exclusive access by this process.
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
*/
int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
  int rc;
  if( access(zFilename, 0)==0 ){
    return SQLITE_CANTOPEN;
  }
  id->dirfd = -1;
  id->fd = open(zFilename,
                O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
  if( id->fd<0 ){
    return SQLITE_CANTOPEN;
  }
  sqlite3OsEnterMutex();
  rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
  sqlite3OsLeaveMutex();
  if( rc ){
    close(id->fd);
    unlink(zFilename);
    return SQLITE_NOMEM;
  }
  id->locktype = 0;
  if( delFlag ){
    unlink(zFilename);
  }
  TRACE3("OPEN-EX %-3d %s\n", id->fd, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
}

/*
** Attempt to open a new file for read-only access.
**
** On success, write the file handle into *id and return SQLITE_OK.
**
** On failure, return SQLITE_CANTOPEN.
*/
int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){
  int rc;
  id->dirfd = -1;
  id->fd = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
  if( id->fd<0 ){
    return SQLITE_CANTOPEN;
  }
  sqlite3OsEnterMutex();
  rc = findLockInfo(id->fd, &id->pLock, &id->pOpen);
  sqlite3OsLeaveMutex();
  if( rc ){
    close(id->fd);
    return SQLITE_NOMEM;
  }
  id->locktype = 0;
  TRACE3("OPEN-RO %-3d %s\n", id->fd, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
}

/*
** Attempt to open a file descriptor for the directory that contains a
** file.  This file descriptor can be used to fsync() the directory







|

|



|


|







|














|
|



|


|



|







382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
*/
int sqlite3OsOpenExclusive(const char *zFilename, OsFile *id, int delFlag){
  int rc;
  if( access(zFilename, 0)==0 ){
    return SQLITE_CANTOPEN;
  }
  id->dirfd = -1;
  id->h = open(zFilename,
                O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW|O_LARGEFILE|O_BINARY, 0600);
  if( id->h<0 ){
    return SQLITE_CANTOPEN;
  }
  sqlite3OsEnterMutex();
  rc = findLockInfo(id->h, &id->pLock, &id->pOpen);
  sqlite3OsLeaveMutex();
  if( rc ){
    close(id->h);
    unlink(zFilename);
    return SQLITE_NOMEM;
  }
  id->locktype = 0;
  if( delFlag ){
    unlink(zFilename);
  }
  TRACE3("OPEN-EX %-3d %s\n", id->h, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
}

/*
** Attempt to open a new file for read-only access.
**
** On success, write the file handle into *id and return SQLITE_OK.
**
** On failure, return SQLITE_CANTOPEN.
*/
int sqlite3OsOpenReadOnly(const char *zFilename, OsFile *id){
  int rc;
  id->dirfd = -1;
  id->h = open(zFilename, O_RDONLY|O_LARGEFILE|O_BINARY);
  if( id->h<0 ){
    return SQLITE_CANTOPEN;
  }
  sqlite3OsEnterMutex();
  rc = findLockInfo(id->h, &id->pLock, &id->pOpen);
  sqlite3OsLeaveMutex();
  if( rc ){
    close(id->h);
    return SQLITE_NOMEM;
  }
  id->locktype = 0;
  TRACE3("OPEN-RO %-3d %s\n", id->h, zFilename);
  OpenCounter(+1);
  return SQLITE_OK;
}

/*
** Attempt to open a file descriptor for the directory that contains a
** file.  This file descriptor can be used to fsync() the directory
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
** On failure, the function returns SQLITE_CANTOPEN and leaves
** *id unchanged.
*/
int sqlite3OsOpenDirectory(
  const char *zDirname,
  OsFile *id
){
  if( id->fd<0 ){
    /* Do not open the directory if the corresponding file is not already
    ** open. */
    return SQLITE_CANTOPEN;
  }
  assert( id->dirfd<0 );
  id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
  if( id->dirfd<0 ){







|







451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
** On failure, the function returns SQLITE_CANTOPEN and leaves
** *id unchanged.
*/
int sqlite3OsOpenDirectory(
  const char *zDirname,
  OsFile *id
){
  if( id->h<0 ){
    /* Do not open the directory if the corresponding file is not already
    ** open. */
    return SQLITE_CANTOPEN;
  }
  assert( id->dirfd<0 );
  id->dirfd = open(zDirname, O_RDONLY|O_BINARY, 0644);
  if( id->dirfd<0 ){
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
  return SQLITE_OK; 
}

/*
** Close a file.
*/
int sqlite3OsClose(OsFile *id){
  sqlite3OsUnlock(id);
  if( id->dirfd>=0 ) close(id->dirfd);
  id->dirfd = -1;
  sqlite3OsEnterMutex();
  if( id->pOpen->nLock ){
    /* If there are outstanding locks, do not actually close the file just
    ** yet because that would clear those locks.  Instead, add the file
    ** descriptor to pOpen->aPending.  It will be automatically closed when
    ** the last lock is cleared.
    */
    int *aNew;
    struct openCnt *pOpen = id->pOpen;
    pOpen->nPending++;
    aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
    if( aNew==0 ){
      /* If a malloc fails, just leak the file descriptor */
    }else{
      pOpen->aPending = aNew;
      pOpen->aPending[pOpen->nPending-1] = id->fd;
    }
  }else{
    /* There are no outstanding locks so we can close the file immediately */
    close(id->fd);
  }
  releaseLockInfo(id->pLock);
  releaseOpenCnt(id->pOpen);
  sqlite3OsLeaveMutex();
  TRACE2("CLOSE   %-3d\n", id->fd);
  OpenCounter(-1);
  return SQLITE_OK;
}

/*
** Read data from a file into a buffer.  Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
  int got;
  SimulateIOError(SQLITE_IOERR);
  TIMER_START;
  got = read(id->fd, pBuf, amt);
  TIMER_END;
  TRACE4("READ    %-3d %7d %d\n", id->fd, last_page, elapse);
  SEEK(0);
  /* if( got<0 ) got = 0; */
  if( got==amt ){
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR;
  }
}

/*
** Write data from a buffer into a file.  Return SQLITE_OK on success
** or some other error code on failure.
*/
int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
  int wrote = 0;
  SimulateIOError(SQLITE_IOERR);
  TIMER_START;
  while( amt>0 && (wrote = write(id->fd, pBuf, amt))>0 ){
    amt -= wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  TIMER_END;
  TRACE4("WRITE   %-3d %7d %d\n", id->fd, last_page, elapse);
  SEEK(0);
  if( amt>0 ){
    return SQLITE_FULL;
  }
  return SQLITE_OK;
}

/*
** Move the read/write pointer in a file.
*/
int sqlite3OsSeek(OsFile *id, off_t offset){
  SEEK(offset/1024 + 1);
  lseek(id->fd, offset, SEEK_SET);
  return SQLITE_OK;
}

/*
** Make sure all writes to a particular file are committed to disk.
**
** Under Unix, also make sure that the directory entry for the file
** has been created by fsync-ing the directory that contains the file.
** If we do not do this and we encounter a power failure, the directory
** entry for the journal might not exist after we reboot.  The next
** SQLite to access the file will not know that the journal exists (because
** the directory entry for the journal was never created) and the transaction
** will not roll back - possibly leading to database corruption.
*/
int sqlite3OsSync(OsFile *id){
  SimulateIOError(SQLITE_IOERR);
  TRACE2("SYNC    %-3d\n", id->fd);
  if( fsync(id->fd) ){
    return SQLITE_IOERR;
  }else{
    if( id->dirfd>=0 ){
      TRACE2("DIRSYNC %-3d\n", id->dirfd);
      fsync(id->dirfd);
      close(id->dirfd);  /* Only need to sync once, so close the directory */
      id->dirfd = -1;    /* when we are done. */
    }
    return SQLITE_OK;
  }
}

/*
** Truncate an open file to a specified size
*/
int sqlite3OsTruncate(OsFile *id, off_t nByte){
  SimulateIOError(SQLITE_IOERR);
  return ftruncate(id->fd, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
}

/*
** Determine the current size of a file in bytes
*/
int sqlite3OsFileSize(OsFile *id, off_t *pSize){
  struct stat buf;
  SimulateIOError(SQLITE_IOERR);
  if( fstat(id->fd, &buf)!=0 ){
    return SQLITE_IOERR;
  }
  *pSize = buf.st_size;
  return SQLITE_OK;
}

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero.  If the file is unlocked or holds only SHARED locks, then
** return zero.
*/
int sqlite3OsCheckWriteLock(OsFile *id){
  int r = 0;

  sqlite3OsEnterMutex(); /* Needed because id->pLock is shared across threads */

  /* Check if a thread in this process holds such a lock */
  if( id->pLock->locktype>SHARED_LOCK ){
    r = 1;
  }

  /* Otherwise see if some other process holds it.
  */
  if( !r ){
    struct flock lock;
    lock.l_whence = SEEK_SET;
    lock.l_start = RESERVED_BYTE;
    lock.l_len = 1;
    lock.l_type = F_WRLCK;
    fcntl(id->fd, F_GETLK, &lock);
    if( lock.l_type!=F_UNLCK ){
      r = 1;
    }
  }
  
  sqlite3OsLeaveMutex();
  TRACE3("TEST WR-LOCK %d %d\n", id->fd, r);

  return r;
}

/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:







|

















|



|




|













|

|

















|




|












|
















|
|

















|








|












|

















|






|







506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
  return SQLITE_OK; 
}

/*
** Close a file.
*/
int sqlite3OsClose(OsFile *id){
  sqlite3OsUnlock(id, NO_LOCK);
  if( id->dirfd>=0 ) close(id->dirfd);
  id->dirfd = -1;
  sqlite3OsEnterMutex();
  if( id->pOpen->nLock ){
    /* If there are outstanding locks, do not actually close the file just
    ** yet because that would clear those locks.  Instead, add the file
    ** descriptor to pOpen->aPending.  It will be automatically closed when
    ** the last lock is cleared.
    */
    int *aNew;
    struct openCnt *pOpen = id->pOpen;
    pOpen->nPending++;
    aNew = sqliteRealloc( pOpen->aPending, pOpen->nPending*sizeof(int) );
    if( aNew==0 ){
      /* If a malloc fails, just leak the file descriptor */
    }else{
      pOpen->aPending = aNew;
      pOpen->aPending[pOpen->nPending-1] = id->h;
    }
  }else{
    /* There are no outstanding locks so we can close the file immediately */
    close(id->h);
  }
  releaseLockInfo(id->pLock);
  releaseOpenCnt(id->pOpen);
  sqlite3OsLeaveMutex();
  TRACE2("CLOSE   %-3d\n", id->h);
  OpenCounter(-1);
  return SQLITE_OK;
}

/*
** Read data from a file into a buffer.  Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
int sqlite3OsRead(OsFile *id, void *pBuf, int amt){
  int got;
  SimulateIOError(SQLITE_IOERR);
  TIMER_START;
  got = read(id->h, pBuf, amt);
  TIMER_END;
  TRACE4("READ    %-3d %7d %d\n", id->h, last_page, elapse);
  SEEK(0);
  /* if( got<0 ) got = 0; */
  if( got==amt ){
    return SQLITE_OK;
  }else{
    return SQLITE_IOERR;
  }
}

/*
** Write data from a buffer into a file.  Return SQLITE_OK on success
** or some other error code on failure.
*/
int sqlite3OsWrite(OsFile *id, const void *pBuf, int amt){
  int wrote = 0;
  SimulateIOError(SQLITE_IOERR);
  TIMER_START;
  while( amt>0 && (wrote = write(id->h, pBuf, amt))>0 ){
    amt -= wrote;
    pBuf = &((char*)pBuf)[wrote];
  }
  TIMER_END;
  TRACE4("WRITE   %-3d %7d %d\n", id->h, last_page, elapse);
  SEEK(0);
  if( amt>0 ){
    return SQLITE_FULL;
  }
  return SQLITE_OK;
}

/*
** Move the read/write pointer in a file.
*/
int sqlite3OsSeek(OsFile *id, off_t offset){
  SEEK(offset/1024 + 1);
  lseek(id->h, offset, SEEK_SET);
  return SQLITE_OK;
}

/*
** Make sure all writes to a particular file are committed to disk.
**
** Under Unix, also make sure that the directory entry for the file
** has been created by fsync-ing the directory that contains the file.
** If we do not do this and we encounter a power failure, the directory
** entry for the journal might not exist after we reboot.  The next
** SQLite to access the file will not know that the journal exists (because
** the directory entry for the journal was never created) and the transaction
** will not roll back - possibly leading to database corruption.
*/
int sqlite3OsSync(OsFile *id){
  SimulateIOError(SQLITE_IOERR);
  TRACE2("SYNC    %-3d\n", id->h);
  if( fsync(id->h) ){
    return SQLITE_IOERR;
  }else{
    if( id->dirfd>=0 ){
      TRACE2("DIRSYNC %-3d\n", id->dirfd);
      fsync(id->dirfd);
      close(id->dirfd);  /* Only need to sync once, so close the directory */
      id->dirfd = -1;    /* when we are done. */
    }
    return SQLITE_OK;
  }
}

/*
** Truncate an open file to a specified size
*/
int sqlite3OsTruncate(OsFile *id, off_t nByte){
  SimulateIOError(SQLITE_IOERR);
  return ftruncate(id->h, nByte)==0 ? SQLITE_OK : SQLITE_IOERR;
}

/*
** Determine the current size of a file in bytes
*/
int sqlite3OsFileSize(OsFile *id, off_t *pSize){
  struct stat buf;
  SimulateIOError(SQLITE_IOERR);
  if( fstat(id->h, &buf)!=0 ){
    return SQLITE_IOERR;
  }
  *pSize = buf.st_size;
  return SQLITE_OK;
}

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero.  If the file is unlocked or holds only SHARED locks, then
** return zero.
*/
int sqlite3OsCheckReservedLock(OsFile *id){
  int r = 0;

  sqlite3OsEnterMutex(); /* Needed because id->pLock is shared across threads */

  /* Check if a thread in this process holds such a lock */
  if( id->pLock->locktype>SHARED_LOCK ){
    r = 1;
  }

  /* Otherwise see if some other process holds it.
  */
  if( !r ){
    struct flock lock;
    lock.l_whence = SEEK_SET;
    lock.l_start = RESERVED_BYTE;
    lock.l_len = 1;
    lock.l_type = F_WRLCK;
    fcntl(id->h, F_GETLK, &lock);
    if( lock.l_type!=F_UNLCK ){
      r = 1;
    }
  }
  
  sqlite3OsLeaveMutex();
  TRACE3("TEST WR-LOCK %d %d\n", id->h, r);

  return r;
}

/*
** Lock the file with the lock specified by parameter locktype - one
** of the following:
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
**
**    UNLOCKED -> SHARED
**    SHARED -> RESERVED
**    SHARED -> (PENDING) -> EXCLUSIVE
**    RESERVED -> (PENDING) -> EXCLUSIVE
**    PENDING -> EXCLUSIVE
**
** This routine will only increase a lock.  The sqlite3OsUnlock() routine
** erases all locks at once and returns us immediately to locking level 0.
** It is not possible to lower the locking level one step at a time.  You
** must go straight to locking level 0.
*/
int sqlite3OsLock(OsFile *id, int locktype){
  int rc = SQLITE_OK;
  struct lockInfo *pLock = id->pLock;
  struct flock lock;
  int s;

  TRACE5("LOCK %d %d was %d(%d)\n",
          id->fd, locktype, id->locktype, pLock->locktype);

  /* If there is already a lock of this type or more restrictive on the
  ** OsFile, do nothing. Don't use the end_lock: exit path, as
  ** sqlite3OsEnterMutex() hasn't been called yet.
  */
  if( id->locktype>=locktype ){
    return SQLITE_OK;







|
<
<
|







|
|







694
695
696
697
698
699
700
701


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
**
**    UNLOCKED -> SHARED
**    SHARED -> RESERVED
**    SHARED -> (PENDING) -> EXCLUSIVE
**    RESERVED -> (PENDING) -> EXCLUSIVE
**    PENDING -> EXCLUSIVE
**
** This routine will only increase a lock.  Use the sqlite3OsUnlock()


** routine to lower a locking level.
*/
int sqlite3OsLock(OsFile *id, int locktype){
  int rc = SQLITE_OK;
  struct lockInfo *pLock = id->pLock;
  struct flock lock;
  int s;

  TRACE6("LOCK %d %d was %d(%d,%d)\n",
          id->h, locktype, id->locktype, pLock->locktype, pLock->cnt);

  /* If there is already a lock of this type or more restrictive on the
  ** OsFile, do nothing. Don't use the end_lock: exit path, as
  ** sqlite3OsEnterMutex() hasn't been called yet.
  */
  if( id->locktype>=locktype ){
    return SQLITE_OK;
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
    assert( pLock->locktype==0 );
  
    /* Temporarily grab a PENDING lock.  This prevents new SHARED locks from
    ** being formed if a PENDING lock is already held.
    */
    lock.l_type = F_RDLCK;
    lock.l_start = PENDING_BYTE;
    s = fcntl(id->fd, F_SETLK, &lock);
    if( s ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
      goto end_lock;
    }

    /* Now get the read-lock */
    lock.l_start = SHARED_FIRST;
    lock.l_len = SHARED_SIZE;
    s = fcntl(id->fd, F_SETLK, &lock);

    /* Drop the temporary PENDING lock */
    lock.l_start = PENDING_BYTE;
    lock.l_len = 1L;
    lock.l_type = F_UNLCK;
    fcntl(id->fd, F_SETLK, &lock);
    if( s ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }else{
      id->locktype = SHARED_LOCK;
      id->pOpen->nLock++;
      pLock->cnt = 1;
    }







|








|





|







765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
    assert( pLock->locktype==0 );
  
    /* Temporarily grab a PENDING lock.  This prevents new SHARED locks from
    ** being formed if a PENDING lock is already held.
    */
    lock.l_type = F_RDLCK;
    lock.l_start = PENDING_BYTE;
    s = fcntl(id->h, F_SETLK, &lock);
    if( s ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
      goto end_lock;
    }

    /* Now get the read-lock */
    lock.l_start = SHARED_FIRST;
    lock.l_len = SHARED_SIZE;
    s = fcntl(id->h, F_SETLK, &lock);

    /* Drop the temporary PENDING lock */
    lock.l_start = PENDING_BYTE;
    lock.l_len = 1L;
    lock.l_type = F_UNLCK;
    fcntl(id->h, F_SETLK, &lock);
    if( s ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }else{
      id->locktype = SHARED_LOCK;
      id->pOpen->nLock++;
      pLock->cnt = 1;
    }
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836



837

838
839
840
841


842


843

844


845
846
847
848
849
850
851
852
853
854
855

856
857
858
859
860
861
862
863


864











865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
      case EXCLUSIVE_LOCK:
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        break;
      default:
        assert(0);
    }
    s = fcntl(id->fd, F_SETLK, &lock);
    if( s ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }
  }
  
  if( rc==SQLITE_OK ){
    id->locktype = locktype;
    pLock->locktype = locktype;
  }

end_lock:
  sqlite3OsLeaveMutex();
  TRACE4("LOCK %d %d %s\n", id->fd, locktype, rc==SQLITE_OK ? "ok" : "failed");
  return rc;
}

/*
** Unlock the given file descriptor.  If the file descriptor was



** not previously locked, then this routine is a no-op.  If this

** library was compiled with large file support (LFS) but LFS is not
** available on the host, then an SQLITE_NOLFS is returned.
*/
int sqlite3OsUnlock(OsFile *id){


  int rc;


  if( !id->locktype ) return SQLITE_OK;

  id->locktype = 0;


  sqlite3OsEnterMutex();
  assert( id->pLock->cnt!=0 );
  if( id->pLock->cnt>1 ){
    id->pLock->cnt--;
    rc = SQLITE_OK;
  }else{
    struct flock lock;
    int s;
    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = lock.l_len = 0L;

    s = fcntl(id->fd, F_SETLK, &lock);
    if( s!=0 ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }else{
      rc = SQLITE_OK;
      id->pLock->cnt = 0;
      id->pLock->locktype = 0;
    }


  }












  if( rc==SQLITE_OK ){
    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    struct openCnt *pOpen = id->pOpen;
    pOpen->nLock--;
    assert( pOpen->nLock>=0 );
    if( pOpen->nLock==0 && pOpen->nPending>0 ){
      int i;
      for(i=0; i<pOpen->nPending; i++){
        close(pOpen->aPending[i]);
      }
      sqliteFree(pOpen->aPending);
      pOpen->nPending = 0;
      pOpen->aPending = 0;
    }
  }
  sqlite3OsLeaveMutex();
  id->locktype = 0;
  return rc;
}

/*
** Get information to seed the random number generator.  The seed
** is written into the buffer zBuf[256].  The calling function must
** supply a sufficiently large buffer.
*/







|












|




|
>
>
>
|
>
|
<

|
>
>
|
>
>
|
>
|
>
>

|
|
|
<
<
|
<


|
>
|
<
<
<
<
<
|
|
>
>
|
>
>
>
>
>
>
>
>
>
>
>
|
|




|













|
|







809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856


857

858
859
860
861
862





863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
      case EXCLUSIVE_LOCK:
        lock.l_start = SHARED_FIRST;
        lock.l_len = SHARED_SIZE;
        break;
      default:
        assert(0);
    }
    s = fcntl(id->h, F_SETLK, &lock);
    if( s ){
      rc = (errno==EINVAL) ? SQLITE_NOLFS : SQLITE_BUSY;
    }
  }
  
  if( rc==SQLITE_OK ){
    id->locktype = locktype;
    pLock->locktype = locktype;
  }

end_lock:
  sqlite3OsLeaveMutex();
  TRACE4("LOCK %d %d %s\n", id->h, locktype, rc==SQLITE_OK ? "ok" : "failed");
  return rc;
}

/*
** Lower the locking level on file descriptor id to locktype.  locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail.

*/
int sqlite3OsUnlock(OsFile *id, int locktype){
  struct lockInfo *pLock;
  struct flock lock;

  TRACE6("UNLOCK %d %d was %d(%d,%d)\n",
          id->h, locktype, id->locktype, id->pLock->locktype, id->pLock->cnt);

  assert( locktype<=SHARED_LOCK );
  if( id->locktype<=locktype ){
    return SQLITE_OK;
  }
  sqlite3OsEnterMutex();
  pLock = id->pLock;
  assert( pLock->cnt!=0 );
  if( id->locktype>SHARED_LOCK ){


    assert( pLock->locktype==id->locktype );

    lock.l_type = F_UNLCK;
    lock.l_whence = SEEK_SET;
    lock.l_start = PENDING_BYTE;
    lock.l_len = 2L;  assert( PENDING_BYTE+1==RESERVED_BYTE );
    fcntl(id->h, F_SETLK, &lock);





    pLock->locktype = SHARED_LOCK;
  }
  if( locktype==NO_LOCK ){
    struct openCnt *pOpen;

    /* Decrement the shared lock counter.  Release the lock using an
    ** OS call only when all threads in this same process have released
    ** the lock.
    */
    pLock->cnt--;
    if( pLock->cnt==0 ){
      lock.l_type = F_UNLCK;
      lock.l_whence = SEEK_SET;
      lock.l_start = lock.l_len = 0L;
      fcntl(id->h, F_SETLK, &lock);
      pLock->locktype = NO_LOCK;
    }

    /* Decrement the count of locks against this same file.  When the
    ** count reaches zero, close any other file descriptors whose close
    ** was deferred because of outstanding locks.
    */
    pOpen = id->pOpen;
    pOpen->nLock--;
    assert( pOpen->nLock>=0 );
    if( pOpen->nLock==0 && pOpen->nPending>0 ){
      int i;
      for(i=0; i<pOpen->nPending; i++){
        close(pOpen->aPending[i]);
      }
      sqliteFree(pOpen->aPending);
      pOpen->nPending = 0;
      pOpen->aPending = 0;
    }
  }
  sqlite3OsLeaveMutex();
  id->locktype = locktype;
  return SQLITE_OK;
}

/*
** Get information to seed the random number generator.  The seed
** is written into the buffer zBuf[256].  The calling function must
** supply a sufficiently large buffer.
*/
Changes to src/os_unix.h.
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK,
** PENDING_LOCK or EXCLUSIVE_LOCK.
*/
typedef struct OsFile OsFile;
struct OsFile {
  struct openCnt *pOpen;    /* Info about all open fd's on this inode */
  struct lockInfo *pLock;   /* Info about locks on this inode */
  int fd;                   /* The file descriptor */
  int locktype;             /* The type of lock held on this fd */
  int dirfd;                /* File descriptor for the directory */
};

/*
** Maximum number of characters in a temporary file name
*/







|







60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
** OsFile.locktype takes one of the values SHARED_LOCK, RESERVED_LOCK,
** PENDING_LOCK or EXCLUSIVE_LOCK.
*/
typedef struct OsFile OsFile;
struct OsFile {
  struct openCnt *pOpen;    /* Info about all open fd's on this inode */
  struct lockInfo *pLock;   /* Info about locks on this inode */
  int h;                    /* The file descriptor */
  int locktype;             /* The type of lock held on this fd */
  int dirfd;                /* File descriptor for the directory */
};

/*
** Maximum number of characters in a temporary file name
*/
Changes to src/os_win.c.
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528



529

530
531
532
533
534


535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
}

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
int sqlite3OsCheckWriteLock(OsFile *id){
  int rc;
  if( id->locktype>=RESERVED_LOCK ){
    rc = 1;
    TRACE3("TEST WR-LOCK %d %d (local)\n", id->h, rc);
  }else{
    rc = LockFile(id->h, RESERVED_BYTE, 0, 1, 0);
    if( rc ){
      UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0);
    }
    rc = !rc;
    TRACE3("TEST WR-LOCK %d %d (remote)\n", id->h, rc);
  }
  return rc;
}

/*
** Unlock the given file descriptor.  If the file descriptor was



** not previously locked, then this routine is a no-op.  If this

** library was compiled with large file support (LFS) but LFS is not
** available on the host, then an SQLITE_NOLFS is returned.
*/
int sqlite3OsUnlock(OsFile *id){
  int rc, type;


  TRACE4("UNLOCK %d was %d(%d)\n", id->h, id->locktype, id->sharedLockByte);
  type = id->locktype;
  if( type>=EXCLUSIVE_LOCK ){
    UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
  }
  if( type>=RESERVED_LOCK ){
    UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0);
  }
  if( type>=SHARED_LOCK && type<EXCLUSIVE_LOCK ){
    unlockReadLock(id);
  }
  if( type>=PENDING_LOCK ){
    UnlockFile(id->h, PENDING_BYTE, 0, 1, 0);
  }
  id->locktype = NO_LOCK;
  return SQLITE_OK;
}

/*
** Get information to seed the random number generator.  The seed
** is written into the buffer zBuf[256].  The calling function must
** supply a sufficiently large buffer.







|
















|
>
>
>
|
>
|
<

|

>
>
|







|





|







504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534

535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
}

/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
int sqlite3OsCheckReservedLock(OsFile *id){
  int rc;
  if( id->locktype>=RESERVED_LOCK ){
    rc = 1;
    TRACE3("TEST WR-LOCK %d %d (local)\n", id->h, rc);
  }else{
    rc = LockFile(id->h, RESERVED_BYTE, 0, 1, 0);
    if( rc ){
      UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0);
    }
    rc = !rc;
    TRACE3("TEST WR-LOCK %d %d (remote)\n", id->h, rc);
  }
  return rc;
}

/*
** Lower the locking level on file descriptor id to locktype.  locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail.

*/
int sqlite3OsUnlock(OsFile *id, int locktype){
  int rc, type;
  assert( locktype<=SHARED_LOCK );
  TRACE4("UNLOCK %d to %d was %d(%d)\n", id->h, locktype,
          id->locktype, id->sharedLockByte);
  type = id->locktype;
  if( type>=EXCLUSIVE_LOCK ){
    UnlockFile(id->h, SHARED_FIRST, 0, SHARED_SIZE, 0);
  }
  if( type>=RESERVED_LOCK ){
    UnlockFile(id->h, RESERVED_BYTE, 0, 1, 0);
  }
  if( locktype==NO_LOCK && type>=SHARED_LOCK && type<EXCLUSIVE_LOCK ){
    unlockReadLock(id);
  }
  if( type>=PENDING_LOCK ){
    UnlockFile(id->h, PENDING_BYTE, 0, 1, 0);
  }
  id->locktype = locktype;
  return SQLITE_OK;
}

/*
** Get information to seed the random number generator.  The seed
** is written into the buffer zBuf[256].  The calling function must
** supply a sufficiently large buffer.
Changes to src/pager.c.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.114 2004/06/09 14:17:21 drh Exp $
*/
#include "os.h"         /* Must be first to enable large file support */
#include "sqliteInt.h"
#include "pager.h"
#include <assert.h>
#include <string.h>








|







14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
** The pager is used to access a database disk file.  It implements
** atomic commit and rollback through the use of a journal file that
** is separate from the database file.  The pager also implements file
** locking to prevent two processes from writing the same database
** file simultaneously, or one process from reading the database while
** another is writing.
**
** @(#) $Id: pager.c,v 1.115 2004/06/09 17:37:28 drh Exp $
*/
#include "os.h"         /* Must be first to enable large file support */
#include "sqliteInt.h"
#include "pager.h"
#include <assert.h>
#include <string.h>

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61





62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

77
78
79
80

81
82
83
84
85
86
87
#endif


/*
** The page cache as a whole is always in one of the following
** states:
**
**   SQLITE_UNLOCK       The page cache is not currently reading or 
**                       writing the database file.  There is no
**                       data held in memory.  This is the initial
**                       state.
**
**   SQLITE_READLOCK     The page cache is reading the database.
**                       Writing is not permitted.  There can be
**                       multiple readers accessing the same database
**                       file at the same time.
**





**   SQLITE_WRITELOCK    The page cache is writing the database.
**                       Access is exclusive.  No other processes or
**                       threads can be reading or writing while one
**                       process is writing.
**
** The page cache comes up in SQLITE_UNLOCK.  The first time a
** sqlite_page_get() occurs, the state transitions to SQLITE_READLOCK.
** After all pages have been released using sqlite_page_unref(),
** the state transitions back to SQLITE_UNLOCK.  The first time
** that sqlite_page_write() is called, the state transitions to
** SQLITE_WRITELOCK.  (Note that sqlite_page_write() can only be
** called on an outstanding page which means that the pager must
** be in SQLITE_READLOCK before it transitions to SQLITE_WRITELOCK.)
** The sqlite_page_rollback() and sqlite_page_commit() functions 
** transition the state from SQLITE_WRITELOCK back to SQLITE_READLOCK.

*/
#define SQLITE_UNLOCK      0
#define SQLITE_READLOCK    1
#define SQLITE_WRITELOCK   2



/*
** Each in-memory image of a page begins with the following header.
** This header is only visible to this pager module.  The client
** code that calls pager sees only the data that follows the header.
**







|




|




>
>
>
>
>
|




|
|

|

|

|

|
>

|
|
|
>







45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#endif


/*
** The page cache as a whole is always in one of the following
** states:
**
**   PAGER_UNLOCK        The page cache is not currently reading or 
**                       writing the database file.  There is no
**                       data held in memory.  This is the initial
**                       state.
**
**   PAGER_SHARED        The page cache is reading the database.
**                       Writing is not permitted.  There can be
**                       multiple readers accessing the same database
**                       file at the same time.
**
**   PAGER_RESERVED      Writing is permitted to the page cache only.
**                       The original database file has not been modified.
**                       Other processes may still be reading the on-disk
**                       database file.
**
**   PAGER_EXCLUSIVE     The page cache is writing the database.
**                       Access is exclusive.  No other processes or
**                       threads can be reading or writing while one
**                       process is writing.
**
** The page cache comes up in PAGER_UNLOCK.  The first time a
** sqlite_page_get() occurs, the state transitions to PAGER_SHARED.
** After all pages have been released using sqlite_page_unref(),
** the state transitions back to PAGER_UNLOCK.  The first time
** that sqlite_page_write() is called, the state transitions to
** PAGER_RESERVED.  (Note that sqlite_page_write() can only be
** called on an outstanding page which means that the pager must
** be in PAGER_SHARED before it transitions to PAGER_RESERVED.)
** The sqlite_page_rollback() and sqlite_page_commit() functions 
** transition the state from PAGER_RESERVED to PAGER_EXCLUSIVE to
** PAGER_SHARED.
*/
#define PAGER_UNLOCK      0
#define PAGER_SHARED      1
#define PAGER_RESERVED    2
#define PAGER_EXCLUSIVE   3


/*
** Each in-memory image of a page begins with the following header.
** This header is only visible to this pager module.  The client
** code that calls pager sees only the data that follows the header.
**
178
179
180
181
182
183
184

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
  int stmtSize;               /* Size of database (in pages) at stmt_begin() */
  off_t stmtJSize;            /* Size of journal at stmt_begin() */
  int nRec;                   /* Number of pages written to the journal */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
  int stmtNRec;               /* Number of records in stmt subjournal */
  int nExtra;                 /* Add this many bytes to each in-memory page */
  void (*xDestructor)(void*,int); /* Call this routine when freeing pages */

  int pageSize;               /* Number of bytes in a page */
  int nPage;                  /* Total number of in-memory pages */
  int nRef;                   /* Number of in-memory pages with PgHdr.nRef>0 */
  int mxPage;                 /* Maximum number of pages to hold in cache */
  int nHit, nMiss, nOvfl;     /* Cache hits, missing, and LRU overflows */
  void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
  void *pCodecArg;            /* First argument to xCodec() */
  u8 journalOpen;             /* True if journal file descriptors is valid */
  u8 journalStarted;          /* True if header of journal is synced */
  u8 useJournal;              /* Use a rollback journal on this file */
  u8 stmtOpen;                /* True if the statement subjournal is open */
  u8 stmtInUse;               /* True we are in a statement subtransaction */
  u8 stmtAutoopen;            /* Open stmt journal when main journal is opened*/
  u8 noSync;                  /* Do not sync the journal if true */
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 state;                   /* SQLITE_UNLOCK, _READLOCK or _WRITELOCK */
  u8 errMask;                 /* One of several kinds of errors */
  u8 tempFile;                /* zFilename is a temporary file */
  u8 readOnly;                /* True for a read-only database */
  u8 needSync;                /* True if an fsync() is needed on the journal */
  u8 dirtyFile;               /* True if database file has changed in any way */
  u8 alwaysRollback;          /* Disable dont_rollback() for all pages */
  u8 memDb;                   /* True to inhibit all file I/O */
  u8 *aInJournal;             /* One bit for each page in the database file */
  u8 *aInStmt;                /* One bit for each page in the database */
  PgHdr *pFirst, *pLast;      /* List of free pages */
  PgHdr *pFirstSynced;        /* First free page with PgHdr.needSync==0 */
  PgHdr *pAll;                /* List of all pages */







>















|




|







185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
  int stmtSize;               /* Size of database (in pages) at stmt_begin() */
  off_t stmtJSize;            /* Size of journal at stmt_begin() */
  int nRec;                   /* Number of pages written to the journal */
  u32 cksumInit;              /* Quasi-random value added to every checksum */
  int stmtNRec;               /* Number of records in stmt subjournal */
  int nExtra;                 /* Add this many bytes to each in-memory page */
  void (*xDestructor)(void*,int); /* Call this routine when freeing pages */
  void (*xReiniter)(void*,int);   /* Call this routine when reloading pages */
  int pageSize;               /* Number of bytes in a page */
  int nPage;                  /* Total number of in-memory pages */
  int nRef;                   /* Number of in-memory pages with PgHdr.nRef>0 */
  int mxPage;                 /* Maximum number of pages to hold in cache */
  int nHit, nMiss, nOvfl;     /* Cache hits, missing, and LRU overflows */
  void (*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
  void *pCodecArg;            /* First argument to xCodec() */
  u8 journalOpen;             /* True if journal file descriptors is valid */
  u8 journalStarted;          /* True if header of journal is synced */
  u8 useJournal;              /* Use a rollback journal on this file */
  u8 stmtOpen;                /* True if the statement subjournal is open */
  u8 stmtInUse;               /* True we are in a statement subtransaction */
  u8 stmtAutoopen;            /* Open stmt journal when main journal is opened*/
  u8 noSync;                  /* Do not sync the journal if true */
  u8 fullSync;                /* Do extra syncs of the journal for robustness */
  u8 state;                   /* PAGER_UNLOCK, _SHARED, _RESERVED, etc. */
  u8 errMask;                 /* One of several kinds of errors */
  u8 tempFile;                /* zFilename is a temporary file */
  u8 readOnly;                /* True for a read-only database */
  u8 needSync;                /* True if an fsync() is needed on the journal */
  u8 dirtyCache;              /* True if cached pages have changed */
  u8 alwaysRollback;          /* Disable dont_rollback() for all pages */
  u8 memDb;                   /* True to inhibit all file I/O */
  u8 *aInJournal;             /* One bit for each page in the database file */
  u8 *aInStmt;                /* One bit for each page in the database */
  PgHdr *pFirst, *pLast;      /* List of free pages */
  PgHdr *pFirstSynced;        /* First free page with PgHdr.needSync==0 */
  PgHdr *pAll;                /* List of all pages */
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505


506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
  }
  pPager->pFirst = 0;
  pPager->pFirstSynced = 0;
  pPager->pLast = 0;
  pPager->pAll = 0;
  memset(pPager->aHash, 0, sizeof(pPager->aHash));
  pPager->nPage = 0;
  if( pPager->state>=SQLITE_WRITELOCK ){
    sqlite3pager_rollback(pPager);
  }
  sqlite3OsUnlock(&pPager->fd);
  pPager->state = SQLITE_UNLOCK;
  pPager->dbSize = -1;
  pPager->nRef = 0;
  assert( pPager->journalOpen==0 );
}

/*
** When this routine is called, the pager has the journal file open and
** a write lock on the database.  This routine releases the database
** write lock and acquires a read lock in its place.  The journal file
** is deleted and closed.
**
** TODO: Consider keeping the journal file open for temporary databases.
** This might give a performance improvement on windows where opening
** a file is an expensive operation.
*/
static int pager_unwritelock(Pager *pPager){
  int rc;
  PgHdr *pPg;
  if( pPager->state<SQLITE_WRITELOCK ) return SQLITE_OK;


  sqlite3pager_stmt_commit(pPager);
  if( pPager->stmtOpen ){
    sqlite3OsClose(&pPager->stfd);
    pPager->stmtOpen = 0;
  }
  if( pPager->journalOpen ){
    sqlite3OsClose(&pPager->jfd);
    pPager->journalOpen = 0;
    sqlite3OsDelete(pPager->zJournal);
    sqliteFree( pPager->aInJournal );
    pPager->aInJournal = 0;
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      pPg->inJournal = 0;
      pPg->dirty = 0;
      pPg->needSync = 0;
    }
  }else{
    assert( pPager->dirtyFile==0 || pPager->useJournal==0 );
  }
  rc = sqlite3OsLock(&pPager->fd, SHARED_LOCK);
  if( rc==SQLITE_OK ){
    pPager->state = SQLITE_READLOCK;
  }else{
    /* This can only happen if a process does a BEGIN, then forks and the
    ** child process does the COMMIT.  Because of the semantics of unix
    ** file locking, the unlock will fail.
    */
    pPager->state = SQLITE_UNLOCK;
  }
  return rc;
}

/*
** Compute and return a checksum for the page of data.
**
** This is not a real checksum.  It is really just the sum of the 
** random initial value and the page number.  We considered do a checksum







|


|
|







|
|
|






<

|
>
>

















|

|
<
<
<
<
<
<
<
|
<
|







483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534







535

536
537
538
539
540
541
542
543
  }
  pPager->pFirst = 0;
  pPager->pFirstSynced = 0;
  pPager->pLast = 0;
  pPager->pAll = 0;
  memset(pPager->aHash, 0, sizeof(pPager->aHash));
  pPager->nPage = 0;
  if( pPager->state>=PAGER_RESERVED ){
    sqlite3pager_rollback(pPager);
  }
  sqlite3OsUnlock(&pPager->fd, NO_LOCK);
  pPager->state = PAGER_UNLOCK;
  pPager->dbSize = -1;
  pPager->nRef = 0;
  assert( pPager->journalOpen==0 );
}

/*
** When this routine is called, the pager has the journal file open and
** a RESERVED or EXCLUSIVE lock on the database.  This routine releases
** the database lock and acquires a SHARED lock in its place.  The journal
** file is deleted and closed.
**
** TODO: Consider keeping the journal file open for temporary databases.
** This might give a performance improvement on windows where opening
** a file is an expensive operation.
*/
static int pager_unwritelock(Pager *pPager){

  PgHdr *pPg;
  if( pPager->state<PAGER_RESERVED ){
    return SQLITE_OK;
  }
  sqlite3pager_stmt_commit(pPager);
  if( pPager->stmtOpen ){
    sqlite3OsClose(&pPager->stfd);
    pPager->stmtOpen = 0;
  }
  if( pPager->journalOpen ){
    sqlite3OsClose(&pPager->jfd);
    pPager->journalOpen = 0;
    sqlite3OsDelete(pPager->zJournal);
    sqliteFree( pPager->aInJournal );
    pPager->aInJournal = 0;
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      pPg->inJournal = 0;
      pPg->dirty = 0;
      pPg->needSync = 0;
    }
  }else{
    assert( pPager->dirtyCache==0 || pPager->useJournal==0 );
  }
  sqlite3OsUnlock(&pPager->fd, SHARED_LOCK);







  pPager->state = PAGER_SHARED;

  return SQLITE_OK;
}

/*
** Compute and return a checksum for the page of data.
**
** This is not a real checksum.  It is really just the sum of the 
** random initial value and the page number.  We considered do a checksum
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    }
  }

  /* Playback the page.  Update the in-memory copy of the page
  ** at the same time, if there is one.
  */
  pPg = pager_lookup(pPager, pgRec.pgno);
  TRACE2("PLAYBACK %d\n", pgRec.pgno);
  sqlite3OsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
  rc = sqlite3OsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
  if( pPg ){
    /* No page should ever be rolled back that is in use, except for page
    ** 1 which is held in use in order to keep the lock on the database
    ** active.
    */







|







585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    }
  }

  /* Playback the page.  Update the in-memory copy of the page
  ** at the same time, if there is one.
  */
  pPg = pager_lookup(pPager, pgRec.pgno);
  TRACE2("PLAYBACK page %d\n", pgRec.pgno);
  sqlite3OsSeek(&pPager->fd, (pgRec.pgno-1)*(off_t)SQLITE_PAGE_SIZE);
  rc = sqlite3OsWrite(&pPager->fd, pgRec.aData, SQLITE_PAGE_SIZE);
  if( pPg ){
    /* No page should ever be rolled back that is in use, except for page
    ** 1 which is held in use in order to keep the lock on the database
    ** active.
    */
716
717
718
719
720
721
722







































723
724
725
726
727
728
729
    sqliteFree(zMasterJournal);
  }  
  if( master_open ){
    sqlite3OsClose(&master);
  }
  return rc;
}








































/*
** Playback the journal and thus restore the database file to
** the state it was in before we started making changes.  
**
** The journal file format is as follows: 
**







>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>







717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    sqliteFree(zMasterJournal);
  }  
  if( master_open ){
    sqlite3OsClose(&master);
  }
  return rc;
}

/*
** Make every page in the cache agree with what is on disk.  In other words,
** reread the disk to reset the state of the cache.
**
** This routine is called after a rollback in which some of the dirty cache
** pages had never been written out to disk.  We need to roll back the
** cache content and the easiest way to do that is to reread the old content
** back from the disk.
*/
static int pager_reload_cache(Pager *pPager){
  PgHdr *pPg;
  int rc = SQLITE_OK;
  for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
    char zBuf[SQLITE_PAGE_SIZE];
    if( !pPg->dirty ) continue;
    if( (int)pPg->pgno <= pPager->origDbSize ){
      sqlite3OsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
      rc = sqlite3OsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
      TRACE2("REFETCH page %d\n", pPg->pgno);
      CODEC(pPager, zBuf, pPg->pgno, 2);
      if( rc ) break;
    }else{
      memset(zBuf, 0, SQLITE_PAGE_SIZE);
    }
    if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
      memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
      if( pPager->xReiniter ){
        pPager->xReiniter(PGHDR_TO_DATA(pPg), pPager->pageSize);
      }else{
        memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
      }
    }
    pPg->needSync = 0;
    pPg->dirty = 0;
  }
  return rc;
}


/*
** Playback the journal and thus restore the database file to
** the state it was in before we started making changes.  
**
** The journal file format is as follows: 
**
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
  }

  /* Pages that have been written to the journal but never synced
  ** where not restored by the loop above.  We have to restore those
  ** pages by reading them back from the original database.
  */
  if( rc==SQLITE_OK ){
    PgHdr *pPg;
    for(pPg=pPager->pAll; pPg; pPg=pPg->pNextAll){
      char zBuf[SQLITE_PAGE_SIZE];
      if( !pPg->dirty ) continue;
      if( (int)pPg->pgno <= pPager->origDbSize ){
        sqlite3OsSeek(&pPager->fd, SQLITE_PAGE_SIZE*(off_t)(pPg->pgno-1));
        rc = sqlite3OsRead(&pPager->fd, zBuf, SQLITE_PAGE_SIZE);
        TRACE2("REFETCH %d\n", pPg->pgno);
        CODEC(pPager, zBuf, pPg->pgno, 2);
        if( rc ) break;
      }else{
        memset(zBuf, 0, SQLITE_PAGE_SIZE);
      }
      if( pPg->nRef==0 || memcmp(zBuf, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE) ){
        memcpy(PGHDR_TO_DATA(pPg), zBuf, SQLITE_PAGE_SIZE);
        memset(PGHDR_TO_EXTRA(pPg), 0, pPager->nExtra);
      }
      pPg->needSync = 0;
      pPg->dirty = 0;
    }
  }

end_playback:
  if( zMaster ){
    /* If there was a master journal and this routine will return true,
    ** see if it is possible to delete the master journal. If errors 
    ** occur during this process, ignore them.







<
<
<
<
<
<
<
<
|
<
<
<
<
<
<
<
<
<
<
<







923
924
925
926
927
928
929








930











931
932
933
934
935
936
937
  }

  /* Pages that have been written to the journal but never synced
  ** where not restored by the loop above.  We have to restore those
  ** pages by reading them back from the original database.
  */
  if( rc==SQLITE_OK ){








    pager_reload_cache(pPager);











  }

end_playback:
  if( zMaster ){
    /* If there was a master journal and this routine will return true,
    ** see if it is possible to delete the master journal. If errors 
    ** occur during this process, ignore them.
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
  pPager->nRef = 0;
  pPager->dbSize = memDb-1;
  pPager->pageSize = SQLITE_PAGE_SIZE;
  pPager->stmtSize = 0;
  pPager->stmtJSize = 0;
  pPager->nPage = 0;
  pPager->mxPage = mxPage>5 ? mxPage : 10;
  pPager->state = SQLITE_UNLOCK;
  pPager->errMask = 0;
  pPager->tempFile = tempFile;
  pPager->memDb = memDb;
  pPager->readOnly = readOnly;
  pPager->needSync = 0;
  pPager->noSync = pPager->tempFile || !useJournal;
  pPager->pFirst = 0;







|







1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
  pPager->nRef = 0;
  pPager->dbSize = memDb-1;
  pPager->pageSize = SQLITE_PAGE_SIZE;
  pPager->stmtSize = 0;
  pPager->stmtJSize = 0;
  pPager->nPage = 0;
  pPager->mxPage = mxPage>5 ? mxPage : 10;
  pPager->state = PAGER_UNLOCK;
  pPager->errMask = 0;
  pPager->tempFile = tempFile;
  pPager->memDb = memDb;
  pPager->readOnly = readOnly;
  pPager->needSync = 0;
  pPager->noSync = pPager->tempFile || !useJournal;
  pPager->pFirst = 0;
1189
1190
1191
1192
1193
1194
1195











1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
**
** The destructor is not called as a result sqlite3pager_close().  
** Destructors are only called by sqlite3pager_unref().
*/
void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){
  pPager->xDestructor = xDesc;
}












/*
** Return the total number of pages in the disk file associated with
** pPager.
*/
int sqlite3pager_pagecount(Pager *pPager){
  off_t n;
  assert( pPager!=0 );
  if( pPager->dbSize>=0 ){
    return pPager->dbSize;
  }
  if( sqlite3OsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
    pPager->errMask |= PAGER_ERR_DISK;
    return 0;
  }
  n /= SQLITE_PAGE_SIZE;
  if( pPager->state!=SQLITE_UNLOCK ){
    pPager->dbSize = n;
  }
  return n;
}

/*
** Forward declaration







>
>
>
>
>
>
>
>
>
>
>
















|







1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
**
** The destructor is not called as a result sqlite3pager_close().  
** Destructors are only called by sqlite3pager_unref().
*/
void sqlite3pager_set_destructor(Pager *pPager, void (*xDesc)(void*,int)){
  pPager->xDestructor = xDesc;
}

/*
** Set the reinitializer for this pager.  If not NULL, the reinitializer
** is called when the content of a page in cache is restored to its original
** value as a result of a rollback.  The callback gives higher-level code
** an opportunity to restore the EXTRA section to agree with the restored
** page data.
*/
void sqlite3pager_set_reiniter(Pager *pPager, void (*xReinit)(void*,int)){
  pPager->xReiniter = xReinit;
}

/*
** Return the total number of pages in the disk file associated with
** pPager.
*/
int sqlite3pager_pagecount(Pager *pPager){
  off_t n;
  assert( pPager!=0 );
  if( pPager->dbSize>=0 ){
    return pPager->dbSize;
  }
  if( sqlite3OsFileSize(&pPager->fd, &n)!=SQLITE_OK ){
    pPager->errMask |= PAGER_ERR_DISK;
    return 0;
  }
  n /= SQLITE_PAGE_SIZE;
  if( pPager->state!=PAGER_UNLOCK ){
    pPager->dbSize = n;
  }
  return n;
}

/*
** Forward declaration
1326
1327
1328
1329
1330
1331
1332
1333

1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
** and their memory is freed.  Any attempt to use a page associated
** with this page cache after this function returns will likely
** result in a coredump.
*/
int sqlite3pager_close(Pager *pPager){
  PgHdr *pPg, *pNext;
  switch( pPager->state ){
    case SQLITE_WRITELOCK: {

      sqlite3pager_rollback(pPager);
      if( !pPager->memDb ){
        sqlite3OsUnlock(&pPager->fd);
      }
      assert( pPager->journalOpen==0 );
      break;
    }
    case SQLITE_READLOCK: {
      if( !pPager->memDb ){
        sqlite3OsUnlock(&pPager->fd);
      }
      break;
    }
    default: {
      /* Do nothing */
      break;
    }







|
>


|




|

|







1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
** and their memory is freed.  Any attempt to use a page associated
** with this page cache after this function returns will likely
** result in a coredump.
*/
int sqlite3pager_close(Pager *pPager){
  PgHdr *pPg, *pNext;
  switch( pPager->state ){
    case PAGER_RESERVED:
    case PAGER_EXCLUSIVE: {
      sqlite3pager_rollback(pPager);
      if( !pPager->memDb ){
        sqlite3OsUnlock(&pPager->fd, NO_LOCK);
      }
      assert( pPager->journalOpen==0 );
      break;
    }
    case PAGER_SHARED: {
      if( !pPager->memDb ){
        sqlite3OsUnlock(&pPager->fd, NO_LOCK);
      }
      break;
    }
    default: {
      /* Do nothing */
      break;
    }
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
        assert( pPager->nRec*pgSz+hdrSz==jSz );
      }
#endif
      if( journal_format>=3 ){
        /* Write the nRec value into the journal file header */
        off_t szJ;
        if( pPager->fullSync ){
          TRACE1("SYNC\n");
          rc = sqlite3OsSync(&pPager->jfd);
          if( rc!=0 ) return rc;
        }
        sqlite3OsSeek(&pPager->jfd, sizeof(aJournalMagic1));
        rc = write32bits(&pPager->jfd, pPager->nRec);
        if( rc ) return rc;

        /* Write the name of the master journal file if one is specified */
        if( zMaster ){
          assert( strlen(zMaster)<pPager->nMaster );
          rc = sqlite3OsSeek(&pPager->jfd, sizeof(aJournalMagic3) + 3*4);
          if( rc ) return rc;
          rc = sqlite3OsWrite(&pPager->jfd, zMaster, strlen(zMaster)+1);
          if( rc ) return rc;
        }

        szJ = JOURNAL_HDR_SZ(pPager, journal_format) +
                 pPager->nRec*JOURNAL_PG_SZ(journal_format);
        sqlite3OsSeek(&pPager->jfd, szJ);
      }
      TRACE1("SYNC\n");
      rc = sqlite3OsSync(&pPager->jfd);
      if( rc!=0 ) return rc;
      pPager->journalStarted = 1;
    }
    pPager->needSync = 0;

    /* Erase the needSync flag from every page.







|




















|







1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
        assert( pPager->nRec*pgSz+hdrSz==jSz );
      }
#endif
      if( journal_format>=3 ){
        /* Write the nRec value into the journal file header */
        off_t szJ;
        if( pPager->fullSync ){
          TRACE2("SYNC journal of %d\n", pPager->fd.h);
          rc = sqlite3OsSync(&pPager->jfd);
          if( rc!=0 ) return rc;
        }
        sqlite3OsSeek(&pPager->jfd, sizeof(aJournalMagic1));
        rc = write32bits(&pPager->jfd, pPager->nRec);
        if( rc ) return rc;

        /* Write the name of the master journal file if one is specified */
        if( zMaster ){
          assert( strlen(zMaster)<pPager->nMaster );
          rc = sqlite3OsSeek(&pPager->jfd, sizeof(aJournalMagic3) + 3*4);
          if( rc ) return rc;
          rc = sqlite3OsWrite(&pPager->jfd, zMaster, strlen(zMaster)+1);
          if( rc ) return rc;
        }

        szJ = JOURNAL_HDR_SZ(pPager, journal_format) +
                 pPager->nRec*JOURNAL_PG_SZ(journal_format);
        sqlite3OsSeek(&pPager->jfd, szJ);
      }
      TRACE2("SYNC journal of %d\n", pPager->fd.h);
      rc = sqlite3OsSync(&pPager->jfd);
      if( rc!=0 ) return rc;
      pPager->journalStarted = 1;
    }
    pPager->needSync = 0;

    /* Erase the needSync flag from every page.
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561

1562



1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576

1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
  if( pList==0 ) return SQLITE_OK;
  pPager = pList->pPager;

  /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
  ** database file. If there is already an EXCLUSIVE lock, the following
  ** calls to sqlite3OsLock() are no-ops.
  **
  ** The upgrade from a RESERVED to PENDING might return SQLITE_BUSY on
  ** windows because the windows locking mechanism acquires a transient
  ** PENDING lock during its attempts to get a SHARED lock.  So if another
  ** process were trying to get a SHARED lock at the same time this process
  ** is upgrading from RESERVED to PENDING, the two could collide.

  **



  ** The upgrade from PENDING to EXCLUSIVE can return SQLITE_BUSY if there
  ** are still active readers that were created before the PENDING lock
  ** was acquired.
  */
  do {
    rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK);
  }while( rc==SQLITE_BUSY && 
      pPager->pBusyHandler && 
      pPager->pBusyHandler->xFunc && 
      pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++)
  );
  if( rc!=SQLITE_OK ){
    return rc;
  }


  while( pList ){
    assert( pList->dirty );
    sqlite3OsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
    CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
    TRACE2("STORE %d\n", pList->pgno);
    rc = sqlite3OsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
    CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
    if( rc ) return rc;
    pList->dirty = 0;
    pList = pList->pDirty;
  }
  return SQLITE_OK;







|
<
|
|
|
>

>
>
>
|
<
|











>





|







1583
1584
1585
1586
1587
1588
1589
1590

1591
1592
1593
1594
1595
1596
1597
1598
1599

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
  if( pList==0 ) return SQLITE_OK;
  pPager = pList->pPager;

  /* At this point there may be either a RESERVED or EXCLUSIVE lock on the
  ** database file. If there is already an EXCLUSIVE lock, the following
  ** calls to sqlite3OsLock() are no-ops.
  **
  ** Moving the lock from RESERVED to EXCLUSIVE actually involves going

  ** through an intermediate state PENDING.   A PENDING lock prevents new
  ** readers from attaching to the database but is unsufficient for us to
  ** write.  The idea of a PENDING lock is to prevent new readers from
  ** coming in while we wait for existing readers to clear.
  **
  ** While the pager is in the RESERVED state, the original database file
  ** is unchanged and we can rollback without having to playback the
  ** journal into the original database file.  Once we transition to
  ** EXCLUSIVE, it means the database file has been changed and any rollback

  ** will require a journal playback.
  */
  do {
    rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK);
  }while( rc==SQLITE_BUSY && 
      pPager->pBusyHandler && 
      pPager->pBusyHandler->xFunc && 
      pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++)
  );
  if( rc!=SQLITE_OK ){
    return rc;
  }
  pPager->state = PAGER_EXCLUSIVE;

  while( pList ){
    assert( pList->dirty );
    sqlite3OsSeek(&pPager->fd, (pList->pgno-1)*(off_t)SQLITE_PAGE_SIZE);
    CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 6);
    TRACE2("STORE page %d\n", pList->pgno);
    rc = sqlite3OsWrite(&pPager->fd, PGHDR_TO_DATA(pList), SQLITE_PAGE_SIZE);
    CODEC(pPager, PGHDR_TO_DATA(pList), pList->pgno, 0);
    if( rc ) return rc;
    pList->dirty = 0;
    pList = pList->pDirty;
  }
  return SQLITE_OK;
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
        pPager->pBusyHandler && 
        pPager->pBusyHandler->xFunc && 
        pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++)
    );
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pPager->state = SQLITE_READLOCK;

    /* If a journal file exists, and there is no RESERVED lock on the
    ** database file, then it either needs to be played back or deleted.
    */
    if( pPager->useJournal && 
        sqlite3OsFileExists(pPager->zJournal) &&
        !sqlite3OsCheckWriteLock(&pPager->fd) 
    ){
       int rc;

       /* Get an EXCLUSIVE lock on the database file. */
       rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK);
       if( rc!=SQLITE_OK ){
         if( sqlite3OsUnlock(&pPager->fd)!=SQLITE_OK ){
           /* This should never happen! */
           rc = SQLITE_INTERNAL;
         }
         return rc;
       }
       pPager->state = SQLITE_WRITELOCK;

       /* Open the journal for reading only.  Return SQLITE_BUSY if
       ** we are unable to open the journal file. 
       **
       ** The journal file does not need to be locked itself.  The
       ** journal file is never open unless the main database file holds
       ** a write lock, so there is never any chance of two or more
       ** processes opening the journal at the same time.
       */
       rc = sqlite3OsOpenReadOnly(pPager->zJournal, &pPager->jfd);
       if( rc!=SQLITE_OK ){
         rc = sqlite3OsUnlock(&pPager->fd);
         assert( rc==SQLITE_OK );
         return SQLITE_BUSY;
       }
       pPager->journalOpen = 1;
       pPager->journalStarted = 0;

       /* Playback and delete the journal.  Drop the database write
       ** lock and reacquire the read lock.
       */
       rc = pager_playback(pPager, 0);
       if( rc!=SQLITE_OK ){
         return rc;
       }
    }
    pPg = 0;
  }else{
    /* Search for page in cache */
    pPg = pager_lookup(pPager, pgno);
    if( pPager->memDb && pPager->state==SQLITE_UNLOCK ){
      pPager->state = SQLITE_READLOCK;
    }
  }
  if( pPg==0 ){
    /* The requested page is not in the page cache. */
    int h;
    pPager->nMiss++;
    if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || pPager->memDb ){







|






|






|
<
|
<


|











|
|

















|
|







1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710

1711

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
        pPager->pBusyHandler && 
        pPager->pBusyHandler->xFunc && 
        pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++)
    );
    if( rc!=SQLITE_OK ){
      return rc;
    }
    pPager->state = PAGER_SHARED;

    /* If a journal file exists, and there is no RESERVED lock on the
    ** database file, then it either needs to be played back or deleted.
    */
    if( pPager->useJournal && 
        sqlite3OsFileExists(pPager->zJournal) &&
        !sqlite3OsCheckReservedLock(&pPager->fd) 
    ){
       int rc;

       /* Get an EXCLUSIVE lock on the database file. */
       rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK);
       if( rc!=SQLITE_OK ){
         sqlite3OsUnlock(&pPager->fd, NO_LOCK);

         pPager->state = PAGER_UNLOCK;

         return rc;
       }
       pPager->state = PAGER_EXCLUSIVE;

       /* Open the journal for reading only.  Return SQLITE_BUSY if
       ** we are unable to open the journal file. 
       **
       ** The journal file does not need to be locked itself.  The
       ** journal file is never open unless the main database file holds
       ** a write lock, so there is never any chance of two or more
       ** processes opening the journal at the same time.
       */
       rc = sqlite3OsOpenReadOnly(pPager->zJournal, &pPager->jfd);
       if( rc!=SQLITE_OK ){
         sqlite3OsUnlock(&pPager->fd, NO_LOCK);
         pPager->state = PAGER_UNLOCK;
         return SQLITE_BUSY;
       }
       pPager->journalOpen = 1;
       pPager->journalStarted = 0;

       /* Playback and delete the journal.  Drop the database write
       ** lock and reacquire the read lock.
       */
       rc = pager_playback(pPager, 0);
       if( rc!=SQLITE_OK ){
         return rc;
       }
    }
    pPg = 0;
  }else{
    /* Search for page in cache */
    pPg = pager_lookup(pPager, pgno);
    if( pPager->memDb && pPager->state==PAGER_UNLOCK ){
      pPager->state = PAGER_SHARED;
    }
  }
  if( pPg==0 ){
    /* The requested page is not in the page cache. */
    int h;
    pPager->nMiss++;
    if( pPager->nPage<pPager->mxPage || pPager->pFirst==0 || pPager->memDb ){
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
    if( pPager->dbSize<(int)pgno ){
      memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
    }else{
      int rc;
      assert( pPager->memDb==0 );
      sqlite3OsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
      rc = sqlite3OsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
      TRACE2("FETCH %d\n", pPg->pgno);
      CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
      if( rc!=SQLITE_OK ){
        off_t fileSize;
        if( sqlite3OsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
               || fileSize>=pgno*SQLITE_PAGE_SIZE ){
          sqlite3pager_unref(PGHDR_TO_DATA(pPg));
          return rc;







|







1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
    if( pPager->dbSize<(int)pgno ){
      memset(PGHDR_TO_DATA(pPg), 0, SQLITE_PAGE_SIZE);
    }else{
      int rc;
      assert( pPager->memDb==0 );
      sqlite3OsSeek(&pPager->fd, (pgno-1)*(off_t)SQLITE_PAGE_SIZE);
      rc = sqlite3OsRead(&pPager->fd, PGHDR_TO_DATA(pPg), SQLITE_PAGE_SIZE);
      TRACE2("FETCH page %d\n", pPg->pgno);
      CODEC(pPager, PGHDR_TO_DATA(pPg), pPg->pgno, 3);
      if( rc!=SQLITE_OK ){
        off_t fileSize;
        if( sqlite3OsFileSize(&pPager->fd,&fileSize)!=SQLITE_OK
               || fileSize>=pgno*SQLITE_PAGE_SIZE ){
          sqlite3pager_unref(PGHDR_TO_DATA(pPg));
          return rc;
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
      pager_reset(pPager);
    }
  }
  return SQLITE_OK;
}

/*
** Create a journal file for pPager.  There should already be a write
** lock on the database file when this routine is called.
**
** Return SQLITE_OK if everything.  Return an error code and release the
** write lock if anything goes wrong.
*/
static int pager_open_journal(Pager *pPager){
  int rc;
  assert( pPager->state==SQLITE_WRITELOCK );
  assert( pPager->journalOpen==0 );
  assert( pPager->useJournal );
  sqlite3pager_pagecount(pPager);
  pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
  if( pPager->aInJournal==0 ){
    sqlite3OsLock(&pPager->fd, SHARED_LOCK);
    pPager->state = SQLITE_READLOCK;
    return SQLITE_NOMEM;
  }
  rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
  if( rc!=SQLITE_OK ){
    sqliteFree(pPager->aInJournal);
    pPager->aInJournal = 0;
    sqlite3OsLock(&pPager->fd, SHARED_LOCK);
    pPager->state = SQLITE_READLOCK;
    return SQLITE_CANTOPEN;
  }
  sqlite3OsOpenDirectory(pPager->zDirectory, &pPager->jfd);
  pPager->journalOpen = 1;
  pPager->journalStarted = 0;
  pPager->needSync = 0;
  pPager->alwaysRollback = 0;







|
|






|





|
|






|
|







1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
      pager_reset(pPager);
    }
  }
  return SQLITE_OK;
}

/*
** Create a journal file for pPager.  There should already be a RESERVED
** or EXCLUSIVE lock on the database file when this routine is called.
**
** Return SQLITE_OK if everything.  Return an error code and release the
** write lock if anything goes wrong.
*/
static int pager_open_journal(Pager *pPager){
  int rc;
  assert( pPager->state>=PAGER_RESERVED );
  assert( pPager->journalOpen==0 );
  assert( pPager->useJournal );
  sqlite3pager_pagecount(pPager);
  pPager->aInJournal = sqliteMalloc( pPager->dbSize/8 + 1 );
  if( pPager->aInJournal==0 ){
    sqlite3OsUnlock(&pPager->fd, SHARED_LOCK);
    pPager->state = PAGER_SHARED;
    return SQLITE_NOMEM;
  }
  rc = sqlite3OsOpenExclusive(pPager->zJournal, &pPager->jfd,pPager->tempFile);
  if( rc!=SQLITE_OK ){
    sqliteFree(pPager->aInJournal);
    pPager->aInJournal = 0;
    sqlite3OsUnlock(&pPager->fd, SHARED_LOCK);
    pPager->state = PAGER_SHARED;
    return SQLITE_CANTOPEN;
  }
  sqlite3OsOpenDirectory(pPager->zDirectory, &pPager->jfd);
  pPager->journalOpen = 1;
  pPager->journalStarted = 0;
  pPager->needSync = 0;
  pPager->alwaysRollback = 0;
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
** The second parameter indicates how much space in bytes to reserve for a
** master journal file-name at the start of the journal when it is created.
**
** A journal file is opened if this is not a temporary file.  For temporary
** files, the opening of the journal file is deferred until there is an
** actual need to write to the journal.
**
** If the database is already write-locked, this routine is a no-op.
*/
int sqlite3pager_begin(void *pData, int nMaster){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;
  assert( pPg->nRef>0 );
  assert( nMaster>=0 );
  assert( pPager->state!=SQLITE_UNLOCK );
  if( pPager->state==SQLITE_READLOCK ){
    assert( pPager->aInJournal==0 );
    if( pPager->memDb ){
      pPager->state = SQLITE_WRITELOCK;
      pPager->origDbSize = pPager->dbSize;
    }else{
      int busy = 1;
      do {
	/* If the library grabs an EXCLUSIVE lock here, as in the commented
        ** out line, then it exhibits the old locking behaviour - a writer
        ** excludes all readers, not just other writers.
        */
        /* rc = sqlite3OsLock(&pPager->fd, EXCLUSIVE_LOCK); */
        rc = sqlite3OsLock(&pPager->fd, RESERVED_LOCK);
      }while( rc==SQLITE_BUSY && 
          pPager->pBusyHandler && 
          pPager->pBusyHandler->xFunc && 
          pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++)
      );
      if( rc!=SQLITE_OK ){
        return rc;
      }
      pPager->nMaster = nMaster;
      pPager->state = SQLITE_WRITELOCK;
      pPager->dirtyFile = 0;
      TRACE1("TRANSACTION\n");
      if( pPager->useJournal && !pPager->tempFile ){
        rc = pager_open_journal(pPager);
      }
    }
  }
  return rc;
}

/*
** Mark a data page as writeable.  The page is written into the journal 
** if it is not there already.  This routine must be called before making
** changes to a page.
**
** The first time this routine is called, the pager creates a new
** journal and acquires a write lock on the database.  If the write
** lock could not be acquired, this routine returns SQLITE_BUSY.  The
** calling routine must check for that return value and be careful not to
** change any page data until this routine returns SQLITE_OK.
**
** If the journal file could not be written because the disk is full,
** then this routine returns SQLITE_FULL and does an immediate rollback.
** All subsequent write attempts also return SQLITE_FULL until there







|







|
|


|




<
<
<
<
<










|
|
|














|







2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092





2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
** The second parameter indicates how much space in bytes to reserve for a
** master journal file-name at the start of the journal when it is created.
**
** A journal file is opened if this is not a temporary file.  For temporary
** files, the opening of the journal file is deferred until there is an
** actual need to write to the journal.
**
** If the database is already reserved for writing, this routine is a no-op.
*/
int sqlite3pager_begin(void *pData, int nMaster){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;
  int rc = SQLITE_OK;
  assert( pPg->nRef>0 );
  assert( nMaster>=0 );
  assert( pPager->state!=PAGER_UNLOCK );
  if( pPager->state==PAGER_SHARED ){
    assert( pPager->aInJournal==0 );
    if( pPager->memDb ){
      pPager->state = PAGER_EXCLUSIVE;
      pPager->origDbSize = pPager->dbSize;
    }else{
      int busy = 1;
      do {





        rc = sqlite3OsLock(&pPager->fd, RESERVED_LOCK);
      }while( rc==SQLITE_BUSY && 
          pPager->pBusyHandler && 
          pPager->pBusyHandler->xFunc && 
          pPager->pBusyHandler->xFunc(pPager->pBusyHandler->pArg, "", busy++)
      );
      if( rc!=SQLITE_OK ){
        return rc;
      }
      pPager->nMaster = nMaster;
      pPager->state = PAGER_RESERVED;
      pPager->dirtyCache = 0;
      TRACE3("TRANSACTION %d nMaster=%d\n", pPager->fd.h, nMaster);
      if( pPager->useJournal && !pPager->tempFile ){
        rc = pager_open_journal(pPager);
      }
    }
  }
  return rc;
}

/*
** Mark a data page as writeable.  The page is written into the journal 
** if it is not there already.  This routine must be called before making
** changes to a page.
**
** The first time this routine is called, the pager creates a new
** journal and acquires a RESERVED lock on the database.  If the RESERVED
** lock could not be acquired, this routine returns SQLITE_BUSY.  The
** calling routine must check for that return value and be careful not to
** change any page data until this routine returns SQLITE_OK.
**
** If the journal file could not be written because the disk is full,
** then this routine returns SQLITE_FULL and does an immediate rollback.
** All subsequent write attempts also return SQLITE_FULL until there
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
  }

  /* Mark the page as dirty.  If the page has already been written
  ** to the journal then we can return right away.
  */
  pPg->dirty = 1;
  if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){
    pPager->dirtyFile = 1;
    return SQLITE_OK;
  }

  /* If we get this far, it means that the page needs to be
  ** written to the transaction journal or the ckeckpoint journal
  ** or both.
  **
  ** First check to see that the transaction journal exists and
  ** create it if it does not.
  */
  assert( pPager->state!=SQLITE_UNLOCK );
  rc = sqlite3pager_begin(pData, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pPager->state==SQLITE_WRITELOCK );
  if( !pPager->journalOpen && pPager->useJournal ){
    rc = pager_open_journal(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  assert( pPager->journalOpen || !pPager->useJournal );
  pPager->dirtyFile = 1;

  /* The transaction journal now exists and we have a write lock on the
  ** main database file.  Write the current page to the transaction 
  ** journal if it is not there already.
  */
  if( !pPg->inJournal && (pPager->useJournal || pPager->memDb) ){
    if( (int)pPg->pgno <= pPager->origDbSize ){
      int szPg;
      u32 saved;
      if( pPager->memDb ){
        PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
        TRACE2("JOURNAL %d\n", pPg->pgno);
        assert( pHist->pOrig==0 );
        pHist->pOrig = sqliteMallocRaw( pPager->pageSize );
        if( pHist->pOrig ){
          memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
        }
        pPg->inJournal = 1;
      }else{
        if( journal_format>=JOURNAL_FORMAT_3 ){
          u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
          saved = *(u32*)PGHDR_TO_EXTRA(pPg);
          store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
          szPg = SQLITE_PAGE_SIZE+8;
        }else{
          szPg = SQLITE_PAGE_SIZE+4;
        }
        store32bits(pPg->pgno, pPg, -4);
        CODEC(pPager, pData, pPg->pgno, 7);
        rc = sqlite3OsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
        TRACE3("JOURNAL %d %d\n", pPg->pgno, pPg->needSync);
        CODEC(pPager, pData, pPg->pgno, 0);
        if( journal_format>=JOURNAL_FORMAT_3 ){
          *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
        }
        if( rc!=SQLITE_OK ){
          sqlite3pager_rollback(pPager);
          pPager->errMask |= PAGER_ERR_FULL;







|










|




|





|

|
|
|







|


















|







2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
  }

  /* Mark the page as dirty.  If the page has already been written
  ** to the journal then we can return right away.
  */
  pPg->dirty = 1;
  if( pPg->inJournal && (pPg->inStmt || pPager->stmtInUse==0) ){
    pPager->dirtyCache = 1;
    return SQLITE_OK;
  }

  /* If we get this far, it means that the page needs to be
  ** written to the transaction journal or the ckeckpoint journal
  ** or both.
  **
  ** First check to see that the transaction journal exists and
  ** create it if it does not.
  */
  assert( pPager->state!=PAGER_UNLOCK );
  rc = sqlite3pager_begin(pData, 0);
  if( rc!=SQLITE_OK ){
    return rc;
  }
  assert( pPager->state>=PAGER_RESERVED );
  if( !pPager->journalOpen && pPager->useJournal ){
    rc = pager_open_journal(pPager);
    if( rc!=SQLITE_OK ) return rc;
  }
  assert( pPager->journalOpen || !pPager->useJournal );
  pPager->dirtyCache = 1;

  /* The transaction journal now exists and we have a RESERVED or an
  ** EXCLUSIVE lock on the main database file.  Write the current page to
  ** the transaction journal if it is not there already.
  */
  if( !pPg->inJournal && (pPager->useJournal || pPager->memDb) ){
    if( (int)pPg->pgno <= pPager->origDbSize ){
      int szPg;
      u32 saved;
      if( pPager->memDb ){
        PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
        TRACE2("JOURNAL page %d\n", pPg->pgno);
        assert( pHist->pOrig==0 );
        pHist->pOrig = sqliteMallocRaw( pPager->pageSize );
        if( pHist->pOrig ){
          memcpy(pHist->pOrig, PGHDR_TO_DATA(pPg), pPager->pageSize);
        }
        pPg->inJournal = 1;
      }else{
        if( journal_format>=JOURNAL_FORMAT_3 ){
          u32 cksum = pager_cksum(pPager, pPg->pgno, pData);
          saved = *(u32*)PGHDR_TO_EXTRA(pPg);
          store32bits(cksum, pPg, SQLITE_PAGE_SIZE);
          szPg = SQLITE_PAGE_SIZE+8;
        }else{
          szPg = SQLITE_PAGE_SIZE+4;
        }
        store32bits(pPg->pgno, pPg, -4);
        CODEC(pPager, pData, pPg->pgno, 7);
        rc = sqlite3OsWrite(&pPager->jfd, &((char*)pData)[-4], szPg);
        TRACE3("JOURNAL page %d needSync=%d\n", pPg->pgno, pPg->needSync);
        CODEC(pPager, pData, pPg->pgno, 0);
        if( journal_format>=JOURNAL_FORMAT_3 ){
          *(u32*)PGHDR_TO_EXTRA(pPg) = saved;
        }
        if( rc!=SQLITE_OK ){
          sqlite3pager_rollback(pPager);
          pPager->errMask |= PAGER_ERR_FULL;
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
        if( pPager->stmtInUse ){
          pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
          page_add_to_stmt_list(pPg);
        }
      }
    }else{
      pPg->needSync = !pPager->journalStarted && !pPager->noSync;
      TRACE3("APPEND %d %d\n", pPg->pgno, pPg->needSync);
    }
    if( pPg->needSync ){
      pPager->needSync = 1;
    }
  }

  /* If the statement journal is open and the page is not in it,
  ** then write the current page to the statement journal.  Note that
  ** the statement journal always uses the simplier format 2 that lacks
  ** checksums.  The header is also omitted from the statement journal.
  */
  if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    if( pPager->memDb ){
      PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
      assert( pHist->pStmt==0 );
      pHist->pStmt = sqliteMallocRaw( pPager->pageSize );
      if( pHist->pStmt ){
        memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
      }
      TRACE2("STMT-JOURNAL %d\n", pPg->pgno);
    }else{
      store32bits(pPg->pgno, pPg, -4);
      CODEC(pPager, pData, pPg->pgno, 7);
      rc = sqlite3OsWrite(&pPager->stfd, ((char*)pData)-4, SQLITE_PAGE_SIZE+4);
      TRACE2("STMT-JOURNAL %d\n", pPg->pgno);
      CODEC(pPager, pData, pPg->pgno, 0);
      if( rc!=SQLITE_OK ){
        sqlite3pager_rollback(pPager);
        pPager->errMask |= PAGER_ERR_FULL;
        return rc;
      }
      pPager->stmtNRec++;







|




















|




|







2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
        if( pPager->stmtInUse ){
          pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
          page_add_to_stmt_list(pPg);
        }
      }
    }else{
      pPg->needSync = !pPager->journalStarted && !pPager->noSync;
      TRACE3("APPEND page %d needSync=%d\n", pPg->pgno, pPg->needSync);
    }
    if( pPg->needSync ){
      pPager->needSync = 1;
    }
  }

  /* If the statement journal is open and the page is not in it,
  ** then write the current page to the statement journal.  Note that
  ** the statement journal always uses the simplier format 2 that lacks
  ** checksums.  The header is also omitted from the statement journal.
  */
  if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    if( pPager->memDb ){
      PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
      assert( pHist->pStmt==0 );
      pHist->pStmt = sqliteMallocRaw( pPager->pageSize );
      if( pHist->pStmt ){
        memcpy(pHist->pStmt, PGHDR_TO_DATA(pPg), pPager->pageSize);
      }
      TRACE2("STMT-JOURNAL page %d\n", pPg->pgno);
    }else{
      store32bits(pPg->pgno, pPg, -4);
      CODEC(pPager, pData, pPg->pgno, 7);
      rc = sqlite3OsWrite(&pPager->stfd, ((char*)pData)-4, SQLITE_PAGE_SIZE+4);
      TRACE2("STMT-JOURNAL page %d\n", pPg->pgno);
      CODEC(pPager, pData, pPg->pgno, 0);
      if( rc!=SQLITE_OK ){
        sqlite3pager_rollback(pPager);
        pPager->errMask |= PAGER_ERR_FULL;
        return rc;
      }
      pPager->stmtNRec++;
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
      ** When the database file grows, we must make sure that the last page
      ** gets written at least once so that the disk file will be the correct
      ** size. If you do not write this page and the size of the file
      ** on the disk ends up being too small, that can lead to database
      ** corruption during the next transaction.
      */
    }else{
      TRACE2("DONT_WRITE %d\n", pgno);
      pPg->dirty = 0;
    }
  }
}

/*
** A call to this routine tells the pager that if a rollback occurs,
** it is not necessary to restore the data on the given page.  This
** means that the pager does not have to record the given page in the
** rollback journal.
*/
void sqlite3pager_dont_rollback(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;

  if( pPager->state!=SQLITE_WRITELOCK || pPager->journalOpen==0 ) return;
  if( pPg->alwaysRollback || pPager->alwaysRollback || pPager->memDb ) return;
  if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
    assert( pPager->aInJournal!=0 );
    pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    pPg->inJournal = 1;
    if( pPager->stmtInUse ){
      pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
      page_add_to_stmt_list(pPg);
    }
    TRACE2("DONT_ROLLBACK %d\n", pPg->pgno);
  }
  if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    assert( pPager->aInStmt!=0 );
    pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    page_add_to_stmt_list(pPg);
  }







|















|









|







2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
      ** When the database file grows, we must make sure that the last page
      ** gets written at least once so that the disk file will be the correct
      ** size. If you do not write this page and the size of the file
      ** on the disk ends up being too small, that can lead to database
      ** corruption during the next transaction.
      */
    }else{
      TRACE3("DONT_WRITE page %d of %d\n", pgno, pPager->fd.h);
      pPg->dirty = 0;
    }
  }
}

/*
** A call to this routine tells the pager that if a rollback occurs,
** it is not necessary to restore the data on the given page.  This
** means that the pager does not have to record the given page in the
** rollback journal.
*/
void sqlite3pager_dont_rollback(void *pData){
  PgHdr *pPg = DATA_TO_PGHDR(pData);
  Pager *pPager = pPg->pPager;

  if( pPager->state!=PAGER_EXCLUSIVE || pPager->journalOpen==0 ) return;
  if( pPg->alwaysRollback || pPager->alwaysRollback || pPager->memDb ) return;
  if( !pPg->inJournal && (int)pPg->pgno <= pPager->origDbSize ){
    assert( pPager->aInJournal!=0 );
    pPager->aInJournal[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    pPg->inJournal = 1;
    if( pPager->stmtInUse ){
      pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
      page_add_to_stmt_list(pPg);
    }
    TRACE3("DONT_ROLLBACK page %d of %d\n", pPg->pgno, pPager->fd.h);
  }
  if( pPager->stmtInUse && !pPg->inStmt && (int)pPg->pgno<=pPager->stmtSize ){
    assert( pPg->inJournal || (int)pPg->pgno>pPager->origDbSize );
    assert( pPager->aInStmt!=0 );
    pPager->aInStmt[pPg->pgno/8] |= 1<<(pPg->pgno&7);
    page_add_to_stmt_list(pPg);
  }
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409

2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423

2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
    }
    return rc;
  }
  if( pPager->errMask!=0 ){
    rc = pager_errcode(pPager);
    return rc;
  }
  if( pPager->state!=SQLITE_WRITELOCK ){
    return SQLITE_ERROR;
  }
  TRACE1("COMMIT\n");
  if( pPager->memDb ){
    pPg = pager_get_all_dirty_pages(pPager);
    while( pPg ){
      clearHistory(PGHDR_TO_HIST(pPg, pPager));
      pPg->dirty = 0;
      pPg->inJournal = 0;
      pPg->inStmt = 0;
      pPg->pPrevStmt = pPg->pNextStmt = 0;
      pPg = pPg->pDirty;
    }
    pPager->pStmt = 0;
    pPager->state = SQLITE_READLOCK;
    return SQLITE_OK;
  }
#if 0
  if( pPager->dirtyFile==0 ){
    /* Exit early (without doing the time-consuming sqlite3OsSync() calls)
    ** if there have been no changes to the database file. */
    assert( pPager->needSync==0 );
    rc = pager_unwritelock(pPager);
    pPager->dbSize = -1;
    return rc;
  }
  assert( pPager->journalOpen );

  rc = syncJournal(pPager, 0);
  if( rc!=SQLITE_OK ){
    goto commit_abort;
  }
  pPg = pager_get_all_dirty_pages(pPager);
  if( pPg ){
    rc = pager_write_pagelist(pPg);
    if( rc || (!pPager->noSync && sqlite3OsSync(&pPager->fd)!=SQLITE_OK) ){
      goto commit_abort;
    }
  }
#endif
  rc = sqlite3pager_sync(pPager, 0);
  if( rc!=SQLITE_OK ) goto commit_abort;


  rc = pager_unwritelock(pPager);
  pPager->dbSize = -1;
  return rc;

  /* Jump here if anything goes wrong during the commit process.
  */
commit_abort:
  rc = sqlite3pager_rollback(pPager);
  if( rc==SQLITE_OK ){
    rc = SQLITE_FULL;
  }
  return rc;
}

/*
** Rollback all changes.  The database falls back to read-only mode.
** All in-memory cache pages revert to their original data contents.
** The journal is deleted.
**
** This routine cannot fail unless some other process is not following
** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
** process is writing trash into the journal file (SQLITE_CORRUPT) or
** unless a prior malloc() failed (SQLITE_NOMEM).  Appropriate error
** codes are returned for all these occasions.  Otherwise,
** SQLITE_OK is returned.
*/
int sqlite3pager_rollback(Pager *pPager){
  int rc;
  TRACE1("ROLLBACK\n");
  if( pPager->memDb ){
    PgHdr *p;
    for(p=pPager->pAll; p; p=p->pNextAll){
      PgHistory *pHist;
      if( !p->dirty ) continue;
      pHist = PGHDR_TO_HIST(p, pPager);
      if( pHist->pOrig ){







|


|











|


<
|








>













|
>
|















|












|







2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428

2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
    }
    return rc;
  }
  if( pPager->errMask!=0 ){
    rc = pager_errcode(pPager);
    return rc;
  }
  if( pPager->state<PAGER_RESERVED ){
    return SQLITE_ERROR;
  }
  TRACE2("COMMIT %d\n", pPager->fd.h);
  if( pPager->memDb ){
    pPg = pager_get_all_dirty_pages(pPager);
    while( pPg ){
      clearHistory(PGHDR_TO_HIST(pPg, pPager));
      pPg->dirty = 0;
      pPg->inJournal = 0;
      pPg->inStmt = 0;
      pPg->pPrevStmt = pPg->pNextStmt = 0;
      pPg = pPg->pDirty;
    }
    pPager->pStmt = 0;
    pPager->state = PAGER_SHARED;
    return SQLITE_OK;
  }

  if( pPager->dirtyCache==0 ){
    /* Exit early (without doing the time-consuming sqlite3OsSync() calls)
    ** if there have been no changes to the database file. */
    assert( pPager->needSync==0 );
    rc = pager_unwritelock(pPager);
    pPager->dbSize = -1;
    return rc;
  }
  assert( pPager->journalOpen );
#if 0
  rc = syncJournal(pPager, 0);
  if( rc!=SQLITE_OK ){
    goto commit_abort;
  }
  pPg = pager_get_all_dirty_pages(pPager);
  if( pPg ){
    rc = pager_write_pagelist(pPg);
    if( rc || (!pPager->noSync && sqlite3OsSync(&pPager->fd)!=SQLITE_OK) ){
      goto commit_abort;
    }
  }
#endif
  rc = sqlite3pager_sync(pPager, 0);
  if( rc!=SQLITE_OK ){
    goto commit_abort;
  }
  rc = pager_unwritelock(pPager);
  pPager->dbSize = -1;
  return rc;

  /* Jump here if anything goes wrong during the commit process.
  */
commit_abort:
  rc = sqlite3pager_rollback(pPager);
  if( rc==SQLITE_OK ){
    rc = SQLITE_FULL;
  }
  return rc;
}

/*
** Rollback all changes.  The database falls back to PAGER_SHARED mode.
** All in-memory cache pages revert to their original data contents.
** The journal is deleted.
**
** This routine cannot fail unless some other process is not following
** the correct locking protocol (SQLITE_PROTOCOL) or unless some other
** process is writing trash into the journal file (SQLITE_CORRUPT) or
** unless a prior malloc() failed (SQLITE_NOMEM).  Appropriate error
** codes are returned for all these occasions.  Otherwise,
** SQLITE_OK is returned.
*/
int sqlite3pager_rollback(Pager *pPager){
  int rc;
  TRACE2("ROLLBACK %d\n", pPager->fd.h);
  if( pPager->memDb ){
    PgHdr *p;
    for(p=pPager->pAll; p; p=p->pNextAll){
      PgHistory *pHist;
      if( !p->dirty ) continue;
      pHist = PGHDR_TO_HIST(p, pPager);
      if( pHist->pOrig ){
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492



2493

2494

2495

2496
2497
2498
2499
2500
2501
2502
      p->inStmt = 0;
      p->pPrevStmt = p->pNextStmt = 0;
    }
    pPager->pStmt = 0;
    pPager->dbSize = pPager->origDbSize;
    memoryTruncate(pPager);
    pPager->stmtInUse = 0;
    pPager->state = SQLITE_READLOCK;
    return SQLITE_OK;
  }

  if( !pPager->dirtyFile || !pPager->journalOpen ){
    rc = pager_unwritelock(pPager);
    pPager->dbSize = -1;
    return rc;
  }

  if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
    if( pPager->state>=SQLITE_WRITELOCK ){
      pager_playback(pPager, 1);
    }
    return pager_errcode(pPager);
  }
  if( pPager->state!=SQLITE_WRITELOCK ){



    return SQLITE_OK;

  }

  rc = pager_playback(pPager, 1);

  if( rc!=SQLITE_OK ){
    rc = SQLITE_CORRUPT;
    pPager->errMask |= PAGER_ERR_CORRUPT;
  }
  pPager->dbSize = -1;
  return rc;
}







|



|






|




|
>
>
>
|
>
|
>
|
>







2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
      p->inStmt = 0;
      p->pPrevStmt = p->pNextStmt = 0;
    }
    pPager->pStmt = 0;
    pPager->dbSize = pPager->origDbSize;
    memoryTruncate(pPager);
    pPager->stmtInUse = 0;
    pPager->state = PAGER_SHARED;
    return SQLITE_OK;
  }

  if( !pPager->dirtyCache || !pPager->journalOpen ){
    rc = pager_unwritelock(pPager);
    pPager->dbSize = -1;
    return rc;
  }

  if( pPager->errMask!=0 && pPager->errMask!=PAGER_ERR_FULL ){
    if( pPager->state>=PAGER_EXCLUSIVE ){
      pager_playback(pPager, 1);
    }
    return pager_errcode(pPager);
  }
  if( pPager->state==PAGER_RESERVED ){
    int rc2;
    rc = pager_reload_cache(pPager);
    rc2 = pager_unwritelock(pPager);
    if( rc==SQLITE_OK ){
      rc = rc2;
    }
  }else{
    rc = pager_playback(pPager, 1);
  }
  if( rc!=SQLITE_OK ){
    rc = SQLITE_CORRUPT;
    pPager->errMask |= PAGER_ERR_CORRUPT;
  }
  pPager->dbSize = -1;
  return rc;
}
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
** open.  A new statement journal is created that can be used to rollback
** changes of a single SQL command within a larger transaction.
*/
int sqlite3pager_stmt_begin(Pager *pPager){
  int rc;
  char zTemp[SQLITE_TEMPNAME_SIZE];
  assert( !pPager->stmtInUse );
  TRACE1("STMT-BEGIN\n");
  if( pPager->memDb ){
    pPager->stmtInUse = 1;
    pPager->stmtSize = pPager->dbSize;
    return SQLITE_OK;
  }
  if( !pPager->journalOpen ){
    pPager->stmtAutoopen = 1;







|







2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
** open.  A new statement journal is created that can be used to rollback
** changes of a single SQL command within a larger transaction.
*/
int sqlite3pager_stmt_begin(Pager *pPager){
  int rc;
  char zTemp[SQLITE_TEMPNAME_SIZE];
  assert( !pPager->stmtInUse );
  TRACE2("STMT-BEGIN %d\n", pPager->fd.h);
  if( pPager->memDb ){
    pPager->stmtInUse = 1;
    pPager->stmtSize = pPager->dbSize;
    return SQLITE_OK;
  }
  if( !pPager->journalOpen ){
    pPager->stmtAutoopen = 1;
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596

/*
** Commit a statement.
*/
int sqlite3pager_stmt_commit(Pager *pPager){
  if( pPager->stmtInUse ){
    PgHdr *pPg, *pNext;
    TRACE1("STMT-COMMIT\n");
    if( !pPager->memDb ){
      sqlite3OsSeek(&pPager->stfd, 0);
      /* sqlite3OsTruncate(&pPager->stfd, 0); */
      sqliteFree( pPager->aInStmt );
      pPager->aInStmt = 0;
    }
    for(pPg=pPager->pStmt; pPg; pPg=pNext){







|







2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632

/*
** Commit a statement.
*/
int sqlite3pager_stmt_commit(Pager *pPager){
  if( pPager->stmtInUse ){
    PgHdr *pPg, *pNext;
    TRACE2("STMT-COMMIT %d\n", pPager->fd.h);
    if( !pPager->memDb ){
      sqlite3OsSeek(&pPager->stfd, 0);
      /* sqlite3OsTruncate(&pPager->stfd, 0); */
      sqliteFree( pPager->aInStmt );
      pPager->aInStmt = 0;
    }
    for(pPg=pPager->pStmt; pPg; pPg=pNext){
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628

/*
** Rollback a statement.
*/
int sqlite3pager_stmt_rollback(Pager *pPager){
  int rc;
  if( pPager->stmtInUse ){
    TRACE1("STMT-ROLLBACK\n");
    if( pPager->memDb ){
      PgHdr *pPg;
      for(pPg=pPager->pStmt; pPg; pPg=pPg->pNextStmt){
        PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
        if( pHist->pStmt ){
          memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
          sqliteFree(pHist->pStmt);







|







2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664

/*
** Rollback a statement.
*/
int sqlite3pager_stmt_rollback(Pager *pPager){
  int rc;
  if( pPager->stmtInUse ){
    TRACE2("STMT-ROLLBACK %d\n", pPager->fd.h);
    if( pPager->memDb ){
      PgHdr *pPg;
      for(pPg=pPager->pStmt; pPg; pPg=pPg->pNextStmt){
        PgHistory *pHist = PGHDR_TO_HIST(pPg, pPager);
        if( pHist->pStmt ){
          memcpy(PGHDR_TO_DATA(pPg), pHist->pStmt, pPager->pageSize);
          sqliteFree(pHist->pStmt);
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
*/
int sqlite3pager_sync(Pager *pPager, const char *zMaster){
  int rc = SQLITE_OK;

  /* If this is an in-memory db, or no pages have been written to, this
  ** function is a no-op.
  */
  if( !pPager->memDb && pPager->dirtyFile ){
    PgHdr *pPg;
    assert( pPager->journalOpen );

    /* Sync the journal file */
    rc = syncJournal(pPager, zMaster);
    if( rc!=SQLITE_OK ) goto sync_exit;








|







2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
*/
int sqlite3pager_sync(Pager *pPager, const char *zMaster){
  int rc = SQLITE_OK;

  /* If this is an in-memory db, or no pages have been written to, this
  ** function is a no-op.
  */
  if( !pPager->memDb && pPager->dirtyCache ){
    PgHdr *pPg;
    assert( pPager->journalOpen );

    /* Sync the journal file */
    rc = syncJournal(pPager, zMaster);
    if( rc!=SQLITE_OK ) goto sync_exit;

Changes to src/pager.h.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem.  The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
** @(#) $Id: pager.h,v 1.32 2004/06/09 14:17:21 drh Exp $
*/

/*
** The size of a page.
**
** You can change this value to another (reasonable) value you want.
** It need not be a power of two, though the interface to the disk







|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This header file defines the interface that the sqlite page cache
** subsystem.  The page cache subsystem reads and writes a file a page
** at a time and provides a journal for rollback.
**
** @(#) $Id: pager.h,v 1.33 2004/06/09 17:37:28 drh Exp $
*/

/*
** The size of a page.
**
** You can change this value to another (reasonable) value you want.
** It need not be a power of two, though the interface to the disk
69
70
71
72
73
74
75

76
77
78
79
80
81
82
** See source code comments for a detailed description of the following
** routines:
*/
int sqlite3pager_open(Pager **ppPager, const char *zFilename,
                     int nPage, int nExtra, int useJournal,
                     void *pBusyHandler);
void sqlite3pager_set_destructor(Pager*, void(*)(void*,int));

void sqlite3pager_set_cachesize(Pager*, int);
int sqlite3pager_close(Pager *pPager);
int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage);
void *sqlite3pager_lookup(Pager *pPager, Pgno pgno);
int sqlite3pager_ref(void*);
int sqlite3pager_unref(void*);
Pgno sqlite3pager_pagenumber(void*);







>







69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
** See source code comments for a detailed description of the following
** routines:
*/
int sqlite3pager_open(Pager **ppPager, const char *zFilename,
                     int nPage, int nExtra, int useJournal,
                     void *pBusyHandler);
void sqlite3pager_set_destructor(Pager*, void(*)(void*,int));
void sqlite3pager_set_reiniter(Pager*, void(*)(void*,int));
void sqlite3pager_set_cachesize(Pager*, int);
int sqlite3pager_close(Pager *pPager);
int sqlite3pager_get(Pager *pPager, Pgno pgno, void **ppPage);
void *sqlite3pager_lookup(Pager *pPager, Pgno pgno);
int sqlite3pager_ref(void*);
int sqlite3pager_unref(void*);
Pgno sqlite3pager_pagenumber(void*);
Changes to src/test1.c.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the printf() interface to SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.73 2004/06/09 14:01:51 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include "os.h"
#include <stdlib.h>
#include <string.h>








|







9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
**    May you share freely, never taking more than you give.
**
*************************************************************************
** Code for testing the printf() interface to SQLite.  This code
** is not included in the SQLite library.  It is used for automated
** testing of the SQLite library.
**
** $Id: test1.c,v 1.74 2004/06/09 17:37:28 drh Exp $
*/
#include "sqliteInt.h"
#include "tcl.h"
#include "os.h"
#include <stdlib.h>
#include <string.h>

1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
       Tcl_GetString(objv[0]), " filehandle", 0);
    return TCL_ERROR;
  }

  if( getFilePointer(interp, Tcl_GetString(objv[1]), &pFile) ){
    return TCL_ERROR;
  }
  rc = sqlite3OsUnlock(pFile);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)errorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}








|







1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
       Tcl_GetString(objv[0]), " filehandle", 0);
    return TCL_ERROR;
  }

  if( getFilePointer(interp, Tcl_GetString(objv[1]), &pFile) ){
    return TCL_ERROR;
  }
  rc = sqlite3OsUnlock(pFile, NO_LOCK);
  if( rc!=SQLITE_OK ){
    Tcl_SetResult(interp, (char *)errorName(rc), TCL_STATIC);
    return TCL_ERROR;
  }
  return TCL_OK;
}

Changes to src/vdbeaux.c.
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
    }
  }

  /* The simple case - no more than one database file (not counting the TEMP
  ** database) has a transaction active.   There is no need for the
  ** master-journal.
  */
  if( nTrans<=1 ){
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        rc = sqlite3BtreeSync(pBt, 0);
      }
    }








|







930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
    }
  }

  /* The simple case - no more than one database file (not counting the TEMP
  ** database) has a transaction active.   There is no need for the
  ** master-journal.
  */
  if( nTrans<=100 ){  /**** FIX ME ****/
    for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ 
      Btree *pBt = db->aDb[i].pBt;
      if( pBt ){
        rc = sqlite3BtreeSync(pBt, 0);
      }
    }

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
  else{
    char *zMaster = 0;   /* File-name for the master journal */
    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
    OsFile master;

    /* Select a master journal file name */
    do {
      int random;
      if( zMaster ){
        sqliteFree(zMaster);
      }    
      sqlite3Randomness(sizeof(random), &random);
      zMaster = sqlite3_mprintf("%s%d", zMainFile, random);
      if( !zMaster ){
        return SQLITE_NOMEM;
      }
    }while( sqlite3OsFileExists(zMaster) );

    /* Open the master journal. */
    rc = sqlite3OsOpenExclusive(zMaster, &master, 0);







|
<
|
<

|







960
961
962
963
964
965
966
967

968

969
970
971
972
973
974
975
976
977
  else{
    char *zMaster = 0;   /* File-name for the master journal */
    char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
    OsFile master;

    /* Select a master journal file name */
    do {
      u32 random;

      sqliteFree(zMaster);

      sqlite3Randomness(sizeof(random), &random);
      zMaster = sqlite3MPrintf("%s-mj%08X", zMainFile, random);
      if( !zMaster ){
        return SQLITE_NOMEM;
      }
    }while( sqlite3OsFileExists(zMaster) );

    /* Open the master journal. */
    rc = sqlite3OsOpenExclusive(zMaster, &master, 0);
Changes to test/attach2.test.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the ATTACH and DETACH commands
# and related functionality.
#
# $Id: attach2.test,v 1.13 2004/06/09 14:01:58 drh Exp $
#
set sqlite_os_trace 0

set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Ticket #354
#







|

<







8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
#    May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library.  The
# focus of this script is testing the ATTACH and DETACH commands
# and related functionality.
#
# $Id: attach2.test,v 1.14 2004/06/09 17:37:29 drh Exp $
#


set testdir [file dirname $argv0]
source $testdir/tester.tcl


# Ticket #354
#
143
144
145
146
147
148
149








150
151
152
153
154
155
156
157
158
159
160



161
162
163
164
165
166
167
168




169
170
171
172




173
174
175
176
177
178
179




180
181
182
183
184
185
186
187




188
189
190
191
192
193
194
195
196




197
198
199
200
201
202




203
204
205
206
207
208

209



210
211
212

213
214
215

216
217
218
219
220
221
222
223
224




225
226
227
228




229
230
231
232
233
234
235
  set rc
} {0}

db close
for {set i 2} {$i<=15} {incr i} {
  catch {db$i close}
}








set sqlite_os_trace 0

# Tests attach2-4.* test that read-locks work correctly with attached
# databases.
do_test attach2-4.1 {
  sqlite db test.db
  sqlite db2 test.db
  execsql {ATTACH 'test2.db' as file2}
  execsql {ATTACH 'test2.db' as file2} db2
} {}




do_test attach2-4.2 {
  # Handle 'db' read-locks test.db
  execsql {BEGIN}
  execsql {SELECT * FROM t1}
  # Lock status:
  #    db  - shared(main)
  #    db2 -
} {}




do_test attach2-4.3 {
  # The read lock held by db does not prevent db2 from reading test.db
  execsql {SELECT * FROM t1} db2
} {}




do_test attach2-4.4 {
  # db is holding a read lock on test.db, so we should not be able
  # to commit a write to test.db from db2
  catchsql {
    INSERT INTO t1 VALUES(1, 2)
  } db2 
} {1 {database is locked}}




do_test attach2-4.5 {
  # Handle 'db2' reserves file2.
  execsql {BEGIN} db2
  execsql {INSERT INTO file2.t1 VALUES(1, 2)} db2
  # Lock status:
  #    db  - shared(main)
  #    db2 - reserved(file2)
} {}




do_test attach2-4.6.1 {
  # Reads are allowed against a reserved database.
  catchsql {
    SELECT * FROM file2.t1;
  }
  # Lock status:
  #    db  - shared(main), shared(file2)
  #    db2 - reserved(file2)
} {0 {}}




do_test attach2-4.6.2 {
  # Writes against a reserved database are not allowed.
  catchsql {
    UPDATE file2.t1 SET a=0;
  }
} {1 {database is locked}}




do_test attach2-4.7 {
  # Ensure handle 'db' retains the lock on the main file after
  # failing to obtain a write-lock on file2.
  catchsql {
    INSERT INTO t1 VALUES(1, 2)
  } db2 

} {1 {database is locked}}



do_test attach2-4.8 {
  # Read lock the main file with db2. Now both db and db2 have a read lock
  # on the main file, db2 has a write-lock on file2.

  execsql {SELECT * FROM t1} db2
  # Lock status:
  #    db  - shared(main), shared(file2)

  #    db2 - shared(main), reserved(file2)
} {}
do_test attach2-4.9 {
  # Try to upgrade the handle 'db' lock.
  catchsql {
    INSERT INTO t1 VALUES(1, 2)
  }
  list $r $msg
} {1 {database is locked}}




do_test attach2-4.10 {
  # Release the locks held by handle 'db2'
  execsql {COMMIT} db2
} {}




do_test attach2-4.11 {
  execsql {SELECT * FROM file2.t1}
} {1 2}
do_test attach2-4.12 {
  execsql {INSERT INTO t1 VALUES(1, 2)}
} {}
do_test attach2-4.13 {







>
>
>
>
>
>
>
>











>
>
>








>
>
>
>




>
>
>
>







>
>
>
>








>
>
>
>









>
>
>
>






>
>
>
>






>
|
>
>
>

<
<
>

|
|
>
|
|





<

>
>
>
>




>
>
>
>







142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248


249
250
251
252
253
254
255
256
257
258
259
260

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
  set rc
} {0}

db close
for {set i 2} {$i<=15} {incr i} {
  catch {db$i close}
}

# A procedure to verify the status of locks on a database.
#
proc lock_status {testnum db expected_result} {
  do_test attach2-$testnum [subst {
    execsql {PRAGMA lock_status} $db
  }] $expected_result
}
set sqlite_os_trace 0

# Tests attach2-4.* test that read-locks work correctly with attached
# databases.
do_test attach2-4.1 {
  sqlite db test.db
  sqlite db2 test.db
  execsql {ATTACH 'test2.db' as file2}
  execsql {ATTACH 'test2.db' as file2} db2
} {}

lock_status 4.1.1 db {main unlocked temp unlocked file2 unlocked}
lock_status 4.1.2 db2 {main unlocked temp unlocked file2 unlocked}

do_test attach2-4.2 {
  # Handle 'db' read-locks test.db
  execsql {BEGIN}
  execsql {SELECT * FROM t1}
  # Lock status:
  #    db  - shared(main)
  #    db2 -
} {}

lock_status 4.2.1 db {main shared temp shared file2 unlocked}
lock_status 4.2.2 db2 {main unlocked temp unlocked file2 unlocked}

do_test attach2-4.3 {
  # The read lock held by db does not prevent db2 from reading test.db
  execsql {SELECT * FROM t1} db2
} {}

lock_status 4.3.1 db {main shared temp shared file2 unlocked}
lock_status 4.3.2 db2 {main unlocked temp unlocked file2 unlocked}

do_test attach2-4.4 {
  # db is holding a read lock on test.db, so we should not be able
  # to commit a write to test.db from db2
  catchsql {
    INSERT INTO t1 VALUES(1, 2)
  } db2 
} {1 {database is locked}}

lock_status 4.4.1 db {main shared temp shared file2 unlocked}
lock_status 4.4.2 db2 {main unlocked temp unlocked file2 unlocked}

do_test attach2-4.5 {
  # Handle 'db2' reserves file2.
  execsql {BEGIN} db2
  execsql {INSERT INTO file2.t1 VALUES(1, 2)} db2
  # Lock status:
  #    db  - shared(main)
  #    db2 - reserved(file2)
} {}

lock_status 4.5.1 db {main shared temp shared file2 unlocked}
lock_status 4.5.2 db2 {main unlocked temp reserved file2 reserved}

do_test attach2-4.6.1 {
  # Reads are allowed against a reserved database.
  catchsql {
    SELECT * FROM file2.t1;
  }
  # Lock status:
  #    db  - shared(main), shared(file2)
  #    db2 - reserved(file2)
} {0 {}}

lock_status 4.6.1.1 db {main shared temp shared file2 shared}
lock_status 4.6.1.2 db2 {main unlocked temp reserved file2 reserved}

do_test attach2-4.6.2 {
  # Writes against a reserved database are not allowed.
  catchsql {
    UPDATE file2.t1 SET a=0;
  }
} {1 {database is locked}}

lock_status 4.6.2.1 db {main shared temp reserved file2 shared}
lock_status 4.6.2.2 db2 {main unlocked temp reserved file2 reserved}

do_test attach2-4.7 {
  # Ensure handle 'db' retains the lock on the main file after
  # failing to obtain a write-lock on file2.
  catchsql {
    INSERT INTO t1 VALUES(1, 2)
  } db2 
} {0 {}}

lock_status 4.7.1 db {main shared temp reserved file2 shared}
lock_status 4.7.2 db2 {main reserved temp reserved file2 reserved}

do_test attach2-4.8 {


  # We should still be able to read test.db from db2
  execsql {SELECT * FROM t1} db2
} {1 2}

lock_status 4.8.1 db {main shared temp reserved file2 shared}
lock_status 4.8.2 db2 {main reserved temp reserved file2 reserved}

do_test attach2-4.9 {
  # Try to upgrade the handle 'db' lock.
  catchsql {
    INSERT INTO t1 VALUES(1, 2)
  }

} {1 {database is locked}}

lock_status 4.9.1 db {main shared temp reserved file2 shared}
lock_status 4.9.2 db2 {main reserved temp reserved file2 reserved}

do_test attach2-4.10 {
  # Release the locks held by handle 'db2'
  execsql {COMMIT} db2
} {}

lock_status 4.10.1 db {main shared temp reserved file2 shared}
lock_status 4.10.2 db2 {main unlocked temp unlocked file2 unlocked}

do_test attach2-4.11 {
  execsql {SELECT * FROM file2.t1}
} {1 2}
do_test attach2-4.12 {
  execsql {INSERT INTO t1 VALUES(1, 2)}
} {}
do_test attach2-4.13 {